1
|
Ronghe R, Tavares AAS. The skeleton: an overlooked regulator of systemic glucose metabolism in cancer? Front Oncol 2024; 14:1481241. [PMID: 39588310 PMCID: PMC11586348 DOI: 10.3389/fonc.2024.1481241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
Recent discoveries demonstrated the skeleton's role as an endocrine organ regulating whole-body glucose homeostasis. Glucose metabolism is critical for rapid cell proliferation and tumour growth through increasing glucose uptake and fermentation of glucose to lactate despite being in an aerobic environment. This hypothesis paper discusses emerging evidence on how bones can regulate whole-body glucose homeostasis with potential to impact on tumour growth and proliferation. Moreover, it proposes a clinical link between bone glucose metabolism and prognosis of cancer based on recent clinical trial data. Targeting metabolic pathways related with classic glucose metabolism and also bone metabolism, novel methods of cancer therapy and treatment could be developed. This paper objective is to highlight the need for future research on this altered metabolism with potential to change future management of cancer patients.
Collapse
Affiliation(s)
- Rucha Ronghe
- Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana A. S. Tavares
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Queens Medical Research Institute, Edinburgh, United Kingdom
- Edinburgh Imaging, The University of Edinburgh, Queens Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Jiang B, Xiao S, Zhang S, Xiao F. The miR-1290/OGN axis in ovarian cancer-associated fibroblasts modulates cancer cell proliferation and invasion. J Ovarian Res 2024; 17:52. [PMID: 38402185 PMCID: PMC10893657 DOI: 10.1186/s13048-024-01364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024] Open
Abstract
Despite receiving first-line treatment, ovarian cancer patients continue to experience a high rate of recurrence; nearly all women with ovarian cancer develop chemoresistance and succumb to the disease. In this study, cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) were isolated from tumor-containing and normal omenta, respectively, and the downregulation of osteoglycin (OGN) in CAFs was observed. OGN overexpression in CAFs significantly inhibited ovarian cancer cell viability, DNA synthesis, and cell invasion. OGN overexpression also changed epithelial-mesenchymal transition (EMT) markers and promoted mTOR and Akt phosphorylation in ovarian cancer cells. miR-1290 targeted OGN and inhibited OGN expression. miR-1290 overexpression in CAFs significantly promoted ovarian cancer cell viability, DNA synthesis, and cell invasion. Moreover, miR-1290 overexpression in CAFs also changed EMT markers and promoted mTOR and Akt phosphorylation within ovarian carcinoma cells. Finally, when ovarian cancer cells in a conditioned medium derived from CAFs co-transduced with miR-1290 mimics and OGN-OE were cultured, the effects of miR-1290 overexpression were partially reversed by OGN overexpression. In nude mouse xenograft tumor models, OGN overexpression in CAFs suppressed tumor growth, whereas miR-1290 overexpression in CAFs increased tumor growth. In conclusion, a miRNA/mRNA axis in ovarian cancer CAFs modulating the proliferative and invasive abilities of ovarian cancer cells, possibly via the Akt/mTOR pathway, was demonstrated.
Collapse
Affiliation(s)
- Biyao Jiang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Songshu Xiao
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Shan Zhang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Fang Xiao
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China.
| |
Collapse
|
3
|
Yang W, Zhang W, Li F, Xu N, Sun P. Dysregulation of circRNA-0076906 and circRNA-0134944 is Correlated with Susceptibility to Osteoporosis and Osteoporotic Fracture in Postmenopausal Females from the Chinese Han Population. Pharmgenomics Pers Med 2023; 16:183-194. [PMID: 36926413 PMCID: PMC10013579 DOI: 10.2147/pgpm.s394757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/12/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction Many circRNAs, such as circRNA-0076906 and circRNA-0134944, have been reported to participate in the pathogenesis of osteoporosis via sponging miRNAs in postmenopausal female patients. In this study, we aimed to study potential signaling pathways underlying the role of certain circRNAs, miRNAs and their target genes in the pathogenesis of osteoporotic fracture in postmenopausal females. Methods Quantitative real-time PCR was performed to analyze the expression of circRNAs, miRNAs and their targets genes. Luciferase assays were carried out to explore the regulatory relationship between circ_0076906/miR-548i/OGN and circ_0134944/miR-630/TLR4. Results Osteoporosis and fracture were positively correlated to the expression of circ_0134944, miR-548i and TLR4, but negatively correlated to the expression of circ_0076906, miR-630 and OGN in the peripheral blood and bone tissue samples of postmenopausal women. Luciferase activities of wild-type circ_0076906 and OGN were inhibited by miR-548i, and the luciferase activities of wild-type circ_0134944 and TLR4 were suppressed by miR-630 in MG-63 and U-2 OS cells. Inhibition of circ_0076906 expression in MG-63 and U-2 OS cells activated the expression of miR-548i and inhibited the expression of OGN. Moreover, the overexpression of circ_0134944 in MG-63 and U-2 OS cells suppressed the expression of miR-630 and enhanced the expression of TLR4. Conclusion This study implied that the dysregulation of circRNA-0076906 and circRNA-0134944 modulated their specific signaling and thus contributed to the severity of osteoporosis, increasing the risk of osteoporotic fracture.
Collapse
Affiliation(s)
- Weijie Yang
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Wei Zhang
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Fengqian Li
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Ning Xu
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Ping Sun
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| |
Collapse
|
4
|
Nulali J, Zhan M, Zhang K, Tu P, Liu Y, Song H. Osteoglycin: An ECM Factor Regulating Fibrosis and Tumorigenesis. Biomolecules 2022; 12:1674. [PMID: 36421687 PMCID: PMC9687868 DOI: 10.3390/biom12111674] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 08/27/2023] Open
Abstract
The extracellular matrix (ECM) is made up of noncellular components that have special properties for influencing cell behavior and tissue structure. Small leucine-rich proteoglycans (SLRPs) are nonfibrillar ECM components that serve as structural scaffolds and signaling molecules. osteoglycin (OGN), a class III SLRP, is a ubiquitous ECM component that not only helps to organize the extracellular matrix but also regulates a number of important biological processes. As a glycosylated protein in the ECM, OGN was originally considered to be involved in fiber assembly and was reported to have a connection with fibrosis. In addition to these functions, OGN is found in a variety of cancer tissues and is implicated in cellular processes linked to tumorigenesis, including cell proliferation, invasion, metastasis, and epithelial-mesenchymal transition (EMT). In this review, we summarize the structure and functions of OGN as well as its biological and clinical importance in the context of fibrotic illness and tumorigenesis. This review aims to improve our understanding of OGN and provide some new strategies for the treatment of fibrosis and cancer.
Collapse
Affiliation(s)
- Jiayida Nulali
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kaiwen Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Pinghui Tu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu Liu
- Department of Respiration, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200070, China
| | - Huaidong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
5
|
Zhang C, Sun D, Li C, Liu Y, Zhou Y, Zhang J. Development of cancer-associated fibroblasts subtype and prognostic model in gastric cancer and the landscape of tumor microenvironment. Int J Biochem Cell Biol 2022; 152:106309. [PMID: 36174922 DOI: 10.1016/j.biocel.2022.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
Abstract
As the components of the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) are inextricably linked to cancer development. However, the potential impact of CAFs on gastric cancer (GC) remains unclear, as does the relationship between clinical prognosis and immunotherapy. We identified the expression of genes associated with CAFs in 1050 gastric cancer samples from three independent datasets and assessed the correlation between CAFs and clinical characteristics, prognosis, and TME. The CRG-Score was developed and validated for predicting overall survival (OS) in gastric cancer patients and its applicability in immunotherapy. We explored the changes of CAFs-related genes (CRGs) in gastric cancer tissues and evaluated their expression patterns. Two molecular subtypes were identified, and the expression of CRGs was assessed among different subtypes in correlation with prognosis and TME characteristics. The CRG-Score was constructed using differentially expressed genes between the subtypes, and its predictive power was evaluated in gastric cancer patients. Additionally, we developed an accurate nomogram to increase the clinical practicality of CRG-Score. Furthermore, CRG-Score was significantly correlated with tumor mutation burden, microsatellite instability, cancer stem cells, and chemotherapeutic drug sensitivity. CRGs have the potential to influence prognosis, TME, and the clinical features of gastric cancer. This provided new possibilities for improving our understanding of gastric cancer, assessing prognosis, and more effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Di Sun
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Chao Li
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yi Liu
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yue Zhou
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jiantao Zhang
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
6
|
Qin W, Zhang J, Rong R, Zhang L, Gao H, Liu C, Ren Q, Zheng G, Wang J, Meng L, Qiao S, Qian R, Zhou C, Wang H, Zhang Y. Osteoglycin (OGN) promotes tumorigenesis of pancreatic cancer cell via targeting ID4. Tissue Cell 2022; 78:101867. [DOI: 10.1016/j.tice.2022.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/01/2022]
|
7
|
Bianchi L, Casini S, Vantaggiato L, Di Noi A, Carleo A, Shaba E, Armini A, Bellucci F, Furii G, Bini L, Caliani I. A Novel Ex Vivo Approach Based on Proteomics and Biomarkers to Evaluate the Effects of Chrysene, MEHP, and PBDE-47 on Loggerhead Sea Turtles ( Caretta caretta). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074369. [PMID: 35410049 PMCID: PMC8998652 DOI: 10.3390/ijerph19074369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023]
Abstract
The principal aim of the present study was to develop and apply novel ex vivo tests as an alternative to cell cultures able to evaluate the possible effects of emerging and legacy contaminants in Caretta caretta. To this end, we performed ex vivo experiments on non-invasively collected whole-blood and skin-biopsy slices treated with chrysene, MEHP, or PBDE-47. Blood samples were tested by oxidative stress (TAS), immune system (respiratory burst, lysozyme, and complement system), and genotoxicity (ENA assay) biomarkers, and genotoxic and immune system effects were observed. Skin slices were analyzed by applying a 2D-PAGE/MS proteomic approach, and specific contaminant signatures were delineated on the skin proteomic profile. These reflect biochemical effects induced by each treatment and allowed to identify glutathione S-transferase P, peptidyl-prolyl cis-trans isomerase A, mimecan, and protein S100-A6 as potential biomarkers of the health-threatening impact the texted toxicants have on C. caretta. Obtained results confirm the suitability of the ex vivo system and indicate the potential risk the loggerhead sea turtle is undergoing in the natural environment. In conclusion, this work proved the relevance that the applied ex vivo models may have in testing the toxicity of other compounds and mixtures and in biomarker discovery.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (F.B.); (I.C.)
