1
|
Riaz R, Ahmed I, Raza A, Khan Y, Ahsan U, El-Sayed Ellakwa D. Response of different infection models in broiler chickens against supplemental Organic acid - A review. Microb Pathog 2025; 204:107527. [PMID: 40185170 DOI: 10.1016/j.micpath.2025.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Antimicrobial resistance in microorganisms has emerged as a significant issue in the domain of animal husbandry, leading to the prohibition of sub-therapeutic antibiotics in feed and necessitating the exploration of alternative growth promoters. Organic acids have garnered considerable attention as prospective substitutes, proffering analogous advantages to antibiotics without exacerbating resistance. Nonetheless, their effectiveness against a spectrum of pathogenic infections remains ambiguous. Consequently, this review scrutinizes the efficacy of organic acids in experimental infection models, encompassing necrotic enteritis (Clostridium perfringens), coccidiosis (Eimeria spp.), Pullorum disease (Salmonella spp.), Campylobacteriosis (Campylobacter jejuni), and Colibacillosis (Escherichia coli). The analysis indicates that organic acids exhibit promising outcomes across various infection models. For instance, in trials concerning necrotic enteritis, organic acid supplementation diminished C. perfringens colonization and enhanced intestinal health. Likewise, in investigations of coccidiosis, organic acids alleviated Eimeria-induced damage and improved growth performance. In the context of infections caused by Salmonella and E. coli, these additives displayed considerable antimicrobial efficacy, leading to diminished pathogen loads and an improvement in various indicators of animal health. The review also delineates several proposed mechanisms through which organic acids exert their effects against these pathogens, encompassing direct antimicrobial actions, modulation of gastrointestinal pH, and the augmentation of the host's immune response. These findings imply that organic acids may represent feasible alternatives to antibiotics within animal feed, potentially addressing the concurrent challenges associated with growth promotion and pathogen management. Nonetheless, additional research is imperative to refine dosages, combinations, and delivery methodologies for optimal effectiveness across diverse species and production systems. This thorough evaluation offers significant insights into the formulation of effective, antibiotic-free approaches in animal nutrition and health management.
Collapse
Affiliation(s)
- Roshan Riaz
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Kafkas University, 36100, Kars, Türkiye
| | - Ibrar Ahmed
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Selçuk University, 42130, Konya, Türkiye
| | - Ali Raza
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Türkiye.
| | - Yumna Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, 25130, Pakistan
| | - Umair Ahsan
- Department of Plant and Animal Production, Burdur Vocational School Food, Agriculture and Livestock, Burdur Mehmet Akif Ersoy University, İstiklal Campus, Burdur, 15030, Turkey
| | - Doha El-Sayed Ellakwa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt.
| |
Collapse
|
2
|
Corcionivoschi N, Balta I, McCleery D, Bundurus I, Pet I, Calaway T, Nichita I, Stef L, Morariu S. Mechanisms of Pathogenic Escherichia coli Attachment to Meat. Foodborne Pathog Dis 2025; 22:339-349. [PMID: 38593459 DOI: 10.1089/fpd.2023.0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Escherichia coli are present in the human and animal microbiome as facultative anaerobes and are viewed as an integral part of the whole gastrointestinal environment. In certain circumstances, some species can also become opportunistic pathogens responsible for severe infections in humans. These infections are caused by the enterotoxinogenic E. coli, enteroinvasive E. coli, enteropathogenic E. coli and the enterohemorrhagic E. coli species, frequently present in food products and on food matrices. Severe human infections can be caused by consumption of meat contaminated upon exposure to animal feces, and as such, farm animals are considered to be a natural reservoir. The mechanisms by which these four major species of E. coli adhere and persist in meat postslaughter are of major interest to public health and food processors given their frequent involvement in foodborne outbreaks. This review aims to structure and provide an update on the mechanistic roles of environmental factors, curli, type I and type IV pili on E. coli adherence/interaction with meat postslaughter. Furthermore, we emphasize on the importance of bacterial surface structures, which can be used in designing interventions to enhance food safety and protect public health by reducing the burden of foodborne illnesses.
Collapse
Affiliation(s)
- Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Iulia Bundurus
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Todd Calaway
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Ileana Nichita
- Faculty of Veterinary Medicine, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Sorin Morariu
- Faculty of Veterinary Medicine, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| |
Collapse
|
3
|
Kerek Á, Román I, Szabó Á, Kovács D, Kardos G, Kovács L, Jerzsele Á. Antibiotic resistance genes in Escherichia coli - literature review. Crit Rev Microbiol 2025:1-35. [PMID: 40249005 DOI: 10.1080/1040841x.2025.2492156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Antimicrobial resistance threatens humans and animals worldwide and is recognized as one of the leading global public health issues. Escherichia coli (E. coli) has an unquestionable role in carrying and transmitting antibiotic resistance genes (ARGs), which in many cases are encoded on plasmids or phage, thus creating the potential for horizontal gene transfer. In this literature review, the authors summarize the major antibiotic resistance genes occurring in E. coli bacteria, through the major antibiotic classes. The aim was not only listing the resistance genes against the clinically relevant antibiotics, used in the treatment of E. coli infections, but also to cover the entire resistance gene carriage in E. coli, providing a more complete picture. We started with the long-standing antibiotic groups (beta-lactams, aminoglycosides, tetracyclines, sulfonamides and diaminopyrimidines), then moved toward the newer groups (phenicols, peptides, fluoroquinolones, nitrofurans and nitroimidazoles), and in every group we summarized the resistance genes grouped by the mechanism of their action (enzymatic inactivation, antibiotic efflux, reduced permeability, etc.). We observed that the frequency of antibiotic resistance mechanisms changes in the different groups.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - István Román
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Dóra Kovács
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Gábor Kardos
- One Health Institute, University of Debrecen, Debrecen, Hungary
- National Public Health Center, Budapest, Hungary
- Department of Gerontology, Faculty of Health Sciences, University of Debrecen, Nyíregyháza, Hungary
| | - László Kovács
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
| |
Collapse
|
4
|
Sariçam İnce S, Ünal A, Akan M. Comparison of pathogenicity factors of avian pathogenic and extraintestinal pathogenic Escherichia coli isolates originating from broiler chickens. Br Poult Sci 2025:1-8. [PMID: 39853191 DOI: 10.1080/00071668.2025.2451242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/28/2024] [Indexed: 01/26/2025]
Abstract
1. E. coli is an opportunist pathogen of animals, including food-producing ones and humans. Chickens may be a notable source of pathogenic and antimicrobial resistant E. coli for transmission to humans.2. This study compared virulence-associated genes (VGs) and antimicrobial resistance (AMR) in avian pathogenic E. coli (APEC) and extraintestinal pathogenic E. coli (ExPEC) isolates from broiler chickens, specifically APEC isolates in liver samples (n = 78) and ExPEC or non-ExPEC isolates in litter samples (n = 34). Virulence was evaluated by PCR for feoB, hlyF, iroN, iss, iutA and ompT genes, while AMR was evaluated by using antimicrobials from seven classes and detecting blaSHV, blaTEM, blaOXA, qnrB, stcM, mrc1, mrc2, sul1 and tetA genes.3. The APEC isolates were found in 100% of livers, while ExPEC and non-ExPEC isolates were found in 44% and 56% of the litter samples. The predominant VG was feoB (100%), followed by ompT (63%), iutA (60%), iss (58%) and hlyF (43%). Surprisingly, iroN, omp T and iutA had higher prevalences in APEC isolates (85%, 96% and 96%, respectively) than in ExPEC isolates (73%, 87% and 73%, respectively) and non-ExPEC isolates (0% for all). The presence of all VG in 33% of isolates indicated high pathogenicity.4. The isolates were phenotypically resistant to ampicillin (93%), ceftazidime (72%) and nalidixic acid (82%). All APEC and ExPEC isolates (100%) were multidrug resistant (MDR), while 63% of non-ExPEC isolates were MDR. Genotypic AMR testing revealed that 53% and 52% of all isolates had stcM and tetA, respectively. No isolate was positive for blaSHV, blaOXA, mrc1 or mrc2, which suggested the benefits of colistin for treating carbapenem-resistant enteric pathogens, due to the high resistance detected to meropenem (47%).5. Given the potential pathogenicity of E. coli isolates, improving biosecurity practices in chicken flocks should be prioritised to eliminate transmission to humans through the food chain.
Collapse
Affiliation(s)
- S Sariçam İnce
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - A Ünal
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - M Akan
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
5
|
Xu Y, Xu L, Zhang T, Tian H, Lu Y, Jiang S, Cao X, Li Z, Hu X, Fang R, Peng L. Antimicrobial Peptide CATH-2 Attenuates Avian Pathogenic E. coli-Induced Inflammatory Response via NF-κB/NLRP3/MAPK Pathway and Lysosomal Dysfunction in Macrophages. Int J Mol Sci 2024; 25:12572. [PMID: 39684284 DOI: 10.3390/ijms252312572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Cathelicidins have anti-inflammatory activity and chicken cathelicidin-2 (CATH-2) has shown to modulate immune response, but the underlying mechanism of its anti-inflammation is still unclear. Therefore, in this study, we investigated the anti-inflammatory activity of CATH-2 on murine peritoneal macrophages during avian pathogenic E. coli (APEC) infection. The results showed that CATH-2 priming significantly reduced the production of IL-1β, IL-6, IL-1α, and IL-12. In addition, CATH-2 significantly attenuated APEC-induced caspase-1 activation and the formation of an adaptor (ASC) of NLRP3 inflammasome, indicating that CATH-2 inhibits APEC-induced NLRP3 inflammasome activation. Furthermore, CATH-2 remarkably inhibited NF-κB and MAPK signaling pathways activation. Moreover, CATH-2 significantly inhibited mRNA expression of cathepsin B and inhibited lysosomal acidification, demonstrating that CATH-2 disrupts lysosomal function. In addition, promoting lysosomal acidification using ML-SA1 hampered the anti-inflammatory effect of CATH-2 on APEC-infected cells. In conclusion, our study reveals that CATH-2 inhibits APEC-induced inflammation via the NF-κB/NLRP3/MAPK pathway through the dysfunction of lysosome.
Collapse
Affiliation(s)
- Yating Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Liuyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Tingting Zhang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Hongliang Tian
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yi Lu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Sha Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xuefeng Cao
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Zhiwei Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xiaoxiang Hu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
6
|
Katz SE, Banerjee R. Use of Antibiotics in Animal Agriculture: Implications for Pediatrics: Technical Report. Pediatrics 2024; 154:e2024068467. [PMID: 39308322 DOI: 10.1542/peds.2024-068467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 10/02/2024] Open
Abstract
Antimicrobial resistance is a global public health threat. Antimicrobial-resistant infections are on the rise and are associated with increased morbidity, mortality, and health care costs. Infants and children are affected by transmission of antimicrobial-resistant zoonotic pathogens through the food supply, direct contact with animals, environmental pathways, and contact with infected or colonized humans. Although the judicious use of antimicrobial agents is necessary for maintaining the health and welfare of humans and animals, it must be recognized that all use of antimicrobial agents exerts selective pressure that increases the risk of development of resistance. This report describes historical and recent use of antibiotics in animal agriculture, reviews the mechanisms of how such use contributes to development of resistance and can adversely affect child health, and discusses US initiatives to curb unnecessary use of antimicrobial agents in agriculture.
Collapse
Affiliation(s)
- Sophie E Katz
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ritu Banerjee
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
7
|
Li X, Hu H, Zhu Y, Wang T, Lu Y, Wang X, Peng Z, Sun M, Chen H, Zheng J, Tan C. Population structure and antibiotic resistance of swine extraintestinal pathogenic Escherichia coli from China. Nat Commun 2024; 15:5811. [PMID: 38987310 PMCID: PMC11237156 DOI: 10.1038/s41467-024-50268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Extraintestinal Pathogenic Escherichia coli (ExPEC) pose a significant threat to human and animal health. However, the diversity and antibiotic resistance of animal ExPEC, and their connection to human infections, remain largely unexplored. The study performs large-scale genome sequencing and antibiotic resistance testing of 499 swine-derived ExPEC isolates from China. Results show swine ExPEC are phylogenetically diverse, with over 80% belonging to phylogroups B1 and A. Importantly, 15 swine ExPEC isolates exhibit genetic relatedness to human-origin E. coli strains. Additionally, 49 strains harbor toxins typical of enteric E. coli pathotypes, implying hybrid pathotypes. Notably, 97% of the total strains are multidrug resistant, including resistance to critical human drugs like third- and fourth-generation cephalosporins. Correspondingly, genomic analysis unveils prevalent antibiotic resistance genes (ARGs), often associated with co-transfer mechanisms. Furthermore, analysis of 20 complete genomes illuminates the transmission pathways of ARGs within swine ExPEC and to human pathogens. For example, the transmission of plasmids co-harboring fosA3, blaCTX-M-14, and mcr-1 genes between swine ExPEC and human-origin Salmonella enterica is observed. These findings underscore the importance of monitoring and controlling ExPEC infections in animals, as they can serve as a reservoir of ARGs with the potential to affect human health or even be the origin of pathogens infecting humans.
