1
|
Han L, Song S, Feng H, Ma J, Wei W, Si F. A roadmap for developing Venezuelan equine encephalitis virus (VEEV) vaccines: Lessons from the past, strategies for the future. Int J Biol Macromol 2023:125514. [PMID: 37353130 DOI: 10.1016/j.ijbiomac.2023.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Venezuelan equine encephalitis (VEE) is a zoonotic infectious disease caused by the Venezuelan equine encephalitis virus (VEEV), which can lead to severe central nervous system infections in both humans and animals. At present, the medical community does not possess a viable means of addressing VEE, rendering the prevention of the virus a matter of paramount importance. Regarding the prevention and control of VEEV, the implementation of a vaccination program has been recognized as the most efficient strategy. Nevertheless, there are currently no licensed vaccines or drugs available for human use against VEEV. This imperative has led to a surge of interest in vaccine research, with VEEV being a prime focus for researchers in the field. In this paper, we initially present a comprehensive overview of the current taxonomic classification of VEEV and the cellular infection mechanism of the virus. Subsequently, we provide a detailed introduction of the prominent VEEV vaccine types presently available, including inactivated vaccines, live attenuated vaccines, genetic, and virus-like particle vaccines. Moreover, we emphasize the challenges that current VEEV vaccine development faces and suggest urgent measures that must be taken to overcome these obstacles. Notably, based on our latest research, we propose the feasibility of incorporation codon usage bias strategies to create the novel VEEV vaccine. Finally, we prose several areas that future VEEV vaccine development should focus on. Our objective is to encourage collaboration between the medical and veterinary communities, expedite the translation of existing vaccines from laboratory to clinical applications, while also preparing for future outbreaks of new VEEV variants.
Collapse
Affiliation(s)
- Lulu Han
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China; Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, PR China
| | - Huilin Feng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China
| | - Jing Ma
- Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China.
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
2
|
León B, González G, Nicoli A, Rojas A, Pizio AD, Ramirez-Carvajal L, Jimenez C. Phylogenetic and Mutation Analysis of the Venezuelan Equine Encephalitis Virus Sequence Isolated in Costa Rica from a Mare with Encephalitis. Vet Sci 2022; 9:258. [PMID: 35737310 PMCID: PMC9229380 DOI: 10.3390/vetsci9060258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Venezuelan Equine Encephalitis virus (VEEV) is an arboviral pathogen in tropical America that causes lethal encephalitis in horses and humans. VEEV is classified into six subtypes (I to VI). Subtype I viruses are divided into epizootic (IAB and IC) and endemic strains (ID and IE) that can produce outbreaks or sporadic diseases, respectively. The objective of this study was to reconstruct the phylogeny and the molecular clock of sequences of VEEV subtype I complex and identify mutations within sequences belonging to epizootic or enzootic subtypes focusing on a sequence isolated from a mare in Costa Rica. Bayesian phylogeny of the VEEV subtype I complex tree with 110 VEEV complete genomes was analyzed. Evidence of positive selection was evaluated with Datamonkey server algorithms. The putative effects of mutations on the 3D protein structure in the Costa Rica sequence were evaluated. The phylogenetic analysis showed that Subtype IE-VEEV diverged earlier than other subtypes, Costa Rican VEEV-IE ancestors came from Nicaragua in 1963 and Guatemala in 1907. Among the observed non-synonymous mutations, only 17 amino acids changed lateral chain groups. Fourteen mutations located in the NSP3, E1, and E2 genes are unique in this sequence, highlighting the importance of E1-E2 genes in VEEV evolution.
Collapse
Affiliation(s)
- Bernal León
- LSE Laboratory, Veterinary Service National Laboratory, Animal Health National Service, Ministry of Agriculture and Cattle, Heredia 40104, Costa Rica
- Virology, Universidad Técnica Nacional (UTN), Atenas 20505, Costa Rica
| | - Gabriel González
- National Virus Reference Laboratory, College Dublin, D04 V1W8 Belfield, Ireland;
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany; (A.N.); (A.D.P.)
| | - Alicia Rojas
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José 11501, Costa Rica;
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany; (A.N.); (A.D.P.)
| | - Lisbeth Ramirez-Carvajal
- Veterinary Medicine Infection and Immunity, Virology, University of Utrecht, 3584 CS Utrecht, The Netherlands;
| | - Carlos Jimenez
- Laboratory of Virology, Tropical Diseases Research Program (PIET), School of Veterinary Medicine, Universidad Nacional, Heredia 40101, Costa Rica;
| |
Collapse
|
3
|
Haines CA, Campos RK, Azar SR, Warmbrod KL, Kautz TF, Forrester NL, Rossi SL. Venezuelan Equine Encephalitis Virus V3526 Vaccine RNA-Dependent RNA Polymerase Mutants Increase Vaccine Safety Through Restricted Tissue Tropism in a Murine Model. ZOONOSES (BURLINGTON, MASS.) 2022; 2:2. [PMID: 35262074 PMCID: PMC8900488 DOI: 10.15212/zoonoses-2021-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Venezuelan equine encephalitis virus (VEEV) is an arbovirus endemic to the Americas. There are no approved vaccines or antivirals. TC-83 and V3526 are the best-characterized vaccine candidates for VEEV. Both are live-attenuated vaccines and have been associated with safety concerns, albeit less so for V3526. A previous attempt to improve the TC-83 vaccine focused on further attenuating the vaccine by adding mutations that altered the error incorporation rate of the RNA-dependent RNA polymerase (RdRp). METHODS The research presented here examines the impact of these RdRp mutations in V3526 by cloning the 3X and 4X strains, assessing vaccine efficacy against challenge in adult female CD-1 mice, examining neutralizing antibody titers, investigating vaccine tissue tropism, and testing the stability of the mutant strains. RESULTS Our results show that the V3526 RdRp mutants exhibited reduced tissue tropism in the spleen and kidney compared to wild-type V3526, while maintaining vaccine efficacy. Illumina sequencing showed that the RdRp mutations could revert to wild-type V3526. CONCLUSIONS The observed genotypic reversion is likely of limited concern because wild-type V3526 is still an effective vaccine capable of providing protection. Our results indicate that the V3526 RdRp mutants may be a safer vaccine design than the original V3526.
Collapse
Affiliation(s)
- Clint A. Haines
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Rafael K. Campos
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - K. Lane Warmbrod
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Tiffany F. Kautz
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Naomi L. Forrester
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shannan L. Rossi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
4
|
Lehman CW, Kehn-Hall K, Aggarwal M, Bracci NR, Pan HC, Panny L, Lamb RA, Lin SC. Resveratrol Inhibits Venezuelan Equine Encephalitis Virus Infection by Interfering with the AKT/GSK Pathway. PLANTS 2021; 10:plants10020346. [PMID: 33673026 PMCID: PMC7918260 DOI: 10.3390/plants10020346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022]
Abstract
The host proteins Protein Kinase B (AKT) and glycogen synthase kinase-3 (GSK-3) are associated with multiple neurodegenerative disorders. They are also important for the replication of Venezuelan equine encephalitis virus (VEEV), thereby making the AKT/GSK-3 pathway an attractive target for developing anti-VEEV therapeutics. Resveratrol, a natural phytochemical, has been shown to substantially inhibit the AKT pathway. Therefore, we attempted to explore whether it exerts any antiviral activity against VEEV. In this study, we utilized green fluorescent protein (GFP)- and luciferase-encoding recombinant VEEV to determine the cytotoxicity and antiviral efficacy via luciferase reporter assays, flow cytometry, and immunofluorescent assays. Our results indicate that resveratrol treatment is capable of inhibiting VEEV replication, resulting in increased viability of Vero and U87MG cells as well as reduced virion production and viral RNA contents within host cells for at least 48 h with a single treatment. Furthermore, the suppression of apoptotic signaling adaptors, caspase-3, caspase-7, and annexin V may also be implicated in resveratrol-mediated antiviral activity. We found that decreased phosphorylation of the AKT/GSK-3 pathway, mediated by resveratrol, can be triggered during the early stages of VEEV infection, suggesting that resveratrol disrupts the viral replication cycle and consequently promotes cell survival. Finally, molecular docking and dynamics simulation studies revealed that resveratrol can directly bind to VEEV glycoproteins, which may interfere with virus attachment and entry. In conclusion, our results suggest that resveratrol exerts inhibitory activity against VEEV infection and upon further modification could be a useful compound to study in neuroprotective research and veterinary sciences.
