1
|
Yskak A, Sokharev Y, Zhumalynov K, Koneva E, Afanasyeva N, Borodulin D, Babaskin D, Nugmanov A, Nurushev M, Chashkov V. Hormonal Implications of SARS-CoV-2: A Review of Endocrine Disruptions. SCIENTIFICA 2025; 2025:7305185. [PMID: 39830837 PMCID: PMC11742418 DOI: 10.1155/sci5/7305185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/27/2024] [Accepted: 11/22/2024] [Indexed: 01/22/2025]
Abstract
To improve medical care and rehabilitation algorithms for patients affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is important to evaluate and summarize the available data on the effect of coronavirus infection (COVID-19) on the endocrine system. The purpose of this review was to study the effect of COVID-19 on the endocrine system. The scientific novelty of this study is the evaluation of the effect of coronavirus infection on the endocrine system and the potential effect of hormones on susceptibility to COVID-19. The results of this review show that the endocrine system is vulnerable to disorders caused by COVID-19, mainly thyroid dysfunction and hyperglycemia. The information in the published literature mentioned here contains some unclear aspects and contradictory data, but much remains to be studied and clarified regarding the impact of COVID-19 on the endocrine system. In particular, this concerns the study of the hyperglycemic status of patients who have had coronavirus infection, which is extremely important for the future metabolic health of COVID-19 survivors. This review contributes to the scientific discourse by systematically synthesizing disparate studies to identify patterns, gaps, and emerging trends in the literature concerning the effects of COVID-19 on the endocrine system. By integrating these findings, this study offers a novel perspective on potential hormonal interactions influencing COVID-19 susceptibility and outcomes, proposing new hypotheses and frameworks for future research.
Collapse
Affiliation(s)
- Aliya Yskak
- Research Institute of Applied Biotechnology, Akhmet Baitursynuly Kostanay Regional University, Kostanay, Kazakhstan
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russia
| | - Yevgeniy Sokharev
- Pathological Anatomy Department, Municipal State Company “Kostanay Regional Pathoanatomical Bureau” of the Health Department of the Akimat of the Kostanay Region, Kostanay, Kazakhstan
| | - Kuanysh Zhumalynov
- Department of Natural Sciences, Akhmet Baitursynuly Kostanay Regional University, Kostanay, Kazakhstan
| | - Elizaveta Koneva
- Department of Sports Medicine and Medical Rehabilitation, Sechenov University, Moscow, Russia
| | - Natalia Afanasyeva
- Resource Center “Medical Sechenov Pre-University”, Sechenov University, Moscow, Russia
| | - Dmitri Borodulin
- Department of Technology of Storage and Processing of Fruits, Vegetables and Plant Growing Products, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | | | - Almabek Nugmanov
- Department of Natural Sciences, Akhmet Baitursynuly Kostanay Regional University, Kostanay, Kazakhstan
| | - Murat Nurushev
- Higher School of Natural Sciences, Astana International University, Astana, Kazakhstan
| | - Vadim Chashkov
- Department of Natural Sciences, Akhmet Baitursynuly Kostanay Regional University, Kostanay, Kazakhstan
| |
Collapse
|
2
|
van der Westhuizen C, Newton-Foot M, Nel P. Performance comparison of three commercial multiplex molecular panels for respiratory viruses at a South African academic hospital. Afr J Lab Med 2024; 13:2415. [PMID: 39228900 PMCID: PMC11369576 DOI: 10.4102/ajlm.v13i1.2415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Respiratory infections are a major contributor to hospital admissions. Identification of respiratory pathogens by means of conventional culture and serology methods remains challenging. Multiplex molecular assays are an appealing alternative that endeavours to be rapid, more accurate and less arduous. Objective The study aimed to compare the clinical performance of three commercial multiplex molecular assays for respiratory viruses. Methods Forty-eight respiratory specimens obtained from patients at Tygerberg Hospital in the Western Cape province of South Africa were studied. These specimens were collected between May 2020 and August 2020. The results of the Seegene Anyplex™ II RV16, FilmArray® Respiratory 2.1 plus Panel (FARP), and QIAstat-Dx® Respiratory SARS-CoV-2 Panel (QRP) were analysed based on the overlapping targets. A composite reference standard was applied to provide a standard reference for comparison. Results The overall sensitivity of the Seegene Anyplex™ II RV16 was 96.6% (57/59), the FARP 98.2% (56/57) and the QRP 80.7% (46/57). The overall specificities were 99.8% (660/661), 99.0% (704/711) and 99.7% (709/711), respectively. The QRP failed to detect coronaviruses and parainfluenza viruses in 41.7% (5/12) and 28.6% (4/14) of positive specimens, respectively, while the FARP produced the lowest target specificity of 88.4% (38/43) for rhinovirus/enterovirus. Conclusion The overall specificity of all three platforms was comparable; however, the sensitivity of the QRP was inferior to that of the ARV and FARP. What this study adds This study adds to the body of performance characteristics described for respiratory multiplex panels, especially in the African context where molecular diagnostics for infectious diseases are gaining momentum.
Collapse
Affiliation(s)
- Clinton van der Westhuizen
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Medical Microbiology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Mae Newton-Foot
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Medical Microbiology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Pieter Nel
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Medical Microbiology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
3
|
Saeed AA, Helali H, Alhammadi M. An Interesting Case of Coronavirus NL63 Encephalitis Diagnosed in a 14-Year-Old Immunocompetent Female: A Case Report and Literature Review. Cureus 2024; 16:e62229. [PMID: 39006646 PMCID: PMC11244723 DOI: 10.7759/cureus.62229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Human coronavirus NL63 (HCoV-NL63) belongs to the human coronavirus family but is distinct from other common coronaviruses such as HCoV-043, HCoV-229E, and SARS-CoV-1 and SARS-CoV-2 viruses. It causes a mild upper respiratory tract infection, affecting children and adults. The usual symptoms associated with the HCoV-NL63 infection are vomiting, a runny nose, and a sore throat. In vivo, HCoV-NL63 showed neurotropism as it can be detected in the CSF, through which it disseminates into the brain and the spinal column. Herein, we describe the case of a 14-year-old female patient who initially presented with disorientation and a drop in consciousness level and was admitted as a case of encephalitis to the pediatric intensive care unit.
Collapse
Affiliation(s)
- Ahsan A Saeed
- Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, ARE
| | - Hadi Helali
- Pediatrics, Al Jalila Children's Specialty Hospital, Dubai, ARE
| | - Moza Alhammadi
- Infectious Diseases, Al Jalila Children's Specialty Hospital, Dubai, ARE
| |
Collapse
|
4
|
Alugubelli Y, Xiao J, Khatua K, Kumar S, Sun L, Ma Y, Ma XR, Vulupala VR, Atla S, Blankenship LR, Coleman D, Xie X, Neuman BW, Liu WR, Xu S. Discovery of First-in-Class PROTAC Degraders of SARS-CoV-2 Main Protease. J Med Chem 2024; 67:6495-6507. [PMID: 38608245 PMCID: PMC11056980 DOI: 10.1021/acs.jmedchem.3c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
We have witnessed three coronavirus (CoV) outbreaks in the past two decades, including the COVID-19 pandemic caused by SARS-CoV-2. Main protease (MPro), a highly conserved protease among various CoVs, is essential for viral replication and pathogenesis, making it a prime target for antiviral drug development. Here, we leverage proteolysis targeting chimera (PROTAC) technology to develop a new class of small-molecule antivirals that induce the degradation of SARS-CoV-2 MPro. Among them, MPD2 was demonstrated to effectively reduce MPro protein levels in 293T cells, relying on a time-dependent, CRBN-mediated, and proteasome-driven mechanism. Furthermore, MPD2 exhibited remarkable efficacy in diminishing MPro protein levels in SARS-CoV-2-infected A549-ACE2 cells. MPD2 also displayed potent antiviral activity against various SARS-CoV-2 strains and exhibited enhanced potency against nirmatrelvir-resistant viruses. Overall, this proof-of-concept study highlights the potential of targeted protein degradation of MPro as an innovative approach for developing antivirals that could fight against drug-resistant viral variants.
Collapse
Affiliation(s)
- Yugendar
R. Alugubelli
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jing Xiao
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kaustav Khatua
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sathish Kumar
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
| | - Long Sun
- Department
of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yuying Ma
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xinyu R. Ma
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Veerabhadra R. Vulupala
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sandeep Atla
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren R. Blankenship
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Demonta Coleman
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xuping Xie
- Department
of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Benjamin W. Neuman
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
- Texas
A&M Global Health Research Complex, Texas A&M University, College
Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas 77843, United States
| | - Shiqing Xu
- Texas
A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Fausto A, Otter CJ, Bracci N, Weiss SR. Improved Culture Methods for Human Coronaviruses HCoV-OC43, HCoV-229E, and HCoV-NL63. Curr Protoc 2023; 3:e914. [PMID: 37882768 PMCID: PMC10695105 DOI: 10.1002/cpz1.914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1 are four of the seven known human coronaviruses (HCoVs) and, unlike the highly pathogenic SARS-CoV, MERS-CoV, and SARS-CoV-2, these four so-called seasonal HCoVs generally cause mild upper-respiratory-tract illness. As Biosafety Level 2 (BSL-2) pathogens, the seasonal HCoVs are more accessible and can be used as surrogates for studying the highly pathogenic HCoVs. However, scientists have for many years found these difficult to study because of the lack of a universal culture system and the inability of typical culture methods to yield high-titer infectious stocks. We have developed assays to grow and quantify infectious virus and viral RNA for HCoV-OC43, -229E, and -NL63. We identified which immortalized cell lines should be used to optimize the replication of HCoV-OC43, -229E, and -NL63 in order to generate high titers (Vero E6, Huh-7, and LLC-MK2 cells, respectively). Here we present protocols for improved propagation and quantification of each seasonal HCoV. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Growth of HCoVs Basic Protocol 2: Quantification of HCoV by plaque assay Basic Protocol 3: Quantification of HCoV RNA products of replication Basic Protocol 4: Concentrating HCoVs via ultracentrifugation.
Collapse
Affiliation(s)
- Alejandra Fausto
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Clayton J Otter
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicole Bracci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Alugubelli YR, Xiao J, Khatua K, Kumar S, Ma Y, Ma XR, Vulupala VR, Atla SR, Blankenship L, Coleman D, Neuman BW, Liu WR, Xu S. Discovery of First-in-Class PROTAC Degraders of SARS-CoV-2 Main Protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560163. [PMID: 37808777 PMCID: PMC10557696 DOI: 10.1101/2023.09.29.560163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
We have witnessed three coronavirus (CoV) outbreaks in the past two decades, including the COVID-19 pandemic caused by SARS-CoV-2. Main protease (M Pro ) is a highly conserved and essential protease that plays key roles in viral replication and pathogenesis among various CoVs, representing one of the most attractive drug targets for antiviral drug development. Traditional antiviral drug development strategies focus on the pursuit of high-affinity binding inhibitors against M Pro . However, this approach often suffers from issues such as toxicity, drug resistance, and a lack of broad-spectrum efficacy. Targeted protein degradation represents a promising strategy for developing next-generation antiviral drugs to combat infectious diseases. Here we leverage the proteolysis targeting chimera (PROTAC) technology to develop a new class of small-molecule antivirals that induce the degradation of SARS-CoV-2 M Pro . Our previously developed M Pro inhibitors MPI8 and MPI29 were used as M Pro ligands to conjugate a CRBN E3 ligand, leading to compounds that can both inhibit and degrade SARS-CoV-2 M Pro . Among them, MDP2 was demonstrated to effectively reduce M Pro protein levels in 293T cells (DC 50 = 296 nM), relying on a time-dependent, CRBN-mediated, and proteasome-driven mechanism. Furthermore, MPD2 exhibited remarkable efficacy in diminishing M Pro protein levels in SARS-CoV-2-infected A549-ACE2 cells, concurrently demonstrating potent anti-SARS-CoV-2 activity (EC 50 = 492 nM). This proof-of-concept study highlights the potential of PROTAC-mediated targeted protein degradation of M Pro as an innovative and promising approach for COVID-19 drug discovery.
