1
|
Vinueza-Burgos C, Medina-Santana J, Ishida M, Sauders B, Deiulio G, Dickey A, Endara P, Terán R. Salmonella isolated from street foods and environment of an urban park: A whole genome sequencing approach. PLoS One 2025; 20:e0320735. [PMID: 40173163 PMCID: PMC11964277 DOI: 10.1371/journal.pone.0320735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/24/2025] [Indexed: 04/04/2025] Open
Abstract
Salmonella is one of the most important foodborne pathogens worldwide. Therefore, this study was conducted to understand the importance of this microorganism in street food and the environment of an urban park in Quito, Ecuador. This research included phenotypic characterization and whole genome sequencing (WGS) analysis of isolates from different food matrices and fecal samples of dogs and pigeons. Salmonella was found in 10% (18/180) of the food samples, 3% (3/100) of the dog stool samples, and 5% (5/100) of the pigeon stool samples. These results also showed that meals containing any sauce or eggs were associated with a high probability of Salmonella isolation, regardless of other ingredients. All Salmonella isolates from food were identified as Salmonella enterica serovar Typhimurium (S. Typhimurium) while isolates from animal feces belonged to Salmonella enterica serovar Infantis (S. Infantis) and S. Typhimurium. WGS analysis showed that all S. Typhimurium strains belonged to ST19 and S. Infantis to ST32 according to the Multi-Locus Sequence Type (MLST) scheme. These strains were not related to Salmonella genomes of other origins when a Single Nucleotide Polymorphism (SNP) tree analysis was carried out. Antimicrobial resistance genes, such as blaCTX-M-65, were predominantly linked to the pESI-like plasmid found in S. Infantis. These results show the importance of urban fauna as a reservoir of S. Infantis and the impact these animals could have in terms of public health.
Collapse
Affiliation(s)
- Christian Vinueza-Burgos
- Unidad de Investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - José Medina-Santana
- Unidad de Investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Maria Ishida
- Division of Food Laboratory, New York State Department of Agriculture and Markets, Albany, New York, United States of America.
| | - Brian Sauders
- Division of Food Laboratory, New York State Department of Agriculture and Markets, Albany, New York, United States of America.
| | - Gregory Deiulio
- Division of Food Laboratory, New York State Department of Agriculture and Markets, Albany, New York, United States of America.
| | - Alyssa Dickey
- Division of Food Laboratory, New York State Department of Agriculture and Markets, Albany, New York, United States of America.
| | - Pablo Endara
- Escuela de Medicina, Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Rommy Terán
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Ecuador
| |
Collapse
|
2
|
De Sousa Violante M, Feurer C, Michel V, Romero K, Mallet L, Mistou MY, Cadel-Six S. Genomic diversity of Salmonella Typhimurium and its monophasic variant in pig and pork production in France. Microbiol Spectr 2024; 12:e0052624. [PMID: 39513704 PMCID: PMC11619346 DOI: 10.1128/spectrum.00526-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Salmonella Typhimurium and its monophasic variant (Salmonella 4,[5],12:i:-) are among the most prevalent serovars worldwide. Even though these serovars have been the focus of many studies, their spread has not yet been investigated in French pig herds and slaughterhouses at a regional scale. Here, we characterized the genomic diversity of 188 Salmonella strains belonging to sequence type (ST) 19 and 34. These strains were isolated from pigs in metropolitan France between 2014 and 2019. Samples were collected from 10 regions, three of which together represent 75% of French pig production in 2020. To contextualize the French Salmonella genomes at a worldwide level, 193 ST 34 genomes from three continents and 14 countries were also included. This study revealed little diversity in ST 34 strains circulating in France, suggesting that one or two clones are spreading within pig herds and slaughterhouses. In silico virulence and antimicrobial resistance genes were investigated to understand the prevalence of these strains among farmed pigs and in the slaughterhouse environment. A comparison with ST 34 isolates from other countries highlighted the genomic specificity of the ST 34 monophasic variants in France, with some exceptions concerning isolates from bordering countries. This work provides new insights into the dynamics of S. Typhimurium and its monophasic variant sampled in French pig herds and slaughterhouses. IMPORTANCE Salmonellosis is a leading cause of bacterial infection in humans and animals around the world. This study provides a snapshot of the genomic diversity of one of the most prevalent Salmonella serovars (Salmonella Typhimurium and Salmonella 4,[5],12:i:-) circulating on French pig farms between 2013 and 2021. We investigated the link between geographical and genomic diversity. The analyses revealed little diversity of the strains, suggesting that one or two clones are spreading within French pig herds. We also in silico screened genetic elements that could explain the prevalence of these strains among farmed pigs and in the slaughterhouse environment. Finally, the comparison with isolates from other countries highlighted the genomic specificity of these two French sequence type 34 clones. This work provides new insights into the dynamics of S. Typhimurium and S. 4,[5],12:i:- sampled from pig herds and slaughterhouses in France, thus laying the foundations for future analyses.
Collapse
Affiliation(s)
- Madeleine De Sousa Violante
- MaIAGE, INRAE,
Université Paris-Saclay, Jouy-en-Josas, France
-
ACTALIA, La Roche-sur-Foron, Haute-Savoie, France
| | - Carole Feurer
-
IFIP–Institut du Porc, Pôle Viandes et Charcuteries, Pacé, France
| | | | - Karol Romero
- Salmonella and Listeria Unit (SEL),
ANSES, Laboratory for Food Safety, Maisons-Alfort, France
| | - Ludovic Mallet
-
Institut Universitaire du Cancer de Toulouse–Oncopole, Toulouse, Haute-Garonne, France
| | | | - Sabrina Cadel-Six
- Salmonella and Listeria Unit (SEL),
ANSES, Laboratory for Food Safety, Maisons-Alfort, France
| |
Collapse
|
3
|
Thystrup C, Hald T, Belina D, Gobena T. Outbreak detection in Harar town and Kersa district, Ethiopia using phylogenetic analysis and source attribution. BMC Infect Dis 2024; 24:864. [PMID: 39187763 PMCID: PMC11348558 DOI: 10.1186/s12879-024-09800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Foodborne diseases (FBDs) represent a significant risk to public health, with nearly one in ten people falling ill every year globally. The large incidence of foodborne diseases in African low- and middle-income countries (LMIC) shows the immediate need for action, but there is still far to a robust and efficient outbreak detection system. The detection of outbreak heavily relies on clinical diagnosis, which are often delayed or ignored due to resource limitations and inadequate surveillance systems. METHODS In total, 68 samples of non-typhoidal Salmonella isolates from human, animal and environmental sources collected between November 2021 and January 2023 were analyzed using sequencing methods to infer phylogenetic relationships between the samples. A source attribution model using a machine-learning logit-boost that predicted the likely source of infection for 20 cases of human salmonellosis was also run and compared with the results of the cluster detection. RESULTS Three clusters of samples with close relation (SNP difference < 30) were identified as non-typhoidal Salmonella in Harar town and Kersa district, Ethiopia. These three clusters were comprised of isolates from different sources, including at least two human isolates. The isolates within each cluster showed identical serovar and sequence type (ST), with few exceptions in cluster 3. The close proximity of the samples suggested the occurrence of three potential outbreaks of non-typhoidal Salmonella in the region. The results of the source attribution model found that human cases of salmonellosis could primarily be attributed to bovine meat, which the results of the phylogenetic analysis corroborated. CONCLUSIONS The findings of this study suggested the occurrence of three possible outbreaks of non-typhoidal Salmonella in eastern Ethiopia, emphasizing the importance of targeted intervention of food safety protocols in LMICs. It also highlighted the potential of integrated surveillance for detecting outbreak and identifying the most probable source. Source attribution models in combination with other epidemiological methods is recommended as part of a more robust and integrated surveillance system for foodborne diseases.
Collapse
Affiliation(s)
- Cecilie Thystrup
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Tine Hald
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Dinaol Belina
- School of Biological Sciences and Biotechnology, Haramaya University, Dire Dawa, Ethiopia
- College of Veterinary Medicine, Haramaya University, Dire Dawa, Ethiopia
| | - Tesfaye Gobena
- School of Environmental Health Science, College of Health and Medical Sciences, Haramaya University, Dire Dawa, Ethiopia
| |
Collapse
|
4
|
Payne M, Hu D, Wang Q, Sullivan G, Graham RM, Rathnayake IU, Jennison AV, Sintchenko V, Lan R. DODGE: automated point source bacterial outbreak detection using cumulative long term genomic surveillance. Bioinformatics 2024; 40:btae427. [PMID: 38954842 PMCID: PMC11244691 DOI: 10.1093/bioinformatics/btae427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024] Open
Abstract
SUMMARY The reliable and timely recognition of outbreaks is a key component of public health surveillance for foodborne diseases. Whole genome sequencing (WGS) offers high resolution typing of foodborne bacterial pathogens and facilitates the accurate detection of outbreaks. This detection relies on grouping WGS data into clusters at an appropriate genetic threshold. However, methods and tools for selecting and adjusting such thresholds according to the required resolution of surveillance and epidemiological context are lacking. Here we present DODGE (Dynamic Outbreak Detection for Genomic Epidemiology), an algorithm to dynamically select and compare these genetic thresholds. DODGE can analyse expanding datasets over time and clusters that are predicted to correspond to outbreaks (or "investigation clusters") can be named with established genomic nomenclature systems to facilitate integrated analysis across jurisdictions. DODGE was tested in two real-world Salmonella genomic surveillance datasets of different duration, 2 months from Australia and 9 years from the United Kingdom. In both cases only a minority of isolates were identified as investigation clusters. Two known outbreaks in the United Kingdom dataset were detected by DODGE and were recognized at an earlier timepoint than the outbreaks were reported. These findings demonstrated the potential of the DODGE approach to improve the effectiveness and timeliness of genomic surveillance for foodborne diseases and the effectiveness of the algorithm developed. AVAILABILITY AND IMPLEMENTATION DODGE is freely available at https://github.com/LanLab/dodge and can easily be installed using Conda.
Collapse
Affiliation(s)
- Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dalong Hu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology—Public Health, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Geraldine Sullivan
- Centre for Infectious Diseases and Microbiology—Public Health, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Rikki M Graham
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Irani U Rathnayake
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Amy V Jennison
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology—Public Health, Institute of Clinical Pathology and Medical Research—NSW Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Hodges LM, Cooper A, Koziol A, Carrillo CD. Characterization of MLST-99 Salmonella Typhimurium and the monophasic variant I:4,[5],12:i:- isolated from Canadian Atlantic coast shellfish. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001456. [PMID: 38753417 PMCID: PMC11256474 DOI: 10.1099/mic.0.001456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Salmonella enterica subsp. enterica Typhimurium and its monophasic variant I 1;4,[5],12:i:- (MVST) are responsible for thousands of reported cases of salmonellosis each year in Canada, and countries worldwide. We investigated S. Typhimurium and MVST isolates recovered from raw shellfish harvested in Atlantic Canada by the Canadian Food Inspection Agency (CFIA) over the past decade, to assess the potential impact of these isolates on human illness and to explore possible routes of shellfish contamination. Whole-genome sequence analysis was performed on 210 isolates of S. Typhimurium and MVST recovered from various food sources, including shellfish. The objective was to identify genetic markers linked to ST-99, a sequence type specifically associated with shellfish, which could explain their high prevalence in shellfish. We also investigated the genetic similarity amongst CFIA ST-99 isolates recovered in different years and geographical locations. Finally, the study aimed to enhance the molecular serotyping of ST-99 isolates, as they are serologically classified as MVST but are frequently misidentified as S. Typhimurium through sequence analysis. To ensure recovery of ST-99 from shellfish was not due to favourable growth kinetics, we measured the growth rates of these isolates relative to other Salmonella and determined that ST-99 did not have a faster growth rate and/or shorter lag phase than other Salmonella evaluated. The CFIA ST-99 isolates from shellfish were highly clonal, with up to 81 high-quality single nucleotide variants amongst isolates. ST-99 isolates both within the CFIA collection and those isolated globally carried numerous unique deletions, insertions and mutations in genes, including some considered important for virulence, such as gene deletions in the type VI secretion system. Interestingly, several of these genetic characteristics appear to be unique to North America. Most notably was a large genomic region showing a high prevalence in genomes from Canadian isolates compared to those from the USA. Although the functions of the majority of the proteins encoded within this region remain unknown, the genes umuC and umuD, known to be protective against UV light damage, were present. While this study did not specifically examine the effects of mutations and insertions, results indicate that these isolates may be adapted to survive in specific environments, such as ocean water, where wild birds and/or animals serve as the natural hosts. Our hypothesis is reinforced by a global phylogenetic analysis, which indicates that isolates obtained from North American shellfish and wild birds are infrequently connected to isolates from human sources. These findings suggest a distinct ecological niche for ST-99, potentially indicating their specialization and adaptation to non-human hosts and environments, such as oceanic habitats.
