1
|
Zhou L, Liu K, Yang X, Chong Z. Anthrax meningoencephalitis: A case report. Exp Ther Med 2025; 29:9. [PMID: 39563882 PMCID: PMC11574761 DOI: 10.3892/etm.2024.12759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024] Open
Abstract
The present study describes the case of a patient with anthrax meningoencephalitis with the aim of providing a scientific basis for the control of this disease. The cerebrospinal fluid and blood of the patient were tested for genes and Bacillus anthracis was detected. The patient's meningitis was cured following treatment. Tracing the route of infection, anthrax was detected on the chopping board of the rural cattle and sheep butcher shop where the patient had purchased meat. In 2018, the patient complained of intermittent nasal discharge for 11 days after brain injury and came to the Second People's Hospital of Liaocheng (Linqing, China). Considering the existence of cerebrospinal fluid rhinorrhea, the patient's cerebrospinal fluid biochemistry was assessed and showed low sugar and high protein levels, resulting in a diagnosis of bacterial encephalitis. This encephalitis was considered to be related to bacterial retrograde infection after cerebrospinal fluid rhinorrhea. It is required to strengthen the training of medical personnel according to guidelines and laws and improve the level of early detection, reporting and diagnosis, as well as timely treatment at medical institutions. There is an urgent need to intensify the education of the population regarding the awareness and prevention of the disease. For individuals involved in the breeding, slaughtering and processing of livestock, multiple measures need to be taken to comprehensively intervene and to enhance occupational protection awareness and disease prevention capabilities.
Collapse
Affiliation(s)
- Longshan Zhou
- Department of Neurosurgery, The Second People's Hospital of Liaocheng, Linqing, Shandong 252600, P.R. China
| | - Kun Liu
- Department of Neurosurgery, The Second People's Hospital of Liaocheng, Linqing, Shandong 252600, P.R. China
| | - Xiaoqian Yang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Zonglei Chong
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
2
|
Jiranantasak T, Bluhm AP, Chabot DJ, Friedlander A, Bowen R, McMillan IA, Hadfield TL, Hartwig A, Blackburn JK, Norris MH. Toxin and capsule production by Bacillus cereus biovar anthracis influence pathogenicity in macrophages and animal models. PLoS Negl Trop Dis 2024; 18:e0012779. [PMID: 39715264 PMCID: PMC11706511 DOI: 10.1371/journal.pntd.0012779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 01/07/2025] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
Bacillus cereus biovar anthracis (Bcbva) causes anthrax-like disease in animals, particularly in the non-human primates and great apes of West and Central Africa. Genomic analyses revealed Bcbva as a member of the B. cereus species that carries two plasmids, pBCXO1 and pBCXO2, which have high sequence homology to the B. anthracis toxin and polyglutamate capsule encoding plasmids pXO1 and pXO2, respectively. To date, only a few studies have investigated the effect of variations in Bcbva sporulation, toxin, and capsule synthesis on animal and macrophage pathogenicity compared to B. anthracis, therefore more research is needed to gain a better understanding of the pathogenesis of this emerging infection. Here, we report that Bcbva can multiply and vegetatively survive on nutrient-rich media for a minimum of six days while generating spores. Sporulation of Bcbva occurred faster and more extensively than B. anthracis Ames. Bcbva tended to secrete less protective antigen (PA) than B. anthracis Ames when cultured in growth medium. We found Bcbva produced a substantially higher amount of attached poly-ƴ-D-glutamic acid (PDGA) capsule than B. anthracis Ames when grown in medium supplemented with human serum and CO2. In a phagocytosis assay, Bcbva spores showed reduced internalization by mouse macrophages compared to B. anthracis Ames. Our research demonstrated that Bcbva is more virulent than B. anthracis Ames using two in vivo models, Galleria mellonella larvae and guinea pigs. Following that, the efficacy of the veterinary vaccine Sterne strain 34F2 against anthrax-like disease was assessed in guinea pigs. Sterne vaccinated guinea pigs had significantly increased anti-PA titers compared to the unvaccinated control group. Toxin neutralizing antibody titers in vaccinated guinea pigs correlated with anti-PA titers. This indicates the Sterne vaccine provides adequate protection against Bcbva infection in laboratory animals.