Collapse
|
7
|
Wong LSY, Loo EXL, Huang CH, Yap GC, Tay MJY, Chua RXY, Kang AYH, Lu L, Lee BW, Shek LPC, Zhang J, Chia WN, Wang LF, Tham EH, Tambyah PA. Early seasonal coronavirus seroconversion did not produce cross-protective SARS-CoV-2 antibodies. J Infect 2023; 86:e10-e12. [PMID: 36067868 PMCID: PMC9443925 DOI: 10.1016/j.jinf.2022.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Lydia Su Yin Wong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore,Khoo Teck Puat-National University Children's Medical Institute, National University Health System,Corresponding author at: Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Evelyn Xiu Ling Loo
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore,Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR)
| | - Chiung-Hui Huang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore
| | - Gaik Chin Yap
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore
| | - Michelle Jia Yu Tay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore
| | - Regena Xin Yi Chua
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore
| | - Alicia Yi Hui Kang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore
| | - Liangjian Lu
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System
| | - Bee Wah Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore
| | - Lynette Pei-Chi Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore,Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR)
| | | | | | | | - Elizabeth Huiwen Tham
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore,Khoo Teck Puat-National University Children's Medical Institute, National University Health System,Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR),Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore
| | - Paul Anantharajah Tambyah
- National University Hospital, Singapore,Department of Medicine, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore
| |
Collapse
|
8
|
Liu S, Cai J, Li Y, Ying L, Li H, Zhu A, Li L, Zhu H, Dong S, Ying R, Chan TC, Wu H, Pan J, Chen Y. Outbreak of acute respiratory disease caused by human adenovirus type 7 and human coronavirus-229E in Zhejiang Province, China. J Med Virol 2023; 95:e28101. [PMID: 36031726 DOI: 10.1002/jmv.28101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023]
Abstract
In 2019, an outbreak of pharyngoconjunctival fever (PCF) occurred at a swimming center in Zhejiang Province, China. A total of 97 (13.55%) of the 716 amateur swimmers had illnesses, with 24 patients (24.74%) hospitalized in the pediatric ward. Human adenovirus serotype 7 (HAdV-7) was isolated from one concentrated water from the swimming pool, and 20 of 97 positive cases without liver damage. This outbreak led to a nosocomial outbreak in the pediatric ward, in which 1 nurse had a fever and was confirmed to be adenovirus positive. The hexon, fiber, and penton genes from 20 outbreak cases, 1 water sample, and 1 nurse had 100% homology. Furthermore, 2 cases admitted to the pediatric ward, 2 parents, and 1 doctor were confirmed to be human coronaviruses (HCoV-229E) positive. Finally, all outbreak cases had fully recovered, regardless of a single infection (adenovirus or HCoV-229E) or coinfection of these two viruses simultaneously. Thus, PCF and acute respiratory disease outbreaks in Zhejiang were caused by the completely homologous type 7 adenovirus and HCoV-229E, respectively. The swimming pool water contaminated with HAdV-7 was most likely the source of the PCF outbreak, whereas nosocomial transmission might be the source of HCoV-229E outbreak.
Collapse
Affiliation(s)
- Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jian Cai
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yumin Li
- Department of Infectious Diseases, Lishui Municipal Center for Disease Control and Prevention, Lishui, Zhejiang, China
| | - Lihong Ying
- Department of Infectious Diseases, Jinyun District Center for Disease Control and Prevention, Lishui, Zhejiang, China
| | - Huan Li
- Chinese Field Epidemiology Training Program, China Center for Disease Control and Prevention, Beijing, China.,Panjin Center for Inspection and Testing, Liaoning, China
| | - An Zhu
- The Second People's Hospital of Jinyun County, Lishui, Zhejiang, China
| | - Lin Li
- Department of Infectious Diseases, Jinyun District Center for Disease Control and Prevention, Lishui, Zhejiang, China.,Department of Infectious Diseases, Qiqihaer Municipal Center for Disease Control and Prevention, Qiqihaer, Heilongjiang, China
| | - Haiying Zhu
- The Second People's Hospital of Jinyun County, Lishui, Zhejiang, China
| | - Shengcao Dong
- Department of Infectious Diseases, Lishui Municipal Center for Disease Control and Prevention, Lishui, Zhejiang, China
| | - Ruyao Ying
- Department of Infectious Diseases, Jinyun District Center for Disease Control and Prevention, Lishui, Zhejiang, China
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Hanting Wu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jinren Pan
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yin Chen
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
High Seroprevalence of Anti-SARS-CoV-2 Antibodies in Children in Vietnam: An Observational, Hospital-Based Study. Pathogens 2022; 11:pathogens11121442. [PMID: 36558776 PMCID: PMC9784013 DOI: 10.3390/pathogens11121442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background: The robustness of sero-surveillance has delineated the high burden of SARS-CoV-2 infection in children; however, these existing data showed wide variation. This study aimed to identify the serostatus of antibodies against SARS-CoV-2 and associated factors among children following the fourth pandemic wave in Vietnam. Methods: A cross-sectional study was conducted at Vietnam National Children’s Hospital (VNCH) between March 13 and April 3, 2022. Thus, 4032 eligible children seeking medical care for any medical condition not related to acute COVID-19 infection were tested for IgG SARS-CoV-2 antibodies by ADVIA Centaur® SARS-CoV-2 IgG (sCOVG) assay using the residuals of routine blood samples. Results: The median age of enrolled children was 39 (IQR = 14−82) months. The overall seropositive prevalence was 59.2% (95%CI = 57.6−60.7) and the median antibody titer was 4.78 (IQR 2.38−9.57) UI/mL. The risk of seropositivity and the median antibody titer were not related to gender (58.6% versus 60.1%, 4.9 versus 4.6 UI/mL, all p > 0.05). Children aged ≤12 months were likely to be seropositive compared to children aged 36 to <60 months (59.2% versus 57.5%, p = 0.49) and those aged ≥144 months (59.2% versus 65.5%, p = 0.16). Children aged ≥144 months exhibited a significantly higher titer of protective COVID-19 antibodies than other age groups (p < 0.001). In multivariate logistic regression, we observed independent factors associated with SARS-CoV-2 seropositivity, including the age 13 to <36 months (OR = 1.29, 95%CI = 1.06−1.56, p = 0.01), 60 to <144 months (OR = 0.79, 95%CI = 0.67−0.95, p = 0.01), ≥144 months (OR = 1.84, 95%CI = 1.21−2.8, p = 0.005), the presence of infected household members (OR = 2.36, 95%CI = 2.06−2.70, p < 0.001), participants from Hanoi (OR = 1.54, 95%CI = 1.34−1.77, p < 0.001), underlying conditions (OR = 0.71, 95%CI = 0.60−0.85, p ≤ 0.001), and using corticosteroids or immunosuppressants (OR = 0.64, 95%CI = 0.48−0.86, p = 0.003). Conclusions: This study highlights a high seroprevalence of antibodies against SARS-CoV-2 among children seeking medical care for non-acute COVID-19-related conditions in a tertiary children’s hospital in Hanoi, Vietnam. In the context of reopening in-person schools and future emerging COVID-19 variants, this point will also be a key message about the necessity of “rush-out” immunization coverage for children, especially those under the age of five years.
Collapse
|
10
|
Ahmad SN, Sameen D, Dar MA, Jallu R, Shora TN, Dhingra M. Do SARS-CoV-2-Infected Pregnant Women Have Adverse Pregnancy Outcomes as Compared to Non-Infected Pregnant Women? Int J Womens Health 2022; 14:1201-1210. [PMID: 36081450 PMCID: PMC9447998 DOI: 10.2147/ijwh.s375739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/25/2022] [Indexed: 01/08/2023] Open
Abstract
Purpose To determine the feto-maternal outcome in pregnant women infected with SARS-CoV-2 in comparison to non-infected pregnant women and plan management strategies. Patients and Methods A retrospective review of case records in the Department of Obstetrics and Gynecology for 1 year was conducted. A total of 6468 case files fulfilling the inclusion criteria were enrolled in the study. Patients who tested positive for SARS CoV-2 and fulfilled inclusion criteria were labeled as cases, whereas patients who tested negative were labeled as controls. Outcome measures including lower segment cesarean section (LSCS) rate, maternal and neonatal intensive care admission and feto-maternal mortality were compared between the two groups. Results Our hospital was not an exclusive COVID-19 designated center, and 117 patients infected with SARS-CoV-2 fulfilling the inclusion criteria were enrolled in the study. Fever (67.52%), cough (56.41%), and altered smell (45.29%) were the frequently reported symptoms. Pneumonia affected 16.23% of the cases. LSCS rate was significantly higher in the COVID-19-infected patients (72.41%; OR 2.19; 95% CI 1.46-3.34; p<0.001). The rate of maternal ICU admission in COVID-19-infected pregnant women was 11.96% as compared to 0.8% in the non-infected women (OR 16.76; 95% CI 8.72-30.77; p<0.001). We observed a significantly higher maternal mortality in COVID-19-infected women (2.56%) [OR 41.61; 95% CI 7.65-203.5; p<0.001]. Viral RNA was detected in cord blood and nasopharyngeal swab of one neonate. The neonatal death ratio was high in infected mothers (2.6%) [OR 8.6; 95% CI 1.99-27.23; p<0.001]. Conclusion Significant maternal morbidity, mortality, and neonatal mortality were observed in COVID-19-positive patients.
Collapse
Affiliation(s)
- Syed Nawaz Ahmad
- Department of Obstetrics and Gynecology, Government Medical College Anantnag, Anantnag, Jammu and Kashmir, India
| | - Duri Sameen
- Department of Obstetrics and Gynecology, Government Medical College Anantnag, Anantnag, Jammu and Kashmir, India
| | - Mansoor Ahmad Dar
- Department of Psychiatry, Government Medical College Anantnag, Anantnag, Jammu and Kashmir, India
| | - Romaan Jallu
- Department of Microbiology, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| | - Tajali Nazir Shora
- Department of Community Medicine, Government Medical College Anantnag, Anantnag, Jammu and Kashmir, India
| | - Mansi Dhingra
- Department of Obstetrics and Gynecology, Vaga Hospital, Lucknow, India
| |
Collapse
|
11
|
Non-SARS Coronaviruses in Individuals with Psychiatric Disorders. Curr Top Behav Neurosci 2022; 61:265-278. [PMID: 35947355 DOI: 10.1007/7854_2022_386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
BACKGROUND The pandemic caused by severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) has highlighted the importance of coronaviruses in human health. Several seasonal, non-SARS Coronaviruses are endemic in most areas of the world. In a previous study, we found that the level of antibodies to these seasonal Coronaviruses was elevated in persons with a recent onset of psychosis. In the current study, the level of antibodies to seasonal Coronaviruses was compared between individuals with psychiatric disorders and a non-psychiatric comparison group. METHODS Participants (N = 195) were persons with a diagnosis of schizophrenia, bipolar disorder, major depressive disorder, or without a psychiatric disorder. Each participant had a blood sample drawn from which were measured IgG antibodies to the spike proteins in four non-SARS Coronaviruses, 229E, HKU1, NL63, and OC43, using a multiplex electrochemiluminescence assay. Linear regression models were employed to compare the levels of antibodies between each psychiatric group and the comparison group adjusting for demographic variables. Logistic regression models were employed to calculate the odds ratios associated with increased levels of antibodies to each seasonal Coronavirus based on the 50th percentile level of the comparison group. RESULTS The schizophrenia group had significantly increased levels of antibodies to the seasonal Coronaviruses OC43 and NL63. This group also had increased odds of having elevated antibody levels to OC43. The major depression group showed a significantly lower level of antibodies to Coronavirus 229E. There were no significant differences between any of the psychiatric groups and the comparison group in the levels of antibodies to seasonal Coronaviruses 229E or HKU1. CONCLUSIONS The elevated level of antibodies to OC43 and NL63 in the schizophrenia group indicates increased exposure to these agents and raises the possibility that Coronaviruses may contribute to the etiopathology of this disorder. The cause-and-effect relationship between seasonal Coronaviruses and psychiatric disorders should be the subject of additional investigations focusing on longitudinal cohort studies.