Collapse
Affiliation(s)
- Caitlin W. Lehman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (C.W.L.); (K.K.-H.); (N.R.B.); (L.P.)
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (C.W.L.); (K.K.-H.); (N.R.B.); (L.P.)
| | - Megha Aggarwal
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; (M.A.); (R.A.L.)
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208, USA
| | - Nicole R. Bracci
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (C.W.L.); (K.K.-H.); (N.R.B.); (L.P.)
| | - Han-Chi Pan
- National Center Animal Laboratory, National Applied Research Laboratories, Taipei 11599, Taiwan;
| | - Lauren Panny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (C.W.L.); (K.K.-H.); (N.R.B.); (L.P.)
| | - Robert A. Lamb
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; (M.A.); (R.A.L.)
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208, USA
| | - Shih-Chao Lin
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, 2 Pei-Ning Rd., Keelung 202301, Taiwan
- Correspondence:
| |
Collapse
|
5
|
Azar SR, Campos RK, Bergren NA, Camargos VN, Rossi SL. Epidemic Alphaviruses: Ecology, Emergence and Outbreaks. Microorganisms 2020; 8:E1167. [PMID: 32752150 PMCID: PMC7464724 DOI: 10.3390/microorganisms8081167] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past century, the emergence/reemergence of arthropod-borne zoonotic agents has been a growing public health concern. In particular, agents from the genus Alphavirus pose a significant risk to both animal and human health. Human alphaviral disease presents with either arthritogenic or encephalitic manifestations and is associated with significant morbidity and/or mortality. Unfortunately, there are presently no vaccines or antiviral measures approved for human use. The present review examines the ecology, epidemiology, disease, past outbreaks, and potential to cause contemporary outbreaks for several alphavirus pathogens.
Collapse
Affiliation(s)
- Sasha R. Azar
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Rafael K. Campos
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | | | - Vidyleison N. Camargos
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Shannan L. Rossi
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| |
Collapse
|
6
|
Sack A, Oladunni FS, Gonchigoo B, Chambers TM, Gray GC. Zoonotic Diseases from Horses: A Systematic Review. Vector Borne Zoonotic Dis 2020; 20:484-495. [PMID: 32077811 PMCID: PMC7339018 DOI: 10.1089/vbz.2019.2541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: Worldwide, horses play critical roles in recreation, food production, transportation, and as working animals. Horses' roles differ by geographical region and the socioeconomic status of the people, but despite modern advances in transportation, which have in some ways altered humans contact with horses, potential risks for equine zoonotic pathogen transmission to humans occur globally. While previous reports have focused upon individual or groups of equine pathogens, to our knowledge, a systematic review of equine zoonoses has never been performed. Methods: Using PRISMA's systematic review guidelines, we searched the English literature and identified 233 previous reports of potential equine zoonoses found in horses. We studied and summarized their findings with a goal of identifying risk factors that favor disease transmission from horses to humans. Results: These previous reports identified 56 zoonotic pathogens that have been found in horses. Of the 233 articles, 13 involved direct transmission to humans (5.6%).The main potential routes of transmission included oral, inhalation, and cutaneous exposures. Pathogens most often manifest in humans through systemic, gastrointestinal, and dermatological signs and symptoms. Furthermore, 16.1% were classified as emerging infectious diseases and thus may be less known to both the equine and human medical community. Sometimes, these infections were severe leading to human and equine death. Conclusions: While case reports of zoonotic infections directly from horses remain low, there is a high potential for underreporting due to lack of knowledge among health professionals. Awareness of these zoonotic pathogens, their disease presentation in horses and humans, and their associated risk factors for cross-species infection are important to public health officials, clinicians, and people with recreational or occupational equid exposure.
Collapse
Affiliation(s)
- Alexandra Sack
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Tufts Clinical and Translational Science Institute, Tufts University School of Medicine Boston, Massachusetts, USA
| | - Fatai S. Oladunni
- Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
- Department of Veterinary Microbiology, University of Ilorin, Ilorin, Nigeria
| | - Battsetseg Gonchigoo
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Thomas M. Chambers
- Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Gregory C. Gray
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
- Global Health Research Center, Duke-Kunshan University, Kunshan, China
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
7
|
León B, Käsbohrer A, Hutter SE, Baldi M, Firth CL, Romero-Zúñiga JJ, Jiménez C. National Seroprevalence and Risk Factors for Eastern Equine Encephalitis and Venezuelan Equine Encephalitis in Costa Rica. J Equine Vet Sci 2020; 92:103140. [PMID: 32797803 DOI: 10.1016/j.jevs.2020.103140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
Eastern equine encephalitis and Venezuelan equine encephalitis are endemic neglected tropical diseases in the Americas, causing encephalitis in both horses and humans. In 2013, a cross-sectional study was performed in 243 horses located in the highlands and lowlands throughout Costa Rica. Serum samples were analyzed with an IgG ELISA and confirmed by the plaque-reduction neutralization test (PRNT80). Venezuelan equine encephalitis virus (VEEV) and Eastern equine encephalitis virus (EEEV) overall seroprevalences by the PRNT80 were 36% (95% confidence interval [CI]: 29.9-42.5; 78/217 horses) and 3% (95% CI: 1.3-5.9; 6/217 horses), respectively. Both the viruses occurred in the lowlands and highlands. Rainfall and altitude were associated with VEEV seropositivity in the univariate analysis, but only altitude <100 meters above sea level was considered a risk factor in the multivariate analysis. No risk factors could be identified for the EEEV in the multivariate analysis. This is the first study that estimates the seroprevalence of the EEEV and VEEV in Costa Rican horses. The VEEV is widely distributed, whereas the EEEV occurs at a much lower frequency and only in specific areas. Clinical cases and occasional outbreaks of both viruses are to be expected.
