1
|
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, Zaharoff DA. Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 2020; 11:575597. [PMID: 33178203 PMCID: PMC7593768 DOI: 10.3389/fimmu.2020.575597] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Interleukin-12 (IL-12) is a potent, pro-inflammatory type 1 cytokine that has long been studied as a potential immunotherapy for cancer. Unfortunately, IL-12's remarkable antitumor efficacy in preclinical models has yet to be replicated in humans. Early clinical trials in the mid-1990's showed that systemic delivery of IL-12 incurred dose-limiting toxicities. Nevertheless, IL-12's pleiotropic activity, i.e., its ability to engage multiple effector mechanisms and reverse tumor-induced immunosuppression, continues to entice cancer researchers. The development of strategies which maximize IL-12 delivery to the tumor microenvironment while minimizing systemic exposure are of increasing interest. Diverse IL-12 delivery systems, from immunocytokine fusions to polymeric nanoparticles, have demonstrated robust antitumor immunity with reduced adverse events in preclinical studies. Several localized IL-12 delivery approaches have recently reached the clinical stage with several more at the precipice of translation. Taken together, localized delivery systems are supporting an IL-12 renaissance which may finally allow this potent cytokine to fulfill its considerable clinical potential. This review begins with a brief historical account of cytokine monotherapies and describes how IL-12 went from promising new cure to ostracized black sheep following multiple on-study deaths. The bulk of this comprehensive review focuses on developments in diverse localized delivery strategies for IL-12-based cancer immunotherapies. Advantages and limitations of different delivery technologies are highlighted. Finally, perspectives on how IL-12-based immunotherapies may be utilized for widespread clinical application in the very near future are offered.
Collapse
Affiliation(s)
- Khue G Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Maura R Vrabel
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Siena M Mantooth
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Jared J Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Ethan S Wagner
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Taylor A Gabaldon
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
2
|
Combining doxorubicin with stearylamine-bearing liposomes elicits Th1 cytokine responses and cures metastasis in a mouse model. Cancer Immunol Immunother 2020; 69:1725-1735. [PMID: 32328672 DOI: 10.1007/s00262-020-02578-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Surface exposed phosphatidylserine (PS) of cancer aids it to evade immune surveillance and thereby results in tumor progression. Earlier, we reported that PS targeting cationic liposomes, phosphatidylcholine-stearylamine (PC-SA), alone and in combination with doxorubicin can result in complete remission of B16F10 melanoma in C57BL/6 mice without signs of toxicity. Inducing an immunogenic response is highly crucial for any cancer therapy as it is essential in improving the tumor microenvironment for any drug to act. Herein, we demonstrate that PC-SA, besides having tumor reducing ability, elicits a strong immune response. The combination therapy (PC-SA-DOX) is superior to free DOX in enhancing the anti-tumor immune effect on CD4-positive and CD8-positive T cells for IFN-γ, IL-2 and TNF-α production in sera and splenic culture supernatants of B16F10 tumor-induced mice. An upregulation of IL-12 and NO production is evidenced in spleen cultures of these mice, thereby showing a promising role of both Th1 type and innate immune response for host anti-tumor activity. Complete elimination of cancer is sometimes accomplished by surgery, but its effectiveness is often limited due to the propensity of cancers to spread to distant organs by metastasis. In our present study, we show that in PC-SA-DOX treated mice, the elevated Th1 cytokine levels create an immuno-protective environment which thereby facilitates in curing lung metastasis. Our results, therefore, warrant the need of effective immune stimulation by anticancer formulations for inhibition of solid tumors and metastasis, demonstrated by the liposomal DOX formulation.
Collapse
|
3
|
Barrett JA, Cai H, Miao J, Khare PD, Gonzalez P, Dalsing-Hernandez J, Sharma G, Chan T, Cooper LJN, Lebel F. Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System ® (RTS ®) gene switch as gene therapy for the treatment of glioma. Cancer Gene Ther 2018; 25:106-116. [PMID: 29755109 PMCID: PMC6021367 DOI: 10.1038/s41417-018-0019-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/07/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to determine if localized delivery of IL-12 encoded by a replication-incompetent adenoviral vector engineered to express IL-12 via a RheoSwitch Therapeutic System® (RTS®) gene switch (Ad-RTS-IL-12) administered intratumorally which is inducibly controlled by the oral activator veledimex is an effective approach for glioma therapy. Mice bearing 5–10-day-old intracranial GL-261 gliomas were intratumorally administered Ad-RTS-mIL-12 in which IL-12 protein expression is tightly controlled by the activator ligand, veledimex. Local tumor viral vector levels concomitant with veledimex levels, IL-12-mRNA expression, local and systemic cytokine expression, tumor and systemic flow cytometry and overall survival were studied. Ad-RTS-mIL-12+veledimex elicited a dose-related increase in tumor IL-12 mRNA and IL-12 protein and discontinuation of veledimex resulted in a return to baseline levels. These changes correlated with local immune and antitumor responses. Veledimex crossed the blood–brain barrier in both orthotopic GL-261 mice and cynomolgus monkeys. We have demonstrated that this therapy induced localized controlled production of IL-12 which correlates with an increase in tumor-infiltrating lymphocytes (TILs) leading to the desired biologic response of tumor growth inhibition and regression. At day 85 (study termination), 65% of the animals that received veledimex at 10 or 30 mg/m2/day were alive and tumor free. In contrast, the median survival for the other groups were: vehicle 23 days, bevacizumab 20 days, temozolomide 33 days and anti-PD-1 37 days. These findings suggest that the controlled intratumoral production of IL-12 induces local immune cell infiltration and improved survival in glioma, thereby demonstrating that this novel regulated immunotherapeutic approach may be an effective form of therapy for glioma.
Collapse
Affiliation(s)
| | | | - John Miao
- Ziopharm Oncology Inc., Boston, MA, USA, 02129
| | | | - Paul Gonzalez
- Translational Drug Development, Scottsdale, AZ, USA, 85259
| | | | - Geeta Sharma
- Charles River Laboratories, Worcester, MA, USA, 01605
| | - Tim Chan
- Intrexon Corporation, Germantown, MD, 20876, USA
| | | | | |
Collapse
|
4
|
Gardeck AM, Sheehan J, Low WC. Immune and viral therapies for malignant primary brain tumors. Expert Opin Biol Ther 2017; 17:457-474. [DOI: 10.1080/14712598.2017.1296132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andrew M. Gardeck
- Departments of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Jordan Sheehan
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Departments of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Nguyen Them L, Ibañez-Julia MJ, Alentorn A, Duran-Peña A, Royer-Perron L, Sanson M, Hoang-Xuan K, Delattre JY, Idbaih A. Targeting the immune system in glioblastoma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1309256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Tyler BM, Liu A, Sankey EW, Mangraviti A, Barone MA, Brem H. The Johns Hopkins Hunterian Laboratory Philosophy: Mentoring Students in a Scientific Neurosurgical Research Laboratory. ACADEMIC MEDICINE : JOURNAL OF THE ASSOCIATION OF AMERICAN MEDICAL COLLEGES 2016; 91:778-784. [PMID: 26934692 DOI: 10.1097/acm.0000000000001136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
After over 50 years of scientific contribution under the leadership of Harvey Cushing and later Walter Dandy, the Johns Hopkins Hunterian Laboratory entered a period of dormancy between the 1960s and early 1980s. In 1984, Henry Brem reinstituted the Hunterian Neurosurgical Laboratory, with a new focus on localized delivery of therapies for brain tumors, leading to several discoveries such as new antiangiogenic agents and Gliadel chemotherapy wafers for the treatment of malignant gliomas. Since that time, it has been the training ground for 310 trainees who have dedicated their time to scientific exploration in the lab, resulting in numerous discoveries in the area of neurosurgical research. The Hunterian Neurosurgical Laboratory has been a unique example of successful mentoring in a translational research environment. The laboratory's philosophy emphasizes mentorship, independence, self-directed learning, creativity, and people-centered collaboration, while maintaining productivity with a focus on improving clinical outcomes. This focus has been served by the diverse backgrounds of its trainees, both in regard to educational status as well as culturally. Through this philosophy and strong legacy of scientific contribution, the Hunterian Laboratory has maintained a positive and productive research environment that supports highly motivated students and trainees. In this article, the authors discuss the laboratory's training philosophy, linked to the principles of adult learning (andragogy), as well as the successes and the limitations of including a wide educational range of students in a neurosurgical translational laboratory and the phenomenon of combining clinical expertise with rigorous scientific training.
