1
|
Thomas AM, Verocai GG, Soghigian J, Mavrot F, Jutha N, Adamczewski J, Davison T, Duytschaever G, Fernandes A, Kelly A, Kulpa MR, Lamontagne E, Leclerc LM, McCarthy S, McLaren A, Melin AD, Kutz SJ. Widespread geographic distribution of filarioid nematodes in caribou ( Rangifer tarandus sspp.) in Canada. Int J Parasitol Parasites Wildl 2025; 26:101030. [PMID: 39759546 PMCID: PMC11699751 DOI: 10.1016/j.ijppaw.2024.101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
The caribou (Rangifer tarandus sspp.) is a keystone wildlife species in northern ecosystems that plays a central role in the culture, spirituality and food security of Indigenous People. The Arctic is currently experiencing an unprecedented rate of climate change, including warming temperatures and altered patterns of precipitation. These environmental changes can facilitate the transmission of arthropod-borne parasites, such as filarioid nematodes. Filarioids are an important cause of morbidity and occasional mortality in Rangifer in Fennoscandia, however, much of the ecology and epidemiology of these parasites in caribou in North America, including Canada, remains unknown. We aimed to determine the parasitic diversity and geographic distribution of filarioid nematodes in three Canadian designatable units (DU) of caribou (barren-ground, boreal and Dolphin & Union) from Northwest Territories, Nunavut and Newfoundland & Labrador. Genomic DNA extracted from 768 blood samples was screened for filarioid nematodes using real-time PCR. The positive samples were Sanger sequenced to identify the parasite present. Based on the sequencing results, we identified Setaria yehi and Onchocerca cervipedis s.l. We then standardized a TaqMan probe based duplex droplet digital PCR (ddPCR) protocol for the simultaneous detection of S. yehi and O. cervipedis s.l. Based on real-time PCR results, 8/768 samples were positive. Setaria yehi and O. cervipedis s.l. were present in 4 separate samples (0.5%) each. Using ddPCR, 68/192 samples were positive (35.4%). Setaria yehi DNA was detected in 57/192 positive samples (29.7%), O. cervipedis s.l. DNA was present in 22/192 samples (11.5%) and 11/192 samples (5.7%) had co-infections. Setaria yehi was detected in all three DUs tested. Onchocerca cervipedis s.l. were found in barren-ground and boreal caribou, but not from the Dolphin and Union caribou. Through this broad-based survey and through developing and implementing advanced molecular methodologies, we have documented the apparent distribution and diversity of S. yehi and O. cervipedis s.l. in parts of three Canadian DUs of caribou. The knowledge gained from this study provides baseline data and methodology for the further elucidation of the epidemiology of these parasites in North America.
Collapse
Affiliation(s)
| | - Guilherme G. Verocai
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - John Soghigian
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fabien Mavrot
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Naima Jutha
- Department of Environment and Climate Change, Government of Northwest Territories, PO Box 1320, Yellowknife, NT, X1A 2L9, Canada
| | - Jan Adamczewski
- Department of Environment and Climate Change, Government of Northwest Territories, PO Box 1320, Yellowknife, NT, X1A 2L9, Canada
| | - Tracy Davison
- Department of Environment and Climate Change, Government of Northwest Territories, PO Box 2749, Inuvik, NT X1E 0T0, Canada
| | - Gwen Duytschaever
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Fernandes
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Allicia Kelly
- Department of Environment and Climate Change, Government of Northwest Territories, PO Box 1320, Yellowknife, NT, X1A 2L9, Canada
| | - Matthew R. Kulpa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Eve Lamontagne
- Department of Environment and Climate Change, Government of Northwest Territories, PO Box 240, Fort Simpson, NT, X0E 0N0, Canada
| | - Lisa-Marie Leclerc
- Department of Environment, Government of Nunavut, P.O. Box 377, Kugluktuk, NU, X0B 0E0, 11, Canada
| | - Sara McCarthy
- Department of Fisheries, Forestry and Agriculture, Wildlife Division, Government of Newfoundland and Labrador, P.O. Box 3014, Goose Bay, NL, A0P 1E0, Canada
| | - Ashley McLaren
- Department of Environment and Climate Change, Government of Northwest Territories, Highway 5, PO Box 900, Fort Smith, NT, X0E 0P0, Canada
| | - Amanda D. Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Susan J. Kutz
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Biddlecombe BA, Pilfold NW, Richardson ES, Kutz S, Mavrot F, Schneider A, Derocher AE. Seroprevalence of Erysipelothrix rhusiopathiae in Beaufort Sea Polar Bears (Ursus maritimus) is Linked to Ringed Seal (Pusa hispida) Demographics. J Wildl Dis 2025; 61:76-87. [PMID: 39471827 DOI: 10.7589/jwd-d-24-00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/16/2024] [Indexed: 11/01/2024]
Abstract
Polar bear (Ursus maritimus) life history is intimately associated with the distribution of sea ice and their prey in Arctic ecosystems. These ecosystems are changing in response to climate warming, resulting in the increased prevalence of pathogens in polar bears. Erysipelothrix rhusiopathiae has a long history of infection in domestic species and more recently in wildlife in the Canadian Arctic. As a result of increasing reports of E. rhusiopathiae causing morbidity and mortality in Arctic terrestrial mammals, we tested the seroprevalence of E. rhusiopathiae in Beaufort Sea polar bears sampled in 1985-87, 1992, 1994, and 2003-11. Our sample of 180 polar bears (117 females, 61 males, two unknown) with a median age of 9 yr (range 1-26 yr) had a seropositivity of 27.2% (49/180 individuals). We used binomial logistic regressions to investigate biotic and abiotic factors that may be linked to seropositivity. The resulting top model found that increased predation on adult ringed seals (Pusa [Phoca] hispida) and negative winter Arctic Oscillation Index (AOI) years were associated with a higher probability of seropositivity. Ringed seals may be a reservoir for E. rhusiopathiae via their consumption of infected prey, as the pathogen can persist in marine fish, molluscs, and crustaceans. Negative winter AOIs in our data set reflected high ice volume years, which reduced ringed seal natality, resulting in fewer seal pups available as prey. Our results suggest that exposure to E. rhusiopathiae in Beaufort Sea polar bears is modulated by a predator-prey mechanism.
Collapse
Affiliation(s)
- Brooke A Biddlecombe
- Biological Sciences Centre, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
| | - Nicholas W Pilfold
- Conservation Science and Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, California 92027, USA
| | - Evan S Richardson
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, 150-123 Main Street, Winnipeg, Manitoba R3C 1M8, Canada
| | - Susan Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Fabien Mavrot
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Angela Schneider
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Andrew E Derocher
- Biological Sciences Centre, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
3
|
Chenery ES, Harms NJ, Fenton H, Mandrak NE, Molnár PK. Revealing large‐scale parasite ranges: An integrated spatiotemporal database and multisource analysis of the winter tick. Ecosphere 2023. [DOI: 10.1002/ecs2.4376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Emily S. Chenery
- Department of Physical and Environmental Sciences University of Toronto Scarborough Scarborough Ontario Canada
| | - N. Jane Harms
- Animal Health Unit Department of Environment Whitehorse Yukon Canada
| | - Heather Fenton
- Department of Environment and Natural Resources Government of Northwest Territories Yellowknife Northwest Territories Canada
| | - Nicholas E. Mandrak
- Department of Physical and Environmental Sciences University of Toronto Scarborough Scarborough Ontario Canada
- Department of Biological Sciences University of Toronto Scarborough Scarborough Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| | - Péter K. Molnár
- Department of Physical and Environmental Sciences University of Toronto Scarborough Scarborough Ontario Canada
- Department of Biological Sciences University of Toronto Scarborough Scarborough Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| |
Collapse
|
4
|
Rakic F, Pruvot M, Whiteside DP, Kutz S. A SCOPING REVIEW OF THE RANGIFER TARANDUS INFECTIOUS DISEASE LITERATURE: GAP BETWEEN INFORMATION AND APPLICATION. J Wildl Dis 2022; 58:473-486. [PMID: 35675481 DOI: 10.7589/jwd-d-21-00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022]
Abstract
The role and impact of infectious diseases in wildlife population dynamics are increasingly recognized, yet disease information is variably incorporated into wildlife management frameworks. This discrepancy is particularly relevant for Rangifer tarandus (caribou or reindeer), a keystone circumarctic species experiencing widespread population declines. The primary objective of this review was to characterize the available peer-reviewed literature on infectious diseases of Rangifer by using a scoping review methodology. Three databases of peer-reviewed literature-Web of Science, BIOSIS previews, and Scopus-were searched and 695 articles met the criteria for initial review. After screening for relevance and language, 349 articles, published between 1967 and 2020, remained. More than half of the excluded articles (181/346; 52%) were left out because they were not published in English; the majority of these excluded articles (120) were in Russian. From the 349 included articles, 137 (39%) pertained to wild (as opposed to semidomesticated or captive) Rangifer populations. Articles on infectious disease in wild Rangifer were published in 40 different journals across various disciplines; the most common journals were disease and parasitology oriented, accounting for 55% of included articles. Most studies were descriptive (87%), followed by experimental (9%). Of the pathogen taxa investigated, helminths were the most common, comprising 35% of articles. Rangifer subspecies were not equally represented in the literature, with barren-ground caribou (R. t. groenlandicus; n=40) and woodland caribou (R. t. caribou; n=39) having the greatest abundance and diversity of infectious disease information available. Few studies explicitly examined individual or population-level impacts of disease, or related disease to vital population rates, and only 27 articles explicitly related results to management or conservation. Findings from this review highlight an unbalanced distribution of studies across Rangifer ecotypes, a preference for dissemination in disease-specialized publication venues, and an opportunity for investigating population-level impacts that may be more readily integrated into caribou conservation frameworks.
Collapse
Affiliation(s)
- Filip Rakic
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada
| | - Mathieu Pruvot
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada
| | - Douglas P Whiteside
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada
| | - Susan Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
5
|
ENDOPARASITES OF FORMOSAN BLACK BEARS (URSUS THIBETANUS FORMOSANUS) DURING ACORN SEASON IN YUSHAN NATIONAL PARK, TAIWAN. J Wildl Dis 2021; 57:345-356. [PMID: 33822155 DOI: 10.7589/jwd-d-20-00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/13/2020] [Indexed: 11/20/2022]
Abstract
Parasite infection is one of the most important factors in wildlife conservation. However, fecal parasite profiles of threatened Asiatic black bears (Ursus thibetanus) are only sporadically reported, and the effect of parasitic diseases on the survival of the locally endangered Formosan black bear (Ursus thibetanus formosanus) in Taiwan remains undetermined. The study objective was to investigate the gastrointestinal parasite profiles of Formosan black bears in Yushan National Park, the only known high-density habitat for the species in Taiwan. Bear fecal samples were collected in the acorn season (from October to February) from January 2008 to October 2012. To avoid bias created by repeat sampling, the parasite profiles of fecal samples collected in 2010 from 46 individually identified bears (which were identified by genetic analysis) were also examined. Parasites were isolated by various methods and identified by morphologic characteristics. A total of 220 samples were analyzed and the results were compared between seasons, sexes, and individuals. The overall frequency of parasite infection was 77.3%, and it varied by species, with Baylisascaris transfuga infection being the most frequent. We suggest that one factor underlying the high frequency and high intensity of infection that we observed is the fact that the bears seasonally congregated at high density in a small area. To our knowledge, this is the first thorough study of gastrointestinal parasites in Asiatic black bears. The long-term nature of the investigation and the relatively stable frequency and intensity of infection suggest that parasitic diseases could serve as bioindicators of ecosystem health.