Collapse
Affiliation(s)
| | | | - Adam Koziol
- Canadian Food Inspection Agency, Ottawa, Canada
| | | |
Collapse
|
6
|
Gómez-Baltazar A, Godínez-Oviedo A, Segura-García LE, Hernández-Pérez CF, Hernández-Iturriaga M, Cabrera-Díaz E. Genomic diversity of Salmonella enterica isolated from raw chicken at retail establishments in Mexico. Int J Food Microbiol 2024; 411:110526. [PMID: 38154253 DOI: 10.1016/j.ijfoodmicro.2023.110526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
The genomic diversity of circulating non-typhoidal Salmonella in raw chicken was investigated in three states of central Mexico. A total of 192 S. enterica strains from chicken meat samples collected at supermarkets, fresh markets, and butcher shops were analyzed by whole-genome sequencing. The serovar distribution, occurrence of genes encoding for antimicrobial resistance, metal resistance, biocide resistance, plasmids and virulence factors, and clonal relatedness based on single nucleotide polymorphism (SNP) analysis were investigated. Serovars Infantis, Schwarzengrund and Enteritidis predominated among twenty identified. The distribution of serovars and proportion of AMR genes was different according to the state, year, season, and retail establishment (p < 0.001). Genes encoding metals resistance were identified in all the strains. A total of 145 virulence genes were identified and strains were classified into 32 virulotypes; serovars Infantis, Typhimurium, and Enteritidis showed the highest number of virulence genes. The strains matched 34 SNP clusters in the NCBI Pathogen Detection server and 59 %, which corresponded to Infantis, Schwarzengrund, Saintpaul, and Enteritidis, were associated with five major clusters and matched with chicken, environmental and clinical isolates from at least three countries. These results provide useful information to understand the epidemiology of Salmonella, conduct microbial risk assessment, and design risk-based control measures.
Collapse
Affiliation(s)
- Adrián Gómez-Baltazar
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Colonia Las Campanas, Querétaro 76010, Qro., Mexico
| | - Angélica Godínez-Oviedo
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Colonia Las Campanas, Querétaro 76010, Qro., Mexico
| | - Luis Eduardo Segura-García
- Departamento de Salud Pública, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan 45200, Jalisco, Mexico
| | - Cindy Fabiola Hernández-Pérez
- Centro Nacional de Referencia en Inocuidad y Bioseguridad Agroalimentaria del SENASICA, Carretera México Pachuca Km 35.5, Tecámac. CP. 55740, Estado de México, Mexico
| | - Montserrat Hernández-Iturriaga
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Colonia Las Campanas, Querétaro 76010, Qro., Mexico.
| | - Elisa Cabrera-Díaz
- Departamento de Salud Pública, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan 45200, Jalisco, Mexico.
| |
Collapse
|
7
|
Aguirre-Sanchez JR, Vega-Lopez IF, Castro Del Campo N, Medrano-Felix JA, Martínez-Urtaza J, Chaidez-Quiroz C. Genomic-wide analysis approach revealed genomic similarity for environmental Mexican S. Oranienburg genomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:956-967. [PMID: 36946386 DOI: 10.1080/09603123.2023.2191312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
As the human population grows, an increase in food trade is needed. This elevates the risk of epidemiological outbreaks. One of the prevalent pathogens associated with food production in Mexico has been Salmonella Oranienburg. Effective surveillance systems require microbial genetic knowledge. The objective of this work is to describe the genetic composition of Mexican S. Oranienburg genomes. For that, 53 strains from different environmental sources were isolated and sequenced. Additionally, 109 S. Oranienburg genomes were downloaded. Bioinformatic analyses were used to explore the clonal complex and genomic relatedness. A major clonal group formed by ST23 was identified comprising four STs. 202 SNPs were found the maximum difference among isolates. Virulence genes for host invasion and colonization as rpoS, fimbria type 1, and, T3SS were found common for all isolates. This study suggests that Mexican S. Oranienburg strains are potential pathogens circulating continuously in the region between host and non-host environments.
Collapse
Affiliation(s)
- J R Aguirre-Sanchez
- Inocuidad Alimentaria, Centro de Investigación en Alimentación y Desarrollo, Culiacán, México
| | - I F Vega-Lopez
- Laboratorio en Ciencia y Mineria de Datos, Parque de Innovación Tecnológica de la Universidad Autónoma de Sinaloa, Culiacán, México
| | - N Castro Del Campo
- Inocuidad Alimentaria, Centro de Investigación en Alimentación y Desarrollo, Culiacán, México
| | - J A Medrano-Felix
- Inocuidad Alimentaria, Investigadoras e Investigadores por México-Centro de Investigación en Alimentación y Desarrollo A.C, Culiacán, México
| | - J Martínez-Urtaza
- Departement of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Chaidez-Quiroz
- Inocuidad Alimentaria, Centro de Investigación en Alimentación y Desarrollo, Culiacán, México
| |
Collapse
|
8
|
Cho SJ, Kim SH, Lee H, Lee YU, Mun J, Park S, Park J, Park JS, Lee K, Lee CM, Seo J, Kim Y, Chung YS. Re-Emergence of HMPV in Gwangju, South Korea, after the COVID-19 Pandemic. Pathogens 2023; 12:1218. [PMID: 37887734 PMCID: PMC10609798 DOI: 10.3390/pathogens12101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
The non-pharmaceutical interventions implemented to prevent the spread of COVID-19 have affected the epidemiology of other respiratory viruses. In South Korea, Human metapneumovirus (HMPV) typically occurs from winter to the following spring; however, it was not detected for two years during the COVID-19 pandemic and re-emerged in the fall of 2022, which is a non-epidemic season. To examine the molecular genetic characteristics of HMPV before and after the COVID-19 pandemic, we analyzed 427 HMPV-positive samples collected in the Gwangju area from 2018 to 2022. Among these, 24 samples were subjected to whole-genome sequencing. Compared to the period before the COVID-19 pandemic, the incidence rate of HMPV in 2022 increased by 2.5-fold. Especially in the age group of 6-10 years, the incidence rate increased by more than 4.5-fold. In the phylogenetic analysis results, before the COVID-19 pandemic, the A2.2.2 lineage was predominant, while in 2022, the A2.2.1 and B2 lineage were observed. The non-pharmaceutical interventions implemented after COVID-19, such as social distancing, have reduced opportunities for exposure to HMPV, subsequently leading to decreased acquisition of immunity. As a result, HMPV occurred during non-epidemic seasons, influencing the age distribution of its occurrences.
Collapse
Affiliation(s)
- Sun-Ju Cho
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Sun-Hee Kim
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Hongsu Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Yeong-Un Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Jeongeun Mun
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Sujung Park
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Jungwook Park
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Ji-Su Park
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Kwangho Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Cheong-mi Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Jinjong Seo
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Yonghwan Kim
- Division of Emerging Infectious Disease, Department of Infectious Disease Research, Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (S.-J.C.); (H.L.); (Y.-U.L.); (J.M.); (S.P.); (J.P.); (J.-S.P.); (K.L.); (C.-m.L.); (J.S.); (Y.K.)
| | - Yoon-Seok Chung
- Division of High-Risk Pathogen, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA), Cheongju 28159, Republic of Korea
| |
Collapse
|
9
|
Jibril AH, Okeke IN, Dalsgaard A, Olsen JE. Prevalence and whole genome phylogenetic analysis reveal genetic relatedness between antibiotic resistance Salmonella in hatchlings and older chickens from farms in Nigeria. Poult Sci 2023; 102:102427. [PMID: 36584420 PMCID: PMC9827064 DOI: 10.1016/j.psj.2022.102427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The presence of Salmonella in hatchlings is the single most important risk factor for the introduction of Salmonella into poultry farms, and resistant strains are particularly worrisome, as they could affect treatment outcomes in humans infected through consumption of contaminated poultry products. This study estimated Salmonella prevalence, determined resistance profiles of strains recovered from hatchlings in Nigeria, and determined genetic relatedness between hatchling strains and strains from poultry farms. In this study, 300 fecal samples were collected. Salmonella was isolated by culture and confirmed by PCR, and isolates were tested for susceptibility to antimicrobials by the disk diffusion method. Strains were pair-end sequenced, and genomes were used to obtain serotypes and antibiotic resistance genes. Whole-genome based phylogenetic analysis was used to determine genetic relatedness between these isolates and strains from previously characterized older chicken within the same geographical area. A prevalence of 10.7% was obtained belonging to 13 Salmonella serovars. Resistance to kanamycin (30/32), ciprofloxacin (22/32), nalidixic acid (22/32), and sulfonamides (22/32) were the most commonly observed phenotypic resistances. Twenty-two (68.8%) isolates showed multidrug resistance. In silico predictions identified 36 antimicrobial resistance genes. Four (12.5%) and 22 (68.8%) strains showed point mutations in gyrA and parC. Commonly observed acquired resistance genes included sul1, sul2, sul3, and tet(A) as well as a variety of aminoglycoside-modifying genes. Eleven (34.4%) isolates were predicted to have genes that confer resistance to fosfomycin (fosA7, fosB). A strain of S. Stanleyville was predicted to have optrA, which confers resistance to furazolidone. Strains of S. Kentucky, S. Muenster, and S. Menston obtained from hatchlings showed close genetic relatedness by having less than 30 SNPs difference to strains recovered from chickens at farms previously receiving hatchlings from the same sources.
Collapse
Affiliation(s)
- Abdurrahman Hassan Jibril
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Anders Dalsgaard
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - John Elmerdahl Olsen
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| |
Collapse
|
10
|
Plumb ID, Brown AC, Stokes EK, Chen JC, Carleton H, Tolar B, Sundararaman P, Saupe A, Payne DC, Shah HJ, Folster JP, Friedman CR. Increased Multidrug-Resistant Salmonella enterica I Serotype 4,[5],12:i:- Infections Associated with Pork, United States, 2009-2018. Emerg Infect Dis 2023; 29. [PMID: 36692335 PMCID: PMC9881761 DOI: 10.3201/eid2902.220950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reports of Salmonella enterica I serotype 4,[5],12:i:- infections resistant to ampicillin, streptomycin, sulphamethoxazole, and tetracycline (ASSuT) have been increasing. We analyzed data from 5 national surveillance systems to describe the epidemiology, resistance traits, and genetics of infections with this Salmonella strain in the United States. We found ASSuT-resistant Salmonella 4,[5],12:i:- increased from 1.1% of Salmonella infections during 2009-2013 to 2.6% during 2014-2018; the proportion of Salmonella 4,[5],12:i:- isolates without this resistance pattern declined from 3.1% to 2.4% during the same timeframe. Among isolates sequenced during 2015-2018, a total of 69% were in the same phylogenetic clade. Within that clade, 77% of isolates had genetic determinants of ASSuT resistance, and 16% had genetic determinants of decreased susceptibility to ciprofloxacin, ceftriaxone, or azithromycin. Among outbreaks related to the multidrug-resistant clade, 63% were associated with pork consumption or contact with swine. Preventing Salmonella 4,[5],12:i:- carriage in swine would likely avert human infections with this strain.
Collapse
|
11
|
Pijnacker R, van den Beld M, van der Zwaluw K, Verbruggen A, Coipan C, Segura AH, Mughini-Gras L, Franz E, Bosch T. Comparing Multiple Locus Variable-Number Tandem Repeat Analyses with Whole-Genome Sequencing as Typing Method for Salmonella Enteritidis Surveillance in The Netherlands, January 2019 to March 2020. Microbiol Spectr 2022; 10:e0137522. [PMID: 36121225 PMCID: PMC9603844 DOI: 10.1128/spectrum.01375-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/29/2022] [Indexed: 12/30/2022] Open
Abstract
In the Netherlands, whole-genome sequencing (WGS) was implemented as routine typing tool for Salmonella Enteritidis isolates in 2019. Multiple locus variable-number tandem repeat analyses (MLVA) was performed in parallel. The objective was to determine the concordance of MLVA and WGS as typing methods for S. Enteritidis isolates. We included S. Enteritidis isolates from patients that were subtyped using MLVA and WGS-based core-genome Multilocus Sequence Typing (cgMLST) as part of the national laboratory surveillance of Salmonella during January 2019 to March 2020. The concordance of clustering based on MLVA and cgMLST, with a distance of ≤5 alleles, was assessed using the Fowlkes-Mallows (FM) index, and their discriminatory power using Simpson's diversity index. Of 439 isolates in total, 404 (92%) were typed as 32 clusters based on MLVA, with a median size of 4 isolates (range:2 to 141 isolates). Based on cgMLST, 313 (71%) isolates were typed as 48 clusters, with a median size of 3 isolates (range:2 to 39 isolates). The FM index was 0.34 on a scale from 0 to 1, where a higher value indicates greater similarity between the typing methods. The Simpson's diversity index of MLVA and cgMLST was 0.860 and 0.974, respectively. The median cgMLST distance between isolates with the same MLVA type was 27 alleles (interquartile range [IQR]:17 to 34 alleles), and 2 alleles within cgMLST clusters (IQR:1-5 alleles). This study shows the higher discriminatory power of WGS over MLVA and a poor concordance between both typing methods regarding clustering of S. Enteritidis isolates. IMPORTANCE Salmonella is the most frequently reported agent causing foodborne outbreaks and the second most common zoonoses in the European Union. The incidence of the most dominant serotype Enteritidis has increased in recent years. To differentiate between Salmonella isolates, traditional typing methods such as pulsed-field gel electrophoresis (PFGE) and multiple locus variable-number tandem repeat analyses (MLVA) are increasingly replaced with whole-genome sequencing (WGS). This study compared MLVA and WGS-based core-genome Multilocus Sequence Typing (cgMLST) as typing tools for S. Enteritidis isolates that were collected as part of the national Salmonella surveillance in the Netherlands. We found a higher discriminatory power of WGS-based cgMLST over MLVA, as well as a poor concordance between both typing methods regarding clustering of S. Enteritidis isolates. This is especially relevant for cluster delineation in outbreak investigations and confirmation of the outbreak source in trace-back investigations.
