1
|
Matthaiou EI, El-Hafeez AAA, Sharifi H, Chatterjee P, Zinter M, Johansson P, Dhillon E, Chiu W, Qian J, Shaller B, Chang J, Pasupneti S, Borges CH, Omar S, Enejder A, Dhillon G, Gaudilliere B, Fortwendel J, Vyas JM, Hsu JL. Macrophage ferroptosis inhibits Aspergillus conidial killing in lung transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643092. [PMID: 40161807 PMCID: PMC11952544 DOI: 10.1101/2025.03.13.643092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Immune suppression heightens the risk for fungal infections, but the mechanisms that result in clinical disease are poorly understood. Here we demonstrate that macrophage ferroptosis, an iron-dependent form of regulated cell death, inhibits Aspergillus fumigatus ( Af ) killing. In a mouse tracheal transplant model of Af infection, we observed an increase in macrophage lipid peroxidation, a decreased expression of negative ferroptosis regulators Gpx4 and Slc7a11 , and an increase in positive regulators Ptgs2 and Nox2 , relative to syntransplants. Depletion of macrophages in transplant recipients decreased Af invasion. In vitro , iron overload reduced macrophage viability and decreased their capability to kill Af spores, through a decrease in lysosomal acidification and lysosomal loss. Treatment with ferrostatin-1, a ferroptosis inhibitor, and deferasirox (an iron chelator) restored Af killing. Ferroptotic alveolar macrophages isolated from lung transplant patients also showed a decreased ability to kill Af spores and the patients' bronchoalveolar lavage was characterized by higher iron levels and markers of ferroptotic stress compared to non-lung transplants. These characteristics were strongly correlated with a clinical history of fungal infections, independent of immune suppressive medications. Our findings indicate that macrophage ferroptosis augments the risk of invasive aspergillosis, representing a novel mechanism for host immune dysfunction.
Collapse
|
2
|
Posse GB, Barberis FM, Benedetti MF, Pezzola D, Hermida Alava K, Rodríguez Laboccetta C, Videla Garrido A, Fernández Briceño V, Capece P, Nusblat A, Cuestas ML. COVID-19-associated invasive fungal infections in intensive care unit patients during the first pandemic waves in Argentina: Results of a single center experience. Med Mycol 2025; 63:myaf024. [PMID: 40053501 DOI: 10.1093/mmy/myaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/27/2025] [Accepted: 03/06/2025] [Indexed: 03/09/2025] Open
Abstract
Critically ill COVID-19 patients are at high risk for invasive fungal infections (IFIs). Data on IFI prevalence in severe COVID-19 patients in Latin America are scarce. This study aimed at analyzing the prevalence and outcomes of IFIs in COVID-19 patients from Argentina. For this purpose, a retrospective study was conducted on COVID-19 patients admitted to the intensive care unit of a hospital in Buenos Aires between 2020 and 2022, with mycological evidence of IFI. A total of 86 cases of IFIs were reported, including 50 cases of COVID-19-associated candidiasis (CAC), 29 of COVID-19-associated pulmonary aspergillosis (CAPA), 10 of COVID-19-associated histoplasmosis (CAH), two cases of cryptococcemia, and one case of invasive fusariosis. Mixed fungal infections were also detected: two cases of Pneumocystis jirovecii pneumonia with CAPA, two cases of CAC with CAPA, one case of cryptococcemia with CAPA, one case of CAPA with CAH, and one case of CAC with CAPA and CAH. The overall mortality was 67.4%, with mortality of 59.6%, 72.7%, and 62.5% for CAC, CAPA, and CAH, respectively. All cases with mixed fungal infections were fatal. The most frequent underlying comorbidities were arterial hypertension, type-2 diabetes mellitus, obesity, smoking, oncohematological disease, chronic kidney disease, and chronic obstructive pulmonary disease. Candida parapsilosis, C. albicans, and C. tropicalis were the most common species in CAC. Aspergillus fumigatus, A. flavus, A. terreus, and A. niger were predominant in CAPA. In conclusion, this study highlights the high prevalence and mortality of CAC, CAPA, and CAH in severe COVID-19 patients from Argentina.