Collapse
|
12
|
Kashari OF, Alsamiri SA, Zabbani FM, Musalli DI, Ibrahim AM. Occurrence of Methemoglobinemia due to COVID-19: A Case Report. Cureus 2022; 14:e23155. [PMID: 35444908 PMCID: PMC9009966 DOI: 10.7759/cureus.23155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
Methemoglobinemia (MetHb) is a rare, life-threatening condition that occurs when the body is exposed to oxidative stress. It is typically corrected through the glucose-6-phosphate dehydrogenase (G6PD)-dependent shunt. G6PD deficiency is the most common enzymatic deficiency worldwide. This genetic disorder makes patients susceptible to oxidative stress and reduces the expected life span of erythrocytes (red blood cells (RBCs)) among other cells. G6PD deficiency is asymptomatic in most cases unless exogenous stressors are introduced, whether they are dietary, iatrogenic, or infections, such as the highly transmissible serotype of coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report a case of an 11-year-old male with known insulin-dependent diabetes mellitus (IDDM) and glucose-6-phosphate dehydrogenase (G6PD) deficiency, who was found to develop methemoglobinemia after being infected by the SARS-CoV-2 virus. The direct effects of COVID-19 on children were reported to be lower than on adults. However, the effects of COVID-19 on children with comorbidities, such as G6PD deficiency in our patient, are understood only to a minimal extent. Moreover, identifying cases of G6PD deficiency prior to initiating treatment with methylene blue, hydroxychloroquine (HCQ), or other contraindicated agents is essential to prevent further deterioration in symptoms.
Collapse
|
13
|
Theel ES. Performance Characteristics of High-Throughput Serologic Assays for Severe Acute Respiratory Syndrome Coronavirus 2 with Food and Drug Administration Emergency Use Authorization: A Review. Clin Lab Med 2022; 42:15-29. [PMID: 35153046 PMCID: PMC8563341 DOI: 10.1016/j.cll.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review provides a broad summary of the performance characteristics of high-throughput severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serologic assays with Food and Drug Administration Emergency Use Authorization, which are commonly found in central clinical laboratories. In addition, this review discusses the current roles of serologic testing for SARS-CoV-2 and provides a perspective for the future.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW To evaluate the available literature regarding effects of coronavirus disease 2019 (COVID-19) on newborns, ranging from effects related to in utero and perinatal exposure to maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, to pandemic-related stress and socioeconomic changes. RECENT FINDINGS Several large studies and national registries have shown that the risk of vertical transmission from SARS-CoV-2-infected mothers to newborns is rare and does not appear to be related to postnatal care policies such as mother-newborn separation and breastfeeding. Newborns exposed to SARS-CoV-2 in utero are at higher risk for preterm delivery for reasons still under investigation. When newborns do acquire SARS-CoV-2 infection, their disease course is usually mild. Long-term follow-up data are lacking, but preliminary reports indicate that, similarly to prior natural disasters, being born during the pandemic may be associated with developmental risk. SUMMARY Although risk of vertical or perinatal transmission is low across a range of postnatal care practices, early indicators suggest developmental risk to the generation born during the pandemic. Long-term follow-up data are critically needed to determine the developmental impact of in utero and early life exposure to SARS-CoV-2 and the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Dani Dumitriu
- Department of Pediatrics
- Department of Psychiatry
- Nurture Science Program, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
15
|
Overview of potential drugs for the treatment of new coronavirus Infection (COVID-19). ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The new coronavirus infection (SARS-CoV-2), better known as COVID-19, quickly evolved into a worldwide pandemic with a significant public health burden. Currently, there are no approved drugs or preventive therapeutic strategies to combat infection. Decisions about prescribing many medications are made based on the results obtained in in vitro studies, or expert opinions. Most of the drugs currently used to treat COVID-19 are approved antivirals or antibodies against other diseases. However, there are hundreds of clinical studies underway around the world to discover effective treatments for COVID-19. This article summarizes the results of clinical studies of potential therapeutic drugs used as COVID-19 therapy. Based on this review, it can be concluded that there is still no high-quality evidence to support any of the drugs described below. Until the unambiguous results of randomized controlled trials are available, the use of any of the following drugs is not clinically proven as an effective treatment for COVID-19.
Collapse
|
16
|
Al-Suhaimi EA, Aljafary MA, Alkhulaifi FM, Aldossary HA, Alshammari T, AL-Qaaneh A, Aldahhan R, Alkhalifah Z, Gaymalov ZZ, Shehzad A, Homeida AM. Thymus Gland: A Double Edge Sword for Coronaviruses. Vaccines (Basel) 2021; 9:1119. [PMID: 34696231 PMCID: PMC8539924 DOI: 10.3390/vaccines9101119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
The thymus is the main lymphoid organ that regulates the immune and endocrine systems by controlling thymic cell proliferation and differentiation. The gland is a primary lymphoid organ responsible for generating mature T cells into CD4+ or CD8+ single-positive (SP) T cells, contributing to cellular immunity. Regarding humoral immunity, the thymic plasma cells almost exclusively secrete IgG1 and IgG3, the two main complement-fixing effector IgG subclasses. Deformity in the thymus can lead to inflammatory diseases. Hassall's corpuscles' epithelial lining produces thymic stromal lymphopoietin, which induces differentiation of CDs thymocytes into regulatory T cells within the thymus medulla. Thymic B lymphocytes produce immunoglobulins and immunoregulating hormones, including thymosin. Modulation in T cell and naive T cells decrement due to thymus deformity induce alteration in the secretion of various inflammatory factors, resulting in multiple diseases. Influenza virus activates thymic CD4+ CD8+ thymocytes and a large amount of IFNγ. IFNs limit virus spread, enhance macrophages' phagocytosis, and promote the natural killer cell restriction activity against infected cells. Th2 lymphocytes-produced cytokine IL-4 can bind to antiviral INFγ, decreasing the cell susceptibility and downregulating viral receptors. COVID-19 epitopes (S, M, and N proteins) with ≥90% identity to the SARS-CoV sequence have been predicted. These epitopes trigger immunity for antibodies production. Boosting the immune system by improving thymus function can be a therapeutic strategy for preventing virus-related diseases. This review aims to summarize the endocrine-immunoregulatory functions of the thymus and the underlying mechanisms in the prevention of COVID-19.
Collapse
Affiliation(s)
- Ebtesam A. Al-Suhaimi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| | - Meneerah A. Aljafary
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| | - Fadwa M. Alkhulaifi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| | - Hanan A. Aldossary
- Epidemic Diseases Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; or
| | - Thamer Alshammari
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (T.A.); (A.A.-Q.); (Z.A.)
| | - Ayman AL-Qaaneh
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (T.A.); (A.A.-Q.); (Z.A.)
- Clinical Pharmacy Services Division, Pharmacy Services Department, Johns Hopkins Aramco Healthcare (JHAH), Dhahran 31311, Saudi Arabia
| | - Razan Aldahhan
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Zahra Alkhalifah
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (T.A.); (A.A.-Q.); (Z.A.)
| | - Zagit Z. Gaymalov
- Earlystage OÜ, Lasnamäe Linnaosa, Sepapaja tn 6, Harju Maakond, 15551 Tallinn, Estonia;
| | - Adeeb Shehzad
- Clinical Pharmacy Research Department, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Abdelgadir M. Homeida
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| |
Collapse
|
17
|
Principi N, Esposito S. Are we sure that the neurological impact of COVID 19 in childhood has not been underestimated? Ital J Pediatr 2021; 47:191. [PMID: 34537061 PMCID: PMC8449691 DOI: 10.1186/s13052-021-01144-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Background Presently, it is known that, even if less frequently than in adults, children can develop a severe new coronavirus disease 2019 (COVID-19). Children with the SARS-CoV-2 infection can have neurological signs and symptoms of disease more frequently than previously thought, revealing the involvement of the central nervous system, the peripheral nervous system, or both. Aim of this manuscript is to highlight the neurologic complications associated with SARS-CoV-2 among pediatric patients with COVID-19, suggesting when to monitor carefully neurologic development. Main findings Children with a severe chronic underlying disease, infants and toddlers and those who develop the so-called multisystem inflammatory syndrome (MIS-C) are those with the highest incidence of neurological complications. Fortunately, in most of the cases, neurological manifestations, mainly represented by headache and anosmia, are mild and transient and do not significantly complicate the COVID-19 course. However, in some cases, very severe clinical problems associated with relevant alterations of neuroimaging, electroencephalography, nerve conduction studies and electromyography findings can develop. Generally, almost all the children with COVID-19 and neurological manifestations till now described have made a complete recovery, although in some cases this has occurred after several weeks of treatment. Moreover, COVID-19 infection during pregnancy has been found associated with an increased risk of obstetric complications that can lead to neurological acute and long-term manifestations in neonates. Conclusions Based on data showing the neurologic impact of COVID-19 in pediatric age, we suggest monitoring neurological development a few months after healing in pediatric patients who have presented MIS-C, seizures or other neurological manifestations and in children of pregnant women with COVID-19 in order to detect overt and subtle deficits.
Collapse
Affiliation(s)
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, Pietro Barilla Children's Hospital, University of Parma, via Gramsci 14, 43126, Parma, Italy.
| |
Collapse
|
18
|
Deakin CT, Cornish GH, Ng KW, Faulkner N, Bolland W, Hope J, Rosa A, Harvey R, Hussain S, Earl C, Jebson BR, Wilkinson MGLL, Marshall LR, O'Brien K, Rosser EC, Radziszewska A, Peckham H, Patel H, Heaney J, Rickman H, Paraskevopoulou S, Houlihan CF, Spyer MJ, Gamblin SJ, McCauley J, Nastouli E, Levin M, Cherepanov P, Ciurtin C, Wedderburn LR, Kassiotis G. Favorable antibody responses to human coronaviruses in children and adolescents with autoimmune rheumatic diseases. MED 2021; 2:1093-1109.e6. [PMID: 34414384 PMCID: PMC8363467 DOI: 10.1016/j.medj.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Differences in humoral immunity to coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), between children and adults remain unexplained, and the effect of underlying immune dysfunction or suppression is unknown. Here, we sought to examine the antibody immune competence of children and adolescents with prevalent inflammatory rheumatic diseases, juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), and juvenile systemic lupus erythematosus (JSLE) against the seasonal human coronavirus (HCoV)-OC43 that frequently infects this age group. METHODS Sera were collected from JIA (n = 118), JDM (n = 49), and JSLE (n = 30) patients and from healthy control (n = 54) children and adolescents prior to the coronavirus disease 19 (COVID-19) pandemic. We used sensitive flow-cytometry-based assays to determine titers of antibodies that reacted with the spike and nucleoprotein of HCoV-OC43 and cross-reacted with the spike and nucleoprotein of SARS-CoV-2, and we compared them with respective titers in sera from patients with multisystem inflammatory syndrome in children and adolescents (MIS-C). FINDINGS Despite immune dysfunction and immunosuppressive treatment, JIA, JDM, and JSLE patients maintained comparable or stronger humoral responses than healthier peers, which was dominated by immunoglobulin G (IgG) antibodies to HCoV-OC43 spike, and harbored IgG antibodies that cross-reacted with SARS-CoV-2 spike. In contrast, responses to HCoV-OC43 and SARS-CoV-2 nucleoproteins exhibited delayed age-dependent class-switching and were not elevated in JIA, JDM, and JSLE patients, which argues against increased exposure. CONCLUSIONS Consequently, autoimmune rheumatic diseases and their treatment were associated with a favorable ratio of spike to nucleoprotein antibodies. FUNDING This work was supported by a Centre of Excellence Centre for Adolescent Rheumatology Versus Arthritis grant, 21593, UKRI funding reference MR/R013926/1, the Great Ormond Street Children's Charity, Cure JM Foundation, Myositis UK, Lupus UK, and the NIHR Biomedical Research Centres at GOSH and UCLH. This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK, the UK Medical Research Council, and the Wellcome Trust.