Collapse
Affiliation(s)
- Betty M Tyler
- B.M. Tyler is associate professor, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. A. Liu is a student, Wake Forest School of Medicine, Winston-Salem, North Carolina, and fellow, Hunterian Neurosurgical Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland. E.W. Sankey is a student, Johns Hopkins University School of Medicine, and fellow, Hunterian Neurosurgical Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland. A. Mangraviti is a postdoctoral fellow, Hunterian Neurosurgical Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland. M.A. Barone is associate professor, Department of Pediatrics, and associate dean for faculty educational development, Johns Hopkins University School of Medicine, Baltimore, Maryland. H. Brem is professor, Departments of Neurosurgery, Oncology, Biomedical Engineering, and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
7
|
Chen PY, Hsieh HY, Huang CY, Lin CY, Wei KC, Liu HL. Focused ultrasound-induced blood-brain barrier opening to enhance interleukin-12 delivery for brain tumor immunotherapy: a preclinical feasibility study. J Transl Med 2015; 13:93. [PMID: 25784614 PMCID: PMC4369363 DOI: 10.1186/s12967-015-0451-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/03/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Interleukin-12 (IL-12) has long been considered to be effective in triggering an anticancer immune response, however, the dosage has been limited by potential systemic immunotoxicity. Since focused ultrasound (FUS) has been confirmed to temporally and locally open the blood-brain barrier (BBB), the purpose of this study was to elucidate the possibility of combining FUS-induced BBB opening with IL-12 delivery to enhance the anticancer immunological response for glioma treatment. METHODS FUS energy combined with microbubble administration was delivered transcranially to open BBB, and C-6 glioma rats were used in this study. The efficacy in inducing BBB opening and the corresponding immunological response were primarily evaluated in normal animals. The anticancer immune-triggering chemokine, IL-12, was intraperitoneally administered during the treatment phase to evaluate the effect of immunological response on tumor progression. Glioma animals were sub-grouped to evaluate the effect of the immune response in suppressing glioma when IL-12 was combined with FUS-induced BBB opening. We performed flow cytometry to verify consequent immune cell population changes of peripheral/ tissue lymphocytes as well as macrophages from the animals. Brain sections of sacrificed animals were also used for histological and immunohistochemical analysis. IL-12 level among experimental groups were measured via ELISA analysis. We also analyzed survival and followed tumor progression in vivo via T2-weighted magnetic resonance imaging. RESULTS FUS-induced BBB opening had no obvious effect on the T lymphocytes population in normal animals, either in the brain or systemically. Yet, it triggered mild changes in the tumor-infiltrating lymphocyte (TIL) population, particularly in numbers of CD3+CD8+ cytotoxic T lymphocytes (CTLs) in the tumor region. IL-12 administration triggered a profound increase in all TIL populations, including CD3+CD4+ T helper cells (Th), CTL, and CD4+CD25+ regulatory T cells (Treg), but combined FUS-BBB opening with IL-12 administration produced the most significant IL-12 increase, CTL increase and CTL/Treg ratio increase, thus contributing to the most significant suppression of tumor progression and increased animal survival. CONCLUSION This study provides evidence that FUS-BBB opening can enhance immune-modulating agent delivery to the brain, which improve the anticancer immune response in brain tumor treatment.
Collapse
Affiliation(s)
- Pin-Yuan Chen
- Department of Neurosurgery, Chang-Gung Memorial Hospital, Taoyuan, Linkou, Taiwan,
| | | | | | | | | | | |
Collapse
|
8
|
Mangraviti A, Tzeng SY, Kozielski KL, Wang Y, Jin Y, Gullotti D, Pedone M, Buaron N, Liu A, Wilson DR, Hansen SK, Rodriguez FJ, Gao GD, DiMeco F, Brem H, Olivi A, Tyler B, Green JJ. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS NANO 2015; 9:1236-49. [PMID: 25643235 PMCID: PMC4342728 DOI: 10.1021/nn504905q] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Biodegradable polymeric nanoparticles have the potential to be safer alternatives to viruses for gene delivery; however, their use has been limited by poor efficacy in vivo. In this work, we synthesize and characterize polymeric gene delivery nanoparticles and evaluate their efficacy for DNA delivery of herpes simplex virus type I thymidine kinase (HSVtk) combined with the prodrug ganciclovir (GCV) in a malignant glioma model. We investigated polymer structure for gene delivery in two rat glioma cell lines, 9L and F98, to discover nanoparticle formulations more effective than the leading commercial reagent Lipofectamine 2000. The lead polymer structure, poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-modified with 1-(3-aminopropyl)-4-methylpiperazine, is a poly(β-amino ester) (PBAE) and formed nanoparticles with HSVtk DNA that were 138 ± 4 nm in size and 13 ± 1 mV in zeta potential. These nanoparticles containing HSVtk DNA showed 100% cancer cell killing in vitro in the two glioma cell lines when combined with GCV exposure, while control nanoparticles encoding GFP maintained robust cell viability. For in vivo evaluation, tumor-bearing rats were treated with PBAE/HSVtk infusion via convection-enhanced delivery (CED) in combination with systemic administration of GCV. These treated animals showed a significant benefit in survival (p = 0.0012 vs control). Moreover, following a single CED infusion, labeled PBAE nanoparticles spread completely throughout the tumor. This study highlights a nanomedicine approach that is highly promising for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Antonella Mangraviti
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Stephany Yi Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Kristen Lynn Kozielski
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Yuan Wang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Yike Jin
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - David Gullotti
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Mariangela Pedone
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Nitsa Buaron
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Chemical Engineering, Ben Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - David R. Wilson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Sarah K. Hansen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Fausto J. Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Francesco DiMeco
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan 20133, Italy
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Alessandro Olivi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Address correspondence to ,
| | - Jordan J. Green
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Material Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Address correspondence to ,
| |
Collapse
|
9
|
The future of glioblastoma therapy: synergism of standard of care and immunotherapy. Cancers (Basel) 2014; 6:1953-85. [PMID: 25268164 PMCID: PMC4276952 DOI: 10.3390/cancers6041953] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/05/2014] [Accepted: 09/03/2014] [Indexed: 12/18/2022] Open
Abstract
The current standard of care for glioblastoma (GBM) is maximal surgical resection with adjuvant radiotherapy and temozolomide (TMZ). As the 5-year survival with GBM remains at a dismal <10%, novel therapies are needed. Immunotherapies such as the dendritic cell (DC) vaccine, heat shock protein vaccines, and epidermal growth factor receptor (EGFRvIII) vaccines have shown encouraging results in clinical trials, and have demonstrated synergistic effects with conventional therapeutics resulting in ongoing phase III trials. Chemoradiation has been shown to have synergistic effects when used in combination with immunotherapy. Cytotoxic ionizing radiation is known to trigger pro-inflammatory signaling cascades and immune activation secondary to cell death, which can then be exploited by immunotherapies. The future of GBM therapeutics will involve finding the place for immunotherapy in the current treatment regimen with a focus on developing strategies. Here, we review current GBM therapy and the evidence for combination of immune checkpoint inhibitors, DC and peptide vaccines with the current standard of care.
Collapse
|
10
|
Jackson C, Ruzevick J, Brem H, Lim M. Vaccine strategies for glioblastoma: progress and future directions. Immunotherapy 2013; 5:155-67. [PMID: 23413907 DOI: 10.2217/imt.12.155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent advances in glioblastoma therapy have led to optimism that more effective therapies will improve outcomes. Immunotherapy is a promising approach that has demonstrated the potential to eradicate cancer cells with cellular-level accuracy while minimizing damage to surrounding healthy tissue. Several vaccination strategies have been evaluated for activity against glioblastoma in clinical trials. These include peptide vaccines, polyvalent dendritic cell vaccines, heat shock protein vaccines and adoptive immunotherapy. In this review, we highlight clinical trials representative of each of these approaches and discuss strategies for integrating these therapies into routine patient care.