Collapse
|
6
|
Parasites of an Arctic scavenger; the wolverine ( Gulo gulo). INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 13:178-185. [PMID: 33134077 PMCID: PMC7591336 DOI: 10.1016/j.ijppaw.2020.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 11/21/2022]
Abstract
Parasites are fundamental components within all ecosystems, shaping interaction webs, host population dynamics and behaviour. Despite this, baseline data is lacking to understand the parasite ecology of many Arctic species, including the wolverine (Gulogulo), a top Arctic predator and scavenger. Here, we combined traditional count methods (i.e. adult helminth recovery, where taxonomy was confirmed by molecular identification) with 18S rRNA high-throughput sequencing to document the wolverine parasite community. Further, we investigated whether the abundance of parasites detected using traditional methods were associated with host metadata, latitude, and longitude (ranging from the northern limit of the boreal forest to the low Arctic and Arctic tundra in Nunavut, Canada). Adult parasites in intestinal contents were identified as Baylisascaris devosi in 72% (n = 39) of wolverines and Taenia spp. in 22% (n = 12), of which specimens from 2 wolverines were identified as T. twitchelli based on COX1 sequence. 18S rRNA high-throughput sequencing on DNA extracted from faeces detected additional parasites, including a pseudophyllid cestode (Diplogonoporus spp. or Diphyllobothrium spp.), two metastrongyloid lungworms (Angiostrongylus spp. or Aelurostrongylus spp., and Crenosoma spp.), an ascarid nematode (Ascaris spp. or Toxocara spp.), a Trichinella spp. nematode, and the protozoan Sarcocystis spp., though each at a prevalence less than 13% (n = 7). The abundance of B. devosi significantly decreased with latitude (slope = -0.68; R2 = 0.17; P = 0.004), suggesting a northerly limit in distribution. We describe B. devosi and T. twitchelli in Canadian wolverines for the first time since 1978, and extend the recorded geographic distribution of these parasites ca 2000 km to the East and into the tundra ecosystem. Our findings illustrate the value of molecular methods in support of traditional methods, encouraging additional work to improve the advancement of molecular screening for parasites. Combining traditional and molecular methods better captures parasite diversity. B. devosi and Taenia spp. distribution extends ca 2000 km East and into the tundra. The abundance of B. devosi in wolverines significantly decreases with latitude. B. devosi and Taenia spp. abundance is not associated with wolverine host metadata.
Collapse
|
7
|
Pérez Flores J, Weissenberger H, López-Cen A, Calmé S. Environmental Factors Influencing the Occurrence of Unhealthy Tapirs in the Southern Yucatan Peninsula. ECOHEALTH 2020; 17:359-369. [PMID: 33135140 DOI: 10.1007/s10393-020-01496-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Information about the effects of environmental degradation on the health of terrestrial forest wildlife is limited, especially for rare species. In this study, we analyse the influence of ecological factors such as landscape characteristics and seasonality on the health status of Baird's tapirs in Calakmul, Mexico. We collected georeferenced photographic records of healthy (n = 32) and unhealthy (n = 22) tapirs from 2008 to 2019 and characterized landscape composition around each record at three spatial scales (circular buffers of 1, 2 and 3-km radii according to Baird's tapir home ranges). Our logistic model building process consisted in selecting the best spatial scale for each landscape cover class, before including them along with distance to human settlements and seasonality in a full model. The model that best explained the occurrence of unhealthy tapirs included the percentage of agriculture within a 1-km radius. This study hints at the negative effect that land-use change to agriculture occurring in Calakmul might have on tapir health, with 95.45% of unhealthy tapirs recorded in such landscapes. Further studies should investigate the proximate determinants of tapir health in anthropogenic landscapes, which might be linked to stress or to contact with domestic animals.
Collapse
Affiliation(s)
- Jonathan Pérez Flores
- El Colegio de La Frontera Sur, Ave. Centenario Km 5.5 Carretera Calderitas, 77900, Chetumal, Quintana Roo, Mexico.
| | - Holger Weissenberger
- El Colegio de La Frontera Sur, Ave. Centenario Km 5.5 Carretera Calderitas, 77900, Chetumal, Quintana Roo, Mexico
| | - Antonio López-Cen
- Pronatura Península de Yucatán, A.C., Calle 32 número 269 Av. Francisco I. Madero, Colonia Santa Lucía, San Francisco de Campeche, 24020, Campeche, Mexico
| | - Sophie Calmé
- El Colegio de La Frontera Sur, Ave. Centenario Km 5.5 Carretera Calderitas, 77900, Chetumal, Quintana Roo, Mexico
- Faculté Des Sciences, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC, Canada
| |
Collapse
|
8
|
New records of helminth parasites of nine species of waterfowl in Mexico, and a checklist of the helminth fauna of Anatidae occurring in Mexican wetlands. J Helminthol 2020; 94:e176. [PMID: 32762788 DOI: 10.1017/s0022149x20000577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Wild and domestic populations of waterfowl garner economic benefits, as they are hunted for human consumption or as a recreational activity. Waterfowl migrate to their wintering grounds in Mexican wetlands where habitat conditions are more favourable. In this study, we present a list of helminth species sampled from the gastrointestinal tract of 59 wild birds belonging to the family Anatidae in three localities of Mexico, and a checklist of the helminth parasite fauna of the members of the family in the whole country, built from literature records. After helminthological examination, 25 taxa were identified: eight trematodes; four cestodes; 12 nematodes; and one acanthocephalan. Obtained records dated from 1943 to 2019. Our literature search yielded 563 records corresponding to 95 parasite taxa: 38 trematodes, 24 cestodes, 23 nematodes and ten acanthocephalans. In Mexico, 17 anatid species have been studied for helminths. Records correspond to 55 locations from 20 Mexican states. An insight gained from the collated literature and recent records was that trematodes represent the most diverse parasite group in anatids in Mexico. We briefly discuss that the information about helminths parasitizing waterfowl will be useful for understanding the effect of habitat loss and pollution of wetlands where migratory birds spend the breeding season, for addressing ecological programs aimed to guarantee the health and conservation of North American migratory birds or the effect of bird migration in the composition of the helminth parasite communities, and for freshwater biologists interested in the understanding of freshwater ecosystem health.
Collapse
|
9
|
Verocai GG, Hoberg EP, Simard M, Beckmen KB, Musiani M, Wasser S, Cuyler C, Manseau M, Chaudhry UN, Kashivakura CK, Gilleard JS, Kutz SJ. The biogeography of the caribou lungworm, Varestrongylus eleguneniensis (Nematoda: Protostrongylidae) across northern North America. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 11:93-102. [PMID: 31970056 PMCID: PMC6965202 DOI: 10.1016/j.ijppaw.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 11/03/2022]
Abstract
Varestrongylus eleguneniensis (Nematoda; Protostrongylidae) is a recently described species of lungworm that infects caribou (Rangifer tarandus), muskoxen (Ovibos moschatus) and moose (Alces americanus) across northern North America. Herein we explore the geographic distribution of V. eleguneniensis through geographically extensive sampling and discuss the biogeography of this multi-host parasite. We analyzed fecal samples of three caribou subspecies (n = 1485), two muskox subspecies (n = 159), and two moose subspecies (n = 264) from across northern North America. Protostrongylid dorsal-spined larvae (DSL) were found in 23.8%, 73.6%, and 4.2% of these ungulates, respectively. A portion of recovered DSL were identified by genetic analyses of the ITS-2 region of the nuclear rDNA or the cytochrome oxidase c subunit I (COI) region of the mtDNA. We found V. eleguneniensis widely distributed among caribou and muskox populations across most of their geographic prange in North America but it was rare in moose. Parelaphostrongylus andersoni was present in caribou and moose and we provide new geographic records for this species. This study provides a substantial expansion of the knowledge defining the current distribution and biogeography of protostrongylid nematodes in northern ungulates. Insights about the host and geographic range of V. eleguneniensis can serve as a geographically extensive baseline for monitoring current distribution and in anticipating future biogeographic scenarios under a regime of accelerating climate and anthropogenic perturbation.
Collapse
Affiliation(s)
- Guilherme G Verocai
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, TAMU, College Station, TX, 77843, USA
| | - Eric P Hoberg
- Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, 87108, USA
| | | | - Kimberlee B Beckmen
- Division of Wildlife Conservation, Alaska Department of Fish and Game, 1300 College Road, Fairbanks, AK, USA
| | - Marco Musiani
- Department of Biological Sciences, Faculty of Science, University of Calgary, AB, Canada
| | - Sam Wasser
- Center for Conservation Biology, University of Washington, Seattle, WA, USA
| | - Christine Cuyler
- Greenland Institute of Natural Resources, Department of Mammals & Birds, DK-3900, Nuuk, Greenland
| | - Micheline Manseau
- Natural Resources Institute, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2M6
| | - Umer N Chaudhry
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Cyntia K Kashivakura
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Susan J Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
10
|
Diagnosing bovine parafilariosis: utility of the cytochrome c oxidase subunit 1 gene and internal transcribed spacer region for PCR detection of Parafilaria bovicola in skin biopsies and serohemorrhagic exudates of cattle. Parasit Vectors 2019; 12:580. [PMID: 31829219 PMCID: PMC6907150 DOI: 10.1186/s13071-019-3838-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/05/2019] [Indexed: 12/02/2022] Open
Abstract
Background Parafilaria bovicola (Nematoda: Filariidae) causes cutaneous bleedings in bovine species. Flies serve as intermediate hosts. In recent years, reports on bovine parafilariosis have become more frequent, corroborating the necessity of reliable diagnostic interventions especially since no molecular or serological test has been available. We aimed to establish a polymerase chain reaction assay to detect DNA of P. bovicola in flies, skin biopsies and serohemorraghic exudates of bleeding spots. Methods PCRs targeting the cytochrome c oxidase subunit 1 (cox1) gene and the internal transcribed spacer region (ITS) of the ribosomal RNA gene cluster were evaluated for their diagnostic sensitivity as well as performance and specificity on biopsy and serohemorrhagic exudate samples from P. bovicola-infected cattle. Results Using serohemorrhagic exudates (n = 6), biopsies (n = 2) and flies (n = 1), the PCR targeting the cox1 gene resulted in a gel band of almost 700 bp. Cloning, sequencing, and removal of primer sequences yielded a 649-bp fragment of the P. bovicola cox1 gene. The PCR targeting the ITS region showed a band of about 1100 bp. Cloning, sequencing, and removal of primer sequences resulted in a 1083 bp stretch of the P. bovicola ITS region. Testing samples from presumably affected animals, the cox1-PCR resulted in bands with the expected size and they were all confirmed as P. bovicola by sequencing. In contrast, the ITS-PCR proved to be less sensitive and less specific and additionally amplified the ITS region of Musca domestica or buttercup DNA. When analysing for sensitivity, the cox1-PCR yielded visible bands up to 2 ng of genomic DNA, whereas the ITS-PCR produced bands up to 3 ng. In a plasmid dilution series, the minimum number of target DNA copies was 102 for the cox1-PCR and 101 in the ITS-PCR. Conclusions The evaluated cox1-PCR enables reliable detection of P. bovicola DNA in skin biopsies and serohemorrhagic exudates. This PCR and, to a limited extent, the ITS-PCR, may help evaluate different therapeutic approaches. Furthermore, the cox1-PCR may be useful for epidemiological studies on the geographical distribution of P. bovicola. Further understanding of the epidemiology of this parasite will help develop and implement effective control strategies.![]()
Collapse
|
11
|
Tomaselli M, Elkin B, Kutz S, Harms NJ, Nymo HI, Davison T, Leclerc LM, Branigan M, Dumond M, Tryland M, Checkley S. A Transdisciplinary Approach to Brucella in Muskoxen of the Western Canadian Arctic 1989-2016. ECOHEALTH 2019; 16:488-501. [PMID: 31414318 PMCID: PMC6858907 DOI: 10.1007/s10393-019-01433-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 05/30/2023]
Abstract
Brucella serostatus was evaluated in 3189 muskoxen sampled between 1989 and 2016 from various locations of the Canadian Arctic archipelago and mainland, near the communities of Sachs Harbour and Ulukhaktok, Northwest Territories, and Cambridge Bay and Kugluktuk, Nunavut. Brucella antibodies were found only in muskoxen sampled around Cambridge Bay, both on southern Victoria Island and on the adjacent mainland (Kent Peninsula). Consistent with participatory epidemiology data documented from local harvesters describing increased Brucella-like syndromes (swollen joints and lameness) and a decreased proportion of juveniles, the apparent Brucella seroprevalence in the sampled muskoxen of the Cambridge Bay area increased from 0.9% (95% CI 0.3-2.1) in the period of 1989-2001 to 5.6% (95% CI 3.3-8.9) in 2010-2016. The zoonotic bacteria Brucella suis biovar 4 was also cultured from tissues of muskoxen sampled on Victoria Island near Ulukhaktok in 1996 (n = 1) and Cambridge Bay in 1998, 2014, and 2016 (n = 3). Overall, our data demonstrate that B. suis biovar 4 is found in muskoxen that are harvested for food and by guided hunts on Victoria Island and Kent Peninsula, adding an important public health dimension to this study. Robust participatory epidemiology data on muskox health and diseases greatly enhanced the interpretation of our Cambridge Bay data and, combined with the serological and microbiological data, provide compelling evidence that the prevalence of B. suis biovar 4 has increased in this area since the late 1990s. This study enhances the available knowledge on Brucella exposure and infection in muskoxen and provides an example of how scientific knowledge and local knowledge can work together to better understand disease status in wildlife.
