1
|
Badra R, Abubakar A, Tempia S, Alam N, ElNaja HA, Kayali G, Khan W. State and situation of avian influenza in the Eastern Mediterranean Region. Influenza Other Respir Viruses 2023; 17:e13137. [PMID: 37102060 PMCID: PMC10123394 DOI: 10.1111/irv.13137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Avian influenza viruses have had a significant burden of disease on animal and public health in countries of the Eastern Mediterranean Region. In this review, we aimed at describing the state of avian influenza in the region from 2011 to 2021. We gathered information available through the peer-reviewed scientific literature, public gene sequence depositories, OIE World Animal Health Information System platform, World Health Organization FluNet, Joint External Evaluation reports, and governmental, Food and Agriculture Organization of the United Nations, and World Organization for Animal Health websites. We used an interdisciplinary perspective consistent with the One Health approach to perform a qualitative synthesis and making recommendations. Analysis showed that although avian influenza research in the Eastern Mediterranean Region has gained more attention during the last decade, it was limited to only few countries and to basic science research. Data highlighted the weakness in surveillance systems and reporting platforms causing underestimation of the actual burden of disease among humans and animals. Inter-sectoral communication and collaboration for avian influenza prevention, detection, and response remain weak. Influenza surveillance at the human-animal interface and the application of the One Health paradigm are lacking. Countries' animal health and public health sectors rarely publish their surveillance data and findings. This review suggested that surveillance at the human-animal interface, research, and reporting capacities should be enhanced to improve understanding and control of avian influenza in the region. Implementing a rapid and comprehensive One Health approach for zoonotic influenza in the Eastern Mediterranean Region is recommended.
Collapse
Affiliation(s)
| | - Abdinasir Abubakar
- Infectious Hazard Prevention and Preparedness, WHO health Emergencies Programme, WHO Regional Office for the Eastern MediterraneanCairoEgypt
| | - Stefano Tempia
- Infectious Hazard Prevention and Preparedness, WHO health Emergencies Programme, WHO Regional Office for the Eastern MediterraneanCairoEgypt
| | - Noore Alam
- Infectious Hazard Prevention and Preparedness, WHO health Emergencies Programme, WHO Regional Office for the Eastern MediterraneanCairoEgypt
| | - Hala Abou ElNaja
- Infectious Hazard Prevention and Preparedness, WHO health Emergencies Programme, WHO Regional Office for the Eastern MediterraneanCairoEgypt
| | | | - Wasiq Khan
- Infectious Hazard Prevention and Preparedness, WHO health Emergencies Programme, WHO Regional Office for the Eastern MediterraneanCairoEgypt
| |
Collapse
|
2
|
Scheibner D, Salaheldin AH, Bagato O, Zaeck LM, Mostafa A, Blohm U, Müller C, Eweas AF, Franzke K, Karger A, Schäfer A, Gischke M, Hoffmann D, Lerolle S, Li X, Abd El-Hamid HS, Veits J, Breithaupt A, Boons GJ, Matrosovich M, Finke S, Pleschka S, Mettenleiter TC, de Vries RP, Abdelwhab EM. Phenotypic effects of mutations observed in the neuraminidase of human origin H5N1 influenza A viruses. PLoS Pathog 2023; 19:e1011135. [PMID: 36745654 PMCID: PMC9934401 DOI: 10.1371/journal.ppat.1011135] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/16/2023] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Global spread and regional endemicity of H5Nx Goose/Guangdong avian influenza viruses (AIV) pose a continuous threat for poultry production and zoonotic, potentially pre-pandemic, transmission to humans. Little is known about the role of mutations in the viral neuraminidase (NA) that accompanied bird-to-human transmission to support AIV infection of mammals. Here, after detailed analysis of the NA sequence of human H5N1 viruses, we studied the role of A46D, L204M, S319F and S430G mutations in virus fitness in vitro and in vivo. Although H5N1 AIV carrying avian- or human-like NAs had similar replication efficiency in avian cells, human-like NA enhanced virus replication in human airway epithelia. The L204M substitution consistently reduced NA activity of H5N1 and nine other influenza viruses carrying NA of groups 1 and 2, indicating a universal effect. Compared to the avian ancestor, human-like H5N1 virus has less NA incorporated in the virion, reduced levels of viral NA RNA replication and NA expression. We also demonstrate increased accumulation of NA at the plasma membrane, reduced virus release and enhanced cell-to-cell spread. Furthermore, NA mutations increased virus binding to human-type receptors. While not affecting high virulence of H5N1 in chickens, the studied NA mutations modulated virulence and replication of H5N1 AIV in mice and to a lesser extent in ferrets. Together, mutations in the NA of human H5N1 viruses play different roles in infection of mammals without affecting virulence or transmission in chickens. These results are important to understand the genetic determinants for replication of AIV in mammals and should assist in the prediction of AIV with zoonotic potential.