Collapse
Affiliation(s)
- Claire T Deakin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
- OPAL Rheumatology Ltd, Sydney, NSW, Australia
| | - Georgina H Cornish
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kevin W Ng
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - William Bolland
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joshua Hope
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Annachiara Rosa
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Saira Hussain
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christopher Earl
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bethany R Jebson
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
| | - Meredyth G L L Wilkinson
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
| | - Lucy R Marshall
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
| | - Kathryn O'Brien
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Harsita Patel
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | | | | | | | - Catherine F Houlihan
- UCLH NHS Trust, London NW1 2BU, UK
- Division of Infection and Immunity, UCL, London WC1E 6BT, UK
| | - Moira J Spyer
- UCLH NHS Trust, London NW1 2BU, UK
- Department of Population, Policy and Practice, Great Ormond Street ICH, UCL, London WC1N 1EH, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - John McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eleni Nastouli
- UCLH NHS Trust, London NW1 2BU, UK
- Department of Population, Policy and Practice, Great Ormond Street ICH, UCL, London WC1N 1EH, UK
| | - Michael Levin
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, St Mary's Hospital, Imperial College London, London W2 1NY, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, St Mary's Hospital, Imperial College London, London W2 1NY, UK
| |
Collapse
|
19
|
Case Report: A Pediatric COVID-19 Patient with Pyelonephritis and Febrile Seizure as a Rare Clinical Manifestations. Nephrourol Mon 2021. [DOI: 10.5812/numonthly.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
: In this study, we report a rare presentation of COVID-19 virus, as febrile seizure. The patient was a 13-month-old girl with febrile seizure. Fever of the patient had started three days ago. Also, the patient had chills for five minutes in addition to cyanosis and tachycardia. On the primary evaluation, active urine analysis showed pyelonephritis. After a complete evaluation, the patient was diagnosed as a positive COVID-19 case based on polymerase chain reaction using nasopharyngeal and oropharyngeal swabs.
Collapse
|
20
|
L’Huillier AG, Danziger‐Isakov L, Chaudhuri A, Green M, Michaels MG, M Posfay‐Barbe K, van der Linden D, Verma A, McCulloch M, Ardura MI. SARS-CoV-2 and pediatric solid organ transplantation: Current knowns and unknowns. Pediatr Transplant 2021; 25:e13986. [PMID: 33689201 PMCID: PMC8237081 DOI: 10.1111/petr.13986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/17/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
The COVID-19 pandemic has proven to be a challenge in regard to the clinical presentation, prevention, diagnosis, and management of SARS-CoV-2 infection among children who are candidates for and recipients of SOT. By providing scenarios and frequently asked questions encountered in routine clinical practice, this document provides expert opinion and summarizes the available data regarding the prevention, diagnosis, and management of SARS-CoV-2 infection among pediatric SOT candidates and recipients and highlights ongoing knowledge gaps requiring further study. Currently available data are still lacking in the pediatric SOT population, but data have emerged in both the adult SOT and general pediatric population regarding the approach to COVID-19. The document provides expert opinion regarding prevention, diagnosis, and management of SARS-CoV-2 infection among pediatric SOT candidates and recipients.
Collapse
Affiliation(s)
- Arnaud G. L’Huillier
- Pediatric Infectious Diseases UnitGeneva University Hospitals and Faculty of MedicineGenevaSwitzerland
| | | | | | - Michael Green
- UPMC Children’s Hospital of PittsburghPittsburghPAUSA
| | | | - Klara M Posfay‐Barbe
- Pediatric Infectious Diseases UnitGeneva University Hospitals and Faculty of MedicineGenevaSwitzerland
| | - Dimitri van der Linden
- Pediatric Infectious DiseasesDepartment of PediatricsCliniques Universitaires Saint‐LucBrusselsBelgium
| | | | | | - Monica I. Ardura
- Department of Pediatrics, Infectious Diseases and Host DefenseNationwide Children’s HospitalThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
21
|
Mallajosyula V, Ganjavi C, Chakraborty S, McSween AM, Pavlovitch-Bedzyk AJ, Wilhelmy J, Nau A, Manohar M, Nadeau KC, Davis MM. CD8 + T cells specific for conserved coronavirus epitopes correlate with milder disease in COVID-19 patients. Sci Immunol 2021; 6:eabg5669. [PMID: 34210785 PMCID: PMC8975171 DOI: 10.1126/sciimmunol.abg5669] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
A central feature of the SARS-CoV-2 pandemic is that some individuals become severely ill or die, whereas others have only a mild disease course or are asymptomatic. Here we report development of an improved multimeric αβ T cell staining reagent platform, with each maxi-ferritin "spheromer" displaying 12 peptide-MHC complexes. Spheromers stain specific T cells more efficiently than peptide-MHC tetramers and capture a broader portion of the sequence repertoire for a given peptide-MHC. Analyzing the response in unexposed individuals, we find that T cells recognizing peptides conserved amongst coronaviruses are more abundant and tend to have a "memory" phenotype, compared to those unique to SARS-CoV-2. Significantly, CD8+ T cells with these conserved specificities are much more abundant in COVID-19 patients with mild disease versus those with a more severe illness, suggesting a protective role.
Collapse
Affiliation(s)
- Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Conner Ganjavi
- Department of Biology, Stanford University School of Humanities and Sciences, Stanford, CA 94305, USA
| | - Saborni Chakraborty
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| | - Alana M McSween
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Julie Wilhelmy
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Allison Nau
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Monali Manohar
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kari C Nadeau
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
22
|
Mulabbi EN, Tweyongyere R, Wabwire-Mangen F, Mworozi E, Koehlerb J, Kibuuka H, Millard M, Erima B, Tugume T, Aquino UQ, Byarugaba DK. Seroprevalence of human coronaviruses among patients visiting hospital-based sentinel sites in Uganda. BMC Infect Dis 2021; 21:585. [PMID: 34134656 PMCID: PMC8207497 DOI: 10.1186/s12879-021-06258-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/31/2021] [Indexed: 01/12/2023] Open
Abstract
Background Human coronaviruses are causative agents of respiratory infections with several subtypes being prevalent worldwide. They cause respiratory illnesses of varying severity and have been described to be continuously emerging but their prevalence is not well documented in Uganda. This study assessed the seroprevalence of antibodies against the previously known human coronaviruses prior 2019 in Uganda. Methods A total 377 serum samples collected from volunteers that showed influenza like illness in five hospital-based sentinel sites and archived were analyzed using a commercial Qualitative Human Coronavirus Antibody IgG ELISA kit. Although there is no single kit available that can detect the presence of all the circulating coronaviruses, this kit uses a nucleoprotein, aa 340–390 to coat the wells and since there is significant homology among the various human coronavirus strains with regards to the coded for proteins, there is significant cross reactivity beyond HCoV HKU-39849 2003. This gives the kit a qualitative ability to detect the presence of human coronavirus antibodies in a sample. Results The overall seroprevalence for all the sites was 87.53% with no significant difference in the seroprevalence between the Hospital based sentinel sites (p = 0.8). Of the seropositive, the age group 1–5 years had the highest percentage (46.97), followed by 6–10 years (16.67) and then above 20 (16.36). An odds ratio of 1.6 (CI 0.863–2.97, p = 0.136) showed that those volunteers below 5 years of age were more likely to be seropositive compared to those above 5 years. The seropositivity was generally high throughout the year with highest being recorded in March and the lowest in February and December. Conclusions The seroprevalence of Human coronaviruses is alarmingly high which calls for need to identify and characterize the circulating coronavirus strains so as to guide policy on the control strategies.
Collapse
Affiliation(s)
- Elijah Nicholas Mulabbi
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda.
| | - Robert Tweyongyere
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | | | | | - Jeff Koehlerb
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Monica Millard
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Bernard Erima
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Titus Tugume
- Makerere University Walter Reed Project, Kampala, Uganda
| | | | - Denis K Byarugaba
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda.,Makerere University Walter Reed Project, Kampala, Uganda
| |
Collapse
|
23
|
Ng KW, Faulkner N, Wrobel AG, Gamblin SJ, Kassiotis G. Heterologous humoral immunity to human and zoonotic coronaviruses: Aiming for the achilles heel. Semin Immunol 2021; 55:101507. [PMID: 34716096 PMCID: PMC8542444 DOI: 10.1016/j.smim.2021.101507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 02/04/2023]
Abstract
Coronaviruses are evolutionarily successful RNA viruses, common to multiple avian, amphibian and mammalian hosts. Despite their ubiquity and potential impact, knowledge of host immunity to coronaviruses remains incomplete, partly owing to the lack of overt pathogenicity of endemic human coronaviruses (HCoVs), which typically cause common colds. However, the need for deeper understanding became pressing with the zoonotic introduction of three novel coronaviruses in the past two decades, causing severe acute respiratory syndromes in humans, and the unfolding pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This renewed interest not only triggered the discovery of two of the four HCoVs, but also uncovered substantial cellular and humoral cross-reactivity with shared or related coronaviral antigens. Here, we review the evidence for cross-reactive B cell memory elicited by HCoVs and its potential impact on the puzzlingly variable outcome of SARS-CoV-2 infection. The available data indicate targeting of highly conserved regions primarily in the S2 subunits of the spike glycoproteins of HCoVs and SARS-CoV-2 by cross-reactive B cells and antibodies. Rare monoclonal antibodies reactive with conserved S2 epitopes and with potent virus neutralising activity have been cloned, underscoring the potential functional relevance of cross-reactivity. We discuss B cell and antibody cross-reactivity in the broader context of heterologous humoral immunity to coronaviruses, as well as the limits of protective immune memory against homologous re-infection. Given the bidirectional nature of cross-reactivity, the unprecedented current vaccination campaign against SARS-CoV-2 is expected to impact HCoVs, as well as future zoonotic coronaviruses attempting to cross the species barrier. However, emerging SARS-CoV-2 variants with resistance to neutralisation by vaccine-induced antibodies highlight a need for targeting more constrained, less mutable parts of the spike. The delineation of such cross-reactive areas, which humoral immunity can be trained to attack, may offer the key to permanently shifting the balance of our interaction with current and future coronaviruses in our favour.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology Laboratory, London, NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology Laboratory, London, NW1 1AT, UK; National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - George Kassiotis
- Retroviral Immunology Laboratory, London, NW1 1AT, UK; Department of Infectious Disease, St Mary's Hospital, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
24
|
Jevšnik Virant M, Černe D, Petrovec M, Paller T, Toplak I. Genetic Characterisation and Comparison of Three Human Coronaviruses (HKU1, OC43, 229E) from Patients and Bovine Coronavirus (BCoV) from Cattle with Respiratory Disease in Slovenia. Viruses 2021; 13:v13040676. [PMID: 33920821 PMCID: PMC8071153 DOI: 10.3390/v13040676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Coronaviruses (CoV) are widely distributed pathogens of human and animals and can cause mild or severe respiratory and gastrointestinal disease. Antigenic and genetic similarity of some CoVs within the Betacoronavirus genus is evident. Therefore, for the first time in Slovenia, we investigated the genetic diversity of partial 390-nucleotides of RNA-dependent-RNA polymerase gene (RdRp) for 66 human (HCoV) and 24 bovine CoV (BCoV) positive samples, collected between 2010 and 2016 from human patients and cattle with respiratory disease. The characterized CoV strains belong to four different clusters, in three separate human clusters HCoV-HKU1 (n = 34), HCoV-OC43 (n = 31) and HCoV 229E (n = 1) and bovine grouping only as BCoVs (n = 24). BCoVs from cattle and HCoV-OC43 were genetically the most closely related and share 96.4-97.1% nucleotide and 96.9-98.5% amino acid identity.