Collapse
Affiliation(s)
- Bernal León
- National Animal Health Service (SENASA), Ministry of Agriculture and Livestock (MAG), Heredia, Costa Rica
| | - Annemarie Käsbohrer
- Unit of Veterinary Public Health & Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| | - Sabine E Hutter
- National Animal Health Service (SENASA), Ministry of Agriculture and Livestock (MAG), Heredia, Costa Rica; Unit of Veterinary Public Health & Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Mario Baldi
- Tropical Diseases Research Program (PIET), School of Veterinary Medicine, National University, Heredia, Costa Rica
| | - Clair L Firth
- Unit of Veterinary Public Health & Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Juan José Romero-Zúñiga
- Population Medicine Research Program, School of Veterinary Medicine, National University, Heredia, Costa Rica
| | - Carlos Jiménez
- Tropical Diseases Research Program (PIET), School of Veterinary Medicine, National University, Heredia, Costa Rica
| |
Collapse
|
8
|
Johnson DM, Sokoloski KJ, Jokinen JD, Pfeffer TL, Chu YK, Adcock RS, Chung D, Tretyakova I, Pushko P, Lukashevich IS. Advanced Safety and Genetic Stability in Mice of a Novel DNA-Launched Venezuelan Equine Encephalitis Virus Vaccine with Rearranged Structural Genes. Vaccines (Basel) 2020; 8:vaccines8010114. [PMID: 32121666 PMCID: PMC7157698 DOI: 10.3390/vaccines8010114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
The safety and genetic stability of V4020, a novel Venezuelan Equine Encephalitis Virus (VEEV) vaccine based on the investigational VEEV TC-83 strain, was evaluated in mice. V4020 was generated from infectious DNA, contains a stabilizing mutation in the E2-120 glycoprotein, and includes rearrangement of structural genes. After intracranial inoculation (IC), replication of V4020 was more attenuated than TC-83, as documented by low clinical scores, inflammation, viral load in brain, and earlier viral clearance. During the first 9 days post-inoculation (DPI), genes involved in inflammation, cytokine signaling, adaptive immune responses, and apoptosis were upregulated in both groups. However, the magnitude of upregulation was greater in TC-83 than V4020 mice, and this pattern persisted till 13 DPI, while V4020 gene expression profiles declined to mock-infected levels. In addition, genetic markers of macrophages, DCs, and microglia were strongly upregulated in TC-83 mice. During five serial passages in the brain, less severe clinical manifestations and a lower viral load were observed in V4020 mice and all animals survived. In contrast, 13.3% of mice met euthanasia criteria during the passages in TC-83 group. At 2 DPI, RNA-Seq analysis of brain tissues revealed that V4020 mice had lower rates of mutations throughout five passages. A higher synonymous mutation ratio was observed in the nsP4 (RdRP) gene of TC-83 compared to V4020 mice. At 2 DPI, both viruses induced different expression profiles of host genes involved in neuro-regeneration. Taken together, these results provide evidence for the improved safety and genetic stability of the experimental V4020 VEEV vaccine in a murine model.
Collapse
Affiliation(s)
- Dylan M. Johnson
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (K.J.S.); (D.C.)
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (T.L.P.); (Y.-K.C.); (R.S.A.)
- Correspondence: (D.M.J.); (I.S.L.)
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (K.J.S.); (D.C.)
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (T.L.P.); (Y.-K.C.); (R.S.A.)
| | - Jenny D. Jokinen
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Tia L. Pfeffer
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (T.L.P.); (Y.-K.C.); (R.S.A.)
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Yong-Kyu Chu
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (T.L.P.); (Y.-K.C.); (R.S.A.)
| | - Robert S. Adcock
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (T.L.P.); (Y.-K.C.); (R.S.A.)
| | - Donghoon Chung
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (K.J.S.); (D.C.)
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (T.L.P.); (Y.-K.C.); (R.S.A.)
| | | | - Peter Pushko
- Medigen, Inc., Frederick, MD 21701, USA; (I.T.); (P.P.)
| | - Igor S. Lukashevich
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (T.L.P.); (Y.-K.C.); (R.S.A.)
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Correspondence: (D.M.J.); (I.S.L.)
| |
Collapse
|
9
|
Antibodies for Venezuelan Equine Encephalitis Virus Protect Embryoid Bodies from Chikungunya Virus. Viruses 2020; 12:v12030262. [PMID: 32120905 PMCID: PMC7150962 DOI: 10.3390/v12030262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus that causes febrile illness punctuated by severe polyarthralgia. After the emergence of CHIKV in the Western Hemisphere, multiple reports of congenital infections were published that documented neurological complications, cardiac defects, respiratory distress, and miscarriage. The Western Hemisphere is endemic to several alphaviruses, and whether antigenic cross-reactivity can impact the course of infection has not been explored. Recent advances in biomedical engineering have produced cell co-culture models that replicate the cellular interface at the maternal fetal axis. We employed a trans-well assay to determine if cross-reactive antibodies affected the movement and replication of CHIKV across placental cells and into an embryoid body. The data showed that antibodies to Venezuelan equine encephalitis virus significantly reduced CHIKV viral load in embryoid bodies. The data highlighted the fact that viral pathogenesis can be cell-specific and that exploiting antigenic cross-reactivity could be an avenue for reducing the impact of congenital CHIKV infections.
Collapse
|
10
|
Colunga‐Salas P, Sánchez‐Montes S, Grostieta E, Verde‐Arregoitia LD, Cabrera‐Garrido MY, Becker I, León‐Paniagua L. What do studies in wild mammals tell us about human emerging viral diseases in Mexico? Transbound Emerg Dis 2020; 67:33-45. [PMID: 31461573 PMCID: PMC7168564 DOI: 10.1111/tbed.13336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023]
Abstract
Multiple species of viruses circulate in wild mammals, some of them potentially causing zoonosis. Most of the suspected viral zoonotic diseases affecting human patients remain unidentified with regard to their aetiological agent. The aim of this study is to summarize the state of knowledge of the viral richness associated with wild mammals in Mexico throughout 1900-2018 and their relationship with human cases. We compiled two databases, one of them containing all available published studies on potentially zoonotic viruses in wild mammals and another with human cases related to zoonotic viruses. The database on wild mammals covers the period of 1900-2018; the human case database spans 2000-2013. We calculated the richness of viral potential zoonotic agents and evaluated their geographical distribution. We found 262 records of 42 potential zoonotic viral species associated with 92 wild mammal species in 28 states across Mexico. Records of human viral cases were only found in 29 states, which did not overlap with the reports in wild mammals. We detected 25.6% (42/164) of viral zoonotic agents reported worldwide. This analysis opens a relevant topic of discussion for public health attention.
Collapse
Affiliation(s)
- Pablo Colunga‐Salas
- Museo de Zoología “Alfonso L. Herrera”Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
- Centro de Medicina TropicalFacultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Sokani Sánchez‐Montes
- Centro de Medicina TropicalFacultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Estefania Grostieta
- Centro de Medicina TropicalFacultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | | | - Martín Y. Cabrera‐Garrido
- Museo de Zoología “Alfonso L. Herrera”Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Ingeborg Becker
- Centro de Medicina TropicalFacultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Livia León‐Paniagua
- Museo de Zoología “Alfonso L. Herrera”Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
11
|
Barba M, Fairbanks EL, Daly JM. Equine viral encephalitis: prevalence, impact, and management strategies. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2019; 10:99-110. [PMID: 31497528 PMCID: PMC6689664 DOI: 10.2147/vmrr.s168227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
Members of several different virus families cause equine viral encephalitis, the majority of which are arthropod-borne viruses (arboviruses) with zoonotic potential. The clinical signs caused are rarely pathognomonic; therefore, a clinical diagnosis is usually presumptive according to the geographical region. However, recent decades have seen expansion of the geographical range and emergence in new regions of numerous viral diseases. In this context, this review presents an overview of the prevalence and distribution of the main viral causes of equine encephalitis and discusses their impact and potential approaches to limit their spread.