Collapse
Affiliation(s)
- Matilde Tomaselli
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, NU, Canada.
| | - Brett Elkin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Environment and Natural Resources, Government of Northwest Territories, Yellowknife, Inuvik, NT, Canada
| | - Susan Kutz
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Canadian Wildlife Health Cooperative, University of Calgary, Calgary, AB, Canada
| | - N Jane Harms
- Department of Environment, Animal Health Unit, Yukon Government, Whitehorse, YT, Canada
| | - H Ingebjørg Nymo
- Research Food Safety and Animal Health, The Norwegian Veterinary Institute, Tromsø, Norway
| | - Tracy Davison
- Department of Environment and Natural Resources, Government of Northwest Territories, Yellowknife, Inuvik, NT, Canada
| | | | - Marsha Branigan
- Department of Environment and Natural Resources, Government of Northwest Territories, Yellowknife, Inuvik, NT, Canada
| | - Mathieu Dumond
- Department of Environment, Government of Nunavut, Kugluktuk, NU, Canada
| | - Morten Tryland
- Department of Arctic and Marine Biology, Research Group for Arctic Infection Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Sylvia Checkley
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Provincial Laboratory for Public Health, Calgary, AB, Canada
| |
Collapse
|
12
|
Alasil SM, Abdullah KA. An Epidemiological Review on Emerging and Re-Emerging Parasitic Infectious Diseases in Malaysia. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Emerging infectious diseases are infections that have recently appeared in a population over a defined period of time whereas, re-emerging infectious diseases are those that were once a health problem in a particular region or a country and are now emerging again. Parasitic infectious diseases represent a serious health problem in many developing countries and recently have started spreading to developed nations via international traveling or immigration. Malaysia is facing many challenges caused by various parasitic pathogens. The lack of awareness among disadvantaged populations such as the Orang Asli community and the dependency on foreign workers has led to an influx of immigrants to Malaysia from countries endemic to various parasitic diseases. Understanding the social and economic dynamics of such diseases can help anticipate and subsequently control their emergence. Raising public awareness, developing robust public health infrastructure and implementing point-of-care diagnostics will help curb the spread of such diseases. This review provides epidemiological insights into the reported emerging and re-emerging parasitic infectious diseases in Malaysia over the past two decades.
Collapse
|
13
|
Galbreath KE, Hoberg EP, Cook JA, Armién B, Bell KC, Campbell ML, Dunnum JL, Dursahinhan AT, Eckerlin RP, Gardner SL, Greiman SE, Henttonen H, Jiménez FA, Koehler AVA, Nyamsuren B, Tkach VV, Torres-Pérez F, Tsvetkova A, Hope AG. Building an integrated infrastructure for exploring biodiversity: field collections and archives of mammals and parasites. J Mammal 2019; 100:382-393. [PMID: 31043762 PMCID: PMC6479512 DOI: 10.1093/jmammal/gyz048] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Museum specimens play an increasingly important role in predicting the outcomes and revealing the consequences of anthropogenically driven disruption of the biosphere. As ecological communities respond to ongoing environmental change, host-parasite interactions are also altered. This shifting landscape of host-parasite associations creates opportunities for colonization of different hosts and emergence of new pathogens, with implications for wildlife conservation and management, public health, and other societal concerns. Integrated archives that document and preserve mammal specimens along with their communities of associated parasites and ancillary data provide a powerful resource for investigating, anticipating, and mitigating the epidemiological, ecological, and evolutionary impacts of environmental perturbation. Mammalogists who collect and archive mammal specimens have a unique opportunity to expand the scope and impact of their field work by collecting the parasites that are associated with their study organisms. We encourage mammalogists to embrace an integrated and holistic sampling paradigm and advocate for this to become standard practice for museum-based collecting. To this end, we provide a detailed, field-tested protocol to give mammalogists the tools to collect and preserve host and parasite materials that are of high quality and suitable for a range of potential downstream analyses (e.g., genetic, morphological). Finally, we also encourage increased global cooperation across taxonomic disciplines to build an integrated series of baselines and snapshots of the changing biosphere. Los especímenes de museo desempeñan un papel cada vez más importante tanto en la descripción de los resultados de la alteración antropogénica de la biosfera como en la predicción de sus consecuencias. Dado que las comunidades ecológicas responden al cambio ambiental, también se alteran las interacciones hospedador-parásito. Este panorama cambiante de asociaciones hospedador-parásito crea oportunidades para la colonización de diferentes hospedadores y para la aparición de nuevos patógenos, con implicancias en la conservación y manejo de la vida silvestre, la salud pública y otras preocupaciones de importancia para la sociedad. Archivos integrados que documentan y preservan especímenes de mamíferos junto con sus comunidades de parásitos y datos asociados, proporcionan un fuerte recurso para investigar, anticipar y mitigar los impactos epidemiológicos, ecológicos y evolutivos de las perturbaciones ambientales. Los mastozoólogos que recolectan y archivan muestras de mamíferos, tienen una oportunidad única de ampliar el alcance e impacto de su trabajo de campo mediante la recolección de los parásitos que están asociados con los organismos que estudian. Alentamos a los mastozoólogos a adoptar un paradigma de muestreo integrado y holístico y abogamos para que esto se convierta en una práctica estándarizada de la obtención de muestras para museos. Con este objetivo, proporcionamos un protocolo detallado y probado en el campo para brindar a los mastozoólogos las herramientas para recolectar y preservar materiales de parásitos y hospedadores de alta calidad y adecuados para una gran variedad de análisis subsecuentes (e.g., genéticos, morfológicos, etc.). Finalmente, también abogamos por una mayor cooperación global entre las diversas disciplinas taxonómicas para construir una serie integrada de líneas de base y registros actuales de nuestra cambiante biosfera.
Collapse
Affiliation(s)
- Kurt E Galbreath
- Department of Biology, Northern Michigan University, Marquette, MI, USA
| | - Eric P Hoberg
- Biology Department and Museum of Southwestern Biology, University of New Mexico, CERIA Building, Albuquerque, NM, USA
| | - Joseph A Cook
- Biology Department and Museum of Southwestern Biology, University of New Mexico, CERIA Building, Albuquerque, NM, USA
| | - Blas Armién
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Kayce C Bell
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Mariel L Campbell
- Biology Department and Museum of Southwestern Biology, University of New Mexico, CERIA Building, Albuquerque, NM, USA
| | - Jonathan L Dunnum
- Biology Department and Museum of Southwestern Biology, University of New Mexico, CERIA Building, Albuquerque, NM, USA
| | - Altangerel T Dursahinhan
- Harold W. Manter Laboratory of Parasitology, Division of Parasitology, University of Nebraska State Museum, W Nebraska Hall University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Ralph P Eckerlin
- Mathematics, Science and Engineering Division, Northern Virginia Community College, Annandale, VA, USA
| | - Scott L Gardner
- Harold W. Manter Laboratory of Parasitology, Division of Parasitology, University of Nebraska State Museum, W Nebraska Hall University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Stephen E Greiman
- Biology Department, Georgia Southern University, Statesboro, GA, USA
| | | | - F Agustín Jiménez
- Department of Zoology, Southern Illinois University, Carbondale, IL, USA
| | - Anson V A Koehler
- Department of Veterinary Biosciences, The University of Melbourne, Cnr Flemington Road and Park Drive, Parkville, Victoria, Australia
| | | | - Vasyl V Tkach
- Biology Department, University of North Dakota, Grand Forks, ND, USA
| | - Fernando Torres-Pérez
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Albina Tsvetkova
- Institute of Ecology and Evolution A.N. Severtsov RAS, Saratov Branch, Saratov, Russia
| | - Andrew G Hope
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
14
|
Parasite prevalence increases with temperature in an avian metapopulation in northern Norway. Parasitology 2019; 146:1030-1035. [PMID: 30977457 DOI: 10.1017/s0031182019000337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Climate and weather conditions may have substantial effects on the ecology of both parasites and hosts in natural populations. The strength and shape of the effects of weather on parasites and hosts are likely to change as global warming affects local climate. These changes may in turn alter fundamental elements of parasite-host dynamics. We explored the influence of temperature and precipitation on parasite prevalence in a metapopulation of avian hosts in northern Norway. We also investigated if annual change in parasite prevalence was related to winter climate, as described by the North Atlantic Oscillation (NAO). We found that parasite prevalence increased with temperature within-years and decreased slightly with increasing precipitation. We also found that a mild winter (positive winter NAO index) was associated with higher mean parasite prevalence the following year. Our results indicate that both local and large scale weather conditions may affect the proportion of hosts that become infected by parasites in natural populations. Understanding the effect of climate and weather on parasite-host relationships in natural populations is vital in order to predict the full consequence of global warming.
Collapse
|
15
|
Hoberg EP, Burek-Huntington K, Beckmen K, Camp LE, Nadler SA. Transuterine infection by Baylisascaris transfuga: Neurological migration and fatal debilitation in sibling moose calves ( Alces alces gigas) from Alaska. Int J Parasitol Parasites Wildl 2018; 7:280-288. [PMID: 30094177 PMCID: PMC6072913 DOI: 10.1016/j.ijppaw.2018.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 11/26/2022]
Abstract
Larval Baylisascaris nematodes (L3), resulting from transuterine infection and neural migration, were discovered in the cerebrum of sibling moose calves (Alces alces gigas) near 1-3 days in age from Alaska. We provide the first definitive identification, linking morphology, biogeography, and molecular phylogenetics, of Baylisascaris transfuga in naturally infected ungulates. Life history and involvement of paratenic hosts across a broader assemblage of mammals, from rodents to ungulates, in the transmission of B. transfuga remains undefined. Neural infections, debilitating young moose, may seasonally predispose calves to predation by brown bears, facilitating transmission to definitive hosts. Discovery of fatal neurological infections by L3 of B. transfuga in mammalian hosts serves to demonstrate the potential for zoonotic infection, as widely established for B. procyonis, in other regions and where raccoon definitive hosts are abundant. In zones of sympatry for multi-species assemblages of Baylisascaris across the Holarctic region presumptive identification of B. procyonis in cases of neurological larval migrans must be considered with caution. Diagnostics in neural and somatic larval migrans involving species of Baylisascaris in mammalian and other vertebrate hosts should include molecular-based and authoritative identification established in a phylogenetic context.