Collapse
Affiliation(s)
- Monika Jevšnik Virant
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (M.J.V.); (M.P.)
| | - Danijela Černe
- Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (M.J.V.); (M.P.)
| | - Tomislav Paller
- National Veterinary Institute, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
| | - Ivan Toplak
- Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
- Correspondence:
| |
Collapse
|
25
|
Nordvig AS, Fong KT, Willey JZ, Thakur KT, Boehme AK, Vargas WS, Smith CJ, Elkind MSV. Potential Neurologic Manifestations of COVID-19. Neurol Clin Pract 2021; 11:e135-e146. [PMID: 33842082 PMCID: PMC8032406 DOI: 10.1212/cpj.0000000000000897] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Neurologic complications are increasingly recognized in the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This coronavirus is related to severe acute respiratory syndrome coronavirus (SARS-CoV) and other human coronavirus-related illnesses that are associated with neurologic symptoms. These symptoms raise the question of a neuroinvasive potential of SARS-CoV-2. RECENT FINDINGS Potential neurologic symptoms and syndromes of SARS-CoV-2 include headache, fatigue, dizziness, anosmia, ageusia, anorexia, myalgias, meningoencephalitis, hemorrhage, altered consciousness, Guillain-Barré syndrome, syncope, seizure, and stroke. In addition, we discuss neurologic effects of other coronaviruses, special considerations for management of neurologic patients, and possible long-term neurologic and public health sequelae. SUMMARY As SARS-CoV-2 is projected to infect a large part of the world's population, understanding the potential neurologic implications of COVID-19 will help neurologists and others recognize and intervene in neurologic morbidity during and after the pandemic of 2020.
Collapse
Affiliation(s)
- Anna S Nordvig
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| | - Kathryn T Fong
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| | - Joshua Z Willey
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| | - Kiran T Thakur
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| | - Amelia K Boehme
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| | - Wendy S Vargas
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| | - Craig J Smith
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| | - Mitchell S V Elkind
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| |
Collapse
|
26
|
Cusenza F, Davino G, D’Alvano T, Argentiero A, Fainardi V, Pisi G, Principi N, Esposito S. Silence of the Lambs: The Immunological and Molecular Mechanisms of COVID-19 in Children in Comparison with Adults. Microorganisms 2021; 9:microorganisms9020330. [PMID: 33562210 PMCID: PMC7915740 DOI: 10.3390/microorganisms9020330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Children infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can suffer from severe coronavirus disease 2019 (COVID-19). However, compared to adults and the elderly, susceptibility to SARS-CoV-2 infection in children seems to be lower; when infection does develop, most infected children remain asymptomatic or develop a mild disease. Understanding why children seem generally protected from severe COVID-19 and only rarely develop clinical conditions that can cause hospitalization, admission to the pediatric intensive care unit and death can be important. More details on the mechanism of action of SARS-CoV-2 could be defined. Moreover, the role played by children in virus diffusion should be better analyzed, and the development of effective preventive and therapeutic measures against COVID-19 could be favored. The main aim of this paper is to discuss the present knowledge on immunological and molecular mechanisms that could explain differences in COVID-19 clinical manifestations between children and adults. Literature analysis showed that although most children are clearly protected from the development of severe COVID-19, the reasons for this peculiarity are not fully understood. Developmental variations in immune system function together with the potential role of repeated antigen stimulation in the first periods of life on innate immunity are widely studied. As the few children who develop the most severe form of pediatric COVID-19 have certain alterations in the immune system response to SARS-CoV-2 infection, studies about the relationships between SARS-CoV-2 and the immune system of the host are essential to understand the reasons for the age-related differences in the severity of COVID-19.
Collapse
Affiliation(s)
- Francesca Cusenza
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (F.C.); (G.D.); (T.D.); (A.A.); (V.F.); (G.P.)
| | - Giusy Davino
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (F.C.); (G.D.); (T.D.); (A.A.); (V.F.); (G.P.)
| | - Tiziana D’Alvano
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (F.C.); (G.D.); (T.D.); (A.A.); (V.F.); (G.P.)
| | - Alberto Argentiero
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (F.C.); (G.D.); (T.D.); (A.A.); (V.F.); (G.P.)
| | - Valentina Fainardi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (F.C.); (G.D.); (T.D.); (A.A.); (V.F.); (G.P.)
| | - Giovanna Pisi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (F.C.); (G.D.); (T.D.); (A.A.); (V.F.); (G.P.)
| | | | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (F.C.); (G.D.); (T.D.); (A.A.); (V.F.); (G.P.)
- Correspondence: ; Tel.: +39-0521-903524
| |
Collapse
|
27
|
Ha JF. COVID-19 in Children: A Narrative Review. Curr Pediatr Rev 2021; 17:212-219. [PMID: 34042036 DOI: 10.2174/1573396317666210526155313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/31/2020] [Accepted: 03/06/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The coronavirus disease 2019 (COVID-19) pandemic is caused by the third known zoonotic coronavirus. It is a disease that does not spare any age group. The scientific community has been inundated with information since January. This review aims to summarise pertinent information related to COVID-19 in children. METHODS A literature search was conducted in 2020 on the PubMed, MEDLINE, and Embase databases, with the keyword "COVID 19" and "children". A bibliographic search of articles included was also undertaken. The abstracts were scanned to assess their appropriateness to be included in this narrative review. This was updated on the 11th April, 2020. RESULTS The aetiology, transmission, incubation, pathophysiology, clinical features and complications, and management are discussed. CONCLUSION Our understanding of COVID-19 is evolving as more reports are published. The growth of SARS-CoV2 is limited in children and they are often asymptomatic. The disease course is also milder. Continued research to understand its effect on children is important to help us manage the disease in these vulnerable populations in a timely fashion.
Collapse
Affiliation(s)
- Jennifer F Ha
- Department of Paediatrics Otolaryngology-Head & Neck Surgery, Perth Children's Hospital, 15 Hospital Avenue, Nedlands 6009, Western Australia, Australia
| |
Collapse
|
28
|
Kotlyar AM, Grechukhina O, Chen A, Popkhadze S, Grimshaw A, Tal O, Taylor HS, Tal R. Vertical transmission of coronavirus disease 2019: a systematic review and meta-analysis. Am J Obstet Gynecol 2021; 224:35-53.e3. [PMID: 32739398 PMCID: PMC7392880 DOI: 10.1016/j.ajog.2020.07.049] [Citation(s) in RCA: 383] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study aimed to conduct a systematic review of the current literature to determine estimates of vertical transmission of coronavirus disease 2019 based on early RNA detection of severe acute respiratory syndrome coronavirus 2 after birth from various neonatal or fetal sources and neonatal serology. DATA SOURCES Eligible studies published until May 28, 2020, were retrieved from PubMed, EMBASE, medRxiv, and bioRxiv collection databases. STUDY ELIGIBILITY CRITERIA This systematic review included cohort studies, case series, and case reports of pregnant women who received a coronavirus disease 2019 diagnosis using severe acute respiratory syndrome coronavirus 2 viral RNA test and had reported data regarding the testing of neonates or fetuses for severe acute respiratory syndrome coronavirus 2 immediately after birth and within 48 hours of birth. A total of 30 eligible case reports describing 43 tested neonates and 38 cohort or case series studies describing 936 tested neonates were included. STUDY APPRAISAL AND SYNTHESIS METHODS The methodological quality of all included studies was evaluated by a modified version of the Newcastle-Ottawa scale. Quantitative synthesis was performed on cohort or case series studies according to the neonatal biological specimen site to reach pooled proportions of vertical transmission. RESULTS Our quantitative synthesis revealed that of 936 neonates from mothers with coronavirus disease 2019, 27 neonates had a positive result for severe acute respiratory syndrome coronavirus 2 viral RNA test using nasopharyngeal swab, indicating a pooled proportion of 3.2% (95% confidence interval, 2.2-4.3) for vertical transmission. Of note, the pooled proportion of severe acute respiratory syndrome coronavirus 2 positivity in neonates by nasopharyngeal swab in studies from China was 2.0% (8/397), which was similar to the pooled proportion of 2.7% (14/517) in studies from outside of China. Severe acute respiratory syndrome coronavirus 2 viral RNA testing in neonatal cord blood was positive in 2.9% of samples (1/34), 7.7% of placenta samples (2/26), 0% of amniotic fluid (0/51), 0% of urine samples (0/17), and 9.7% of fecal or rectal swabs (3/31). Neonatal serology was positive in 3 of 82 samples (3.7%) (based on the presence of immunoglobulin M). CONCLUSION Vertical transmission of severe acute respiratory syndrome coronavirus 2 is possible and seems to occur in a minority of cases of maternal coronavirus disease 2019 infection in the third trimester. The rates of infection are similar to those of other pathogens that cause congenital infections. However, given the paucity of early trimester data, no assessment can yet be made regarding the rates of vertical transmission in early pregnancy and potential risk for consequent fetal morbidity and mortality.
Collapse
Affiliation(s)
- Alexander M Kotlyar
- Sections of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT.