Collapse
Affiliation(s)
- Treenate Jiranantasak
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Andrew P. Bluhm
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Donald J. Chabot
- United States Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Arthur Friedlander
- United States Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Richard Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ian A. McMillan
- Pathogen Analysis and Translational Health Group, School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, United States of America
| | - Ted L. Hadfield
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Airn Hartwig
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jason K. Blackburn
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Michael H. Norris
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Pathogen Analysis and Translational Health Group, School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, United States of America
| |
Collapse
|
3
|
Subedi D, Pantha S, Jyoti S, Gautam B, Kaphle K, Yadav RK, Ghimire S, Dhakal S. Anthrax in Humans, Animals, and the Environment and the One Health Strategies for Anthrax Control. Pathogens 2024; 13:773. [PMID: 39338965 PMCID: PMC11435069 DOI: 10.3390/pathogens13090773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Anthrax is a notorious disease of public health importance caused by Bacillus anthracis. The causative agent can also be used as a biological weapon. Spores of these bacteria can sustain extreme environmental conditions and remain viable in soil for decades. Domestic and wild ruminants are highly susceptible to this pathogen, which usually presents as a peracute to acute disease. In humans, cutaneous anthrax is frequent but pulmonary and enteric anthrax are more serious. Humans, animals, and the environment are all involved, making anthrax a perfect target for a One Health approach. The environment plays a key role in disease transmission. At a time when the One Health concept is not mere slogans, collaborative efforts of medical professionals, veterinarians, and environmental scientists will be valuable for the prevention and control of this disease. In this review, we discussed the transmission dynamics of anthrax in the environment, animals, and humans, as well as One Health strategies to control and prevent anthrax.
Collapse
Affiliation(s)
- Deepak Subedi
- Paklihawa Campus, Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Siddarthanagar 32900, Nepal; (S.P.); (S.J.); (B.G.); (K.K.); (R.K.Y.)
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Saurav Pantha
- Paklihawa Campus, Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Siddarthanagar 32900, Nepal; (S.P.); (S.J.); (B.G.); (K.K.); (R.K.Y.)
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA;
| | - Sumit Jyoti
- Paklihawa Campus, Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Siddarthanagar 32900, Nepal; (S.P.); (S.J.); (B.G.); (K.K.); (R.K.Y.)
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Bickal Gautam
- Paklihawa Campus, Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Siddarthanagar 32900, Nepal; (S.P.); (S.J.); (B.G.); (K.K.); (R.K.Y.)
| | - Krishna Kaphle
- Paklihawa Campus, Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Siddarthanagar 32900, Nepal; (S.P.); (S.J.); (B.G.); (K.K.); (R.K.Y.)
| | - Rakesh Kumar Yadav
- Paklihawa Campus, Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Siddarthanagar 32900, Nepal; (S.P.); (S.J.); (B.G.); (K.K.); (R.K.Y.)
- Department of Pharmacology, Dalian Medical University, Dalian 116041, China
| | - Shristi Ghimire
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA;
| | - Santosh Dhakal
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA;
| |
Collapse
|
4
|
Schenk KE, Cornille K, Cater J, Vieira AR, Holzbauer S, Bye M, Scheftel J. Outbreak of Anthrax in Livestock with Human Occupational Exposures - Minnesota, 2023. J Agromedicine 2024; 29:490-493. [PMID: 38263576 PMCID: PMC11127779 DOI: 10.1080/1059924x.2024.2306835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
In July 2023, the Minnesota Department of Health (MDH) was notified of possible occupational exposures to anthrax during an outbreak in animals. In consultation with the Centers for Disease Control and Prevention, MDH epidemiologists created a questionnaire that assessed exposure risks and helped determine individual illness monitoring and antibiotic post-exposure prophylaxis needs. This investigation and the resources developed for it could be useful in future scenarios where there are occupational exposures to naturally occurring anthrax.