Collapse
Affiliation(s)
- Gladys Beatriz Posse
- Laboratorio de Micología, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | | | - María Fernanda Benedetti
- Unidad de Terapia Intensiva, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Daniel Pezzola
- Unidad de Terapia Intensiva, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Katherine Hermida Alava
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Carolina Rodríguez Laboccetta
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Agustín Videla Garrido
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Víctor Fernández Briceño
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Paula Capece
- Laboratorio de Micología, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Alejandro Nusblat
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - María Luján Cuestas
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| |
Collapse
|
3
|
Siddiqui AS. Treatment of Post-COVID-19 Pulmonary Aspergilloma: Insights from a Clinical Case. AMERICAN JOURNAL OF CASE REPORTS 2025; 26:e946456. [PMID: 39980178 PMCID: PMC11851346 DOI: 10.12659/ajcr.946456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/02/2025] [Accepted: 12/20/2024] [Indexed: 02/22/2025]
Abstract
BACKGROUND This report presents the case of a 49-year-old man with pulmonary aspergilloma 6 months after hospitalization and mechanical ventilation for COVID-19 who was treated with robot-assisted lobectomy. COVID-19-associated pulmonary aspergillosis is a life-threatening complication of SARS-CoV-2 infection. Aspergilloma, a delayed complication of COVID-19, is rare. Major risk factors for pulmonary aspergilloma include neutropenia, solid organ transplantation, prolonged high-dose corticosteroid therapy, hematological malignancy, cytotoxic therapy, acquired immunodeficiency syndrome, and chronic granulomatous disease. Common symptoms include cough, shortness of breath, fatigue, wheezing, weight loss, fever, and chest pain. Hemoptysis is the most severe complication of pulmonary aspergilloma. Treatment options include antifungals, bronchial artery embolization, and surgery. Surgical treatment is considered definitive for patients who do not respond to antifungal medications. CASE REPORT We describe the case of a 49-year-old man with pulmonary aspergilloma who developed a delayed sequela of SARS-CoV-2 infection. He presented to a pulmonary clinic 6 months after a severe COVID-19-related hospitalization, with symptoms of mild hemoptysis, cough, and shortness of breath. A computed tomography scan of the chest revealed a right upper lobe cavitary lesion approximately 9.6×6.1 cm in size. Bronchoalveolar lavage during bronchoscopy revealed Aspergillus fumigatus. The patient did not respond to antifungal treatment and was successfully treated with a robotic-assisted lobectomy. CONCLUSIONS Aspergillus infection should be considered in COVID-19 survivors with pulmonary symptoms. Minimally invasive robotic lobectomy is a feasible option for high-risk patients with post-COVID-19 aspergilloma and hemoptysis who are resistant to medical treatment.
Collapse
|
4
|
Weaver D, Gago S, Bassetti M, Giacobbe DR, Prattes J, Hoenigl M, Reizine F, Guegan H, Gangneux JP, Bromley MJ, Bowyer P. Mycobiome analyses of critically ill COVID-19 patients. Microbiol Spectr 2025; 13:e0411023. [PMID: 39699254 PMCID: PMC11792475 DOI: 10.1128/spectrum.04110-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/07/2024] [Indexed: 12/20/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) is a life-threatening complication in patients with severe COVID-19. Previously, acute respiratory distress syndrome in patients with COVID-19 has been associated with lung fungal dysbiosis, evidenced by reduced microbial diversity and Candida colonization. Increased fungal burden in the lungs of critically ill COVID-19 patients is linked to prolonged mechanical ventilation and increased mortality. However, specific mycobiome signatures associated with severe COVID-19 in the context of survival and antifungal drug prophylaxis have not yet been determined, and such knowledge could have an important impact on treatment. To understand the composition of the respiratory mycobiome in critically ill COVID-19 patients with and without CAPA and the impact of antifungal use in patient outcome, we performed a multinational study of 39 COVID-19 patients in intensive care units (ICUs). Respiratory mycobiome was profiled using internal transcribed spacer 1 sequencing, and Aspergillus fumigatus burden was further validated using quantitative PCR. Fungal communities were investigated using alpha diversity, beta diversity, taxa predominance, and taxa abundances. Respiratory mycobiomes of COVID-19 patients were dominated by Candida and Aspergillus. There was no significant association with corticosteroid use or CAPA diagnosis and respiratory fungal communities. Increased A. fumigatus burden was associated with mortality and, the use of azoles at ICU admission was linked with an absence of A. fumigatus. Our findings suggest that mold-active antifungal treatment at ICU admission may be linked with reduced A. fumigatus-associated mortality in severe COVID-19. However, further studies are warranted on this topic.IMPORTANCEInvasive fungal infections are a serious complication affecting up to a third of patients with severe COVID-19. Nevertheless, our understanding of the fungal communities in the lungs during critically ill COVID-19 remains limited. Evidence suggests a higher fungal burden is associated with prolonged ventilation and higher mortality, although the particular organisms responsible for this link are unclear. Antifungal prophylaxis may be beneficial for reducing the burden of fungal co-infections in COVID-19 intensive care. However, the composition of the fungal microbiome in severe COVID-19 in relation to prophylactic antifungals, as well as how this is associated with survival outcomes, is yet to be studied. Our study provides insights into the lung fungal microbiome in severe COVID-19 and has found antifungal treatment to be associated with lower Aspergillus fumigatus burden and that higher levels of this pathogen are associated with mortality. Therefore, our study suggests mold-active antifungal prophylaxis may be beneficial in severe COVID-19.