| | - Olga Grechukhina
- Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT
| | - Alice Chen
- Sections of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT
| | - Shota Popkhadze
- Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT
| | - Alyssa Grimshaw
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, CT
| | - Oded Tal
- School of Business, Conestoga College, Kitchener, Ontario, Canada
| | - Hugh S Taylor
- Sections of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT
| | - Reshef Tal
- Sections of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT
| |
Collapse
|
29
|
Al-Kuraishy HM, Al-Gareeb AI, Atanu FO, El-Zamkan MA, Diab HM, Ahmed AS, Al-Maiahy TJ, Obaidullah AJ, Alshehri S, Ghoniem MM, Batiha GE. Maternal Transmission of SARS-CoV-2: Safety of Breastfeeding in Infants Born to Infected Mothers. Front Pediatr 2021; 9:738263. [PMID: 34956971 PMCID: PMC8696119 DOI: 10.3389/fped.2021.738263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a recent epidemic disease caused by severe acute respiratory syndrome virus type 2 (SARS-CoV-2). In pregnancy, SARS-Cov-2 infection creates additional alarm due to concerns regarding the potential for transmission from the mother to the baby during both the antenatal and postpartum times. In general, breastfeeding is seldom disallowed because of infection of the mother. However, there are few exceptions with regards to certain infectious organisms with established transmission evidence from mother to infant and the link of infection of a newborn with significant morbidity and mortality. It is confirmed that pregnant women can become infected with SARS-CoV-2, although the debate on the possible vertical transmission of SARS-CoV-2 infection during pregnancy is still open. In this regard, the literature is still poor. On the contrary, the information on the safety of breastfeeding even during infections seems reassuring when the mother takes the necessary precautions. However, there are still answered questions regarding the precautions to be taken during breastfeeding by COVID-19 patients. This paper reviews the existing answers to these and many other questions. This review therefore presents a summary of the present-day understanding of infection with SARS-CoV-2 and discusses the answers around the maternal transmission of COVID-19 and the potential threat of breastfeeding to babies born to infected pregnant mothers. In conclusion, intrauterine transmission of SARS-CoV-2 infection is less likely to occur during pregnancy. Most studies suggest that COVID-19 is not transmitted through breast milk. Correspondingly, COVID-19-infected neonates might acquire the infection via the respiratory route because of the postnatal contact with the mother rather than during the prenatal period. International organizations encourage breastfeeding regardless of the COVID-19 status of the mother or child as long as proper hygienic and safety measures are adhered to so as to minimize the chance of infant infection by droplets and direct contact with the infected mother. Pasteurized donor human milk or infant formula as supplemental feeding can be quite beneficial in the case of mother-infant separation till breastfeeding is safe.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | - Francis O Atanu
- Department of Biochemistry, Faculty of Natural Sciences, Kogi State University, Anyigba, Nigeria
| | - Mona A El-Zamkan
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Hassan M Diab
- Department of Animal and Poultry Health and Environment, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Ahmed S Ahmed
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Thabat J Al-Maiahy
- Department of Gynecology and Obstetrics, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Ghoniem
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
30
|
Kaushik AK, Dhau JS, Gohel H, Mishra YK, Kateb B, Kim NY, Goswami DY. Electrochemical SARS-CoV-2 Sensing at Point-of-Care and Artificial Intelligence for Intelligent COVID-19 Management. ACS APPLIED BIO MATERIALS 2020; 3:7306-7325. [PMID: 35019473 PMCID: PMC7605341 DOI: 10.1021/acsabm.0c01004] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostics, optimization of therapy, and investigation of therapies of higher efficacy. The urgent need for such diagnostic systems is recommended by experts in order to achieve the mass and targeted SARS-CoV-2 detection required to manage the COVID-19 pandemic through the understanding of infection progression and timely therapy decisions. To achieve these tasks, there is a scope for developing smart sensors to rapidly and selectively detect SARS-CoV-2 protein at the picomolar level. COVID-19 infection, due to human-to-human transmission, demands diagnostics at the point-of-care (POC) without the need of experienced labor and sophisticated laboratories. Keeping the above-mentioned considerations, we propose to explore the compartmentalization approach by designing and developing nanoenabled miniaturized electrochemical biosensors to detect SARS-CoV-2 virus at the site of the epidemic as the best way to manage the pandemic. Such COVID-19 diagnostics approach based on a POC sensing technology can be interfaced with the Internet of things and artificial intelligence (AI) techniques (such as machine learning and deep learning for diagnostics) for investigating useful informatics via data storage, sharing, and analytics. Keeping COVID-19 management related challenges and aspects under consideration, our work in this review presents a collective approach involving electrochemical SARS-CoV-2 biosensing supported by AI to generate the bioinformatics needed for early stage COVID-19 diagnosis, correlation of viral load with pathogenesis, understanding of pandemic progression, therapy optimization, POC diagnostics, and diseases management in a personalized manner.
Collapse
Affiliation(s)
- Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Department of
Natural Sciences, Division of Sciences, Art, & Mathematics,
Florida Polytechnic University,
Lakeland, Florida 33805, United States
| | | | - Hardik Gohel
- Applied AI Research Lab,
University of Houston Victoria,
Victoria, Texas 77901, United State
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD,
University of Southern Denmark,
Alsion 2, 6400 Sønderborg, Denmark
| | - Babak Kateb
- National Center for
NanoBioElectronics, Brain Mapping Foundation, Brain Technology and
Innovation Park, Society for Brain Mapping and
Therapeutics, Pacific Palisades, California 90272,
United States
| | - Nam-Young Kim
- RFIC Bio Center, Department of Electronics
Engineering, Kwangwoon University, Seoul
01897, South Korea
| | - Dharendra Yogi Goswami
- Clean Energy Research Center,
University of South Florida, Tampa,
Florida 33620, United States
| |
Collapse
|
31
|
Schwarz S, Jenetzky E, Krafft H, Maurer T, Steuber C, Reckert T, Fischbach T, Martin D. [Corona in Children: the Co-Ki Study]. Monatsschr Kinderheilkd 2020; 169:39-45. [PMID: 33162611 PMCID: PMC7607899 DOI: 10.1007/s00112-020-01050-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/28/2022]
Abstract
Background In Germany over 80% of children and adolescents are in the ambulatory care of registered pediatricians. These have a specific perspective on the COVID-19 pandemic. Methods For this reason, this professional group initiated a central recording of case numbers, individual case descriptions and observations on infections and illnesses with SARS-CoV‑2 (www.co-ki.de). Results So far 557 pediatricians have participated. Together they care for ca. 670,000 children. They reported 9803 children who presented as suspected cases. The pediatricians themselves had a clinical suspicion of SARS-CoV‑2 infections in 3654 children. In 7707 children PCR tests were carried out using nose/throat swabs of which 198 (2.6%) were positive. In addition, 731 children were tested for SARS-CoV‑2 antibodies with detection in 82 cases (11.2%). Despite initially positive PCR tests, 47 children had a negative antibody test at least 2 weeks later. Our query as to infections of adults by children yielded only one case, which a telephone enquiry revealed as unlikely. Discussion From an outpatient pediatric perspective COVID-19 is rare. There was no convincing evidence that children are a relevant source of infection for SARS-CoV‑2 nor that they are relevantly at risk.
Collapse
Affiliation(s)
- Silke Schwarz
- Lehrstuhl für Medizintheorie, Integrative und Anthroposophische Medizin, Universität Witten/Herdecke, Alfred-Herrhausen-Straße 50, 58448 Witten, Deutschland
| | - Ekkehart Jenetzky
- Lehrstuhl für Medizintheorie, Integrative und Anthroposophische Medizin, Universität Witten/Herdecke, Alfred-Herrhausen-Straße 50, 58448 Witten, Deutschland.,Kinder- und Jugendpsychiatrie und -psychotherapie, Unimedizin Mainz, Mainz, Deutschland
| | - Hanno Krafft
- Lehrstuhl für Medizintheorie, Integrative und Anthroposophische Medizin, Universität Witten/Herdecke, Alfred-Herrhausen-Straße 50, 58448 Witten, Deutschland
| | - Tobias Maurer
- Lehrstuhl für Medizintheorie, Integrative und Anthroposophische Medizin, Universität Witten/Herdecke, Alfred-Herrhausen-Straße 50, 58448 Witten, Deutschland
| | | | - Till Reckert
- Berufsverband der Kinder- und Jugendärzte, Köln, Deutschland
| | | | - David Martin
- Lehrstuhl für Medizintheorie, Integrative und Anthroposophische Medizin, Universität Witten/Herdecke, Alfred-Herrhausen-Straße 50, 58448 Witten, Deutschland.,Universitätsklinik für Kinder- und Jugendmedizin, Universität Tübingen, Tübingen, Deutschland
| |
Collapse
|
32
|
Chen X. Potential neuroinvasive and neurotrophic properties of SARS-CoV-2 in pediatric patients: comparison of SARS-CoV-2 with non-segmented RNA viruses. J Neurovirol 2020; 26:929-940. [PMID: 33057966 PMCID: PMC7556565 DOI: 10.1007/s13365-020-00913-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 01/02/2023]
Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing global health crises. Children can be infected, but are less likely to develop severe neurological abnormalities compared with adults. However, whether SARS-CoV-2 can directly cause neurological impairments in pediatric patients is not known. The possible evolutionary and molecular relationship between SARS-CoV-2 and non-segmented RNA viruses were examined with reference to neurological disorders in pediatric patients. SARS-CoV-2 shares similar functional domains with neuroinvasive and neurotropic RNA viruses. The Spike 1 (S1) receptor binding domain and the cleavage sites at S1/S2 boundary are less conserved compared with the S2 among coronaviruses.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905-2499, USA.
| |
Collapse
|
33
|
Adema IW, Kamau E, Uchi Nyiro J, Otieno GP, Lewa C, Munywoki PK, Nokes DJ. Surveillance of respiratory viruses among children attending a primary school in rural coastal Kenya. Wellcome Open Res 2020; 5:63. [PMID: 33102784 PMCID: PMC7569485 DOI: 10.12688/wellcomeopenres.15703.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 01/07/2023] Open
Abstract
Background: Respiratory viruses are primary agents of respiratory tract diseases. Knowledge on the types and frequency of respiratory viruses affecting school-children is important in determining the role of schools in transmission in the community and identifying targets for interventions. Methods: We conducted a one-year (term-time) surveillance of respiratory viruses in a rural primary school in Kilifi County, coastal Kenya between May 2017 and April 2018. A sample of 60 students with symptoms of ARI were targeted for nasopharyngeal swab (NPS) collection weekly. Swabs were screened for 15 respiratory virus targets using real time PCR diagnostics. Data from respiratory virus surveillance at the local primary healthcare facility was used for comparison. Results: Overall, 469 students aged 2-19 years were followed up for 220 days. A total of 1726 samples were collected from 325 symptomatic students; median age of 7 years (IQR 5-11). At least one virus target was detected in 384 (22%) of the samples with a frequency of 288 (16.7%) for rhinovirus, 47 (2.7%) parainfluenza virus, 35 (2.0%) coronavirus, 15 (0.9%) adenovirus, 11 (0.6%) respiratory syncytial virus (RSV) and 5 (0.3%) influenza virus. The proportion of virus positive samples was higher among lower grades compared to upper grades (25.9% vs 17.5% respectively; χ 2 = 17.2, P -value <0.001). Individual virus target frequencies did not differ by age, sex, grade, school term or class size. Rhinovirus was predominant in both the school and outpatient setting. Conclusion: Multiple respiratory viruses circulated in this rural school population. Rhinovirus was dominant in both the school and outpatient setting and RSV was of notably low frequency in the school. The role of school children in transmitting viruses to the household setting is still unclear and further studies linking molecular data to contact patterns between the school children and their households are required.
Collapse
Affiliation(s)
- Irene Wangwa Adema
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - Everlyn Kamau
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - Joyce Uchi Nyiro
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - Grieven P. Otieno
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - Clement Lewa
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - Patrick K. Munywoki
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - D. James Nokes
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
- School of Life Sciences and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, Coventry, CV4 7AL, UK
| |
Collapse
|
34
|
Neurological Components in Coronavirus Induced Disease: A Review of the Literature Related to SARS, MERS, and COVID-19. Neurol Res Int 2020. [DOI: 10.1155/2020/6587875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background. COVID-19 has been declared the pandemic of the 21st century, causing more than 45,000 deaths worldwide. The abrupt release of SARS-CoV-2 demonstrated the potential infection, morbidity, and lethality of zoonotic viruses and human-to-human transmission. Fever, cough, and fatigue are reported as the most common symptoms of the disease, including acute respiratory distress syndrome, and also signs of severe illness, such as shock, acute cardiac injury, and renal lesions, are described. Considering the previous works related to human coronavirus and other zoonotic infections, it has been demonstrated that the neuroinvasive propensity is a common characteristic of coronaviruses, especially in SARS-CoV and MERS-CoV. Objective. In the present review, we analyzed the potential neurological components involved in coronavirus infections and detailed the neurological syndromes related to COVID-19. We also examined the mechanism of transmission and CNS pathology related to other viruses with similar structures such as SARS-CoV and MERS-CoV. Methods. A comprehensive search of different original articles and clinical, experimental, and review studies was conducted in MEDLINE/PubMed, Scopus, and Web of Science. We selected 92 articles that have been published in journals or preprints according to the search words and the inclusion and exclusion criteria. Results. COVID-19 patients may experience neurological symptoms such as headache, impaired mental status, confusion, dizziness, nausea and vomiting, anosmia/hyposmia, and dysgeusia/hypogeusia as initial symptoms, with more severe manifestations such as seizures or coma later on. The neurological signs shown are clinical symptoms similar to those reported for SARS-CoV and MERS-CoV. Given that both SARS-CoV and MERS-CoV have similar structures, these viruses may share comparable neurological symptoms and similar progression. Coronaviruses are linked to central nervous system dysfunction, and they are also reported as the probable cause of multiple sclerosis, encephalitis, and meningitis.