Collapse
Affiliation(s)
- David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ahmed H. Salaheldin
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Alexandria University, El-Beheira, Egypt
| | - Ola Bagato
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Water Pollution Research Department, Dokki, Giza, Egypt
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Water Pollution Research Department, Dokki, Giza, Egypt
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Ahmed F. Eweas
- Department of Medicinal Chemistry, National Research Center, Dokki, Giza, Egypt; Department of Science, University of Technology and Applied Sciences-Rustaq, Rustaq, Sultanate of Oman
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Solène Lerolle
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology and Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - Hatem S. Abd El-Hamid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Damanhur University, Al-Buheira, Egypt
| | - Jutta Veits
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Science, the Netherlands
| | | | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF) partner site Giessen-Marburg-Langen, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Science, the Netherlands
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
3
|
Müller-Theissen ML, Azziz-Baumgartner E, Ortiz L, Szablewski CM, Alvarez D, Gonzalez-Reiche AS, Jara J, Davis CT, Cordon-Rosales C. Influenza A virus circulation in backyard animals in the Pacific coast of Guatemala, 2013-2014. Zoonoses Public Health 2022; 69:826-834. [PMID: 35611690 PMCID: PMC11849793 DOI: 10.1111/zph.12972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 03/18/2022] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
Abstract
Due to their documented epidemiological relevance as hosts for influenza A viruses (IAV), humans, poultry and pigs in backyard production systems (BPS) within wetlands could be key to the emergence of novel IAV variants able to transmit between humans or animals. To better understand the circulation of IAV at the human-animal interface of BPS within wetlands, we studied IAV in backyard duck flocks and pig herds in the Pacific Coast of Guatemala. From April 2013 to October 2014, we estimated the monthly IAV per cent seropositive and viral positive flocks and herds in two resource-limited communities. We detected antibodies in sera against the IAV nucleoprotein through ELISA. We also detected IAV viral RNA in respiratory (ducks and pigs) and cloacal (ducks) swabs through rRT-PCR directed at the matrix gene. We attempted viral isolation in eggs or MDCK cells followed by sequencing from swabs positive for IAV. During our study period, IAV seropositivity in duck flocks was 38%, and viral positivity was 23% (n = 86 BPS sampled). IAV seropositivity in pig herds was 42%, and viral positivity was 20% (n = 90 BPS sampled). Both flocks and herds had detectable antibodies against IAV mostly year-round, and IAV was detected in several months. We isolated an H3N2 virus from one pig sampled at the end of 2013. Standard nucleotide BLAST searches indicate that the isolated virus was similar to seasonal viruses circulating in humans, suggesting human-to-pig transmission. Our data show concurrent circulation of IAV in multiple species of poultry and pigs that were commingled in rudimentary conditions in proximity to humans, but no significant risk factors could be identified.
Collapse
Affiliation(s)
| | - Eduardo Azziz-Baumgartner
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lucia Ortiz
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala, Guatemala
| | - Christine M. Szablewski
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Danilo Alvarez
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala, Guatemala
| | | | - Jorge Jara
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala, Guatemala
| | - C. Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Celia Cordon-Rosales
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala, Guatemala
| |
Collapse
|
4
|
Hu Z, Shi L, Zhao J, Gu H, Hu J, Wang X, Liu X, Hu S, Gu M, Cao Y, Liu X. Role of the Hemagglutinin Residue 227 in Immunogenicity of H5 and H7 Subtype Avian Influenza Vaccines in Chickens. Avian Dis 2021; 64:445-450. [PMID: 33347548 DOI: 10.1637/aviandiseases-d-20-00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/22/2020] [Indexed: 11/05/2022]
Abstract
Many H5 and H7 subtype avian influenza vaccines are poorly immunogenic in terms of inducing hemagglutination-inhibition (HI) antibody titers. Residue 227 (H3 numbering) in the receptor binding site in the hemagglutinin (HA) is critical for the detectability of HI antibodies induced by H5 influenza vaccines. However, whether the effect of residue 227 on immunogenicity can be generalized in different subtypes is unclear. In this study, the impact of HA residue 227 on immunogenicity of H5N1, H5N6, and H7N9 avian influenza vaccines was evaluated in chickens. Polymorphism analysis revealed that S227 is overwhelmingly dominant in HA of the H5N1 and H7N9 subtypes, whereas this amino acid is present in a small proportion of H5N6 viruses. The H5N1, H5N6, and H7N9 vaccines harboring S227 in HA induced relatively low HI titers at week 2 postimmunization (pi), and antibody titers increased at week 3 pi. S227N substitution in these vaccines consistently enhanced HI titers significantly. Another H5N6 vaccine harboring Q227 in HA elicited a robust HI antibody response, and Q227S substitution led to a significant drop of HI titers. Cross-HI testing against the wild-type and mutant viruses revealed that the amino acid at position 227 was associated with the detectability of HI titers induced by H5 and H7 avian influenza vaccines. The results indicate an important role of residue 227 in HA in immunogenicity of H5 and H7 subtype avian influenza vaccines in chickens. Our findings also provided useful information for vaccine seed virus selection and genetic engineering for immunogenicity enhancement of avian influenza vaccines.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Shi
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiangyan Zhao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Han Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
El-Shesheny R, Kandeil A, Mostafa A, Ali MA, Webby RJ. H5 Influenza Viruses in Egypt. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038745. [PMID: 32122919 DOI: 10.1101/cshperspect.a038745] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For almost a decade, Egypt has been endemic for highly pathogenic avian influenza (HPAI) A(H5N1) viruses. In addition to being catastrophic for poultry production, A(H5N1) has also caused 359 human infections in the country (∼40% of global cases), with 120 being fatal. From 2017, A(H5N1) viruses have been gradually replaced by HPAI A(H5N8) viruses seeded from Southeast Asia through Europe; no human cases have been reported since. This lack of human cases is not a consequence of fewer H5 infections in poultry. Despite governmental outbreak control, the number of avian influenza outbreaks has increased since 2006 partially fueled by noncompliance with preventive measures and suboptimal vaccination programs. Adherence to control measures is low because of social norms, especially among women and children-the main caretakers of household flocks in rural areas-and declining public awareness in the community. Egypt has thus become an epicenter for A(H5) virus evolution, with no clear resolution in sight.