Collapse
Affiliation(s)
- Roan Pijnacker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Maaike van den Beld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Kim van der Zwaluw
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anjo Verbruggen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Claudia Coipan
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Alejandra Hernandez Segura
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
12
|
Li Y, Ed-Dra A, Tang B, Kang X, Müller A, Kehrenberg C, Jia C, Pan H, Yang H, Yue M. Higher tolerance of predominant Salmonella serovars circulating in the antibiotic-free feed farms to environmental stresses. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129476. [PMID: 35809365 DOI: 10.1016/j.jhazmat.2022.129476] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
To counteract the dramatic increase in antibiotic-resistant bacterial pathogens, many countries, including China, have banned the use of antibiotic-supplemented feed for farming animals. However, the exact consequences of this policy have not been systematically evaluated. Therefore, Salmonella isolates from farms that ceased using antibiotics 1-5 years ago were compared with isolates from farms that continue to use antimicrobials as growth promotors. Here, we used whole-genome sequencing combined with in-depth phenotypic assays to investigate the ecology, epidemiology, and persistence of multi-drug resistant (MDR) Salmonella from animal farms during the withdrawal of antibiotic growth promotors. Our results showed that the prevalence of Salmonella was significantly lower in antibiotic-free feed (AFF) farms compared to conventional-feed (CF) farms, even though all isolates obtained from AFF farms were MDR (>5 classes) and belonged to well-recognized predominant serovars. The additional phylogenomic analysis combined with principal component analysis showed high similarity between the predominant serovars in AFF and CF farms. This result raised questions regarding the environmental persistence capabilities of MDR strain despite AFF policy. To address this question, a representative panel of 20 isolates was subjected to disadvantageous environmental stress assays. These results showed that the predominant serovars in AFF and CF farms were more tolerant to stress conditions than other serovars. Collectively, our findings suggest that AFF helps eliminate only specific MDR serovars, and future guiding policies would benefit by identifying predominant Salmonella clones in problematic farms to determine the use of AFF and additional targeted interventions.
Collapse
Affiliation(s)
- Yan Li
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China; Hainan Institute of Zhejiang University, Sanya, China.
| | | | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Xiamei Kang
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China.
| | - Anja Müller
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany.
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany.
| | - Chenghao Jia
- Hainan Institute of Zhejiang University, Sanya, China.
| | - Hang Pan
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China.
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China; Hainan Institute of Zhejiang University, Sanya, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Jiang M, Yang C, Kwan PSL, Zhang L, Fan H, Jin Y, Sun L, Chen H, Li B, Chen Q, Wu Y, Guo Y, Shi Y, Liao M, Shi X, Liu J, Jiang L, Cai R, Deng Y, Sun Q, Yang R, Zhang Q, Cui Y, Hu Q. Rapid Multilateral and Integrated Public Health Response to a Cross-City Outbreak of Salmonella Enteritidis Infections Combining Analytical, Molecular, and Genomic Epidemiological Analysis. Front Microbiol 2022; 13:772489. [PMID: 35602015 PMCID: PMC9117964 DOI: 10.3389/fmicb.2022.772489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
On September 21, 2019, the Shenzhen and Dongguan Centers for Disease Control and Prevention received notification of a large cluster of suspected gastroenteritis involving primarily children who sought medical care at hospitals throughout two adjacent cities in China, Shenzhen, and Dongguan. A joint outbreak response was promptly initiated across jurisdictions in a concerted effort between clinical microbiologists, epidemiologists, and public health scientists. Concurrently, multiplex PCRs were used for rapid laboratory diagnosis of suspected cases; epidemiological investigations were conducted to identify the outbreak source, complemented by near real-time multicenter whole-genome analyses completed within 34 h. Epidemiological evidence indicated that all patients had consumed egg sandwiches served on September 20 as snacks to children and staff at a nursery in Dongguan, located near Shenzhen. Salmonella Enteritidis was isolated from case-patients, food handlers, kitchenware, and sandwiches with kitchen-made mayonnaise. Whole-genome single-nucleotide polymorphism (SNP)-based phylogenetic analysis demonstrated a well-supported cluster with pairwise distances of ≤1 SNP between genomes for outbreak-associated isolates, providing the definitive link between all samples. In comparison with historical isolates from the same geographical region, the minimum pairwise distance was >14 SNPs, suggesting a non-local outbreak source. Genomic source tracing revealed the possible transmission dynamics of a S. Enteritidis clone throughout a multi-provincial egg distribution network. The efficiency and scale with which multidisciplinary and integrated approaches were coordinated in this foodborne disease outbreak response was unprecedented in China, leading to the timely intervention of a large cross-jurisdiction Salmonella outbreak.
Collapse
Affiliation(s)
- Min Jiang
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Chao Yang
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Patrick S L Kwan
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liping Zhang
- Microbiology Laboratory, Dongguan Center for Disease Control and Prevention, Guangdong, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujuan Jin
- Microbiology Laboratory, Longgang District Center for Disease Control and Prevention, Shenzhen, China
| | - Lifang Sun
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Hongyu Chen
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Baisheng Li
- Microbiology Laboratory, Guangdong Center for Disease Control and Prevention, Guangdong, China
| | - Qiuxia Chen
- Microbiology Laboratory, Guangdong Center for Disease Control and Prevention, Guangdong, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuanguo Shi
- Division of Biohazard Inspection and Testing, Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen, China
| | - Min Liao
- Division of Biohazard Inspection and Testing, Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen, China
| | - Xiaolu Shi
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianping Liu
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lijuan Jiang
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Rui Cai
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinhua Deng
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qun Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qiaoli Zhang
- Microbiology Laboratory, Dongguan Center for Disease Control and Prevention, Guangdong, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qinghua Hu
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
14
|
Moore MP, Wilcox MH, Walker AS, Eyre DW. K-mer based prediction of Clostridioides difficile relatedness and ribotypes. Microb Genom 2022; 8. [PMID: 35384833 PMCID: PMC9453075 DOI: 10.1099/mgen.0.000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Comparative analysis of Clostridioides difficile whole-genome sequencing (WGS) data enables fine scaled investigation of transmission and is increasingly becoming part of routine surveillance. However, these analyses are constrained by the computational requirements of the large volumes of data involved. By decomposing WGS reads or assemblies into k-mers and using the dimensionality reduction technique MinHash, it is possible to rapidly approximate genomic distances without alignment. Here we assessed the performance of MinHash, as implemented by sourmash, in predicting single nucleotide differences between genomes (SNPs) and C. difficile ribotypes (RTs). For a set of 1905 diverse C. difficile genomes (differing by 0–168 519 SNPs), using sourmash to screen for closely related genomes, at a sensitivity of 100 % for pairs ≤10 SNPs, sourmash reduced the number of pairs from 1 813 560 overall to 161 934, i.e. by 91 %, with a positive predictive value of 32 % to correctly identify pairs ≤10 SNPs (maximum SNP distance 4144). At a sensitivity of 95 %, pairs were reduced by 94 % to 108 266 and PPV increased to 45 % (maximum SNP distance 1009). Increasing the MinHash sketch size above 2000 produced minimal performance improvement. We also explored a MinHash similarity-based ribotype prediction method. Genomes with known ribotypes (n=3937) were split into a training set (2937) and test set (1000) randomly. The training set was used to construct a sourmash index against which genomes from the test set were compared. If the closest five genomes in the index had the same ribotype this was taken to predict the searched genome’s ribotype. Using our MinHash ribotype index, predicted ribotypes were correct in 780/1000 (78 %) genomes, incorrect in 20 (2 %), and indeterminant in 200 (20 %). Relaxing the classifier to 4/5 closest matches with the same RT improved the correct predictions to 87 %. Using MinHash it is possible to subsample C. difficile genome k-mer hashes and use them to approximate small genomic differences within minutes, significantly reducing the search space for further analysis.
Collapse
Affiliation(s)
- Matthew Phillip Moore
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Mark H Wilcox
- Healthcare Associated Infection Research Group, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.,NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - David W Eyre
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.,NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| |
Collapse
|
15
|
Whole genome sequencing and protein structure analyses of target genes for the detection of Salmonella. Sci Rep 2021; 11:20887. [PMID: 34686701 PMCID: PMC8536731 DOI: 10.1038/s41598-021-00224-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/07/2021] [Indexed: 12/04/2022] Open
Abstract
Rapid and sensitive detection of Salmonella is a critical step in routine food quality control, outbreak investigation, and food recalls. Although various genes have been the targets in the design of rapid molecular detection methods for Salmonella, there is limited information on the diversity of these target genes at the level of DNA sequence and the encoded protein structures. In this study, we investigated the diversity of ten target genes (invA, fimA, phoP, spvC, and agfA; ttrRSBCA operon including 5 genes) commonly used in the detection and identification of Salmonella. To this end, we performed whole genome sequencing of 143 isolates of Salmonella serotypes (Enteritidis, Typhimurium, and Heidelberg) obtained from poultry (eggs and chicken). Phylogenetic analysis showed that Salmonella ser. Typhimurium was more diverse than either Enteritidis or Heidelberg. Forty-five non-synonymous mutations were identified in the target genes from the 143 isolates, with the two most common mutations as T ↔ C (15 times) and A ↔ G (13 times). The gene spvC was primarily present in Salmonella ser. Enteritidis isolates and absent from Heidelberg isolates, whereas ttrR was more conserved (0 non-synonymous mutations) than ttrS, ttrB, ttrC, and ttrA (7, 2, 2, and 7 non-synonymous mutations, respectively). Notably, we found one non-synonymous mutation (fimA-Mut.6) across all Salmonella ser. Enteritidis and Salmonella ser. Heidelberg, C → T (496 nt postion), resulting in the change at AA 166 position, Glutamine (Q) → Stop condon (TAG), suggesting that the fimA gene has questionable sites as a target for detection. Using Phyre2 and SWISS-MODEL software, we predicted the structures of the proteins encoded by some of the target genes, illustrating the positions of these non-synonymous mutations that mainly located on the α-helix and β-sheet which are key elements for maintaining the conformation of proteins. These results will facilitate the development of sensitive molecular detection methods for Salmonella.
Collapse
|
16
|
Payne M, Octavia S, Luu LDW, Sotomayor-Castillo C, Wang Q, Tay ACY, Sintchenko V, Tanaka MM, Lan R. Enhancing genomics-based outbreak detection of endemic Salmonella enterica serovar Typhimurium using dynamic thresholds. Microb Genom 2021; 7:000310. [PMID: 31682222 PMCID: PMC8627665 DOI: 10.1099/mgen.0.000310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is the leading cause of salmonellosis in Australia, and the ability to identify outbreaks and their sources is vital to public health. Here, we examined the utility of whole-genome sequencing (WGS), including complete genome sequencing with Oxford Nanopore technologies, in examining 105 isolates from an endemic multi-locus variable number tandem repeat analysis (MLVA) type over 5 years. The MLVA type was very homogeneous, with 90 % of the isolates falling into groups with a five SNP cut-off. We developed a new two-step approach for outbreak detection using WGS. The first clustering at a zero single nucleotide polymorphism (SNP) cut-off was used to detect outbreak clusters that each occurred within a 4 week window and then a second clustering with dynamically increased SNP cut-offs were used to generate outbreak investigation clusters capable of identifying all outbreak cases. This approach offered optimal specificity and sensitivity for outbreak detection and investigation, in particular of those caused by endemic MLVA types or clones with low genetic diversity. We further showed that inclusion of complete genome sequences detected no additional mutational events for genomic outbreak surveillance. Phylogenetic analysis found that the MLVA type was likely to have been derived recently from a single source that persisted over 5 years, and seeded numerous sporadic infections and outbreaks. Our findings suggest that SNP cut-offs for outbreak cluster detection and public-health surveillance should be based on the local diversity of the relevant strains over time. These findings have general applicability to outbreak detection of bacterial pathogens.