- Correspondence:
| | - Lorenza Vantaggiato
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Agata Di Noi
- Department of Life Sciences, University of Siena, Via P. Mattioli, 4, 53100 Siena, Italy;
| | - Alfonso Carleo
- Department of Pulmonology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Enxhi Shaba
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Alessandro Armini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100 Siena, Italy;
| | - Francesco Bellucci
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (F.B.); (I.C.)
| | - Giovanni Furii
- Centro Recupero Tartarughe Marine Legambiente, Molo di Ponente, 71043 Manfredonia, Italy;
| | - Luca Bini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (F.B.); (I.C.)
| |
Collapse
|
8
|
Gopinath P, Natarajan A, Sathyanarayanan A, Veluswami S, Gopisetty G. The multifaceted role of Matricellular Proteins in health and cancer, as biomarkers and therapeutic targets. Gene 2022; 815:146137. [PMID: 35007686 DOI: 10.1016/j.gene.2021.146137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is composed of a mesh of proteins, proteoglycans, growth factors, and other secretory components. It constitutes the tumor microenvironment along with the endothelial cells, cancer-associated fibroblasts, adipocytes, and immune cells. The proteins of ECM can be functionally classified as adhesive proteins and matricellular proteins (MCP). In the tumor milieu, the ECM plays a major role in tumorigenesis and therapeutic resistance. The current review encompasses thrombospondins, osteonectin, osteopontin, tenascin C, periostin, the CCN family, laminin, biglycan, decorin, mimecan, and galectins. The matrix metalloproteinases (MMPs) are also discussed as they are an integral part of the ECM with versatile functions in the tumor stroma. In this review, the role of these proteins in tumor initiation, growth, invasion and metastasis have been highlighted, with emphasis on their contribution to tumor therapeutic resistance. Further, their potential as biomarkers and therapeutic targets based on existing evidence are discussed. Owing to the recent advancements in protein targeting, the possibility of agents to modulate MCPs in cancer as therapeutic options are discussed.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Aparna Natarajan
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | | | - Sridevi Veluswami
- Deaprtment of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India.
| |
Collapse
|
9
|
Solis-Hernandez MP, Martín C, García B, Pérez-López N, García-Mesa Y, González-Fernández S, García-Suárez O, Merayo J, Fernández-Vega I, Quirós LM. The Genes Encoding Small Leucine-Rich Proteoglycans Undergo Differential Expression Alterations in Colorectal Cancer, Depending on Tumor Location. Cells 2021; 10:2002. [PMID: 34440771 PMCID: PMC8391422 DOI: 10.3390/cells10082002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Small leucine-rich proteoglycans (SLRPs) regulate different processes and undergo significant alterations in various diseases. Colon carcinomas (CCs) are heterogeneous pathologies with important clinical and molecular differences depending on their location, which makes it interesting to analyze the alterations in SLRPs in right- and left-sided tumors (RS- and LSCCs). SLRP transcription levels were studied in 32 CCs using qPCR compared to healthy colon mucosae samples from the same patients, 20 of them from LSCCs and the remaining 12 from RSCCs. Protein expression of genes with significant differences in their transcriptions was analyzed by immunohistochemistry. The alterations observed were related to survival data. The arrangement of transcription of SLRPs was quite similar in ascending and descending colon, but RS- and LSCCs displayed different patterns of alteration, with a greater number of deregulations occurring in the latter. The analysis of protein expression also indicated changes in the location of these molecules, largely moving to the cell interior. While podocan underexpression showed a trend toward better outcomes, no differences were observed in terms of overall survival. In vitro studies using the HT29 tumor cell line suggest that deregulation of SLRPs could affect cell proliferation. SLRPs constitute new differential markers of RS- and LSCCs, showing differences dependent on the anatomical location of the tumor.
Collapse
Affiliation(s)
- Maria Pilar Solis-Hernandez
- Department of Medical Oncology, Hospital Universitario Central de Asturias, Av. Roma, s/n, 33011 Oviedo, Spain;
| | - Carla Martín
- Department of Functional Biology, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain; (C.M.); (B.G.); (N.P.-L.); (S.G.-F.)
- Instituto Universitario Fernández-Vega, University of Oviedo, Av. Drs Fernández Vega, 34, 33012 Oviedo, Spain;
| | - Beatriz García
- Department of Functional Biology, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain; (C.M.); (B.G.); (N.P.-L.); (S.G.-F.)
- Instituto Universitario Fernández-Vega, University of Oviedo, Av. Drs Fernández Vega, 34, 33012 Oviedo, Spain;
| | - Natalia Pérez-López
- Department of Functional Biology, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain; (C.M.); (B.G.); (N.P.-L.); (S.G.-F.)
| | - Yolanda García-Mesa
- Department of Morphology and Cell Biology, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain; (Y.G.-M.); (O.G.-S.)
| | - Sara González-Fernández
- Department of Functional Biology, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain; (C.M.); (B.G.); (N.P.-L.); (S.G.-F.)
| | - Olivia García-Suárez
- Department of Morphology and Cell Biology, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain; (Y.G.-M.); (O.G.-S.)
| | - Jesús Merayo
- Instituto Universitario Fernández-Vega, University of Oviedo, Av. Drs Fernández Vega, 34, 33012 Oviedo, Spain;
- Department of Surgery, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain
| | - Iván Fernández-Vega
- Instituto Universitario Fernández-Vega, University of Oviedo, Av. Drs Fernández Vega, 34, 33012 Oviedo, Spain;
- Department of Surgery, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain
- Department of Pathology, Hospital Universitario Central de Asturias, Av. Roma, s/n, 33011 Oviedo, Spain
| | - Luis M. Quirós
- Department of Functional Biology, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain; (C.M.); (B.G.); (N.P.-L.); (S.G.-F.)
- Instituto Universitario Fernández-Vega, University of Oviedo, Av. Drs Fernández Vega, 34, 33012 Oviedo, Spain;
| |
Collapse
|
10
|
Su B, Zhang QY, Li XS, Yu HM, Li P, Ma JH, Cao HM, Sun F, Zhao SX, Zheng CX, Ru Y, Song HD. The expression of mimecan in adrenal tissue plays a role in an organism's responses to stress. Aging (Albany NY) 2021; 13:13087-13107. [PMID: 33971622 PMCID: PMC8148509 DOI: 10.18632/aging.202991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/02/2021] [Indexed: 01/07/2023]
Abstract
Mimecan encodes a secretory protein that is secreted into the human serum as two mature proteins with molecular masses of 25 and 12 kDa. We found 12-kDa mimecan to be a novel satiety hormone mediated by the upregulation of the expression of interleukin (IL)-1β and IL-6 in the hypothalamus. Mimecan was found to be expressed in human pituitary corticotroph cells and was up-regulated by glucocorticoids, while the secretion of adrenocorticotropic hormone (ACTH) in pituitary corticotroph AtT-20 cells was induced by mimecan. However, the effects of mimecan in adrenal tissue on the hypothalamic–pituitary–adrenal (HPA) axis functions remain unknown. We demonstrated that the expression of mimecan in adrenal tissues is significantly downregulated by hypoglycemia and scalded stress. It was down-regulated by ACTH, but upregulated by glucocorticoids through in vivo and in vitro studies. We further found that 12-kDa mimecan fused protein increased the corticosterone secretion of adrenal cells in vivo and in vitro. Interestingly, compared to litter-mate mice, the diurnal rhythm of corticosterone secretion was disrupted under basal conditions, and the response to restraint stress was stronger in mimecan knockout mice. These findings suggest that mimecan stimulates corticosterone secretion in the adrenal tissues under basal conditions; however, the down-regulated expression of mimecan by increased ACTH secretion after stress in adrenal tissues might play a role in maintaining the homeostasis of an organism’s responses to stress.
Collapse
Affiliation(s)
- Bin Su
- Department of Blood Transfusion and Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qian-Yue Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University School of Medicine, Shanghai 200011, China
| | - Xue-Song Li
- Department of Endocrine Metabolism, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Hui-Min Yu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University School of Medicine, Shanghai 200011, China
| | - Ping Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University School of Medicine, Shanghai 200011, China
| | - Jun-Hua Ma
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University School of Medicine, Shanghai 200011, China
| | - Huang-Ming Cao
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University School of Medicine, Shanghai 200011, China
| | - Fei Sun
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University School of Medicine, Shanghai 200011, China
| | - Shuang-Xia Zhao
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University School of Medicine, Shanghai 200011, China
| | - Cui-Xia Zheng
- Department of Respiration, Yangpu Hospital, Tongji University, Shanghai 200090, China
| | - Ying Ru
- Department of Endocrinology and Metabolism, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, Anhui, China.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
11
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Identification of prognosis-related genes in the tumor microenvironment of stomach adenocarcinoma by TCGA and GEO datasets. Biosci Rep 2020; 40:226576. [PMID: 33015704 PMCID: PMC7560520 DOI: 10.1042/bsr20200980] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence has demonstrated that tumor microenvironment (TME) plays a crucial role in stomach adenocarcinoma (STAD) development, progression, prognosis and immunotherapeutic responses. How the genes in TME interact and behave is extremely crucial for tumor investigation. In the present study, we used gene expression data of STAD available from TCGA and GEO datasets to infer tumor purity using ESTIMATE algorithms, and predicted the associations between tumor purity and clinical features and clinical outcomes. Next, we calculated the differentially expressed genes (DEGs) from the comparisons of immune and stromal scores, and postulated key biological processes and pathways that the DEGs mainly involved in. Then, we analyzed the prognostic values of DEGs in TCGA dataset, and validated the results by GEO dataset. Finally, we used CIBERSORT computational algorithm to estimate the 22 tumor infiltrating immune cells (TIICs) subsets in STAD tissues. We found that stromal and immune scores were significantly correlated with STAD subtypes, clinical stages, Helicobacter polyri infection, and stromal scores could predict the clinical outcomes in STAD patients. Moreover, we screened 307 common DEGs in TCGA and GSE51105 datasets. In the prognosis analyses, we only found OGN, JAM2, RERG, OLFML2B, and ADAMTS1 genes were significantly associated with overall survival in TCGA and GSE84437 datasets, and these genes were correlated with the fractions of T cells, B cells, macrophages, monocytes, NK cells and DC cells, respectively. Our comprehensive analyses for transcriptional data not only improved the understanding of characteristics of TME, but also provided the targets for individual therapy in STAD.
Collapse
|
13
|
Zhang X, Wang J, Zubarev RA. Slight Deuterium Enrichment in Water Acts as an Antioxidant: Is Deuterium a Cell Growth Regulator? Mol Cell Proteomics 2020; 19:1790-1804. [PMID: 32769093 PMCID: PMC7664117 DOI: 10.1074/mcp.ra120.002231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Indexed: 11/06/2022] Open
Abstract
Small admixtures in water, e.g. of metal ions, often act as cell growth regulators. Here we report that enrichment of deuterium content in water, normally found at 8 mm concentration, two-three folds increases cell proliferation and lowers the oxidative stress level as well. Acting as an anti-oxidant, deuterium-enriched water prevents the toxic effect of such oxidative agents as hydrogen peroxide and auranofin. This action is opposite to that of deuterium depletion that is known to suppress cell growth and induce oxidative stress in mitochondria. We thus hypothesize that deuterium may be a natural cell growth regulator that controls mitochondrial oxidation-reduction balance. Because growth acceleration is reduced approximately by half by addition to water a minute amount (0.15%) of 18O isotope, at least part of the deuterium effect on cell growth can be explained by the isotopic resonance phenomenon. A slight (≈2-fold) enrichment of deuterium in water accelerates human cell growth. Quantitative MS based proteomics determined changes in protein abundances and redox states and found that deuterium-enriched water acts mainly through decreasing ROS production in mitochondria. This action is opposite to that of deuterium depletion that suppresses cell growth by inducing oxidative stress. Thus deuterium may be a natural cell growth regulator that controls mitochondrial oxidation-reduction balance. The role of isotopic resonance in this effect was validated by further experiments on bacteria.