Collapse
Affiliation(s)
- Rabeh El-Shesheny
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA.,Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| |
Collapse
|
6
|
Abstract
Highly pathogenic avian influenza H5N1 viruses have become endemic in global poultry populations over the past 25 years and pose an ongoing public health threat. Although the incidence of human cases has declined, viruses from the H5N1 lineage can now be found in poultry throughout Asia, the Middle East and Africa, in addition to causing outbreaks in Europe and the Americas. The recent emergence and spread of reassortant H5Nx viruses, resulting in regional poultry outbreaks, has increased the risk for further evolution of these viruses and possible avian-to-human transmission. Ongoing surveillance and pandemic preparedness for H5N1 and other avian influenza viruses of public health concern are warranted.
Collapse
|
7
|
Wiley CA. Emergent Viral Infections of the CNS. J Neuropathol Exp Neurol 2020; 79:823-842. [PMID: 32647884 DOI: 10.1093/jnen/nlaa054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Biological evolution of the microbiome continually drives the emergence of human viral pathogens, a subset of which attack the nervous system. The sheer number of pathogens that have appeared, along with their abundance in the environment, demand our attention. For the most part, our innate and adaptive immune systems have successfully protected us from infection; however, in the past 5 decades, through pathogen mutation and ecosystem disruption, a dozen viruses emerged to cause significant neurologic disease. Most of these pathogens have come from sylvatic reservoirs having made the energetically difficult, and fortuitously rare, jump into humans. But the human microbiome is also replete with agents already adapted to the host that need only minor mutations to create neurotropic/toxic agents. While each host/virus symbiosis is unique, this review examines virologic and immunologic principles that govern the pathogenesis of different viral CNS infections that were described in the past 50 years (Influenza, West Nile Virus, Zika, Rift Valley Fever Virus, Hendra/Nipah, Enterovirus-A71/-D68, Human parechovirus, HIV, and SARS-CoV). Knowledge of these pathogens provides us the opportunity to respond and mitigate infection while at the same time prepare for inevitable arrival of unknown agents.
Collapse
Affiliation(s)
- Clayton A Wiley
- From the Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Gomaa MR, El Rifay AS, Abu Zeid D, Elabd MA, Elabd E, Kandeil A, Shama NMA, Kamel MN, Marouf MA, Barakat A, Refaey S, Naguib A, McKenzie PP, Webby RJ, Ali MA, Kayali G. Incidence and Seroprevalence of Avian Influenza in a Cohort of Backyard Poultry Growers, Egypt, August 2015-March 2019. Emerg Infect Dis 2020; 26:2129-2136. [PMID: 32818403 PMCID: PMC7454077 DOI: 10.3201/eid2609.200266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Currently enzootic avian influenza H5N1, H9N2, and H5N8 viruses were introduced into poultry in Egypt in 2006, 2011, and 2016, respectively. Infections with H5N1 and H9N2 were reported among poultry-exposed humans. We followed 2,402 persons from households raising backyard poultry from 5 villages in Egypt during August 2015-March 2019. We collected demographic, exposure, and health condition data and annual serum samples from each participant and obtained swab samples from participants reporting influenza-like illness symptoms. We performed serologic and molecular analyses and detected 4 cases of infection with H5N1 and 3 cases with H9N2. We detected very low seroprevalence of H5N1 antibodies and no H5N8 antibodies among the cohort; up to 11% had H9 antibodies. None of the exposure, health status, or demographic variables were related to being seropositive. Our findings indicate that avian influenza remains a public health risk in Eqypt, but infections may go undetected because of their mild or asymptomatic nature.
Collapse
|
9
|
Martelli P, Teng JLL, Lee FK, Yeong KY, Fong JYH, Hui SW, Chan KH, Lau SKP, Woo PCY. Influenza A(H1N1)pdm09 Virus Infection in a Captive Giant Panda, Hong Kong. Emerg Infect Dis 2020; 25:2303-2306. [PMID: 31742520 PMCID: PMC6874238 DOI: 10.3201/eid2512.191143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We report influenza A(H1N1)pdm09 virus infection in a captive giant panda in Hong Kong. The viral load peaked on day 1 and became undetectable on day 5, and an antibody response developed. Genome analysis showed 99.3%-99.9% nucleotide identity between the virus and influenza A(H1N1)pdm09 virus circulating in Hong Kong.