Collapse
|
35
|
Chegondi M, Kothari H, Chacham S, Badheka A. Coronavirus Disease 2019 (COVID-19) Associated With Febrile Status Epilepticus in a Child. Cureus 2020; 12:e9840. [PMID: 32953347 PMCID: PMC7497292 DOI: 10.7759/cureus.9840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Infection associated with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been named coronavirus disease 2019 (COVID-19). The emerging literature suggests that SARS-CoV-2 infection affects children of all age groups. COVID-19 as a cause of febrile seizures and status epilepticus is not yet reported in children. We report the case of a two-year-old child who presented to our pediatric intensive care unit with febrile status epilepticus and was diagnosed to have COVID-19 infection. The child recovered fully and was discharged home after three days.
Collapse
Affiliation(s)
| | - Harsh Kothari
- Division of Pediatric Critical Care Medicine, Stead Family Children's Hospital, Iowa City, USA
| | - Swathi Chacham
- Pediatrics, All India Institute of Medical Sciences, Rishikesh, IND
| | - Aditya Badheka
- Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, USA.,Pediatrics, Stead Family Children's Hospital, Iowa City, USA
| |
Collapse
|
36
|
Msigwa SS, Wang Y, Li Y, Cheng X. The neurological insights of the emerging coronaviruses. J Clin Neurosci 2020; 78:1-7. [PMID: 32563494 PMCID: PMC7287466 DOI: 10.1016/j.jocn.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/22/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023]
Abstract
Emerging Viral diseases are incredibly infectious and proficient in inducing pandemics. Unlike the previous emerging coronaviruses (ECoVs) which neurological complexities were uncommon, with neurological features exhibition at 14-25 days post-onset, yet with critical outcomes exhibiting >50% mortality in central nervous (CNS) presenting pathologies. The COVID 19 neurological consequences occur more frequently even in mild cases, presenting with CNS involvement in up to 25%, musculoskeletal and peripheral manifestation (PNM). Through preceding ECoVs case reports, the PNM not linked to fatal outcomes, however, required, repeated neuro-imaging as notable CT and MRI changes appeared as late as 21 days while the likelihood of Cerebrospinal fluid to test positive for ECoV was 25%, only in the CNS presenting cases. Owing to 44-60% myalgia presentation, risk of the high inflammatory state, and coagulation cascade abnormalities reported in ECoVs, testing for C-reactive protein, serum creatine kinase, and D-dimer level is mandatory. Presently, there is no antiviral medication or vaccination for the ECoVs, early induction of antiviral drugs remains the backbone of management. Neurologically, the therapeutic dosages of anticoagulants are linked to the high incidence of thrombotic complexities, while methylprednisolone is associated with myopathy. Future studies expected to apply more neuro-imaging techniques for CNS exploration and further explore the pathogenesis of the COVID 19 myalgia, anosmia/ageusia reported in the majority of the initial cases.
Collapse
Affiliation(s)
- Samwel Sylvester Msigwa
- Department of Neurology, The Clinical Medicine School of Yangtze University, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China; Mirembe National Mental Health Hospital, Dodoma, Tanzania.
| | - Yamei Wang
- Department of Neurology, The Clinical Medicine School of Yangtze University, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Yan Li
- Department of Neurology, The Clinical Medicine School of Yangtze University, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xianglin Cheng
- Department of Neurology, The Clinical Medicine School of Yangtze University, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China; Department of Neurology and Rehabilitation, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
37
|
Morgello S. Coronaviruses and the central nervous system. J Neurovirol 2020; 26:459-473. [PMID: 32737861 PMCID: PMC7393812 DOI: 10.1007/s13365-020-00868-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Seven coronavirus (CoV) species are known human pathogens: the epidemic viruses SARS-CoV, SARS-CoV-2, and MERS-CoV and those continuously circulating in human populations since initial isolation: HCoV-OC43, HCoV-229E, HCoV-HKU1, and HCoV-NL63. All have associations with human central nervous system (CNS) dysfunction. In infants and young children, the most common CNS phenomena are febrile seizures; in adults, non-focal abnormalities that may be either neurologic or constitutional. Neurotropism and neurovirulence are dependent in part on CNS expression of cell surface receptors mediating viral entry, and host immune response. In adults, CNS receptors for epidemic viruses are largely expressed on brain vasculature, whereas receptors for less pathogenic viruses are present in vasculature, brain parenchyma, and olfactory neuroepithelium, dependent upon viral species. Human coronaviruses can infect circulating mononuclear cells, but meningoencephalitis is rare. Well-documented human neuropathologies are infrequent and, for SARS, MERS, and COVID-19, can entail cerebrovascular accidents originating extrinsically to brain. There is evidence of neuronal infection in the absence of inflammatory infiltrates with SARS-CoV, and CSF studies of rare patients with seizures have demonstrated virus but no pleocytosis. In contrast to human disease, animal models of neuropathogenesis are well developed, and pathologies including demyelination, neuronal necrosis, and meningoencephalitis are seen with both native CoVs as well as human CoVs inoculated into nasal cavities or brain. This review covers basic CoV biology pertinent to CNS disease; the spectrum of clinical abnormalities encountered in infants, children, and adults; and the evidence for CoV infection of human brain, with reference to pertinent animal models of neuropathogenesis.
Collapse
Affiliation(s)
- Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, Icahn School of Medicine at Mount Sinai, Box 1137, New York, 10029, NY, USA.
| |
Collapse
|
38
|
Theel ES, Harring J, Hilgart H, Granger D. Performance Characteristics of Four High-Throughput Immunoassays for Detection of IgG Antibodies against SARS-CoV-2. J Clin Microbiol 2020; 58:e01243-20. [PMID: 32513859 PMCID: PMC7383546 DOI: 10.1128/jcm.01243-20] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/05/2020] [Indexed: 01/25/2023] Open
Abstract
The role of serologic testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in both the clinical and public health settings, will continue to evolve as we gain increasing insight into our immune response to the virus. Here, we evaluated four high-throughput serologic tests for detection of anti-SARS-CoV-2 IgG antibodies, from Abbott Laboratories (Abbott Park, IL), Epitope Diagnostics, Inc. (San Diego, CA), Euroimmun (Lubeck, Germany), and Ortho-Clinical Diagnostics (Rochester, NY), using a panel of serially collected serum samples (n = 224) from 56 patients with confirmed coronavirus disease 2019 (COVID-19), healthy donor sera from 2018, and a cross-reactivity serum panel collected in early 2020. The sensitivities of the Abbott, Epitope, Euroimmun, and Ortho-Clinical IgG assays in convalescent-phase serum samples collected more than 14 days post-symptom onset or post-initial positive reverse transcriptase PCR (RT-PCR) result were 92.9% (78/84), 88.1% (74/84), 97.6% (82/84), and 98.8% (83/84), respectively. Among unique convalescent patients, sensitivities of the Abbott, Epitope, Euroimmun, and Ortho-Clinical anti-SARS-CoV-2 IgG assays were 97.3% (36/37), 73% (27/37), 94.6% (35/37), and 97.3% (36/37), respectively. Overall assay specificity/positive predictive values based on a 5% prevalence rate were 99.6%/92.8%, 99.6%/90.6%, 98.0%/71.2%, and 99.6%/92.5%, respectively, for the Abbott, Epitope, Euroimmun, and Ortho-Clinical IgG assays. In conclusion, we show high sensitivity in convalescent-phase sera and high specificity for the Abbott, Euroimmun, and Ortho-Clinical anti-SARS-CoV-2 IgG assays. With the unprecedented influx of commercially available serologic tests for detection of antibodies against SARS-CoV-2, it remains imperative that laboratories thoroughly evaluate such assays for accuracy prior to implementation.
Collapse
Affiliation(s)
- Elitza S Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Julie Harring
- Division of Clinical Microbiology, Department of Laboratory Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Heather Hilgart
- Division of Clinical Microbiology, Department of Laboratory Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Dane Granger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
39
|
Abstract
Since human coronavirus (HCoV)-like particles were detected in the stool specimens of acute gastroenteritis and necrotizing enterocolitis children with electron microscopy, the relationship between HCoV and the pediatric gastrointestinal illness had been recognized. In recent years, the overall detection rates have been low and have varied by region. HCoVs have not been considered as the major pathogens in pediatric acute gastroenteritis. HCoVs detected in children with acute gastroenteritis have included 229E, OC43, HKU1, NL63, and severe acute respiratory syndrome coronavirus, Middle East Respiratory Syndrome Coronavirus and severe acute respiratory syndrome coronavirus-2 have also been associated with gastrointestinal symptoms in children. Although digestive tract has been recognized as an infection route, it has not been possible to fully investigate the association between HCoVs infection and the gastrointestinal symptoms because of the limited number of pediatric cases. Furthermore, pathologic features have not been clear. Till now, our knowledge of severe acute respiratory syndrome coronavirus-2 is limited. However, diarrhea and vomiting have been seen in pediatric cases, particularly in newborns and infants. It has been necessary to pay more attention on gastrointestinal transmission to identify the infected children early and avoid the children without apparent or mild symptoms becoming the sources of infection.
Collapse
|
40
|
Gupta S, Malhotra N, Gupta N, Agrawal S, Ish P. The curious case of coronavirus disease 2019 (COVID-19) in children. J Pediatr 2020; 222:258-259. [PMID: 32360416 PMCID: PMC7189853 DOI: 10.1016/j.jpeds.2020.04.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Shreya Gupta
- Institute of Pediatrics, Max Smart Super Speciality Hospital, New Delhi, India
| | - Nipun Malhotra
- Department of Pulmonary, Critical Care and Sleep Medicine, VMMC and Safdarjung Hospital, New Delhi, India
| | - Nitesh Gupta
- Department of Pulmonary, Critical Care and Sleep Medicine, VMMC and Safdarjung Hospital, New Delhi, India
| | - Sumita Agrawal
- Department of Pulmonary Medicine, Medipulse Hospital, Jodhpur, Rajasthan, India
| | - Pranav Ish
- Department of Pulmonary, Critical Care and Sleep Medicine, VMMC and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
41
|
Lu Q, Shi Y. Coronavirus disease (COVID-19) and neonate: What neonatologist need to know. J Med Virol 2020; 92:564-567. [PMID: 32115733 PMCID: PMC7228398 DOI: 10.1002/jmv.25740] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause china epidemics with high morbidity and mortality, the infection has been transmitted to other countries. About three neonates and more than 230 children cases are reported. The disease condition of the main children was mild. There is currently no evidence that SARS-CoV-2 can be transmitted transplacentally from mother to the newborn. The treatment strategy for children with Coronavirus disease (COVID-19) is based on adult experience. Thus far, no deaths have been reported in the pediatric age group. This review describes the current understanding of COVID-19 infection in newborns and children.
Collapse
Affiliation(s)
- Qi Lu
- Department of Neonatology, Key Laboratory of Pediatrics in Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders, Children's HospitalChongqing Medical UniversityChongqingChina
| | - Yuan Shi
- Department of Neonatology, Key Laboratory of Pediatrics in Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders, Children's HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
42
|
Condie LO. Neurotropic mechanisms in COVID-19 and their potential influence on neuropsychological outcomes in children. Child Neuropsychol 2020; 26:577-596. [PMID: 32403983 DOI: 10.1080/09297049.2020.1763938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Children have shown more physical resilience to COVID-19 than adults, but there is a cohort of vulnerable infants and young children who may experience disease burden, both in the acute phase and chronically. Children may have had early undocumented exposure to COVID-19. Even when the risk of exposure was known, developmental variables may have made the avoidance of physical proximity difficult for children. Preliminary hypotheses concerning neurotropic factors have been documented by researchers. Children with COVID-19 and comorbid physical or mental disorders may be vulnerable to exacerbations of neurotropic factors and comorbidities, the neural impact of which has been documented for other coronaviruses. Researchers are investigating COVID-19 symptom descriptions, neurotropic mechanisms at the genomic and transcriptomatic levels, neurological manifestations, and the impact of comorbid health complications. Neuropsychologists need information concerning the likely impact of COVID-19 on children. With a view toward that goal, this article provides recommendations for some initial updates in neuropsychology practice.