Collapse
Affiliation(s)
- Xudong Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huifeng Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Yongwei Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Taiquan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youlan Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Zhong Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
8
|
Aziz M, Davis GS, Park DE, Idris AH, Sariya S, Wang Y, Zerbonne S, Nordstrom L, Weaver B, Statham S, Johnson TJ, Campos J, Castro-Nallar E, Crandall KA, Wu Z, Liu CM, DeBiasi RL, Price LB. Pediatric urinary tract infections caused by poultry-associated Escherichia coli. Microbiol Spectr 2024; 12:e0341523. [PMID: 38864635 PMCID: PMC11218530 DOI: 10.1128/spectrum.03415-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/05/2024] [Indexed: 06/13/2024] Open
Abstract
Escherichia coli is the leading cause of urinary tract infections (UTIs) in children and adults. The gastrointestinal tract is the primary reservoir of uropathogenic E. coli, which can be acquired from a variety of environmental exposures, including retail meat. In the current study, we used a novel statistical-genomic approach to estimate the proportion of pediatric UTIs caused by foodborne zoonotic E. coli strains. E. coli urine isolates were collected from DC residents aged 2 months to 17 years from the Children's National Medical Center Laboratory, 2013-2014. During the same period, E. coli isolates were collected from retail poultry products purchased from 15 sites throughout DC. A total of 52 urine and 56 poultry isolates underwent whole-genome sequencing, core genome phylogenetic analysis, and host-origin prediction by a Bayesian latent class model that incorporated data on the presence of mobile genetic elements (MGEs) among E. coli isolates from multiple vertebrate hosts. A total of 56 multilocus sequence types were identified among the isolates. Five sequence types-ST10, ST38, ST69, ST117, and ST131-were observed among both urine and poultry isolates. Using the Bayesian latent class model, we estimated that 19% (10/52) of the clinical E. coli isolates in our population were foodborne zoonotic strains. These data suggest that a substantial portion of pediatric UTIs in the Washington DC region may be caused by E. coli strains originating in food animals and likely transmitted via contaminated poultry meat.IMPORTANCEEscherichia coli UTIs are a heavy public health burden and can have long-term negative health consequences for pediatric patients. E. coli has an extremely broad host range, including humans, chickens, turkeys, pigs, and cattle. E. coli derived from food animals is a frequent contaminant of retail meat products, but little is known about the risk these strains pose to pediatric populations. Quantifying the proportion of pediatric UTIs caused by food-animal-derived E. coli, characterizing the highest-risk strains, and identifying their primary reservoir species could inform novel intervention strategies to reduce UTI burden in this vulnerable population. Our results suggest that retail poultry meat may be an important vehicle for pediatric exposure to zoonotic E. coli strains capable of causing UTIs. Vaccinating poultry against the highest-risk strains could potentially reduce poultry colonization, poultry meat contamination, and downstream pediatric infections.
Collapse
Affiliation(s)
- Maliha Aziz
- Department of Environmental and Occupational Health, Antibiotic Resistance Action Center, George Washington University, Washington, DC, USA
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Gregg S Davis
- Department of Environmental and Occupational Health, Antibiotic Resistance Action Center, George Washington University, Washington, DC, USA
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Daniel E Park
- Department of Environmental and Occupational Health, Antibiotic Resistance Action Center, George Washington University, Washington, DC, USA
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Azza H Idris
- Division of Pediatric Infectious Diseases, Children's National Health System, Washington, DC, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sanjeev Sariya
- Department of Environmental and Occupational Health, Antibiotic Resistance Action Center, George Washington University, Washington, DC, USA
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Yashan Wang
- Department of Environmental and Occupational Health, Antibiotic Resistance Action Center, George Washington University, Washington, DC, USA
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Sarah Zerbonne
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Lora Nordstrom
- Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Brett Weaver
- Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Sally Statham
- Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Joseph Campos
- Division of Pediatric Infectious Diseases, Children's National Health System, Washington, DC, USA
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
| | - Keith A Crandall
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Zhenke Wu
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Cindy M Liu
- Department of Environmental and Occupational Health, Antibiotic Resistance Action Center, George Washington University, Washington, DC, USA
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Roberta L DeBiasi
- Division of Pediatric Infectious Diseases, Children's National Health System, Washington, DC, USA
- Department of Pediatrics and Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Lance B Price
- Department of Environmental and Occupational Health, Antibiotic Resistance Action Center, George Washington University, Washington, DC, USA
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| |
Collapse
|
9
|
Gharaibeh MH, Sheyab SYA, Lafi SQ, Etoom EM. Risk factors associated with mcr-1 colistin-resistance gene in Escherichia coli broiler samples in northern Jordan. J Glob Antimicrob Resist 2024; 36:284-292. [PMID: 38325733 DOI: 10.1016/j.jgar.2024.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
OBJECTIVES The purpose of this study was to determine the prevalence of colistin-resistant Escherichia coli carrying mcr-1, and to identify risk factors associated with mcr gene-mediated resistance. METHODS In total, 385 cloacal samples were collected from 125 broiler farms and a questionnaire containing information about each farm was designed and filled. RESULTS Most of the antibiotics used in the disk diffusion method were highly resistant in all samples, with tetracycline and penicillin showing 100% and 99.7% resistance, respectively. Additionally, avian pathogenic E. coli (APEC) virulence genes frequency and percentage of APEC were identified, including sitA,iucC, and astA at 77%, 70.5%, and 62% respectively. In total, 214 of 360 isolates were positive for APEC (59.4%). Based on the minimum inhibitory (MIC) test, 58% of the isolates (n = 209 of 360) were resistant to colistin, with 39.7% displaying the mcr-1 gene. The statistical analysis of risk factors that influence colistin resistance prevalence revealed several significant factors, including commercial feed, farm management, sanitization, and antibiotic use. Irregular health checks for workers, non-dipping of feet before entering poultry houses, and the use of commercial poultry feeds all contributed to higher levels of colistin resistance as measured by MIC. On the other hand, doxycycline and commercial feed was 4 and 3.2 times more likely to occur based on the final logistic model of the mcr-1 gene, respectively. CONCLUSION Our results suggest that better biosecurity protocols should be implemented in poultry farms to reduce antibiotic-resistant bacteria. Additionally, antibiotics should be carefully monitored and used only when necessary.
Collapse
Affiliation(s)
- Mohammad H Gharaibeh
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| | - Sahba Y Al Sheyab
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Shawkat Q Lafi
- Department of Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Eman M Etoom
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
10
|
Oliveira GDS, McManus C, Dos Santos VM. Control of Escherichia coli in Poultry Using the In Ovo Injection Technique. Antibiotics (Basel) 2024; 13:205. [PMID: 38534640 DOI: 10.3390/antibiotics13030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Pathogens, such as Escherichia coli (E. coli), have been identified as significant causes of poultry mortality. Poultry can serve as potential sources of E. coli transmission, even when asymptomatic, posing a substantial threat to food safety and human health. The in ovo administration of antimicrobials is crucial for preventing and/or effectively combating acute and chronic infections caused by poultry pathogens. To achieve this goal, it is critical that antimicrobials are properly injected into embryonic fluids, such as the amnion, to reach target tissues and trigger robust antimicrobial responses. Several protocols based on antimicrobials were evaluated to meet these requirements. This review analyzed the impacts of antimicrobial substances injected in ovo on the control of E. coli in poultry. The reduction in infection rates, resulting from the implementation of in ovo antimicrobials, combined with efforts aimed at hygienic-sanitary action plans in poultry sheds, reinforces confidence that E. coli can be contained before causing large scale damage. For example, antimicrobial peptides and probiotics have shown potential to provide protection to poultry against infections caused by E. coli. Issues related to the toxicity and bacterial resistance of many synthetic chemical compounds represent challenges that need to be overcome before the commercial application of in ovo injection protocols focused on microbiological control.
Collapse
Affiliation(s)
| | - Concepta McManus
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília 70910-900, Brazil
| | | |
Collapse
|
11
|
Tan Y, Zhao K, Yang S, Chen S, Li C, Han X, Li J, Hu K, Liu S, Ma M, Yu X, Zou L. Insights into antibiotic and heavy metal resistance interactions in Escherichia coli isolated from livestock manure and fertilized soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119935. [PMID: 38154221 DOI: 10.1016/j.jenvman.2023.119935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/12/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Heavy metal and antibiotic-resistant bacteria from livestock feces are ecological and public health problems. However, the distribution and relationships of antibiotic resistance genes (ARGs), heavy metal resistance genes (HMRGs), and virulence factors (VFs) and their transmission mechanisms remain unclear. Therefore, we investigated the resistance of Escherichia coli, the prevalence of its ARGs, HMRGs, and VFs, and their transmission mechanisms in livestock fresh feces (FF), composted feces (CF), and fertilized soil (FS). In total, 99.54% (n = 221) and 91.44% (n = 203) of E. coli were resistant to at least one antibiotic and one heavy metal, respectively. Additionally, 72.52% (n = 161) were multi-drug resistant (MDR), of which Cu-resistant E. coli accounted for 72.67% (117/161). More than 99.34% (88/89) of E. coli carried multidrug ARGs, VFs, and the Cu resistance genes cueO and cusABCRFS. The Cu resistance genes cueO and cusABCRFS were mainly located on chromosomes, and cueO and cusF were positively associated with HMRGs, ARGs, and VFs. The Cu resistance genes pcoABCDRS were located on the plasmid pLKYL-P02 flanked by ARGs in PF18C from FF group and on chromosomes flanked by HMRGs in SAXZ1-1 from FS group. These results improved our understanding of bacterial multidrug and heavy metal resistance in the environment.
Collapse
Affiliation(s)
- Yulan Tan
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ke Zhao
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Chun Li
- Sichuan Province Center for Animal Disease Prevention and Control, Chengdu, Sichuan, China.
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Menggen Ma
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
12
|
Smith KR, Bumunang EW, Schlechte J, Waldner M, Anany H, Walker M, MacLean K, Stanford K, Fairbrother JM, Alexander TW, McAllister TA, Abdul-Careem MF, Niu YD. The Isolation and Characterization of Bacteriophages Infecting Avian Pathogenic Escherichia coli O1, O2 and O78 Strains. Viruses 2023; 15:2095. [PMID: 37896873 PMCID: PMC10612097 DOI: 10.3390/v15102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC), such as O1, O2 and O78, are important serogroups relating to chicken health, being responsible for colibacillosis. In this study, we isolated and characterized bacteriophages (phages) from hen feces and human sewage in Alberta with the potential for controlling colibacillosis in laying hens. The lytic profile, host range, pH tolerance and morphology of seven APEC-infecting phages (ASO1A, ASO1B, ASO2A, ASO78A, ASO2B, AVIO78A and ASO78B) were assessed using a microplate phage virulence assay and transmission electron microscopy (TEM). The potential safety of phages at the genome level was predicted using AMRFinderPlus and the Virulence Factor Database. Finally, phage genera and genetic relatedness with other known phages from the NCBI GenBank database were inferred using the virus intergenomic distance calculator and single gene-based phylogenetic trees. The seven APEC-infecting phages preferentially lysed APEC strains in this study, with ECL21443 (O2) being the most susceptible to phages (n = 5). ASO78A had the broadest host range, lysing all tested strains (n = 5) except ECL20885 (O1). Phages were viable at a pH of 2.5 or 3.5-9.0 after 4 h of incubation. Based on TEM, phages were classed as myovirus, siphovirus and podovirus. No genes associated with virulence, antimicrobial resistance or lysogeny were detected in phage genomes. Comparative genomic analysis placed six of the seven phages in five genera: Felixounavirus (ASO1A and ASO1B), Phapecoctavirus (ASO2A), Tequatrovirus (ASO78A), Kayfunavirus (ASO2B) and Sashavirus (AVIO78A). Based on the nucleotide intergenomic similarity (<70%), phage ASO78B was not assigned a genus in the siphovirus and could represent a new genus in class Caudoviricetes. The tail fiber protein phylogeny revealed variations within APEC-infecting phages and closely related phages. Diverse APEC-infecting phages harbored in the environment demonstrate the potential to control colibacillosis in poultry.
Collapse
Affiliation(s)
- Kat R. Smith
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.R.S.); (J.S.); (M.W.); (K.M.); (M.F.A.-C.)
| | - Emmanuel W. Bumunang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada; (E.W.B.); (T.W.A.); (T.A.M.)
| | - Jared Schlechte
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.R.S.); (J.S.); (M.W.); (K.M.); (M.F.A.-C.)
| | - Matthew Waldner
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.R.S.); (J.S.); (M.W.); (K.M.); (M.F.A.-C.)
| | - Hany Anany
- Agriculture and Agri-Food Canada, Guelph Research and Development Centre, Guelph, ON N1G 5C9, Canada;
| | - Matthew Walker
- Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada;
| | - Kellie MacLean
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.R.S.); (J.S.); (M.W.); (K.M.); (M.F.A.-C.)
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 1M4, Canada;
| | - John M. Fairbrother
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Trevor W. Alexander
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada; (E.W.B.); (T.W.A.); (T.A.M.)
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada; (E.W.B.); (T.W.A.); (T.A.M.)
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.R.S.); (J.S.); (M.W.); (K.M.); (M.F.A.-C.)
| | - Yan D. Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.R.S.); (J.S.); (M.W.); (K.M.); (M.F.A.-C.)
| |
Collapse
|
13
|
Lu KH, Hsu A, Pan YC, Huang YJ, Goh LY, Kang CY, Sheen LY. Modeling the Temperature Effect on the Growth of Uropathogenic Escherichia coli in Sous-Vide Chicken Breast. Foodborne Pathog Dis 2023; 20:343-350. [PMID: 37410536 DOI: 10.1089/fpd.2022.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is known to cause 65-75% of human urinary tract infection (UTI) cases. Poultry meat is a reservoir of UPEC, which is suspected to cause foodborne UTIs. In the present study, we aimed to determine the growth potential of UPEC in ready-to-eat chicken breasts prepared by sous-vide processing. Four reference strains isolated from the urine of UTI patients (Bioresource Collection and Research Center [BCRC] 10,675, 15,480, 15,483, and 17,383) were tested by polymerase chain reaction assay for related genes to identify their phylogenetic type and UPEC specificity. A cocktail of these UPEC strains was inoculated into sous-vide cooked chicken breast at 103-4 colony-forming unit (CFU)/g and stored at 4°C, 10°C, 15°C, 20°C, 30°C, and 40°C. Changes in the populations of UPEC during storage were analyzed by a one-step kinetic analysis method using the U.S. Department of Agriculture [USDA] Integrated Pathogen Modeling Program-Global Fit [IPMP-Global Fit]. The results showed that the combination of the no lag phase primary model and the Huang square-root secondary model fitted well with the growth curves to obtain the appropriate kinetic parameters. This combination for predicting UPEC growth kinetics was further validated using it to study additional growth curves at 25°C and 37°C, which showed that the root mean square error, bias factor, and accuracy factor were 0.49-0.59 (log CFU/g), 0.941-0.984, and 1.056-1.063, respectively. In conclusion, the models developed in this study are acceptable and can be used to predict the growth of UPEC in sous-vide chicken breast.