Collapse
|
10
|
Philippon DAM, Wu P, Cowling BJ, Lau EHY. Avian Influenza Human Infections at the Human-Animal Interface. J Infect Dis 2020; 222:528-537. [DOI: 10.1093/infdis/jiaa105] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Avian influenza A viruses (AIVs) are among the most concerning emerging and re-emerging pathogens because of the potential risk for causing an influenza pandemic with catastrophic impact. The recent increase in domestic animals and poultry worldwide was followed by an increase of human AIV outbreaks reported.
Methods
We reviewed the epidemiology of human infections with AIV from the literature including reports from the World Health Organization, extracting information on virus subtype, time, location, age, sex, outcome, and exposure.
Results
We described the characteristics of more than 2500 laboratory-confirmed human infections with AIVs. Human infections with H5N1 and H7N9 were more frequently reported than other subtypes. Risk of death was highest among reported cases infected with H5N1, H5N6, H7N9, and H10N8 infections. Older people and males tended to have a lower risk of infection with most AIV subtypes, except for H7N9. Visiting live poultry markets was mostly reported by H7N9, H5N6, and H10N8 cases, while exposure to sick or dead bird was mostly reported by H5N1, H7N2, H7N3, H7N4, H7N7, and H10N7 cases.
Conclusions
Understanding the profile of human cases of different AIV subtypes would guide control strategies. Continued monitoring of human infections with AIVs is essential for pandemic preparedness.
Collapse
Affiliation(s)
- Damien A M Philippon
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Peng Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Eric H Y Lau
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
11
|
Mohamed W, Ito K, Omori R. Estimating Transmission Potential of H5N1 Viruses Among Humans in Egypt Using Phylogeny, Genetic Distance and Sampling Time Interval. Front Microbiol 2019; 10:2765. [PMID: 31849902 PMCID: PMC6901801 DOI: 10.3389/fmicb.2019.02765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/13/2019] [Indexed: 11/13/2022] Open
Abstract
In 2014 and 2015, the number of human cases of H5N1 avian influenza virus infections had increased dramatically in Egypt. This increase might be related to increase in the transmission potential of the virus among humans. To clarify the cause of the increase in H5N1 human cases, we investigate the transmissibility of H5N1 viruses among humans via estimating the basic reproduction number R0 using nucleotide sequences and sampling dates of viruses. To this end, full-length hemagglutinin gene sequences of human and avian H5N1 influenza viruses isolated from 2006 to 2016 in Egypt were obtained from the NCBI influenza virus resource. Taking into account the phylogeny, genetic distance, sampling time difference among viruses, R0 was estimated to be 0.05 (95% CI: 0.01, 0.13) assuming that human-to-human transmissions occurred within a city, 0.23(95% CI: 0.14, 0.35) assuming human-to-human transmissions among cities. Our results indicate that human-to-human transmission of H5N1 viruses in Egypt is limited, and the large increase in human cases is likely attributed to other factor than increase in human-to-human transmission potential.
Collapse
Affiliation(s)
- Wessam Mohamed
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ryosuke Omori
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Detecting influenza and emerging avian influenza virus by influenza and pneumonia surveillance systems in a large city in China, 2005 to 2016. BMC Infect Dis 2019; 19:825. [PMID: 31533638 PMCID: PMC6751661 DOI: 10.1186/s12879-019-4405-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/25/2019] [Indexed: 11/25/2022] Open
Abstract
Background Detecting avian influenza virus has become an important public health strategy for controlling the emerging infectious disease. Methods The HIS (hospital information system) modified influenza surveillance system (ISS) and a newly built pneumonia surveillance system (PSS) were used to monitor the influenza viruses in Changsha City, China. The ISS was used to monitor outpatients in two sentinel hospitals and to detect mild influenza and avian influenza cases, and PSS was used to monitor inpatients in 49 hospitals and to detect severe and death influenza cases. Results From 2005 to 2016, there were 3,551,917 outpatients monitored by the ISS system, among whom 126,076 were influenza-like illness (ILI) cases, with the ILI proportion (ILI%) of 3.55%. After the HIS was used, the reported incident cases of ILI and ILI% were increased significantly. From March, 2009 to September, 2016, there were 5,491,560 inpatient cases monitored by the PSS system, among which 362,743 were pneumonia cases, with a proportion of 6.61%. Among pneumonia cases, about 10.55% (38,260/362,743) of cases were severe or death cases. The pneumonia incidence increased each year in the city. Among 15 avian influenza cases reported from January, 2005 to September, 2016, there were 26.7% (4/15) mild cases detected by the HIS-modified ISS system, while 60.0% (9/15) were severe or death cases detected by the PSS system. Two H5N1 severe cases were missed by the ISS system in January, 2009 when the PSS system was not available. Conclusions The HIS was able to improve the efficiency of the ISS for monitoring ILI and emerging avian influenza virus. However, the efficiency of the system needs to be verified in a wider area for a longer time span in China.