Collapse
Affiliation(s)
- Kelly Elizabeth Schenk
- Council for State and Territorial Epidemiologists Applied Epidemiology Fellowship, Minnesota Department of Health, St. Paul, MN, USA
- Minnesota Department of Health, Zoonotic Diseases Unit, St. Paul, MN, USA
| | - K. Cornille
- Minnesota Board of Animal Health, St. Paul, MN, USA
| | - J. Cater
- Minnesota Board of Animal Health, St. Paul, MN, USA
| | - A. R. Vieira
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - S. Holzbauer
- Minnesota Department of Health, Zoonotic Diseases Unit, St. Paul, MN, USA
- Career Epidemiology Field Officer Program, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M. Bye
- Minnesota Department of Health, Zoonotic Diseases Unit, St. Paul, MN, USA
| | - J. Scheftel
- Minnesota Department of Health, Zoonotic Diseases Unit, St. Paul, MN, USA
| |
Collapse
|
5
|
Thompson JM, Spencer K, Maass M, Rollo S, Beesley CA, Marston CK, Hoffmaster AR, Bower WA, Candela MG, Barr JR, Boyer AE, Weiner ZP, Negrón ME, Swaney E, O’Sullivan B. Notes from the Field: Anthrax on a Sheep Farm in Winter - Texas, December 2023-January 2024. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2024; 73:517-520. [PMID: 38843093 PMCID: PMC11166257 DOI: 10.15585/mmwr.mm7322a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
|
6
|
Pattnaik M, Choudhary HR, Parai D, Shandilya J, Padhi AK, Sahoo N, Ghosal S, Sathpathy S, Panigrahi SK, Sahu SK, Samantaray A, Pati S, Bhattacharya D. One Health intervention for elimination of anthrax in an endemic district of Odisha: A baseline and endline study. One Health 2024; 18:100729. [PMID: 38644971 PMCID: PMC11026835 DOI: 10.1016/j.onehlt.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Background This study was to compare a baseline and endline survey which were conducted to assess the changes in knowledge, attitude and practices about anthrax disease among the communities after One Health intervention for the elimination of human anthrax in an endemic district of Odisha. Methods A total of 2670 respondents were interviewed during the baseline and 2511 for the endline survey using a structured questionnaire by multi-stage sampling method. Descriptive statistics were used and logistic regression was performed to estimate the relationship between the variables and knowledge of anthrax. Results Out of the total participants in the study, males were about 76.25% in baseline and 72.08% in endline and about half of the total respondents were illiterate. Majority of the respondents had reported agriculture as their main occupation during both surveys. More than 50% of the respondents had livestock in their houses and farming was the main purpose for keeping them in both surveys. Around 20.26% of respondents knew about anthrax in baseline which raised to 53.64% after One Health intervention. Almost 21.29% of livestock owners had vaccinated their animals against anthrax disease throughout baseline, which increased to 66.5% during the endline survey. Conclusion This study highlights a significant surge in both knowledge and practices related to anthrax within the community after the implementation of intervention packages based on the One Health approach. The outcome of our study signified the importance of One Health interventions to address the health challenges related to zoonotic diseases in tribal communities. The data could be useful for local Governments to incorporate such an approach in their health policy to eliminate human anthrax.
Collapse
Affiliation(s)
- Matrujyoti Pattnaik
- Department of Microbiology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar 751023, India
| | - Hari Ram Choudhary
- Department of Microbiology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar 751023, India
| | - Debaprasad Parai
- Department of Microbiology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar 751023, India
| | - Jyoti Shandilya
- Department of Microbiology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar 751023, India
| | - Arun Kumar Padhi
- Office of the Chief District Medical Officer Koraput, Department of Health and Family Welfare, Government of Odisha, India
| | - Niranjana Sahoo
- Centre for Wildlife Health, College of Veterinary Science & Animal Husbandry, Odisha University of Agriculture & Technology, Bhubaneswar 751003, India
| | - Shishirendu Ghosal
- Department of Microbiology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar 751023, India
| | - Sarangdhar Sathpathy
- Office of the Chief District Veterinary Officer Koraput, Department of Health and Family Welfare, Government of Odisha, India
| | - Santosh Kumar Panigrahi
- Office of the Chief District Veterinary Officer Koraput, Department of Health and Family Welfare, Government of Odisha, India
| | | | | | - Sanghamitra Pati
- Department of Microbiology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar 751023, India
| | - Debdutta Bhattacharya
- Department of Microbiology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar 751023, India
| |
Collapse
|
7
|
Benn JS, Nunez CM, Blue-McLendon A, Chaki SP, Ficht TA, Rice-Ficht AC, Cook WE. LETHAL TOXIN NEUTRALIZING ANTIBODY RESPONSE INDUCED FOLLOWING ORAL VACCINATION WITH A MICROENCAPSULATED BACILLUS ANTHRACIS STERNE STRAIN 34F2 VACCINE PROOF-OF-CONCEPT STUDY IN WHITE-TAILED DEER ( ODOCOILEUS VIRGINIANUS). J Zoo Wildl Med 2024; 55:212-218. [PMID: 38453505 DOI: 10.1638/2023-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2023] [Indexed: 03/09/2024] Open
Abstract
Improved methods are needed to prevent wildlife deaths from anthrax. Caused by Bacillus anthracis, naturally occurring outbreaks of anthrax are frequent but unpredictable. The commercially available veterinary vaccine is labeled for subcutaneous injection and is impractical for large-scale wildlife vaccination programs; therefore, oral vaccination is the most realistic method to control and prevent these outbreaks. We reported the induction of an anthrax-specific lethal toxin (LeTx) neutralizing antibody response in mice following oral vaccination with alginate microcapsules containing B. anthracis Sterne strain 34F2 spores, coated with poly-L-lysine (PLL) and vitelline protein B (VpB). We continued evaluating our novel vaccine formulation through this proof-of-concept study in white-tailed deer (WTD; Odocoileus virginianus; n = 9). We orally vaccinated WTD via needle-free syringe with three formulations of the encapsulated vaccine: 1) PLL-VpB-coated microcapsules with 107-8 spores/ml (n = 5), 2) PLL-VpB-coated microcapsules with 109-10 spores/ml (n = 2), and 3) PLL-coated microcapsules with 109-10 spores/ml (n = 2). Although the limited sample sizes require continued experimentation, we observed an anthrax-specific antibody response in WTD serum following oral vaccination with PLL-coated microcapsules containing 109 spores/ ml. Furthermore, this antibody response neutralized anthrax LeTx in vitro, suggesting that continued development of this vaccine may allow for realistic wildlife anthrax vaccination programs.