Collapse
Affiliation(s)
- Kuan-Hung Lu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Anne Hsu
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yi-Chun Pan
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yun-Ju Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan
| | - Liu-Yean Goh
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chun-Yi Kang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan
- National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Florea A, Casey JA, Nachman K, Price LB, Pomichowski ME, Takhar HS, Quinlivan V, Childs LD, Davis MF, Wei R, Hong V, Ku JH, Liu CM, Pressman A, Robinson S, Bruxvoort KJ, Salas SB, Tartof SY. Impact of California's Senate Bill 27 on Antimicrobial-Resistant Escherichia coli Urinary Tract Infection in Humans: Protocol for a Study of Methods and Baseline Data. JMIR Res Protoc 2023; 12:e45109. [PMID: 37145842 PMCID: PMC10199382 DOI: 10.2196/45109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Overuse of antibiotics contributes to antimicrobial resistance (AMR) and is a growing threat to human health worldwide. Previous work suggests a link between antimicrobial use in poultry and human AMR extraintestinal pathogenic Escherichia coli (E coli) urinary tract infections (UTIs). However, few US-based studies exist, and none have comprehensively assessed both foodborne and environmental pathways using advanced molecular and spatial epidemiologic methods in a quasi-experimental design. Recently, California enacted Senate Bill 27 (SB27), which changed previous policy to require a veterinarian's prescription for the use of antibiotic drugs, and which banned antibiotic use for disease prevention in livestock. This provided an opportunity to evaluate whether SB27 will result in a reduction in antimicrobial-resistant infections in humans. OBJECTIVE We describe in detail the methods implemented to achieve the overarching objective of this study to evaluate the impact of SB27 on downstream antibiotic resistance rates in human UTIs. METHODS A summary of the overall approach and the partnerships between Columbia University, George Washington University (GWU), Johns Hopkins Bloomberg School of Public Health, Kaiser Permanente Southern California (KPSC) Research and Evaluation, the Natural Resources Defense Council, Sanger Institute at Stanford University, Sutter Health Center for Health Systems Research, the University of Cambridge, and the University of Oxford is presented. The collection, quality control testing, and shipment of retail meat and clinical samples are described. Retail meat (chicken, beef, turkey, and pork) was purchased from stores throughout Southern California from 2017 to 2021. After processing at KPSC, it was shipped to GWU for testing. From 2016 to 2021, after clinical specimens were processed for routine clinical purposes and immediately before discarding, those with isolated colonies of E coli, Campylobacter, and Salmonella from KPSC members were collected and processed to be shipped for testing at GWU. Detailed methods of the isolation and testing as well as the whole-genome sequencing of the meat and clinical samples at GWU are described. KPSC electronic health record data were used to track UTI cases and AMR patterns among the cultured specimens. Similarly, Sutter Health electronic health record data were used to track UTI cases in its Northern California patient population. RESULTS From 2017 to 2021, overall, 12,616 retail meat samples were purchased from 472 unique stores across Southern California. In addition, 31,643 positive clinical cultures were collected from KPSC members during the same study period. CONCLUSIONS Here, we presented data collection methods for the study, which was conducted to evaluate the impact of SB27 on downstream antibiotic resistance rates in human UTI. To date, it is one of the largest studies of its kind to be conducted. The data collected during this study will be used as the foundation for future analyses specific to the various objectives of this large body of work. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/45109.
Collapse
Affiliation(s)
- Ana Florea
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Joan A Casey
- Columbia University Mailman School of Public Health, New York City, NY, United States
| | - Keeve Nachman
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Lance B Price
- Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Magdalena E Pomichowski
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Harpreet S Takhar
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Vanessa Quinlivan
- Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Lee D Childs
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Meghan F Davis
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Rong Wei
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Vennis Hong
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Jennifer H Ku
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Cindy M Liu
- Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Alice Pressman
- Center for Health Systems Research, Sutter Health, Walnut Creek, CA, United States
| | - Sarah Robinson
- Center for Health Systems Research, Sutter Health, Walnut Creek, CA, United States
| | - Katia J Bruxvoort
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - S Bianca Salas
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Sara Y Tartof
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
- Department of Health Systems Science, Kaiser Permanente Bernard J Tyson School of Medicine, Pasadena, CA, United States
| |
Collapse
|
15
|
Antibiotic resistance genes, mobile elements, virulence genes, and phages in cultivated ESBL-producing Escherichia coli of poultry origin in Kwara State, North Central Nigeria. Int J Food Microbiol 2023; 389:110086. [PMID: 36738714 DOI: 10.1016/j.ijfoodmicro.2023.110086] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/22/2023]
Abstract
The paucity of information on the genomic diversity of drug-resistant bacteria in most food-producing animals, including poultry in Nigeria, has led to poor hazard characterization and the lack of critical control points to safeguard public health. Hence, this study used whole genome sequencing (WGS) to assess the presence and the diversity of antibiotic resistance genes, mobile genetic elements, virulence genes, and phages in Extended Spectrum Beta Lactamase producing Escherichia coli (ESBL - E. coli) isolates obtained from poultry via the EURL guideline of 2017 in Ilorin, Nigeria. The prevalence of ESBL - E. coli in poultry was 10.5 % (n = 37/354). The phenotypic antibiotic susceptibility testing showed that all the ESBL- E. coli isolates were multi-drug resistant (MDR). The in-silico analysis of the WGS raw-read data from 11 purposively selected isolates showed that the isolates had a wide array of ARGs that conferred resistance to beta-lactam antibiotics, and 8 other classes of antibiotics (fluoroquinolones, foliate pathway antagonists, aminoglycoside, phenicol, tetracycline, epoxide, macrolides, and rifamycin). All the ARGs were in the bacterial chromosome except in two isolates where plasmid-mediated quinolone resistance (PMQR) was detected. Two isolates carried the gyrAp.S83L mutation which confers resistance to certain fluoroquinolones. The mobilome consisted of several Col-plasmids and the predominant IncF plasmids belonged to the IncF64:A-:B27 sequence type. The virulome consisted of genes that function as adhesins, iron acquisition genes, toxins, and protectins. Intact phages were found in 8 of the 11 isolates and the phageome consisted of representatives of four families of viruses: Myoviridae (62.5 %, n = 5/8), Siphoviridae (37.5 %, n = 3/8), Inoviridae (12.5 %, n = 1), and Podoviridae (12.5 %, n = 1/8). ESBL - E. coli isolates harboured 1-5 intact phages and no ARGs were identified on any of the phages. Although five of the isolates belonged to phylogroup A, the isolates were diverse as they belonged to different serotype and sequence types. Our findings demonstrate the high genomic diversity of ESBL - E. coli of poultry origin in Ilorin, Nigeria. These diverse isolates harbor clinically relevant ARGs, mobile elements, virulence genes, and phages that may have detrimental zoonotic potentials on human health.
Collapse
|
16
|
Lee YJ, Pan YC, Chang CW, Lu KH. Thermal inactivation kinetics of uropathogenic Escherichia coli in sous-vide processed chicken breast. Food Res Int 2023; 164:112316. [PMID: 36737909 DOI: 10.1016/j.foodres.2022.112316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Chicken is a suspected reservoir of uropathogenic Escherichia coli (UPEC), resulting in foodborne urinary tract infections (UTIs). Sous-vide ready-to-eat (RTE) food products may be associated with microbial hazards due to the low-temperature long-time (LTLT) process. However, little is known regarding the survival of UPEC during sous-vide cooking. The aim of this study was to evaluate the heat resistance of UPEC in chicken breast during sous-vide processing and establish predictive inactivation models. Chicken breast samples were inoculated with a four-strain cocktail of UPEC, including reference strains from UTI patients and chicken isolates. The inoculated samples, with or without 3% NaCl solution for marination, were vacuum sealed in bags, immersed in a temperature-controlled water bath, and cooked at 50 °C, 55 °C, 60 °C, and 63 °C. The change in survival of populations of UPEC was fitted with the linear and Weibull inactivation models to obtain the survival curves at different temperatures; the D- and z-values were also calculated. The goodness-of-fit was evaluated using the root mean square error (RMSE), sum of squared errors (SSE), adjusted R2, and Akaike information criterion (AIC). The results showed that the linear model with tail was better than the Weibull model in terms of fitting performance. With the addition of salt marinade, D-values at 50 °C, 55 °C, 60 °C, and 63 °C determined by the linear model with tail decreased from 299.78 to 166.93 min, 16,60 to 13.87 min, 4.06 to 3.05 min, and 1.05 to 0.87 min, respectively, compared with the controls. The z-values of control and salt-marinated samples were 6.14 °C and 5.89 °C, respectively. The model developed for predicting UPEC survival under sous-vide cooking was validated using an additional survival curve at 58 °C. The validation results showed that the RMSE was 0.122 and 0.133 log CFU/g, and the proportion of relative error was 0.875 and 0.750 in the acceptable prediction zones for the control and salt-marinated samples, respectively. In conclusion, the heat resistance of an emerging foodborne pathogen, UPEC, in sous-vide processed chicken breast was revealed for the first time. Our results showed that salt marinade (3% NaCl) increases the heat sensitivity of UPEC during the sous-vide processing. The developed survival functions based on the linear model with tail can be applied to control the thermal lethality of UPEC.
Collapse
Affiliation(s)
- Yun-Jung Lee
- Institute of Food Safety and Health, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Chun Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Ching-Wen Chang
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei 100, Taiwan.
| | - Kuan-Hung Lu
- Institute of Food Safety and Health, National Taiwan University, Taipei 100, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
17
|
Yang C, Diarra MS, Attiq Rehman M, Li L, Yu H, Yin X, Aslam M, Carrillo CD, Yang C, Gong J. Virulence potential of antimicrobial-resistant extraintestinal pathogenic Escherichia coli from retail poultry meat in a Caenorhabditis elegans model. J Food Prot 2023; 86:100008. [PMID: 36916583 DOI: 10.1016/j.jfp.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022]
Abstract
Healthy poultry can be a reservoir for extraintestinal pathogenic Escherichia coli (ExPEC), some of which could be multidrug resistant to antimicrobials. These ExPEC strains could contaminate the environment and/or food chain representing thus, food safety and human health risk. However, few studies have shown the virulence of poultry-source antimicrobial-resistant (AMR) ExPEC in humans. This study characterized AMR ExPEC and investigated the virulence potential of some of their isolates in a Caenorhabditis elegans infection model. A total of 46 E. coli isolates from poultry (chicken, n = 29; turkey, n = 12) retail meats and chicken feces (n = 4), or humans (n = 1) were sequenced and identified as ExPEC. Except eight, all remaining 38 ExPEC isolates were resistant to at least one antibiotic and carried corresponding antimicrobial resistance genes (ARGs). About 27 of the 46 ExPEC isolates were multidrug-resistant (≥3 antibiotic classes). Seven ExPEC isolates from chicken or turkey meats were of serotype O25:H4 and sequence type (ST) 131 which clustered with an isolate from a human urinary tract infection (UTI) case having the same serotype and ST. The C. elegans challenge model using eight of studied ExPEC isolates harboring various ARGs and virulence genes (VGs) showed that regardless of their ARG or VG numbers in tested poultry meat and feces, ExPEC significantly reduced the life span of the nematode (P < 0.05) similarly to a human UTI isolate. This study indicated the pathogenic potential of AMR ExPEC from retail poultry meat or feces, but more studies are warranted to establish their virulence in poultry and human. Furthermore, relationships between specific resistance profiles and/or VGs in these E. coli isolates for their pathogenicity deserve investigations.
Collapse
Affiliation(s)
- Chongwu Yang
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9; Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9.
| | - Muhammad Attiq Rehman
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Linyan Li
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hai Yu
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Mueen Aslam
- Lacombe Research Centre, AAFC, Lacombe, Alberta, Canada T4L1W1
| | - Catherine D Carrillo
- Canadian Food Inspection Agency (CFIA), Ottawa Laboratory (Carling), Ottawa, Ontario, Canada K1Y 4K7
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9.
| |
Collapse
|
18
|
Prendergast DM, Slowey R, Burgess CM, Murphy D, Johnston D, Morris D, O’ Doherty Á, Moriarty J, Gutierrez M. Characterization of cephalosporin and fluoroquinolone resistant Enterobacterales from Irish farm waste by whole genome sequencing. Front Microbiol 2023; 14:1118264. [PMID: 37032887 PMCID: PMC10073600 DOI: 10.3389/fmicb.2023.1118264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Background The Enterobacterales are a group of Gram-negative bacteria frequently exhibiting extended antimicrobial resistance (AMR) and involved in the transmission of resistance genes to other bacterial species present in the same environment. Due to their impact on human health and the paucity of new antibiotics, the World Health Organization (WHO) categorized carbapenem resistant and ESBL-producing as critical. Enterobacterales are ubiquitous and the role of the environment in the transmission of AMR organisms or antimicrobial resistance genes (ARGs) must be examined in tackling AMR in both humans and animals under the one health approach. Animal manure is recognized as an important source of AMR bacteria entering the environment, in which resistant genes can accumulate. Methods To gain a better understanding of the dissemination of third generation cephalosporin and fluoroquinolone resistance genes between isolates in the environment, we applied whole genome sequencing (WGS) to Enterobacterales (79 E. coli, 1 Enterobacter cloacae, 1 Klebsiella pneumoniae, and 1 Citrobacter gillenii) isolated from farm effluents in Ireland before (n = 72) and after (n = 10) treatment by integrated constructed wetlands (ICWs). DNA was extracted using the MagNA Pure 96 system (Roche Diagnostics, Rotkreuz, Switzerland) followed by WGS on a MiSeq platform (Illumina, Eindhoven, Netherlands) using v3 chemistry as 300-cycle paired-end runs. AMR genes and point mutations were identified and compared to the phenotypic results for better understanding of the mechanisms of resistance and resistance transmission. Results A wide variety of cephalosporin and fluoroquinolone resistance genes (mobile genetic elements (MGEs) and chromosomal mutations) were identified among isolates that mostly explained the phenotypic AMR patterns. A total of 31 plasmid replicon types were identified among the 82 isolates, with a subset of them (n = 24), identified in E. coli isolates. Five plasmid replicons were confined to the Enterobacter cloacae isolate and two were confined to the Klebsiella pneumoniae isolate. Virulence genes associated with functions including stress, survival, regulation, iron uptake secretion systems, invasion, adherence and toxin production were identified. Conclusion Our study showed that antimicrobial resistant organisms (AROs) can persist even following wastewater treatment and could transmit AMR of clinical relevance to the environment and ultimately pose a risk to human or animal health.