Collapse
|
13
|
Malik MR, Abubakar A, Kholy AE, Buliva E, Khan WM, Lamichhane J, Moen A, McCarron M, Zureick K, Obtel M. Improved capacity for influenza surveillance in the WHO Eastern Mediterranean Region: Progress in a challenging setting. J Infect Public Health 2019; 13:391-401. [PMID: 31522968 PMCID: PMC7102713 DOI: 10.1016/j.jiph.2019.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND The World Health Organization Regional Office for Eastern Mediterranean has partnered with the United States Centers for Disease Control and Prevention (CDC) to strengthen pandemic influenza preparedness and response in the Region since 2006. This partnership focuses on pandemic preparedness planning, establishing and enhancing influenza surveillance systems, improving laboratory capacity for detection of influenza viruses, estimating the influenza disease burden, and providing evidence to support policies for the introduction and increased use of seasonal influenza vaccines. METHODS Various published and unpublished data from public and WHO sources, programme indicators of the CDC cooperative agreement and Pandemic Influenza Preparedness Framework were reviewed and analysed. Analyses and review of the programme indicators and published articles enabled us to generate information that was unavailable from only WHO sources. RESULTS Most (19/22) countries of the Region have established influenza surveillance system; 16 countries in the Region have designated National Influenza Centres. The Region has seen considerable improvement in geographic coverage of influenza surveillance and influenza detection. Virus sharing has improved and almost all of the participating laboratories have achieved a 100% efficiency score in the WHO external quality assessment programme. At least seven countries have estimated their influenza disease burden using surveillance data and at least 17 are now using seasonal influenza vaccines as a control strategy for influenza illness. CONCLUSION The Region has achieved substantial progress in surveillance and response to seasonal influenza, despite the adverse effects to the health systems of many countries due to acute and protracted emergencies and other significant challenges.
Collapse
Affiliation(s)
- Mamunur R Malik
- Infectious Hazard Management, Department of Health Emergency, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt.
| | - Abdinasir Abubakar
- Infectious Hazard Management, Department of Health Emergency, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Amgad E Kholy
- Infectious Hazard Management, Department of Health Emergency, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Evans Buliva
- Infectious Hazard Management, Department of Health Emergency, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Wasiq M Khan
- Infectious Hazard Management, Department of Health Emergency, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Jaya Lamichhane
- Department of Infectious Hazard Management, WHO Health Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Ann Moen
- Department of Infectious Hazard Management, WHO Health Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Margaret McCarron
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kinda Zureick
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Majdouline Obtel
- Laboratory of Public Health, Preventive Medicine and Hygiene, Laboratory of Epidemiology, Clinical Research and Biostatistics, Department of Public Health, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| |
Collapse
|
14
|
Hassan KE, El-Kady MF, El-Sawah AAA, Luttermann C, Parvin R, Shany S, Beer M, Harder T. Respiratory disease due to mixed viral infections in poultry flocks in Egypt between 2017 and 2018: Upsurge of highly pathogenic avian influenza virus subtype H5N8 since 2018. Transbound Emerg Dis 2019; 68:21-36. [PMID: 31297991 DOI: 10.1111/tbed.13281] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
For several years, poultry production in Egypt has been suffering from co-circulation of multiple respiratory viruses including highly pathogenic avian influenza virus (HPAIV) H5N1 (clade 2.2.1.2) and low pathogenic H9N2 (clade G1-B). Incursion of HPAIV H5N8 (clade 2.3.4.4b) to Egypt in November 2016 via wild birds followed by spread into commercial poultry flocks further complicated the situation. Current analyses focussed on 39 poultry farms suffering from respiratory manifestation and high mortality in six Egyptian governorates during 2017-2018. Real-time RT-PCR (RT-qPCR) substantiated the co-presence of at least two respiratory virus species in more than 80% of the investigated flocks. The percentage of HPAIV H5N1-positive holdings was fairly stable in 2017 (12.8%) and 2018 (10.2%), while the percentage of HPAIV H5N8-positive holdings increased from 23% in 2017 to 66.6% during 2018. The proportion of H9N2-positive samples was constantly high (2017:100% and 2018:63%), and H9N2 co-circulated with HPAIV H5N8 in 22 out of 39 (56.8%) flocks. Analyses of 26 H5, 18 H9 and 4 N2 new sequences confirmed continuous genetic diversification. In silico analysis revealed numerous amino acid substitutions in the HA and NA proteins suggestive of increased adaptation to mammalian hosts and putative antigenic variation. For sensitive detection of H9N2 viruses by RT-qPCR, an update of primers and probe sequences was crucial. Reasons for the relative increase of HPAIV H5N8 infections versus H5N1 remained unclear, but lack of suitable vaccines against clade 2.3.4.4b cannot be excluded. A reconsideration of surveillance and control measures should include updating of diagnostic tools and vaccination strategies.