Collapse
Affiliation(s)
- Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Cristina Sotomayor-Castillo
- Centre for Infectious Diseases and Microbiology – Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead NSW, New South Wales, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology – Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital, New South Wales, Australia
| | - Alfred Chin Yen Tay
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology – Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead NSW, New South Wales, Australia
| | - Mark M. Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Parker CT, Huynh S, Alexander A, Oliver AS, Cooper KK. Genomic Characterization of Salmonella typhimurium DT104 Strains Associated with Cattle and Beef Products. Pathogens 2021; 10:pathogens10050529. [PMID: 33925684 PMCID: PMC8145149 DOI: 10.3390/pathogens10050529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Typhimurium DT104, a multidrug-resistant phage type, has emerged globally as a major cause of foodborne outbreaks particularly associated with contaminated beef products. In this study, we sequenced three S. Typhimurium DT104 strains associated with a 2009 outbreak caused by ground beef, including the outbreak source strain and two clinical strains. The goal of the study was to gain a stronger understanding of the genomics and genomic epidemiology of highly clonal S. typhimurium DT104 strains associated with bovine sources. Our study found no single nucleotide polymorphisms (SNPs) between the ground beef source strain and the clinical isolates from the 2009 outbreak. SNP analysis including twelve other S. typhimurium strains from bovine and clinical sources, including both DT104 and non-DT104, determined DT104 strains averaged 55.0 SNPs between strains compared to 474.5 SNPs among non-DT104 strains. Phylogenetic analysis separated the DT104 strains from the non-DT104 strains, but strains did not cluster together based on source of isolation even within the DT104 phage type. Pangenome analysis of the strains confirmed previous studies showing that DT104 strains are missing the genes for the allantoin utilization pathway, but this study confirmed that the genes were part of a deletion event and not substituted or disrupted by the insertion of another genomic element. Additionally, cgMLST analysis revealed that DT104 strains with cattle as the source of isolation were quite diverse as a group and did not cluster together, even among strains from the same country. Expansion of the analysis to 775 S. typhimurium ST19 strains associated with cattle from North America revealed diversity between strains, not limited to just among DT104 strains, which suggests that the cattle environment is favorable for a diverse group of S. typhimurium strains and not just DT104 strains.
Collapse
Affiliation(s)
- Craig T. Parker
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA; (C.T.P.); (S.H.)
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA; (C.T.P.); (S.H.)
| | - Aaron Alexander
- Department of Biology, California State University-Northridge, Northridge, CA 91330, USA; (A.A.); (A.S.O.)
| | - Andrew S. Oliver
- Department of Biology, California State University-Northridge, Northridge, CA 91330, USA; (A.A.); (A.S.O.)
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
- Correspondence:
| |
Collapse
|
18
|
Yang C, Shao W, Wei L, Chen L, Zhu A, Pan Z. Subtyping Salmonella isolated from pet dogs with multilocus sequence typing (MLST) and clustered regularly interspaced short palindromic repeats (CRISPRs). AMB Express 2021; 11:60. [PMID: 33893895 PMCID: PMC8068741 DOI: 10.1186/s13568-021-01221-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Salmonella, as a zoonotic pathogen, has attracted widespread attention worldwide, especially in the transmission between household pets and humans. Therefore, we investigated the epidemic distribution of dog Salmonella from pet hospitals and breeding base in Xuzhou, Jiangsu Province, China, and used multilocus sequence typing (MLST) and clustered regularly interspaced short palindromic repeats (CRISPRs) to subtype Salmonella isolates. From April 2018 to November 2019, a total of 469 samples were collected from pet hospitals and breeding base, including 339 dog samples and 60 cat samples. S. Kentucky (40.74%) was the most prevalent serotype, but other, such as S. Typhimurium (18.52%) and S. Indiana (18.52%), were also widespread. Eight different sequence type (ST) patterns were identified by MLST and ST198 was the highest proportion of these isolates. CRISPRs analysis showed that 9 different Kentucky CRISPR types (KCTs) was identified from ST198. 48 spacers including 29 (6 News) for CRISPR1 and 19 (4 News) for CRISPR2 that proved the polymorphic of Salmonella genes in samples from different sources. The analysis demonstrated that the common serotypes were widely present in pet hosts in the same area. This analysis shows that CRISPR genes have better recognition ability in the same serotype, which has a positive effect on the traceability of Salmonella and the prevention and treatment of salmonellosis.
Collapse
|
19
|
An Amplicon-Based Approach for the Whole-Genome Sequencing of Human Metapneumovirus. Viruses 2021; 13:v13030499. [PMID: 33803613 PMCID: PMC8003040 DOI: 10.3390/v13030499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
Human metapneumovirus (HMPV) is an important cause of upper and lower respiratory tract disease in individuals of all ages. It is estimated that most individuals will be infected by HMPV by the age of five years old. Despite this burden of disease, there remain caveats in our knowledge of global genetic diversity due to a lack of HMPV sequencing, particularly at the whole-genome scale. The purpose of this study was to create a simple and robust approach for HMPV whole-genome sequencing to be used for genomic epidemiological studies. To design our assay, all available HMPV full-length genome sequences were downloaded from the National Center for Biotechnology Information (NCBI) GenBank database and used to design four primer sets to amplify long, overlapping amplicons spanning the viral genome and, importantly, specific to all known HMPV subtypes. These amplicons were then pooled and sequenced on an Illumina iSeq 100 (Illumina, San Diego, CA, USA); however, the approach is suitable to other common sequencing platforms. We demonstrate the utility of this method using a representative subset of clinical samples and examine these sequences using a phylogenetic approach. Here we present an amplicon-based method for the whole-genome sequencing of HMPV from clinical extracts that can be used to better inform genomic studies of HMPV epidemiology and evolution.
Collapse
|
20
|
Baines SL, da Silva AG, Carter GP, Jennison A, Rathnayake I, Graham RM, Sintchenko V, Wang Q, Rockett RJ, Timms VJ, Martinez E, Ballard S, Tomita T, Isles N, Horan KA, Pitchers W, Stinear TP, Williamson DA, Howden BP, Seemann T. Complete microbial genomes for public health in Australia and the Southwest Pacific. Microb Genom 2020; 6:mgen000471. [PMID: 33180013 PMCID: PMC8116684 DOI: 10.1099/mgen.0.000471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Complete genomes of microbial pathogens are essential for the phylogenomic analyses that increasingly underpin core public health laboratory activities. Here, we announce a BioProject (PRJNA556438) dedicated to sharing complete genomes chosen to represent a range of pathogenic bacteria with regional importance to Australia and the Southwest Pacific; enriching the catalogue of globally available complete genomes for public health while providing valuable strains to regional public health microbiology laboratories. In this first step, we present 26 complete high-quality bacterial genomes. Additionally, we describe here a framework for reconstructing complete microbial genomes and highlight some of the challenges and considerations for accurate and reproducible genome reconstruction.
Collapse
Affiliation(s)
- Sarah L. Baines
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3001, Australia
| | - Anders Gonçalves da Silva
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3001, Australia
| | - Glen P. Carter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3001, Australia
| | - Amy Jennison
- Public Health Microbiology, Queensland Reference Centre for Microbial and Public Health Genomics, Forensic and Scientific Services, Queensland Department of Health, Archerfield, Queensland 4108, Australia
| | - Irani Rathnayake
- Public Health Microbiology, Queensland Reference Centre for Microbial and Public Health Genomics, Forensic and Scientific Services, Queensland Department of Health, Archerfield, Queensland 4108, Australia
| | - Rikki M. Graham
- Public Health Microbiology, Queensland Reference Centre for Microbial and Public Health Genomics, Forensic and Scientific Services, Queensland Department of Health, Archerfield, Queensland 4108, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital and NSW Health Pathology, Sydney, New South Wales 2145, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital and NSW Health Pathology, Sydney, New South Wales 2145, Australia
| | - Rebecca J. Rockett
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital and NSW Health Pathology, Sydney, New South Wales 2145, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Verlaine J. Timms
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital and NSW Health Pathology, Sydney, New South Wales 2145, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elena Martinez
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital and NSW Health Pathology, Sydney, New South Wales 2145, Australia
| | - Susan Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3001, Australia
| | - Takehiro Tomita
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3001, Australia
| | - Nicole Isles
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3001, Australia
| | - Kristy A. Horan
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3001, Australia
| | - William Pitchers
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3001, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3001, Australia
| | - Deborah A. Williamson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3001, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3001, Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3001, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3001, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3001, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3001, Australia
| | - Communicable Diseases Genomics Network (CDGN)
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3001, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3001, Australia
- Public Health Microbiology, Queensland Reference Centre for Microbial and Public Health Genomics, Forensic and Scientific Services, Queensland Department of Health, Archerfield, Queensland 4108, Australia
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital and NSW Health Pathology, Sydney, New South Wales 2145, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
21
|
Microbiological quality and Salmonella prevalence, serovar distribution and antimicrobial resistance associated with informal raw chicken processing in Accra, Ghana. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Plasmid-borne colistin resistance gene mcr-1 in a multidrug resistant Salmonella enterica serovar Typhimurium isolate from an infant with acute diarrhea in China. Int J Infect Dis 2020; 103:13-18. [PMID: 33212253 DOI: 10.1016/j.ijid.2020.11.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Antimicrobial resistance of Salmonella enterica is a major global concern. Recent findings suggest that colistin as a last resort treatment for multidrug-resistant gram-negative bacteria is seriously threatened by the report of plasmid-mediated colistin resistance gene mcr-1 in China. METHODS A total of 827 S. Typhimurium isolates were recovered from 4 cities of China, including Henan, Shanghai, Zhejiang, and Hubei provinces. Subsequently, mcr-1 presence was identified by PCR screening. Antimicrobial susceptibility testing was performed by broth microdilution using a 96-well microtiter plate. Plasmid conjugation transfer experiments were conducted using Escherichia coli J53 as the recipient. RESULTS Only one mcr-1 positive strain from the stool sample of an infant with acute diarrhea was isolated. Apart from colistin, the mcr-1-positive isolate showed co-resistance to the third-generation cephalosporins, ampicillin, nalidixic acid, tetracycline, chloramphenicol, sulfisoxazole, gentamicin, and cefotaxime revealing a multidrug-resistant phenotype. This strain harbored mcr-1 on a 227 kb IncHI2 plasmid, termed pJZ26, which could be transferred to E. coli J53. In addition to mcr-1, pJZ26 coharbored other resistance genes, including aph(4)-Ia, aac(3)-IVa, fosA, floR, sul2, and blaCTX-M-14. Compared with p2474-MCR1 and pHYEC7-IncHI2, pJZ26 contains an additional 4.6 kb fragment harboring the resistance gene tet(A) and its regulator tetR located on TnAs1 transposable element, which could mediate resistance to tetracycline. CONCLUSIONS These findings highlight that the fact the mcr-1-harboring plasmid pJZ26 has a high potential to disseminate the mcr-1 gene and further challenge the clinical treatment.
Collapse
|
23
|
Monte DFM, Sellera FP, Lopes R, Keelara S, Landgraf M, Greene S, Fedorka-Cray PJ, Thakur S. Class 1 integron-borne cassettes harboring blaCARB-2 gene in multidrug-resistant and virulent Salmonella Typhimurium ST19 strains recovered from clinical human stool samples, United States. PLoS One 2020; 15:e0240978. [PMID: 33125394 PMCID: PMC7598458 DOI: 10.1371/journal.pone.0240978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
International lineages, such as Salmonella Typhimurium sequence type (ST) 19, are most often associated with foodborne diseases and deaths in humans. In this study, we compared the whole-genome sequences of five S. Typhimurium strains belonging to ST19 recovered from clinical human stool samples in North Carolina, United States. Overall, S. Typhimurium strains displayed multidrug-resistant profile, being resistance to critically and highly important antimicrobials including ampicillin, ticarcillin/clavulanic acid, streptomycin and sulfisoxazole, chloramphenicol, tetracycline, respectively. Interestingly, all S. Typhimurium strains carried class 1 integron (intl1) and we were able to describe two genomic regions surrounding blaCARB-2 gene, size 4,062 bp and 4,422 bp for S. Typhimurium strains (HS5344, HS5437, and HS5478) and (HS5302 and HS5368), respectively. Genomic analysis for antimicrobial resistome confirmed the presence of clinically important genes, including blaCARB-2, aac(6')-Iaa, aadA2b, sul1, tetG, floR, and biocide resistance genes (qacEΔ1). S. Typhimurium strains harbored IncFIB plasmid containing spvRABCD operon, as well as rck and pef virulence genes, which constitute an important apparatus for spreading the virulence plasmid. In addition, we identified several virulence genes, chromosomally located, while the phylogenetic analysis revealed clonal relatedness among these strains with S. enterica isolated from human and non-human sources obtained in European and Asian countries. Our results provide new insights into this unusual class 1 integron in virulent S. Typhimurium strains that harbors a pool of genes acting as potential hotspots for horizontal gene transfer providing readily adaptation to new surrounds, as well as being crucially required for virulence in vivo. Therefore, continuous genomic surveillance is an important tool for safeguarding human health.