Collapse
Affiliation(s)
- Jamie S Benn
- Cook Wildlife Lab, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA,
| | - Chase M Nunez
- Cook Wildlife Lab, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA,
| | - Alice Blue-McLendon
- The Winnie Carter Wildlife Center, Department of Veterinary Pharmacology and Physiology, Texas A&M University, College Station, TX 77843, USA
| | - Sankar P Chaki
- The Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX 77843, USA
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Allison C Rice-Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Walter E Cook
- Cook Wildlife Lab, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Nunez CM, Benn JS, Blue-McLendon A, Chaki SP, Ficht TA, Rice-Ficht AC, Cook WE. In Vitro Protection and Titer Duration of Anthrax-Specific Antibodies Following Subcutaneous Vaccination of White-tailed Deer (Odocoileus virginianus) with Bacillus anthracis Sterne 34F2 Strain Spores. J Wildl Dis 2024; 60:179-183. [PMID: 37921658 DOI: 10.7589/jwd-d-23-00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023]
Abstract
Outbreaks of anthrax, caused by the soilborne bacterium Bacillus anthracis, are a continuous threat to free-ranging livestock and wildlife in enzootic regions of the United States, sometimes causing mass mortalities. Injectable anthrax vaccines are commercially available for use in livestock, and although hand injection is not a cost- or time-effective long-term management plan for prevention in wildlife, it may provide a tool for managers to target selectively animals of high conservation or economic value. Vaccine-induced anthrax-specific antibody responses have been reported previously in white-tailed deer (Odocoileus virginianus), but the protective nature was not determined. In this study, five white-tailed deer were subcutaneously vaccinated with one dose (1 mL) of the Anthrax Spore Vaccine. Eight blood collections by jugular venipuncture were conducted over 146 d to measure the anthrax-specific antibody response in each deer's serum over time. Antibodies were first detected by ELISA and later with toxin neutralization assays to estimate in vitro protection. Average peak absorbance by ELISA occurred at 14 d postvaccination, whereas average peak in vitro protection occurred at 28 d postvaccination. Observed in vitro protection on average for white-tailed deer after this single-dose vaccination protocol lasted 42-56 d postvaccination, although three individuals still maintained lethal toxin-neutralizing serum antibody titers out to 112 d postvaccination. Vaccination responses were variable but effective to some degree in all white-tailed deer.