Collapse
Affiliation(s)
- Kareem E Hassan
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany.,Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Magdy F El-Kady
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Azza A A El-Sawah
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Christine Luttermann
- Institute of Immunology Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Rokshana Parvin
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany.,Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Salama Shany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| |
Collapse
|
15
|
Young SG, Kitchen A, Kayali G, Carrel M. Unlocking pandemic potential: prevalence and spatial patterns of key substitutions in avian influenza H5N1 in Egyptian isolates. BMC Infect Dis 2018; 18:314. [PMID: 29980172 PMCID: PMC6035396 DOI: 10.1186/s12879-018-3222-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/28/2018] [Indexed: 11/10/2022] Open
Abstract
Background Avian influenza H5N1 has a high human case fatality rate, but is not yet well-adapted to human hosts. Amino acid substitutions currently circulating in avian populations may enhance viral fitness in, and thus viral adaptation to, human hosts. Substitutions which could increase the risk of a human pandemic (through changes to host specificity, virulence, replication ability, transmissibility, or drug susceptibility) are termed key substitutions (KS). Egypt represents the epicenter of human H5N1 infections, with more confirmed cases than any other country. To date, however, there have not been any spatial analyses of KS in Egypt. Methods Using 925 viral samples of H5N1 from Egypt, we aligned protein sequences and scanned for KS. We geocoded isolates using dasymetric mapping, then carried out geospatial hot spot analyses to identify spatial clusters of high KS detection rates. KS prevalence and spatial clusters were evaluated for all detected KS, as well as when stratified by phenotypic consequence. Results A total of 39 distinct KS were detected in the wild, including 17 not previously reported in Egypt. KS were detected in 874 samples (94.5%). Detection rates varied by viral protein with most KS observed in the surface hemagglutinin (HA) and neuraminidase (NA) proteins, as well as the interior non-structural 1 (NS1) protein. The most frequently detected KS were associated with increased viral binding to mammalian cells and virulence. Samples with high overall detection rates of KS exhibited statistically significant spatial clustering in two governorates in the northwestern Nile delta, Alexandria and Beheira. Conclusions KS provide a possible mechanism by which avian influenza H5N1 could evolve into a pandemic candidate. With numerous KS circulating in Egypt, and non-random spatial clustering of KS detection rates, these findings suggest the need for increased surveillance in these areas.
Collapse
Affiliation(s)
- Sean G Young
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Andrew Kitchen
- Department of Anthropology, University of Iowa, Iowa City, IA, USA
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center, Houston, TX, USA.,Department of Scientific Research, Human Link, Hazmieh, Lebanon
| | - Margaret Carrel
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, IA, USA.,Department of Epidemiology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
16
|
Avian influenza A (H5N1) outbreaks in different poultry farm types in Egypt: the effect of vaccination, closing status and farm size. BMC Vet Res 2018; 14:187. [PMID: 29914481 PMCID: PMC6006767 DOI: 10.1186/s12917-018-1519-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/10/2018] [Indexed: 01/31/2023] Open
Abstract
Background The Avian Influenza A (H5N1) virus is endemic in poultry in Egypt. The winter of 2014/2015 was particularly worrying as new clusters of HPAI A (H5N1) virus emerged, leading to an important number of AI A (H5N1) outbreaks in poultry farms and sporadic human cases. To date, few studies have investigated the distribution of HPAI A (H5N1) outbreaks in Egypt in relation to protective / risk factors at the farm level, a gap we intend to fill. The aim of the study was to analyse passive surveillance data that were based on observation of sudden and high mortality of poultry or drop in duck or chicken egg production, as a basis to better understand and discuss the risk of HPAI A (H5N1) presence at the farm level in large parts of the Nile Delta. Results The probability of HPAI A (H5N1) presence was associated with several characteristics of the farms. Vaccination status, absence of windows/openings in the farm and the number of birds per cycle of production were found to be protective factors, whereas the presence of a duck farm with significant mortality or drop in egg production in the village was found to be a risk factor. Conclusions Results demonstrate the key role of several prevention and biosecurity measures to reduce HPAI A (H5N1) virus circulation, which could promote better poultry farm biosecurity in Egypt. Electronic supplementary material The online version of this article (10.1186/s12917-018-1519-8) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Bui CM, Chughtai AA, Adam DC, MacIntyre CR. An overview of the epidemiology and emergence of influenza A infection in humans over time. ACTA ACUST UNITED AC 2017; 75:15. [PMID: 28352464 PMCID: PMC5366997 DOI: 10.1186/s13690-017-0182-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/20/2017] [Indexed: 12/01/2022]
Abstract
In recent years multiple novel influenza A strains have emerged in humans. We reviewed publically available data to summarise epidemiological characteristics of distinct avian influenza viruses known to cause human infection and describe changes over time. Most recently identified zoonotic strains have emerged in China (H7N9, H5N6, H10N8) – these strains have occurred mostly in association with visiting a live bird market. Most zoonotic AIVs and swine influenza variants typically cause mild infections in humans however severe illness and fatalities are associated with zoonotic H5N6, H10N8, H7N9 and H5N1 serotypes, and the H1N1 1918 Spanish Influenza. The changing landscape of avian influenza globally indicates a need to reassess the risk of a pandemic influenza outbreak of zoonotic origin.