Collapse
Affiliation(s)
- Christopher Jackson
- The Johns Hopkins Hospital, Department of Neurosurgery, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
11
|
Sattler R, Tyler B, Hoover B, Coddington LT, Recinos V, Hwang L, Brem H, Rothstein JD. Increased expression of glutamate transporter GLT-1 in peritumoral tissue associated with prolonged survival and decreases in tumor growth in a rat model of experimental malignant glioma. J Neurosurg 2013; 119:878-86. [PMID: 23909244 DOI: 10.3171/2013.6.jns122319] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECT Gliomas are known to release excessive amounts of glutamate, inducing glutamate excitotoxic cell death in the peritumoral region and allowing the tumor to grow and to expand. Glutamate transporter upregulation has been shown to be neuroprotective by removing extracellular glutamate in a number of preclinical animal models of neurodegenerative diseases, including amyotrophic lateral sclerosis and Parkinson disease as well as psychiatric disorders such as depression. The authors therefore hypothesized that the protective mechanism of glutamate transporter upregulation would be useful for the treatment of gliomas as well. METHODS In this study 9L gliosarcoma cells were treated with a glutamate transporter upregulating agent, thiamphenicol, an antibiotic approved in Europe, which has been shown previously to increase glutamate transporter expression and has recently been validated in a human Phase I biomarker trial for glutamate transporter upregulation. Cells were monitored in vitro for glutamate transporter levels and cell proliferation. In vivo, rats were injected intracranially with 9L cells and were treated with increasing doses of thiamphenicol. Animals were monitored for survival. In addition, postmortem brain tissue was analyzed for tumor size, glutamate transporter levels, and neuron count. RESULTS Thiamphenicol showed little effects on proliferation of 9L gliosarcoma cells in vitro and did not change glutamate transporter levels in these cells. However, when delivered locally in an experimental glioma model in rats, thiamphenicol dose dependently (10-5000 μM) significantly increased survival up to 7 days and concomitantly decreased tumor size from 46.2 mm(2) to 10.2 mm(2) when compared with lesions in nontreated controls. Furthermore, immunohistochemical and biochemical analysis of peritumoral tissue confirmed an 84% increase in levels of glutamate transporter protein and a 72% increase in the number of neuronal cells in the tissue adjacent to the tumor. CONCLUSIONS These results show that increasing glutamate transporter expression in peritumoral tissue is neuroprotective. It suggests that glutamate transporter upregulation for the treatment of gliomas should be further investigated and potentially be part of a combination therapy with standard chemotherapeutic agents.
Collapse
|
12
|
Lesniak MS, Kelleher E, Pardoll D, Cui Y. Targeted gene therapy to antigen-presenting cells in the central nervous system using hematopoietic stem cells. Neurol Res 2013; 27:820-6. [PMID: 16354542 DOI: 10.1179/016164105x49454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Hematopoietic stem cells (HSC) have been previously used as vectors for gene therapy of systemic disease. The effectiveness of HSC-mediated gene therapy largely depends on efficient gene delivery into long-term repopulating progenitors and targeted transgene expression in an appropriate progeny of the transduced pluripotent HSCs. In the present study, we examined the feasibility of using HSC transduced with self-inactivating (SIN) lentiviral vectors for the delivery of gene therapy to the central nervous system (CNS). MATERIAL AND METHODS We constructed two SIN lentiviral vectors, EF.GFP and DR.GFP, to express the green fluorescent protein (GFP) gene controlled solely by the promoter of either a housekeeping gene EF-1alpha or the human HLA-DRalpha gene, which is selectively expressed in antigen-presenting cells. RESULTS We demonstrated that both vectors efficiently transduced human pluripotent CD34+ cells capable of engrafting NOD/SCID mice. Only the DR.GFP vector mediated transgene expression in the murine CNS containing human HLA-DR+ cells. These cells express surface markers characteristic of resident CNS microglia. Furthermore, human dendritic cells derived from transduced and engrafted human cells potently stimulated allogeneic T cell proliferation. CONCLUSIONS The present study demonstrated successful targeting of transgene expression to CNS microglia after stable gene transduction of pluripotent HSC.
Collapse
Affiliation(s)
- Maciej S Lesniak
- Section of Neurosurgery, The University of Chicago Pritzker School of Medicine, USA.
| | | | | | | |
Collapse
|
13
|
Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol 2011; 2011:732413. [PMID: 22190972 PMCID: PMC3235820 DOI: 10.1155/2011/732413] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/24/2011] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite intensive treatment, the prognosis for patients with GBM remains grim with a median survival of only 14.6 months. Immunotherapy has emerged as a promising approach for treating many cancers and affords the advantages of cellular-level specificity and the potential to generate durable immune surveillance. The complexity of the tumor microenvironment poses a significant challenge to the development of immunotherapy for GBM, as multiple signaling pathways, cytokines, and cell types are intricately coordinated to generate an immunosuppressive milieu. The development of new immunotherapy approaches frequently uncovers new mechanisms of tumor-mediated immunosuppression. In this review, we discuss many of the current approaches to immunotherapy and focus on the challenges presented by the tumor microenvironment.
Collapse
|
14
|
Abstract
Several immunostimulant approaches have been studied in the treatment of gliomas. The advent of recombinant DNA technology led to a nonspecific immunostimulation via systemic administration of cytokines. Recently, in attempts to more closely mimic their natural activity, cytokines have been delivered by implanting genetically transduced cells or by using in vivo gene transfer techniques. The latest efforts have focused on immunostimulatory agents that act directly on antigen-presenting cells and effector cells of the immune system via pattern recognition receptors. Combining these strategies with more than one mode of immunotherapy may provide better clinical results.
Collapse
Affiliation(s)
- Nicholas Butowski
- Department of Neurological Surgery, University of California San Francisco, 400 Parnassus Avenue, A808, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Tanriover N, Ulu MO, Sanus GZ, Bilir A, Canbeyli R, Oz B, Akar Z, Kuday C. The effects of systemic and intratumoral interleukin-12 treatment in C6 rat glioma model. Neurol Res 2009; 30:511-7. [PMID: 18953742 DOI: 10.1179/174313208x289516] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Cytokine based immunotherapy has long been an exciting field for many investigators aiming to provide an effective alternative treatment modality for glioma management. Among these cytokines, interleukin-12 (IL-72) plays a crucial role in mediating inflammatory and antitumoral activity on the host defence. We have investigated the therapeutic role of systemic and local delivery of IL-12 in C6 rat glioma model and compared these two modalities. METHODS The donor C6 glioma cells were injected stereotactically to 32 Wistar rats and right frontal tumor formation was established in all subjects. The rats were evenly divided into four groups as intratumoral (i.t.) control group (Group IA), intraperitoneal (i.p.) control group (Group IB), i.t. treatment group (Group II) and i.p. treatment group (Group III). Magnetic resonance imaging were performed to 72 rats (three from each group) on the seventh post-inoculation day. Recombinant mouse IL-12 (rmIL-12) was administered via i.t. (0.1 microg 5 microl/day/rat) and i.p. (0.1 microg 20 microl/day/rat) routes to treatment groups between days 9 and 11 following tumor inoculation, for 3 consecutive days. The rats which were unresponsive to the external stimuli, unable to feed themselves or having severe neurological impairment were decapitated and the specimens were histopathologically examined. RESULTS The subjects of Group ILL (i.p.) showed a statistically significant prolongation in survival time (mean = 39 days) when compared to the control group (mean = 31.7 days) (p = 0.035) and Group II (i.t.) (mean = 24.5 days) (p = 0.005). Histopathologic examination of Group III revealed markedly increased intratumoral and peritumoral lymphocyte infiltration compared with the other groups. CONCLUSION This study demonstrated that systemic administration of IL- 12 in C6 glioma model in rats prolongs the survival, probably by stimulating the cellular immunity leading to lymphocytic infiltration.
Collapse
Affiliation(s)
- Necmettin Tanriover
- Department of Neurosurgery and Department of Pathology, Cerrahpasa Medical Faculty, Istanbul.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Microsurgical removal of intramedullary spinal cord gliomas in a rat spinal cord decreases onset to paresis, an animal model for intramedullary tumor treatment. Childs Nerv Syst 2008; 24:901-7. [PMID: 18317780 DOI: 10.1007/s00381-008-0587-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Intramedullary spinal cord tumors (IMSCT) pose significant challenges given their recurrence rate and limited treatment options. Using our previously described rat model of IMSCT, we describe a technique for microsurgical tumor resection and present the functional and histopathological analysis of tumor progression. METHODS Twenty-four Fischer 344 rats were randomized into two groups. All animals received a 5-microl intramedullary injection of 9L gliosarcoma cells. Animals were evaluated daily for signs of paralysis using the Basso, Beattie, and Bresnahan (BBB) scale. Group 1 continued with daily assessments using the BBB scale following tumor implantation, but received no further treatment. Group 2 underwent surgical removal of intramedullary tumor on postoperative day five. At a BBB score less than 5 (e.g., functional paraplegia), all animals of both groups were killed and sent for histopathological analysis. RESULTS Group 1 had a median onset of functional hind limb paraplegia at 15 +/- 1.0 days. Group 2 had a median onset of hind limb paresis at 53 +/- 0.46 days. Hematoxylin-eosin cross-sections confirmed the presence of intramedullary 9L tumor invading the spinal cord in both groups. CONCLUSION Animals with 9L IMSCTs consistently developed hind limb paraplegia in a reliable and reproducible manner. Animals undergoing microsurgical resection of IMSCT had a significant delay in the onset of functional paraplegia compared to the untreated controls. These findings suggest that this model may mimic the behavior of IMSCTs following operative resection in humans and thus may be used to examine efficacy of new treatment options for high-grade intramedullary tumors.