Collapse
Affiliation(s)
- Deirdre M. Prendergast
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
- *Correspondence: Deirdre M. Prendergast,
| | - Rosemarie Slowey
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | | | - Declan Murphy
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | - Dayle Johnston
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, University of Galway, Galway, Ireland
| | - Áine O’ Doherty
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | - John Moriarty
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | | |
Collapse
|
19
|
Xia F, Cheng J, Jiang M, Wang Z, Wen Z, Wang M, Ren J, Zhuge X. Genomics Analysis to Identify Multiple Genetic Determinants That Drive the Global Transmission of the Pandemic ST95 Lineage of Extraintestinal Pathogenic Escherichia coli (ExPEC). Pathogens 2022; 11:pathogens11121489. [PMID: 36558824 PMCID: PMC9781279 DOI: 10.3390/pathogens11121489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a pathogen that causes host extraintestinal diseases. The ST95 E. coli lineage is one of the dominant ExPEC lineages in humans and poultry. In this study, we took advantage of extensive E. coli genomes available through public open-access databases to construct a detailed understanding of the phylogeny and evolution of ST95. We used a high variability of accessory genomes to highlight the diversity and dynamic traits of ST95. Isolates from diverse hosts and geographic sources were randomly located on the phylogenetic tree, which suggested that there is no host specificity for ST95. The time-scaled phylogeny showed that ST95 is an ancient and long-lasting lineage. The virulence genes, resistance genes, and pathogenicity islands (PAIs) were characterized in ST95 pan-genomes to provide novel insights into the pathogenicity and multidrug resistance (MDR) genotypes. We found that a pool of large plasmids drives virulence and MDR. Based on the unique genes in the ST95 pan-genome, we designed a novel multiplex PCR reaction to rapidly detect ST95. Overall, our study addressed a gap in the current understanding of ST95 ExPEC genomes, with significant implications for recognizing the success and spread of ST95.
Collapse
Affiliation(s)
- Fufang Xia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Jinlong Cheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Zhongxing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Zhe Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (J.R.); (X.Z.)
| | - Xiangkai Zhuge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
- Correspondence: (J.R.); (X.Z.)
| |
Collapse
|
20
|
Asgharzadeh S, Golmoradi Zadeh R, Taati Moghadam M, Farahani Eraghiye H, Sadeghi Kalani B, Masjedian Jazi F, Mirkalantari S. Distribution and expression of virulence genes (hlyA, sat) and genotyping of Escherichia coli O25b/ST131 by multi-locus variable number tandem repeat analysis in Tehran, Iran. Acta Microbiol Immunol Hung 2022; 69:314-322. [PMID: 36129793 DOI: 10.1556/030.2022.01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022]
Abstract
Escherichia coli ST131 is a pandemic clone with high antibiotic resistance, and it is a major causative agent of urinary tract infection (UTI) and bloodstream infections. This study evaluated the distribution and expression of virulence genes and genotyping of E. coli O25b/ST131 by Multi-locus variable number tandem repeat analysis (MLVA) method among UTI in patients at Tehran hospitals, Iran.A total of 107 E. coli isolates were collected from UTI patients. Polymerase chain reaction (PCR) amplification of the pabB gene was used to identify E. coli O25b/ST131 and the prevalence of sat and hlyA virulence genes was also analyzed. The microtiter method quantified biofilm formation ability in E. coli O25b/ST131. The Real-Time PCR (qRT-PCR) was performed to evaluate the expression of sat and hlyA genes. Finally, MLVA was performed for E. coli O25b/ST131 genotyping by targeting seven tandem repeats. SPSS-16 software was used for statistical analysis. Molecular study showed that 71% of isolates carried the pabB gene and were considered E. coli O25b/ST131 strains. Also, 45.8% and 17.8% of isolates carried sat and hlyA genes, respectively. The 57.9% isolates had biofilm formation ability. Expression of the studied virulence genes showed an increase in strong biofilm producing E. coli O25b/ST131 strains. A total of 76 (100%) E. coli O25b/ST131 strains were typed by the MLVA method.High prevalence of E. coli O25b/ST131 isolates in UTI patients can be a serious warning to the treatment due to the high antibiotic resistance rate, expression of virulence genes, and biofilm formation.
Collapse
Affiliation(s)
- Sajjad Asgharzadeh
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rezvan Golmoradi Zadeh
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Taati Moghadam
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Farahani Eraghiye
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Sadeghi Kalani
- 2Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Faramarz Masjedian Jazi
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Hayek MN. The infectious disease trap of animal agriculture. SCIENCE ADVANCES 2022; 8:eadd6681. [PMID: 36322670 PMCID: PMC9629715 DOI: 10.1126/sciadv.add6681] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/15/2022] [Indexed: 06/01/2023]
Abstract
Infectious diseases originating from animals (zoonotic diseases) have emerged following deforestation from agriculture. Agriculture can reduce its land use through intensification, i.e., improving resource use efficiency. However, intensive management often confines animals and their wastes, which also fosters disease emergence. Therefore, rising demand for animal-sourced foods creates a "trap" of zoonotic disease risks: extensive land use on one hand or intensive animal management on the other. Not all intensification poses disease risks; some methods avoid confinement and improve animal health. However, these "win-win" improvements alone cannot satisfy rising meat demand, particularly for chicken and pork. Intensive poultry and pig production entails greater antibiotic use, confinement, and animal populations than beef production. Shifting from beef to chicken consumption mitigates climate emissions, but this common strategy neglects zoonotic disease risks. Preventing zoonotic diseases requires international coordination to reduce the high demand for animal-sourced foods, improve forest conservation governance, and selectively intensify the lowest-producing ruminant animal systems without confinement.
Collapse
Affiliation(s)
- Matthew N Hayek
- Department of Environmental Studies, New York University, 285 Mercer St., New York, NY 10012, USA.
| |
Collapse
|
22
|
Xia F, Jiang M, Wen Z, Wang Z, Wang M, Xu Y, Zhuge X, Dai J. Complete genomic analysis of ST117 lineage extraintestinal pathogenic Escherichia coli (ExPEC) to reveal multiple genetic determinants to drive its global transmission: ST117 E. coli as an emerging multidrug-resistant foodborne ExPEC with zoonotic potential. Transbound Emerg Dis 2022; 69:3256-3273. [PMID: 35945191 DOI: 10.1111/tbed.14678] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) is recognized as a primary source of foodborne extraintestinal pathogenic E. coli (ExPEC), which poses a significant risk of extraintestinal infections in humans. The potential of human infection with ST117 lineage APEC/ExPEC from poultry is particularly concerning. However, relatively few whole-genome studies have focused on ST117 as an emerging ExPEC lineage. In this study, the complete genomes of 11 avian ST117 isolates and the draft genomes of 20 ST117 isolates in China were sequenced to reveal the genomic islands and large plasmid composition of ST117 APEC. With reference to the extensive E. coli genomes available in public databases, large-scale comprehensive genomic analysis of the ST117 lineage APEC/ExPEC was performed to reveal the features of the ST117 pan-genome and population. The high variability of the accessory genome emphasized the diversity and dynamic traits of the ST117 pan-genome. ST117 isolates recovered from different hosts and geographic sources were randomly located on a phylogeny tree, suggesting that ST117 E. coli lacked host specificity. A time-scaled phylogeny tree showed that ST117 was a recent E. coli lineage with a relatively short evolutionary period. Further characterization of a wide diversity of ExPEC-related virulence genes, pathogenicity islands (PAIs), and resistance genes of the ST117 pan-genome provided insights into the virulence and resistance of ST117 APEC/ExPEC. The results suggested zoonotic potential of ST117 APEC/ExPEC between birds and humans. Moreover, genomic analysis showed that a pool of diverse plasmids drove the virulence and multidrug resistance of ST117 APEC/ExPEC. Several types of large plasmids were scattered across the ST117 isolates, but there was no strong plasmid-clade adaptation. Combined with the pan-genome analysis, a double polymerase chain reaction (PCR) method was designed for rapid and cost-effective detection of ST117 isolates from various avian and human APEC/ExPEC isolates. Overall, this study addressed a gap in current knowledge about the ST117 APEC/ExPEC genome, with significant implications to understand the success and spread of ST117 APEC/ExPEC.
Collapse
Affiliation(s)
- Fufang Xia
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, P.R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Min Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, P.R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhongxing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, P.R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, P.R. China
| | - Yudian Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, P.R. China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,College of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
23
|
Assessing the Load, Virulence and Antibiotic-Resistant Traits of ESBL/Ampc E. coli from Broilers Raised on Conventional, Antibiotic-Free, and Organic Farms. Antibiotics (Basel) 2022; 11:antibiotics11111484. [PMID: 36358139 PMCID: PMC9686507 DOI: 10.3390/antibiotics11111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Poultry is the most likely source of livestock-associated Extended Spectrum Beta-Lactamase (ESBL) and plasmid-mediated AmpC (pAmpC)-producing E. coli (EC) for humans. We tested the hypothesis that farming methods have an impact on the load of ESBL/pAmpC-EC in the gut of broilers at slaughter. Isolates (n = 156) of antibiotic-free (AF), organic (O), and conventional (C) animals were characterized for antibiotic susceptibility and antibiotic resistance genes. Thirteen isolates were whole-genome sequenced. The average loads of ESBL/pAmpC-EC in cecal contents were 4.17 Log CFU/g for AF; 2.85 Log CFU/g for O; and 3.88 Log CFU/g for C type (p < 0.001). ESBL/pAmpC-EC isolates showed resistance to antibiotic classes historically used in poultry, including penicillins, tetracyclines, quinolones, and sulfonamides. Isolates from O and AF farms harbored a lower proportion of resistance to antibiotics than isolates from C farms. Among the determinants for ESBL/pAmpC, CTX-M-1 prevailed (42.7%), followed by TEM-type (29%) and SHV (19.8%). Avian pathogenic E. coli (APEC), belonging to ST117 and ST349, were identified in the collection. These data confirm the possible role of a broiler as an ESBL/AmpC EC and APEC reservoir for humans. Overall, our study suggests that antibiotic-free and organic production may contribute to a reduced exposure to ESBL/AmpC EC for the consumer.
Collapse
|
24
|
Kerek Á, Sasvári M, Jerzsele Á, Somogyi Z, Janovák L, Abonyi-Tóth Z, Dékány I. Photoreactive Coating Material as an Effective and Durable Antimicrobial Composite in Reducing Bacterial Load on Surfaces in Livestock. Biomedicines 2022; 10:biomedicines10092312. [PMID: 36140413 PMCID: PMC9496029 DOI: 10.3390/biomedicines10092312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Titanium dioxide (TiO2) is a well-known photocatalytic compound that can be used to effectively reduce the presence of pathogens in human and animal hospitals via ROS release. The aim of this study was to investigate the efficacy of a polymer-based composite layer containing TiO2 and zinc oxide (ZnO) against Escherichia coli (E. coli) of animal origin. We showed that the photocatalyst coating caused a significant (p < 0.001) reduction in pathogen numbers compared to the control with an average reduction of 94% over 30 min. We used six light sources of different wattages (4 W, 7 W, 9 W, 12 W, 18 W, 36 W) at six distances (35 cm, 100 cm, 150 cm, 200 cm, 250 cm, 300 cm). Samples (n = 2160) were taken in the 36 settings and showed no significant difference in efficacy between light intensity and distance. We also investigated the influence of organic contaminant that resulted in lower activity as well as the effect of a water jet and a high-pressure device on the antibacterial activity. We found that the latter completely removed the coating from the surface, which significantly (p < 0.0001) reduced its antibacterial potential. As a conclusion, light intensity and distance does not reduce the efficacy of the polymer, but the presence of organic contaminants does.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
- Correspondence: (Á.K.); (I.D.)
| | - Mátyás Sasvári
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Zsolt Abonyi-Tóth
- Department of Biomathematics and Informatics, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - Imre Dékány
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
- Correspondence: (Á.K.); (I.D.)
| |
Collapse
|
25
|
Balbuena-Alonso MG, Cortés-Cortés G, Kim JW, Lozano-Zarain P, Camps M, Del Carmen Rocha-Gracia R. Genomic analysis of plasmid content in food isolates of E. coli strongly supports its role as a reservoir for the horizontal transfer of virulence and antibiotic resistance genes. Plasmid 2022; 123-124:102650. [PMID: 36130651 PMCID: PMC10896638 DOI: 10.1016/j.plasmid.2022.102650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
The link between E. coli strains contaminating foods and human disease is unclear, with some reports supporting a direct transmission of pathogenic strains via food and others highlighting their role as reservoirs for resistance and virulence genes. Here we take a genomics approach, analyzing a large set of fully-assembled genomic sequences from E. coli available in GenBank. Most of the strains isolated in food are more closely related to each other than to clinical strains, arguing against a frequent direct transmission of pathogenic strains from food to the clinic. We also provide strong evidence of genetic exchanges between food and clinical strains that are facilitated by plasmids. This is based on an overlapped representation of virulence and resistance genes in plasmids isolated from these two sources. We identify clusters of phylogenetically-related plasmids that are largely responsible for the observed overlap and see evidence of specialization, with some food plasmid clusters preferentially transferring virulence factors over resistance genes. Consistent with these observations, food plasmids have a high mobilization potential based on their plasmid taxonomic unit classification and on an analysis of mobilization gene content. We report antibiotic resistance genes of high clinical relevance and their specific incompatibility group associations. Finally, we also report a striking enrichment for adhesins in food plasmids and their association with specific IncF replicon subtypes. The identification of food plasmids with specific markers (Inc and PTU combinations) as mediators of horizontal transfer between food and clinical strains opens new research avenues and should assist with the design of surveillance strategies.