Collapse
Affiliation(s)
- Chau Minh Bui
- School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW 2052 Australia
| | - Abrar Ahmad Chughtai
- School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW 2052 Australia
| | - Dillon Charles Adam
- School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW 2052 Australia
| | - C Raina MacIntyre
- School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW 2052 Australia.,College of Public Service & Community Solutions, Arizona State University, Phoenix, AZ USA
| |
Collapse
|
18
|
Pearce MB, Pappas C, Gustin KM, Davis CT, Pantin-Jackwood MJ, Swayne DE, Maines TR, Belser JA, Tumpey TM. Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A H5N1 viruses in ferrets. Virology 2017; 502:114-122. [PMID: 28038412 PMCID: PMC5733775 DOI: 10.1016/j.virol.2016.12.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Abstract
Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A(H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, numerous subclades and genotypes have been described. To better understand the pathogenesis associated with the continued diversification of clade 2A(H5N1) influenza viruses, we investigated the relative virulence of eleven human and poultry isolates collected from 2006 to 2013 by determining their ability to cause disease in the ferret model. Numerous clade 2 viruses, including a clade 2.2 avian isolate, a 2.2.2.1 human isolate, and two 2.2.1 human isolates, were found to be of low virulence in the ferret model, though lethality was detected following infection with one 2.2.1 human isolate. In contrast, three of six clade 2.3.2.1 avian isolates tested led to severe disease and death among infected ferrets. Clade 2.3.2.1b and 2.3.2.1c isolates, but not 2.3.2.1a isolates, were associated with ferret lethality. All A(H5N1) viruses replicated efficiently in the respiratory tract of ferrets regardless of their virulence and lethality. However, lethal isolates were characterized by systemic viral dissemination, including detection in the brain and enhanced histopathology in lung tissues. The finding of disparate virulence phenotypes between clade 2A(H5N1) viruses, notably differences between subclades of 2.3.2.1 viruses, suggests there are distinct molecular determinants present within the established subclades, the identification of which will assist in molecular-based surveillance and public health efforts against A(H5N1) viruses.
Collapse
Affiliation(s)
- Melissa B Pearce
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Claudia Pappas
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kortney M Gustin
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - C Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mary J Pantin-Jackwood
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, Athens, Georgia
| | - David E Swayne
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, Athens, Georgia
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia.
| |
Collapse
|
19
|
Biological characterization of highly pathogenic avian influenza H5N1 viruses that infected humans in Egypt in 2014-2015. Arch Virol 2016; 162:687-700. [PMID: 27864633 DOI: 10.1007/s00705-016-3137-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/26/2016] [Indexed: 01/25/2023]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 influenza viruses emerged as a human pathogen in 1997 with expected potential to undergo sustained human-to-human transmission and pandemic viral spread. HPAI H5N1 is endemic in Egyptian poultry and has caused sporadic human infection. The first outbreak in early 2006 was caused by clade 2.2 viruses that rapidly evolved genetically and antigenically. A sharp increase in the number of human cases was reported in Egypt in the 2014/2015 season. In this study, we analyzed and characterized three isolates of HPAI H5N1 viruses isolated from infected humans in Egypt in 2014/2015. Phylogenetic analysis demonstrated that the nucleotide sequences of eight segments of the three isolates were clustered with those of members of clade 2.2.1.2. We also found that the human isolates from 2014/2015 had a slight, non-significant difference in their affinity for human-like sialic acid receptors. In contrast, they showed significant differences in their replication kinetics in MDCK, MDCK-SIAT, and A549 cells as well as in embryonated chicken eggs. An antiviral bioassay study revealed that all of the isolates were susceptible to amantadine. Therefore, further investigation and monitoring is required to correlate the genetic and/or antigenic changes of the emerging HPAI H5N1 viruses with possible alteration in their characteristics and their potential to become a further threat to public health.
Collapse
|
20
|
Lai S, Qin Y, Cowling BJ, Ren X, Wardrop NA, Gilbert M, Tsang TK, Wu P, Feng L, Jiang H, Peng Z, Zheng J, Liao Q, Li S, Horby PW, Farrar JJ, Gao GF, Tatem AJ, Yu H. Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997-2015: a systematic review of individual case data. THE LANCET. INFECTIOUS DISEASES 2016; 16:e108-e118. [PMID: 27211899 PMCID: PMC4933299 DOI: 10.1016/s1473-3099(16)00153-5] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 01/30/2016] [Accepted: 03/08/2016] [Indexed: 12/13/2022]
Abstract
Avian influenza viruses A(H5N1) have caused a large number of typically severe human infections since the first human case was reported in 1997. However, there is a lack of comprehensive epidemiological analysis of global human cases of H5N1 from 1997-2015. Moreover, few studies have examined in detail the changing epidemiology of human H5N1 cases in Egypt, especially given the most recent outbreaks since November 2014 which have the highest number of cases ever reported globally over a similar period. Data on individual cases were collated from different sources using a systematic approach to describe the global epidemiology of 907 human H5N1 cases between May 1997 and April 2015. The number of affected countries rose between 2003 and 2008, with expansion from East and Southeast Asia, then to West Asia and Africa. Most cases (67.2%) occurred from December to March, and the overall case fatality risk was 53.5% (483/903) which varied across geographical regions. Although the incidence in Egypt has increased dramatically since November 2014, compared to the cases beforehand there were no significant differences in the fatality risk , history of exposure to poultry, history of human case contact, and time from onset to hospitalization in the recent cases.