Collapse
Affiliation(s)
- Marta Barba
- Veterinary Faculty, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Emma L Fairbanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| |
Collapse
|
12
|
Antony S. Mosquito and Tick-borne Illnesses in the United States. Guidelines for the Recognition and Empiric Treatment of Zoonotic Diseases in the Wilderness. Infect Disord Drug Targets 2018; 19:238-257. [PMID: 29943705 DOI: 10.2174/1871526518666180626123340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/21/2018] [Accepted: 06/20/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the United States, tick-borne illnesses account for a significant number of patients that have been seen and treated by health care facilities. This in turn, has resulted in a significant morbidity and mortality and economic costs to the country. METHODS The distribution of these illnesses is geographically variable and is related to the climate as well. Many of these illnesses can be diagnosed and treated successfully, if recognized and started on appropriate antimicrobial therapy early in the disease process. Patient with illnesses such as Lyme disease, Wet Nile illness can result in chronic debilitating diseases if not recognized early and treated. CONCLUSION This paper covers illnesses such as Lyme disease, West Nile illness, Rocky Mountain Spotted fever, Ehrlichia, Tularemia, typhus, mosquito borne illnesses such as enteroviruses, arboviruses as well as arthropod and rodent borne virus infections as well. It covers the epidemiology, clinical features and diagnostic tools needed to make the diagnosis and treat these patients as well.
Collapse
Affiliation(s)
- Suresh Antony
- Texas Tech University Health Sciences Center, Department of Infectious Diseases, and Center for Infectious Diseases and Travel Medicine, El Paso, Texas, United States
| |
Collapse
|
13
|
Potential Sympatric Vectors and Mammalian Hosts of Venezuelan Equine Encephalitis Virus in Southern Mexico. J Wildl Dis 2017; 53:657-661. [PMID: 28384059 DOI: 10.7589/2016-11-249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Arboviruses are important zoonotic agents with complex transmission cycles and are not well understood because they may involve many vectors and hosts. We studied sympatric wild mammals and hematophagous mosquitoes having the potential to act as hosts and vectors in two areas of southern Mexico. Mosquitoes, bats, and rodents were captured in Calakmul (Campeche) and Montes Azules (Chiapas), between November 2010 and August 2011. Spleen samples from 146 bats and 14 rodents were tested for molecular evidence of Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), western equine encephalitis virus (WEEV), and West Nile virus (WNV) using PCR protocols. Bat ( Artibeus lituratus , Carollia sowelli , Glossophaga soricina , and Sturnira parvidens) and rodent ( Sigmodon hispidus and Oryzomys alfaroi ) species were positive for VEEV. No individuals were positive for WNV, EEEV, or WEEV. A total of 1,298 mosquitoes were collected at the same sites, and five of the mosquito species collected were known VEEV vectors (Aedes fulvus, Mansonia indubitans, Psorophora ferox, Psorophora cilipes, and Psorophora confinnis). This survey simultaneously presents the first molecular evidence, to our knowledge, of VEEV in bats and rodents from southern Mexico and the identification of potential sympatric vectors. Studies investigating sympatric nonhuman hosts, vectors, and arboviruses must be expanded to determine arboviral dynamics in complex systems in which outbreaks of emerging and reemerging zoonoses are continuously occurring.
Collapse
|
14
|
Hoyos-López R, Suaza-Vasco J, Rúa-Uribe G, Uribe S, Gallego-Gómez JC. Molecular detection of flaviviruses and alphaviruses in mosquitoes (Diptera: Culicidae) from coastal ecosystems in the Colombian Caribbean. Mem Inst Oswaldo Cruz 2016; 111:625-634. [PMID: 27706377 PMCID: PMC5066328 DOI: 10.1590/0074-02760160096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/19/2016] [Indexed: 11/21/2022] Open
Abstract
Arboviruses belonging to the genera Flavivirus and Alphavirus were detected in mosquitoes in a rural area of San Bernardo del Viento (Córdoba, Colombia). A total of 22,180 mosquitoes were collected, sorted into 2,102 pools, and tested by generic/nested reverse transcription-polymerase chain reaction. Venezuelan equine encephalitis virus, dengue virus, West Nile virus, St. Louis encephalitis virus, yellow fever virus, and Culex flavivirus were detected and identified by sequencing. The detection of arboviral pathogens in this zone represents possible circulation and indicates a human health risk, demonstrating the importance of virological surveillance activities.
Collapse
Affiliation(s)
- Richard Hoyos-López
- Universidad de Antioquia, Translational and Molecular Medicine Group,
Medellín, Antioquia, Colombia
| | - Juan Suaza-Vasco
- Universidad Nacional de Colombia, Grupo de Investigación en Sistemática
Molecular, Medellín, Antioquia, Colombia
| | - Guillermo Rúa-Uribe
- Universidad de Antioquia, Facultad de Medicina, Grupo de Entomología
Médica, Medellín, Antioquia, Colombia
| | - Sandra Uribe
- Universidad Nacional de Colombia, Grupo de Investigación en Sistemática
Molecular, Medellín, Antioquia, Colombia
| | | |
Collapse
|
15
|
Byler KG, Collins JT, Ogungbe IV, Setzer WN. Alphavirus protease inhibitors from natural sources: A homology modeling and molecular docking investigation. Comput Biol Chem 2016; 64:163-184. [DOI: 10.1016/j.compbiolchem.2016.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/08/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022]
|
16
|
Esteve-Gassent MD, Pérez de León AA, Romero-Salas D, Feria-Arroyo TP, Patino R, Castro-Arellano I, Gordillo-Pérez G, Auclair A, Goolsby J, Rodriguez-Vivas RI, Estrada-Franco JG. Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico-US Border Along the Rio Grande. Front Public Health 2014; 2:177. [PMID: 25453027 PMCID: PMC4233934 DOI: 10.3389/fpubh.2014.00177] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/19/2014] [Indexed: 01/11/2023] Open
Abstract
Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and incidence of zoonotic diseases. The complexity of these challenges can be greater in areas where rivers delineate international boundaries and encompass transitions between ecozones. The Rio Grande serves as a natural border between the US State of Texas and the Mexican States of Chihuahua, Coahuila, Nuevo León, and Tamaulipas. Not only do millions of people live in this transboundary region, but also a substantial amount of goods and people pass through it everyday. Moreover, it occurs over a region that functions as a corridor for animal migrations, and thus links the Neotropic and Nearctic biogeographic zones, with the latter being a known foci of zoonotic diseases. However, the pathogenic landscape of important zoonotic diseases in the south Texas-Mexico transboundary region remains to be fully understood. An international perspective on the interplay between disease systems, ecosystem processes, land use, and human behaviors is applied here to analyze landscape and spatial features of Venezuelan equine encephalitis, Hantavirus disease, Lyme Borreliosis, Leptospirosis, Bartonellosis, Chagas disease, human Babesiosis, and Leishmaniasis. Surveillance systems following the One Health approach with a regional perspective will help identifying opportunities to mitigate the health burden of those diseases on human and animal populations. It is proposed that the Mexico-US border along the Rio Grande region be viewed as a continuum landscape where zoonotic pathogens circulate regardless of national borders.