Collapse
Affiliation(s)
- María G Balbuena-Alonso
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - Gerardo Cortés-Cortés
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, San Manuel, Puebla 72570, Mexico; Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jay W Kim
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patricia Lozano-Zarain
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| | - Rosa Del Carmen Rocha-Gracia
- Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, San Manuel, Puebla 72570, Mexico.
| |
Collapse
|
26
|
Gambushe SM, Zishiri OT, El Zowalaty ME. Review of Escherichia coli O157:H7 Prevalence, Pathogenicity, Heavy Metal and Antimicrobial Resistance, African Perspective. Infect Drug Resist 2022; 15:4645-4673. [PMID: 36039321 PMCID: PMC9420067 DOI: 10.2147/idr.s365269] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Escherichia coli O157:H7 is an important food-borne and water-borne pathogen that causes hemorrhagic colitis and the hemolytic-uremic syndrome in humans and may cause serious morbidity and large outbreaks worldwide. People with bloody diarrhea have an increased risk of developing serious complications such as acute renal failure and neurological damage. The hemolytic-uremic syndrome (HUS) is a serious condition, and up to 50% of HUS patients can develop long-term renal dysfunction or blood pressure-related complications. Children aged two to six years have an increased risk of developing HUS. Clinical enteropathogenic Escherichia coli (EPEC) infections show fever, vomiting, and diarrhea. The EPEC reservoir is unknown but is suggested to be an asymptomatic or symptomatic child or an asymptomatic adult carrier. Spreading is often through the fecal-oral route. The prevalence of EPEC in infants is low, and EPEC is highly contagious in children. EPEC disease in children tends to be clinically more severe than other diarrheal infections. Some children experience persistent diarrhea that lasts for more than 14 days. Enterotoxigenic Escherichia coli (ETEC) strains are a compelling cause of the problem of diarrheal disease. ETEC strains are a global concern as the bacteria are the leading cause of acute watery diarrhea in children and the leading cause of traveler’s diarrhea. It is contagious to children and can cause chronic diarrhea that can affect the development and well-being of children. Infections with diarrheagenic E. coli are more common in African countries. Antimicrobial agents should be avoided in the acute phase of the disease since studies showed that antimicrobial agents may increase the risk of HUS in children. The South African National Veterinary Surveillance and Monitoring Programme for Resistance to Antimicrobial Drugs has reported increased antimicrobial resistance in E. coli. Pathogenic bacterial strains have developed resistance to a variety of antimicrobial agents due to antimicrobial misuse. The induced heavy metal tolerance may also enhance antimicrobial resistance. The prevalence of antimicrobial resistance depends on the type of the antimicrobial agent, bacterial strain, dose, time, and mode of administration. Developing countries are severely affected by increased resistance to antimicrobial agents due to poverty, lack of proper hygiene, and clean water, which can lead to bacterial infections with limited treatment options due to resistance.
Collapse
Affiliation(s)
- Sydney M Gambushe
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Oliver T Zishiri
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Mohamed E El Zowalaty
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE 75 123, Sweden
| |
Collapse
|
27
|
Investigation of OXA-23, OXA-24, OXA-40, OXA-51, and OXA-58 Genes in Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae Isolates from Patients with Urinary Tract Infections. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-119480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Escherichia coli and Klebsiella pneumoniae are frequently responsible for urinary tract infections (UTIs). The high rate of carbapenem resistance in Enterobacteriaceae has become a global therapeutic concern. Objectives: The study investigated OXA-23, OXA-24, OXA-40, OXA-51, and OXA-58 genes in uropathogenic E. coli and K. pneumoniae isolates. Methods: We isolated 500 uropathogenic isolates of E. coli and K. pneumoniae from patients at Milad Hospital, Tehran, Iran. Antibiotic susceptibility testing was performed using a strip-test method, and the carbapenem-nonsusceptoble isolates were confirmed with an automated antibiotic sensitivity testing system. The OXA genes were determined by multiplex PCR. Molecular typing was performed by multilocus variable-number tandem repeat (VNTR) analysis (MLVA). Results: Out of 500 isolates, 40 (8%) were detected as carbapenem-resistant, including 13 E. coli and 27 K. pneumoniae. All carbapenem-resistant isolates were ESBL-producing and resistant to ceftriaxone, ciprofloxacin, meropenem, ceftazidime, and amoxicillin-clavulanate. Moreover, 46.1% and 26% of carbapenem-insensitive E. coli and K. pneumoniae isolates carried a beta-lactamase-producing gene associated with the OXA-23-like group. Finally, E. coli and K. pneumoniae isolates were divided into two and three MLVA patterns, respectively. Conclusions: This is the first report of OXA-51, 58, and 24 carbapenemases in clinical isolates of E. coli and K. pneumoniae from UTI patients in Iran. Significant differences were seen in OXA-51, 58, and 24 genes between carbapenem-insensitive and carbapenem-sensitive E. coli and K. pneumoniae isolates. Molecular typing suggested the vertical transmission of resistance genes.
Collapse
|
28
|
Rehman MA, Rempel H, Carrillo CD, Ziebell K, Allen K, Manges AR, Topp E, Diarra MS. Virulence Genotype and Phenotype of Multiple Antimicrobial-Resistant Escherichia coli Isolates from Broilers Assessed from a "One-Health" Perspective. J Food Prot 2022; 85:336-354. [PMID: 34762732 DOI: 10.4315/jfp-21-273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/09/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Extraintestinal pathogenic Escherichia coli (ExPEC) include several serotypes that have been associated with colibacillosis in poultry and with urinary tract infections (UTIs) and newborn meningitis in humans. In this study, 57 antimicrobial-resistant E. coli from apparently healthy broiler chickens were characterized for their health and safety risks. These isolates belonged to 12 serotypes, and isolates of the same serotype were clonal based on single nucleotide variant analysis. Most of the isolates harbored plasmids; IncC and IncFIA were frequently detected. The majority of the resistant isolates harbored plasmid-mediated resistance genes, including aph(3″)-Ib, aph(6)-Id, blaCMY-2, floR, sul1, sul2, tet(A), and tet(B), in agreement with their resistant phenotypes. The class 1 integron was detected in all E. coli serotypes except O124:H25 and O7:H6. Of the 57 broiler E. coli isolates, 27 were avian pathogenic, among which 18 were also uropathogenic E. coli and the remainder were other ExPEC. The two isolates of serotype O161:H4 (ST117) were genetically related to the control avian pathogenic strains and a clinical isolate associated with UTIs. A strain of serotype O159:H45 (ST101) also was closely related to a UTI isolate. The detected virulence factors included adhesins, invasins, siderophores, type III secretion systems, and toxins in combination with other virulence determinants. A broiler isolate of serotype O7:H18 (ST38) carried the ibeA gene encoding a protein involved in invasion of brain endothelium on a 102-kbp genetic island. This isolate moderately adhered and invaded Caco-2 cells and induced mortality (42.5%) in a day-old-chick infection model. The results of this study suggest that multiple antimicrobial-resistant E. coli isolates recovered from apparent healthy broilers can be pathogenic and act as reservoirs for antimicrobial resistance genes, highlighting the necessity of their assessment in a "One-Heath" context. HIGHLIGHTS
Collapse
Affiliation(s)
- Muhammad Attiq Rehman
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Heidi Rempel
- Agassiz Research and Development Center, Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada V0M 1A2
| | - Catherine D Carrillo
- Canadian Food Inspection Agency, Ottawa Laboratory (Carling), Ottawa, Ontario, Canada K1Y 4K7
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency Canada, Guelph, Ontario, Canada N1G 3W4
| | - Kevin Allen
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Amee R Manges
- School of Population and Public Health, University of British Columbia, British Columbia, Canada V6T 1Z3.,British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada V5Z 4R4
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada N5V 4T3
| | - Moussa S Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| |
Collapse
|
29
|
Nguyen Q, Nguyen TTN, Pham P, Chau V, Nguyen LPH, Nguyen TD, Ha TT, Le NTQ, Vu DT, Baker S, Thwaites GE, Rabaa MA, Pham DT. Genomic insights into the circulation of pandemic fluoroquinolone-resistant extra-intestinal pathogenic Escherichia coli ST1193 in Vietnam. Microb Genom 2021; 7. [PMID: 34904942 PMCID: PMC8767341 DOI: 10.1099/mgen.0.000733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) ST1193, a globally emergent fluoroquinolone-resistant clone, has become an important cause of bloodstream infections (BSIs) associated with significant morbidity and mortality. Previous studies have reported the emergence of fluoroquinolone-resistant ExPEC ST1193 in Vietnam; however, limited data exist regarding the genetic structure, antimicrobial resistance (AMR) determinants and transmission dynamics of this pandemic clone. Here, we performed genomic and phylogenetic analyses of 46 ST1193 isolates obtained from BSIs and healthy individuals in Ho Chi Minh City, Vietnam, to investigate the pathogen population structure, molecular mechanisms of AMR and potential transmission patterns. We further examined the phylogenetic structure of ST1193 isolates in a global context. We found that the endemic E. coli ST1193 population was heterogeneous and highly dynamic, largely driven by multiple strain importations. Several well-supported phylogenetic clusters (C1-C6) were identified and associated with distinct bla CTX-M variants, including bla CTXM-27 (C1-C3, C5), bla CTXM-55 (C4) and bla CTXM-15 (C6). Most ST1193 isolates were multidrug-resistant and carried an extensive array of AMR genes. ST1193 isolates also exhibited the ability to acquire further resistance while circulating in Vietnam. There were phylogenetic links between ST1193 isolates from BSIs and healthy individuals, suggesting these organisms may both establish long-term colonization in the human intestinal tract and induce infections. Our study uncovers factors shaping the population structure and transmission dynamics of multidrug-resistant ST1193 in Vietnam, and highlights the urgent need for local One Health genomic surveillance to capture new emerging ExPEC clones and to better understand the origins and transmission patterns of these pathogens.
Collapse
Affiliation(s)
- Quynh Nguyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Phuong Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vinh Chau
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Tuyen Thanh Ha
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nhi Thi Quynh Le
- The University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | | | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maia A Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Duy Thanh Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Occurrence of genes associated with virulence in Escherichia coli isolates from chicken carcasses at different stages of processing at a slaughterhouse. Braz J Microbiol 2021; 52:2413-2420. [PMID: 34467469 DOI: 10.1007/s42770-021-00549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/21/2021] [Indexed: 10/20/2022] Open
Abstract
Escherichia coli is a bacterium frequently found in chicken carcasses, causing carcass condemnation with losses to the industry and when present in food, it carries a risk to public health as there is evidence that some strains pathogenic to birds (APEC - Avian Pathogenic E. coli) have zoonotic potential. Carcass contamination can occur at the slaughterhouse, but the influence of the different stages of processing in the selection of potential extraintestinal pathogenic E. coli strains is unknown. This study aimed to analyze the influence of the processing steps in the slaughterhouse on the detection of E. coli isolates carrying APEC predictor's virulence-associated genes (VAGs), and to relate their presence with post-mortem condemnation. A sample consisted of four pooled carcasses collected at seven different stages of slaughter (before scalding, after scalding, after plucking, before evisceration/after shower wash, after evisceration, after pre-coolers, and after packing) from 15 batches of broilers. The total samples obtained was 105 pools with four carcasses each, totaling 420 carcasses analyzed. Enterobacteriaceae were counted from each pool and E. coli were subsequently selected, which were submitted to pentaplex PCR to identify the five VAG APEC predictor's: iroN, ompT, hlyF, iss, and iutA. The Enterobacteriaceae count demonstrated a reduction of 4.25 log CFU per gram of carcass from the first to the last stage analyzed, with scalding and pre-cooling by immersion being the procedures that contributed most to this reduction. The presence of VAGs and potential APEC (presence of two or more of these gene predictors) was observed at all points evaluated in the slaughterhouse, which suggested that bacteria carrying these genes could reach the consumer.
Collapse
|
31
|
Yang C, Diarra MS, Choi J, Rodas-Gonzalez A, Lepp D, Liu S, Lu P, Mogire M, Gong J, Wang Q, Yang C. Effects of encapsulated cinnamaldehyde on growth performance, intestinal digestive and absorptive functions, meat quality and gut microbiota in broiler chickens. Transl Anim Sci 2021; 5:txab099. [PMID: 34222827 PMCID: PMC8252029 DOI: 10.1093/tas/txab099] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Essential oils are potential antimicrobial alternatives and their applications in animal feeds are limited due to their fast absorption in the upper gastrointestinal tract. This study investigated the effects of encapsulated cinnamaldehyde (CIN) at 50 mg/kg or 100 mg/kg on the growth performance, organ weights, meat quality, intestinal morphology, jejunal gene expression, nutrient digestibility, and ileal and cecal microbiota. A total of 320 male day-old broiler Cobb-500 chicks were randomly allocated to four treatments with eight pens per treatment (10 birds per pen): 1) basal diet (negative control, NC); 2) basal diet supplemented with 30 mg/kg avilamycin premix (positive control, PC); 3) basal diet with 50 mg/kg encapsulated CIN (EOL); 4) basal diet with 100 mg/kg encapsulated CIN (EOH). Despite birds fed EOH tended to increase (P = 0.05) meat pH at 24 h, all pH values were normal. Similar to PC group, meats from birds fed EOL and EOH showed a reduced (P < 0.05) Warner-Bratzler force shear (WBFS) compared to the NC group. The highest villus to crypt ratios (VH/CD; P < 0.05) were observed in broilers fed either EOL or EOH, with an average of 14.67% and 15.13% in the duodenum and 15.13% and 13.58% in the jejunum, respectively. For jejunal gene expressions, only six out of the 11 studied genes showed statistically significant differences among the dietary treatments. Gene expressions of cationic amino acid transporter 1 (CAT-1) and neutral amino acid transporter 1 (B0AT-1) were upregulated in EOH-fed birds compared to PC and NC-fed birds (P < 0.05), respectively; while the expression of proliferating cell nuclear antigen (PCNA) was downregulated in EOL-fed birds when compared to NC birds (P < 0.05). Nonetheless, the expressions of cadherin 1 (CDH-1), zonula occludens 1 (ZO-1), and maltase-glucoamylase (MG) were all upregulated (P < 0.05) in EOH-fed birds compared to PC-fed birds. The apparent ileal digestibility (AID) of dry matter, crude protein, crude fat and of all 18 tested amino acids increased in EOL-fed birds (P < 0.01). Additionally, relative abundances (%) of ileal Proteobacteria decreased, while ileal and cecal Lactobacillus increased in EOH-fed birds (P < 0.05). In conclusion, dietary encapsulated CIN improved meat quality and gut health by reducing meat WBFS, increasing VH/CD in intestines, jejunal gene expressions, AID of nutrients and beneficial ileal and cecal microbiota composition.