Collapse
Affiliation(s)
- Shengjie Lai
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Geography and Environment, University of Southampton, Southampton, UK; Flowminder Foundation, Stockholm, Sweden
| | - Ying Qin
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiang Ren
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Nicola A Wardrop
- Department of Geography and Environment, University of Southampton, Southampton, UK
| | - Marius Gilbert
- Biological Control and Spatial Ecology, Université Libre de Bruxelles, Brussels, Belgium; Fonds National de la Recherche Scientifique, Brussels, Belgium
| | - Tim K Tsang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Peng Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Luzhao Feng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Jiang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhibin Peng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiandong Zheng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiaohong Liao
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sa Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peter W Horby
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Singapore Infectious Disease Initiative, Singapore
| | - Jeremy J Farrar
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Singapore Infectious Disease Initiative, Singapore; International Severe Acute Respiratory and Emerging Infection Consortium, Centre for Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Chinese Center for Disease Control and Prevention, Beijing, China
| | - Andrew J Tatem
- Department of Geography and Environment, University of Southampton, Southampton, UK; Flowminder Foundation, Stockholm, Sweden; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Hongjie Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
21
|
Naguib MM, Abdelwhab EM, Harder TC. Evolutionary features of influenza A/H5N1 virus populations in Egypt: poultry and human health implications. Arch Virol 2016; 161:1963-7. [DOI: 10.1007/s00705-016-2849-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/28/2016] [Indexed: 01/29/2023]
|
22
|
Manabe T, Yamaoka K, Tango T, Binh NG, Co DX, Tuan ND, Izumi S, Takasaki J, Chau NQ, Kudo K. Chronological, geographical, and seasonal trends of human cases of avian influenza A (H5N1) in Vietnam, 2003-2014: a spatial analysis. BMC Infect Dis 2016; 16:64. [PMID: 26847341 PMCID: PMC4743110 DOI: 10.1186/s12879-016-1391-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background Human cases of highly pathogenic avian influenza A (H5N1) virus infection continue to occur in Southeast Asia. The objective of this study was to identify when and where human H5N1 cases have occurred in Vietnam and how the situation has changed from the beginning of the H5N1 outbreaks in 2003 through 2014, to assist with implementing methods of targeted disease management. Methods We assessed the disease clustering and seasonal variation of human H5N1 cases in Vietnam to evaluate the geographical and monthly timing trends. The clustering of H5N1 cases and associated mortality were examined over three time periods: the outbreak period (2003–2005), the post-outbreak (2006–2009), and the recent period (2010–2014) using the flexibly shaped space-time scan statistic. The most likely cases to co-cluster and the elevated risks for incidence and mortality were assessed via calculation of the relative risk (RR). The H5N1 case seasonal variation was analysed as the cyclic trend in incidence data using Roger’s statistical test. Results Between 2003 and 2005, H5N1 cases (RR: 2.15, p = 0.001) and mortality (RR: 2.49, p = 0.021) were significantly clustered in northern Vietnam. After 2010, H5N1 cases tended to occur on the border with Cambodia in the south, while H5N1 mortality clustered significantly in the Mekong delta area (RR: 6.62, p = 0.002). A significant seasonal variation was observed (p < 0.001), with a higher incidence of morbidity in December through April. Conclusions These findings indicate that clinical preparedness for H5N1 in Vietnam needs to be strengthened in southern Vietnam in December–April. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1391-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Toshie Manabe
- Teikyo University, Graduate School of Public Health, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan. .,Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan. .,Waseda University, 1-21-1 Nishi-Waseda, Shinjuku-ku, Tokyo, Japan. .,University of Tsukuba, Graduate School of Comprehensive Human Sciences, Ibaraki, Japan.
| | - Kazue Yamaoka
- Teikyo University, Graduate School of Public Health, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Toshiro Tango
- Teikyo University, Graduate School of Public Health, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan. .,Center for Medical Statistics, Tokyo, Japan.
| | - Nguyen Gia Binh
- Bach Mai Hospital, Intensive Care Unit, 78 Giai Phong, Dong Da, Hanoi, Vietnam.
| | - Dao Xuan Co
- Bach Mai Hospital, Intensive Care Unit, 78 Giai Phong, Dong Da, Hanoi, Vietnam.
| | - Nguyen Dang Tuan
- Bach Mai Hospital, Intensive Care Unit, 78 Giai Phong, Dong Da, Hanoi, Vietnam.
| | - Shinyu Izumi
- National Center for Global Health and Medicine, Division of Pulmonary Medicine, Tokyo, Japan.
| | - Jin Takasaki
- National Center for Global Health and Medicine, Division of Pulmonary Medicine, Tokyo, Japan.
| | - Ngo Quy Chau
- Department of Pulmonary Medicine, Bach Mai Hospital, 78 Giai Phong, Dong Da, Hanoi, Vietnam.
| | - Koichiro Kudo
- Waseda University, 1-21-1 Nishi-Waseda, Shinjuku-ku, Tokyo, Japan. .,Koto Hospital, 6-8-5 Ojima, Koto-ku, Tokyo, Japan.
| |
Collapse
|