Collapse
Affiliation(s)
- Daniel F. M. Monte
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Fábio P. Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ralf Lopes
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Shivaramu Keelara
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Mariza Landgraf
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Shermalyn Greene
- Department of Health and Human Services, Molecular Diagnostic and Epidemiology Laboratory Unit at State Laboratory of Public Health, Division of Public Health, Raleigh, North Carolina, United States of America
| | - Paula J. Fedorka-Cray
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
24
|
Sarichai P, Buddhasiri S, Walters GE, Khantawa B, Kaewsakhorn T, Chantarasakha K, Tepaamorndech S, Thiennimitr P. Pathogenicity of clinical Salmonella enterica serovar Typhimurium isolates from Thailand in a mouse colitis model. Microbiol Immunol 2020; 64:679-693. [PMID: 32803887 DOI: 10.1111/1348-0421.12837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium [STM]) is a leading cause of nontyphoidal salmonellosis (NTS) worldwide. The pathogenesis of NTS has been studied extensively using a streptomycin-pretreated mouse colitis model with the limited numbers of laboratory STM strains. However, the pathogenicity of the clinically isolated STM (STMC) strains endemic in Thailand in mice has not been explored. The aim of this study was to compare the pathogenicity of STMC strains collected from Northern Thailand with the laboratory STM (IR715) in mice. Five STMC isolates were obtained from the stool cultures of patients with acute NTS admitted to Maharaj Nakorn Chiang Mai Hospital in 2016 and 2017. Detection of virulence genes and sequence type (ST) of the strains was performed. Female C57BL/6 mice were pretreated with streptomycin sulfate 1 day prior to oral infection with STM. On Day 4 postinfection, mice were euthanized, and tissues were collected to analyze the bacterial numbers, tissue inflammation, and cecal histopathological score. We found that all five STMC strains are ST34 and conferred the same or reduced pathogenicity compared with that of IR715 in mice. A strain-specific effect of ST34 on mouse gut colonization was also observed. Thailand STM ST34 exhibited a significant attenuated systemic infection in mice possibly due to the lack of spvABC-containing virulence plasmid.
Collapse
Affiliation(s)
- Phinitphong Sarichai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Songphon Buddhasiri
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Georgia E Walters
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Health and Medicine, University of Manchester, Manchester, UK
| | - Banyong Khantawa
- Diagnostic Laboratory, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thattawan Kaewsakhorn
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanittha Chantarasakha
- Division of Food Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Surapun Tepaamorndech
- Division of Food Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
25
|
Jibril AH, Okeke IN, Dalsgaard A, Kudirkiene E, Akinlabi OC, Bello MB, Olsen JE. Prevalence and risk factors of Salmonella in commercial poultry farms in Nigeria. PLoS One 2020; 15:e0238190. [PMID: 32966297 PMCID: PMC7510976 DOI: 10.1371/journal.pone.0238190] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
Salmonella is an important human pathogen and poultry products constitute an important source of human infections. This study investigated prevalence; identified serotypes based on whole genome sequence, described spatial distribution of Salmonella serotypes and predicted risk factors that could influence the prevalence of Salmonella infection in commercial poultry farms in Nigeria. A cross sectional approach was employed to collect 558 pooled shoe socks and dust samples from 165 commercial poultry farms in North West Nigeria. On-farm visitation questionnaires were administered to obtain information on farm management practices in order to assess risk factors for Salmonella prevalence. Salmonella was identified by culture, biotyping, serology and polymerase chain reaction (PCR). PCR confirmed isolates were paired-end Illumina- sequenced. Following de novo genome assembly, draft genomes were used to obtain serotypes by SeqSero2 and SISTR pipeline and sequence types by SISTR and Enterobase. Risk factor analysis was performed using the logit model. A farm prevalence of 47.9% (CI95 [40.3-55.5]) for Salmonella was observed, with a sample level prevalence of 15.9% (CI95 [12.9-18.9]). Twenty-three different serotypes were identified, with S. Kentucky and S. Isangi as the most prevalent (32.9% and 11%). Serotypes showed some geographic variation. Salmonella detection was strongly associated with disposal of poultry waste and with presence of other livestock on the farm. Salmonella was commonly detected on commercial poultry farms in North West Nigeria and S. Kentucky was found to be ubiquitous in the farms.
Collapse
Affiliation(s)
- Abdurrahman Hassan Jibril
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egle Kudirkiene
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olabisi Comfort Akinlabi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Muhammad Bashir Bello
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Patchanee P, Tanamai P, Tadee P, Hitchings MD, Calland JK, Sheppard SK, Meunsene D, Pascoe B, Tadee P. Whole-genome characterisation of multidrug resistant monophasic variants of Salmonella Typhimurium from pig production in Thailand. PeerJ 2020. [DOI: 10.7717/peerj.9700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background
Monophasic Salmonella Typhimurium or S. enterica 1,4,[5],12:i:- is among the top five serotypes reported in Thailand. In this study, nineteen monophasic S. Typhimurium from the pig production chain in Chiang Mai and Lamphun provinces during 2011–2014 were sequenced and compared to a globally disseminated clone. Isolates were probed in silico for the presence of antimicrobial resistance genes and Salmonella virulence factors, including Pathogenicity Islands.
Results
All isolates were from sequence type 34 (ST-34) and clustered similarly in core and pangenome genealogies. The two closest related isolates showed differences in only eighteen loci from whole-genome multilocus sequence typing analysis. All 19 isolates carried aminoglycoside and beta-lactam class resistance genes and genes for five or more different antibiotic classes. Seven out of 14 known SPIs were detected, including SPI-5, SPI-13 and SPI-14, which were detected in all isolates.
Conclusions
The multi-drug resistant clone, ST-34 was sampled at all stages of pork production. This clone has infiltrated global agricultural processes and poses a significant public health risk. Differences in the core and accessory genomes of the isolates we collected suggest that strains persist though the pork production process, with evidence of mutation within the core-genome and horizontal acquisition of genes, potentially via sharing of pathogenicity islands and plasmids. This highlights the importance of surveillance and targeted intervention measures to successfully control Salmonella contamination.
Collapse
Affiliation(s)
- Prapas Patchanee
- Integrative Research Center for Veterinary Preventive Medicine, Department of Food and Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prawitchaya Tanamai
- Integrative Research Center for Veterinary Preventive Medicine, Department of Food and Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phacharaporn Tadee
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai, Thailand
| | | | - Jessica K. Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dethaloun Meunsene
- Department of Veterinary Medicine, Faculty of Agriculture, National University of Laos, Vientiane, Loas PDR
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Pakpoom Tadee
- Integrative Research Center for Veterinary Preventive Medicine, Department of Food and Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
27
|
Prospective Salmonella Enteritidis surveillance and outbreak detection using whole genome sequencing, Minnesota 2015-2017. Epidemiol Infect 2020; 148:e254. [PMID: 32539900 PMCID: PMC7689598 DOI: 10.1017/s0950268820001272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clusters of Salmonella Enteritidis cases were identified by the Minnesota Department of Health using both pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) single nucleotide polymorphism analysis from 1 January 2015 through 31 December 2017. The median turnaround time for obtaining WGS results was 11 days longer than for PFGE (12 vs. 1 day). WGS analysis more than doubled the number of clusters compared to PFGE analysis, but reduced the total number of cases included in clusters by 34%. The median cluster size was two cases for WGS compared to four for PFGE, and the median duration of WGS clusters was 27 days shorter than PFGE clusters. While the percentage of PFGE clusters with a confirmed source (46%) was higher than WGS clusters (32%), a higher percentage of cases in clusters that were confirmed as outbreaks reported the vehicle or exposure of interest for WGS (78%) than PFGE (46%). WGS cluster size was a significant predictor of an outbreak source being confirmed. WGS data have enhanced S. Enteritidis cluster investigations in Minnesota by improving the specificity of cluster case definitions and has become an integral part of the S. Enteritidis surveillance process.
Collapse
|
28
|
Merlotti A, Manfreda G, Munck N, Hald T, Litrup E, Nielsen EM, Remondini D, Pasquali F. Network Approach to Source Attribution of Salmonella enterica Serovar Typhimurium and Its Monophasic Variant. Front Microbiol 2020; 11:1205. [PMID: 34354676 PMCID: PMC8335978 DOI: 10.3389/fmicb.2020.01205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/12/2020] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica subspecies enterica serovar Typhimurium and its monophasic variant are among the most common Salmonella serovars associated with human salmonellosis each year. Related infections are often due to consumption of contaminated meat of pig, cattle, and poultry origin. In order to evaluate novel microbial subtyping methods for source attribution, an approach based on weighted networks was applied on 141 human and 210 food and animal isolates of pigs, broilers, layers, ducks, and cattle collected in Denmark from 2013 to 2014. A whole-genome SNP calling was performed along with cgMLST and wgMLST. Based on these genomic input data, pairwise distance matrices were built and used as input for construction of a weighted network where nodes represent genomes and links to distances. Analyzing food and animal Typhimurium genomes, the coherence of source clustering ranged from 89 to 90% for animal source, from 84 to 85% for country, and from 63 to 65% for year of isolation and was equal to 82% for serotype, suggesting animal source as the first driver of clustering formation. Adding human isolate genomes to the network, a percentage between 93.6 and 97.2% clustered with the existing component and only a percentage between 2.8 and 6.4% appeared as not attributed to any animal sources. The majority of human genomes were attributed to pigs with probabilities ranging from 83.9 to 84.5%, followed by broilers, ducks, cattle, and layers in descending order. In conclusion, a weighted network approach based on pairwise SNPs, cgMLST, and wgMLST matrices showed promising results for source attribution studies.
Collapse
Affiliation(s)
- Alessandra Merlotti
- Department of Physics and Astronomy, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Gerardo Manfreda
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Nanna Munck
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Tine Hald
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Eva Litrup
- Statens Serum Institute, Copenhagen, Denmark
| | | | - Daniel Remondini
- Department of Physics and Astronomy, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Frédérique Pasquali
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
29
|
Bawn M, Alikhan NF, Thilliez G, Kirkwood M, Wheeler NE, Petrovska L, Dallman TJ, Adriaenssens EM, Hall N, Kingsley RA. Evolution of Salmonella enterica serotype Typhimurium driven by anthropogenic selection and niche adaptation. PLoS Genet 2020; 16:e1008850. [PMID: 32511244 PMCID: PMC7302871 DOI: 10.1371/journal.pgen.1008850] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/18/2020] [Accepted: 05/12/2020] [Indexed: 12/25/2022] Open
Abstract
Salmonella enterica serotype Typhimurium (S. Typhimurium) is a leading cause of gastroenteritis and bacteraemia worldwide, and a model organism for the study of host-pathogen interactions. Two S. Typhimurium strains (SL1344 and ATCC14028) are widely used to study host-pathogen interactions, yet genotypic variation results in strains with diverse host range, pathogenicity and risk to food safety. The population structure of diverse strains of S. Typhimurium revealed a major phylogroup of predominantly sequence type 19 (ST19) and a minor phylogroup of ST36. The major phylogroup had a population structure with two high order clades (α and β) and multiple subclades on extended internal branches, that exhibited distinct signatures of host adaptation and anthropogenic selection. Clade α contained a number of subclades composed of strains from well characterized epidemics in domesticated animals, while clade β contained multiple subclades associated with wild avian species. The contrasting epidemiology of strains in clade α and β was reflected by the distinct distribution of antimicrobial resistance (AMR) genes, accumulation of hypothetically disrupted coding sequences (HDCS), and signatures of functional diversification. These observations were consistent with elevated anthropogenic selection of clade α lineages from adaptation to circulation in populations of domesticated livestock, and the predisposition of clade β lineages to undergo adaptation to an invasive lifestyle by a process of convergent evolution with of host adapted Salmonella serotypes. Gene flux was predominantly driven by acquisition and recombination of prophage and associated cargo genes, with only occasional loss of these elements. The acquisition of large chromosomally-encoded genetic islands was limited, but notably, a feature of two recent pandemic clones (DT104 and monophasic S. Typhimurium ST34) of clade α (SGI-1 and SGI-4).