Collapse
Affiliation(s)
- Chongwu Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Janghan Choi
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Argenis Rodas-Gonzalez
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Peng Lu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Marion Mogire
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
32
|
Characterization of antimicrobial resistance in chicken-source phylogroup F Escherichia coli: similar populations and resistance spectrums between E. coli recovered from chicken colibacillosis tissues and retail raw meats in Eastern China. Poult Sci 2021; 100:101370. [PMID: 34332223 PMCID: PMC8339308 DOI: 10.1016/j.psj.2021.101370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/05/2022] Open
Abstract
The extended-spectrum cephalosporin resistant E. coli from food animals transferring to community settings of humans causes a serious threat to public health. Unlike phylogroup B2 E. coli strains, the clinical significance of isolates in phylogroup F is not well revealed. Here, we report on a collection (n = 563) of phylogroup F E. coli isolates recovered from chicken colibacillosis tissues and retail raw chicken meat samples in Eastern China. There was an overlapped distribution of MLST types between chicken colibacillosis-origin and meat-source phylogroup F E. coli, including dominant STs (ST648, ST405, ST457, ST393, ST1158, etc). This study further investigated the presence of extended-spectrum β-lactamase (ESBL/pAmpC) producers in these chicken-source phylogroup F E. coli strains. The prevalence of extended-spectrum cephalosporin resistant strains in phylogroup F E. coli from chicken colibacillosis and raw meat separately accounted for 66.1 and 71.2%. The resistance genotypes and plasmid replicon types of chicken-source phylogroup F E. coli isolates were characterized by multiplex PCR. Our results revealed β-lactamase CTX-M, OXA, CMY and TEM genes were widespread in chicken-source phylogroup F E. coli, and blaCTX-M was the most predominant ESBL gene. Moreover, there was a high prevalence of non-lactamase resistance genes in these β-lactam-resistant isolates. The replicons IncB/O/K/Z, IncI1, IncN, IncFIC, IncQ1, IncX4, IncY, and p0111, associated with antibiotic-resistant large plasmids, were widespread in chicken-source phylogroup F E. coli. There was no obvious difference for the populations, resistance spectrums, and resistance genotypes between phylogroup F E. coli from chicken colibacillosis tissues and retail meats. This detail assessment of the population and resistance genotype showed chicken-source phylogroup F E. coli might hold zoonotic risk and contribute the spread of multidrug-resistant E. coli to humans.
Collapse
|
33
|
Barbieri NL, Pimenta RL, de Melo DA, Nolan LK, de Souza MMS, Logue CM. mcr-1 Identified in Fecal Escherichia coli and Avian Pathogenic E. coli (APEC) From Brazil. Front Microbiol 2021; 12:659613. [PMID: 33959114 PMCID: PMC8093808 DOI: 10.3389/fmicb.2021.659613] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/19/2021] [Indexed: 01/13/2023] Open
Abstract
Colisitin-associated resistance in bacteria of food producing animals has gained significant attention with the mcr gene being linked with resistance. Recently, newer variants of mcr have emerged with more than nine variants currently recognized. Reports of mcr associated resistance in Escherichia coli of poultry appear to be relatively limited, but its prevalence requires assessment since poultry is one of the most important and cheapest sources of the world’s protein and the emergence of resistance could limit our ability to treat disease outbreaks. Here, 107 E. coli isolates from production poultry were screened for the presence of mcr 1–9. The isolates were collected between April 2015 and June 2016 from broiler chickens and free-range layer hens in Rio de Janeiro, Brazil. All isolates were recovered from the trachea and cloaca of healthy birds and an additional two isolates were recovered from sick birds diagnosed with colibacillosis. All isolates were screened for the presence of mcr-1 to 9 using PCR and Sanger sequencing for confirmation of positive genes. Additionally, pulse field gel electrophoresis (PFGE) analysis, avian fecal E. coli (APEC) virulence associated gene screening, plasmid replicon typing and antimicrobial resistance phenotype and resistance gene screening, were also carried out to further characterize these isolates. The mcr-1 gene was detected in 62 (57.9%) isolates (61 healthy and 1 APEC) and the mcr-5 gene was detected in 3 (2.8%) isolates; mcr-2, mcr-3, mcr-4, mcr-6, mcr-7, mcr-8, and mcr-9 were not detected in any isolate. In addition, mcr 1 and 5 positive isolates were phenotypically resistant to colistin using the agar dilution assay (> 8ug/ml). PFGE analysis found that most of the isolates screened had unique fingerprints suggesting that the emergence of colistin resistance was not the result of clonal dissemination. Plasmid replicon types IncI2, FIB, and B/O were found in 38, 36, and 34% of the mcr positive isolates and were the most prevalent replicon types detected; tetA and tetB (32 and 26%, respectively) were the most prevalent antimicrobial resistance genes detected and iutA, was the most prevalent APEC virulence associated gene, detected in 50% of the isolates. Approximately 32% of the isolates examined could be classified as APEC-like, based on the presence of 3 or more genes of APEC virulence associated path panel (iroN, ompT, hlyF, iss, iutA). This study has identified a high prevalence of mcr-1 in poultry isolates in Brazil, suggesting that animal husbandry practices could result in a potential source of resistance to the human food chain in countries where application of colistin in animal health is practiced. Emergence of the mcr gene and associated colisitin resistance in production poultry warrants continued monitoring from the animal health and human health perspective.
Collapse
Affiliation(s)
- Nicolle Lima Barbieri
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ramon Loureiro Pimenta
- Department of Veterinary Science, Universidade Federal Rural do Rio de Janeiro, Seropedica, Brazil
| | - Dayanne Araujo de Melo
- Department of Veterinary Science, Universidade Federal Rural do Rio de Janeiro, Seropedica, Brazil
| | - Lisa K Nolan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | | | - Catherine M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
34
|
Avian Pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. Pathogens 2021; 10:pathogens10040467. [PMID: 33921518 PMCID: PMC8069529 DOI: 10.3390/pathogens10040467] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in avian species, and recent reports have suggested APEC as a potential foodborne zoonotic pathogen. Herein, we discuss the virulence and pathogenesis factors of APEC, review the zoonotic potential, provide the current status of antibiotic resistance and progress in vaccine development, and summarize the alternative control measures being investigated. In addition to the known virulence factors, several other factors including quorum sensing system, secretion systems, two-component systems, transcriptional regulators, and genes associated with metabolism also contribute to APEC pathogenesis. The clear understanding of these factors will help in developing new effective treatments. The APEC isolates (particularly belonging to ST95 and ST131 or O1, O2, and O18) have genetic similarities and commonalities in virulence genes with human uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC) and abilities to cause urinary tract infections and meningitis in humans. Therefore, the zoonotic potential of APEC cannot be undervalued. APEC resistance to almost all classes of antibiotics, including carbapenems, has been already reported. There is a need for an effective APEC vaccine that can provide protection against diverse APEC serotypes. Alternative therapies, especially the virulence inhibitors, can provide a novel solution with less likelihood of developing resistance.
Collapse
|
35
|
Dolatyar Dehkharghani A, Haghighat S, Rahnamaye Farzami M, Douraghi M, Rahbar M. Subtyping β-lactamase-producing Escherichia coli strains isolated from patients with UTI by MLVA and PFGE methods. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:437-443. [PMID: 34094024 PMCID: PMC8143711 DOI: 10.22038/ijbms.2021.49790.11372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 03/07/2021] [Indexed: 12/03/2022]
Abstract
OBJECTIVES Strain subtyping is an important epidemiological tool to trace contamination, determine clonal relationships between different strains, and the cause of outbreaks. Current subtyping methods, however, yield less than optimal subtype discrimination. Pulsed-field gel electrophoresis is the gold standard method for Escherichia coli and Multiple-Locus Variable-number tandem repeat Analysis is a rapid PCR-based method. The purpose of this study was to evaluate MLVA and PFGE methods for subtyping β -lactamase-producing E. coli strains isolated from urinary tract infections. MATERIALS AND METHODS Overall, 230 E. coli isolates from patients with urinary tract infections were examined for antimicrobial susceptibility testing. 10-loci and 7-loci MLVA and PFGE methods were used for molecular typing of β -lactamase-producing E. coli isolates. RESULTS Out of 230 isolates, 130 (56.5%) β -lactamase-producing E. coli isolates were found in this study. The diversity indices of the VNTR loci showed an average diversity of 0.48 and 0.54 for 7-loci and 10-loci MLVA, respectively. The discriminatory power of PFGE showed a value of 0.87. The discordance between the methods was high. CONCLUSION Our study showed that PFGE is more discriminatory than MVLA. MLVA is a PCR- based method and can generate unmistakable data, in contrast to PFGE. Optimization of polymorphic VNTR is essential to improve the discriminatory power of MLVA based on geographical region.
Collapse
Affiliation(s)
- Alireza Dolatyar Dehkharghani
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marjan Rahnamaye Farzami
- Department of Microbiology, Research Center of Reference Health Laboratory, Ministry of Health and Medical Education, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahbar
- Department of Microbiology, Research Center of Reference Health Laboratory, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
36
|
Antimicrobial Resistance Profile and ExPEC Virulence Potential in Commensal Escherichia coli of Multiple Sources. Antibiotics (Basel) 2021; 10:antibiotics10040351. [PMID: 33810387 PMCID: PMC8067153 DOI: 10.3390/antibiotics10040351] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
We recently described the genetic antimicrobial resistance and virulence profile of a collection of 279 commensal E. coli of food-producing animal (FPA), pet, wildlife and human origin. Phenotypic antimicrobial resistance (AMR) and the role of commensal E. coli as reservoir of extra-intestinal pathogenic Escherichia coli (ExPEC) virulence-associated genes (VAGs) or as potential ExPEC pathogens were evaluated. The most common phenotypic resistance was to tetracycline (76/279, 27.24%), sulfamethoxazole/trimethoprim (73/279, 26.16%), streptomycin and sulfisoxazole (71/279, 25.45% both) among the overall collection. Poultry and rabbit were the sources mostly associated to AMR, with a significant resistance rate (p > 0.01) to quinolones, streptomycin, sulphonamides, tetracycline and, only for poultry, to ampicillin and chloramphenicol. Finally, rabbit was the source mostly associated to colistin resistance. Different pandemic (ST69/69*, ST95, ST131) and emerging (ST10/ST10*, ST23, ST58, ST117, ST405, ST648) ExPEC sequence types (STs) were identified among the collection, especially in poultry source. Both ST groups carried high number of ExPEC VAGs (pandemic ExPEC STs, mean = 8.92; emerging ExPEC STs, mean = 6.43) and showed phenotypic resistance to different antimicrobials (pandemic ExPEC STs, mean = 2.23; emerging ExPEC STs, mean = 2.43), suggesting their role as potential ExPEC pathogens. Variable phenotypic resistance and ExPEC VAG distribution was also observed in uncommon ExPEC lineages, suggesting commensal flora as a potential reservoir of virulence (mean = 3.80) and antimicrobial resistance (mean = 1.69) determinants.
Collapse
|
37
|
Brown A, Lemons M, Perryman K, Kiess A, Wamsley K. Determining the relationship between varying inclusions of Bacillus lichenformis and tribasic copper chloride on 42-day-old Ross 708 male broiler performance. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Chuang S, Sheen S, Sommers CH, Sheen LY. Modeling the effect of simultaneous use of allyl isothiocyanate and cinnamaldehyde on high hydrostatic pressure inactivation of Uropathogenic and Shiga toxin-producing Escherichia coli in ground chicken. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1193-1201. [PMID: 32785931 DOI: 10.1002/jsfa.10731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND A combination of high-pressure processing (HPP) and antimicrobials is a well-known approach for enhancing the microbiological safety of foods. However, few studies have applied multiple antimicrobials simultaneously with HPP, which could be an additional hurdle for microbial inactivation. The present study applied a full factorial design to investigate the impact of HPP (225-325 MPa; 10-20 min), allyl isothiocyanate (AITC) (0.3-0.9 g kg-1 ) and trans-cinnamaldehyde (tCinn) (1.0-2.0 g kg-1 ) on the inactivation of Shiga toxin-producing Escherichia coli (STEC) O157:H7 and uropathogenic E. coli (UPEC) in ground chicken meat. RESULTS The regulatory requirement of 5-log reduction was achieved at 305 MPa, 18 min, 0.8 g kg-1 AITC and 1.7 g kg-1 tCinn for STEC O157:H7 and at 293 MPa, 16 min, 0.6 g kg-1 AITC and 1.6 g kg-1 tCinn for UPEC, as specified by response surface analysis and verified via experiments. The surviving population was eliminated by post-treatment storage of 9 days at 10 °C. The developed linear regression models showed r2 > 0.9 for the E. coli inactivation. The developed dimensionless non-linear regression models covered a factorial range slightly wider than the original experimental limit, with probability Pr > F (< 0.0001). CONCLUSION Simultaneous use of AITC and tCinn reduced not only the necessary concentration of each compound, but also the intensity of high-pressure treatments, at the same time achieving a similar level of microbial inactivation. STEC O157:H7 was found to be more resistant than UPEC to the HPP-AITC-tCinn stress. The developed models may be applied in commercial application to enhance the microbiological safety of ground chicken meat. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Shihyu Chuang
- Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA, USA
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shiowshuh Sheen
- Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA, USA
| | - Christopher H Sommers
- Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA, USA
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
39
|
Johnson TJ. Role of Plasmids in the Ecology and Evolution of "High-Risk" Extraintestinal Pathogenic Escherichia coli Clones. EcoSal Plus 2021; 9:eESP-0013-2020. [PMID: 33634776 PMCID: PMC11163845 DOI: 10.1128/ecosalplus.esp-0013-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022]
Abstract
Bacterial plasmids have been linked to virulence in Escherichia coli and Salmonella since their initial discovery. Though the plasmid repertoire of these bacterial species is extremely diverse, virulence-associated attributes tend to be limited to a small subset of plasmid types. This is particularly true for extraintestinal pathogenic E. coli, or ExPEC, where a handful of plasmids have been recognized to confer virulence- and fitness-associated traits. The purpose of this review is to highlight the biological and genomic attributes of ExPEC virulence-associated plasmids, with an emphasis on high-risk dominant ExPEC clones. Two specific plasmid types are highlighted to illustrate the independently evolved commonalities of these clones relative to plasmid content. Furthermore, the dissemination of these plasmids within and between bacterial species is examined. These examples demonstrate the evolution of high-risk clones toward common goals, and they show that rare transfer events can shape the ecological landscape of dominant clones within a pathotype.