Collapse
Affiliation(s)
- Chase M Nunez
- Cook Wildlife Lab, Department of Veterinary Pathobiology, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas 77843, USA
- These authors contributed equally to the work
| | - Jamie S Benn
- Cook Wildlife Lab, Department of Veterinary Pathobiology, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas 77843, USA
- Current address: Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, 700 University Blvd., MSC 218, Kingsville, Texas 78363, USA
- These authors contributed equally to the work
| | - Alice Blue-McLendon
- Winnie Carter Wildlife Center, Department of Veterinary Pharmacology and Physiology, Texas A&M University, College Station, Texas 77843, USA
| | - Sankar P Chaki
- Global Health Research Complex, Division of Research, Texas A&M University, College Station, Texas 77843, USA
| | - Thomas A Ficht
- Ficht Encapsulation Lab, Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843, USA
| | - Allison C Rice-Ficht
- Ficht Encapsulation Lab, Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843, USA
| | - Walter E Cook
- Cook Wildlife Lab, Department of Veterinary Pathobiology, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas 77843, USA
| |
Collapse
|
9
|
Bower WA, Yu Y, Person MK, Parker CM, Kennedy JL, Sue D, Hesse EM, Cook R, Bradley J, Bulitta JB, Karchmer AW, Ward RM, Cato SG, Stephens KC, Hendricks KA. CDC Guidelines for the Prevention and Treatment of Anthrax, 2023. MMWR Recomm Rep 2023; 72:1-47. [PMID: 37963097 PMCID: PMC10651316 DOI: 10.15585/mmwr.rr7206a1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
This report updates previous CDC guidelines and recommendations on preferred prevention and treatment regimens regarding naturally occurring anthrax. Also provided are a wide range of alternative regimens to first-line antimicrobial drugs for use if patients have contraindications or intolerances or after a wide-area aerosol release of Bacillus anthracis spores if resources become limited or a multidrug-resistant B. anthracis strain is used (Hendricks KA, Wright ME, Shadomy SV, et al.; Workgroup on Anthrax Clinical Guidelines. Centers for Disease Control and Prevention expert panel meetings on prevention and treatment of anthrax in adults. Emerg Infect Dis 2014;20:e130687; Meaney-Delman D, Rasmussen SA, Beigi RH, et al. Prophylaxis and treatment of anthrax in pregnant women. Obstet Gynecol 2013;122:885-900; Bradley JS, Peacock G, Krug SE, et al. Pediatric anthrax clinical management. Pediatrics 2014;133:e1411-36). Specifically, this report updates antimicrobial drug and antitoxin use for both postexposure prophylaxis (PEP) and treatment from these previous guidelines best practices and is based on systematic reviews of the literature regarding 1) in vitro antimicrobial drug activity against B. anthracis; 2) in vivo antimicrobial drug efficacy for PEP and treatment; 3) in vivo and human antitoxin efficacy for PEP, treatment, or both; and 4) human survival after antimicrobial drug PEP and treatment of localized anthrax, systemic anthrax, and anthrax meningitis. Changes from previous CDC guidelines and recommendations include an expanded list of alternative antimicrobial drugs to use when first-line antimicrobial drugs are contraindicated or not tolerated or after a bioterrorism event when first-line antimicrobial drugs are depleted or ineffective against a genetically engineered resistant B. anthracis strain. In addition, these updated guidelines include new recommendations regarding special considerations for the diagnosis and treatment of anthrax meningitis, including comorbid, social, and clinical predictors of anthrax meningitis. The previously published CDC guidelines and recommendations described potentially beneficial critical care measures and clinical assessment tools and procedures for persons with anthrax, which have not changed and are not addressed in this update. In addition, no changes were made to the Advisory Committee on Immunization Practices recommendations for use of anthrax vaccine (Bower WA, Schiffer J, Atmar RL, et al. Use of anthrax vaccine in the United States: recommendations of the Advisory Committee on Immunization Practices, 2019. MMWR Recomm Rep 2019;68[No. RR-4]:1-14). The updated guidelines in this report can be used by health care providers to prevent and treat anthrax and guide emergency preparedness officials and planners as they develop and update plans for a wide-area aerosol release of B. anthracis.
Collapse
|
10
|
Parai D, Pattnaik M, Choudhary HR, Padhi AK, Pattnaik S, Jena S, Sahoo SK, Rout UK, Padhi A, Sahoo N, Biswal S, Padhi SK, Pati S, Bhattacharya D. Investigation of human anthrax outbreak in Koraput district of Odisha, India. Travel Med Infect Dis 2023; 56:102659. [PMID: 37926374 DOI: 10.1016/j.tmaid.2023.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Anthrax is a zoonotic infection resulting from the bacteria Bacillus anthracis. Humans contract cutaneous anthrax by coming into contact, and gastrointestinal (GI) anthrax by consumption of infected animals or animal products. An outbreak investigation was conducted to confirm the occurrence of the anthrax outbreak, comprehend its extent, understand the epidemiological characteristics, identify the outbreak's cause, and propose control measures. METHODS A descriptive epidemiology was carried out for this outbreak investigation. We defined a suspected human cutaneous anthrax case as appearance of skin lesions and symptoms (itching/redness/swelling) and a suspected case of GI anthrax as appearance of diarrhoea/abdominal pain/vomiting in a resident of Koraput district after being associated with slaughtering and/or consumption of carcass during 5th April to 15th May 2023. The etiological hypothesis was formulated using descriptive epidemiological methods. Laboratory confirmation was performed by real-time polymerase chain reaction (RT-PCR). Statistical analyses were conducted using SPSS 25. RESULTS A total of 47 clinically suspected anthrax cases were identified during the outbreak in five villages of Koraput district in Odisha. The epidemic curve indicated multiple point-source exposures starting from 13th April 2023. About 10 cases were identified by RT-PCR testing as confirmed cases of anthrax. No death was recorded in this outbreak investigation. CONCLUSIONS Based on a thorough examination of epidemiological survey results and laboratory findings, we conclude that the outbreak was of human cutaneous and GI anthrax. Exposures from handling dead animals were associated with cutaneous anthrax, whereas eating uncooked meat of dead sheep was associated with gastrointestinal anthrax.