Collapse
Affiliation(s)
- Xuepei Zhang
- Division of Physiological Chemistry I, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jin Wang
- Division of Physiological Chemistry I, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, P.R. China
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; SciLIfeLab, Stockholm, Sweden; Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
14
|
Galardi A, Colletti M, Lavarello C, Di Paolo V, Mascio P, Russo I, Cozza R, Romanzo A, Valente P, De Vito R, Pascucci L, Peinado H, Carcaboso AM, Petretto A, Locatelli F, Di Giannatale A. Proteomic Profiling of Retinoblastoma-Derived Exosomes Reveals Potential Biomarkers of Vitreous Seeding. Cancers (Basel) 2020; 12:cancers12061555. [PMID: 32545553 PMCID: PMC7352325 DOI: 10.3390/cancers12061555] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Retinoblastoma (RB) is the most common tumor of the eye in early childhood. Although recent advances in conservative treatment have greatly improved the visual outcome, local tumor control remains difficult in the presence of massive vitreous seeding. Traditional biopsy has long been considered unsafe in RB, due to the risk of extraocular spread. Thus, the identification of new biomarkers is crucial to design safer diagnostic and more effective therapeutic approaches. Exosomes, membrane-derived nanovesicles that are secreted abundantly by aggressive tumor cells and that can be isolated from several biological fluids, represent an interesting alternative for the detection of tumor-associated biomarkers. In this study, we defined the protein signature of exosomes released by RB tumors (RBT) and vitreous seeding (RBVS) primary cell lines by high resolution mass spectrometry. A total of 5666 proteins were identified. Among these, 5223 and 3637 were expressed in exosomes RBT and one RBVS group, respectively. Gene enrichment analysis of exclusively and differentially expressed proteins and network analysis identified in RBVS exosomes upregulated proteins specifically related to invasion and metastasis, such as proteins involved in extracellular matrix (ECM) remodeling and interaction, resistance to anoikis and the metabolism/catabolism of glucose and amino acids.
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Marta Colletti
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
- Correspondence: ; Tel.: +39-066859-3516
| | - Chiara Lavarello
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (C.L.); (A.P.)
| | - Virginia Di Paolo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Paolo Mascio
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Ida Russo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Raffaele Cozza
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Antonino Romanzo
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’ Onofrio 4, 00165 Rome, Italy; (A.R.); (P.V.)
| | - Paola Valente
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’ Onofrio 4, 00165 Rome, Italy; (A.R.); (P.V.)
| | - Rita De Vito
- Department of Pathology, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy;
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Hector Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, 28029 Madrid, Spain;
| | - Angel M. Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, 08950 Esplugues de Llobregat, Spain;
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (C.L.); (A.P.)
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
- Department of Ginecology/Obstetrics & Pediatrics, Sapienza University of Rome, 00185 Roma, Italy
| | - Angela Di Giannatale
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| |
Collapse
|
15
|
Xu T, Zhang R, Dong M, Zhang Z, Li H, Zhan C, Li X. Osteoglycin (OGN) Inhibits Cell Proliferation and Invasiveness in Breast Cancer via PI3K/Akt/mTOR Signaling Pathway. Onco Targets Ther 2019; 12:10639-10650. [PMID: 31824171 PMCID: PMC6900314 DOI: 10.2147/ott.s222967] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction Previous studies have indicated that the small leucine-rich proteoglycan (SLR) osteoglycin (OGN) is downregulated in various cancers, including squamous cervical carcinoma, gastric cancer, and colorectal adenoma, indicating that OGN is a putative tumor suppressor. However, its exact role in the pathology of human cancers, especially breast cancer (BC), is not clear. Methods The expression of OGN in BC tissues was examined using qRT-PCR. Online databases were employed to analyze the correlation between OGN expression and clinicopathological characteristics. CCK-8 assay, colony formation assay, transwell migration and invasion assays were applied to detect cell proliferation, colony formation, migration and invasion of BC cells, respectively. Xenograft tumor models were constructed to explore the role of OGN on tumor growth in vivo. Results OGN expression was reduced in 24 paired BC samples compared with normal tissue. Decreased expression of OGN was correlated with greater pathological grade, a more aggressive tumor subtype, and poor overall survival. In vitro experiments showed that OGN overexpressed by plasmid transfection significantly inhibited cell proliferation, colony formation, migration, and invasion of BC cell lines. In xenograft tumor models, overexpression of OGN repressed the growth of MCF-7 cells in vivo and alleviated the compression of the tumor on surrounding structures. We also observed that OGN expression reversed EMT via repressing the PI3K/Akt/mTOR pathway. Conclusion This study revealed that OGN could function as a tumor suppressor during breast carcinogenesis, and we contribute new evidence to the body of research on the SLRP family.
Collapse
Affiliation(s)
- Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Rui Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Zeyu Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Chenao Zhan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| |
Collapse
|
16
|
Chawsheen HA, Jiang H, Ying Q, Ding N, Thapa P, Wei Q. The redox regulator sulfiredoxin forms a complex with thioredoxin domain-containing 5 protein in response to ER stress in lung cancer cells. J Biol Chem 2019; 294:8991-9006. [PMID: 31000628 DOI: 10.1074/jbc.ra118.005804] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/12/2019] [Indexed: 11/06/2022] Open
Abstract
Sulfiredoxin (Srx) reduces hyperoxidized 2-cysteine-containing peroxiredoxins (Prxs) and protects cells against oxidative stress. Previous studies have shown that Srx is highly expressed in primary specimens of lung cancer patients and plays a pivotal role in lung tumorigenesis and cancer progression. However, the oncogenic mechanisms of Srx in cancer are incompletely understood. In this study, we found that Srx knockdown sensitizes lung cancer cells to endoplasmic reticulum (ER) stress-induced cell death. Through MS analysis, we determined that Srx forms a complex with the ER-resident protein thioredoxin domain-containing protein 5 (TXNDC5). Using reciprocal co-immunoprecipitation, immunofluorescence imaging, subcellular fractionation, and domain-mapping assays with site-specific mutagenesis and purified recombinant proteins, we further characterized the Srx-TXNDC5 interaction. In response to ER stress but not to oxidative stress, Srx exhibits an increased association with TXNDC5, facilitating the retention of Srx in the ER. Of note, TXNDC5 knockdown in lung cancer cells inhibited cell proliferation and repressed anchorage-independent colony formation and migration, but increased cell invasion and activation of mitogen-activated protein kinases. Using immunohistochemical staining, we demonstrate that TXNDC5 is highly expressed in patient-derived lung cancer specimens. Bioinformatics analysis of publicly available data sets revealed that those with high Srx levels have significantly shorter survival and that those with high TXNDC5 levels have longer survival. We conclude that the cellular levels of Srx and TXNDC5 may be useful as biomarkers to predict the survival of individuals with lung cancer.
Collapse
Affiliation(s)
| | - Hong Jiang
- From the Department of Toxicology and Cancer Biology and
| | - Qi Ying
- From the Department of Toxicology and Cancer Biology and
| | - Na Ding
- From the Department of Toxicology and Cancer Biology and
| | - Pratik Thapa
- From the Department of Toxicology and Cancer Biology and
| | - Qiou Wei
- From the Department of Toxicology and Cancer Biology and .,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
17
|
Fasehee H, Fakhraee M, Davoudi S, Vali H, Faghihi S. Cancer biomarkers in atherosclerotic plaque: Evidenced from structural and proteomic analyses. Biochem Biophys Res Commun 2019; 509:687-693. [PMID: 30616890 DOI: 10.1016/j.bbrc.2018.12.160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/24/2018] [Indexed: 01/01/2023]
Abstract
Atherosclerosis and cancer are the leading causes of mortality around the world that share common pathogenic pathways. The aim of this study is the investigation of the protein profile of atherosclerotic plaque in order to find similar biomarker between cancer and atherosclerosis. The small pieces of human coronary artery containing advanced atherosclerotic plaque is obtained from patients during bypass surgery. Structural characterization of type V plaque, including fibrous connective tissue, necrotic lipid core, cholesterol clefts and calcium deposits are performed using high resolution transmission electron microscopy (HR-TEM). The protein profile of atherosclerosis plaque is also analyzed using 2-dimensional electrophoresis and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF). TEM analysis shows that vascular smooth muscle cells (VSMCs) exhibit different and uncommon morphologies in atherosclerotic plaque which is correlated to the proliferative state of the cells. The proteomics analysis reveals proteins related to atherosclerosis formation including Mimecan, Ras Suppressor Protein-1 (RSUP-1) and Cathepsin D which identified as biomarker of cancerous tumors. The expression of Mimecan and RSUP-1 is down-regulated in atherosclerotic plaque while the expression of Cathepsin D is up-regulated. These data support that atherosclerotic plaque presents some degree of tumorgenesis with the significant activity of VSMCs as the key player in atherogenesis.
Collapse
Affiliation(s)
- Hamidreza Fasehee
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161, Iran
| | - Mahsa Fakhraee
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161, Iran
| | - Saeed Davoudi
- Tehran Heart Center, Tehran University of Medical Sciences (TUMS), Tehran, 1411713138, Iran
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada; Facility for Electron Microscopy Research, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada
| | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161, Iran.
| |
Collapse
|
18
|
Costa RA, Martins RST, Capilla E, Anjos L, Power DM. Vertebrate SLRP family evolution and the subfunctionalization of osteoglycin gene duplicates in teleost fish. BMC Evol Biol 2018; 18:191. [PMID: 30545285 PMCID: PMC6293640 DOI: 10.1186/s12862-018-1310-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Osteoglycin (OGN, a.k.a. mimecan) belongs to cluster III of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). In vertebrates OGN is a characteristic ECM protein of bone. In the present study we explore the evolution of SLRP III and OGN in teleosts that have a skeleton adapted to an aquatic environment. Results The SLRP gene family has been conserved since the separation of chondrichthyes and osteichthyes. Few gene duplicates of the SLRP III family exist even in the teleosts that experienced a specific whole genome duplication. One exception is ogn for which duplicate copies were identified in fish genomes. The ogn promoter sequence and in vitro mesenchymal stem cell (MSC) cultures suggest the duplicate ogn genes acquired divergent functions. In gilthead sea bream (Sparus aurata) ogn1 was up-regulated during osteoblast and myocyte differentiation in vitro, while ogn2 was severely down-regulated during bone-derived MSCs differentiation into adipocytes in vitro. Conclusions Overall, the phylogenetic analysis indicates that the SLRP III family in vertebrates has been under conservative evolutionary pressure. The retention of the ogn gene duplicates in teleosts was linked with the acquisition of different functions. The acquisition by OGN of functions other than that of a bone ECM protein occurred early in the vertebrate lineage. Electronic supplementary material The online version of this article (10.1186/s12862-018-1310-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R A Costa
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - R S T Martins
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - E Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - L Anjos
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - D M Power
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
19
|
Chawsheen HA, Ying Q, Jiang H, Wei Q. A critical role of the thioredoxin domain containing protein 5 (TXNDC5) in redox homeostasis and cancer development. Genes Dis 2018; 5:312-322. [PMID: 30591932 PMCID: PMC6303481 DOI: 10.1016/j.gendis.2018.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022] Open
Abstract
Correct folding of nascent peptides occurs in the endoplasmic reticulum (ER). It is a complicate process primarily accomplished by the coordination of multiple redox proteins including members of the protein disulfide isomerase (PDI) family. As a critical member of the PDI family, thioredoxin domain containing protein 5 (TXNDC5) assists the folding of newly synthesized peptides to their mature form through series of disulfide bond exchange reactions. Interestingly, TXNDC5 is frequently found overexpressed in specimens of many human diseases including various types of cancer. In this review, we summarized the biochemical function of TXNDC5 in mammalian cells and the recent progress on the understanding of its role and molecular mechanisms in cancer development. Findings of TXNDC5 in the activation of intracellular signaling pathways, stimulation of cell growth & proliferation, facilitation of cell survival and modulation of extracellular matrix to affect cancer cell invasion and metastasis are reviewed. These published studies suggest that strategies of targeting TXNDC5 can be developed as potentially valuable methods for the treatment of certain types of cancer in patients.