Collapse
Affiliation(s)
- Maria Dolores Esteve-Gassent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Dora Romero-Salas
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, México
| | | | - Ramiro Patino
- Department of Biology, University of Texas-Pan American, Edinburg, TX, USA
| | - Ivan Castro-Arellano
- Department of Biology, College of Science and Engineering, Texas State University, San Marcos, TX, USA
| | - Guadalupe Gordillo-Pérez
- Unidad de Investigación en Enfermedades Infecciosas, Centro Médico Nacional SXXI, IMSS, Distrito Federal, México
| | - Allan Auclair
- Environmental Risk Analysis Systems, Policy and Program Development, Animal and Plant Health Inspection Service, United States Department of Agriculture, Riverdale, MD, USA
| | - John Goolsby
- Cattle Fever Tick Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Edinburg, TX, USA
| | - Roger Ivan Rodriguez-Vivas
- Facultad de Medicina Veterinaria y Zootecnia, Cuerpo Académico de Salud Animal, Universidad Autónoma de Yucatán, Mérida, México
| | - Jose Guillermo Estrada-Franco
- Facultad de Medicina Veterinaria Zootecnia, Centro de Investigaciones y Estudios Avanzados en Salud Animal, Universidad Autónoma del Estado de México, Toluca, México
| |
Collapse
|
17
|
Affiliation(s)
- John E Greenlee
- Department of Neurology, George E. Wahlen Veterans Affairs Medical Center, University of Utah Health Sciences, Salt Lake City, UT, USA.
| |
Collapse
|
18
|
Go YY, Balasuriya UBR, Lee CK. Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses. Clin Exp Vaccine Res 2013; 3:58-77. [PMID: 24427764 PMCID: PMC3890452 DOI: 10.7774/cevr.2014.3.1.58] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/03/2013] [Accepted: 10/20/2013] [Indexed: 12/29/2022] Open
Abstract
In this review, we mainly focus on zoonotic encephalitides caused by arthropod-borne viruses (arboviruses) of the families Flaviviridae (genus Flavivirus) and Togaviridae (genus Alphavirus) that are important in both humans and domestic animals. Specifically, we will focus on alphaviruses (Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus) and flaviviruses (Japanese encephalitis virus and West Nile virus). Most of these viruses were originally found in tropical regions such as Africa and South America or in some regions in Asia. However, they have dispersed widely and currently cause diseases around the world. Global warming, increasing urbanization and population size in tropical regions, faster transportation and rapid spread of arthropod vectors contribute in continuous spreading of arboviruses into new geographic areas causing reemerging or resurging diseases. Most of the reemerging arboviruses also have emerged as zoonotic disease agents and created major public health issues and disease epidemics.
Collapse
Affiliation(s)
- Yun Young Go
- Virus Research and Testing Group, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA. ; Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Chong-Kyo Lee
- Virus Research and Testing Group, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Daejeon, Korea
| |
Collapse
|
19
|
Rossi SL, Guerbois M, Gorchakov R, Plante KS, Forrester NL, Weaver SC. IRES-based Venezuelan equine encephalitis vaccine candidate elicits protective immunity in mice. Virology 2013; 437:81-8. [PMID: 23351391 DOI: 10.1016/j.virol.2012.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/31/2012] [Accepted: 11/20/2012] [Indexed: 01/12/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an arbovirus that causes periodic outbreaks that impact equine and human populations in the Americas. One of the VEEV subtypes located in Mexico and Central America (IE) has recently been recognized as an important cause of equine disease and death, and human exposure also appears to be widespread. Here, we describe the use of an Internal Ribosome Entry Site (IRES) from encephalomyocarditis virus to stably attenuate VEEV, creating a vaccine candidate independent of unstable point mutations. Mice infected with this virus produced antibodies and were protected against lethal VEEV challenge. This IRES-based vaccine was unable to establish productive infection in mosquito cell cultures or in intrathoracically injected Aedes taeniorhynchus, demonstrating that it cannot be transmitted from a vaccinee. These attenuation, efficacy and safety results justify further development for humans or equids of this new VEEV vaccine candidate.
Collapse
Affiliation(s)
- Shannan L Rossi
- Institute of Human Infection and Immunity, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-0610, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Thompson NN, Auguste AJ, Coombs D, Blitvich BJ, Carrington CVF, da Rosa APT, Wang E, Chadee DD, Drebot MA, Tesh RB, Weaver SC, Adesiyun AA. Serological evidence of flaviviruses and alphaviruses in livestock and wildlife in Trinidad. Vector Borne Zoonotic Dis 2012; 12:969-78. [PMID: 22989182 DOI: 10.1089/vbz.2012.0959] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seroprevalence rates of selected arboviruses in animal populations in Trinidad were determined using serum samples collected between 2006 and 2009 from horses (n=506), cattle (n=163), sheep (n=198), goats (n=82), pigs (n=184), birds (n=140), rodents (n=116), and other vertebrates (n=23). The sera were screened for antibodies to West Nile virus (WNV), St. Louis encephalitis virus (SLEV), Ilheus virus (ILHV), Bussuquara virus (BSQV), Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV), using hemagglutination inhibition assay (HIA) and epitope-blocking enzyme-linked immunosorbent assays (ELISA). Antibodies to SLEV were detected in a total of 49 (9.7%) horses, 8 (4.9%) cattle, 1 (1.2%) goat, 2 (1.4%) wild birds, and 3 (2.2%) wild rodents by both methods. In contrast, antibodies to EEEV, VEEV, and WNV were detected only in horses, at rates of 4.3%, 0.8%, and 17.2%, respectively, by ELISA, and IgM capture ELISA was WNV-positive in 3 (0.6%) of these sera. Among locally bred unvaccinated horses that had never left Trinidad, seroprevalence rates against WNV were 12.1% and 17.2% by ELISA and HIA, respectively. The presence of WNV- and SLEV-specific antibodies in a representative sample of horse sera that were both ELISA- and HIA-seropositive was confirmed by plaque reduction neutralization testing (PRNT). Antibodies to ILHV and BSQV were not detected in any of the serum samples tested (i.e., sera from horses, other livestock, and wild birds in the case of ILHV, and wild mammals in the case of BSQV). The data indicate the presence of WNV in Trinidad, and continuing low-level circulation of SLEV, EEEV, and VEEV.
Collapse
Affiliation(s)
- Nadin N Thompson
- School of Veterinary Medicine, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kenney JL, Adams AP, Gorchakov R, Leal G, Weaver SC. Genetic and anatomic determinants of enzootic Venezuelan equine encephalitis virus infection of Culex (Melanoconion) taeniopus. PLoS Negl Trop Dis 2012; 6:e1606. [PMID: 22509419 PMCID: PMC3317907 DOI: 10.1371/journal.pntd.0001606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 02/27/2012] [Indexed: 11/18/2022] Open
Abstract
Venezuelan equine encephalitis (VEE) is a re-emerging, mosquito-borne viral disease with the potential to cause fatal encephalitis in both humans and equids. Recently, detection of endemic VEE caused by enzootic strains has escalated in Mexico, Peru, Bolivia, Colombia and Ecuador, emphasizing the importance of understanding the enzootic transmission cycle of the etiologic agent, VEE virus (VEEV). The majority of work examining the viral determinants of vector infection has been performed in the epizootic mosquito vector, Aedes (Ochlerotatus) taeniorhynchus. Based on the fundamental differences between the epizootic and enzootic cycles, we hypothesized that the virus-vector interaction of the enzootic cycle is fundamentally different from that of the epizootic model. We therefore examined the determinants for VEEV IE infection in the enzootic vector, Culex (Melanoconion) taeniopus, and determined the number and susceptibility of midgut epithelial cells initially infected and their distribution compared to the epizootic virus-vector interaction. Using chimeric viruses, we demonstrated that the determinants of infection for the enzootic vector are different than those observed for the epizootic vector. Similarly, we showed that, unlike A. taeniorhynchus infection with subtype IC VEEV, C. taeniopus does not have a limited subpopulation of midgut cells susceptible to subtype IE VEEV. These findings support the hypothesis that the enzootic VEEV relationship with C. taeniopus differs from the epizootic virus-vector interaction in that the determinants appear to be found in both the nonstructural and structural regions, and initial midgut infection is not limited to a small population of susceptible cells. Venezuelan equine encephalitis virus (VEEV) is transmitted to humans and horses by mosquitoes in Mexico, Central and South America. These infections can lead to fatal encephalitis in humans as well as horses, donkeys and mules, and there are no licensed vaccines or treatments available for humans. VEEV circulates in two distinct transmission cycles (epizootic and enzootic), which are differentiated by the ecological niche that each virus inhabits. Epizootic strains, those that cause major outbreaks in humans and equids, have been studied extensively and have been used primarily to develop and test several vaccine candidates. In this study, we demonstrate some important differences in the roles of different viral genes between enzootic/endemic versus epizootic VEEV strains that affect mosquito infection as well as differences in the way that enzootic VEEV more efficiently infects the mosquito initially. Our findings have important implications for designing vaccines and for understanding the evolution of VEEV-mosquito interactions.