Collapse
|
17
|
A safety and efficacy study of local delivery of interleukin-12 transgene by PPC polymer in a model of experimental glioma. Anticancer Drugs 2008; 19:133-42. [PMID: 18176109 DOI: 10.1097/cad.0b013e3282f24017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interleukin-12 (IL-12) triggers an antitumoral immune response and an antiangiogenic effect against cancer. In this study, we tested a novel polymeric vehicle for IL-12 gene therapy along with adjuvant local biodegradable carmustine (BCNU) chemotherapy for the treatment of malignant glioma. Highly concentrated DNA/PPC (polyethylenimine covalently modified with methoxypolyethyleneglycol and cholesterol) complexes were used to deliver a murine plasmid encoding IL-12 (pmIL-12). For toxicity assessment, mice received intracranial injections with different volumes of pmIL-12/PPC. For efficacy, mice with intracranial GL261 glioma were treated with local delivery of pmIL-12/PPC and/or BCNU-containing polymers. Intracranial injections of 5-10 microl of pmIL-12/PPC were well tolerated and led to IL-12 expression in the brains of treated animals. Treatment with pmIL-12/PPC led to a significant increase in survival compared with untreated mice (median survival 57 days; 25% long-term survival >95 vs. 45 days for control; P<0.05). Treatment with BCNU led to a significant increase in survival compared with untreated mice, with 75% of treated mice having a long-term survival >95 days, (P<0.05). Most importantly, the combination of BCNU and pmIL-12/PPC led to a survival of 100% of the mice for 95 days after treatment (P<0.0001). This novel strategy is safe and effective for the treatment of malignant glioma. The synergy resultant from the combination of locally administered pmIL-12/PPC and BCNU suggests a role for this approach in the treatment of malignant brain tumors.
Collapse
|
18
|
Zhu S, Waguespack M, Barker SA, Li S. Doxorubicin Directs the Accumulation of Interleukin-12–Induced IFNγ into Tumors for Enhancing STAT1–Dependent Antitumor Effect. Clin Cancer Res 2007; 13:4252-60. [PMID: 17634555 DOI: 10.1158/1078-0432.ccr-06-2894] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To examine the mechanism by which doxorubicin plus interleukin-12 (IL-12) gene transfer induces enhanced therapeutic efficacy against tumors. EXPERIMENTAL DESIGN Tumor-bearing mice were treated with doxorubicin, IL-12-encoding plasmid DNA, doxorubicin plus IL-12-encoding plasmid DNA, or plasmid DNA control. Doxorubicin was systemically given via i.p. injection, and IL-12 was systemically expressed via i.m. injection. To show that doxorubicin enhances the accumulation of IL-12-induced IFN gamma into tumors and the signal transducer and activator of transcription 1 (Stat1)-dependent antitumor efficacy, the distribution of IFN gamma and the therapeutic end points, such as T-cell infiltration, inhibition of tumor vessel density, tumor growth inhibition, and inhibition of spontaneous tumor metastasis in wild-type and Stat1(-/-) host and tumors were determined after the treatment at the indicated time points. RESULTS In this study, a novel mechanism was unveiled. We discovered that doxorubicin enhances the accumulation of IL-12-induced IFN gamma in tumors. The doxorubicin-mediated accumulation of IFN gamma in tumors is caused by an increased accumulation of IFN gamma-secreting immune cells and not by a direct translocation of IFN gamma protein into tumors. Depletion of immune cells reverses the doxorubicin-mediated accumulation of IFN gamma into tumors and reverses the inhibition of tumor vessel density induced by coadministration of doxorubicin and IL-12 DNA. Knocking out IFN gamma signaling in the tumor host reverses the significant inhibition of tumor growth by coadministration of doxorubicin and IL-12. CONCLUSIONS The enhanced antitumor efficacy by coadministration of doxorubicin and IL-12 is dependent on the accumulation of IFN gamma in tumors. This discovery provides a possible strategy to reduce side effects caused by IL-12.
Collapse
Affiliation(s)
- Shiguo Zhu
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | |
Collapse
|
19
|
Caplan J, Pradilla G, Hdeib A, Tyler BM, Legnani FG, Bagley CA, Brem H, Jallo G. A Novel Model of Intramedullary Spinal Cord Tumors in Rats: Functional Progression and Histopathological Characterization. Neurosurgery 2006; 59:193-200; discussion 193-200. [PMID: 16823316 DOI: 10.1227/01.neu.0000219276.44563.da] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Intramedullary spinal cord tumors are difficult lesions to treat given their recurrence rate and limited treatment options. The absence of an adequate animal model, however, has hindered the development of new treatment paradigms. In this study, we describe the technique for intramedullary injection of two experimental rodent gliomas (9L and F98) and present the methodology for functional and histopathological analysis of tumor progression. METHODS F344 rats (n = 24) were randomized into three groups. Group 1 (n = 8) received a 5 microl intramedullary injection of Dulbecco's modified Eagle medium, Group 2 received a 5 microl intramedullary injection of 9L gliosarcoma (100,000) cells, and Group 3 received a 5 microl intramedullary injection of F98 glioma (100,000) cells. The animals were anesthetized, a 2 cm incision was made in the dorsal mid-thoracic region, and the spinous process of the T5 vertebrae was removed to expose the intervertebral space. The ligamentum flavum was removed, and an intramedullary injection was made into the spinal cord. The animals were evaluated daily for signs of paralysis using the Basso, Beattie, and Bresnahan scale and sacrificed after the onset of deficits for histopathological analysis. RESULTS Animals injected with 9L-gliosarcoma had a median onset of hind limb paresis at 12 +/- 2.9 days. Animals injected with F98 glioma had a median onset of hind limb paresis at 19 +/- 3 days. Animals injected with Dulbecco's modified Eagle medium did not show neurological deficits. Hematoxylin-eosin cross sections confirmed the presence of intramedullary 9L and F98 tumor invading the spinal cord. Control animals had no significant histopathological findings. CONCLUSION Animals injected with 9L or F98 consistently developed hind limb paresis in a reliable and reproducible manner. The progression of neurological deficits is similar to that seen in patients with intramedullary spinal cord tumors. These findings suggest that this model mimics the behavior of intramedullary spinal cord tumors in humans and may be used to examine the efficacy of new treatment options for both low- and high-grade intramedullary tumors.
Collapse
Affiliation(s)
- Justin Caplan
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Caplan J, Pradilla G, Hdeib A, Tyler BM, Legnani FG, Bagley CA, Brem H, Jallo G. A NOVEL MODEL OF INTRAMEDULLARY SPINAL CORD TUMORS IN RATS. Neurosurgery 2006. [DOI: 10.1227/01.neu.0000243298.76813.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Torrero MN, Xia X, Henk W, Yu S, Li S. Stat1 deficiency in the host enhances interleukin-12-mediated tumor regression. Cancer Res 2006; 66:4461-7. [PMID: 16618773 DOI: 10.1158/0008-5472.can-05-3554] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signal transducer and activator of transcription 1 (Stat1) is considered a key transcription factor that inhibits tumorigenesis, and Stat1 activation in the host is required for interleukin-12 (IL-12)-mediated generation of CTL activity. Using syngeneic Stat1-/- C3H mice bearing SCCVII tumors in this study, we discovered opposite results. Stat1 deficiency in the host significantly enhances IL-12-mediated tumor regression, resulting in tumor eradication from 60% of SCCVII tumor-bearing mice and significant inhibition of tumor growth when compared with control treatment (P < 0.01). This effect is independent of both Stat1-activating cytokine IFN-gamma and Stat1-downstream effector molecule FasL because neither neutralization of IFN-gamma nor knocking out of FasL enhances or inhibits IL-12-mediated tumor regression. IL-12 induces a high intensity of tumor-specific CTL activity in Stat1-deficient mice (P < 0.01), increases the CD8 T-cell density in tumor bearing Stat1-/- mice, and induces a T-cell-dependent tumor regression. The increased CTL activity and the high-intensity infiltration of T cells into the tumors in IL-12-treated Stat1-/- mice are likely due to the longer survival than the same cells from wild-type mice. Together, the data show that inhibition of Stat1 expression in the host enhances tumor-local IL-12 gene therapy for regressing tumors. This conclusion provides a new concept for designing an effective treatment strategy.