Collapse
Affiliation(s)
- Eric P. Hoberg
- School of Veterinary Medicine, Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, 53706, United States
| | - Kathleen Burek-Huntington
- Alaska Veterinary Pathology Services, 23834 The Clearing Drive, Eagle River, AK, 99577, United States
| | - Kimberlee Beckmen
- Alaska Department of Fish and Game, Division of Wildlife Conservation, 1300 College Road, Fairbanks, AK, 99701, United States
| | - Lauren E. Camp
- Department of Entomology & Nematology, University of California, Davis, CA, 95616, United States
| | - Steven A. Nadler
- Department of Entomology & Nematology, University of California, Davis, CA, 95616, United States
| |
Collapse
|
16
|
Kafle P, Peacock SJ, Grond S, Orsel K, Kutz S. Temperature-dependent development and freezing survival of protostrongylid nematodes of Arctic ungulates: implications for transmission. Parasit Vectors 2018; 11:400. [PMID: 29986762 PMCID: PMC6038258 DOI: 10.1186/s13071-018-2946-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Umingmakstrongylus pallikuukensis and Varestrongylus eleguneniensis are two potentially pathogenic lungworms of caribou and muskoxen in the Canadian Arctic. These parasites are currently undergoing northward range expansion at differential rates. It is hypothesized that their invasion and spread to the Canadian Arctic Archipelago are in part driven by climate warming. However, very little is known regarding their physiological ecology, limiting our ability to parameterize ecological models to test these hypotheses and make meaningful predictions. In this study, the developmental parameters of V. eleguneniensis inside a gastropod intermediate host were determined and freezing survival of U. pallikuukensis and V. eleguneniensis were compared. METHODS Slug intermediate hosts, Deroceras laeve, were collected from their natural habitat and experimentally infected with first-stage larvae (L1) of V. eleguneniensis. Development of L1 to third-stage larvae (L3) in D. laeve was studied at constant temperature treatments from 8.5 to 24 °C. To determine freezing survival, freshly collected L1 of both parasite species were held in water at subzero temperatures from -10 to -80 °C, and the number of L1 surviving were counted at 2, 7, 30, 90 and 180 days. RESULTS The lower threshold temperature (T0) below which the larvae of V. eleguneniensis did not develop into L3 was 9.54 °C and the degree-days required for development (DD) was 171.25. Both U. pallikuukensis and V. eleguneniensis showed remarkable freeze tolerance: more than 80% of L1 survived across all temperatures and durations. Larval survival decreased with freezing duration but did not differ between the two species. CONCLUSION Both U. pallikuukensis and V. eleguneniensis have high freezing survival that allows them to survive severe Arctic winters. The higher T0 and DD of V. eleguneniensis compared to U. pallikuukensis may contribute to the comparatively slower range expansion of the former. Our study advances knowledge of Arctic parasitology and provides ecological and physiological data that can be useful for parameterizing ecological models.
Collapse
Affiliation(s)
- Pratap Kafle
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB Canada
| | - Stephanie J. Peacock
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB Canada
| | - Sarah Grond
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA
| | - Karin Orsel
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB Canada
| | - Susan Kutz
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB Canada
| |
Collapse
|
17
|
Aleuy OA, Ruckstuhl K, Hoberg EP, Veitch A, Simmons N, Kutz SJ. Diversity of gastrointestinal helminths in Dall's sheep and the negative association of the abomasal nematode, Marshallagia marshalli, with fitness indicators. PLoS One 2018. [PMID: 29538393 PMCID: PMC5851548 DOI: 10.1371/journal.pone.0192825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Gastrointestinal helminths can have a detrimental effect on the fitness of wild ungulates. Arctic and Subarctic ecosystems are ideal for the study of host-parasite interactions due to the comparatively simple ecological interactions and limited confounding factors. We used a unique dataset assembled in the early seventies to study the diversity of gastrointestinal helminths and their effect on fitness indicators of Dall’s sheep, Ovis dalli dalli, in the Mackenzie Mountains, Northwest Territories, Canada. Parasite diversity included nine species, among which the abomasal nematode Marshallagia marshalli occurred with the highest prevalence and infection intensity. The intensity of M. marshalli increased with age and was negatively associated with body condition and pregnancy status in Dall’s sheep across all the analyses performed. The intensity of the intestinal whipworm, Trichuris schumakovitschi, decreased with age. No other parasites were significantly associated with age, body condition, or pregnancy. Our study suggests that M. marshalli might negatively influence fitness of adult female Dall’s sheep.
Collapse
Affiliation(s)
- O. Alejadro Aleuy
- Department of Biological Sciences, University of Calgary, Calgary, Canada
- * E-mail:
| | - Kathreen Ruckstuhl
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Eric P. Hoberg
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Alburquerque, NM, United States of America
| | | | - Norman Simmons
- Producers of Diamond Willow, Pincher Creek, Alberta, Canada
| | - Susan J. Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
18
|
Kafle P, Leclerc LM, Anderson M, Davison T, Lejeune M, Kutz S. Morphological keys to advance the understanding of protostrongylid biodiversity in caribou ( Rangifer spp.) at high latitudes. Int J Parasitol Parasites Wildl 2017; 6:331-339. [PMID: 29159064 PMCID: PMC5678365 DOI: 10.1016/j.ijppaw.2017.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/05/2022]
Abstract
The Protostrongylidae is a diverse family of nematodes capable of causing significant respiratory and neuromuscular disease in their ungulate and lagomorph hosts. Establishing the species diversity and abundance of the protostrongylid fauna has been hindered because the first stage larvae, commonly referred as dorsal spined larvae (DSL), that are shed in the feces are morphologically very similar among several genera. We aimed to determine the protostrongylid diversity and distribution in caribou (Rangifer tarandus groenlandicus and R. t. pearyi) in the central and high Canadian Arctic. We first developed, tested and validated a morphological diagnostic guide for the DSL of two important protostrongylids, Parelaphostrongylus andersoni and Varestrongylus eleguneniensis, and then applied this guide to determine the prevalence and intensity of infection of these parasites in fecal samples from 242 caribou. We found that DSL of V. eleguneniensis and P. andersoni can be differentiated morphologically based on the structural differences at the caudal extremity. The presentation and morphology of the dorsal spine, and caudoventral bulging at the start of the tail extension were identified as the key identifying features. The two species were found in caribou on the arctic mainland and southern Victoria Island in single and co-infections, but the prevalence and intensity of infection was low. No protostrongylids were detected in caribou from the high arctic islands. Through this study, we provide a simple, efficient, and robust method to distinguish the DSL of the two protostrongylids, and present the current status of infection in different herds of caribou of the central Canadian Arctic. We report new geographic and host records for P. andersoni infection in Dolphin and Union caribou herd.
Collapse
Affiliation(s)
- Pratap Kafle
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Lisa-Marie Leclerc
- Department of Environment, Government of Nunavut, Kugluktuk, NU, X0B 0E0, Canada
| | - Morgan Anderson
- Department of Environment, Government of Nunavut, Igloolik, NU, X0A 0L0, Canada
| | - Tracy Davison
- Department of Environment and Natural Resources, Government of Northwest Territories, Inuvik, NT, X0E 0T0, Canada
| | - Manigandan Lejeune
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Susan Kutz
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
19
|
Di Francesco J, Navarro-Gonzalez N, Wynne-Edwards K, Peacock S, Leclerc LM, Tomaselli M, Davison T, Carlsson A, Kutz S. Qiviut cortisol in muskoxen as a potential tool for informing conservation strategies. CONSERVATION PHYSIOLOGY 2017; 5:cox052. [PMID: 28948023 PMCID: PMC5601961 DOI: 10.1093/conphys/cox052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/06/2017] [Accepted: 08/23/2017] [Indexed: 05/30/2023]
Abstract
Muskoxen (Ovibos moschatus) are increasingly subject to multiple new stressors associated with unprecedented climate change and increased anthropogenic activities across much of their range. Hair may provide a measurement of stress hormones (glucocorticoids) over periods of weeks to months. We developed a reliable method to quantify cortisol in the qiviut (wooly undercoat) of muskoxen using liquid chromatography coupled to tandem mass spectrometry. We then applied this technique to determine the natural variability in qiviut cortisol levels among 150 wild muskoxen, and to assess differences between sexes, seasons and years of collection. Qiviut samples were collected from the rump of adult muskoxen by subsistence and sport hunters in seven different locations in Nunavut and the Northwest Territories between 2013 and 2016. Results showed a high inter-individual variability in qiviut cortisol concentrations, with levels ranging from 3.5 to 48.9 pg/mg (median 11.7 pg/mg). Qiviut cortisol levels were significantly higher in males than females, and varied seasonally (summer levels were significantly lower than in fall and winter), and by year (levels significantly increased from 2013 to 2015). These differences may reflect distinct environmental conditions and the diverse stressors experienced, as well as physiological and/or behavioural characteristics. Quantification of qiviut cortisol may serve as a valuable tool for monitoring health and informing conservation and management efforts.
Collapse
Affiliation(s)
- Juliette Di Francesco
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, CanadaT2N 4Z6
| | - Nora Navarro-Gonzalez
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, CanadaT2N 4Z6
| | - Katherine Wynne-Edwards
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, CanadaT2N 4Z6
| | - Stephanie Peacock
- Department of Biological Sciences, Faculty of Science, University of Calgary, 507 Campus Drive NW, Calgary, Alberta, CanadaT2N 4V8
| | - Lisa-Marie Leclerc
- Department of Environment, Government of Nunavut, P.O. Box 377, Kugluktuk, Nunavut, CanadaX0B 0E0
| | - Matilde Tomaselli
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, CanadaT2N 4Z6
| | - Tracy Davison
- Department of Environment and Natural Resources, Government of the Northwest Territories, P.O. Box 2749, Inuvik, Northwest Territories, CanadaX0E 0T0
| | - Anja Carlsson
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, CanadaT2N 4Z6
| | - Susan Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, CanadaT2N 4Z6
| |
Collapse
|
20
|
Kafle P, Sullivan J, Verocai GG, Kutz SJ. Experimental Life-Cycle of Varestrongylus eleguneniensis (Nematoda: Protostrongylidae) in a Captive Reindeer (Rangifer tarandus tarandus) and a Muskox (Ovibos moschatus moschatus). J Parasitol 2017; 103:584-587. [PMID: 28590168 DOI: 10.1645/17-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The life-cycle of a recently described protostrongylid lungworm, Varestrongylus eleguneniensis, which infects caribou, muskoxen, and moose from Arctic and boreal regions of North America, was completed experimentally for the first time. A native North American slug species, Deroceras laeve, was infected with the first-stage larvae (L1) isolated from the feces of wild muskoxen to generate third-stage larvae (L3). These were administered to a captive reindeer calf (250 L3) and an adult captive muskox (380 L3). The prepatent periods for the reindeer and muskox were 56 and 72 days, respectively. Patency lasted for only 19 days in the reindeer, and fecal larval counts were very low (0.09-1.53 larvae per gram of feces). Patency in the muskox was at least 210 days, and likely over 653 days, and the fecal larval counts were higher (0.06-17.8 larvae per gram of feces). This work provides the first experimental completion of the life-cycle of V. eleguneniensis.