Collapse
Affiliation(s)
| | - Sara Gago
- University of Manchester, Manchester, United Kingdom
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Juergen Prattes
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- Biotech Med, Graz, Austria
- Translational Medical Mycology Research Unit, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Florian Reizine
- Medical Intensive Care Unit, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Hélène Guegan
- CHU Rennes, Inserm, EHESP, Institut de Recherche en Santé, Environnement et Travail (IRSET), Université de Rennes, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Laboratoire de Parasitologie-Mycologie, Centre National de Référence Mycoses et Antifongiques-Laboratoire Associé Asp-C, European Excellence Center for Medical Mycology (ECMM), Rennes, France
| | - Jean-Pierre Gangneux
- CHU Rennes, Inserm, EHESP, Institut de Recherche en Santé, Environnement et Travail (IRSET), Université de Rennes, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Laboratoire de Parasitologie-Mycologie, Centre National de Référence Mycoses et Antifongiques-Laboratoire Associé Asp-C, European Excellence Center for Medical Mycology (ECMM), Rennes, France
| | | | - Paul Bowyer
- University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Schroeder M, Raboh MA, Nuechtern A, Wichmann D, Stamm J, Hardel T, Rohde H, Christner M, Ozga A, Steurer S, Jafari C, Klose H, Kluge S, Simon M, Fischer M. Comparison of the Equivalence of Aspergillus Antigen and PCR Results Between Non-Directed Bronchial Lavage and Bronchoalveolar Lavage-A Prospective Exploratory Pilot Study in Critically Ill Patients. Mycoses 2025; 68:e70029. [PMID: 39900777 PMCID: PMC11790511 DOI: 10.1111/myc.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND Obtaining non-directed samples from the upper bronchial tree is easier to perform and poses fewer risks for critically ill patients than deep bronchoalveolar lavage (BAL). Since invasive pulmonary aspergillosis is associated with a high mortality in critically ill patients, timely diagnosis and rapid initiation of treatment are of utmost importance. OBJECTIVES The objective of this study was to compare Galactomannan (GM) testing by Enzyme Immunoassay (EIA), GM Lateral Flow Assay (LFA) and the detection of Aspergillus DNA by Polymerase Chain Reaction (PCR) between directed BAL and non-directed bronchial lavage (BL) in critically ill patients. METHODS In this prospective, exploratory pilot study, we analysed 120 samples from 40 patients admitted to 12 mixed intensive care units. Inclusion criteria required either risk factors for IPA or positive Aspergillus assessments and met the criteria published by the European Society of Clinical Microbiology and Infectious Diseases guidelines for IPA diagnosis. Both respiratory secretions and blood were collected. In each patient, LFA and PCR were performed on BAL, BL and blood serum, respectively. The EIA test was applied to the BL and BAL of each patient, and the serum of 24 patients. The study was registered on clinicaltrials.gov (NCT04848831). RESULTS In a total of 80 respiratory samples, Aspergillus GM EIA yielded optical density indices (ODI) ranging from 0.04 to ≥ 3.5. We observed a high correlation between BAL and BL samples for Aspergillus GM EIA (Pearson's r = 0.78 [95% CI 0.62, 0.88]; intraclass correlation coefficient 0.78). At an ODI cutoff of 0.8 for BAL and 1.2 for BL, the sensitivity of Aspergillus GM EIA was 0.94, while the specificity was 0.67. Increasing the BAL cutoff to 1.0 ODI improved the specificity to 0.86. Aspergillus PCR examination showed good agreement between the two compartments, with a Cohen's kappa coefficient of 0.75 (95% CI 0.48, 1.00). The correlation of Aspergillus GM LFA between BAL and BL was weak. CONCLUSIONS Our findings demonstrate that the detection of Aspergillus GM using EIA or Aspergillus PCR in BL is comparable to that in BAL. Thus, BL samples can be reliably used for diagnosing invasive pulmonary aspergillosis.
Collapse
Affiliation(s)
- Maria Schroeder
- Department of Intensive Care MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Mohamad Abd Raboh
- Department of Intensive Care MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Annika Nuechtern
- Department of Intensive Care MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dominic Wichmann
- Department of Intensive Care MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Johannes Stamm
- Department of Intensive Care MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Tim Hardel
- Department of Intensive Care MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Holger Rohde
- Department of Medical Microbiology, Virology and HygieneUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Martin Christner
- Department of Medical Microbiology, Virology and HygieneUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Ann‐Kathrin Ozga
- Center for Experimental Medicine, Institute of Medical Biometry and EpidemiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Stefan Steurer
- Center for Diagnostics, Institute of Pathology With the Sections Molecular Pathology and CytopathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Claudia Jafari
- Department of Clinical Infectious DiseasesResearch Center BorstelBorstelGermany
| | - Hans Klose
- Department of Respiratory MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Stefan Kluge
- Department of Intensive Care MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Marcel Simon
- Department of Respiratory MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Marlene Fischer
- Department of Intensive Care MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
6
|