Collapse
Affiliation(s)
- Debaprasad Parai
- Department of Microbiology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar, 751023, India
| | - Matrujyoti Pattnaik
- Department of Microbiology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar, 751023, India
| | - Hari Ram Choudhary
- Department of Microbiology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar, 751023, India
| | | | - Swati Pattnaik
- Department of Health and Family Welfare, Koraput, Odisha, India
| | - Sunita Jena
- Department of Health and Family Welfare, Koraput, Odisha, India
| | - Subrat Kumar Sahoo
- Department of Microbiology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar, 751023, India
| | - Usha Kiran Rout
- Department of Microbiology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar, 751023, India
| | - Ankita Padhi
- Department of Microbiology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar, 751023, India
| | - Niranjana Sahoo
- Centre for Wildlife Health, College of Veterinary Science & Animal Husbandry, Odisha University of Agriculture & Technology, Bhubaneswar, 751003, India
| | - Sangram Biswal
- Centre for Wildlife Health, College of Veterinary Science & Animal Husbandry, Odisha University of Agriculture & Technology, Bhubaneswar, 751003, India
| | - Soumesh Kumar Padhi
- Centre for Wildlife Health, College of Veterinary Science & Animal Husbandry, Odisha University of Agriculture & Technology, Bhubaneswar, 751003, India
| | - Sanghamitra Pati
- Department of Microbiology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar, 751023, India.
| | - Debdutta Bhattacharya
- Department of Microbiology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar, 751023, India.
| |
Collapse
|
11
|
Metrailer MC, Hoang TTH, Jiranantasak T, Luong T, Hoa LM, Ngoc DB, Pham QT, Pham VK, Hung TTM, Huong VTL, Pham TL, Ponciano JM, Hamerlinck G, Dang DA, Norris MH, Blackburn JK. Spatial and phylogenetic patterns reveal hidden infection sources of Bacillus anthracis in an anthrax outbreak in Son La province, Vietnam. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 114:105496. [PMID: 37678701 DOI: 10.1016/j.meegid.2023.105496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Bacillus anthracis, the bacterial cause of anthrax, is a zoonosis affecting livestock and wildlife often spilling over into humans. In Vietnam, anthrax has been nationally reportable since 2015 with cases occurring annually, mostly in the northern provinces. In April 2022, an outbreak was reported in Son La province following the butchering of a water buffalo, Bubalus bubalis. A total of 137 humans from three villages were likely exposed to contaminated meat from the animal. Early epidemiological investigations suggested a single animal was involved in all exposures. Five B. anthracis isolates were recovered from human clinical cases along with one from the buffalo hide, another from associated maggots, and one from soil at the carcass site. The isolates were whole genome sequenced, allowing global, regional, and local molecular epidemiological analyses of the outbreak strains. All recovered B. anthracis belong to the A.Br.001/002 lineage based on canonical single nucleotide polymorphism analysis (canSNP). Although not previously identified in Vietnam, this lineage has been identified in the nearby countries of China, India, Indonesia, Thailand, as well as Australia. A twenty-five marker multi-locus variable number tandem repeat analysis (MLVA-25) was used to investigate the relationship between human, soil, and buffalo strains. Locally, four MLVA-25 genotypes were identified from the eight isolates. This level of genetic diversity is unusual for the limited geography and timing of cases and differs from past literature using MLVA-25. The coupled spatial and phylogenetic data suggest this outbreak originated from multiple, likely undetected, animal sources. These findings were further supported by local news reports that identified at least two additional buffalo deaths beyond the initial animal sampled in response to the human cases. Future outbreak response should include intensive surveillance for additional animal cases and additional molecular epidemiological traceback to identify pathogen sources.