Collapse
Affiliation(s)
| | | | | | | | - Scott C. Weaver
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
BACKGROUND Stupor, coma, and other alterations of consciousness are among the most serious life-threatening emergencies faced by the emergency department physician. When a patient arrives with altered mentation from Central or South America, the usual causes that occur in the United States must be considered; however, other unusual tropical disease must be excluded, such as Venezuelan equine encephalitis (VEE). OBJECTIVE This study aimed to review the clinical features of VEE. CASE A 17-year-old female traveled to Belize and developed vomiting, diarrhea, fever, headaches, and myalgias. Over the next few hours, she became disoriented and had a generalized seizure. She was given diazepam, 50% dextrose, phenytoin, mannitol, and vitamin K. A computed tomographic scan of the head was unremarkable. Her parents arranged for a medical air transport. After eliminating other possibilities, she was diagnosed with VEE, which was confirmed in the laboratory. Over the next week, her mental status improved back to her normal neurologic baseline. CONCLUSIONS Venezuelan equine encephalitis is an acute viral disease that causes acute illness in equines and humans, with symptoms ranging from a mild, flu-like syndrome to encephalitis or death. Laboratory abnormalities are common and include elevated hepatic transaminases, lymphocytosis, eosinophilia, and thrombocytopenia. Treatment is supportive, and complete recovery is expected within several weeks in most patients.
Collapse
|
23
|
Deardorff ER, Estrada-Franco JG, Freier JE, Navarro-Lopez R, Travassos Da Rosa A, Tesh RB, Weaver SC. Candidate vectors and rodent hosts of Venezuelan equine encephalitis virus, Chiapas, 2006-2007. Am J Trop Med Hyg 2012; 85:1146-53. [PMID: 22144461 DOI: 10.4269/ajtmh.2011.11-0094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Enzootic Venezuelan equine encephalitis virus (VEEV) has been known to occur in Mexico since the 1960s. The first natural equine epizootic was recognized in Chiapas in 1993 and since then, numerous studies have characterized the etiologic strains, including reverse genetic studies that incriminated a specific mutation that enhanced infection of epizootic mosquito vectors. The aim of this study was to determine the mosquito and rodent species involved in enzootic maintenance of subtype IE VEEV in coastal Chiapas. A longitudinal study was conducted over a year to discern which species and habitats could be associated with VEEV circulation. Antibody was rarely detected in mammals and virus was not isolated from mosquitoes. Additionally, Culex (Melanoconion) taeniopus populations were found to be spatially related to high levels of human and bovine seroprevalence. These mosquito populations were concentrated in areas that appear to represent foci of stable, enzootic VEEV circulation.
Collapse
Affiliation(s)
- Eleanor R Deardorff
- Institute for Human Infections and Immunity, WHO Collaborating Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Aguilar PV, Estrada-Franco JG, Navarro-Lopez R, Ferro C, Haddow AD, Weaver SC. Endemic Venezuelan equine encephalitis in the Americas: hidden under the dengue umbrella. Future Virol 2011. [DOI: 10.2217/fvl.11.50] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Venezuelan equine encephalitis (VEE) is an emerging infectious disease in Latin America. Outbreaks have been recorded for decades in countries with enzootic circulation, and the recent implementation of surveillance systems has allowed the detection of additional human cases in countries and areas with previously unknown VEE activity. Clinically, VEE is indistinguishable from dengue and other arboviral diseases and confirmatory diagnosis requires the use of specialized laboratory tests that are difficult to afford in resource-limited regions. Thus, the disease burden of endemic VEE in developing countries remains largely unknown, but recent surveillance suggests that it may represent up to 10% of the dengue burden in neotropical cities, or tens-of-thousands of cases per year throughout Latin America. The potential emergence of epizootic viruses from enzootic progenitors further highlights the need to strengthen surveillance activities, identify mosquito vectors and reservoirs and develop effective strategies to control the disease. In this article, we provide an overview of the current status of endemic VEE that results from spillover of the enzootic cycles, and we discuss public health measures for disease control as well as future avenues for VEE research.
Collapse
Affiliation(s)
- Patricia V Aguilar
- Center for Tropical Diseases, Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jose G Estrada-Franco
- Center for Tropical Diseases, Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Roberto Navarro-Lopez
- Comision Mexico-Estados Unidos para la Prevencion de la Fiebre Aftosa & Otras Enfermedades Exoticas de los Animales, Mexico City, Mexico
| | | | - Andrew D Haddow
- Center for Tropical Diseases, Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | |
Collapse
|
25
|
Aguilar PV, Estrada-Franco JG, Navarro-Lopez R, Ferro C, Haddow AD, Weaver SC. Endemic Venezuelan equine encephalitis in the Americas: hidden under the dengue umbrella. Future Virol 2011; 6:721-740. [PMID: 21765860 DOI: 10.2217/fvl.11.5] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Venezuelan equine encephalitis (VEE) is an emerging infectious disease in Latin America. Outbreaks have been recorded for decades in countries with enzootic circulation, and the recent implementation of surveillance systems has allowed the detection of additional human cases in countries and areas with previously unknown VEE activity. Clinically, VEE is indistinguishable from dengue and other arboviral diseases and confirmatory diagnosis requires the use of specialized laboratory tests that are difficult to afford in resource-limited regions. Thus, the disease burden of endemic VEE in developing countries remains largely unknown, but recent surveillance suggests that it may represent up to 10% of the dengue burden in neotropical cities, or tens-of-thousands of cases per year throughout Latin America. The potential emergence of epizootic viruses from enzootic progenitors further highlights the need to strengthen surveillance activities, identify mosquito vectors and reservoirs and develop effective strategies to control the disease. In this article, we provide an overview of the current status of endemic VEE that results from spillover of the enzootic cycles, and we discuss public health measures for disease control as well as future avenues for VEE research.
Collapse
Affiliation(s)
- Patricia V Aguilar
- Center for Tropical Diseases, Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | |
Collapse
|
26
|
Rungrotmongkol T, Nunthaboot N, Malaisree M, Kaiyawet N, Yotmanee P, Meeprasert A, Hannongbua S. Molecular insight into the specific binding of ADP-ribose to the nsP3 macro domains of chikungunya and Venezuelan equine encephalitis viruses: molecular dynamics simulations and free energy calculations. J Mol Graph Model 2010; 29:347-53. [PMID: 21036084 DOI: 10.1016/j.jmgm.2010.09.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/19/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
Abstract
The outbreaks of chikungunya (CHIKV) and venezuelan equine encephalitis (VEEV) viral infections in humans have emerged or re-emerged in various countries of "Africa and southeast Asia", and "central and south America", respectively. At present, no drug or vaccine is available for the treatment and therapy of both viral infections, but the non-structural protein, nsP3, is a potential target for the design of potent inhibitors that fit at the adenosine-binding site of its macro domain. Here, so as to understand the fundamental basis of the particular interactions between the ADP-ribose bound to the nsP3 amino acid residues at the binding site, molecular dynamics simulations were applied. The results show that these two nsP3 domains share a similar binding pattern for accommodating the ADP-ribose. The ADP-ribose phosphate unit showed the highest degree of stabilization through hydrogen bond interactions with the nsP3 V33 residue and the consequent amino acid residues 110-114. The adenine base of ADP-ribose was specifically recognized by the conserved nsP3 residue D10. Additionally, the ribose and the diphosphate units were found to play more important roles in the CHIKV nsP3-ADP-ribose complex, while the ter-ribose was more important in the VEEV complex. The slightly higher binding affinity of ADP-ribose toward the nsP3 macro domain of VEEV, as predicted by the simulation results, is in good agreement with previous experimental data. These simulation results provide useful information to further assist in drug design and development for these two important viruses.