Collapse
Affiliation(s)
- P Kafle
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary (UCVM). 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada. Correspondence should be sent to S. J. Kutz at:
| | - J Sullivan
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary (UCVM). 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada. Correspondence should be sent to S. J. Kutz at:
| | - G G Verocai
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary (UCVM). 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada. Correspondence should be sent to S. J. Kutz at:
| | - S J Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary (UCVM). 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada. Correspondence should be sent to S. J. Kutz at:
| |
Collapse
|
21
|
Arctic systems in the Quaternary: ecological collision, faunal mosaics and the consequences of a wobbling climate. J Helminthol 2017; 91:409-421. [DOI: 10.1017/s0022149x17000347] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AbstractClimate oscillations and episodic processes interact with evolution, ecology and biogeography to determine the structure and complex mosaic that is the biosphere. Parasites and parasite–host assemblages are key components in a general explanatory paradigm for global biodiversity. We explore faunal assembly in the context of Quaternary time frames of the past 2.6 million years, a period dominated by episodic shifts in climate. Climate drivers cross a continuum from geological to contemporary timescales and serve to determine the structure and distribution of complex biotas. Cycles within cycles are apparent, with drivers that are layered, multifactorial and complex. These cycles influence the dynamics and duration of shifts in environmental structure on varying temporal and spatial scales. An understanding of the dynamics of high-latitude systems, the history of the Beringian nexus (the intermittent land connection linking Eurasia and North America) and downstream patterns of diversity depend on teasing apart the complexity of biotic assembly and persistence. Although climate oscillations have dominated the Quaternary, contemporary dynamics are driven by tipping points and shifting balances emerging from anthropogenic forces that are disrupting ecological structure. Climate change driven by anthropogenic forcing has supplanted a history of episodic variation and is eliminating ecological barriers and constraints on development and distribution for pathogen transmission. A framework to explore interactions of episodic processes on faunal structure and assembly is the Stockholm Paradigm, which appropriately shifts the focus from cospeciation to complexity and contingency in explanations of diversity.
Collapse
|
22
|
Galaktionov KV. Transmission of parasites in the coastal waters of the Arctic seas and possible effect of climate change. BIOL BULL+ 2017. [DOI: 10.1134/s1062359016110054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Enemark HL, Oksanen A, Chriél M, le Fèvre Harslund J, Woolsey ID, Al-Sabi MNS. Detection and molecular characterization of the mosquito-borne filarial nematode Setaria tundra in Danish roe deer ( Capreolus capreolus). INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2017; 6:16-21. [PMID: 28229043 PMCID: PMC5312512 DOI: 10.1016/j.ijppaw.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 11/29/2022]
Abstract
Setaria tundra is a mosquito-borne filarial nematode of cervids in Europe. It has recently been associated with an emerging epidemic disease causing severe morbidity and mortality in reindeer and moose in Finland. Here, we present the first report of S. tundra in six roe deer (Capreolus capreolus) collected between October 2010 and March 2014 in Denmark. The deer originated from various localities across the country: the eastern part of the Jutland peninsular and four locations on the island Zealand. With the exception of one deer, with parasites residing in a transparent cyst just under the liver capsule, worms (ranging from 2 to >20/deer) were found free in the peritoneal cavity. The worms were identified as S. tundra by morphological examination and/or molecular typing of the mitochondrial 12S rRNA and cox1 genes, which showed 99.1–99.8% identity to previously published S. tundra isolates from Europe. Roe deer are generally considered as asymptomatic carriers and their numbers in Denmark have increased significantly in recent decades. In light of climatic changes which result in warmer, more humid weather in Scandinavia greater numbers of mosquitoes and, especially, improved conditions for development of parasite larvae in the mosquito vectors are expected, which may lead to increasing prevalence of S. tundra. Monitoring of this vector-borne parasite may thus be needed in order to enhance the knowledge of factors promoting its expansion and prevalence as well as predicting disease outbreaks. Setaria tundra was recovered from six roe deer in Denmark. Infected deer originated from Jutland and Zealand. Worms were found in the peritoneal cavity and under the liver capsule. 12S rRNA and cox1sequences showed 99.1–99.8% identity to other European isolates. Climatic changes and increasing density of deer may affect prevalence of S. tundra.
Collapse
Affiliation(s)
- Heidi Larsen Enemark
- Technical University of Denmark, DK-1870, Frederiksberg C, Denmark; Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - Antti Oksanen
- Finnish Food Safety Authority Evira, Production Animal and Wildlife Health Research Unit (FINPAR), Elektroniikkatie 3, FI-90590, Oulu, Finland
| | - Mariann Chriél
- Technical University of Denmark, DK-1870, Frederiksberg C, Denmark
| | | | - Ian David Woolsey
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | | |
Collapse
|
24
|
Tian H, Yu P, Bjørnstad ON, Cazelles B, Yang J, Tan H, Huang S, Cui Y, Dong L, Ma C, Ma C, Zhou S, Laine M, Wu X, Zhang Y, Wang J, Yang R, Stenseth NC, Xu B. Anthropogenically driven environmental changes shift the ecological dynamics of hemorrhagic fever with renal syndrome. PLoS Pathog 2017; 13:e1006198. [PMID: 28141833 PMCID: PMC5302841 DOI: 10.1371/journal.ppat.1006198] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/10/2017] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Zoonoses are increasingly recognized as an important burden on global public health in the 21st century. High-resolution, long-term field studies are critical for assessing both the baseline and future risk scenarios in a world of rapid changes. We have used a three-decade-long field study on hantavirus, a rodent-borne zoonotic pathogen distributed worldwide, coupled with epidemiological data from an endemic area of China, and show that the shift in the ecological dynamics of Hantaan virus was closely linked to environmental fluctuations at the human-wildlife interface. We reveal that environmental forcing, especially rainfall and resource availability, exert important cascading effects on intra-annual variability in the wildlife reservoir dynamics, leading to epidemics that shift between stable and chaotic regimes. Our models demonstrate that bimodal seasonal epidemics result from a powerful seasonality in transmission, generated from interlocking cycles of agricultural phenology and rodent behavior driven by the rainy seasons.
Collapse
Affiliation(s)
- Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Pengbo Yu
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi’an, Shaanxi, China
| | - Ottar N. Bjørnstad
- Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania
| | - Bernard Cazelles
- Ecologie & Evolution, UMR 7625, UPMC-ENS, Paris, France
- UMMISCO UMI 209 IRD - UPMC, Bondy, France
| | - Jing Yang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Hua Tan
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Shanqian Huang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lu Dong
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Chaofeng Ma
- Xi’an Centre for Disease Control and Prevention, Xi’an, Shaanxi, China
| | - Changan Ma
- Hu County Centre for Disease Control and Prevention, Xi’an, Shaanxi, China
| | - Sen Zhou
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, School of Environment, Tsinghua University, Beijing, China
| | - Marko Laine
- Finnish Meteorological Institute, Helsinki, Finland
| | - Xiaoxu Wu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Yanyun Zhang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingjun Wang
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi’an, Shaanxi, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of OsloBlindern, Oslo, Norway
| | - Bing Xu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
25
|
Forde TL, Orsel K, Zadoks RN, Biek R, Adams LG, Checkley SL, Davison T, De Buck J, Dumond M, Elkin BT, Finnegan L, Macbeth BJ, Nelson C, Niptanatiak A, Sather S, Schwantje HM, van der Meer F, Kutz SJ. Bacterial Genomics Reveal the Complex Epidemiology of an Emerging Pathogen in Arctic and Boreal Ungulates. Front Microbiol 2016; 7:1759. [PMID: 27872617 PMCID: PMC5097903 DOI: 10.3389/fmicb.2016.01759] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022] Open
Abstract
Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host factors.
Collapse
Affiliation(s)
- Taya L. Forde
- Faculty of Veterinary Medicine, University of CalgaryCalgary, AB, Canada
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of GlasgowGlasgow, UK
| | - Karin Orsel
- Faculty of Veterinary Medicine, University of CalgaryCalgary, AB, Canada
| | - Ruth N. Zadoks
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of GlasgowGlasgow, UK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of GlasgowGlasgow, UK
| | - Layne G. Adams
- Alaska Science Center, U.S. Geological SurveyAnchorage, AK, USA
| | - Sylvia L. Checkley
- Faculty of Veterinary Medicine, University of CalgaryCalgary, AB, Canada
| | - Tracy Davison
- Environment and Natural Resources, Government of Northwest TerritoriesInuvik, NT, Canada
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of CalgaryCalgary, AB, Canada
| | - Mathieu Dumond
- Department of Environment, Government of NunavutKugluktuk, NU, Canada
| | - Brett T. Elkin
- Environment and Natural Resources, Government of Northwest TerritoriesYellowknife, NT, Canada
| | | | - Bryan J. Macbeth
- Faculty of Veterinary Medicine, University of CalgaryCalgary, AB, Canada
| | - Cait Nelson
- Ministry of Forests, Lands and Natural Resource Operations, Government of British ColumbiaNanaimo, BC, Canada
| | | | - Shane Sather
- Department of Environment, Government of NunavutCambridge Bay, Nunavut, Canada
| | - Helen M. Schwantje
- Ministry of Forests, Lands and Natural Resource Operations, Government of British ColumbiaNanaimo, BC, Canada
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of CalgaryCalgary, AB, Canada
| | - Susan J. Kutz
- Faculty of Veterinary Medicine, University of CalgaryCalgary, AB, Canada
- Canadian Wildlife Health CooperativeCalgary, AB, Canada
| |
Collapse
|
26
|
Modeling impacts of climate change on the potential distribution of the carcinogenic liver fluke, Opisthorchis viverrini, in Thailand. Parasitol Res 2016; 116:243-250. [PMID: 27774575 DOI: 10.1007/s00436-016-5285-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
Global climate change is now regarded as imposing a significant threat of enhancing transmission of parasitic diseases. Maximum entropy species distribution modeling (MaxEnt) was used to explore how projected climate change could affect the potential distribution of the carcinogenic liver fluke, Opisthorchis viverrini, in Thailand. A range of climate variables was used: the Hadley Global Environment Model 2-Earth System (HadGEM2-ES) climate change model and also the IPCC scenarios A2a for 2050 and 2070. Occurrence data from surveys conducted in 2009 and 2014 were obtained from the Department of Disease Control, Ministry of Public Health, Thailand. The MaxEnt model performed better than random for O. viverrini with training AUC values greater than 0.8 under current and future climatic conditions. The current distribution of O. viverrini is significantly affected by precipitation and minimum temperature. According to current conditions, parts of Thailand climatically suitable for O. viverrini are mostly in the northeast and north, but the parasite is largely absent from southern Thailand. Under future climate change scenarios, the distribution of O. viverrini in 2050 should be significantly affected by precipitation, maximum temperature, and mean temperature of the wettest quarter, whereas in 2070, significant factors are likely to be precipitation during the coldest quarter, maximum, and minimum temperatures. Maps of predicted future distribution revealed a drastic decrease in presence of O. viverrini in the northeast region. The information gained from this study should be a useful reference for implementing long-term prevention and control strategies for O. viverrini in Thailand.