Liu Y, Zhang Z, Zhou L, Lin T, Zhang R, Li M, Chen S, Liu X, Liu X. Invasive aspergillosis in critically ill patients with diabetes mellitus: a systematic review and meta-analysis. BMC Infect Dis 2025; 25:141. [PMID: 39885384 PMCID: PMC11783785 DOI: 10.1186/s12879-025-10560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND In the intensive care unit (ICU), invasive aspergillosis (IA) has a poor prognosis. Some studies report a positive association between diabetes mellitus (DM) and IA in critically ill patients, but the relationship between DM and IA in the ICU remains controversial. We aimed to clarify the relationship between DM and IA among patients in the ICU in a systematic review and meta-analysis. METHODS We retrieved all reports published in PubMed, EMBASE, and the Cochrane Library databases before July 12, 2023. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) to evaluate the relationship between DM and IA. Subgroup analyses were conducted to further analyze sources of heterogeneity. Heterogeneity was evaluated using the Cochran's Q test and I2 statistic. Additionally, we evaluated publication bias using funnel plots, Egger's test, and Begg's test. Finally, sensitivity analysis was conducted to evaluate the robustness of the results. RESULTS Twenty studies with 6155 participants were included in this meta-analysis. We found a positive association between DM and IA among patients in the ICU (OR = 1.18, 95% CI:1.01 to 1.39; p = 0.04). The heterogeneity was not significant (I² = 5%; p = 0.39) and publication bias was not significant (Egger's test: p = 0.654; Begg's test: p = 0.417). The results of sensitivity analysis supported a stable association between DM and IA. Subgroup analysis indicated that patients' comorbidities might be a potential source of heterogeneity. Additionally, patients with DM had a significantly higher risk of COVID-19-associated pulmonary aspergillosis (CAPA) than those without DM (OR = 1.40, 95% CI: 1.15 to 1.70; p < 0.001). The heterogeneity was not significant (I² = 0%; p = 0.91). In the subgroup with influenza, the OR of the relationship between DM and IA was 0.81 (95% CI: 0.54, 1.23; p = 0.32; heterogeneity: p = 0.36; I² = 8%). CONCLUSIONS Patients with DM in the ICU showed a higher risk of developing IA than patients in the ICU without DM. DM was a significant risk factor for IA, with the highest risk observed in critically ill patients diagnosed with CAPA.
Collapse
Affiliation(s)
- Yuhua Liu
- State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Street West, Guangzhou, 510120, Guangdong, China
| | - Zhaopei Zhang
- State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Street West, Guangzhou, 510120, Guangdong, China
| | - Liang Zhou
- State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Street West, Guangzhou, 510120, Guangdong, China
| | - Tianlai Lin
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Rong Zhang
- State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Street West, Guangzhou, 510120, Guangdong, China
| | - Manshu Li
- State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Street West, Guangzhou, 510120, Guangdong, China
| | - Sihao Chen
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoqing Liu
- State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Street West, Guangzhou, 510120, Guangdong, China.
| | - Xuesong Liu
- State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Street West, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
7
|
Swinnerton K, Fillmore NR, Oboho I, Grubber J, Brophy M, Do NV, Monach PA, Branch-Elliman W. Pulmonary aspergillosis in US Veterans with COVID-19: a nationwide, retrospective cohort study. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2025; 5:e28. [PMID: 39911504 PMCID: PMC11795435 DOI: 10.1017/ash.2024.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 02/07/2025]
Abstract
Background COVID-associated pulmonary aspergillosis (CAPA) was described early in the pandemic as a complication of SARS-CoV-2. Data about incidence of aspergillosis and characteristics of affected patients after mid-2021 are limited. Methods A retrospective, nationwide cohort of US Veterans with SARS-CoV-2 from 1/1/2020 to 2/7/2024 was created. Potential cases of aspergillosis ≤12 weeks of a SARS-CoV-2 test were flagged electronically (based on testing results indicative of invasive fungal infection, antifungal therapy, and/or ICD-10 codes), followed by manual review to establish the clinical diagnosis of pulmonary aspergillosis. Incidence rates were calculated per 10,000 SARS-CoV-2 cases. Selected clinical characteristics included age >70, receipt of immune-compromising drugs, hematologic malignancy, chronic respiratory disease, vaccination status, and vaccine era. Multivariate logistic regression was used to estimate the independent effects of these variables via adjusted odds ratios (aOR). Results Among 674,343 Veterans with SARS-CoV-2, 165 were electronically flagged for review. Of these, 66 were judged to be cases of aspergillosis. Incidence proportions ranged from 0.30/10,000 among patients with zero risk factors to 34/10,000 among those with ≥3 risk factors; rates were similar in the pre- and post-vaccination eras. The 90-day mortality among aspergillosis cases was 50%. In the multivariate analysis, immune suppression (aOR 6.47, CI 3.84-10.92), chronic respiratory disease (aOR 3.57, CI 2.10-6.14), and age >70 (aOR 2.78, CI 1.64-4.80) were associated with aspergillosis. Conclusions Patients with underlying risk factors for invasive aspergillosis continue to be at some risk despite SARS-CoV-2 immunization. Risk in patients without immune suppression or preexisting lung disease is very low.