Collapse
Affiliation(s)
- Timothy J. Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108
| |
Collapse
|
40
|
Bhardwaj DK, Taneja NK, Dp S, Chakotiya A, Patel P, Taneja P, Sachdev D, Gupta S, Sanal MG. Phenotypic and genotypic characterization of biofilm forming, antimicrobial resistant, pathogenic Escherichia coli isolated from Indian dairy and meat products. Int J Food Microbiol 2021; 336:108899. [PMID: 33160121 DOI: 10.1016/j.ijfoodmicro.2020.108899] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Escherichia coli are commensal gastrointestinal microflora of humans, but few strains may cause food-borne diseases. Present study aimed to identify antimicrobial resistant (AMR), biofilm-forming E. coli from Indian dairy and meat products. A total of 32 E. coli isolates were identified and evaluated for biofilm-formation. EMC17, an E. coli isolate was established as a powerful biofilm-former that attained maximum biofilm-formation within 96 h on glass and stainless-steel surfaces. Presence and expression of virulence-associated genes (adhesins, invasins and polysaccharides) and ability to adhere and invade human liver carcinoma HepG2 cell lines implicates EMC17 to be pathotype belonging to Extra-intestinal Pathogenic E. coli (ExPEC). Antibiotic profiling of EMC17 identified it as multi-drug resistant (MDR) strain, possessing extended spectrum β-lactamases (ESBL's) and biofilm phenotype. Early production of quorum sensing molecules (AHLs) alongside EPS production facilitated early onset of biofilm formation by EMC17. Furthermore, the biofilm-forming genes of EMC17 were significantly upregulated 3-27 folds in the biofilm-state. This study showed prevalence of MDR, biofilm-forming, pathogenic E. coli in Indian dairy and meat products that potentially serve as reservoirs for transmission of antimicrobial-resistant (AMR) genes of bacteria from food to humans and pose serious food safety threat.
Collapse
Affiliation(s)
| | - Neetu Kumra Taneja
- Department of Basic and Applied Sciences, NIFTEM, Sonipat 131028, Haryana, India.
| | - Shivaprasad Dp
- Department of Basic and Applied Sciences, NIFTEM, Sonipat 131028, Haryana, India
| | - Ankita Chakotiya
- Department of Basic and Applied Sciences, NIFTEM, Sonipat 131028, Haryana, India
| | - Praveen Patel
- Department of Basic and Applied Sciences, NIFTEM, Sonipat 131028, Haryana, India
| | - Pankaj Taneja
- Department of Life Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Divya Sachdev
- Department of Basic and Applied Sciences, NIFTEM, Sonipat 131028, Haryana, India
| | - Sarita Gupta
- Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, India
| | | |
Collapse
|
41
|
Foster-Nyarko E, Alikhan NF, Ravi A, Thomson NM, Jarju S, Kwambana-Adams BA, Secka A, O’Grady J, Antonio M, Pallen MJ. Genomic diversity of Escherichia coli isolates from backyard chickens and guinea fowl in the Gambia. Microb Genom 2021; 7:mgen000484. [PMID: 33253086 PMCID: PMC8115903 DOI: 10.1099/mgen.0.000484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/09/2020] [Indexed: 01/21/2023] Open
Abstract
Chickens and guinea fowl are commonly reared in Gambian homes as affordable sources of protein. Using standard microbiological techniques, we obtained 68 caecal isolates of Escherichia coli from 10 chickens and 9 guinea fowl in rural Gambia. After Illumina whole-genome sequencing, 28 sequence types were detected in the isolates (4 of them novel), of which ST155 was the most common (22/68, 32 %). These strains span four of the eight main phylogroups of E. coli, with phylogroups B1 and A being most prevalent. Nearly a third of the isolates harboured at least one antimicrobial resistance gene, while most of the ST155 isolates (14/22, 64 %) encoded resistance to ≥3 classes of clinically relevant antibiotics, as well as putative virulence factors, suggesting pathogenic potential in humans. Furthermore, hierarchical clustering revealed that several Gambian poultry strains were closely related to isolates from humans. Although the ST155 lineage is common in poultry from Africa and South America, the Gambian ST155 isolates belong to a unique cgMLST cluster comprising closely related (38-39 alleles differences) isolates from poultry and livestock from sub-Saharan Africa - suggesting that strains can be exchanged between poultry and livestock in this setting. Continued surveillance of E. coli and other potential pathogens in rural backyard poultry from sub-Saharan Africa is warranted.
Collapse
Affiliation(s)
- Ebenezer Foster-Nyarko
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard Road, Fajara, Gambia
| | | | - Anuradha Ravi
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
| | | | - Sheikh Jarju
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard Road, Fajara, Gambia
| | - Brenda A. Kwambana-Adams
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard Road, Fajara, Gambia
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK
| | - Arss Secka
- West Africa Livestock Innovation Centre (WALIC), MB 14, Banjul, Gambia
| | - Justin O’Grady
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
| | - Martin Antonio
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard Road, Fajara, Gambia
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Mark John Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
42
|
Liu J, Yin F, Liu T, Li S, Tan C, Li L, Zhou R, Huang Q. The Tat system and its dependent cell division proteins are critical for virulence of extra-intestinal pathogenic Escherichia coli. Virulence 2020; 11:1279-1292. [PMID: 32962530 PMCID: PMC7549933 DOI: 10.1080/21505594.2020.1817709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022] Open
Abstract
The twin-arginine translocation (Tat) system is involved in a variety of important bacterial physiological processes. Conserved among bacteria and crucial for virulence, the Tat system is deemed as a promising anti-microbial drug target. However, the mechanism of how the Tat system functions in bacterial pathogenesis has not been fully understood. In this study, we showed that the Tat system was critical for the virulence of an extra-intestinal pathogenic E. coli (ExPEC) strain PCN033. A total of 20 Tat-related mutant strains were constructed, and competitive infection assays were performed to evaluate the relative virulence of these mutants. The results demonstrated that several Tat substrate mutants, including the ΔsufI, ΔamiAΔamiC double mutant as well as each single mutant, ΔyahJ, ΔcueO, and ΔnapG, were significantly outcompeted by the WT strain, among which the ΔsufI and ΔamiAΔamiC strains showed the lowest competitive index (CI) value. Results of individual mouse infection assay, in vitro cell adhesion assay, whole blood bactericidal assay, and serum bactericidal assay further confirmed the virulence attenuation phenotype of the ΔsufI and ΔamiAΔamiC strains. Moreover, the two mutants displayed chained morphology in the log phase resembling the Δtat and were defective in stress response. Our results suggest that the Tat system and its dependent cell division proteins SufI, AmiA, and AmiC play critical roles during ExPEC pathogenesis.
Collapse
Affiliation(s)
- Jinjin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fan Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Te Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| |
Collapse
|
43
|
Riley LW. Distinguishing Pathovars from Nonpathovars: Escherichia coli. Microbiol Spectr 2020; 8:10.1128/microbiolspec.ame-0014-2020. [PMID: 33385193 PMCID: PMC10773148 DOI: 10.1128/microbiolspec.ame-0014-2020] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli is one of the most well-adapted and pathogenically versatile bacterial organisms. It causes a variety of human infections, including gastrointestinal illnesses and extraintestinal infections. It is also part of the intestinal commensal flora of humans and other mammals. Groups of E. coli that cause diarrhea are often described as intestinal pathogenic E. coli (IPEC), while those that cause infections outside of the gut are called extraintestinal pathogenic E. coli (ExPEC). IPEC can cause a variety of diarrheal illnesses as well as extraintestinal syndromes such as hemolytic-uremic syndrome. ExPEC cause urinary tract infections, bloodstream infection, sepsis, and neonatal meningitis. IPEC and ExPEC have thus come to be referred to as pathogenic variants of E. coli or pathovars. While IPEC can be distinguished from commensal E. coli based on their characteristic virulence factors responsible for their associated clinical manifestations, ExPEC cannot be so easily distinguished. IPEC most likely have reservoirs outside of the human intestine but it is unclear if ExPEC represent nothing more than commensal E. coli that breach a sterile barrier to cause extraintestinal infections. This question has become more complicated by the advent of whole genome sequencing (WGS) that has raised a new question about the taxonomic characterization of E. coli based on traditional clinical microbiologic and phylogenetic methods. This review discusses how molecular epidemiologic approaches have been used to address these questions, and how answers to these questions may contribute to our better understanding of the epidemiology of infections caused by E. coli. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720
| |
Collapse
|
44
|
Kim JH, Lee HJ, Jeong OM, Kim DW, Jeong JY, Kwon YK, Kang MS. High prevalence and variable fitness of fluoroquinolone-resistant avian pathogenic Escherichia coli isolated from chickens in Korea. Avian Pathol 2020; 50:151-160. [PMID: 33242260 DOI: 10.1080/03079457.2020.1855322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Colibacillosis caused by avian pathogenic Escherichia coli (APEC) is the most common bacterial disease in poultry, resulting in significant economic losses. Resistance to fluoroquinolones has been found to be high in APEC worldwide, which has increased concerns about risks to human health as well as poultry production. In the present study, we determined the prevalence, genetic traits, and fitness traits of fluoroquinolone-resistant APEC isolated from chickens in Korea using a total of 286 APEC isolates collected between 2014 and 2017. The APEC isolates were highly resistant to nalidixic acid (86.0%), ampicillin (71.7%), tetracycline (69.6%), and sulfisoxazole (61.2%), and 132 (46.2%) of the isolates were resistant to both enrofloxacin and ciprofloxacin. These fluoroquinolone-resistant isolates showed eight mutation combinations including single- or double-point mutations in the gyrA, parC, or parE genes. The isolates with double mutations (codons 83 and 87) in gyrA and additional mutations in parC and parE showed high-level fluoroquinolone resistance (minimum inhibitory concentrations, 16-128 µg/ml). The isolates fell into four phylogenetic groups, and groups A (47/132, 35.6%) and B1 (47/132, 36.4%) were the most predominant. Nine isolates (6.8%) belonged to group B2 and included major lineages of extraintestinal pathogenic E. coli, sequence type (ST) 95 (n = 3) and ST69 (n = 2). The isolates varied in their virulence-associated gene content, biofilm formation, and intramacrophage survival. Overall, fluoroquinolone-resistant APEC in poultry poses a potential risk to public health and represents a highly diverse group of the resistant bacteria that varied in their genetic and fitness traits.
Collapse
Affiliation(s)
- Jin-Hyun Kim
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Hye-Jin Lee
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Ok-Mi Jeong
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Dong-Wan Kim
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Ji-Yeon Jeong
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Yong-Kuk Kwon
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| | - Min-Su Kang
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Korea
| |
Collapse
|
45
|
Sanchez HM, Whitener VA, Thulsiraj V, Amundson A, Collins C, Duran-Gonzalez M, Giragossian E, Hornstra A, Kamel S, Maben A, Reynolds A, Roswell E, Schmidt B, Sevigny L, Xiong C, Jay JA. Antibiotic Resistance of Escherichia coli Isolated from Conventional, No Antibiotics, and Humane Family Owned Retail Broiler Chicken Meat. Animals (Basel) 2020; 10:ani10122217. [PMID: 33256102 PMCID: PMC7760345 DOI: 10.3390/ani10122217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary While it is well known that antibiotics administered for either therapeutic or non-therapeutic purposes in livestock farms promote the development of antibiotic resistance in bacteria through selective pressure, there are conflicting findings in the literature with regard to the influence of production strategies on antibiotic resistance in bacteria isolated from commercially-available chicken. In this work, we tested the hypothesis that there would be differences in antibiotic resistance in E. coli isolated from three categories of production methods: Conventional, No Antibiotics, and Humane Family Owned. In this work, it was found that for both ampicillin and erythromycin, there was no significant difference (p > 0.05) between Conventional and USDA-certified No Antibiotics chicken, which is in line with some previous work. The novel finding in this work is that we observed a statistically significant difference between both of the previously mentioned groups and chicken from Humane Family Owned production schemes. To our knowledge, this is the first time E. coli from Humane Family Owned chicken has been studied for antibiotic resistance. This work contributes to a better understanding of a potential strategy of chicken production for the overall benefit of human health, in line with the One Health approach implemented by the World Health Organization. Abstract The use of antibiotics for therapeutic and especially non-therapeutic purposes in livestock farms promotes the development of antibiotic resistance in previously susceptible bacteria through selective pressure. In this work, we examined E. coli isolates using the standard Kirby-Bauer disk diffusion susceptibility protocol and the CLSI standards. Companies selling retail chicken products in Los Angeles, California were grouped into three production groupings—Conventional, No Antibiotics, and Humane Family Owned. Humane Family Owned is not a federally regulated category in the United States, but shows the reader that the chicken is incubated, hatched, raised, slaughtered, and packaged by one party, ensuring that the use of antibiotics in the entire production of the chicken is known and understood. We then examined the antibiotic resistance of the E. coli isolates (n = 325) by exposing them to seven common antibiotics, and resistance was seen to two of the antibiotics, ampicillin and erythromycin. As has been shown previously, it was found that for both ampicillin and erythromycin, there was no significant difference (p > 0.05) between Conventional and USDA (United States Department of Agriculture)-certified No Antibiotics chicken. Unique to this work, we additionally found that Humane Family Owned chicken had fewer (p ≤ 0.05) antibiotic-resistant E. coli isolates than both of the previous. Although not considered directly clinically relevant, we chose to test erythromycin because of its ecological significance to the environmental antibiotic resistome, which is not generally done. To our knowledge, Humane Family Owned consumer chicken has not previously been studied for its antibiotic resistance. This work contributes to a better understanding of a potential strategy of chicken production for the overall benefit of human health, giving evidentiary support to the One Health approach implemented by the World Health Organization.