Collapse
|
27
|
Helminth community structure in two species of arctic-breeding waterfowl. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2016; 5:263-272. [PMID: 27709067 PMCID: PMC5040642 DOI: 10.1016/j.ijppaw.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/28/2022]
Abstract
Climate change is occurring rapidly at high latitudes, and subsequent changes in parasite communities may have implications for hosts including wildlife and humans. Waterfowl, in particular, harbor numerous parasites and may facilitate parasite movement across broad geographic areas due to migratory movements. However, little is known about helminth community structure of waterfowl at northern latitudes. We investigated the helminth communities of two avian herbivores that breed at high latitudes, Pacific black brant (Branta bernicla nigricans), and greater white-fronted geese (Anser albifrons), to examine effects of species, geographic area, age, and sex on helminth species richness, aggregation, prevalence, and intensity. We collected 83 and 58 black brant and white-fronted geese, respectively, from Arctic and Subarctic Alaska July–August 2014. We identified 10 known helminth species (Amidostomum anseris, Amidostomum spatulatum, Drepanidotaenia lanceolata, Epomidiostomum crami, Heterakis dispar, Notocotylus attenuatus, Tetrameres striata, Trichostrongylus tenuis, Tschertkovilepis setigera, and Wardoides nyrocae) and 1 previously undescribed trematode. All geese sampled were infected with at least one helminth species. All helminth species identified were present in both age classes and species, providing evidence of transmission at high latitudes and suggesting broad host susceptibility. Also, all but one helminth species were present at both sites, suggesting conditions are suitable for transmission across a large latitudinal/environmental gradient. Our study provides important baseline information on avian parasites that can be used to evaluate the effects of a changing climate on host-parasite distributions. We collected two goose species in two high-latitude locations to quantify helminths. We identified 10 helminths and 1 previously unidentified trematode in two hosts. Waterfowl helminths are readily transmitted in the Arctic and Subarctic. Arctic-breeding geese have high helminth prevalence rates and infection intensities.
Collapse
|
28
|
Inoshima Y, Takasu M, Ishiguro N. Establishment of an on-site diagnostic procedure for detection of orf virus from oral lesions of Japanese serows (Capricornis crispus) by loop-mediated isothermal amplification. J Vet Med Sci 2016; 78:1841-1845. [PMID: 27628591 PMCID: PMC5240763 DOI: 10.1292/jvms.16-0268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Orf virus infection has been prevalent continuously in the population of wild Japanese serows (Capricornis crispus), goat-like grazing cloven-hoofed mammal species that live mainly in mountainous areas of Japan. Currently, definitive diagnosis of infection requires time-consuming laboratory work. To diagnose rapidly on-site, we developed a field-friendly procedure for the detection of orf virus from oral cavity lesions. DNA was extracted from goat saliva spiked with orf virus as a proxy for Japanese serows by a commercial kit without the use of electricity, and the quality of the extracted DNA was evaluated by conventional polymerase chain reaction (PCR). Extracted DNA was amenable to DNA amplification, the same as when extracted in a laboratory. Next, to find optimal conditions for DNA amplification by loop-mediated isothermal amplification (LAMP), Bst and Csa DNA polymerases and 3 colorimetric indicators for visual diagnosis, hydroxy naphthol blue (HNB), malachite green and D-QUICK, were compared using a portable cordless incubator. The combination of Bst or Csa DNA polymerase with HNB was found to be easiest for visual diagnosis by the naked eye, and viral DNA was successfully amplified from all orf virus strains used. These results suggest that the procedure established here can work completely on-site and can be useful for definitive diagnosis and differentiation of orf virus infection in Japanese serows in remote mountainous areas.
Collapse
Affiliation(s)
- Yasuo Inoshima
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | | | | |
Collapse
|
29
|
Simard AA, Kutz S, Ducrocq J, Beckmen K, Brodeur V, Campbell M, Croft B, Cuyler C, Davison T, Elkin B, Giroux T, Kelly A, Russell D, Taillon J, Veitch A, Côté SD. Variation in the intensity and prevalence of macroparasites in migratory caribou: a quasi-circumpolar study. CAN J ZOOL 2016. [DOI: 10.1139/cjz-2015-0190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparative studies across time and geographical regions are useful to improve our understanding of the health of wildlife populations. Our goal was to study parasitism in migratory caribou (Rangifer tarandus (L., 1758)) of North America and Greenland. A total of 1507 caribou were sampled across 12 herds to assess seven of their main helminth and arthropod macroparasites between 1978 and 2010. We sought to determine which factors such as sex, age class, herd size, and season best explained the prevalence and intensity of those parasites. Intensity of warble fly (Hypoderma tarandi (L., 1758)) larvae increased with age for males, whereas the opposite was observed in females. Prevalence of giant liver flukes (Fascioloides magna (Bassi, 1875) Ward, 1917), tapeworm Taenia hydatigena Pallas, 1766, and nose bot fly (Cephenemyia trompe (Modeer, 1786)) larvae was higher in adults than in calves. Prevalence of F. magna and T. hydatigena was higher at high herd size than at lower herd size. Greenland herds had the lowest prevalence of T. hydatigena and of the tapeworm Taenia krabbei Moniez, 1879, a higher intensity of H. tarandi, and a higher prevalence of C. trompe than the other herds. Of the herds from Quebec and Labrador, the Rivière-George herd had a higher prevalence of F. magna than the Rivière-aux-Feuilles herd. Our research provides the first comparative survey of these parasites of caribou across a broad spatial–temporal range.
Collapse
Affiliation(s)
- Alice-Anne Simard
- Université Laval, Département de biologie and Centre d’études nordiques, Pavillon Alexandre-Vachon, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Susan Kutz
- University of Calgary, Faculty of Veterinary Medicine, 3330 University Drive Northwest, Calgary, AB T2N 4N1, Canada
| | - Julie Ducrocq
- University of Calgary, Faculty of Veterinary Medicine, 3330 University Drive Northwest, Calgary, AB T2N 4N1, Canada
| | - Kimberlee Beckmen
- Alaska Department of Fish and Game, Division of Wildlife Conservation, 1300 College Road, Fairbanks, AK 99701, USA
| | - Vincent Brodeur
- Ministère des Forêts, de la Faune et des Parcs, Direction des opérations régionales du Nord-du-Québec, 951 boulevard Hamel, Chibougamau, QC G8P 2Z3, Canada
| | - Mitch Campbell
- Government of Nunavut, Department of Environment, Kivalliq Region, P.O. Box 120, Arviat, NU X0C 0E0, Canada
| | - Bruno Croft
- Government of the Northwest Territories, Environment and Natural Resources, Wildlife Division, 600 5102-50th Avenue, Yellowknife, NT X1A 3S8, Canada
| | - Christine Cuyler
- Greenland Institute of Natural Resources, P.O. Box 570, 3900 Nuuk, Greenland
| | - Tracy Davison
- Government of the Northwest Territories in Inuvik, Department of Environment and Natural Resources, Inuvik Region Shell Lake, P.O. Box 2749, Inuvik, NT X0E 0T0, Canada
| | - Brett Elkin
- Government of the Northwest Territories, Environment and Natural Resources, Wildlife Division, 600 5102-50th Avenue, Yellowknife, NT X1A 3S8, Canada
| | - Tina Giroux
- Athabasca Denesuline Né Né Land Corporation, P.O. Box 23126, South Hill, Prince Albert, SK S6V 8A7, Canada
| | - Allicia Kelly
- Government of the Northwest Territories, Department of Environment and Natural Resources, South Slave Region, P.O. Box 900, Fort Smith, NT X0E 0P0, Canada
| | - Don Russell
- Conservation and Sustainability, Environment and Climate Change Canada, Canadian Wildlife Service, Pacific and Yukon Region, 91782 Alaska Highway, Whitehorse, YT Y1A 5B7, Canada
| | - Joëlle Taillon
- Université Laval, Département de biologie and Centre d’études nordiques, Pavillon Alexandre-Vachon, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Alasdair Veitch
- Government of the Northwest Territories, Department of Environment and Natural Resources, Wildlife Management – Sahtu Region, P.O. Box 130, Norman Wells NT X0E 0V0, Canada
| | - Steeve D. Côté
- Université Laval, Département de biologie and Centre d’études nordiques, Pavillon Alexandre-Vachon, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| |
Collapse
|
30
|
McLean BS, Bell KC, Dunnum JL, Abrahamson B, Colella JP, Deardorff ER, Weber JA, Jones AK, Salazar-Miralles F, Cook JA. Natural history collections-based research: progress, promise, and best practices. J Mammal 2016; 97:287-297. [PMID: 26989266 PMCID: PMC4794611 DOI: 10.1093/jmammal/gyv178] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Specimens and associated data in natural history collections (NHCs) foster substantial scientific progress. In this paper, we explore recent contributions of NHCs to the study of systematics and biogeography, genomics, morphology, stable isotope ecology, and parasites and pathogens of mammals. To begin to assess the magnitude and scope of these contributions, we analyzed publications in the Journal of Mammalogy over the last decade, as well as recent research supported by a single university mammal collection (Museum of Southwestern Biology, Division of Mammals). Using these datasets, we also identify weak links that may be hindering the development of crucial NHC infrastructure. Maintaining the vitality and growth of this foundation of mammalogy depends on broader engagement and support from across the scientific community and is both an ethical and scientific imperative given the rapidly changing environmental conditions on our planet.
Collapse
Affiliation(s)
- Bryan S. McLean
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Kayce C. Bell
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Jonathan L. Dunnum
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Bethany Abrahamson
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Jocelyn P. Colella
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Eleanor R. Deardorff
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Jessica A. Weber
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Amanda K. Jones
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Fernando Salazar-Miralles
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Joseph A. Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| |
Collapse
|
31
|
Dudley JP, Hoberg EP, Jenkins EJ, Parkinson AJ. Climate Change in the North American Arctic: A One Health Perspective. ECOHEALTH 2015; 12:713-25. [PMID: 26070525 DOI: 10.1007/s10393-015-1036-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 05/25/2023]
Abstract
Climate change is expected to increase the prevalence of acute and chronic diseases among human and animal populations within the Arctic and subarctic latitudes of North America. Warmer temperatures are expected to increase disease risks from food-borne pathogens, water-borne diseases, and vector-borne zoonoses in human and animal populations of Arctic landscapes. Existing high levels of mercury and persistent organic pollutant chemicals circulating within terrestrial and aquatic ecosystems in Arctic latitudes are a major concern for the reproductive health of humans and other mammals, and climate warming will accelerate the mobilization and biological amplification of toxic environmental contaminants. The adverse health impacts of Arctic warming will be especially important for wildlife populations and indigenous peoples dependent upon subsistence food resources from wild plants and animals. Additional research is needed to identify and monitor changes in the prevalence of zoonotic pathogens in humans, domestic dogs, and wildlife species of critical subsistence, cultural, and economic importance to Arctic peoples. The long-term effects of climate warming in the Arctic cannot be adequately predicted or mitigated without a comprehensive understanding of the interactive and synergistic effects between environmental contaminants and pathogens in the health of wildlife and human communities in Arctic ecosystems. The complexity and magnitude of the documented impacts of climate change on Arctic ecosystems, and the intimacy of connections between their human and wildlife communities, makes this region an appropriate area for development of One Health approaches to identify and mitigate the effects of climate warming at the community, ecosystem, and landscape scales.
Collapse
Affiliation(s)
- Joseph P Dudley
- Leidos, Inc., 20201 Century Boulevard, Suite 105, Germantown, MD, 20874, USA.
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA.
| | - Eric P Hoberg
- US National Parasite Collection, U.S. Department of Agriculture - Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Emily J Jenkins
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| | - Alan J Parkinson
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, AK, 99508, USA.
| |
Collapse
|
32
|
Beck MA, Colwell DD, Goater CP, Kienzle SW. Where's the risk? Landscape epidemiology of gastrointestinal parasitism in Alberta beef cattle. Parasit Vectors 2015; 8:434. [PMID: 26303931 PMCID: PMC4548846 DOI: 10.1186/s13071-015-1040-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/08/2015] [Indexed: 11/12/2022] Open
Abstract
Background Gastrointenstinal nematodes (GIN) present a serious challenge to the health and productivity of grazing stock around the globe. However, the epidemiology of GIN transmission remains poorly understood in northern climates. Combining use of serological diagnostics, GIS mapping technology, and geospatial statistics, we evaluated ecological covariates of spatial and temporal variability in GIN transmission among bovine calves pastured in Alberta, Canada. Methods Sera were collected from 1000 beef calves across Alberta, Canada over three consecutive years (2008–2010) and analyzed for presence of anti-GIN antibodies using the SVANOVIR Ostertagia osteragi-Ab ELISA kit. Using a GIS and Bayesian multivariate spatial statistics, we evaluated the degree to which variation in specific environmental covariates (e.g. moisture, humidity, temperature) was associated with variation in spatial and temporal heterogeneity in exposure to GIN (Nematodirus and other trichostrongyles, primarily Ostertagia and Cooperia). Results Variation in growing degree days above a base temperature of 5 °C, humidity, air temperature, and accumulated precipitation were found to be significant predictors of broad–scale spatial and temporal variation in serum antibody concentrations. Risk model projections identified that while transmission in cattle from southeastern and northwestern Alberta was relatively low in all years, rate of GIN transmission was generally higher in the central region of Alberta. Conclusions The spatial variability in risk is attributed to higher average humidity, precipitation and moderate temperatures in the central region of Alberta in comparison with the hot, dry southeastern corner of the province and the cool, dry northwestern corner. Although more targeted sampling is needed to improve model accuracy, our projections represent an important step towards tying treatment recommendations to actual risk of infection.