Collapse
Affiliation(s)
- Hedy A Chawsheen
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Qi Ying
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.,Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
20
|
Wei W, Tu M, Huang R, Chen T. Serum osteoinductive factor is associated with microalbuminuria and diabetic nephropathy in type 2 diabetes. Medicine (Baltimore) 2018; 97:e11759. [PMID: 30075597 PMCID: PMC6081076 DOI: 10.1097/md.0000000000011759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We investigated the relationship between serum osteoinductive factor (OIF) and diabetic nephropathy (DN), and its potential use as a diagnostic marker for DN.This study included 177 patients with type 2 diabetes mellitus (T2DM) with normoalbuminuria, 42 with DN and microalbuminuria, and 49 with DN and macroalbuminuria, as well as 296 controls. Baseline characteristics, microalbuminuria prevalence, macroalbuminuria prevalence, and diabetic complications were compared between OIF quartiles. Serum OIF was examined by enzyme-linked immunosorbent assay. Other clinical parameters were measured using standard methods. Correlations between OIF and clinical parameters were assessed using Pearson correlation. Predictive value of OIF for DN was assessed using multivariate logistic regression. Receiver operator characteristic (ROC) curves were used to identify the optimal sensitivity for serum OIF.Univariate analysis showed microalbuminuria prevalence negatively correlated with OIF, 4.3% for quartile 1 (Q1) (>367.5 pg/mL), 13.7% for Q2 (320.3-367.5 pg/mL), 17.9% for Q3 (275.0-320.3 pg/mL), and 28.8% for Q4 (<275.0 pg/mL) (Ptrend < .001), as did T2DM complications. ROC analysis showed an OIF of <343.4 pg/mL was predictive of DN (C statistic 0.702). OIF <343.4 pg/mL remained predictive of microalbuminuria (odds ratio = 11.60; 95% confidence interval: 1.25-107.47) after adjusting for confounding factors.Serum OIF is an independent diagnostic marker of DN.
Collapse
|
21
|
Hu X, Li YQ, Li QG, Ma YL, Peng JJ, Cai SJ. Osteoglycin-induced VEGF Inhibition Enhances T Lymphocytes Infiltrating in Colorectal Cancer. EBioMedicine 2018; 34:35-45. [PMID: 30037719 PMCID: PMC6116424 DOI: 10.1016/j.ebiom.2018.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND OGN could modify tissue inflammation and immune response via local and circulating innate immune cells, which was suggestive of a reciprocal relationship between OGN and T cell infiltration in cancer. Hence, we aim to measure the OGN expression patterns and immune cells response in colorectal cancer(CRC). METHODS This study enrolled three independent sets of patients from TCGA and the Fudan University Shanghai Cancer Center(FUSCC). The effect of OGN on T cell infiltration and the mechanism were examined in vitro and in vivo. FINDINGS Tumor OGN expression levels were positively associated with CD3, CD8, and PTPRC expressions in the training and testing sets from TCGA, respectively. In validation set from FUSCC, OGN expression level also paralleled positively with CD8+ cell density in colorectal cancer tissue (p < .001). For a unit decrease in outcome quartile categories, multivariable OR in the lowest (vs highest) OGN expression was 0.17 (95% CI 0.08-0.33). Consistently, immunofluorescence validated that OGN was preferentially expressed with CD8+ cells in both normal epithelium and cancer tissue. Xenograft tumors arising from MC38 cells with OGN-over-expression displayed a significant increase in CD8+ cells recruitment. Hence, high expression of OGN was associated with a profound longer survival (P = .009). In mechanism, elevated OGN expression inhibited the activation of the transcriptional genes HIF-1α in CRC cells, then significantly impeded the expression of VEGF. As a result of this, T cell tumor infiltration was reduced. INTERPRETATION OGN expression is positively associated with CD8+ cell density in colorectal cancer tissue, suggesting a possible influence of OGN expression on tumor reactive T cells in the tumor niche. FUND: No.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ya-Qi Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qing-Guo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan-Lei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jun-Jie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - San-Jun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
22
|
Tan F, Zhu H, He X, Yu N, Zhang X, Xu H, Pei H. Role of TXNDC5 in tumorigenesis of colorectal cancer cells: In vivo and in vitro evidence. Int J Mol Med 2018; 42:935-945. [PMID: 29749460 PMCID: PMC6034924 DOI: 10.3892/ijmm.2018.3664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 02/14/2018] [Indexed: 11/05/2022] Open
Abstract
Thioredoxin domain‑containing 5 (TXNDC5) is reportedly overexpressed in colorectal cancer (CRC) and is therefore considered an oncogene. However, the role of TXNDC5 in CRC tumorigenesis remains unclear. The present study aimed to explore the role of TXNDC5 in CRC tumorigenesis in vitro and in vivo under hypoxic and normoxic conditions. Analyses of patient tissue samples revealed a positive association between the expression of hypoxia‑inducible factor‑1α (HIF‑1α) or TXNDC5 and the TNM stage of CRC. In addition, a positive correlation between the expression levels of HIF‑1α and TXNDC5 was observed in CRC tissues. Furthermore, culturing RKO and HCT‑116 human CRC cell lines under hypoxic conditions significantly increased the expression levels of HIF‑1α and TXNDC5, whereas knockdown of HIF‑1α abolished the hypoxia‑induced expression of TXNDC5. Knockdown of TXNDC5 significantly decreased cell proliferation and colony formation, and incre-ased apoptosis of both cell lines. Furthermore, knockdown of TXNDC5 markedly increased hypoxia‑induced reactive oxygen species (ROS) generation, and the expression of hypoxia‑induced endoplasmic reticulum stress (ER) markers (CCAAT‑enhancer‑binding protein homologous protein, glucose‑regulated protein 78 and activating transcription factor 4) and apoptotic markers (B‑cell lymphoma 2‑associated X protein and cleaved caspase‑8). In addition, the expression levels of TXNDC5 were significantly increased in tumor tissues compared with in adenoma and normal tissues in a mouse model of CRC tumorigenesis. In conclusion, the in vivo data demonstrated that TXNDC5 is overexpressed in CRC tissues, and this overexpression may be associated with unfavorable clinicopathological features. The in vitro data indicated that hypoxia may induce TXNDC5 expression via upregulating HIF‑1α; this effect promoted CRC cell proliferation and survival under hypoxic conditions, likely via inhibiting hypoxia‑induced ROS/ER stress signaling. These findings suggested that TXNDC5 functions as an important stress survival factor to maintain tumorigenesis of CRC cells under hypoxia by regulating hypoxia‑induced ROS/ER stress signaling. The present study provided novel insights into the role of TXNDC5 in the tumorigenesis of CRC.
Collapse
Affiliation(s)
- Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiao He
- Department of Mammary, Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
| | - Nanhui Yu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xingwen Zhang
- Department of Emergency, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Haifan Xu
- Department of Mammary and Thyroid, The First Affiliated Hospital of South China University, Hengyang, Hunan 421001, P.R. China
| | - Haiping Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
23
|
Hu X, Li YQ, Li QG, Ma YL, Peng JJ, Cai SJ. Osteoglycin (OGN) reverses epithelial to mesenchymal transition and invasiveness in colorectal cancer via EGFR/Akt pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:41. [PMID: 29499765 PMCID: PMC5833032 DOI: 10.1186/s13046-018-0718-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/21/2018] [Indexed: 01/16/2023]
Abstract
Background Many types of cancers are devoid of the small leucine-rich proteoglycans: osteoglycin (OGN), but its role in tumorigenesis is poorly studied especially in colorectal cancers (CRC). Here we aim to evaluate the relationship between OGN expression patterns and the clinical course of CRC, and the role of OGN in cancer progression. Methods The tissue microarray staining was performed and the relevance between OGN expression and oncologic outcomes was performed using Cox regression analysis. The effect of OGN on cell proliferation and tumorigenesis was examined in vitro and in vivo. Immunoprecipitation assay, immunofluorescence analysis and internalization assay were used for mechanistic study. Results Patients with high expression of OGN were associated with a profound longer survival in CRC and the high serum OGN level was also indicative of fewer recurrences consistently. In colon cancer cells, OGN increased dimerization of EGFR, then triggered EGFR endocytosis and induced the recruitment of downstream components of the EGFR internalization machinery (Eps15 and epsin1). Above all, OGN reduced Zeb-1 expression via EGFR/Akt leading to inhibition of epithelial-mesenchymal transition. As results, in vitro and in vivo, the OGN expression was demonstrated to reduce cell proliferation, inhibit invasion of colon cancer cells then impede cancer progression. Conclusions There is a positive association between OGN level and prolonged survival in CRC. OGN plays a restrictive role in colorectal cancer progression by reduced activation of EGFR/AKT/Zeb-1.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 20032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ya-Qi Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 20032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qing-Guo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 20032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan-Lei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 20032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jun-Jie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 20032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - San-Jun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 20032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Li J, Xu B, Wu C, Yan X, Zhang L, Chang X. TXNDC5 contributes to rheumatoid arthritis by down-regulating IGFBP1 expression. Clin Exp Immunol 2017; 192:82-94. [PMID: 29131315 DOI: 10.1111/cei.13080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022] Open
Abstract
The thioredoxin domain-containing 5 (TXNDC5) gene is associated with susceptibility to rheumatoid arthritis (RA) and exhibits increased expression in the synovial tissues. TXNDC5 is also associated strongly with diabetes, a metabolic disease characterized by interrupted insulin signalling. This study investigated whether TXNDC5 contributes to RA via the insulin signalling pathway. In this study, RA synovial fibroblast-like cells (RASFs) transfected with an anti-TXNDC5 small interfering RNA (siRNA) were analysed with an insulin signaling pathway RT2 profiler polymerase chain reaction (PCR) array and an insulin resistance RT2 profiler PCR array. The PCR arrays detected significantly increased expression of insulin-like growth factor binding protein 1 (IGFBP1) in RASFs with suppressed TXNDC5 expression. The result was verified using real-time PCR and Western blot analyses. Significantly elevated IGFBP1 expression and decreased interleukin (IL)-6 secretion were also detected in culture medium of transfected RASFs. Furthermore, decreased IGFBP1 mRNA and protein expression levels were detected in RA synovial tissues. Additionally, significantly increased apoptosis and decreased cell proliferation and cell migration were observed in RASFs transfected with the anti-TXNDC5 siRNA, whereas transfection with the anti-IGFBP1 siRNA or a mixture of the anti-IGFBP1 and anti-TXNDC5 siRNAs restored normal cell proliferation, migration and IL-6 level in RASFs. Insulin-like growth factor (IGF) has potent prosurvival and anti-apoptotic functions, and IGFBP1 can suppress IGF activity. Based on the results of the present study, we suggest that TXNDC5 contributes to abnormal RASF proliferation, migration and IL-6 production by inhibiting IGFBP1 expression.