Collapse
Affiliation(s)
- Morgan C Metrailer
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | | | - Treenate Jiranantasak
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Tan Luong
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Luong Minh Hoa
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Do Bich Ngoc
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Quang Thai Pham
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Van Khang Pham
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | | | | | | | | | | | - Duc Anh Dang
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Michael H Norris
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Jason K Blackburn
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Koyun OY, Balta I, Corcionivoschi N, Callaway TR. Disease Occurrence in- and the Transferal of Zoonotic Agents by North American Feedlot Cattle. Foods 2023; 12:904. [PMID: 36832978 PMCID: PMC9956193 DOI: 10.3390/foods12040904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
North America is a large producer of beef and contains approximately 12% of the world's cattle inventory. Feedlots are an integral part of modern cattle production in North America, producing a high-quality, wholesome protein food for humans. Cattle, during their final stage, are fed readily digestible high-energy density rations in feedlots. Cattle in feedlots are susceptible to certain zoonotic diseases that impact cattle health, growth performance, and carcass characteristics, as well as human health. Diseases are often transferred amongst pen-mates, but they can also originate from the environment and be spread by vectors or fomites. Pathogen carriage in the gastrointestinal tract of cattle often leads to direct or indirect contamination of foods and the feedlot environment. This leads to the recirculation of these pathogens that have fecal-oral transmission within a feedlot cattle population for an extended time. Salmonella, Shiga toxin-producing Escherichia coli, and Campylobacter are commonly associated with animal-derived foods and can be transferred to humans through several routes such as contact with infected cattle and the consumption of contaminated meat. Brucellosis, anthrax, and leptospirosis, significant but neglected zoonotic diseases with debilitating impacts on human and animal health, are also discussed.
Collapse
Affiliation(s)
- Osman Y. Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
13
|
Walker MA, Tan LM, Dang LH, Van Khang P, Ha HTT, Hung TTM, Dung HH, Anh DD, Duong TN, Hadfield T, Thai PQ, Blackburn JK. Spatiotemporal Patterns of Anthrax, Vietnam, 1990–2015. Emerg Infect Dis 2022; 28:2206-2213. [PMID: 36285873 PMCID: PMC9622238 DOI: 10.3201/eid2811.212584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Anthrax is a priority zoonosis for control in Vietnam. The geographic distribution of anthrax remains to be defined, challenging our ability to target areas for control. We analyzed human anthrax cases in Vietnam to obtain anthrax incidence at the national and provincial level. Nationally, the trendline for cases remained at ≈61 cases/year throughout the 26 years of available data, indicating control efforts are not effectively reducing disease burden over time. Most anthrax cases occurred in the Northern Midlands and Mountainous regions, and the provinces of Lai Chau, Dien Bien, Lao Cai, Ha Giang, Cao Bang, and Son La experienced some of the highest incidence rates. Based on spatial Bayes smoothed maps, every region of Vietnam experienced human anthrax cases during the study period. Clarifying the distribution of anthrax in Vietnam will enable us to better identify risk areas for improved surveillance, rapid clinical care, and livestock vaccination campaigns.
Collapse
|
14
|
Jiranantasak T, Benn JS, Metrailer MC, Sawyer SJ, Burns MQ, Bluhm AP, Blackburn JK, Norris MH. Characterization of Bacillus anthracis replication and persistence on environmental substrates associated with wildlife anthrax outbreaks. PLoS One 2022; 17:e0274645. [PMID: 36129912 PMCID: PMC9491531 DOI: 10.1371/journal.pone.0274645] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022] Open
Abstract
Anthrax is a zoonosis caused by the environmentally maintained, spore-forming bacterium Bacillus anthracis, affecting humans, livestock, and wildlife nearly worldwide. Bacterial spores are ingested, inhaled, and may be mechanically transmitted by biting insects or injection as occurs during heroin-associated human cases. Herbivorous hoofstock are very susceptible to anthrax. When these hosts die of anthrax, a localized infectious zone (LIZ) forms in the area surrounding the carcass as it is scavenged and decomposes, where viable populations of vegetative B. anthracis and spores contaminate the environment. In many settings, necrophagous flies contaminate the outer carcass, surrounding soils, and vegetation with viable pathogen while scavenging. Field observations in Texas have confirmed this process and identified primary browse species (e.g., persimmon) are contaminated. However, there are limited data available on B. anthracis survival on environmental substrates immediately following host death at a LIZ. Toward this, we simulated fly contamination by inoculating live-attenuated, fully virulent laboratory-adapted, and fully virulent wild B. anthracis strains on untreated leaves and rocks for 2, 5, and 7 days. At each time point after inoculation, the number of vegetative cells and spores were determined. Sporulation rates were extracted from these different time points to enable comparison of sporulation speeds between B. anthracis strains with different natural histories. We found all B. anthracis strains used in this study could multiply for 2 or more days post inoculation and persist on leaves and rocks for at least seven days with variation by strain. We found differences in sporulation rates between laboratory-adapted strains and wild isolates, with the live-attenuated strain sporulating fastest, followed by the wild isolates, then laboratory-adapted virulent strains. Extrapolating our wild strain lab results to potential contamination, a single blow fly may contaminate leaves with up to 8.62 x 105 spores per day and a single carcass may host thousands of flies. Replication outside of the carcass and rapid sporulation confirms the LIZ extends beyond the carcass for several days after formation and supports the necrophagous fly transmission pathway for amplifying cases during an outbreak. We note caution must be taken when extrapolating replication and sporulation rates from live-attenuated and laboratory-adapted strains of B. anthracis.