Collapse
Affiliation(s)
- Helen M. Sanchez
- Department of Civil and Environmental Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA; (H.M.S.); (V.A.W.); (V.T.); (A.A.); (M.D.-G.); (A.R.)
| | - Victoria A. Whitener
- Department of Civil and Environmental Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA; (H.M.S.); (V.A.W.); (V.T.); (A.A.); (M.D.-G.); (A.R.)
| | - Vanessa Thulsiraj
- Department of Civil and Environmental Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA; (H.M.S.); (V.A.W.); (V.T.); (A.A.); (M.D.-G.); (A.R.)
| | - Alicia Amundson
- Department of Civil and Environmental Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA; (H.M.S.); (V.A.W.); (V.T.); (A.A.); (M.D.-G.); (A.R.)
| | - Carolyn Collins
- Institute of the Environment and Sustainability, University of California at Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (E.G.); (A.H.); (S.K.); (A.M.); (E.R.); (B.S.); (L.S.); (C.X.)
| | - Mckenzie Duran-Gonzalez
- Department of Civil and Environmental Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA; (H.M.S.); (V.A.W.); (V.T.); (A.A.); (M.D.-G.); (A.R.)
| | - Edwin Giragossian
- Institute of the Environment and Sustainability, University of California at Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (E.G.); (A.H.); (S.K.); (A.M.); (E.R.); (B.S.); (L.S.); (C.X.)
| | - Allison Hornstra
- Institute of the Environment and Sustainability, University of California at Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (E.G.); (A.H.); (S.K.); (A.M.); (E.R.); (B.S.); (L.S.); (C.X.)
| | - Sarah Kamel
- Institute of the Environment and Sustainability, University of California at Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (E.G.); (A.H.); (S.K.); (A.M.); (E.R.); (B.S.); (L.S.); (C.X.)
| | - Andrea Maben
- Institute of the Environment and Sustainability, University of California at Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (E.G.); (A.H.); (S.K.); (A.M.); (E.R.); (B.S.); (L.S.); (C.X.)
| | - Amelia Reynolds
- Department of Civil and Environmental Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA; (H.M.S.); (V.A.W.); (V.T.); (A.A.); (M.D.-G.); (A.R.)
| | - Elizabeth Roswell
- Institute of the Environment and Sustainability, University of California at Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (E.G.); (A.H.); (S.K.); (A.M.); (E.R.); (B.S.); (L.S.); (C.X.)
| | - Benjamin Schmidt
- Institute of the Environment and Sustainability, University of California at Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (E.G.); (A.H.); (S.K.); (A.M.); (E.R.); (B.S.); (L.S.); (C.X.)
| | - Lauren Sevigny
- Institute of the Environment and Sustainability, University of California at Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (E.G.); (A.H.); (S.K.); (A.M.); (E.R.); (B.S.); (L.S.); (C.X.)
| | - Cindy Xiong
- Institute of the Environment and Sustainability, University of California at Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (E.G.); (A.H.); (S.K.); (A.M.); (E.R.); (B.S.); (L.S.); (C.X.)
| | - Jennifer A. Jay
- Department of Civil and Environmental Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA; (H.M.S.); (V.A.W.); (V.T.); (A.A.); (M.D.-G.); (A.R.)
- Institute of the Environment and Sustainability, University of California at Los Angeles, Los Angeles, CA 90095, USA; (C.C.); (E.G.); (A.H.); (S.K.); (A.M.); (E.R.); (B.S.); (L.S.); (C.X.)
- Correspondence: ; Tel.: +1-310-267-5365
| |
Collapse
|
46
|
Developing Rapid Antimicrobial Susceptibility Testing for Motile/Non-Motile Bacteria Treated with Antibiotics Covering Five Bactericidal Mechanisms on the Basis of Bead-Based Optical Diffusometry. BIOSENSORS-BASEL 2020; 10:bios10110181. [PMID: 33228090 PMCID: PMC7699397 DOI: 10.3390/bios10110181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
Rapid antimicrobial susceptibility testing (AST) is an effective measure in the treatment of infections and the prevention of bacterial drug resistance. However, diverse antibiotic types and bacterial characteristics have formed complicated barriers to rapid diagnosis. To counteract these limitations, we investigated the interactions between antibiotic-treated bacteria and functionalized microbeads in optical diffusometry. The conjugation with bacteria increased the effective microbead complex size, thereby resulting in a temporal diffusivity change. The yielded data were sorted and analyzed to delineate a pattern for the prediction of antimicrobial susceptibility. The outcome showed that a completed rapid AST based on the trend of microbead diffusivity could provide results within 3 h (2 h measurement + 1 h computation). In this research, we studied four bacterial strains, including Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus, and six antibiotics. Despite the different inhibitory effects caused by various antibiotics, similar trends in diffusivity alteration for all susceptible and resistant cases in the last 40 min of the 2-h measurement period were deduced. In addition, the AST results obtained using optical diffusometry showed good agreement with those acquired from the commercial instrument and conventional culture methods. Finally, we conducted a single-blinded clinical test, and the sensitivity, specificity, and accuracy of the system reached 92.9%, 91.4%, and 91.8%, respectively. Overall, the developed optical diffusometry showcased rapid AST with a small sample volume (20 μL) and low initial bacterial count (105 CFU/mL). This technique provided a promising way to achieve early therapy against microbial diseases in the future.
Collapse
|
47
|
Belizário JE, Sircili MP. Novel biotechnological approaches for monitoring and immunization against resistant to antibiotics Escherichia coli and other pathogenic bacteria. BMC Vet Res 2020; 16:420. [PMID: 33138825 PMCID: PMC7607641 DOI: 10.1186/s12917-020-02633-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/21/2020] [Indexed: 01/12/2023] Open
Abstract
The application of next-generation molecular, biochemical and immunological methods for developing new vaccines, antimicrobial compounds, probiotics and prebiotics for zoonotic infection control has been fundamental to the understanding and preservation of the symbiotic relationship between animals and humans. With increasing rates of antibiotic use, resistant bacterial infections have become more difficult to diagnose, treat, and eradicate, thereby elevating the importance of surveillance and prevention programs. Effective surveillance relies on the availability of rapid, cost-effective methods to monitor pathogenic bacterial isolates. In this opinion article, we summarize the results of some research program initiatives for the improvement of live vaccines against avian enterotoxigenic Escherichia coli using virulence factor gene deletion and engineered vaccine vectors based on probiotics. We also describe methods for the detection of pathogenic bacterial strains in eco-environmental headspace and aerosols, as well as samples of animal and human breath, based on the composition of volatile organic compounds and fatty acid methyl esters. We explain how the introduction of these low-cost biotechnologies and protocols will provide the opportunity to enhance co-operation between networks of resistance surveillance programs and integrated routine workflows of veterinary and clinical public health microbiology laboratories.
Collapse
Affiliation(s)
- José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil.
| | - Marcelo P Sircili
- Laboratory of Genetics, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP, CEP 05503-900, Brazil
| |
Collapse
|
48
|
Barnard ND, Leroy F. Children and adults should avoid consuming animal products to reduce risk for chronic disease: YES. Am J Clin Nutr 2020; 112:926-930. [PMID: 32889521 DOI: 10.1093/ajcn/nqaa235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The consumption of animal products exposes humans to saturated fat, cholesterol, lactose, estrogens, and pathogenic microorganisms, while displacing fiber, complex carbohydrates, antioxidants, and other components needed for health. In the process, consumption of animal products increases the risk for cardiovascular disease, cancer, diabetes, obesity, and other disorders. This dietary pattern also promotes the growth of unhealthful gut bacteria, fostering, among other things, the production of trimethylamine N-oxide, a proinflammatory compound associated with cardiovascular and neurological diseases. When omnivorous individuals change to a plant-based diet, diet quality as measured by the Alternate Healthy Eating Index improves, and the risk of these health problems diminishes. Planning for nutrient adequacy is important with any diet. However, a diet based on vegetables, fruits, whole grains, and legumes, supplemented with vitamin B-12, is nutritionally superior to diets including animal products and is healthful for children and adults.
Collapse
Affiliation(s)
- Neal D Barnard
- Adjunct Faculty, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Physicians Committee for Responsible Medicine, Washington, DC, USA
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
49
|
Amato HK, Wong NM, Pelc C, Taylor K, Price LB, Altabet M, Jordan TE, Graham JP. Effects of concentrated poultry operations and cropland manure application on antibiotic resistant Escherichia coli and nutrient pollution in Chesapeake Bay watersheds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139401. [PMID: 32464410 PMCID: PMC7324218 DOI: 10.1016/j.scitotenv.2020.139401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 05/27/2023]
Abstract
Manure from poultry operations is typically applied to nearby cropland and may affect nutrient loading and the spread of antibiotic resistance (ABR). We analyzed the concentrations of nitrogen and phosphorus and the occurrence of ABR in Escherichia coli (E. coli) and extra-intestinal pathogenic E. coli isolates from streams draining 15 small (<19 km2) watersheds of the Chesapeake Bay with contrasting levels of concentrated poultry operations. Total nitrogen and nitrate plus nitrite concentrations increased with poultry barn density with concentrations two and three times higher, respectively, in watersheds with the highest poultry barn densities compared to those without poultry barns. Analysis of N and O isotopes in nitrate by mass spectrometry showed an increase in the proportion of 15N associated with an increase in barn density, suggesting that the nitrate associated with poultry barns originated from manure. Phosphorus concentrations were not correlated with barn density. Antibiotic susceptibility testing of putative E. coli isolates was conducted using the disk diffusion method for twelve clinically important antibiotics. Of the isolates tested, most were completely susceptible (67%); 33% were resistant to at least one antibiotic, 24% were resistant to ampicillin, 13% were resistant to cefazolin, and 8% were multi-drug resistant. Resistance to three cephalosporin drugs was positively associated with an index of manure exposure estimated from poultry barn density and proportion of cropland in a watershed. The proportion of E. coli isolates resistant to cefoxitin, cefazolin, and ceftriaxone, broad-spectrum antibiotics important in human medicine, increased by 18.9%, 16.9%, and 6.2%, respectively, at the highest estimated level of manure exposure compared to watersheds without manure exposure. Our results suggest that comparisons of small watersheds could be used to identify geographic areas where remedial actions may be needed to reduce nutrient pollution and the public health risks of ABR bacteria.
Collapse
Affiliation(s)
- Heather K Amato
- Division of Environmental Health Sciences, University of California, Berkeley School of Public Health, 2121 Berkeley Way, Berkeley, CA 94704, United States of America
| | - Nora M Wong
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW, Washington, D.C. 20052, United States of America
| | - Carey Pelc
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD 21037, United States of America
| | - Kishana Taylor
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Ave, Davis, CA 95616, United States of America
| | - Lance B Price
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW, Washington, D.C. 20052, United States of America
| | - Mark Altabet
- Department of Estuarine and Ocean Sciences, School for Marine Science and Technology, University of Massachusetts Dartmouth, 836 S Rodney French Blvd, New Bedford, MA 02744, United States of America
| | - Thomas E Jordan
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD 21037, United States of America
| | - Jay P Graham
- Division of Environmental Health Sciences, University of California, Berkeley School of Public Health, 2121 Berkeley Way, Berkeley, CA 94704, United States of America.
| |
Collapse
|
50
|
Zhuge X, Zhou Z, Jiang M, Wang Z, Sun Y, Tang F, Xue F, Ren J, Dai J. Chicken-source Escherichia coli within phylogroup F shares virulence genotypes and is closely related to extraintestinal pathogenic E. coli causing human infections. Transbound Emerg Dis 2020; 68:880-895. [PMID: 32722875 DOI: 10.1111/tbed.13755] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
ExPEC is an important pathogen that causes diverse infection in the human extraintestinal sites. Although avian-source phylogroup F Escherichia coli isolates hold a high level of virulence traits, few studies have systematically assessed the pathogenicity and zoonotic potential of E. coli isolates within phylogroup F. A total of 1,332 E. coli strains were recovered from chicken colibacillosis in China from 2012 to 2017. About 21.7% of chicken-source E. coli isolates were presented in phylogroup F. We characterized phylogroup F E. coli isolates both genotypically and phenotypically. There was a widespread prevalence of ExPEC virulence-related genes among chicken-source E. coli isolates within phylogroup F. ColV/BM plasmid-related genes (i.e. hlyF, mig-14p, ompTp, iutA and tsh) occurred in the nearly 65% of phylogroup F E. coli isolates. Population structure of chicken-source E. coli isolates within phylogroup F was revealed and contained several dominant STs (such as ST59, ST354, ST362, ST405, ST457 and ST648). Most chicken-source phylogroup F E. coli held the property to produce biofilm and exhibited strongly swimming and swarming motilities. Our result showed that the complement resistance of phylogroup F E. coli isolates was closely associated with its virulence genotype. Our research further demonstrated the zoonotic potential of chicken-source phylogroup F E. coli isolates. The phylogroup F E. coli isolates were able to cause multiple diseases in animal models of avian colibacillosis and human infections (sepsis, meningitis and UTI). The chicken-source phylogroup F isolates, especially dominant ST types, might be recognized as a high-risk food-borne pathogen. This was the first study to identify that chicken-source E. coli isolates within phylogroup F were associated with human ExPEC pathotypes and exhibited zoonotic potential.
Collapse
Affiliation(s)
- Xiangkai Zhuge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, P.R. China
| | - Zhou Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhongxing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,China Pharmaceutical University, Nanjing, China
| |
Collapse
|