Collapse
Affiliation(s)
| | - Nathanael R. Fillmore
- VA Boston Cooperative Studies Program, Boston, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Ikwo Oboho
- VA North Texas Health Care System, Dallas, TX, USA
- UT Southwestern School of Medicine, Dallas, TX, USA
| | - Janet Grubber
- VA Boston Cooperative Studies Program, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Mary Brophy
- VA Boston Cooperative Studies Program, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Nhan V Do
- VA Boston Cooperative Studies Program, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Paul A Monach
- VA Boston Cooperative Studies Program, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Westyn Branch-Elliman
- VA Boston Cooperative Studies Program, Boston, MA, USA
- Greater Los Angeles VA Healthcare System, Department of Medicine, Los Angeles, CA, USA
- UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- VA Center for the Study of Healthcare Innovation, Implementation, and Policy, Los Angeles, CA, USA
| |
Collapse
|
8
|
Little JS, McGwin G, Tushla L, Benedict K, Lyman MM, Toda M, Baddley JW, Pappas PG. Epidemiology of Coronavirus Disease 2019-Associated Fungal Infections in the Intensive Care Unit: A Single-Center Retrospective Study. Mycopathologia 2025; 190:16. [PMID: 39838211 DOI: 10.1007/s11046-025-00928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
INTRODUCTION Invasive fungal disease (IFD) is a morbid superinfection that can arise in critically ill patients with COVID-19 infection. Studies evaluating the full spectrum of COVID-19-associated fungal infections remain limited. METHODS Single-center retrospective study assessing IFD in patients with COVID-19, hospitalized for ≥ 72 h in the intensive care unit (ICU) between 02/25/20 and 02/28/22 (n = 1410). IFD was assessed using consensus criteria (EORTC/MSGERC or ISHAM/ECMM criteria). T- and chi-square tests compared demographic/clinical characteristics between IFD and non-IFD patients. Cox proportional hazards regression estimated risk factors for in-hospital mortality. RESULTS Of 1410 patients with severe COVID-19, 70 (5%) had a diagnosis of COVID-19-associated fungal infection with invasive candidiasis occurring in 3%, and invasive aspergillosis in 2%. Other fungal infections were rare. Patients with IFD had longer ICU stays (26 vs. 13 days; p < 0.001); increased rates of mechanical ventilation (99% vs. 70%; p < 0.001); and a higher risk of in-hospital death (69% vs. 36%; p < 0.001). On multivariable analysis, COVID-associated fungal infections were associated with an increased risk of in-hospital mortality. CONCLUSIONS This real-world study of critically ill patients with COVID-19 demonstrated a low incidence of COVID-19-associated fungal infections with invasive candidiasis occurring most frequently. Fungal infections were associated with an increased risk of in-hospital mortality in this population.
Collapse
Affiliation(s)
- Jessica S Little
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, PBB-A4, Boston, MA, 02115, USA.
| | - Gerald McGwin
- Division of Infectious Diseases, University of Alabama, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisa Tushla
- Terranova Medica, LLC, Colorado Springs, CO, USA
| | | | - Meghan M Lyman
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mitsuru Toda
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John W Baddley
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter G Pappas
- Division of Infectious Diseases, University of Alabama, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Sedik S, Wolfgruber S, Hoenigl M, Kriegl L. Diagnosing fungal infections in clinical practice: a narrative review. Expert Rev Anti Infect Ther 2024; 22:935-949. [PMID: 39268795 DOI: 10.1080/14787210.2024.2403017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Invasive fungal infections (IFI) present a major medical challenge, with an estimated 6.5 million cases annually, resulting in 3.8 million deaths. Pathogens such as Aspergillus spp. Candida spp. Mucorales spp. Cryptococcus spp. and other fungi species contribute to these infections, posing risks to immunocompromised individuals. Early and accurate diagnosis is crucial for effective treatment and better patient outcomes. AREAS COVERED This narrative review provides an overview of the current methods and challenges associated with diagnosing fungal diseases, including invasive aspergillosis and invasive candidiasis, as well as rare and endemic fungal infections. Various diagnostic techniques, including microscopy, culture, molecular diagnostics, and serological tests, are reviewed, highlighting their respective advantages and limitations and role in clinical guidelines. To illustrate, the need for improved diagnostic strategies to overcome existing challenges, such as the low sensitivity and specificity of current tests and the time-consuming nature of traditional culture-based methods, is addressed. EXPERT OPINION Current advancements in fungal infection diagnostics have significant implications for healthcare outcomes. Improved strategies like molecular testing and antigen detection promise early detection of fungal pathogens, enhancing patient management. Challenges include global access to advanced technologies and the need for standardized, user-friendly point-of-care diagnostics to improve diagnosis of fungal infections globally.