Collapse
Affiliation(s)
- Melissa A Beck
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3 M4, Canada.
| | - Douglas D Colwell
- Agriculture and Agri-Food Canada, Lethbridge Research Station, 5403 1st Ave South, Lethbirdge, AB, T1J 4B1, Canada.
| | - Cameron P Goater
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3 M4, Canada.
| | - Stefan W Kienzle
- Department of Geography, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3 M4, Canada.
| |
Collapse
|
33
|
Jolles AE, Ezenwa VO. Ungulates as model systems for the study of disease processes in natural populations. J Mammal 2015; 96:4-15. [PMID: 32287382 PMCID: PMC7107476 DOI: 10.1093/jmammal/gyu007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Parasites and pathogens are a fundamental driving force in the ecology and evolution of mammalian populations, and understanding disease processes in natural populations is an urgent priority in the face of increased rates of infectious disease emergence. In this review, we argue that mammalogists are uniquely placed to contribute to addressing these challenges because in-depth knowledge of mammal species is fundamental to the development of wild model systems that could accelerate discovery in disease ecology. The use of animal models-species for which a broad range of diagnostic, molecular, and genetic tools have been developed-in tightly controlled laboratory environments has been instrumental in driving progress in the biomedical sciences. However, in natural populations, disease processes operate in the context of enormous genetic, phenotypic, and environmental variability. Understanding diseases in animal populations (including humans) thus requires investment in "wild animal models" that explicitly include individual variation and relevant environmental gradients. Wild mammal groups such as primates and rodents have already been identified as potentially useful models of infectious diseases in the wild. Here, we discuss the enormous potential that ungulates hold as candidates for wild model systems. The diversity, broad geographic distribution, and often high abundance of species in this group make them a highly accessible target for disease research. Moreover, a depth of background knowledge, close relationships to domesticated animals, and ongoing management of many wild ungulate species provide context, tools, and opportunity for cutting-edge research at the interface of ecological and biomedical sciences. Studies of wild ungulates are already helping to unravel some key challenges in infectious disease research, including the role of parasites in trophic cascades, the consequences of climate change for disease dynamics, and the systems biology of host-parasite interactions. Other areas where ungulate studies may provide new insight include research on the sources and drivers of emerging infectious diseases.
Collapse
|
34
|
Harper SL, Edge VL, Ford J, Thomas MK, McEwen SA. Lived experience of acute gastrointestinal illness in Rigolet, Nunatsiavut: "just suffer through it". Soc Sci Med 2014; 126:86-98. [PMID: 25528558 DOI: 10.1016/j.socscimed.2014.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enteric illness associated with foodborne and waterborne disease is thought to be common in some Canadian Indigenous communities. This study aimed to understand the lived experience of acute gastrointestinal illness (AGI), including symptoms and severity, perceived causes, and healthcare seeking behaviors of AGI in the small Inuit community of Rigolet, Canada. A concurrent mixed quantitative and qualitative methods design was used. Two cross-sectional retrospective surveys provided quantitative data to examine self-reported AGI symptoms and the distribution of potential risk factors in the community. Qualitative data from in-depth interviews with one-third of AGI cases were analyzed using a constant-comparative method to describe symptoms and severity, identify perceived risk factors, and explore health seeking behavior of AGI in Rigolet. Of the survey respondents reporting AGI, most reported symptoms of diarrhea without vomiting, followed by diarrhea with vomiting, and vomiting without diarrhea. The most common secondary symptoms included stomach cramps and abdominal pain, nausea, and extreme tiredness. Community members identified potential risk factors for AGI that reflect the epidemiology triad (host, agent, and environmental factors), including hygiene, retail food, tap water, boil water advisories, and personal stress. Risk aversion and healthcare seeking behaviors reflected the core constructs of the Health Belief Model (perceived susceptibility, severity, and benefits and barriers to action). Understanding community experience, perspectives, and beliefs related to AGI is useful for public health practitioners and health care providers. This information is important especially considering the relatively high estimated burden of AGI and the relatively low healthcare seeking behaviors in some Indigenous communities compared to national estimates. Moreover, the mixed-methods approach used to understand the burden of AGI could be extended to other health research in Indigenous contexts.
Collapse
Affiliation(s)
- Sherilee L Harper
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada.
| | - Victoria L Edge
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada; Public Health Agency of Canada, Guelph, Ontario, Canada
| | - James Ford
- Department of Geography, McGill University, Montreal, Quebec, Canada
| | - M Kate Thomas
- Centre for Food-borne, Environmental & Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | | | | | - Scott A McEwen
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
35
|
Van Hemert C, Pearce JM, Handel CM. Wildlife health in a rapidly changing North: focus on avian disease. FRONTIERS IN ECOLOGY AND THE ENVIRONMENT 2014; 12:548-556. [PMID: 32313510 PMCID: PMC7164092 DOI: 10.1890/130291] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Climate-related environmental changes have increasingly been linked to emerging infectious diseases in wildlife. The Arctic is facing a major ecological transition that is expected to substantially affect animal and human health. Changes in phenology or environmental conditions that result from climate warming may promote novel species assemblages as host and pathogen ranges expand to previously unoccupied areas. Recent evidence from the Arctic and subarctic suggests an increase in the spread and prevalence of some wildlife diseases, but baseline data necessary to detect and verify such changes are still lacking. Wild birds are undergoing rapid shifts in distribution and have been implicated in the spread of wildlife and zoonotic diseases. Here, we review evidence of current and projected changes in the abundance and distribution of avian diseases and outline strategies for future research. We discuss relevant climatic and environmental factors, emerging host-pathogen contact zones, the relationship between host condition and immune function, and potential wildlife and human health outcomes in northern regions.
Collapse
Affiliation(s)
| | - John M Pearce
- US Geological Survey Alaska Science Center, Anchorage, AK
| | | |
Collapse
|
36
|
Atehmengo NL, Nnagbo CS. Emerging Animal Parasitic Diseases: A Global Overview and Appropriate Strategies for their Monitoring and Surveillance in Nigeria. Open Microbiol J 2014; 8:87-94. [PMID: 25328553 PMCID: PMC4200699 DOI: 10.2174/1874285801408010087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/02/2022] Open
Abstract
Emerging animal parasitic diseases are reviewed and appropriate strategies for efficient monitoring and surveillance in Nigeria are outlined. Animal and human parasitic infections are distinguished. Emerging diseases have been described as those diseases that are being recognised for the first time or diseases that are already recorded but their frequency and/or geographic range is being increased tremendously. Emergence of new diseases may be due to a number of factors such as the spread of a new infectious agent, recognition of an infection that has been in existence but undiagnosed, or when it is realised that an established disease has an infectious origin. The terms could also be used to describe the resurgence of a known infection after its incidence had been known to have declined. Emerging infections are compounding the control of infectious diseases and huge resources are being channeled to alleviate the rising challenge. The diseases are numerous and include helminth, protozoal / rickettsial and entomological. A list of parasitic emerging diseases in Nigeria is included. Globally occurring emerging parasitic diseases are also outlined. Emerging and re-emerging infections can be brought about by many factors including climate change and global warming, changes in biodiversity, population mobility, movement of animals, globalisation of commerce/trade and food supply, social and cultural factors such as food eating habits, religious beliefs, farming practices, trade of infected healthy animals, reduction in the available land for animals, immune-suppressed host and host density and misuse or over use of some drugs leading to drug resistance.
Collapse
Affiliation(s)
- Ngongeh L Atehmengo
- Department of Veterinary Microbiology and Parasitology, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
| | - Chiejina S Nnagbo
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka
| |
Collapse
|
37
|
Fish pathogens near the Arctic Circle: molecular, morphological and ecological evidence for unexpected diversity of Diplostomum (Digenea: diplostomidae) in Iceland. Int J Parasitol 2014; 44:703-15. [DOI: 10.1016/j.ijpara.2014.04.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/21/2014] [Accepted: 04/16/2014] [Indexed: 11/30/2022]
|
38
|
Cook JA, Edwards SV, Lacey EA, Guralnick RP, Soltis PS, Soltis DE, Welch CK, Bell KC, Galbreath KE, Himes C, Allen JM, Heath TA, Carnaval AC, Cooper KL, Liu M, Hanken J, Ickert-Bond S. Natural History Collections as Emerging Resources for Innovative Education. Bioscience 2014. [DOI: 10.1093/biosci/biu096] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Kutz SJ, Hoberg EP, Molnár PK, Dobson A, Verocai GG. A walk on the tundra: Host-parasite interactions in an extreme environment. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2014; 3:198-208. [PMID: 25180164 PMCID: PMC4145143 DOI: 10.1016/j.ijppaw.2014.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 01/22/2014] [Accepted: 01/29/2014] [Indexed: 11/19/2022]
Abstract
Climate change is altering host–parasite interactions in the Arctic. Changing ecological barriers reflect climate warming. Metabolic Theory of Ecology advances understanding of host–parasite interactions. Diversity emerges from host/parasite biogeographic/ecologic history. Insights gained from the Arctic apply to more complex systems.
Climate change is occurring very rapidly in the Arctic, and the processes that have taken millions of years to evolve in this very extreme environment are now changing on timescales as short as decades. These changes are dramatic, subtle and non-linear. In this article, we discuss the evolving insights into host–parasite interactions for wild ungulate species, specifically, muskoxen and caribou, in the North American Arctic. These interactions occur in an environment that is characterized by extremes in temperature, high seasonality, and low host species abundance and diversity. We believe that lessons learned in this system can guide wildlife management and conservation throughout the Arctic, and can also be generalized to more broadly understand host–parasite interactions elsewhere. We specifically examine the impacts of climate change on host–parasite interactions and focus on: (I) the direct temperature effects on parasites; (II) the importance of considering the intricacies of host and parasite ecology for anticipating climate change impacts; and (III) the effect of shifting ecological barriers and corridors. Insights gained from studying the history and ecology of host–parasite systems in the Arctic will be central to understanding the role that climate change is playing in these more complex systems.
Collapse
Affiliation(s)
- Susan J. Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, Alberta T2N 4Z6, Canada
- Canadian Cooperative Wildlife Health Centre, Alberta Node, 3280 Hospital Dr. NW, Calgary, Alberta T2N 4Z6, Canada
- Corresponding author at: Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, Alberta T2N 4Z6, Canada. Tel.: +1 403 210 3824; fax: +1 403 210 7882.
| | - Eric P. Hoberg
- United States National Parasite Collection and Animal Parasitic Disease Laboratory, United States Department of Agriculture, Agriculture Research Service, BARC East, Building 1180, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | | | - Andy Dobson
- EEB, Eno Hall, Princeton University, NJ 08544, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Guilherme G. Verocai
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
40
|
Verocai GG, Lejeune M, Finstad GL, Kutz SJ. A Nearctic parasite in a Palearctic host: Parelaphostrongylus andersoni (Nematoda; Protostrongylidae) infecting semi-domesticated reindeer in Alaska. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2013; 2:119-23. [PMID: 24533324 PMCID: PMC3862520 DOI: 10.1016/j.ijppaw.2013.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 11/14/2022]
Abstract
Parelaphostrongylus andersoni causes muscular and lung pathology in Nearctic cervids. We found P. andersoni in an introduced, semi-domesticated reindeer herd in Alaska. Infection of these reindeer may have occurred through indirect contact with native caribou. This nematode may cause subtle deleterious impacts on commercial herding activities.