Collapse
Affiliation(s)
- Marina N Torrero
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | |
Collapse
|
22
|
Lesniak MS. Immunotherapy for brain tumors: quo vadis? Expert Rev Neurother 2006; 6:447-51. [PMID: 16623643 DOI: 10.1586/14737175.6.4.447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Sikorski CW, Lesniak MS. Immunotherapy for malignant glioma: current approaches and future directions. Neurol Res 2005; 27:703-16. [PMID: 16197807 DOI: 10.1179/016164105x49481] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Traditional therapies for the treatment of malignant glioma have failed to make appreciable gains regarding patient outcome in the last decade. Therefore, immunotherapeutic approaches have become increasingly popular in the treatment of this cancer. This article reviews general immunology of the central nervous system and the immunobiology of malignant glioma to provide a foundation for understanding the rationale behind current glioma immunotherapies. A review of currently implemented immunological treatments is then provided with special attention paid to the use of vaccines, gene therapy, cytokines, dendritic cells and viruses. Insights into future and developing avenues of glioma immunotherapy, such as novel delivery systems, are also discussed.
Collapse
Affiliation(s)
- Christian W Sikorski
- Division of Neurosurgery, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, Illinois 60637, USA
| | | |
Collapse
|
24
|
Hsu W, Lesniak MS, Tyler B, Brem H. Local Delivery of Interleukin-2 and Adriamycin is Synergistic in the Treatment of Experimental Malignant Glioma. J Neurooncol 2005; 74:135-40. [PMID: 16193383 DOI: 10.1007/s11060-004-6597-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Local delivery of adriamycin (ADR) via biodegradable polymers has been shown to improve survival in rats challenged intracranially with 9L gliosarcoma. Likewise, local delivery of interleukin-2 (IL-2) has been shown to extend survival in experimental brain tumor models. In the current study, we hypothesized that local delivery of ADR and IL-2 might act synergistically against experimental intracranial glioma. METHODS Polyanhydride polymers (PCPP-SA) containing 5% ADR by weight were prepared using the mix-melt method. IL-2 polymer microspheres (IL-2 MS) were produced via the complex coacervation of gelatin and chondroitin sulfate in the presence of IL-2. Sixty male Fisher 344 rats received an intracranial challenge with a lethal dose of 9L gliosarcoma cells. In addition, a group of rats were injected with either IL-2 MS or empty microspheres. Five days later they received ADR or blank polymer. There were a total of four treatment groups: (1) empty microspheres, blank polymer; (2) empty microspheres, ADR polymer; (3) IL-2 MS, blank polymer; and (4) IL-2 MS, ADR polymer. RESULTS Compared to control animals treated with empty microspheres and blank polymer, animals receiving empty microspheres and ADR polymer (P < 0.0004), IL-2 MS and blank polymer (P < 0.0005), and IL-2 MS combined with ADR polymer (P < 0.0000002) all showed statistically significant improvement in survival. In addition, animals receiving the IL-2/ADR combination had significantly extended survival compared to either ADR or IL-2 alone (P < 0.000003 and P < 0.0004, respectively). CONCLUSIONS Both ADR and IL-2, when delivered locally, are effective monotherapeutic agents against experimental intracranial gliosarcoma. The combination ADR and IL-2 therapy is more effective than either agent alone.
Collapse
Affiliation(s)
- Wesley Hsu
- Departments of Neurosurgery and Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
25
|
Raza SM, Pradilla G, Legnani FG, Thai QA, Olivi A, Weingart JD, Brem H. Local delivery of antineoplastic agents by controlled-release polymers for the treatment of malignant brain tumours. Expert Opin Biol Ther 2005; 5:477-94. [PMID: 15934827 DOI: 10.1517/14712598.5.4.477] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent advances in the treatment of malignant brain tumours have focused on the development of targeted local delivery of therapeutic agents, which combine various antineoplastic strategies that include cytotoxic, anti-angiogenic and immunomodulatory mechanisms, among others. The introduction of local delivery devices for sustained administration of antineoplastic agents represents a new opportunity to effectively treat these malignancies by facilitating the intracranial administration of safe and clinically efficacious doses for prolonged periods of time in a controlled fashion. This technology circumvents the need for high systemic doses with potentially harmful toxicities, bypasses the blood-brain barrier and can be tailored to deliver new agents with complex pharmacological properties. Based on local delivery strategies, new delivery systems, including convection-enhanced delivery and microchips, have been developed. As a result, recent advances in tumour biology have been adopted as potentially translatable treatments and are undergoing preclinical and clinical evaluation at present. These novel approaches could improve the prognosis of patients with these tumours.
Collapse
Affiliation(s)
- Shaan M Raza
- Department of Neurological Surgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Meyer 7-113, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Yang SY, Liu H, Zhang JN. Gene therapy of rat malignant gliomas using neural stem cells expressing IL-12. DNA Cell Biol 2004; 23:381-9. [PMID: 15231071 DOI: 10.1089/104454904323145263] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Primary malignant brain tumors have a poor prognosis. This report investigates the potential for gene therapy of experimental brain tumors using neural stem cells (NSCs) expressing IL-12. In this study NSCs were isolated from the hippocampi of 3-5-month human embryos and used for lipofectamine mediated transfer of the IL-12 gene. Positive clones of anti-G418 were obtained and were proliferated in culture and expression of IL-12 was demonstrated by RT-PCR. For the in vivo studies three groups of rats were used and stereotactic injections were made into the striatum. In the first group C6 tumor cells were injected, in the second C6 cells and hNSCs. IL-12, and in the third C6 cells on Day 0 followed by hNSCs.IL-12 on day 5. The growth of the resulting tumors was monitored by magnetic resonance imaging (MRI) and after sacrifice by immunohistochemistry. Rats injected with C6 cells and hNSCs.IL-12 had a significantly prolonged survival. Injections of hNSCs.IL-12 were also made into established gliomas. The survival time was also significantly prolonged compared to controls. MR imaging demonstrated that there was initial growth of tumor followed by shrinkage and then disappearance. After sacrifice, tumor areas were studied by histochemistry. NSCs were often seen intermingled with tumor cells, particularly when they had been injected into established tumors; they were also present at the boundaries of the tumor mass. The immunohistochemical analysis showed that these infiltrates were mostly constituted by CD4(+) and CD8(+) T-lymphocytes, the CD8(+) being more numerous than the CD4(+). These findings indicated that NSCs engineered to release IL-12 could have a strong antitumor effect. Neural stem/precursor cells could be useful vectors in genetic approaches to brain tumors.
Collapse
Affiliation(s)
- Shu-Yuan Yang
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, People's Republic of China.
| | | | | |
Collapse
|
27
|
van Furth WR, Laughlin S, Taylor MD, Salhia B, Mainprize T, Henkelman M, Cusimano MD, Ackerley C, Rutka JT. Imaging of murine brain tumors using a 1.5 Tesla clinical MRI system. Can J Neurol Sci 2004; 30:326-32. [PMID: 14672264 DOI: 10.1017/s0317167100003036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND In this study, we investigated the feasibility of using a 1.5 Tesla (T) clinical magnetic resonance imaging (MRI) system for in vivo assessment of three histopathologically different brain tumor models in mice. METHODS We selected mouse models in which tumor growth was observed in different intracranial compartments: Patched+/- heterozygous knock-out mice for tumor growth in the cerebellum (n = 5); U87 MG human astrocytoma cells xenografted to the frontal lobe of athymic mice (n = 15); and F5 (n = 15) or IOMM Lee (n = 15) human malignant meningioma cells xenotransplanted to the athymic mouse skull base or convexity. Mice were imaged using a small receiver surface coil and a clinical 1.5 T MRI system. T1- and fast spin echo T2-weighted image sequences were obtained in all animals. Gadolinium was injected via tail vein to better delineate the intracranial tumors. Twenty mice were followed by serial MRI to study tumor growth over time. In these mice, images were typically performed after tumor implantation, and at two week intervals. Mice were euthanized following their last imaging procedure, and their tumors were examined by histopathology. The histopathological preparations were then compared to the last MR images to correlate the imaging features with the pathology. RESULTS Magnetic resonance imaging delineated th tumors in the cerebellum, frontal lobes and skull base in all mouse models. The detection of intracranial tumors was enhanced with prio administration of gadolinium, and the limit of resolution of brain tumors in the mice was 1-2 mm3. Sequential images performed at different time intervals showed progressive tumor growth in all animals. The MR images of tumor size and location correlated accurately with th results of the histopathological analysis. CONCLUSION Magnetic resonance imaging of murine brain tumors in different intracrania compartments is feasible with a 1.5 T clinical MR system and a specially designed surface coil. Tumors as small as 1-2 mm3 can be detecte with good image resolution. Mice harbouring nascent brain tumors can be followed sequentially by serial MR imaging. This may allow for a noninvasive means by which tumor growth can be measured, and novel therapies tested without resorting to sacrifice of the mice.