Collapse
Affiliation(s)
- Treenate Jiranantasak
- Department of Geography, Spatial Epidemiology & Ecology Research Laboratory, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jamie S. Benn
- Department of Geography, Spatial Epidemiology & Ecology Research Laboratory, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Morgan C. Metrailer
- Department of Geography, Spatial Epidemiology & Ecology Research Laboratory, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Samantha J. Sawyer
- Department of Geography, Spatial Epidemiology & Ecology Research Laboratory, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Madison Q. Burns
- Department of Geography, Spatial Epidemiology & Ecology Research Laboratory, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Andrew P. Bluhm
- Department of Geography, Spatial Epidemiology & Ecology Research Laboratory, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jason K. Blackburn
- Department of Geography, Spatial Epidemiology & Ecology Research Laboratory, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Michael H. Norris
- Department of Geography, Spatial Epidemiology & Ecology Research Laboratory, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
15
|
Winston LG, Winkler ML, Kheterpal A, Villalba JA. Case 36-2021: A 22-Year-Old Man with Pain and Erythema of the Left Hand. N Engl J Med 2021; 385:2078-2086. [PMID: 34818483 DOI: 10.1056/nejmcpc2107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Lisa G Winston
- From the Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, and the Department of Medicine, University of California, San Francisco - both in San Francisco (L.G.W.); and the Departments of Medicine (M.L.W.), Radiology (A.K.), and Pathology (J.A.V.), Massachusetts General Hospital, and the Departments of Medicine (M.L.W.), Radiology (A.K.), and Pathology (J.A.V.), Harvard Medical School - both in Boston
| | - Marisa L Winkler
- From the Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, and the Department of Medicine, University of California, San Francisco - both in San Francisco (L.G.W.); and the Departments of Medicine (M.L.W.), Radiology (A.K.), and Pathology (J.A.V.), Massachusetts General Hospital, and the Departments of Medicine (M.L.W.), Radiology (A.K.), and Pathology (J.A.V.), Harvard Medical School - both in Boston
| | - Arvin Kheterpal
- From the Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, and the Department of Medicine, University of California, San Francisco - both in San Francisco (L.G.W.); and the Departments of Medicine (M.L.W.), Radiology (A.K.), and Pathology (J.A.V.), Massachusetts General Hospital, and the Departments of Medicine (M.L.W.), Radiology (A.K.), and Pathology (J.A.V.), Harvard Medical School - both in Boston
| | - Julian A Villalba
- From the Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, and the Department of Medicine, University of California, San Francisco - both in San Francisco (L.G.W.); and the Departments of Medicine (M.L.W.), Radiology (A.K.), and Pathology (J.A.V.), Massachusetts General Hospital, and the Departments of Medicine (M.L.W.), Radiology (A.K.), and Pathology (J.A.V.), Harvard Medical School - both in Boston
| |
Collapse
|
16
|
Maison RM, Pierce CF, Ragan IK, Brown VR, Bodenchuk MJ, Bowen RA, Bosco-Lauth AM. Potential Use for Serosurveillance of Feral Swine to Map Risk for Anthrax Exposure, Texas, USA. Emerg Infect Dis 2021; 27:3103-3110. [PMID: 34808089 PMCID: PMC8632180 DOI: 10.3201/eid2712.211482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Anthrax is a disease of concern in many mammals, including humans. Management primarily consists of prevention through vaccination and tracking clinical-level observations because environmental isolation is laborious and bacterial distribution across large geographic areas difficult to confirm. Feral swine (Sus scrofa) are an invasive species with an extensive range in the southern United States that rarely succumbs to anthrax. We present evidence that feral swine might serve as biosentinels based on comparative seroprevalence in swine from historically defined anthrax-endemic and non–anthrax-endemic regions of Texas. Overall seropositivity was 43.7% (n = 478), and logistic regression revealed county endemicity status, age-class, sex, latitude, and longitude were informative for predicting antibody status. However, of these covariates, only latitude was statistically significant (β = –0.153, p = 0.047). These results suggests anthrax exposure in swine, when paired with continuous location data, could serve as a proxy for bacterial presence in specific areas.
Collapse
|