Collapse
Affiliation(s)
- J Li
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan.,Affiliated Hospital of Jining Medical University, Jining
| | - B Xu
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan
| | - C Wu
- Department of Bone and Joint Surgery of Shandong Provincial Hospital
| | - X Yan
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan.,Department of Bone and Joint Surgery of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - L Zhang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan.,Department of Bone and Joint Surgery of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - X Chang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan
| |
Collapse
|
25
|
Xu B, Li J, Liu X, Li C, Chang X. TXNDC5 is a cervical tumor susceptibility gene that stimulates cell migration, vasculogenic mimicry and angiogenesis by down-regulating SERPINF1 and TRAF1 expression. Oncotarget 2017; 8:91009-91024. [PMID: 29207620 PMCID: PMC5710901 DOI: 10.18632/oncotarget.18857] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/10/2017] [Indexed: 12/16/2022] Open
Abstract
TXNDC5 (thioredoxin domain-containing protein 5) catalyzes disulfide bond formation, isomerization and reduction. Studies have reported that TXNDC5 expression is increased in some tumor tissues and that its increased expression can predict a poor prognosis. However, the tumorigenic mechanism has not been well characterized. In this study, we detected a significant association between the rs408014 and rs7771314 SNPs at the TXNDC5 locus and cervical carcinoma using the Taqman genotyping method. We also detected a significantly increased expression of TXNDC5 in cervical tumor tissues using immunohistochemistry and Western blot analysis. Additionally, inhibition of TXNDC5 expression using siRNA prevented tube-like structure formation, an experimental indicator of vasculogenic mimicry and metastasis, in HeLa cervical tumor cells. Inhibiting TXNDC5 expression simultaneously led to the increased expression of SERPINF1 (serpin peptidase inhibitor, clade F) and TRAF1 (TNF receptor-associated factor 1), which have been reported to inhibit angiogenesis and metastasis as well as induce apoptosis. This finding was confirmed in Caski and C-33A cervical tumor cell lines. The ability to form tube-like structures was rescued in HeLa cells simultaneously treated with anti-TXNDC5, SERPINF1 and TRAF1 siRNAs. Furthermore, the inhibition of TXNDC5 expression significantly attenuated endothelial tube formation, a marker of angiogenesis, in human umbilical vein endothelial cells. The present study suggests that TXNDC5 is a susceptibility gene in cervical cancer, and high expression of this gene contributes to abnormal angiogenesis, vasculogenic mimicry and metastasis by down-regulating SERPINF1 and TRAF1 expression.
Collapse
Affiliation(s)
- Bing Xu
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Jian Li
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Xiaoxin Liu
- Blood Transfusion Department of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Chang Li
- Pathology Department of Tengzhou Central People's Hospital, Tengzhou, P. R. China
| | - Xiaotian Chang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
26
|
C/EBPβ LIP augments cell death by inducing osteoglycin. Cell Death Dis 2017; 8:e2733. [PMID: 28383550 PMCID: PMC5603828 DOI: 10.1038/cddis.2017.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
Many types of tumor cell are devoid of the extracellular matrix proteoglycan osteoglycin (Ogn), but its role in tumor biology is poorly studied. Here we show that RNAi of Ogn attenuates stress-triggered cell death, whereas its overexpression increases cell death. We found that the transcription factor C/EBPβ regulates the expression of Ogn. C/EBPβ is expressed as a full-length, active form (LAP) and as a truncated, dominant-negative form (LIP), and the LIP/LAP ratio is positively correlated with the extent of cell death under stress. For example, we reported that drug-resistant tumor cells lack LIP altogether, and its supplementation abolished their resistance to chemotherapy and to endoplasmic reticulum (ER) stress. Here we further show that elevated LIP/LAP ratio robustly increased Ogn expression and cell death under stress by modulating the mitogen-activated protein kinase/activator protein 1 pathway (MAPK/AP-1). Our findings suggest that LIP deficiency renders tumor cell resistant to ER stress by preventing the induction of Ogn.
Collapse
|
27
|
Duivenvoorden WCM, Hopmans SN, Austin RC, Pinthus JH. Endoplasmic reticulum protein ERp46 in prostate adenocarcinoma. Oncol Lett 2017; 13:3624-3630. [PMID: 28521463 PMCID: PMC5431273 DOI: 10.3892/ol.2017.5908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/31/2017] [Indexed: 11/23/2022] Open
Abstract
Endoplasmic reticulum (ER) protein ERp46 is a member of the protein disulfide isomerase family of oxidoreductases, which facilitates the reduction of disulfides in proteins and their folding. Accumulation of misfolded proteins has been implicated in cancer. The objectives of the present study were to investigate the role of ERp46 in prostate cancer, its expression and its effects on prostate cancer growth. A tissue microarray with human prostate cancer and normal prostate tissue samples was stained for ERp46 followed by image analysis. Human prostate adenocarcinoma 22Rv1 cells were stably transfected with short hairpin RNA (shRNA) specific for ERp46, a non-effective scrambled control or a plasmid containing full-length human ERp46 cDNA, and cell growth was determined. Subcloned cells were treated with thapsigargin or tunicamycin to induce ER stress and lysates were subjected to western blot analysis for ER stress proteins. Subcutaneous xenografts of parental 22Rv1, ERp46-overexpressing (ERp46+), shERp46 or scrambled control cells were established in male inbred BALB/c nude mice (n=10/group). Tumor growth curves of the xenografts were constructed over a period of 30 days and subsequently the mice were sacrificed and the amount of serum prostate-specific antigen was determined. The results demonstrated increased ERp46 expression levels in prostate cancer tissue samples of Gleason ≥7 compared with normal prostate tissue samples. When ERp46 was stably knocked down using shRNA or overexpressed in prostate carcinoma 22Rv1 cells, tumor growth in vitro and in BALB/c nude mice was inhibited and accelerated, respectively. ERp46 overexpression led to reduced sensitivity to ER stress as indicated by higher half maximal inhibitory concentrations for tunicamycin and thapsigargin in ERp46+ cells. The shERp46 cells lost the ability to upregulate protein disulfide isomerase following tunicamycin-induced ER stress. The present study suggests a role for ERp46 as a therapeutic target in prostate cancer, given its expression profile in human prostate cancer, and its effect on prostate cancer cell growth.
Collapse
Affiliation(s)
- Wilhelmina C M Duivenvoorden
- Department of Surgery, Division of Urology, McMaster University, Hamilton, ON L8V 1C3, Canada.,Research Institute of St. Joseph's, St. Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada
| | - Sarah N Hopmans
- Department of Surgery, Division of Urology, McMaster University, Hamilton, ON L8V 1C3, Canada
| | - Richard C Austin
- Research Institute of St. Joseph's, St. Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada.,Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jehonathan H Pinthus
- Department of Surgery, Division of Urology, McMaster University, Hamilton, ON L8V 1C3, Canada.,Research Institute of St. Joseph's, St. Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada
| |
Collapse
|
28
|
Villacis RAR, Basso TR, Canto LM, Nóbrega AF, Achatz MI, Rogatto SR. Germline large genomic alterations on 7q in patients with multiple primary cancers. Sci Rep 2017; 7:41677. [PMID: 28139749 PMCID: PMC5282589 DOI: 10.1038/srep41677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/29/2016] [Indexed: 11/11/2022] Open
Abstract
Patients with multiple primary cancers (MPCs) are suspected to have a hereditary cancer syndrome. However, only a small proportion may be explained by mutations in high-penetrance genes. We investigate two unrelated MPC patients that met Hereditary Breast and Ovaria Cancer criteria, both presenting triple negative breast tumors and no mutations in BRCA1, BRCA2 and TP53 genes. Germline rearrangements on chromosome 7q, involving over 40 Mb of the same region, were found in both patients: one with mosaic loss (80% of cells) and the other with cnLOH (copy-neutral loss of heterozygosity) secondary to maternal allele duplication. Five children tested had no alterations on 7q. The patients shared 330 genes in common on 7q22.1-q34, including several tumor suppressor genes (TSGs) previously related to breast cancer risk and imprinted genes. The analysis of the triple negative BC from one patient revealed a mosaic gain of 7q translated for over-expressed cancer-related genes. The involvement of TSGs and imprinted genes, mapped on 7q, has the potential of being associated to MPC risk, as well as cancer progression. To our knowledge, this is the first description of patients with MPCs that harbor constitutive large alterations on 7q.
Collapse
Affiliation(s)
- R. A. R. Villacis
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília - UnB, Brasília, DF, Brazil
| | - T. R. Basso
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - L. M. Canto
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - A. F. Nóbrega
- Department of Oncogenetics, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - M. I. Achatz
- Department of Oncogenetics, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - S. R. Rogatto
- International Research Center (CIPE), A.C. Camargo Cancer Center, São Paulo, SP, Brazil
- Department of Clinical Genetics, Vejle Hospital, DK and University of Southern Denmark, Denmark
- Department of Urology, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
29
|
Serafín-Higuera I, Garibay-Cerdenares OL, Illades-Aguiar B, Flores-Alfaro E, Jiménez-López MA, Sierra-Martínez P, Alarcón-Romero LDC. Differential proteins among normal cervix cells and cervical cancer cells with HPV-16 infection, through mass spectrometry-based Proteomics (2D-DIGE) in women from Southern México. Proteome Sci 2016; 14:10. [PMID: 27601940 PMCID: PMC5011847 DOI: 10.1186/s12953-016-0099-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 08/16/2016] [Indexed: 12/31/2022] Open
Abstract
Background Cervical cancer (CC) is the fourth most common cancer in women worldwide with an estimated 528,000 new cases in 2012. The same year México had an incidence of 13,960 and a mortality of 4769 cases. There are several diagnosis methods of CC; among the most frequents are the conventional Pap cytology (Pap), colposcopy, and visual inspection with acetic acid (VIA), histopathological examination, tests of imaging and detection of high-risk papilloma virus (HR-HPV) with molecular tests (PCR, hybridization, sequencing). Proteomics is a tool for the detection of new biomarkers that can be associated with clinical stage, histological type, prognosis, and/or response to treatment. In this study we performed a comparative analysis of CC cells with normal cervical cells. The proteomic analysis was carried out with the fluorescent two-dimensional electrophoresis (2D-DIGE) technique to subsequently identify differential protein profiles using Decyder Software, and the selected proteins were identified by Mass Spectrometry (MALDI-TOF). Results The proteins that showed an increased expression in cervical cancer in comparison with normal cervix cells were: Mimecan, Actin from aortic smooth muscle and Lumican. While Keratin, type II cytoskeletal 5, Peroxiredoxin-1 and 14-3-3 protein sigma showed a decrease in their protein expression level in cervical cancer in comparison with normal cervix cells. Conclusions Thus, this study was successful in identifying biomarker signatures for cervical cancer, and might provide new insights into the mechanism of CC progression.