Collapse
Affiliation(s)
- Thanyada Rungrotmongkol
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | | | | | | | | | |
Collapse
|
27
|
Deardorff ER, Weaver SC. Vector competence of Culex (Melanoconion) taeniopus for equine-virulent subtype IE strains of Venezuelan equine encephalitis virus. Am J Trop Med Hyg 2010; 82:1047-52. [PMID: 20519599 PMCID: PMC2877410 DOI: 10.4269/ajtmh.2010.09-0556] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 02/09/2010] [Indexed: 11/07/2022] Open
Abstract
The mosquito Culex (Melanoconion) taeniopus is a proven vector of enzootic Venezuelan equine encephalitis virus (VEEV) subtype IE in Central America. It has been shown to be highly susceptible to infection by this subtype, and conversely to be highly refractory to infection by other VEEV subtypes. During the 1990s in southern coastal Mexico, two VEE epizootics in horses were attributed to subtype IE VEEV. These outbreaks were associated with VEEV strains with an altered infection phenotype for the epizootic mosquito vector, Aedes (Ochlerotatus) taeniorhynchus. To determine the infectivity for the enzootic vector, Culex taeniopus, mosquitoes from a recently established colony were orally exposed to VEEV strains from the outbreak. The equine-virulent strains exhibited high infectivity and transmission potential comparable to a traditional enzootic subtype IE VEEV strain. Thus, subtype IE VEEV strains in Chiapas are able to efficiently infect enzootic and epizootic vectors and cause morbidity and mortality in horses.
Collapse
Affiliation(s)
- Eleanor R Deardorff
- Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| | | |
Collapse
|
28
|
Deardorff ER, Forrester NL, Travassos da Rosa AP, Estrada-Franco JG, Navarro-Lopez R, Tesh RB, Weaver SC. Experimental infections of Oryzomys couesi with sympatric arboviruses from Mexico. Am J Trop Med Hyg 2010; 82:350-3. [PMID: 20134016 DOI: 10.4269/ajtmh.2010.09-0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Coues rice rat (Oryzomys couesi), a species abundant throughout Central America, was evaluated experimentally for the ability to serve as an amplifying host for three arboviruses: Patois (Bunyaviridae, Orthobunyavirus), Nepuyo (Orthobunyavirus), and Venezuelan equine encephalitis virus subtype ID (Togaviridae, Alphavirus). These three viruses have similar ecologies and are known to co-circulate in nature. Animals from all three cohorts survived infection and developed viremia with no apparent signs of illness and long-lasting antibodies. Thus, O. couesi may play a role in the general maintenance of these viruses in nature.
Collapse
Affiliation(s)
- Eleanor R Deardorff
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Deardorff ER, Forrester NL, Travassos-da-Rosa AP, Estrada-Franco JG, Navarro-Lopez R, Tesh RB, Weaver SC. Experimental infection of potential reservoir hosts with Venezuelan equine encephalitis virus, Mexico. Emerg Infect Dis 2009; 15:519-25. [PMID: 19331726 PMCID: PMC2671456 DOI: 10.3201/eid1504.081008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Multiple wild rodent species can serve as amplifying reservoir hosts for virus subtype IE. In 1993, an outbreak of encephalitis among 125 affected equids in coastal Chiapas, Mexico, resulted in a 50% case-fatality rate. The outbreak was attributed to Venezuelan equine encephalitis virus (VEEV) subtype IE, not previously associated with equine disease and death. To better understand the ecology of this VEEV strain in Chiapas, we experimentally infected 5 species of wild rodents and evaluated their competence as reservoir and amplifying hosts. Rodents from 1 species (Baiomys musculus) showed signs of disease and died by day 8 postinoculation. Rodents from the 4 other species (Liomys salvini, Oligoryzomys fulvescens, Oryzomys couesi, and Sigmodon hispidus) became viremic but survived and developed neutralizing antibodies, indicating that multiple species may contribute to VEEV maintenance. By infecting numerous rodent species and producing adequate viremia, VEEV may increase its chances of long-term persistence in nature and could increase risk for establishment in disease-endemic areas and amplification outside the disease-endemic range.
Collapse
|
30
|
Morrison AC, Forshey BM, Notyce D, Astete H, Lopez V, Rocha C, Carrion R, Carey C, Eza D, Montgomery JM, Kochel TJ. Venezuelan equine encephalitis virus in Iquitos, Peru: urban transmission of a sylvatic strain. PLoS Negl Trop Dis 2008; 2:e349. [PMID: 19079600 PMCID: PMC2593782 DOI: 10.1371/journal.pntd.0000349] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 11/18/2008] [Indexed: 11/29/2022] Open
Abstract
Enzootic strains of Venezuelan equine encephalitis virus (VEEV) have been isolated from febrile patients in the Peruvian Amazon Basin at low but consistent levels since the early 1990s. Through a clinic-based febrile surveillance program, we detected an outbreak of VEEV infections in Iquitos, Peru, in the first half of 2006. The majority of these patients resided within urban areas of Iquitos, with no report of recent travel outside the city. To characterize the risk factors for VEEV infection within the city, an antibody prevalence study was carried out in a geographically stratified sample of urban areas of Iquitos. Additionally, entomological surveys were conducted to determine if previously incriminated vectors of enzootic VEEV were present within the city. We found that greater than 23% of Iquitos residents carried neutralizing antibodies against VEEV, with significant associations between increased antibody prevalence and age, occupation, mosquito net use, and overnight travel. Furthermore, potential vector mosquitoes were widely distributed across the city. Our results suggest that while VEEV infection is more common in rural areas, transmission also occurs within urban areas of Iquitos, and that further studies are warranted to identify the precise vectors and reservoirs involved in urban VEEV transmission. Venezuelan equine encephalitis (VEE) is a mosquito-borne viral disease often causing grave illness and large outbreaks of disease in South America. In Iquitos, Peru, a city of 350,000 situated in the Amazon forest, we normally observe 10–14 VEE cases per year associated with people traveling to rural areas where strains VEE virus circulate among forest mosquitoes and rodents. In 2006 we detected a 5-fold increase in human VEE cases, and many of these patients had no travel history outside the city where they lived. In response to this outbreak, we decided to determine if potential carrier mosquitoes were present within the city and if city residents had been previously exposed to the virus. We found that mosquitoes previously shown to transmit the virus in other locations were present—in varying amounts based on location and time of year—throughout Iquitos. A large percentage of the human population (>23%) had antibodies indicating past exposure to the virus. Previous VEE infection was associated with age, occupation, mosquito exposure, and overnight travel. Our data represent evidence of transmission of a forest strain of VEE within a large urban area. Continued monitoring of this situation will shed light on mechanisms of virus emergence.