Collapse
Affiliation(s)
- Sarah Sedik
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Stella Wolfgruber
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
10
|
Calvo M, Lauricella F, Mellini AM, Scalia G, Trovato L. Isavuconazole and Amphotericin B Synergic Antifungal Activity: In Vitro Evaluation on Pulmonary Aspergillosis Molds Isolates. Antibiotics (Basel) 2024; 13:1005. [PMID: 39596700 PMCID: PMC11591417 DOI: 10.3390/antibiotics13111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives. Pulmonary aspergillosis is a severe respiratory infection caused by Aspergillus spp., whose resistance profiles and invasive attitude complicate therapeutical strategies. Several aspergillosis cases emerged as superinfections during the SARS-CoV-2 pandemic when isavuconazole and amphotericin B became essential antifungal alternatives. The main purpose of the present study was to investigate a possible synergic activity between these molecules against Aspergillus spp. isolated from respiratory samples. Methods. The gradient test method detected isavuconazole and amphotericin B MIC values, prompting an arrangement of their combination into an R.P.M.I. agar medium. According to Liofilchem s.r.l. instructions, the FIC index was used to establish synergy, additivity, indifference, or antagonism. Results. Among 36 Aspergillus spp. isolates, only A. fumigatus strains showed both synergy and additivity episodes. A. niger reported the highest antagonism percentage, while A. terreus revealed several indifference episodes. Conclusions. Isavuconazole and amphotericin B remain fundamental therapeutical alternatives, including a possible synergic effect against A. fumigatus. On the basis of this species-related difference, further studies will be essential to investigate different antifungal drug combinations against filamentous fungi isolates.
Collapse
Affiliation(s)
- Maddalena Calvo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.C.); (F.L.); (A.M.M.); (G.S.)
- U.O.C. Laboratory Analysis Unit, A.O.U. Policlinico “G. Rodolico-San Marco” Catania, 95123 Catania, Italy
| | - Flavio Lauricella
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.C.); (F.L.); (A.M.M.); (G.S.)
| | - Anna Maurizia Mellini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.C.); (F.L.); (A.M.M.); (G.S.)
| | - Guido Scalia
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.C.); (F.L.); (A.M.M.); (G.S.)
- U.O.C. Laboratory Analysis Unit, A.O.U. Policlinico “G. Rodolico-San Marco” Catania, 95123 Catania, Italy
| | - Laura Trovato
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.C.); (F.L.); (A.M.M.); (G.S.)
- U.O.C. Laboratory Analysis Unit, A.O.U. Policlinico “G. Rodolico-San Marco” Catania, 95123 Catania, Italy
| |
Collapse
|
11
|
Steenwyk JL, Knowles S, Bastos RW, Balamurugan C, Rinker D, Mead ME, Roberts CD, Raja HA, Li Y, Colabardini AC, de Castro PA, Dos Reis TF, Gumilang A, Almagro-Molto M, Alanio A, Garcia-Hermoso D, Delbaje E, Pontes L, Pinzan CF, Schreiber AZ, Canóvas D, Sanchez Luperini R, Lagrou K, Torrado E, Rodrigues F, Oberlies NH, Zhou X, Goldman GH, Rokas A. Evolutionary origin and population diversity of a cryptic hybrid pathogen. Nat Commun 2024; 15:8412. [PMID: 39333551 PMCID: PMC11436853 DOI: 10.1038/s41467-024-52639-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Cryptic fungal pathogens pose disease management challenges due to their morphological resemblance to known pathogens. Here, we investigated the genomes and phenotypes of 53 globally distributed isolates of Aspergillus section Nidulantes fungi and found 30 clinical isolates-including four isolated from COVID-19 patients-were A. latus, a cryptic pathogen that originated via allodiploid hybridization. Notably, all A. latus isolates were misidentified. A. latus hybrids likely originated via a single hybridization event during the Miocene and harbor substantial genetic diversity. Transcriptome profiling of a clinical isolate revealed that both parental subgenomes are actively expressed and respond to environmental stimuli. Characterizing infection-relevant traits-such as drug resistance and growth under oxidative stress-revealed distinct phenotypic profiles among A. latus hybrids compared to parental and closely related species. Moreover, we identified four features that could aid A. latus taxonomic identification. Together, these findings deepen our understanding of the origin of cryptic pathogens.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - Sonja Knowles
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Rafael W Bastos
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | - Charu Balamurugan
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - David Rinker
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - Matthew E Mead
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
- Ginkgo Bioworks, 27 Drydock Avenue, 8th Floor, Boston, USA
| | - Christopher D Roberts
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Huzefa A Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Ana Cristina Colabardini
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Adiyantara Gumilang
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - María Almagro-Molto
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Alexandre Alanio
- Institut Pasteur, Paris Cité University, National Reference Center for Invasives Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Paris, France
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Dea Garcia-Hermoso
- Institut Pasteur, Paris Cité University, National Reference Center for Invasives Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Paris, France
| | - Endrews Delbaje
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Laís Pontes
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - David Canóvas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Clinical Microbiology Unit. Synlab Laboratory at Viamed Sta. Ángela de la Cruz Hospital, Seville, Spain
| | - Rafael Sanchez Luperini
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Centre for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Nicholas H Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Gustavo H Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
- National Institute of Science and Technology in Human Pathogenic, Fungi, Brazil.
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA.