Collapse
Affiliation(s)
- Idanya Serafín-Higuera
- Laboratorio de Citopatología e Histoquímica, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero México
| | - Olga Lilia Garibay-Cerdenares
- Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero México
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero México
| | - Eugenia Flores-Alfaro
- Laboratorio de Citopatología e Histoquímica, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero México
| | | | - Pavel Sierra-Martínez
- Laboratorio de Citopatología e Histoquímica, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero México
| | - Luz Del Carmen Alarcón-Romero
- Laboratorio de Citopatología e Histoquímica, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero México ; Laboratorio de Investigación en Citopatología e Histoquímica, Unidad Académica de Ciencias Químico Biológicas Universidad Autónoma de Guerrero Avenida Lázaro Cárdenas, Ciudad Universitaria, Chilpancingo, Guerrero C.P. 39090 México
| |
Collapse
|
30
|
Liu X, Xu Y, Meng Q, Zheng Q, Wu J, Wang C, Jia W, Figeys D, Chang Y, Zhou H. Proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling. Biochem Biophys Res Commun 2016; 476:286-292. [PMID: 27230957 DOI: 10.1016/j.bbrc.2016.05.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/22/2016] [Indexed: 11/26/2022]
Abstract
Colorectal cancer (CRC) is one of the most common types of malignant tumor worldwide. Currently, although many researchers have been devoting themselves in CRC studies, the process of locating biomarkers for CRC early diagnosis and prognostic is still very slow. Using a centrifugal proteomic reactor-based proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling, 2620 protein groups were quantified between cancer mucosa and adjacent normal colorectal mucosa. Of which, 403 protein groups were differentially expressed with statistic significance between cancer and normal tissues, including 195 up-regulated and 208 down-regulated proteins in cancer tissues. Three proteins (SOD3, PRELP and NGAL) were selected for further Western blot validation. And the resulting Western blot experimental results were consistent with the quantitative proteomic data. SOD3 and PRELP are down-regulated in CRC mucosa comparing to adjacent normal tissue, while NGAL is up-regulated in CRC mucosa. In conclusion, the centrifugal proteomic reactor-based label-free quantitative proteomic approach provides a highly sensitive and powerful tool for analyzing minute protein sample from tiny colorectal biopsies, which may facilitate CRC biomarkers discovery for diagnoses and prognoses.
Collapse
Affiliation(s)
- Xing Liu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | | | - Qian Meng
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Qingqing Zheng
- Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People's Hospital, China
| | - Jianhong Wu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Chen Wang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Ying Chang
- Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People's Hospital, China.
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China.
| |
Collapse
|
31
|
Deckx S, Heymans S, Papageorgiou AP. The diverse functions of osteoglycin: a deceitful dwarf, or a master regulator of disease? FASEB J 2016; 30:2651-61. [PMID: 27080639 DOI: 10.1096/fj.201500096r] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Small leucine-rich proteoglycans are emerging as important regulatory proteins within the extracellular matrix, where they exert both structural and nonstructural functions and hence are modulators of numerous biological processes, such as inflammation, fibrosis, and cell proliferation. One proteoglycan in particular, osteoglycin (OGN), also known as mimecan, shows great structural and functional diversity in normal physiology and in disease states, therefore making it a very interesting candidate for the development of novel therapeutic strategies. Unfortunately, the literature on OGN is confusing, as it has different names, and different transcript and protein variants have been identified. This review will give a clear overview of the different structures and functions of OGN that have been identified to date, portray its central role in pathophysiology, and highlight the importance of posttranslational processing, such as glycosylation, for the diversity of its functions.-Deckx, S., Heymans, S., Papageorgiou, A.-P. The diverse functions of osteoglycin: a deceitful dwarf, or a master regulator of disease?
Collapse
Affiliation(s)
- Sophie Deckx
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands; and Center for Molecular and Vascular Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands; and Center for Molecular and Vascular Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Anna-Pia Papageorgiou
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands; and Center for Molecular and Vascular Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Insight On Colorectal Carcinoma Infiltration by Studying Perilesional Extracellular Matrix. Sci Rep 2016; 6:22522. [PMID: 26940881 PMCID: PMC4778019 DOI: 10.1038/srep22522] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix (ECM) from perilesional and colorectal carcinoma (CRC), but not healthy colon, sustains proliferation and invasion of tumor cells. We investigated the biochemical and physical diversity of ECM in pair-wised comparisons of healthy, perilesional and CRC specimens. Progressive linearization and degree of organization of fibrils was observed from healthy to perilesional and CRC ECM, and was associated with a steady increase of stiffness and collagen crosslinking. In the perilesional ECM these modifications coincided with increased vascularization, whereas in the neoplastic ECM they were associated with altered modulation of matrisome proteins, increased content of hydroxylated lysine and lysyl oxidase. This study identifies the increased stiffness and crosslinking of the perilesional ECM predisposing an environment suitable for CRC invasion as a phenomenon associated with vascularization. The increased stiffness of colon areas may represent a new predictive marker of desmoplastic region predisposing to invasion, thus offering new potential application for monitoring adenoma with invasive potential.
Collapse
|
33
|
Mimecan, a Hormone Abundantly Expressed in Adipose Tissue, Reduced Food Intake Independently of Leptin Signaling. EBioMedicine 2015; 2:1718-24. [PMID: 26870797 PMCID: PMC4740298 DOI: 10.1016/j.ebiom.2015.09.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 01/29/2023] Open
Abstract
Adipokines such as leptin play important roles in the regulation of energy metabolism, particularly in the control of appetite. Here, we describe a hormone, mimecan, which is abundantly expressed in adipose tissue. Mimecan was observed to inhibit food intake and reduce body weight in mice. Intraperitoneal injection of a mimecan-maltose binding protein (-MBP) complex inhibited food intake in C57BL/6J mice, which was attenuated by pretreatment with polyclonal antibody against mimecan. Notably, mimecan-MBP also induced anorexia in Ay/a and db/db mice. Furthermore, the expression of interleukin (IL)-1β and IL-6 was up-regulated in the hypothalamus by mimecan-MBP, as well as in N9 microglia cells by recombinant mouse mimecan. Taken together, the results suggest that mimecan is a satiety hormone in adipose tissue, and that mimecan inhibits food intake independently of leptin signaling by inducing IL-1β and IL-6 expression in the hypothalamus.
Collapse
|
34
|
Thioredoxin-like protein 2b facilitates colon cancer cell proliferation and inhibits apoptosis via NF-κB pathway. Cancer Lett 2015; 363:119-26. [DOI: 10.1016/j.canlet.2014.12.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 01/28/2023]
|
35
|
Quantitative analysis of the erythrocyte membrane proteins in polycythemia vera patients treated with hydroxycarbamide. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Karsdal MA, Manon-Jensen T, Genovese F, Kristensen JH, Nielsen MJ, Sand JMB, Hansen NUB, Bay-Jensen AC, Bager CL, Krag A, Blanchard A, Krarup H, Leeming DJ, Schuppan D. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2015; 308:G807-30. [PMID: 25767261 PMCID: PMC4437019 DOI: 10.1152/ajpgi.00447.2014] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests that altered components and posttranslational modifications of proteins in the extracellular matrix (ECM) may both initiate and drive disease progression. The ECM is a complex grid consisting of multiple proteins, most of which play a vital role in containing the essential information needed for maintenance of a sophisticated structure anchoring the cells and sustaining normal function of tissues. Therefore, the matrix itself may be considered as a paracrine/endocrine entity, with more complex functions than previously appreciated. The aims of this review are to 1) explore key structural and functional components of the ECM as exemplified by monogenetic disorders leading to severe pathologies, 2) discuss selected pathological posttranslational modifications of ECM proteins resulting in altered functional (signaling) properties from the original structural proteins, and 3) discuss how these findings support the novel concept that an increasing number of components of the ECM harbor signaling functions that can modulate fibrotic liver disease. The ECM entails functions in addition to anchoring cells and modulating their migratory behavior. Key ECM components and their posttranslational modifications often harbor multiple domains with different signaling potential, in particular when modified during inflammation or wound healing. This signaling by the ECM should be considered a paracrine/endocrine function, as it affects cell phenotype, function, fate, and finally tissue homeostasis. These properties should be exploited to establish novel biochemical markers and antifibrotic treatment strategies for liver fibrosis as well as other fibrotic diseases.