Collapse
Affiliation(s)
- Matt Bawn
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Gaëtan Thilliez
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Mark Kirkwood
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Nicole E. Wheeler
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Timothy J. Dallman
- Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| | | | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Robert A. Kingsley
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
30
|
Egorova SA, Kaftyreva LA, Pomazanov VV. [Current trends in the development of resistance to clinically significant antibiotics in Salmonella (review of literature).]. Klin Lab Diagn 2020; 65:308-315. [PMID: 32298548 DOI: 10.18821/0869-2084-2020-65-5-308-315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 11/17/2022]
Abstract
Salmonella is one of the leading bacterial pathogens of acute diarrhea as well as foodborne outbreaks. Salmonellosis can occur as gastroenteritis with the development of complications and generalization of infection, also the extra intestinal diseases that require antibiotic therapy are often registered. Currently, the effectiveness of many antibiotics is reduced due to the development of resistance in Salmonella. National Salmonella surveillance systems monitor Salmonella resistance to «critically important for medicine» antibiotics (extended-spectrum cephalosporins and fluoroquinolones), as well as multidrug resistance. Quinoloneresistant Salmonella is considered as a high-priority resitant pathogen by the World Health Organization. The article describes the current situation on salmonellosis in the world. Foreign and Russian current data about the leading Salmonella serotypes in different regions of the world are presented. The prevalence of clinically significant resistance depending of the Salmonella serotypes in countries with state monitoring systems is shown. The authors described the leading molecular resistance mechanisms (chromosomal and plasmid mediated) and showed their prevalence in different Salmonella serotypes. The article gives the information about Salmonella successful international multidrug resistant clones with specific resistance phenotypes and genotypes. The authors describe the molecular methods for detection of resistance mechanisms, and show the necessity and significance of antimicrobial susceptibility monitoring in the epidemiological Salmonella surveillance.
Collapse
Affiliation(s)
- S A Egorova
- Saint-Petersburg Pasteur Institute, 197101, Saint-Petersburg, Russia
| | - L A Kaftyreva
- Saint-Petersburg Pasteur Institute, 197101, Saint-Petersburg, Russia.,State Educational Institution of the Higher Professional Education «North-Western state medical University n.a. I.I. Mechnikov» of the Ministry of Health of the Russian Federation, 191015, Saint-Petersburg, Russia
| | - V V Pomazanov
- State University of Humanities and Technology, 142611, Orekhovo-Zuyevo, Moscow region
| |
Collapse
|
31
|
Goig GA, Blanco S, Garcia-Basteiro AL, Comas I. Contaminant DNA in bacterial sequencing experiments is a major source of false genetic variability. BMC Biol 2020; 18:24. [PMID: 32122347 PMCID: PMC7053099 DOI: 10.1186/s12915-020-0748-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Contaminant DNA is a well-known confounding factor in molecular biology and in genomic repositories. Strikingly, analysis workflows for whole-genome sequencing (WGS) data commonly do not account for errors potentially introduced by contamination, which could lead to the wrong assessment of allele frequency both in basic and clinical research. Results We used a taxonomic filter to remove contaminant reads from more than 4000 bacterial samples from 20 different studies and performed a comprehensive evaluation of the extent and impact of contaminant DNA in WGS. We found that contamination is pervasive and can introduce large biases in variant analysis. We showed that these biases can result in hundreds of false positive and negative SNPs, even for samples with slight contamination. Studies investigating complex biological traits from sequencing data can be completely biased if contamination is neglected during the bioinformatic analysis, and we demonstrate that removing contaminant reads with a taxonomic classifier permits more accurate variant calling. We used both real and simulated data to evaluate and implement reliable, contamination-aware analysis pipelines. Conclusion As sequencing technologies consolidate as precision tools that are increasingly adopted in the research and clinical context, our results urge for the implementation of contamination-aware analysis pipelines. Taxonomic classifiers are a powerful tool to implement such pipelines.
Collapse
Affiliation(s)
- Galo A Goig
- Institute of Biomedicine of Valencia, IBV-CSIC, St. Jaume Roig 11, 46010, Valencia, Spain.
| | - Silvia Blanco
- Centro de Investigaçao em Saúde de Manhiça (CISM), Bairro Cambeve, Rua 12, Distrito da Manhiça, 1929, Maputo, Mozambique
| | - Alberto L Garcia-Basteiro
- Centro de Investigaçao em Saúde de Manhiça (CISM), Bairro Cambeve, Rua 12, Distrito da Manhiça, 1929, Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Iñaki Comas
- Institute of Biomedicine of Valencia, IBV-CSIC, St. Jaume Roig 11, 46010, Valencia, Spain.,CIBER in Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
32
|
Epidemiology of Salmonella enterica Serovar Dublin in Cattle and Humans in Denmark, 1996 to 2016: a Retrospective Whole-Genome-Based Study. Appl Environ Microbiol 2020; 86:AEM.01894-19. [PMID: 31732576 DOI: 10.1128/aem.01894-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/08/2019] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica serovar Dublin is a cattle-adapted S. enterica serovar causing both intestinal and systemic infection in its bovine host, and it is also a serious threat to human health. The present study aimed to determine the population structure of S Dublin isolates obtained from Danish cattle herds and to investigate how cattle isolates relate to Danish human isolates, as well as to non-Danish human and bovine isolates. Phylogenetic analysis of 197 Danish cattle isolates from 1996 to 2016 identified three major clades corresponding to distinct geographical regions of cattle herds. Persistence of closely related isolates within the same herd and their circulation between epidemiologically linked herds for a period of more than 20 years were demonstrated. These findings suggest that a lack of internal biosecurity and, to some extent, also a lack of external biosecurity in the herds have played an important role in the long-term persistence of S Dublin in Danish cattle herds in the period investigated. Global population analysis revealed that Danish cattle isolates clustered separately from bovine isolates from other countries, whereas human isolates were geographically spread. Resistance genes were not commonly demonstrated in Danish bovine isolates; only the isolates within one Danish clade were found to often harbor two plasmids of IncFII/IncFIB and IncN types, the latter plasmid carrying bla TEM-1, tetA, strA, and strB antibiotic resistance genes.IMPORTANCE S Dublin causes economic losses in cattle production, and the bacterium is a public health concern. A surveillance and control program has been in place in Denmark since 2002 with the ultimate goal to eradicate S Dublin from Danish cattle herds; however, a small proportion of herds have remained positive for many years. In this study, we demonstrate that herds with persistent infection often were infected with the same strain for many years, indicating that internal biosecurity has to be improved to curb the infection. Further, domestic cases of S Dublin infection in humans were found to be caused both by Danish cattle isolates and by isolates acquired abroad. This study shows the strength of whole-genome sequencing to obtain detailed information on epidemiology of S Dublin and allows us to suggest internal biosecurity as a main way to control this bacterium in Danish cattle herds.
Collapse
|
33
|
Xie X, Wang Z, Zhang K, Li Y, Hu Y, Pan Z, Chen X, Li Q, Jiao X. Pig as a reservoir of CRISPR type TST4 Salmonella enterica serovar Typhimurium monophasic variant during 2009-2017 in China. Emerg Microbes Infect 2019; 9:1-4. [PMID: 31859589 PMCID: PMC6968585 DOI: 10.1080/22221751.2019.1699450] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/02/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
CRISPR-based typing was performed to subtype isolates of S. Typhimurium and its monophasic variant Salmonella 4,[5],12:i:- from humans and animals between 2009 and 2017 in China. CRISPR typing classified all isolates into two lineages and four sub-lineages. All isolates from Lineage II and Lineage IB-1 were Salmonella Typhimurium. All of Salmonella 4,[5],12:i: - isolates were distributed in Lineage IA and Lineage IB-2, which all belonged to ST34 by MLST typing. Only Lineage IB-2 contained ST34 isolates from both Salmonella Typhimurium and Salmonella 4,[5],12:i:-. Among the isolates of ST34, TST4 was identified as the most common CRISPR type representing 86.5% of Salmonella 4,[5],12:i:- and 14.5 % of Salmonella Typhimurium mainly from pigs and humans. This study demonstrated that TST4-ST34 isolates were predominant in Salmonella 4,[5],12:i:-, and pig was the main reservoir for Salmonella 4,[5],12:i:- in China, which might have the potential to transmit to humans by pig production.
Collapse
Affiliation(s)
- Xiaolei Xie
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Zhenyu Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Kai Zhang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yang Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yachen Hu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Zhiming Pan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiang Chen
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
34
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jenkins C, Malorny B, Ribeiro Duarte AS, Torpdahl M, da Silva Felício MT, Guerra B, Rossi M, Herman L. Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J 2019; 17:e05898. [PMID: 32626197 PMCID: PMC7008917 DOI: 10.2903/j.efsa.2019.5898] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This Opinion considers the application of whole genome sequencing (WGS) and metagenomics for outbreak investigation, source attribution and risk assessment of food‐borne pathogens. WGS offers the highest level of bacterial strain discrimination for food‐borne outbreak investigation and source‐attribution as well as potential for more precise hazard identification, thereby facilitating more targeted risk assessment and risk management. WGS improves linking of sporadic cases associated with different food products and geographical regions to a point source outbreak and can facilitate epidemiological investigations, allowing also the use of previously sequenced genomes. Source attribution may be favoured by improved identification of transmission pathways, through the integration of spatial‐temporal factors and the detection of multidirectional transmission and pathogen–host interactions. Metagenomics has potential, especially in relation to the detection and characterisation of non‐culturable, difficult‐to‐culture or slow‐growing microorganisms, for tracking of hazard‐related genetic determinants and the dynamic evaluation of the composition and functionality of complex microbial communities. A SWOT analysis is provided on the use of WGS and metagenomics for Salmonella and Shigatoxin‐producing Escherichia coli (STEC) serotyping and the identification of antimicrobial resistance determinants in bacteria. Close agreement between phenotypic and WGS‐based genotyping data has been observed. WGS provides additional information on the nature and localisation of antimicrobial resistance determinants and on their dissemination potential by horizontal gene transfer, as well as on genes relating to virulence and biological fitness. Interoperable data will play a major role in the future use of WGS and metagenomic data. Capacity building based on harmonised, quality controlled operational systems within European laboratories and worldwide is essential for the investigation of cross‐border outbreaks and for the development of international standardised risk assessments of food‐borne microorganisms.
Collapse
|
35
|
Kijima M, Shirakawa T, Uchiyama M, Kawanishi M, Ozawa M, Koike R. Trends in the serovar and antimicrobial resistance in clinical isolates of Salmonella enterica from cattle and pigs between 2002 and 2016 in Japan. J Appl Microbiol 2019; 127:1869-1875. [PMID: 31461201 DOI: 10.1111/jam.14431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 11/29/2022]
Abstract
AIMS Given the significance of Salmonella enterica in both human and animal health, and a recent global dissemination of Salmonella 4,[5],12:i:-, changes in the prevalent serovars and antimicrobial resistance in clinical isolates of Salmonella from cattle and pigs were investigated in Japan. METHODS AND RESULTS The serovars and antimicrobial susceptibilities of 1605 Salmonella enterica isolated from cattle (n = 894) and swine (n = 711) between 2002 and 2016 were examined. The most common serovar among all samples was Salmonella Typhimurium. However, its monophasic variant with antigenic structure S. 4,[5],12:i:-, which was first detected in cattle in 2006 and swine in 2010, has been rapidly increasing in incidence and resistance. Resistance rates to cefotaxime and ciprofloxacin were generally low (<10% in the cattle isolates and <5% in the swine isolates); however, isolates resistant to more than five antimicrobials, which often include these antimicrobials, were recently detected in Salmonella Dublin, S. 4,[5],12:i:-, S. Typhimurium, Salmonella Newport, Salmonella Choleraesuis and Salmonella 6,7:c:-. Among them, two S. 4,[5],12:i:- isolates possessed extended-spectrum β-lactamase-encoding genes; blaSHV-12 or blaCTX-M-55 , respectively, while all the five S. Typhimurium isolates possessed AmpC-type β-lactamase gene of blaCMY-2 . CONCLUSIONS S. 4,[5],12:i:- has been rapidly increasing and exhibiting a remarkable change in antimicrobial resistance in Japan. Considering certain serovars are characterized by multidrug resistance including medically important antimicrobials, continuous monitoring and appropriate measures are required to protect public health and veterinary husbandry. SIGNIFICANCE AND IMPACT OF THE STUDY This study presents a trend in the serovars and antimicrobial resistance in clinical isolates of Salmonella from cattle and pigs in Japan, and showed that there were certain types of Salmonella serovars depending on the animal origin which needs more attention.