Collapse
Affiliation(s)
- Amy C Morrison
- Naval Medical Research Center Detachment, Iquitos and Lima, Peru.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ortiz DI, Kang W, Weaver SC. Susceptibility of Ae. aegypti (Diptera: Culicidae) to infection with epidemic (subtype IC) and enzootic (subtypes ID, IIIC, IIID) Venezuelan equine encephalitis complex alphaviruses. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:1117-1125. [PMID: 19058637 DOI: 10.1603/0022-2585(2008)45[1117:soaadc]2.0.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To test the hypothesis that enzootic and epidemic Venezuelan equine encephalitis (VEE) complex alphaviruses can infect and be transmitted by Ae. aegypti, we conducted a series of experimental infection studies. One set of experiments tested the susceptibility of geographic strains of Ae. aegypti from Peru and Texas (U.S.A.) for epidemic (subtype IC) and enzootic (subtype ID) strains from Colombia/Venezuela, whereas the second set of experiments tested the susceptibility of Ae. aegypti from Iquitos, Peru, to enzootic VEE complex strains (subtypes ID, IIIC, and IIID) isolated in the same region, at different infectious doses. Experimental infections using artificial bloodmeals suggested that Ae. aegypti mosquitoes, particularly the strain from Iquitos, Peru, is moderately to highly susceptible to all of these VEE complex alphaviruses. The occurrence of enzootic VEE complex viruses circulating endemically in Iquitos suggests the possibility of a dengue-like transmission cycle among humans in tropical cities.
Collapse
Affiliation(s)
- Diana I Ortiz
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | |
Collapse
|
32
|
Abstract
Arboviruses continue to be a major cause of encephalitis in North America, and West Nile virus neuroinvasive disease is now the dominant cause of encephalitis. Transmission to humans of North American arboviruses occurs by infected mosquitoes or ticks. Most infections are asymptomatic or produce a flulike illness. Rapid serum or cerebrospinal fluid IgM antibody capture ELISA assays are available to diagnosis the acute infection for all North American arboviruses. Unfortunately, no antiviral drugs are approved for the treatment of arbovirus infection and current therapy is supportive.
Collapse
Affiliation(s)
- Larry E Davis
- New Mexico Veterans Affairs Health Care System, 1500 San Pedro Drive SE, Albuquerque, NM 87108, USA.
| | | | | |
Collapse
|
33
|
Wang E, Petrakova O, Adams AP, Aguilar PV, Kang W, Paessler S, Volk SM, Frolov I, Weaver SC. Chimeric Sindbis/eastern equine encephalitis vaccine candidates are highly attenuated and immunogenic in mice. Vaccine 2007; 25:7573-81. [PMID: 17904699 PMCID: PMC2094013 DOI: 10.1016/j.vaccine.2007.07.061] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 07/17/2007] [Accepted: 07/28/2007] [Indexed: 10/22/2022]
Abstract
We developed chimeric Sindbis (SINV)/eastern equine encephalitis (EEEV) viruses and investigated their potential for use as live virus vaccines against EEEV. One vaccine candidate contained structural protein genes from a typical North American EEEV strain, while the other had structural proteins from a naturally attenuated Brazilian isolate. Both chimeric viruses replicated efficiently in mammalian and mosquito cell cultures and were highly attenuated in mice. Vaccinated mice did not develop detectable disease or viremia, but developed high titers of neutralizing antibodies. Upon challenge with EEEV, mice vaccinated with >10(4) PFU of the chimeric viruses were completely protected from disease. These findings support the potential use of these SIN/EEEV chimeras as safe and effective vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Body Temperature
- Body Weight
- Cells, Cultured
- Chlorocebus aethiops
- DNA, Recombinant/genetics
- DNA, Recombinant/immunology
- Encephalitis Virus, Eastern Equine/genetics
- Encephalitis Virus, Eastern Equine/immunology
- Encephalomyelitis, Eastern Equine/immunology
- Encephalomyelitis, Eastern Equine/prevention & control
- Enzyme-Linked Immunosorbent Assay
- Female
- Mice
- Plasmids/genetics
- Plasmids/immunology
- Pregnancy
- Sindbis Virus/genetics
- Sindbis Virus/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vero Cells
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Eryu Wang
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Olga Petrakova
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - A. Paige Adams
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Patricia V. Aguilar
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Wenli Kang
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Slobodan Paessler
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Sara M. Volk
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Ilya Frolov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Scott C. Weaver
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
- *Correspondence: Scott C. Weaver, Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609. Telephone (409) 747-0758. Fax (409) 747-2415.
| |
Collapse
|
34
|
Coffey LL, Crawford C, Dee J, Miller R, Freier J, Weaver SC. Serologic evidence of widespread everglades virus activity in dogs, Florida. Emerg Infect Dis 2007; 12:1873-9. [PMID: 17326938 PMCID: PMC3291350 DOI: 10.3201/eid1212.060446] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Everglades virus (EVEV), an alphavirus in the Venezuelan equine encephalitis complex, circulates among rodents and vector mosquitoes in Florida and occasionally infects humans. It causes febrile disease, sometimes accompanied by neurologic manifestations. Although previous surveys showed high seroprevalence in humans, EVEV infections may be underdiagnosed because the disease is not severe enough to warrant a clinic visit or the undifferentiated presentations complicate diagnosis. Documented EVEV activity, as recent as 1993, was limited to south Florida. Using dogs as sentinels, a serosurvey was conducted to evaluate whether EVEV circulated recently in Florida and whether EVEV's spatial distribution parallels that of the mosquito vector, Culex cedecei. Four percent of dog sera contained neutralizing EVEV antibodies, and many seropositive animals lived farther north than both recorded EVEV activity and the principal vector. These results indicate that EVEV is widespread in Florida and may be an important, unrecognized cause of human illness.
Collapse
Affiliation(s)
- Lark L. Coffey
- University of Texas Medical Branch, Galveston, Texas, USA
| | | | - James Dee
- Hollywood Animal Hospital, Hollywood, Florida, USA
| | - Ryan Miller
- Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| | - Jerome Freier
- Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| | | |
Collapse
|
35
|
Navarro JC, Medina G, Vasquez C, Coffey LL, Wang E, Suárez A, Biord H, Salas M, Weaver SC. Postepizootic persistence of Venezuelan equine encephalitis virus, Venezuela. Emerg Infect Dis 2006; 11:1907-15. [PMID: 16485478 PMCID: PMC3367636 DOI: 10.3201/eid1112.050533] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Etiologic subtype IC of virus persists, 5 years after the major 1995 epidemic. Five years after the apparent end of the major 1995 Venezuelan equine encephalitis (VEE) epizootic/epidemic, focal outbreaks of equine encephalitis occurred in Carabobo and Barinas States of western Venezuela. Virus isolates from horses in each location were nearly identical in sequence to 1995 isolates, which suggests natural persistence of subtype IC VEE virus (VEEV) strains in a genetically stable mode. Serologic evidence indicated that additional outbreaks occurred in Barinas State in 2003. Field studies identified known Culex (Melanoconion) spp. vectors and reservoir hosts of enzootic VEEV but a dearth of typical epidemic vectors. Cattle serosurveys indicated the recent circulation of enzootic VEEV strains, and possibly of epizootic strains. Persistence of VEEV subtype IC strains and infection of horses at the end of the rainy season suggest the possibility of an alternative, cryptic transmission cycle involving survival through the dry season of infected vectors or persistently infected vertebrates.
Collapse
Affiliation(s)
| | - Gladys Medina
- Instituto Nacional de Investigaciones Agropecuarias, Maracay, Venezuela
| | | | - Lark L. Coffey
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Eryu Wang
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander Suárez
- Universidad Central de Venezuela, Caracas, Venezuela
- Instituto Nacional de Higiene, Caracas, Venezuela
| | - Hernán Biord
- Sociedad Venezolana de Ciencias Naturales, Venezuela
| | - Marlene Salas
- Ministerio de Agricultura y Tierras, Barinas, Venezuela
| | | |
Collapse
|