Collapse
Affiliation(s)
- Morten A. Karsdal
- 1Nordic Bioscience A/S, Herlev Hovedgade, Herlev, Denmark; ,2University of Southern Denmark, SDU, Odense, Denmark;
| | | | | | | | | | | | | | | | | | - Aleksander Krag
- 3Department of Gastroenterology and Hepatology, Odense University Hospital, University of Southern Denmark, Odense, Denmark;
| | - Andy Blanchard
- 4GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom;
| | - Henrik Krarup
- 5Section of Molecular Biology, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark;
| | | | - Detlef Schuppan
- 6Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany; ,7Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
37
|
The importance of extracellular matrix for cell function and in vivo likeness. Exp Mol Pathol 2015; 98:286-94. [DOI: 10.1016/j.yexmp.2015.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/06/2015] [Indexed: 01/07/2023]
|
38
|
Wu Z, Zhang L, Li N, Sha L, Zhang K. An immunohistochemical study of thioredoxin domain-containing 5 expression in gastric adenocarcinoma. Oncol Lett 2014; 9:1154-1158. [PMID: 25663872 PMCID: PMC4315038 DOI: 10.3892/ol.2014.2832] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 11/07/2014] [Indexed: 12/16/2022] Open
Abstract
Thioredoxin domain-containing 5 (TXNDC5) is overexpressed in a number of human carcinomas. However, the involvement of TXNDC5 in gastric adenocarcinoma remains unclear. In the present study, the immunohistochemical expression and clinicopathological significance of TXNDC5 in gastric adenocarcinoma was investigated. The immunohistochemical expression of TXNDC5 was detected in 54 gastric adenocarcinoma specimens, and the correlation between TXNDC5 and the clinicopathological features was investigated. Of the 54 gastric adenocarcinoma specimens, 30 samples (55.6%) exhibited high TXNDC5 expression. In the adenocarcinoma specimens exhibiting high TXNDC5 expression, the proportion of poorly-differentiated adenocarcinomas was significantly higher than that in specimens exhibiting low TXNDC5 expression (P<0.05). Lymph node metastasis and the depth of tumor invasion in the specimens exhibiting high TXNDC5 expression were significantly higher than that in specimens exhibiting low TXNDC5 expression (P<0.05). The results of a survival analysis revealed that the prognosis of patients exhibiting high TXNDC5 expression was significantly poorer than that of patients exhibiting low TXNDC5 expression (P<0.05). Therefore, the expression of TXNDC5 may correlate with the differentiation, invasion and metastasis of gastric adenocarcinoma. Thus, TXNDC5 may be a tumor-enhancing gene that is involved in gastric cancer.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Gastroenterology and Hepatology, The 309 Hospital of People's Liberation Army, Beijing 100091, P.R. China ; Hebei North University, Zhangjiakou, Hebei 073000, P.R. China
| | - Lin Zhang
- Department of Gastroenterology and Hepatology, The 309 Hospital of People's Liberation Army, Beijing 100091, P.R. China
| | - Nan Li
- Department of Gastroenterology and Hepatology, The 309 Hospital of People's Liberation Army, Beijing 100091, P.R. China
| | - Lina Sha
- Department of Gastroenterology and Hepatology, The 309 Hospital of People's Liberation Army, Beijing 100091, P.R. China
| | - Kunpeng Zhang
- Department of Gastroenterology and Hepatology, The 309 Hospital of People's Liberation Army, Beijing 100091, P.R. China
| |
Collapse
|
39
|
Horna-Terrón E, Pradilla-Dieste A, Sánchez-de-Diego C, Osada J. TXNDC5, a newly discovered disulfide isomerase with a key role in cell physiology and pathology. Int J Mol Sci 2014; 15:23501-18. [PMID: 25526565 PMCID: PMC4284777 DOI: 10.3390/ijms151223501] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 12/26/2022] Open
Abstract
Thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family, acting as a chaperone of endoplasmic reticulum under not fully characterized conditions As a result, TXNDC5 interacts with many cell proteins, contributing to their proper folding and correct formation of disulfide bonds through its thioredoxin domains. Moreover, it can also work as an electron transfer reaction, recovering the functional isoform of other protein disulfide isomerases, replacing reduced glutathione in its role. Finally, it also acts as a cellular adapter, interacting with the N-terminal domain of adiponectin receptor. As can be inferred from all these functions, TXNDC5 plays an important role in cell physiology; therefore, dysregulation of its expression is associated with oxidative stress, cell ageing and a large range of pathologies such as arthritis, cancer, diabetes, neurodegenerative diseases, vitiligo and virus infections. Its implication in all these important diseases has made TXNDC5 a susceptible biomarker or even a potential pharmacological target.
Collapse
Affiliation(s)
- Elena Horna-Terrón
- Grado de Biotecnología, Universidad de Zaragoza, Zaragoza E-50013, Spain.
| | | | | | - Jesús Osada
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza E-50013, Spain.
| |
Collapse
|
40
|
The role of TXNDC5 in castration-resistant prostate cancer—involvement of androgen receptor signaling pathway. Oncogene 2014; 34:4735-45. [DOI: 10.1038/onc.2014.401] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/29/2014] [Accepted: 10/30/2014] [Indexed: 12/28/2022]
|
41
|
André N, Carré M, Pasquier E. Metronomics: towards personalized chemotherapy? Nat Rev Clin Oncol 2014; 11:413-31. [PMID: 24913374 DOI: 10.1038/nrclinonc.2014.89] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Since its inception in 2000, metronomic chemotherapy has undergone major advances as an antiangiogenic therapy. The discovery of the pro-immune properties of chemotherapy and its direct effects on cancer cells has established the intrinsic multitargeted nature of this therapeutic approach. The past 10 years have seen a marked rise in clinical trials of metronomic chemotherapy, and it is increasingly combined in the clinic with conventional treatments, such as maximum-tolerated dose chemotherapy and radiotherapy, as well as with novel therapeutic strategies, such as drug repositioning, targeted agents and immunotherapy. We review the latest advances in understanding the complex mechanisms of action of metronomic chemotherapy, and the recently identified factors associated with disease resistance. We comprehensively discuss the latest clinical data obtained from studies performed in both adult and paediatric populations, and highlight ongoing clinical trials. In this Review, we foresee the future developments of metronomic chemotherapy and specifically its potential role in the era of personalized medicine.
Collapse
Affiliation(s)
- Nicolas André
- Service d'Hématologie & Oncologie Pédiatrique, AP-HM, 264 rue Saint Pierre, 13385 Marseille, France
| | - Manon Carré
- INSERM UMR 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Eddy Pasquier
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, PO Box 81, Randwick NSW 2031, Australia
| |
Collapse
|
42
|
Lee SO, Jin UH, Kang JH, Kim SB, Guthrie AS, Sreevalsan S, Lee JS, Safe S. The orphan nuclear receptor NR4A1 (Nur77) regulates oxidative and endoplasmic reticulum stress in pancreatic cancer cells. Mol Cancer Res 2014; 12:527-538. [PMID: 24515801 PMCID: PMC4407472 DOI: 10.1158/1541-7786.mcr-13-0567] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UNLABELLED NR4A1 (Nur77, TR3) is an orphan nuclear receptor that is overexpressed in pancreatic cancer and exhibits pro-oncogenic activity. RNA interference of NR4A1 expression in Panc-1 cells induced apoptosis and subsequent proteomic analysis revealed the induction of several markers of endoplasmic reticulum stress, including glucose-related protein 78 (GRP78), CCAAT/enhancer-binding protein-homologous protein (CHOP), and activating transcription factor-4 (ATF-4). Treatment of pancreatic cancer cells with the NR4A1 antagonist 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) gave similar results. Moreover, both NR4A1 knockdown and DIM-C-pPhOH induced reactive oxygen species (ROS), and induction of ROS and endoplasmic reticulum stress by these agents was attenuated after cotreatment with antioxidants. Manipulation of NR4A1 expression coupled with gene expression profiling identified a number of ROS metabolism transcripts regulated by NR4A1. Knockdown of one of these transcripts, thioredoxin domain containing 5 (TXNDC5), recapitulated the elevated ROS and endoplasmic reticulum stress; thus, demonstrating that NR4A1 regulates levels of endoplasmic reticulum stress and ROS in pancreatic cancer cells to facilitate cell proliferation and survival. Finally, inactivation of NR4A1 by knockdown or DIM-C-pPhOH decreased TXNDC5, resulting in activation of the ROS/endoplasmic reticulum stress and proapoptotic pathways. IMPLICATIONS The NR4A1 receptor is pro-oncogenic, regulates the ROS/endoplasmic reticulum stress pathways, and inactivation of the receptor represents a novel pathway for inducing cell death in pancreatic cancer.
Collapse
MESH Headings
- Apoptosis/physiology
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Endoplasmic Reticulum Chaperone BiP
- Endoplasmic Reticulum Stress/physiology
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- Indoles/pharmacology
- Microscopy, Electron, Transmission
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Oxidative Stress/physiology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Phenols/pharmacology
- Protein Disulfide-Isomerases/biosynthesis
- Protein Disulfide-Isomerases/genetics
- Reactive Oxygen Species/metabolism
- Tissue Array Analysis
- Transfection
Collapse
Affiliation(s)
- Syng-Ook Lee
- Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
- Department of Food Science and Technology, Keimyung University, Daegu 704-701, Republic of Korea
| | - Un-Ho Jin
- Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Jeong Han Kang
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sang Bae Kim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Aaron S. Guthrie
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sandeep Sreevalsan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Stephen Safe
- Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
43
|
Wang K, Huang C, Nice EC. Proteomics, genomics and transcriptomics: their emerging roles in the discovery and validation of colorectal cancer biomarkers. Expert Rev Proteomics 2014; 11:179-205. [PMID: 24611605 DOI: 10.1586/14789450.2014.894466] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is the second most common cancer in females and the third in males. Since CRC is often diagnosed at an advanced stage when prognosis is poor, identification of biomarkers for early diagnosis is urgently required. Recent advances in proteomics, genomics and transcriptomics have facilitated high-throughput profiling of data generated from CRC-related genes and proteins, providing a window of information for biomarker discovery and validation. However, transfer of candidate biomarkers from bench to bedside remains a dilemma. In this review, we will discuss emerging proteomic technologies and highlight various sample types utilized for proteomics-based identification of CRC biomarkers. Moreover, recent breakthroughs in genomics and transcriptomics for the identification of CRC biomarkers, with particular emphasis on the merits of emerging methylomic and miRNAomic strategies, will be discussed. Integration of proteomics, genomics and transcriptomics will facilitate the discovery and validation of CRC biomarkers leading to the emergence of personalized medicine.
Collapse
Affiliation(s)
- Kui Wang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, 610041 , P.R. China
| | | | | |
Collapse
|
44
|
Duivenvoorden WCM, Paschos A, Hopmans SN, Austin RC, Pinthus JH. Endoplasmic reticulum protein ERp46 in renal cell carcinoma. PLoS One 2014; 9:e90389. [PMID: 24594673 PMCID: PMC3940878 DOI: 10.1371/journal.pone.0090389] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/28/2014] [Indexed: 11/22/2022] Open
Abstract
An established inverse clinical correlation between serum adiponectin levels and renal cell carcinoma (RCC) aggressiveness exists. We have recently demonstrated that adiponectin suppresses clear cell RCC (ccRCC) progression through interaction with its receptor, adiponectin receptor 1 (AdipoR1). ERp46 has been shown to inhibit adiponectin signaling via interaction with AdipoR1 in HeLa cells. However, the expression of ERp46 in RCC has not been described thus far. The objectives of this study were to investigate ERp46 in RCC, its expression, its effects on RCC growth in a mouse model and whether it interacts with AdipoR1. We demonstrated a higher ERp46/AdipoR1 expression ratio in metastatic compared to non-metastatic ccRCC, as determined by immunohistochemistry of tissue microarrays and subsequent image analysis. When ERp46 was stably knocked down using shRNA or overexpressed in murine RCC RAG cells, RCC growth after subcutaneous injection in BALB/c nude mice was inhibited and accelerated, respectively. In vitro analysis to determine the molecular interaction between AdipoR1 and ERp46 included co-immunoprecipitation using human ccRCC 786-O cells and a bacterial adenylate cyclase-based two hybrid system and demonstrated no sustained AdipoR1-ERp46 interaction. This is the first report to suggest a role for ERp46 as a potential therapeutic target in RCC given its expression profile in human RCC samples and its effect on in vivo RCC growth. Since a stable interaction with AdipoR1 could not be established, we suggest that the tumorigenic properties of ERp46 in RCC cells are not related to an inhibitory modulation of AdipoR1.