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA.
| |
Collapse
|
12
|
Pantić N, Barać A, Mano V, Dedeić-Ljubović A, Malkodanski I, Jaksić O, Gkentzi D, Mitrović M, Munteanu O, Šišević D, Stojanoski Z, Popescu O, Todorović J, Cornely OA, Salmanton-García J. Mapping the path to excellence: Evaluation of the diagnostic and treatment tools for invasive fungal infections in the balkans. J Infect Public Health 2024; 17:102493. [PMID: 38970927 DOI: 10.1016/j.jiph.2024.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND In the Balkans, rising concerns about invasive fungal infections over the past decade stem from various factors. Primarily, there has been a notable uptick in immunocompromised individuals, including those with chronic illnesses like immunological and hematological diseases. Thus, it is essential to assess the region's laboratory capabilities and the availability of antifungals. This evaluation is vital for gauging the preparedness to diagnose and treat fungal infections effectively, thus minimizing their public health impact. METHODS Data were collected via an online questionnaire targeting healthcare professionals specializing in relevant fields across diverse healthcare settings in Balkan countries. The survey covered various aspects, including diagnostic methods, imaging techniques, and available antifungal armamentarium. RESULTS Responses were obtained from 50 institutions across the Balkans. While conventional diagnostic methods like microscopy (96 %) and culture (100 %) diagnostics were widely available, access to newer diagnostic tools such as molecular assays (61 %) were limited, often relying on outsourced services. Imaging modalities like ultrasound (100 %) and CT scans (93 %) were universally accessible. A variety of antifungal drugs were available, including amphotericin B formulations (80 %), echinocandins (79 %), and triazoles (100 %). However, access to newer agents like posaconazole (62 %) and isavuconazole (45 %) was inconsistent. Therapeutic drug monitoring (53 %) services were also limited. CONCLUSION The study underscores the need for equitable access to diagnostic facilities and antifungal treatments across healthcare settings in the Balkan geographic region. Improving access to molecular diagnostic tools and essential antifungal drugs, as well as implementing therapeutic drug monitoring, would optimize the management of fungal infections in the region.
Collapse
Affiliation(s)
- Nikola Pantić
- Clinic for Hematology, University Clinical Centre of Serbia, Belgrade, Serbia.
| | - Aleksandra Barać
- Faculty of Medicine, University of Belgrade, Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, Belgrade, Serbia
| | - Vasilika Mano
- Laboratory of Microbiology, University Medical Center of Tirana "Mother Teresa", Tirana, Albania
| | - Amela Dedeić-Ljubović
- Department of Clinical Microbiology, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Ivan Malkodanski
- St. Marina University Hospital, Medical University, Pleven, Bulgaria
| | - Ozren Jaksić
- Division of Hematology, Department of Medicine, University Hospital Dubrava, Medical School University of Zagreb, Zagreb, Croatia
| | - Despoina Gkentzi
- Department of Paediatrics, University of Patras, University General Hospital of Patras, Patras, Greece
| | - Mirjana Mitrović
- Clinic for Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Oxana Munteanu
- Division of Pneumology and Allergology, Department of Internal Medicine, State University of Medicine and Pharmacy "Nicolae Testemițanu", Medpark International Hospital, Chișinău, Moldova
| | | | - Zlate Stojanoski
- University Hematology Clinic, Medical Faculty, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Oana Popescu
- National Institute of Pneumology Marius Nasta, Bucharest, Romania
| | | | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Jon Salmanton-García
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Su L, Yu T, Zhang C, Huo P, Zhao Z. A prediction model for secondary invasive fungal infection among severe SARS-CoV-2 positive patients in ICU. Front Cell Infect Microbiol 2024; 14:1382720. [PMID: 39040601 PMCID: PMC11260608 DOI: 10.3389/fcimb.2024.1382720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Background The global COVID-19 pandemic has resulted in over seven million deaths, and IFI can further complicate the clinical course of COVID-19. Coinfection of COVID-19 and IFI (secondary IFI) pose significant threats not only to healthcare systems but also to patient lives. After the control measures for COVID-19 were lifted in China, we observed a substantial number of ICU patients developing COVID-19-associated IFI. This creates an urgent need for predictive assessment of COVID-19 patients in the ICU environment for early detection of suspected fungal infection cases. Methods This study is a single-center, retrospective research endeavor. We conducted a case-control study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive patients. The cases consisted of patients who developed any secondary IFI during their ICU stay at Jilin University China-Japan Union Hospital in Changchun, Jilin Province, China, from December 1st, 2022, to August 31st, 2023. The control group consisted of SARS-CoV-2 positive patients without secondary IFI. Descriptive and comparative analyses were performed, and a logistic regression prediction model for secondary IFI in COVID-19 patients was established. Additionally, we observed an increased incidence of COVID-19-associated pulmonary aspergillosis (CAPA) during this pandemic. Therefore, we conducted a univariate subgroup analysis on top of IFI, using non-CAPA patients as the control subgroup. Results From multivariate analysis, the prediction model identified 6 factors that are significantly associated with IFI, including the use of broad-spectrum antibiotics for more than 2 weeks (aOR=4.14, 95% CI 2.03-8.67), fever (aOR=2.3, 95%CI 1.16-4.55), elevated log IL-6 levels (aOR=1.22, 95% CI 1.04-1.43) and prone position ventilation (aOR=2.38, 95%CI 1.15-4.97) as independent risk factors for COVID-19 secondary IFI. High BMI (BMI ≥ 28 kg/m2) (aOR=0.85, 95% CI 0.75-0.94) and the use of COVID-19 immunoglobulin (aOR=0.45, 95% CI 0.2-0.97) were identified as independent protective factors against COVID-19 secondary IFI. The Receiver Operating Curve (ROC) area under the curve (AUC) of this model was 0.81, indicating good classification. Conclusion We recommend paying special attention for the occurrence of secondary IFI in COVID-19 patients with low BMI (BMI < 28 kg/m2), elevated log IL-6 levels and fever. Additionally, during the treatment of COVID-19 patients, we emphasize the importance of minimizing the duration of broad-spectrum antibiotic use and highlight the potential of immunoglobulin application in reducing the incidence of IFI.