Collapse
Affiliation(s)
- M Kijima
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1, Tokura, Kokubunji, 185-8511, Japan
| | - T Shirakawa
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1, Tokura, Kokubunji, 185-8511, Japan
| | - M Uchiyama
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1, Tokura, Kokubunji, 185-8511, Japan
| | - M Kawanishi
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1, Tokura, Kokubunji, 185-8511, Japan
| | - M Ozawa
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1, Tokura, Kokubunji, 185-8511, Japan
| | - R Koike
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1, Tokura, Kokubunji, 185-8511, Japan
| |
Collapse
|
36
|
Van Goethem N, Descamps T, Devleesschauwer B, Roosens NHC, Boon NAM, Van Oyen H, Robert A. Status and potential of bacterial genomics for public health practice: a scoping review. Implement Sci 2019; 14:79. [PMID: 31409417 PMCID: PMC6692930 DOI: 10.1186/s13012-019-0930-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/26/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is increasingly being translated into routine public health practice, affecting the surveillance and control of many pathogens. The purpose of this scoping review is to identify and characterize the recent literature concerning the application of bacterial pathogen genomics for public health practice and to assess the added value, challenges, and needs related to its implementation from an epidemiologist's perspective. METHODS In this scoping review, a systematic PubMed search with forward and backward snowballing was performed to identify manuscripts in English published between January 2015 and September 2018. Included studies had to describe the application of NGS on bacterial isolates within a public health setting. The studied pathogen, year of publication, country, number of isolates, sampling fraction, setting, public health application, study aim, level of implementation, time orientation of the NGS analyses, and key findings were extracted from each study. Due to a large heterogeneity of settings, applications, pathogens, and study measurements, a descriptive narrative synthesis of the eligible studies was performed. RESULTS Out of the 275 included articles, 164 were outbreak investigations, 70 focused on strategy-oriented surveillance, and 41 on control-oriented surveillance. Main applications included the use of whole-genome sequencing (WGS) data for (1) source tracing, (2) early outbreak detection, (3) unraveling transmission dynamics, (4) monitoring drug resistance, (5) detecting cross-border transmission events, (6) identifying the emergence of strains with enhanced virulence or zoonotic potential, and (7) assessing the impact of prevention and control programs. The superior resolution over conventional typing methods to infer transmission routes was reported as an added value, as well as the ability to simultaneously characterize the resistome and virulome of the studied pathogen. However, the full potential of pathogen genomics can only be reached through its integration with high-quality contextual data. CONCLUSIONS For several pathogens, it is time for a shift from proof-of-concept studies to routine use of WGS during outbreak investigations and surveillance activities. However, some implementation challenges from the epidemiologist's perspective remain, such as data integration, quality of contextual data, sampling strategies, and meaningful interpretations. Interdisciplinary, inter-sectoral, and international collaborations are key for an appropriate genomics-informed surveillance.
Collapse
Affiliation(s)
- Nina Van Goethem
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Epidemiology and Biostatistics, Institut de recherche expérimentale et clinique, Faculty of Public Health, Université catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Woluwe-Saint-Lambert, Belgium
| | - Tine Descamps
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Brecht Devleesschauwer
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Nele A. M. Boon
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Herman Van Oyen
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Public Health and Primary Care, Faculty of Medicine, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Annie Robert
- Department of Epidemiology and Biostatistics, Institut de recherche expérimentale et clinique, Faculty of Public Health, Université catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Woluwe-Saint-Lambert, Belgium
| |
Collapse
|
37
|
Roschanski N, Hadziabdic S, Borowiak M, Malorny B, Tenhagen BA, Projahn M, Kaesbohrer A, Guenther S, Szabo I, Roesler U, Fischer J. Detection of VIM-1-Producing Enterobacter cloacae and Salmonella enterica Serovars Infantis and Goldcoast at a Breeding Pig Farm in Germany in 2017 and Their Molecular Relationship to Former VIM-1-Producing S. Infantis Isolates in German Livestock Production. mSphere 2019; 4:e00089-19. [PMID: 31189558 PMCID: PMC6563352 DOI: 10.1128/msphere.00089-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/23/2019] [Indexed: 01/30/2023] Open
Abstract
In 2011, VIM-1-producing Salmonella enterica serovar Infantis and Escherichia coli were isolated for the first time in four German livestock farms. In 2015/2016, highly related isolates were identified in German pig production. This raised the issue of potential reservoirs for these isolates, the relation of their mobile genetic elements, and potential links between the different affected farms/facilities. In a piglet-producing farm suspicious for being linked to some blaVIM-1 findings in Germany, fecal and environmental samples were examined for the presence of carbapenemase-producing Enterobacteriaceae and Salmonella spp. Newly discovered isolates were subjected to Illumina whole-genome sequencing (WGS) and S1 pulsed-field gel electrophoresis (PFGE) hybridization experiments. WGS data of these isolates were compared with those for the previously isolated VIM-1-producing Salmonella Infantis isolates from pigs and poultry. Among 103 samples, one Salmonella Goldcoast isolate, one Salmonella Infantis isolate, and one Enterobacter cloacae isolate carrying the blaVIM-1 gene were detected. Comparative WGS analysis revealed that the blaVIM-1 gene was part of a particular Tn21-like transposable element in all isolates. It was located on IncHI2 (ST1) plasmids of ∼290 to 300 kb with a backbone highly similar (98 to 100%) to that of reference pSE15-SA01028. SNP analysis revealed a close relationship of all VIM-1-positive S Infantis isolates described since 2011. The findings of this study demonstrate that the occurrence of the blaVIM-1 gene in German livestock is restricted neither to a certain bacterial species nor to a certain Salmonella serovar but is linked to a particular Tn21-like transposable element located on transferable pSE15-SA01028-like IncHI2 (ST1) plasmids, being present in all of the investigated isolates from 2011 to 2017.IMPORTANCE Carbapenems are considered one of few remaining treatment options against multidrug-resistant Gram-negative pathogens in human clinical settings. The occurrence of carbapenemase-producing Enterobacteriaceae in livestock and food is a major public health concern. Particularly the occurrence of VIM-1-producing Salmonella Infantis in livestock farms is worrisome, as this zoonotic pathogen is one of the main causes for human salmonellosis in Europe. Investigations on the epidemiology of those carbapenemase-producing isolates and associated mobile genetic elements through an in-depth molecular characterization are indispensable to understand the transmission of carbapenemase-producing Enterobacteriaceae along the food chain and between different populations to develop strategies to prevent their further spread.
Collapse
Affiliation(s)
- Nicole Roschanski
- Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany
| | - Sead Hadziabdic
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - Maria Borowiak
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - Burkhard Malorny
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - Bernd-Alois Tenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - Michaela Projahn
- Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany
| | - Annemarie Kaesbohrer
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
- Institute of Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Sebastian Guenther
- Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany
| | - Istvan Szabo
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany
| | - Jennie Fischer
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| |
Collapse
|
38
|
Bosilevac JM, Zhilyaev S, Wang R, Luedtke BE, Wheeler TL, Koohmaraie M. Prevalence and Characterization of Salmonella Present during Veal Harvest. J Food Prot 2019; 82:775-784. [PMID: 30986365 DOI: 10.4315/0362-028x.jfp-18-478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Beef and veal products have been vehicles implicated in the transmission of Salmonella enterica, a gastroenteritis-causing bacteria. Recent regulatory samples collected from veal have indicated bob veal, or calves harvested within days of birth, have higher rates of Salmonella than samples collected from formula-fed veal, or calves raised 20 weeks on milk replacer formula before harvest. To investigate this problem, we collected samples from veal calf hides, preevisceration carcasses, and final carcasses at five veal processors that harvested bob or formula-fed veal or both. Prevalence and concentrations of Salmonella were determined, and then the isolates were characterized for serovar and antibiotic susceptibility. Salmonella was more prevalent (P < 0.05) among bob veal than formula-fed veal hides, preevisceration carcasses, and final carcass (84.2 versus 15.6%, 62.8 versus 10.1%, and 12.0 versus 0.4%, respectively). Concentrations of Salmonella could be estimated by using regression order statistics on hides and preevisceration carcasses at two veal plants, with one harvesting bob veal and the other bob and formula-fed veal. The concentration of Salmonella on bob veal hides at the plants was 1.45 ± 0.70 and 2.04 ± 1.00 log CFU/100 cm2, greater (P < 0.05) than on formula-fed veal hides, which was 1.10 ± 1.51 log CFU/100 cm2. Concentrations on carcasses, however, were very low. Seventeen Salmonella serovars were identified among 710 isolates. Salmonella serovars London, Cerro, and Muenster were most common to bob veal and made up 50.7, 18.7, and 6.3% of the isolates, respectively, while serovar Montevideo (6.8% of isolates) was most common to formula-fed veal. Although bob veal had increased prevalence and concentrations of Salmonella, one group of formula-fed veal was found to harbor human disease-related antibiotic-resistant Salmonella serovars Heidelberg and the monophasic variant of Typhimurium (1,4,[5],12:i:-). Veal processors have made changes to improve the safety of veal, but further efforts are necessary from both bob and formula-fed veal to address Salmonella.
Collapse
Affiliation(s)
- Joseph M Bosilevac
- 1 U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, Nebraska 68933 (ORCID: https://orcid.org/0000-0002-0258-6581 [J.M.B.]; https://orcid.org/0000-0003-1924-3275 [R.W.]; https://orcid.org/0000-0002-6571-9097 [T.L.W.])
| | - Samson Zhilyaev
- 2 Virginia Polytechnic Institute and State University, 1145 Perry Street, Blacksburg, Virginia 24061
| | - Rong Wang
- 1 U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, Nebraska 68933 (ORCID: https://orcid.org/0000-0002-0258-6581 [J.M.B.]; https://orcid.org/0000-0003-1924-3275 [R.W.]; https://orcid.org/0000-0002-6571-9097 [T.L.W.])
| | - Brandon E Luedtke
- 3 University of Nebraska Kearney, 2401 11th Avenue, Kearney, Nebraska 68849 (ORCID: https://orcid.org/0000-0003-3349-3270 [B.E.L.])
| | - Tommy L Wheeler
- 1 U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, Nebraska 68933 (ORCID: https://orcid.org/0000-0002-0258-6581 [J.M.B.]; https://orcid.org/0000-0003-1924-3275 [R.W.]; https://orcid.org/0000-0002-6571-9097 [T.L.W.])
| | - Mohammad Koohmaraie
- 4 IEH Laboratories and Consulting Group, 15300 Bothell Way N.E., Lake Forest Park, Washington 98155, USA
| |
Collapse
|
39
|
Tiba-Casas MR, Sacchi CT, Gonçalves CR, Almeida EA, Soares FB, de Jesus Bertani AM, Fernandes SA, de Paula Eduardo MB, Camargo CH. Molecular analysis of clonally related Salmonella Typhi recovered from epidemiologically unrelated cases of typhoid fever, Brazil. Int J Infect Dis 2019; 81:191-195. [PMID: 30849581 DOI: 10.1016/j.ijid.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The primary method of molecular subtyping for the identification and investigation of outbreaks has been pulsed-field gel electrophoresis (PFGE). In some cases, this technique has not been able to show discrimination between the unrelated strains that can be achieved by whole genome sequencing (WGS). METHODS The aim of this study was to determine the strengths and drawbacks of WGS using different analytic approaches compared to traditional typing method, PFGE, for retrospectively typing clusters cases of 28 S. Typhi. RESULTS We evaluated three analytical approaches on the WGS data set (Nucleotide Difference (ND), (SNPs) and Whole genome multi locus sequence typing (wgMLST) that identically classified the clusters-related strains into two clusters, cluster A (with strains from 2017), and Cluster B (with strains from 2007). CONCLUSIONS In this study WGS based typing, was able to compete with PFGE for differentiation of the clusters of S. Typhi strains.