Collapse
Affiliation(s)
| | - Athanasios Paschos
- Department of Surgery, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Sarah N. Hopmans
- Department of Surgery, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Richard C. Austin
- Department of Surgery, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Jehonathan H. Pinthus
- Department of Surgery, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
45
|
Li L, Zhang Z, Wang C, Miao L, Zhang J, Wang J, Jiao B, Zhao S. Quantitative proteomics approach to screening of potential diagnostic and therapeutic targets for laryngeal carcinoma. PLoS One 2014; 9:e90181. [PMID: 24587265 PMCID: PMC3937387 DOI: 10.1371/journal.pone.0090181] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/28/2014] [Indexed: 12/31/2022] Open
Abstract
To discover candidate biomarkers for diagnosis and detection of human laryngeal carcinoma and explore possible mechanisms of this cancer carcinogenesis, two-dimensional strong cation-exchange/reversed-phase nano-scale liquid chromatography/mass spectrometry analysis was used to identify differentially expressed proteins between the laryngeal carcinoma tissue and the adjacent normal tissue. As a result, 281 proteins with significant difference in expression were identified, and four differential proteins, Profilin-1 (PFN1), Nucleolin (NCL), Cytosolic non-specific dipeptidase (CNDP2) and Mimecan (OGN) with different subcellular localization were selectively validated. Semiquantitative RT-PCR and Western blotting were performed to detect the expression of the four proteins employing a large collection of human laryngeal carcinoma tissues, and the results validated the differentially expressed proteins identified by the proteomics. Furthermore, we knocked down PFN1 in immortalized human laryngeal squamous cell line Hep-2 cells and then the proliferation and metastasis of these transfected cells were measured. The results showed that PFN1 silencing inhibited the proliferation and affected the migration ability of Hep-2 cells, providing some new insights into the pathogenesis of PFN1 in laryngeal carcinoma. Altogether, our present data first time show that PFN1, NCL, CNDP2 and OGN are novel potential biomarkers for diagnosis and therapeutic targets for laryngeal carcinoma, and PFN1 is involved in the metastasis of laryngeal carcinoma.
Collapse
Affiliation(s)
- Li Li
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhenwei Zhang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
- Key Laboratory of Liver Disease, Center of Infectious Diseases, Guangzhou 458 Hospital, Guangzhou, China
| | - Chengyu Wang
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lei Miao
- Department of Pharmacology, School of Pharmacy and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianpeng Zhang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
- * E-mail: (BJ); (SZ); (JZ)
| | - Jiasen Wang
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
- * E-mail: (BJ); (SZ); (JZ)
| | - Shuwei Zhao
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (BJ); (SZ); (JZ)
| |
Collapse
|
46
|
Chang X, Xu B, Wang L, Wang Y, Wang Y, Yan S. Investigating a pathogenic role for TXNDC5 in tumors. Int J Oncol 2013; 43:1871-84. [PMID: 24100949 DOI: 10.3892/ijo.2013.2123] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/02/2013] [Indexed: 11/06/2022] Open
Abstract
The expression of TXNDC5, which is induced by hypoxia, stimulates cell proliferation and angiogenesis. The increased cell proliferation, angiogenesis and hypoxia are main features of tumor tissues. The present study aimed to characterize the expression of TXNDC5 in various tumor types and to investigate the role of TXNDC5 in the growth, proliferation and migration of tumor cells. The study also determined susceptibility of TXNDC5 gene on tumor risk. The expression of TXNDC5 in tumor tissues was determined by immunohistochemistry using a tissue array that contained various types of tumor tissues. The expression levels of TXNDC5 in tumor tissues and healthy tissues were quantitatively analyzed using western blotting. Furthermore, HeLa cells and U2OS cells were treated with anti-TXNDC5 siRNA to knockdown the expression levels of TXNDC5 to study its role in cell proliferation and migration. The cell proliferation and migration of the transfected tumor cells were determined by MTT and Transwell migration assays, respectively. Ninety-six tag SNPs across the TXNDC5 locus were genotyped using custom‑designed Illumina 384-SNP VeraCode microarrays. Our immunohistochemical staining revealed significant expression of TXNDC5 in breast invasive ductal carcinomas, cervical squamous cell carcinomas, esophageal squamous cell carcinomas, gastric carcinomas, hepatocellular carcinomas, ovarian papillary serous carcinomas, prostate cancers and undifferentiated cell carcinomas of the lung. Western blot analysis also detected significantly higher TXNDC5 expression in tumor tissues of breast cancers, gastric adenocarcinomas and rectal cancers compared to the adjacent healthy tissues. Decreased growth and invasive potential were observed in cultured HeLa cells and U2OS cells when TXNDC5 gene expression was knocked down. The case-control analysis showed a significant difference in allele frequency and genotype frequency for rs9505298, rs7771314, rs2815128, rs13210097 and rs9392182 between cervical carcinoma, esophageal carcinoma and liver cancer patients and controls. These results suggest that TXNDC5 has increased expression in many tumors that is involved in the proliferation and migration of tumor cells, acting as a tumor-enhancing gene. The study also suggests that TXNDC5 gene is susceptible to cervical carcinoma, esophageal carcinoma and liver cancer risk.
Collapse
Affiliation(s)
- Xiaotian Chang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | | | | | | | | | | |
Collapse
|
47
|
Sponziello M, Lavarone E, Pegolo E, Di Loreto C, Puppin C, Russo MA, Bruno R, Filetti S, Durante C, Russo D, Di Cristofano A, Damante G. Molecular differences between human thyroid follicular adenoma and carcinoma revealed by analysis of a murine model of thyroid cancer. Endocrinology 2013; 154:3043-53. [PMID: 23751876 PMCID: PMC3749486 DOI: 10.1210/en.2013-1028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mouse models can provide useful information to understand molecular mechanisms of human tumorigenesis. In this study, the conditional thyroid mutagenesis of Pten and Ras genes in the mouse, which induces very aggressive follicular carcinomas (FTCs), has been used to identify genes differentially expressed among human normal thyroid tissue (NT), follicular adenoma (FA), and FTC. Global gene expression of mouse FTC was compared with that of mouse normal thyroids: 911 genes were found deregulated ± 2-fold in FTC samples. Then the expression of 45 deregulated genes in mouse tumors was investigated by quantitative RT-PCR in a first cohort of human NT, FA, and FTC (discovery group). Five genes were found significantly down-regulated in FA and FTC compared with NT. However, 17 genes were found differentially expressed between FA and FTC: 5 and 12 genes were overexpressed and underexpressed in FTC vs FA, respectively. Finally, 7 gene products, selected from results obtained in the discovery group, were investigated in a second cohort of human tumors (validation group) by immunohistochemistry. Four proteins showed significant differences between FA and FTC (peroxisomal proliferator-activated receptor-γ, serum deprivation response protein, osteoglycin, and dipeptidase 1). Altogether our data indicate that the establishment of an enriched panel of molecular biomarkers using data coming from mouse thyroid tumors and validated in human specimens may help to set up a more valid platform to further improve diagnosis and prognosis of thyroid malignancies.
Collapse
Affiliation(s)
- Marialuisa Sponziello
- Dipartimento di Medicina Interna e Specialità Mediche, Università di Roma “Sapienza,” 00161 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Choi JW, Liu H, Shin DH, Yu GI, Hwang JS, Kim ES, Yun JW. Proteomic and cytokine plasma biomarkers for predicting progression from colorectal adenoma to carcinoma in human patients. Proteomics 2013; 13:2361-74. [PMID: 23606366 DOI: 10.1002/pmic.201200550] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/28/2013] [Accepted: 03/30/2013] [Indexed: 12/12/2022]
Abstract
In the present study, we screened proteomic and cytokine biomarkers between patients with adenomatous polyps and colorectal cancer (CRC) in order to improve our understanding of the molecular mechanisms behind turmorigenesis and tumor progression in CRC. To this end, we performed comparative proteomic analysis of plasma proteins using a combination of 2DE and MS as well as profiled differentially regulated cytokines and chemokines by multiplex bead analysis. Proteomic analysis identified 11 upregulated and 13 downregulated plasma proteins showing significantly different regulation patterns with diagnostic potential for predicting progression from adenoma to carcinoma. Some of these proteins have not previously been implicated in CRC, including upregulated leucine-rich α-2-glycoprotein, hemoglobin subunit β, Ig α-2 chain C region, and complement factor B as well as downregulated afamin, zinc-α-2-glycoprotein, vitronectin, and α-1-antichymotrypsin. In addition, plasma levels of three cytokines/chemokines, including interleukin-8, interferon gamma-induced protein 10, and tumor necrosis factor α, were remarkably elevated in patients with CRC compared to those with adenomatous polyps. Although further clinical validation is required, these proteins and cytokines can be established as novel biomarkers for CRC and/or its progression from colon adenoma.
Collapse
Affiliation(s)
- Jung-Won Choi
- Department of Biotechnology, Daegu University, Kyungsan, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Lu A, Wangpu X, Han D, Feng H, Zhao J, Ma J, Qu S, Chen X, Liu B, Zheng M. TXNDC9 expression in colorectal cancer cells and its influence on colorectal cancer prognosis. Cancer Invest 2013; 30:721-6. [PMID: 23210642 DOI: 10.3109/07357907.2012.732160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, we analyzed the protein expression of thioredoxin domain containing 9 (TXNDC9) in 116 colorectal cancer (CRC) cases. Among them, 97 were positive in CRC tissues and 60 were positive in normal mucosa. TXNDC9 expression in CRC was correlated with the extent of tumor invasion and the tumor size. TXNDC9-negative patients had longer lifespans. In vitro assays showed the significant suppression of CRC cell proliferation (P < .01) compared with two control groups; the number of invaded cells also decreased (P < .01). These findings suggest that TXNDC9 gene may function in cancer development and may be an effective target for inhibiting the growth and metastasis of CRC cells.
Collapse
Affiliation(s)
- Aiguo Lu
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shen H, Huang J, Pei H, Zeng S, Tao Y, Shen L, Zeng L, Zhu H. Comparative proteomic study for profiling differentially expressed proteins between Chinese left- and right-sided colon cancers. Cancer Sci 2012; 104:135-41. [PMID: 23004678 DOI: 10.1111/cas.12029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/06/2012] [Accepted: 09/14/2012] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study is to profile differentially expressed protein markers between left-sided colon cancer (LSCC) and right-sided colon cancer (RSCC). Fresh tumor tissue samples from LSCC (n = 7) and RSCC (n = 7) groups were analyzed by two-dimensional electrophoresis coupled with MALDI-TOF-MS, followed by Western blotting. In 50 paraffin embedded samples from each group, levels of four differentially expressed proteins (identified by proteomics analysis) were measured by tissue microarray with immunohistochemistry staining to compare the different protein markers between LSCC and RSCC. Sixteen proteins were found to be differentially expressed between LSCC and RSCC. Ten proteins including HSP-60 and PDIA1 were identified to be highly expressed in LSCC (P < 0.01 or P < 0.05), while the expression of six proteins including EEF1D and HSP-27 were higher in RSCC (P < 0.01 or P < 0.05). Virtually all of the indentified proteins were involved in cellular energy metabolism, protein folding/unfolding, and/or oxidative stress. Human colon tumors at various locations have different proteomic biomarkers. Differentially expressed proteins associated with energy metabolism, protein folding/unfolding and oxidative stress contribute to different tumorigenesis, tumor progression, and prognosis between left- and right-sided colon cancer.
Collapse
Affiliation(s)
- Hong Shen
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|