Collapse
Affiliation(s)
- Wouter R van Furth
- Arthur & Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Retrovirus (RV) has been one of the earliest recombinant vectors to be investigated in the context of cancer gene therapy. Experiments in cell culture and in animal brain tumor models have demonstrated the feasibility of RV mediated gene transduction and killing of glioma cells by toxicity generating transgenes. Phase I and II clinical studies in patients with recurrent malignant glioma have shown a favorable safety profile and some efficacy of RV mediated gene therapy. On the other hand, a prospective randomized phase III clinical study of RV gene therapy in primary malignant glioma failed to demonstrate significant extension of the progression-free or overall survival times in RV treated patients. The failure of this RV gene therapy study may be due to the low tumor cell transduction rate observed in vivo. The biological effects of the treatment may also heavily depend on the choice of transgene/prodrug system and on the vector delivery methods. Retrovirus clinical trials in malignant glioma have nevertheless produced a substantial amount of data and have contributed toward the identification of serious shortcomings of the non-replicating virus vector gene therapy strategy. Novel types of therapeutic virus vector systems are currently being designed and new clinical protocols are being created based on the lessons learned from the RV gene therapy trials in patients with malignant brain tumors.
Collapse
Affiliation(s)
- Nikolai G Rainov
- Department of Neurological Science, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
29
|
Rainov NG, Kramm CM. Recombinant retrovirus vectors for treatment of malignant brain tumors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 55:185-203. [PMID: 12968537 DOI: 10.1016/s0074-7742(03)01008-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Nikolai G Rainov
- Department of Neurological Science, University of Liverpool, Walton Centre for Neurology and Neurosurgery NHS Trust, Liverpool L9 7LJ, United Kingdom
| | | |
Collapse
|
30
|
Parsa AT, Miller JI, Eggers AE, Ogden AT, Anderson RC, Bruce JN. Autologous adjuvant linked fibroblasts induce anti-glioma immunity: implications for development of a glioma vaccine. J Neurooncol 2003; 64:77-87. [PMID: 12952289 DOI: 10.1007/bf02700023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Adjuvant-linked vaccines have been shown to induce anti-tumor immunity in patients with a variety of solid tumors. In this study we describe an in vitro model of active immunotherapy using autologous fibroblasts as immunogen. Correlative results from glioma patients immunized with autologous fibroblasts are also described. METHODS Peripheral blood lymphocytes (PBLs) from normal subjects were immunized in vitro against autologous skin fibroblasts coupled to the adjuvant muramyl dipeptide. The lymphocytes developed cell-mediated cytotoxicity that was measured with a short-term chromium release assay. Results of in vitro experiments were compared to data derived from glioma patients immunized with subcutaneous injection of an autologous adjuvant-linked fibroblast vaccine. Glioma target cells and fibroblast immunogens were derived from early passage primary tissue culture. RESULTS A comparison of autologous vs. homologous immunogen indicated that major histocompatibility complex matching was required at the sensitization stage of immunity (17.2 +/- 3.4% specific lysis vs. 0.4 +/- 3.1%, P < 0.01). Pre-treatment of fibroblast immunogen cells with interferon gamma (IFN-gamma) was found to significantly increase immunity (42.2 +/- 10.0%, P < 0.01), as did IFN-gamma pre-treatment of tumor target cells (35.8 +/- 9.0%, P < 0.01). The positive effect of IFN-gamma was diminished by treatment of cells with IFN-alpha. These in vitro results correlated well with in vivo data derived from glioma patients immunized with an autologous adjuvant-linked fibroblast vaccine. PBLs from patients developed direct cell-mediated cytotoxicity against autologous tumor cells. Lysis of tumor targets after in vivo immunization increased over a three-week interval (from 1.2 +/- 3.0% to 21.0 +/- 3.4%, P < 0.01) while lysis of a non-MHC matched control cell line remained essentially unchanged. CONCLUSIONS Specific lysis of glioma targets in vitro was achieved after in vivo sensitization with autologous adjuvant-linked fibroblasts. Collectively, the data indicate that biochemically modified autologous cells can stimulate anti-glioma immunity in humans. The degree of specific immunity seen in our patients compares favorably with other published series using glioma cells as an antigenic source. Accordingly, fibroblasts may represent a practical alternative to glioma cells for vaccine construction.
Collapse
Affiliation(s)
- Andrew T Parsa
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Marras C, Mendola C, Legnani FG, DiMeco F. Immunotherapy and biological modifiers for the treatment of malignant brain tumors. Curr Opin Oncol 2003; 15:204-8. [PMID: 12778012 DOI: 10.1097/00001622-200305000-00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The relative ineffectiveness of current therapies for malignant gliomas has led to the need for novel therapeutics. Therapies based on biologic modifiers are among a variety of cancer treatments currently in use or under experimental evaluation and have shown great promise, especially since several potent stimulators of the immune system have been cloned and are now available for clinical use. Early attempts at glioma therapy based on biologic modifiers, however, have failed to demonstrate significant effectiveness. In this review, we select and summarize the results of preclinical and clinical studies published during the past two years that focus on immunotherapy and biologic modifiers for treating gliomas. Despite limited clinical success, we conclude that an increased understanding of molecular biology and immunology from recent studies may pave the way for more effective approaches.
Collapse
Affiliation(s)
- Carlo Marras
- Department of Neurosurgery, Istituto Nazionale Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE Brain tumors were the first human malignancy to be targeted by therapeutic transfer of nucleic acids into somatic cells, a process also known as gene therapy. Malignant brain tumor cells in the adult brain have some unique biologic features, such as high mitotic activity on an essentially postmitotic background and virtually no tumor spread outside of the central nervous system. Brain tumors seem therefore to offer major advantages in the design of tumor-selective gene therapy strategies, and the role of gene therapy in malignant glioma has been investigated since the late 1980s, initially in numerous laboratory studies and later on in clinical trials. DESIGN Retrovirus has been one of the earliest recombinant virus vectors used in brain tumors. Experiments in cell culture and in animal models have demonstrated the feasibility of retrovirus-mediated transduction and subsequent killing of glioma cells by toxic transgenes. Phase I and II clinical studies in patients with recurrent malignant glioma have shown a favorable safety profile and some efficacy of retrovirus-mediated gene therapy. However, the only prospective, randomized, phase III clinical study of retrovirus gene therapy in primary malignant glioma failed to demonstrate significant extension of progression-free or overall survival. Adenovirus- and herpes simplex virus type 1-based vectors have been actively investigated along with retrovirus, but their clinical use is still limited, mostly because of safety concerns. To increase efficacy, novel generations of therapeutic adenovirus and herpes simplex virus type 1 rely more on genetically engineered and tumor-selective lytic properties and less on the actual transfer of therapeutic genes. CONCLUSIONS The failure of most clinical gene therapy protocols to produce a significant and unequivocal benefitto brain tumor patients seems to be mainly due to the low tumor cell transduction rates observed in vivo, but it may also depend on the respective physical delivery strategy of the vector. Standard radiologic criteria for assessing the efficacy of clinical treatments may also not be fully applicable to the specific metabolic changes and blood-brain barrier permeability phenomena caused in brain tumors by virus-mediated gene therapy. Clinical trials in malignant glioma have nevertheless produced a substantial amount of data and have contributed to the continuous improvement of vector systems, delivery methods, and clinical protocols.
Collapse
Affiliation(s)
- Nikolai G Rainov
- Department of Neurological Science, University of Liverpool, Liverpool L9 7LJ, UK.
| | | |
Collapse
|
33
|
Rhines LD, Sampath P, DiMeco F, Lawson HC, Tyler BM, Hanes J, Olivi A, Brem H. Local immunotherapy with interleukin-2 delivered from biodegradable polymer microspheres combined with interstitial chemotherapy: a novel treatment for experimental malignant glioma. Neurosurgery 2003; 52:872-9; discussion 879-80. [PMID: 12657184 DOI: 10.1227/01.neu.0000053211.39087.d1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2002] [Accepted: 12/04/2002] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Local delivery of carmustine (BCNU) from biodegradable polymers prolongs survival against experimental brain tumors. Moreover, paracrine administration of interleukin-2 (IL-2) has been shown to elicit a potent antitumor immune response and to improve survival in animal brain tumor models. We report the use of a novel polymeric microsphere delivery vehicle to release IL-2. We demonstrate both in vitro release of cytokine from the microspheres and histological evidence of the inflammatory response elicited by IL-2 released from the microspheres in the rat brain. These microspheres are used to deliver IL-2, and biodegradable polymer wafers are used to deliver BCNU, directly at the site of an intracranially implanted glioma in the rat. The two agents administered locally show a synergistic effect. METHODS Fischer 344 rats challenged intracranially with 9L gliosarcoma received an intracranial implant of either empty microspheres or microspheres containing IL-2 (IL-2 MS). Five days later, animals in each group were randomized to receive polymer implants loaded with 0, 3.8, or 10% BCNU at the tumor site. RESULTS Animals that received the combination of IL-2 MS and 3.8% BCNU polymer (median survival, 28.5 d) or IL-2 MS and 10% BCNU polymer (median survival, 45.5 d) showed significantly improved survival compared with animals that received monotherapy with IL-2 microspheres (median survival, 24 d), 3.8% BCNU polymer (median survival, 24 d), or 10% BCNU polymer (median survival, 32.5 d). Control animals had a median survival of 18 days. The combination of either 3.8 or 10% BCNU polymer with IL-2 MS resulted in 7 and 25% long-term survivors, respectively. CONCLUSION By showing synergy of IL-2 and BCNU in an animal glioma model and using a reproducible synthetic delivery system for each agent (i.e., one that did not rely on genetically engineered cells or viruses), we hope that the combination of local immunotherapy and chemotherapy can take an important step closer to clinical application in patients with malignant brain tumors.