Collapse
|
40
|
Carroll LM, Wiedmann M, Mukherjee M, Nicholas DC, Mingle LA, Dumas NB, Cole JA, Kovac J. Characterization of Emetic and Diarrheal Bacillus cereus Strains From a 2016 Foodborne Outbreak Using Whole-Genome Sequencing: Addressing the Microbiological, Epidemiological, and Bioinformatic Challenges. Front Microbiol 2019; 10:144. [PMID: 30809204 PMCID: PMC6379260 DOI: 10.3389/fmicb.2019.00144] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/21/2019] [Indexed: 12/21/2022] Open
Abstract
The Bacillus cereus group comprises multiple species capable of causing emetic or diarrheal foodborne illness. Despite being responsible for tens of thousands of illnesses each year in the U.S. alone, whole-genome sequencing (WGS) is not yet routinely employed to characterize B. cereus group isolates from foodborne outbreaks. Here, we describe the first WGS-based characterization of isolates linked to an outbreak caused by members of the B. cereus group. In conjunction with a 2016 outbreak traced to a supplier of refried beans served by a fast food restaurant chain in upstate New York, a total of 33 B. cereus group isolates were obtained from human cases (n = 7) and food samples (n = 26). Emetic (n = 30) and diarrheal (n = 3) isolates were most closely related to B. paranthracis (group III) and B. cereus sensu stricto (group IV), respectively. WGS indicated that the 30 emetic isolates (24 and 6 from food and humans, respectively) were closely related and formed a well-supported clade distinct from publicly available emetic group III genomes with an identical sequence type (ST 26). The 30 emetic group III isolates from this outbreak differed from each other by a mean of 8.3 to 11.9 core single nucleotide polymorphisms (SNPs), while differing from publicly available emetic group III ST 26 B. cereus group genomes by a mean of 301.7-528.0 core SNPs, depending on the SNP calling methodology used. Using a WST-1 cell proliferation assay, the strains isolated from this outbreak had only mild detrimental effects on HeLa cell metabolic activity compared to reference diarrheal strain B. cereus ATCC 14579. We hypothesize that the outbreak was a single source outbreak caused by emetic group III B. cereus belonging to the B. paranthracis species, although food samples were not tested for presence of the emetic toxin cereulide. In addition to showcasing how WGS can be used to characterize B. cereus group strains linked to a foodborne outbreak, we also discuss potential microbiological and epidemiological challenges presented by B. cereus group outbreaks, and we offer recommendations for analyzing WGS data from the isolates associated with them.
Collapse
Affiliation(s)
- Laura M. Carroll
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Manjari Mukherjee
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - David C. Nicholas
- New York State Department of Health, Corning Tower, Empire State Plaza, Albany, NY, United States
| | - Lisa A. Mingle
- New York State Department of Health, Wadsworth Center, Albany, NY, United States
| | - Nellie B. Dumas
- New York State Department of Health, Wadsworth Center, Albany, NY, United States
| | - Jocelyn A. Cole
- New York State Department of Health, Wadsworth Center, Albany, NY, United States
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
41
|
Keefer AB, Xiaoli L, M'ikanatha NM, Yao K, Hoffmann M, Dudley EG. Retrospective whole-genome sequencing analysis distinguished PFGE and drug-resistance-matched retail meat and clinical Salmonella isolates. MICROBIOLOGY-SGM 2019; 165:270-286. [PMID: 30672732 DOI: 10.1099/mic.0.000768] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Non-typhoidal Salmonella is a leading cause of outbreak and sporadic-associated foodborne illnesses in the United States. These infections have been associated with a range of foods, including retail meats. Traditionally, pulsed-field gel electrophoresis (PFGE) and antibiotic susceptibility testing (AST) have been used to facilitate public health investigations of Salmonella infections. However, whole-genome sequencing (WGS) has emerged as an alternative tool that can be routinely implemented. To assess its potential in enhancing integrated surveillance in Pennsylvania, USA, WGS was used to directly compare the genetic characteristics of 7 retail meat and 43 clinical historic Salmonella isolates, subdivided into 3 subsets based on PFGE and AST results, to retrospectively resolve their genetic relatedness and identify antimicrobial resistance (AMR) determinants. Single nucleotide polymorphism (SNP) analyses revealed that the retail meat isolates within S. Heidelberg, S. Typhimurium var. O5- subset 1 and S. Typhimurium var. O5- subset 2 were separated from each primary PFGE pattern-matched clinical isolate by 6-12, 41-96 and 21-81 SNPs, respectively. Fifteen resistance genes were identified across all isolates, including fosA7, a gene only recently found in a limited number of Salmonella and a ≥95 % phenotype to genotype correlation was observed for all tested antimicrobials. Moreover, AMR was primarily plasmid-mediated in S. Heidelberg and S. Typhimurium var. O5- subset 2, whereas AMR was chromosomally carried in S. Typhimurium var. O5- subset 1. Similar plasmids were identified in both the retail meat and clinical isolates. Collectively, these data highlight the utility of WGS in retrospective analyses and enhancing integrated surveillance for Salmonella from multiple sources.
Collapse
Affiliation(s)
- Andrea B Keefer
- 1Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lingzi Xiaoli
- 1Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Kuan Yao
- 3Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), College Park, Maryland, USA
| | - Maria Hoffmann
- 3Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), College Park, Maryland, USA
| | - Edward G Dudley
- 4E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA.,1Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
42
|
Ibrahim GM, Morin PM. Salmonella Serotyping Using Whole Genome Sequencing. Front Microbiol 2018; 9:2993. [PMID: 30619114 PMCID: PMC6300517 DOI: 10.3389/fmicb.2018.02993] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/20/2018] [Indexed: 11/24/2022] Open
Abstract
Until recently, traditional serology and the Kauffmann White Scheme (KWS) have been the gold standard for Salmonella serotyping. Whole Genome Sequencing (WGS) has now emerged as an alternative in this field. Serotype information remains a cornerstone in food safety and public health activities to reduce the burden of salmonellosis. At the same time, recent advances in WGS have improved the ability to perform advanced pathogen characterization while improving trace back investigations to determine the source of foodborne illness during outbreaks. Serovar prediction based on WGS can be performed using in silico data analysis tools. Three such tools have been developed: (a). Salmonella in silico Typing Resource (SISTR), (b). SeqSero, and (c). in silico 7-gene MLST ST (Multilocus Sequence Typing Sub-Typing) which was generated using the SISTR platform. Public health officials around the world are diligently working to validate these tools for replacing traditional surveillance methods to provide a more powerful approach for molecular epidemiology in support of public health investigations. In this study, we report a retrospective analysis of our laboratory inventory of 1,041 Salmonella isolates collected between 1999 and 2017. These isolates are of public health significance since they all came from either food, feed or environmental swabs. They were all serotyped by both traditional serology and WGS using an in silico SeqSero tool for serovar prediction. Both predicted identical Salmonella serotypes in 899 isolates (86.4% of the 1,041 Salmonella isolates). SeqSero assignments differed from traditional serological testing in 80 isolates (7.7%) and no serotype prediction was ascertained from 62 isolates (5.9%). This retrospective study is an excellent example of using WGS and SeqSero as a data analysis tool to predict Salmonella serotypes that can provide numerous advantages including molecular and genetic details regarding the characteristics of the Salmonella isolates compared to traditional KWS serotyping. In conclusion, it is evident that using WGS and in silico tools for Salmonella serotyping might someday replace traditional serotyping.
Collapse
Affiliation(s)
- George M Ibrahim
- Microbiological Sciences Branch, Northeast Food and Feed Laboratory, United States Food & Drug Administration, Jamaica, NY, United States
| | - Paul M Morin
- Microbiological Sciences Branch, Northeast Food and Feed Laboratory, United States Food & Drug Administration, Jamaica, NY, United States
| |
Collapse
|
43
|
The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J 2018; 16:e05500. [PMID: 32625785 PMCID: PMC7009540 DOI: 10.2903/j.efsa.2018.5500] [Citation(s) in RCA: 536] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This report of the European Food Safety Authority and the European Centre for Disease Prevention and Control presents the results of zoonoses monitoring activities carried out in 2017 in 37 European countries (28 Member States (MS) and nine non-MS). Campylobacteriosis was the commonest reported zoonosis and its EU trend for confirmed human cases increasing since 2008 stabilised during 2013-2017. The decreasing EU trend for confirmed human salmonellosis cases since 2008 ended during 2013-2017, and the proportion of human Salmonella Enteritidis cases increased, mostly due to one MS starting to report serotype data. Sixteen MS met all Salmonella reduction targets for poultry, whereas 12 MS failed meeting at least one. The EU flock prevalence of target Salmonella serovars in breeding hens, laying hens, broilers and fattening turkeys decreased or remained stable compared to 2016, and slightly increased in breeding turkeys. Salmonella results on pig carcases and target Salmonella serovar results for poultry from competent authorities tended to be generally higher compared to those from food business operators. The notification rate of human listeriosis further increased in 2017, despite Listeria seldom exceeding the EU food safety limit in ready-to-eat food. The decreasing EU trend for confirmed yersiniosis cases since 2008 stabilised during 2013-2017. The number of confirmed shiga toxin-producing Escherichia coli (STEC) infections in humans was stable. A total of 5,079 food-borne (including waterborne) outbreaks were reported. Salmonella was the commonest detected agent with S. Enteritidis causing one out of seven outbreaks, followed by other bacteria, bacterial toxins and viruses. The agent was unknown in 37.6% of all outbreaks. Salmonella in eggs and Salmonella in meat and meat products were the highest risk agent/food pairs. The report further summarises trends and sources for bovine tuberculosis, Brucella, Trichinella, Echinococcus, Toxoplasma, rabies, Coxiella burnetii (Q fever), West Nile virus and tularaemia.
Collapse
|
44
|
Palma F, Manfreda G, Silva M, Parisi A, Barker DOR, Taboada EN, Pasquali F, Rossi M. Genome-wide identification of geographical segregated genetic markers in Salmonella enterica serovar Typhimurium variant 4,[5],12:i:. Sci Rep 2018; 8:15251. [PMID: 30323193 PMCID: PMC6189080 DOI: 10.1038/s41598-018-33266-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/22/2018] [Indexed: 01/18/2023] Open
Abstract
Salmonella enterica ser. Typhimurium monophasic variant 4,[5],12:i:- has been associated with food-borne epidemics worldwide and swine appeared to be the main reservoir in most of the countries of isolation. However, the monomorphic nature of this serovar has, so far, hindered identification of the source due to expansion of clonal lineages in multiple hosts and food producing systems. Since geographically structured genetic signals can shape bacterial populations, identification of biogeographical markers in S. 1,4,[5],12:i:- genomes can contribute to improving source attribution. In this study, the phylogeographical structure of 148 geographically and temporally related Italian S. 1,4,[5],12:i:- has been investigated. The Italian isolates belong to a large population of clonal S. Typhimurium/1,4,[5],12:i:- isolates collected worldwide in two decades showing up to 2.5% of allele differences. Phylogenetic reconstruction revealed that isolates from the same geographical origin form highly supported monophyletic groups, suggesting discrete geographical segregation. These monophyletic groups are characterized by the gene content of a large sopE-containing prophage. Within this prophage, genome-wide comparison identified several genes overrepresented in strains of Italian origin. This suggests that certain lineages may be characterized by the acquisition of specific accessory genetic markers useful for improving identification of the source in ongoing epidemics.
Collapse
Affiliation(s)
- Federica Palma
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, Bologna, Italy.
| | - Gerardo Manfreda
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, Bologna, Italy
| | - Mickael Silva
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Dillon O R Barker
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, Lethbridge, Canada
| | - Eduardo N Taboada
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, Lethbridge, Canada
| | - Frédérique Pasquali
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, Bologna, Italy
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
45
|
Okyere A, Bishoff D, Oyaro MO, Ajami NJ, Darkoh C. Analysis of Fish Commonly Sold in Local Supermarkets Reveals the Presence of Pathogenic and Multidrug-Resistant Bacterial Communities. Microbiol Insights 2018; 11:1178636118786925. [PMID: 30038503 PMCID: PMC6052494 DOI: 10.1177/1178636118786925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/21/2018] [Indexed: 11/17/2022] Open
Abstract
Fish has been an important source of proteins, essential vitamins, and low saturated fats for centuries. However, improperly handled fish can expose consumers to infectious bacteria, including difficult to treat multidrug-resistant pathogens. With the goal to investigate the existence of disease-causing and antibiotic-resistant bacteria, we examined bacterial communities present on various types of fish purchased from supermarkets in Houston, Texas, USA. The bacterial communities were characterized by selective phenotypic culture methods, 16S ribosomal RNA gene sequencing, and antibiotic susceptibility testing. The results revealed the presence of different bacterial communities on the fish samples examined. The bacterial communities were not significantly different between the supermarkets sampled. The following presumptive human pathogens were isolated on the fish samples: Escherichia coli (67%), enterohemorrhagic E. coli (31%), Shigella and Salmonella species (28%), Listeria species (29%), and Staphylococcus aureus (28%). Drug sensitivity assays showed resistance to commonly prescribed antibiotics ciprofloxacin, gentamicin, and vancomycin. Out of a total of 99 E. coli samples tested, 41.4% were resistant to ciprofloxacin, whereas 33.3% were resistant to gentamicin. Of the total of 31 S. aureus isolates tested, 87% were resistant to ciprofloxacin, whereas 61.3% were resistant to vancomycin. Moreover, some of the E. coli strains were resistant to both ciprofloxacin and gentamicin (28%), whereas 49% of the S. aureus isolates were resistant to both ciprofloxacin and vancomycin. These results highlight the prevalence of antimicrobial-resistant foodborne pathogens on fish purchased from the supermarkets and underscore the risk associated with improper handling of fish.
Collapse
Affiliation(s)
- Ama Okyere
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dayna Bishoff
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Micah O Oyaro
- School of Medicine, College of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Charles Darkoh
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA.,Microbiology and Infectious Diseases Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|