Collapse
Affiliation(s)
- Lois O Condie
- Department of Neurology, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
43
|
Morris M, Zohrabian VM. Neuroradiologists, Be Mindful of the Neuroinvasive Potential of COVID-19. AJNR Am J Neuroradiol 2020; 41:E37-E39. [PMID: 32354715 DOI: 10.3174/ajnr.a6551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- M Morris
- Department of Radiology and Biomedical ImagingYale School of MedicineNew Haven, Connecticut
| | - V M Zohrabian
- Department of Radiology and Biomedical ImagingYale School of MedicineNew Haven, Connecticut
| |
Collapse
|
44
|
Segars J, Katler Q, McQueen DB, Kotlyar A, Glenn T, Knight Z, Feinberg EC, Taylor HS, Toner JP, Kawwass JF. Prior and novel coronaviruses, Coronavirus Disease 2019 (COVID-19), and human reproduction: what is known? Fertil Steril 2020; 113:1140-1149. [PMID: 32482250 PMCID: PMC7161522 DOI: 10.1016/j.fertnstert.2020.04.025] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To summarize current understanding of the effects of novel and prior coronaviruses on human reproduction, specifically male and female gametes, and in pregnancy. DESIGN Review of English publications in PubMed and Embase to April 6, 2020. METHOD(S) Articles were screened for reports including coronavirus, reproduction, pathophysiology, and pregnancy. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Reproductive outcomes, effects on gametes, pregnancy outcomes, and neonatal complications. RESULT(S) Seventy-nine reports formed the basis of the review. Coronavirus binding to cells involves the S1 domain of the spike protein to receptors present in reproductive tissues, including angiotensin-converting enzyme-2 (ACE2), CD26, Ezrin, and cyclophilins. Severe Acute Respiratory Syndrome Coronavirus 1 (SARS-CoV-1) may cause severe orchitis leading to germ cell destruction in males. Reports indicate decreased sperm concentration and motility for 72-90 days following Coronavirus Disease 2019 (COVID-19) infection. Gonadotropin-dependent expression of ACE2 was found in human ovaries, but it is unclear whether SARS-Coronavirus 2 (CoV-2) adversely affects female gametogenesis. Evidence suggests that COVID-19 infection has a lower maternal case fatality rate than SARS or Middle East respiratory syndrome (MERS), but anecdotal reports suggest that infected, asymptomatic women may develop respiratory symptoms postpartum. Coronavirus Disease 2019 infections in pregnancy are associated with preterm delivery. Postpartum neonatal transmission from mother to child has been reported. CONCLUSION(S) Coronavirus Disease 2019 infection may affect adversely some pregnant women and their offspring. Additional studies are needed to assess effects of SARS-CoV-2 infection on male and female fertility.
Collapse
MESH Headings
- Betacoronavirus/pathogenicity
- COVID-19
- Coronavirus Infections/complications
- Coronavirus Infections/diagnosis
- Coronavirus Infections/virology
- Female
- Fertility
- Host-Pathogen Interactions
- Humans
- Infertility, Female/diagnosis
- Infertility, Female/physiopathology
- Infertility, Female/virology
- Infertility, Male/diagnosis
- Infertility, Male/physiopathology
- Infertility, Male/virology
- Male
- Orchitis/diagnosis
- Orchitis/physiopathology
- Orchitis/virology
- Pandemics
- Pneumonia, Viral/complications
- Pneumonia, Viral/diagnosis
- Pneumonia, Viral/virology
- Pregnancy
- Pregnancy Complications, Infectious/physiopathology
- Pregnancy Complications, Infectious/virology
- Pregnancy Outcome
- Reproduction
- Risk Assessment
- Risk Factors
- SARS-CoV-2
- Sperm Count
- Sperm Motility
Collapse
Affiliation(s)
- James Segars
- Division of Reproductive Sciences, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Quinton Katler
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Dana B McQueen
- Division of Reproductive Endocrinology &, Infertility, Department of Obstetrics & Gynecology, Northwestern University, Chicago, Illinois
| | - Alexander Kotlyar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Tanya Glenn
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Zac Knight
- American Society for Reproductive Medicine, Birmingham, Alabama
| | - Eve C Feinberg
- Division of Reproductive Endocrinology &, Infertility, Department of Obstetrics & Gynecology, Northwestern University, Chicago, Illinois
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - James P Toner
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer F Kawwass
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
45
|
Coronavirus, Its Neurologic Manifestations, and Complications. IRANIAN JOURNAL OF PEDIATRICS 2020. [DOI: 10.5812/ijp.102569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Adema IW, Kamau E, Uchi Nyiro J, Otieno GP, Lewa C, Munywoki PK, Nokes DJ. Surveillance of respiratory viruses among children attending a primary school in rural coastal Kenya. Wellcome Open Res 2020; 5:63. [PMID: 33102784 PMCID: PMC7569485 DOI: 10.12688/wellcomeopenres.15703.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 08/03/2024] Open
Abstract
Background: Respiratory viruses are primary agents of respiratory tract diseases. Knowledge on the types and frequency of respiratory viruses affecting school-children is important in determining the role of schools in transmission in the community and identifying targets for interventions. Methods: We conducted a one-year (term-time) surveillance of respiratory viruses in a rural primary school in Kilifi County, coastal Kenya between May 2017 and April 2018. A sample of 60 students with symptoms of ARI were targeted for nasopharyngeal swab (NPS) collection weekly. Swabs were screened for 15 respiratory virus targets using real time PCR diagnostics. Data from respiratory virus surveillance at the local primary healthcare facility was used for comparison. Results: Overall, 469 students aged 2-19 years were followed up for 220 days. A total of 1726 samples were collected from 325 symptomatic students; median age of 7 years (IQR 5-11). At least one virus target was detected in 384 (22%) of the samples with a frequency of 288 (16.7%) for rhinovirus, 47 (2.7%) parainfluenza virus, 35 (2.0%) coronavirus, 15 (0.9%) adenovirus, 11 (0.6%) respiratory syncytial virus (RSV) and 5 (0.3%) influenza virus. The proportion of virus positive samples was higher among lower grades compared to upper grades (25.9% vs 17.5% respectively; χ 2 = 17.2, P -value <0.001). Individual virus target frequencies did not differ by age, sex, grade, school term or class size. Rhinovirus was predominant in both the school and outpatient setting. Conclusion: Multiple respiratory viruses circulated in this rural school population. Rhinovirus was dominant in both the school and outpatient setting and RSV was of notably low frequency in the school. The role of school children in transmitting viruses to the household setting is still unclear and further studies linking molecular data to contact patterns between the school children and their households are required.
Collapse
Affiliation(s)
- Irene Wangwa Adema
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - Everlyn Kamau
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - Joyce Uchi Nyiro
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - Grieven P. Otieno
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - Clement Lewa
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - Patrick K. Munywoki
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - D. James Nokes
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
- School of Life Sciences and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, Coventry, CV4 7AL, UK
| |
Collapse
|
47
|
Affiliation(s)
- Richard Albert Stein
- Chemical and Biomolecular EngineeringNew York University Tandon School of EngineeringBrooklynNYUSA
- Department of Natural SciencesLaGuardia Community CollegeLong Island CityNYUSA
| |
Collapse
|
48
|
Plotkin SA. The New Coronavirus, the Current King of China. J Pediatric Infect Dis Soc 2020; 9:1-2. [PMID: 32083284 PMCID: PMC7107562 DOI: 10.1093/jpids/piaa018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 11/13/2022]
Affiliation(s)
- Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Vaxconsult, Doylestown, Pennsylvania, USA,Correspondence: Stanley A. Plotkin, Vaxconsult, 4650 Wismer Rd, Doylestown, PA 18902. E-mail:
| |
Collapse
|
49
|
Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses 2019; 12:v12010014. [PMID: 31861926 PMCID: PMC7020001 DOI: 10.3390/v12010014] [Citation(s) in RCA: 701] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. However, in vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, causing a more severe disease (e.g., pneumonia). Respiratory viruses can also exacerbate asthma and lead to various types of respiratory distress syndromes. Furthermore, as they can adapt fast and cross the species barrier, some of these pathogens, like influenza A and SARS-CoV, have occasionally caused epidemics or pandemics, and were associated with more serious clinical diseases and even mortality. For a few decades now, data reported in the scientific literature has also demonstrated that several respiratory viruses have neuroinvasive capacities, since they can spread from the respiratory tract to the central nervous system (CNS). Viruses infecting human CNS cells could then cause different types of encephalopathy, including encephalitis, and long-term neurological diseases. Like other well-recognized neuroinvasive human viruses, respiratory viruses may damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuro-immunopathology) and/or viral replication, which directly causes damage to CNS cells (virus-induced neuropathology). The etiological agent of several neurological disorders remains unidentified. Opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of these disorders whose etiology remains poorly understood. Herein, we present a global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses.
Collapse
|
50
|
Axonal Transport Enables Neuron-to-Neuron Propagation of Human Coronavirus OC43. J Virol 2018; 92:JVI.00404-18. [PMID: 29925652 DOI: 10.1128/jvi.00404-18] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/08/2018] [Indexed: 02/08/2023] Open
Abstract
Human coronaviruses (HCoVs) are recognized respiratory pathogens for which accumulating evidence indicates that in vulnerable patients the infection can cause more severe pathologies. HCoVs are not always confined to the upper respiratory tract and can invade the central nervous system (CNS) under still unclear circumstances. HCoV-induced neuropathologies in humans are difficult to diagnose early enough to allow therapeutic interventions. Making use of our already described animal model of HCoV neuropathogenesis, we describe the route of neuropropagation from the nasal cavity to the olfactory bulb and piriform cortex and then the brain stem. We identified neuron-to-neuron propagation as one underlying mode of virus spreading in cell culture. Our data demonstrate that both passive diffusion of released viral particles and axonal transport are valid propagation strategies used by the virus. We describe for the first time the presence along axons of viral platforms whose static dynamism is reminiscent of viral assembly sites. We further reveal that HCoV OC43 modes of propagation can be modulated by selected HCoV OC43 proteins and axonal transport. Our work, therefore, identifies processes that may govern the severity and nature of HCoV OC43 neuropathogenesis and will make possible the development of therapeutic strategies to prevent occurrences.IMPORTANCE Coronaviruses may invade the CNS, disseminate, and participate in the induction of neurological diseases. Their neuropathogenicity is being increasingly recognized in humans, and the presence and persistence of human coronaviruses (HCoV) in human brains have been proposed to cause long-term sequelae. Using our mouse model relying on natural susceptibility to HCoV OC43 and neuronal cell cultures, we have defined the most relevant path taken by HCoV OC43 to access and spread to and within the CNS toward the brain stem and spinal cord and studied in cell culture the underlying modes of intercellular propagation to better understand its neuropathogenesis. Our data suggest that axonal transport governs HCoV OC43 egress in the CNS, leading to the exacerbation of neuropathogenesis. Exploiting knowledge on neuroinvasion and dissemination will enhance our ability to control viral infection within the CNS, as it will shed light on underlying mechanisms of neuropathogenesis and uncover potential druggable molecular virus-host interfaces.
Collapse
|