Collapse
Affiliation(s)
- Laurence D Rhines
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kanzawa T, Ito H, Kondo Y, Kondo S. Current and Future Gene Therapy for Malignant Gliomas. J Biomed Biotechnol 2003; 2003:25-34. [PMID: 12686720 PMCID: PMC179758 DOI: 10.1155/s1110724303209013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Malignant gliomas are the most common neoplasm in the central nervous system. When treated with conventional treatments including surgery, irradiation, and chemotherapy, the average life expectancy of the most malignant type, glioblastoma multiforme is usually less than 1 year. Therefore, gene therapy is expected to be an effective and possibly curative treatment. Many gene therapeutic approaches have demonstrated efficacy in experimental animal models. However, the current clinical trials are disappointing. This review focuses on current therapeutic genes/vectors/delivery systems/targeting strategies in order to introduce updated trends and hopefully indicate prospective gene therapy for malignant gliomas.
Collapse
Affiliation(s)
- Takao Kanzawa
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029, USA
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Hideaki Ito
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029, USA
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yasuko Kondo
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029, USA
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Seiji Kondo
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029, USA
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
35
|
Abstract
The controlled local delivery of antineoplastic agents by biodegradable polymers is a technique that allows for exposure of tumor cells to therapeutic doses of an active agent for prolonged periods of time while avoiding high systemic doses associated with debilitating toxicities. The use of polymers for chemotherapy delivery expands the spectrum of available treatment of neoplasms in the central nervous system, and facilitates new approaches for the treatment of malignant gliomas. In this article, we discuss the rationale and history of the development and use of these polymers, and review the various agents that have used this technology to treat malignant brain tumors.
Collapse
Affiliation(s)
- Paul P Wang
- Department of Neurological Surgery, The Johns Hopkins Hospital, Hunterian 817, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
36
|
Lesage D, Cao A, Briane D, Lievre N, Coudert R, Raphael M, Salzmann JL, Taillandier E. Evaluation and optimization of DNA delivery into gliosarcoma 9L cells by a cholesterol-based cationic liposome. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1564:393-402. [PMID: 12175922 DOI: 10.1016/s0005-2736(02)00474-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper reports results concerning the transfection of gliosarcoma cells 9L using an original cholesterol-based cationic liposome as carrier. This cationic liposome was prepared from triethyl aminopropane carbamoyl cholesterol (TEAPC-Chol) and a helper lipid, dioleoyl phosphatidyl ethanolamine (DOPE). The used concentration of liposome was not cytotoxic as revealed by the MTT test. TEAPC-Chol/DOPE liposomes allowed the plasmids encoding reporter genes to enter the nucleus as observed both by electron microscopy and functionality tests using fluorescence detection of green fluorescent protein (GFP) and luminometric measurements of luciferase activity. By changing the cationic lipid/DNA molar charge ratio, optimal conditions were determined. Further, improvement of the transfection level has been obtained by either precondensing plasmid DNA with poly-L-lysine or by adding polyethylene glycol (PEG) in the transfection medium. The optimal conditions determined are different depending on whether the transfection is made with cells in culture or with tumors induced by subcutaneous (s.c.) injection of cells in Nude mice. For in vivo assays, a simple method to overcome the interference of haemoglobin with the chemiluminescence intensity of luciferase has been used. These results would be useful for gaining knowledge about the potential for the cationic liposome TEAPC-Chol/DOPE to transfect brain tumors efficiently.
Collapse
Affiliation(s)
- D Lesage
- Laboratoire de Chimie Structurale et Spectroscopie Biomoléculaire (CSSB), CNRS FRE 2313, UFR de Médecine, Université Paris XIII, 74 rue Marcel Cachin, F93017 Bobigny Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Toung TJK, Tyler B, Brem H, Traystman RJ, Hurn PD, Bhardwaj A. Hypertonic saline ameliorates cerebral edema associated with experimental brain tumor. J Neurosurg Anesthesiol 2002; 14:187-93. [PMID: 12172290 DOI: 10.1097/00008506-200207000-00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cerebral edema commonly accompanies brain tumors and frequently leads to lethal intracranial compartmental shifts and elevated intracranial pressure. Therapeutic modalities for tumor-associated cerebral edema include diuretics, osmotherapy, and corticosteroids. Recently, hypertonic saline (HS) has received attention as an osmotic agent in the treatment of cerebral edema from diverse causes. The effects of continuous HS infusion in brain tumor-associated edema have not been previously reported. Therefore, we tested the hypothesis that HS given as a continuous intravenous infusion ameliorates tumor-associated edema in a rat model of brain tumor. 9L gliosarcoma, propagated as a solid flank tumor, was implanted intracranially over the left hemisphere in adult female Fischer 344 rats (180-220 g). On day 11 after implantation, rats were divided in a blinded, randomized fashion into groups that received no treatment or continuous infusion of 0.9% saline (NS) (0.3 mL/h) and in a subsequent series that included NS + intravenous furosemide 2.5 mg/kg every six hours, NS + intravenous mannitol 2.5 g/kg every six hours, or continuous infusion 7.5% HS (chloride:acetate 50:50) (0.3 mL/h). Hemispheric water content ipsilateral (IH) and contralateral to tumor implantation was determined at day 13 by wet-to-dry weight ratio after 48 hours of therapy. Ipsilateral hemispheric water content (mean +/- SEM) was significantly increased in rats with intracranial tumor on day 11 (80.3 +/- 0.5%) (n = 7) and day 13 (81.4 +/- 0.3%) (n = 10), as compared to naive weight-matched rats without tumor implant (79.3 +/- 0.1%) (n = 13) (P <.05). After 48 hours of treatment, IH water content was attenuated with continuous HS (n = 15) (79.3 +/- 0.2%), mannitol (n = 14) (80.1 +/- 0.2%), and furosemide (n = 15) (79.9 +/- 0.2%) as compared to NS (n = 7) (80.8 +/- 0.5%). Continuous HS infusion attenuated cerebral edema in the affected hemisphere as well as the contralateral noninjured hemisphere to a larger extent than was observed with furosemide or mannitol. These findings suggest a potential new treatment strategy for tumor-associated cerebral edema.
Collapse
Affiliation(s)
- Thomas J K Toung
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|
38
|
Schluesener HJ, Meyermann R, Deininger M. Immune responses in glioblastoma: an avenue to effective cancer therapy or a mere epiphenomenon? Curr Top Microbiol Immunol 2002; 265:259-67. [PMID: 12014194 DOI: 10.1007/978-3-662-09525-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- H J Schluesener
- Institute of Brain Research, University of Tuebingen, Calwer Strasse 3, 72076 Tuebingen, Germany
| | | | | |
Collapse
|
39
|
Lumniczky K, Desaknai S, Mangel L, Szende B, Hamada H, Hidvegi EJ, Safrany G. Local tumor irradiation augments the antitumor effect of cytokine-producing autologous cancer cell vaccines in a murine glioma model. Cancer Gene Ther 2002; 9:44-52. [PMID: 11916244 DOI: 10.1038/sj.cgt.7700398] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2001] [Indexed: 01/15/2023]
Abstract
The combined therapeutic effect of cytokine-producing cancer cell vaccines and local radiotherapy was studied in a mouse glioma 261 (GI261) brain tumor model. Brain tumor-bearing mice were treated with cytokine (IL -4, IL-6, IL-7, GM-CSF, TNF-alpha, LIF, LT) producing vaccines made by in vitro transduction of GI261 cells with the corresponding adenoviral vectors. Vaccines producing either IL-4 or GM-CSF cured 20-40% of mice. The antitumor effect strongly depended on the secreted cytokine level. Vaccination therapy induced specific activation of cytotoxic T lymphocytes measured by cell-mediated cytotoxicity assay. Brain tumors were heavily infiltrated by CD4+ lymphocytes after treatment with IL-4- or GM-CSF-secreting cells. GM-CSF vaccination induced moderate CD8+ infiltration, as well. Depleting either CD4+ or CD8+ lymphocyte subsets abolished the anticancer effect of GM-CSF-expressing cells. Strong synergism was observed by combining cytokine vaccination (GM-CSF, IL-4, IL-12) with local tumor irradiation: about 80-100% of the glioma-bearing mice was cured. The high efficiency of combined treatment was maintained even under suboptimal conditions when neither of the modalities cured any of the mice alone. This suggests that vaccination therapy might open a new potential in the clinical treatment of high-grade gliomas when applied as adjuvant to existing treatment modalities.