Parelaphostrongylus andersoni is a muscle-dwelling protostrongylid nematode that infects caribou and white-tailed deer across North America, and can cause significant muscular and pulmonary pathology in these species. We collected 44 fecal samples from semi-domesticated reindeer (Rangifer tarandus tarandus) from the Kakarak herd of western Seward Peninsula, Alaska, USA. This herd has no record of historical contact and extremely limited possibility of contemporary contact with native Grant’s caribou (Rangifer tarandus granti) of the Western Arctic herd. Fecal samples were processed using the Baermann technique, and 22.7% (n = 10) were positive for protostrongylid dorsal-spined larvae (DSL). Genomic DNA extracted from individual DSL from each of the ten positive reindeer (total of 48 DSL) was amplified by PCR targeting the ITS-2 region of ribosomal RNA. Forty of 48 DSL were successfully sequenced and confirmed as P. andersoni and one representative sequence for each of the ten positive samples was deposited in GenBank. No other protostrongylids, including Varestrongylus sp., presumed to be widespread across caribou range, and Elaphostrongylus rangiferi, which could have been introduced with reindeer from Eurasia, were detected in these samples. P. andersoni is likely widespread among introduced reindeer in Alaska, potentially causing subtle but deleterious effects with negative economic impacts on commercial herding activities.
Collapse
Affiliation(s)
- Guilherme G Verocai
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Manigandan Lejeune
- Canadian Cooperative Wildlife Health Centre - Alberta Node, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Greg L Finstad
- Reindeer Research Program, School of Natural Resources and Agricultural Sciences, University of Alaska - Fairbanks, AK, USA
| | - Susan J Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1 ; Canadian Cooperative Wildlife Health Centre - Alberta Node, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
41
|
Jenkins EJ, Castrodale LJ, de Rosemond SJ, Dixon BR, Elmore SA, Gesy KM, Hoberg EP, Polley L, Schurer JM, Simard M, Thompson RCA. Tradition and transition: parasitic zoonoses of people and animals in Alaska, northern Canada, and Greenland. ADVANCES IN PARASITOLOGY 2013; 82:33-204. [PMID: 23548085 DOI: 10.1016/b978-0-12-407706-5.00002-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Zoonotic parasites are important causes of endemic and emerging human disease in northern North America and Greenland (the North), where prevalence of some parasites is higher than in the general North American population. The North today is in transition, facing increased resource extraction, globalisation of trade and travel, and rapid and accelerating environmental change. This comprehensive review addresses the diversity, distribution, ecology, epidemiology, and significance of nine zoonotic parasites in animal and human populations in the North. Based on a qualitative risk assessment with criteria heavily weighted for human health, these zoonotic parasites are ranked, in the order of decreasing importance, as follows: Echinococcus multilocularis, Toxoplasma gondii, Trichinella and Giardia, Echinococcus granulosus/canadensis and Cryptosporidium, Toxocara, anisakid nematodes, and diphyllobothriid cestodes. Recent and future trends in the importance of these parasites for human health in the North are explored. For example, the incidence of human exposure to endemic helminth zoonoses (e.g. Diphyllobothrium, Trichinella, and Echinococcus) appears to be declining, while water-borne protozoans such as Giardia, Cryptosporidium, and Toxoplasma may be emerging causes of human disease in a warming North. Parasites that undergo temperature-dependent development in the environment (such as Toxoplasma, ascarid and anisakid nematodes, and diphyllobothriid cestodes) will likely undergo accelerated development in endemic areas and temperate-adapted strains/species will move north, resulting in faunal shifts. Food-borne pathogens (e.g. Trichinella, Toxoplasma, anisakid nematodes, and diphyllobothriid cestodes) may be increasingly important as animal products are exported from the North and tourists, workers, and domestic animals enter the North. Finally, key needs are identified to better assess and mitigate risks associated with zoonotic parasites, including enhanced surveillance in animals and people, detection methods, and delivery and evaluation of veterinary and public health services.
Collapse
|
42
|
Molnár PK, Kutz SJ, Hoar BM, Dobson AP. Metabolic approaches to understanding climate change impacts on seasonal host-macroparasite dynamics. Ecol Lett 2012; 16:9-21. [DOI: 10.1111/ele.12022] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/23/2012] [Accepted: 09/24/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Péter K. Molnár
- Department of Ecology and Evolutionary Biology; Princeton University; Eno Hall; Princeton; New Jersey; 08544; USA
| | - Susan J. Kutz
- Department of Ecosystem and Public Health; Faculty of Veterinary Medicine, University of Calgary; 3330 Hospital Dr. NW; Calgary; Alberta; T2N 4N1; Canada
| | - Bryanne M. Hoar
- Department of Ecosystem and Public Health; Faculty of Veterinary Medicine, University of Calgary; 3330 Hospital Dr. NW; Calgary; Alberta; T2N 4N1; Canada
| | | |
Collapse
|
43
|
Parasites in ungulates of Arctic North America and Greenland: a view of contemporary diversity, ecology, and impact in a world under change. ADVANCES IN PARASITOLOGY 2012; 79:99-252. [PMID: 22726643 DOI: 10.1016/b978-0-12-398457-9.00002-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Parasites play an important role in the structure and function of arctic ecosystems, systems that are currently experiencing an unprecedented rate of change due to various anthropogenic perturbations, including climate change. Ungulates such as muskoxen, caribou, moose and Dall's sheep are also important components of northern ecosystems and are a source of food and income, as well as a focus for maintenance of cultural traditions, for northerners. Parasites of ungulates can influence host health, population dynamics and the quality, quantity and safety of meat and other products of animal origin consumed by people. In this article, we provide a contemporary view of the diversity of nematode, cestode, trematode, protozoan and arthropod parasites of ungulates in arctic and subarctic North America and Greenland. We explore the intricate associations among host and parasite assemblages and identify key issues and gaps in knowledge that emerge in a regime of accelerating environmental transition.
Collapse
|
44
|
Development and availability of the free-living stages of Ostertagia gruehneri, an abomasal parasite of barrenground caribou (Rangifer tarandus groenlandicus), on the Canadian tundra. Parasitology 2012; 139:1093-100. [DOI: 10.1017/s003118201200042x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYClimate change in the Arctic is anticipated to alter the ecology of northern ecosystems, including the transmission dynamics of many parasite species. One parasite of concern is Ostertagia gruehneri, an abomasal nematode of Rangifer ssp. that causes reduced food intake, weight loss, and decreased pregnancy rates in reindeer. We investigated the development, availability, and overwinter survival of the free-living stages of O. gruehneri on the tundra. Fecal plots containing O. gruehneri eggs were established in the Northwest Territories, Canada under natural and artificially warmed conditions and sampled throughout the growing season of 2008 and the spring of 2009. Infective L3 were present 3–4 weeks post-establishment from all trials under both treatments, except for the trial established 4 July 2008 under warmed conditions wherein the first L3 was recovered 7 weeks post-establishment. These plots were exposed to significantly more time above 30°C than the natural plots established on the same date, suggesting a maximum temperature threshold for development. There was high overwinter survival of L2 and L3 across treatments and overwintering L2 appeared to develop to L3 the following spring. The impact of climate change on O. gruehneri is expected to be dynamic throughout the year with extreme maximum temperatures negatively impacting development rates.
Collapse
|
45
|
Hoberg EP, Abrams A, Pilitt PA, Kutz SJ. Discovery and Description of the “Davtiani” Morphotype for Teladorsagia boreoarcticus (Trichostrongyloidea: Ostertagiinae) Abomasal Parasites In Muskoxen, Ovibos moschatus, and Caribou, Rangifer tarandus, from the North American Arctic: Implications for Parasite Faunal Diversity. J Parasitol 2012; 98:355-64. [DOI: 10.1645/ge-2898.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
46
|
Gilg O, Kovacs KM, Aars J, Fort J, Gauthier G, Grémillet D, Ims RA, Meltofte H, Moreau J, Post E, Schmidt NM, Yannic G, Bollache L. Climate change and the ecology and evolution of Arctic vertebrates. Ann N Y Acad Sci 2012; 1249:166-90. [DOI: 10.1111/j.1749-6632.2011.06412.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Hoberg EP, Galbreath KE, Cook JA, Kutz SJ, Polley L. Northern host-parasite assemblages: history and biogeography on the borderlands of episodic climate and environmental transition. ADVANCES IN PARASITOLOGY 2012; 79:1-97. [PMID: 22726642 DOI: 10.1016/b978-0-12-398457-9.00001-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Diversity among assemblages of mammalian hosts and parasites in northern terrestrial ecosystems was structured by a deep history of biotic and abiotic change that overlies a complex geographic arena. Since the Pliocene, Holarctic ecosystems assembled in response to shifting climates (glacial and interglacial stages). Cycles of episodic dispersal/isolation and diversification defined northern diversity on landscape to regional scales. Episodes of geographic expansion and colonisation linked Eurasia and North America across Beringia and drove macroevolutionary structure of host and parasite associations. Asynchronous dispersal from centres of origin in Eurasia into the Nearctic resulted in gradients in parasite diversity in the carnivoran, lagomorph, rodent and artiodactyl assemblages we reviewed. Recurrent faunal interchange and isolation in conjunction with episodes of host colonisation have produced a mosaic structure for parasite faunas and considerable cryptic diversity among nematodes and cestodes. Mechanisms of invasion and geographic colonisation leading to the establishment of complex faunal assemblages are equivalent in evolutionary and ecological time, as demonstrated by various explorations of diversity in these high-latitude systems. Our ability to determine historical responses to episodic shifts in global climate may provide a framework for predicting the cascading effects of contemporary environmental change.
Collapse
|
48
|
Murakami M, Inoshima Y, El-Dakhly KM, Yanai T, Ishiguro N. Genetic Characterization of Protostrongylus shiozawai From Japanese Serows (Capricornis crispus). J Parasitol 2011; 97:1178-80. [DOI: 10.1645/ge-2830.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
49
|
Jenkins EJ, Schurer JM, Gesy KM. Old problems on a new playing field: Helminth zoonoses transmitted among dogs, wildlife, and people in a changing northern climate. Vet Parasitol 2011; 182:54-69. [DOI: 10.1016/j.vetpar.2011.07.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Davidson R, Simard M, Kutz SJ, Kapel CMO, Hamnes IS, Robertson LJ. Arctic parasitology: why should we care? Trends Parasitol 2011; 27:239-45. [PMID: 21419701 DOI: 10.1016/j.pt.2011.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 02/03/2023]
Abstract
The significant impact on human and animal health from parasitic infections in tropical regions is well known, but parasites of medical and veterinary importance are also found in the Arctic. Subsistence hunting and inadequate food inspection can expose people of the Arctic to foodborne parasites. Parasitic infections can influence the health of wildlife populations and thereby food security. The low ecological diversity that characterizes the Arctic imparts vulnerability. In addition, parasitic invasions and altered transmission of endemic parasites are evident and anticipated to continue under current climate changes, manifesting as pathogen range expansion, host switching, and/or disease emergence or reduction. However, Arctic ecosystems can provide useful models for understanding climate-induced shifts in host-parasite ecology in other regions.
Collapse
|