Collapse
Affiliation(s)
- Katalin Lumniczky
- Department of Molecular and Tumor Radiobiology, National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
40
|
Liu Y, Ehtesham M, Samoto K, Wheeler CJ, Thompson RC, Villarreal LP, Black KL, Yu JS. In situ adenoviral interleukin 12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma. Cancer Gene Ther 2002; 9:9-15. [PMID: 11916248 DOI: 10.1038/sj.cgt.7700399] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2001] [Indexed: 12/30/2022]
Abstract
Interleukin 12 (IL-12) isa cytokine that promotesan antitumor Th1-type pattern of differentiation in mature naïveT cells. Despite its therapeutic success in multiple animal models of cancer, the utility of systemically administered recombinant cytokine has been limited by its toxicity. This has encouraged the development of local IL-12 delivery systems through gene transfer. To determine the effect of local adenoviral delivery of IL- 12 on glioma immunogenicity, mice bearing GL-26 gliomas in the right corpus striatum were treated with direct intratumoral administration of AdmIL-12, AdLacZ, or normal saline. Survival was significantly prolonged in AdmIL-12-treated animals and immunohistochemistry demonstrated robust CD4+ and CD8+ T-cell infiltration in these mice compared to the two control groups. Glioma-infiltrating T lymphocytes from mice that received AdmIL-12 also demonstrated relatively increased, albeit statistically nonsignificant tumor killing. Based on IL-12's known ability to enhance Th1-type cytotoxic antitumor immune responses, we postulate our findings to be a result of localized induction of tumor immunity.
Collapse
Affiliation(s)
- Yunhui Liu
- Maxine Dunitz Neurosurgical Institute, Cedars Sinai Medical Center Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Phase II immunotherapy and gene therapy studies should be pursued because of encouraging results in many phase I studies. Future testing in this field may consider modifications of some of the above-mentioned combined strategies. For instance, in the immunization and adoptive transfer studies performed by Holladay et al and by Plautz et al, the systemic adoptive transfer could be altered to intratumoral placements of effector cells. This permutation may be more efficacious because local adoptive immunotherapy approaches involve placement of effector cells where they are needed. Additionally, new avenues of gene therapy are being explored that may offer added beneficial effects for immunization, local or systemic adoptive immunotherapy, or combined chemotherapy and adoptive immunotherapy of tumors. With new genetic tools, such as microarray analyses, SEREX, and creation of cDNA libraries from tumor cells, significant progress in the treatment of neoplasms in the immunologically privileged brain should be forthcoming.
Collapse
Affiliation(s)
- N Virasch
- Department of Immunology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | |
Collapse
|
42
|
Tunici P, Gianni D, Finocchiaro G. Gene therapy of glioblastomas: from suicide to homicide. PROGRESS IN BRAIN RESEARCH 2001; 132:711-9. [PMID: 11545030 DOI: 10.1016/s0079-6123(01)32112-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- P Tunici
- Unit of Neuro-Oncology and Gene Therapy, Istituto Nazionale Neurologico Besta, Via Celoria 11, 20133 Milan, Italy
| | | | | |
Collapse
|
43
|
Okada H, Villa L, Attanucci J, Erff M, Fellows WK, Lotze MT, Pollack IF, Chambers WH. Cytokine gene therapy of gliomas: effective induction of therapeutic immunity to intracranial tumors by peripheral immunization with interleukin-4 transduced glioma cells. Gene Ther 2001; 8:1157-66. [PMID: 11509946 DOI: 10.1038/sj.gt.3301496] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2000] [Accepted: 05/10/2001] [Indexed: 11/09/2022]
Abstract
To provide a means for comparing strategies for cytokine gene therapy against intracranial (i.c.) tumors, we generated rat gliosarcoma 9L cells transfected with interleukin-4 (9L-IL4), interleukin-12 (9L-IL12), granulocyte-macrophage colony-stimulating factor (9L-GMCSF) or interferon-alpha (9L-IFNalpha). To simulate direct and highly efficient cytokine gene delivery, cytokine transfected 9L tumors were implanted i.c. into syngeneic rats. i.c. injection led to tumor-outgrowth in the brain and killed most animals, whereas these cell lines were rejected following intradermal (i.d.) injection. Cytokine-expressing i.c. 9L tumors, however, had a greater degree of infiltration by immune cells compared with control, mock-transfected 9L-neo, but to a lesser degree than i.d. cytokine-expressing tumors. Tumor angiogenesis was suppressed in cytokine-transfected tumors. In a prophylaxis model, i.d. vaccination with 9L-IL4 resulted in long-term survival of 90% of rats challenged i.c. with parental 9L; whereas 40% of 9L-GM-CSF, 40% of 9L-IFNalpha and 0% of 9L-IL12-immunized rats were protected. In a therapy model (day 3 i.c. 9L tumors), only i.d. immunization with 9L-IL4 had long-term therapeutic benefits as 43% of rats survived >100 days. These data indicate that peripheral immunization with 9L-IL4 had the most potent therapeutic benefit among various cytokines and approaches tested against established, i.c. 9L tumors.
Collapse
Affiliation(s)
- H Okada
- Brain Tumor Center, University of Pittsburgh Cancer Institute and Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Malignant brain tumors are notoriously invasive. Although surgical debulking can relieve the patient of the main mass of tumor, adjuvant treatments are needed to target the glioma cells that infiltrate through normal parenchyma as single cells or pockets of tumor cells from which recurrent tumors arise. Successful adjuvant cellular therapy of brain tumors, or activation of endogenous immune cells, requires that either cell effectors make direct contact with tumor cells or come within close proximity to them and exert an indirect effect. This review examines current clinical trials aimed at direct lysis of glioma cells and trials making gliomas more visible to the endogenous immune system.
Collapse
Affiliation(s)
- D B Paul
- Department of Immunology, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262, USA
| | | |
Collapse
|
45
|
Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 2000; 11:2389-401. [PMID: 11096443 DOI: 10.1089/104303400750038499] [Citation(s) in RCA: 478] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous uncontrolled clinical trials have shown the in vivo retrovirus (RV)-mediated transduction of glioblastoma cells with the herpes simplex virus thymidine kinase (HSV-tk) gene and subsequent systemic treatment with ganciclovir to be feasible and well tolerated. However, because of continued tumor progression in most patients, the antitumor effect could not be determined using historical controls. Here, we describe a phase III, multicenter, randomized, open-label, parallel-group, controlled trial of the technique in the treatment of 248 patients with newly diagnosed, previously untreated glioblastoma multiforme (GBM). Patients received, in equal numbers, either standard therapy (surgical resection and radiotherapy) or standard therapy plus adjuvant gene therapy during surgery. Progression-free median survival in the gene therapy group was 180 days compared with 183 days in control subjects. Median survival was 365 versus 354 days, and 12-month survival rates were 50 versus 55% in the gene therapy and control groups, respectively. These differences were not significant. Therefore, the adjuvant treatment improved neither time to tumor progression nor overall survival time, although the feasibility and good biosafety profile of this gene therapy strategy were further supported. The failure of this specific protocol may be due mainly to the presumably poor rate of delivery of the HSV-tk gene to tumor cells. In addition, the current mode of manual injection of vector-producing cells with a nonmigratory fibroblast phenotype limits the distribution of these cells and the released replication-deficient RV vectors to the immediate vicinity of the needle track. Further evaluation of the RV-mediated gene therapy strategy must incorporate refinements such as improved delivery of vectors and transgenes to the tumor cells, noninvasive in vivo assessment of transduction rates, and improved delivery of the prodrug across the blood-brain and blood-tumor barrier to the transduced tumor cells.
Collapse
Affiliation(s)
- N G Rainov
- Department of Neurosurgery, Martin-Luther Universität, Halle-Wittenberg, D-06097 Halle, Germany.
| |
Collapse
|