Collapse
Affiliation(s)
- Leilei Su
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tong Yu
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Chunmei Zhang
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pengfei Huo
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongyan Zhao
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Morrissey CO, Kim HY, Duong TMN, Moran E, Alastruey-Izquierdo A, Denning DW, Perfect JR, Nucci M, Chakrabarti A, Rickerts V, Chiller TM, Wahyuningsih R, Hamers RL, Cassini A, Gigante V, Sati H, Alffenaar JW, Beardsley J. Aspergillus fumigatus-a systematic review to inform the World Health Organization priority list of fungal pathogens. Med Mycol 2024; 62:myad129. [PMID: 38935907 PMCID: PMC11210617 DOI: 10.1093/mmy/myad129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 06/29/2024] Open
Abstract
Recognizing the growing global burden of fungal infections, the World Health Organization established a process to develop a priority list of fungal pathogens (FPPL). In this systematic review, we aimed to evaluate the epidemiology and impact of invasive infections caused by Aspergillus fumigatus to inform the first FPPL. The pre-specified criteria of mortality, inpatient care, complications and sequelae, antifungal susceptibility, risk factors, preventability, annual incidence, global distribution, and emergence were used to search for relevant articles between 1 January 2016 and 10 June 2021. Overall, 49 studies were eligible for inclusion. Azole antifungal susceptibility varied according to geographical regions. Voriconazole susceptibility rates of 22.2% were reported from the Netherlands, whereas in Brazil, Korea, India, China, and the UK, voriconazole susceptibility rates were 76%, 94.7%, 96.9%, 98.6%, and 99.7%, respectively. Cross-resistance was common with 85%, 92.8%, and 100% of voriconazole-resistant A. fumigatus isolates also resistant to itraconazole, posaconazole, and isavuconazole, respectively. The incidence of invasive aspergillosis (IA) in patients with acute leukemia was estimated at 5.84/100 patients. Six-week mortality rates in IA cases ranged from 31% to 36%. Azole resistance and hematological malignancy were poor prognostic factors. Twelve-week mortality rates were significantly higher in voriconazole-resistant than in voriconazole-susceptible IA cases (12/22 [54.5%] vs. 27/88 [30.7%]; P = .035), and hematology patients with IA had significantly higher mortality rates compared with solid-malignancy cases who had IA (65/217 [30%] vs. 14/78 [18%]; P = .04). Carefully designed surveillance studies linking laboratory and clinical data are required to better inform future FPPL.
Collapse
Affiliation(s)
- C Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Hannah Y Kim
- The University of Sydney Infectious Diseases Institute (Sydney ID), New South Wales, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Tra-My N Duong
- The University of Sydney Infectious Diseases Institute (Sydney ID), New South Wales, Australia
| | - Eric Moran
- Sinclair Dermatology, East Melbourne, Victoria, Australia
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - David W Denning
- Global Action for Fungal Infections, Geneva, Switzerland
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - John R Perfect
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC, USA
| | - Marcio Nucci
- Universidade Federal do Rio de Janeiro and Grupo Oncoclinicas, Rio de Janeiro, RJ, Brazil
| | | | - Volker Rickerts
- Robert Koch Institute Berlin, FG16, Seestrasse 10, 13353 Berlin, Germany
| | - Tom M Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Parasitology, Faculty of Medicine, Universitas Kristen, Jakarta, Indonesia
| | - Raph L Hamers
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alessandro Cassini
- Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland
- Public Health Department, Canton of Vaud, Lausanne, Switzerland
| | - Valeria Gigante
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Hatim Sati
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Jan-Willem Alffenaar
- The University of Sydney Infectious Diseases Institute (Sydney ID), New South Wales, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Justin Beardsley
- The University of Sydney Infectious Diseases Institute (Sydney ID), New South Wales, Australia
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
15
|
Salmanton-García J, Simon M, Groll AH, Kurzai O, Lahmer T, Lehrnbecher T, Schroeder M, Cornely OA, Stemler J. Insights into invasive fungal infection diagnostic and treatment capacities in tertiary care centres of Germany. JAC Antimicrob Resist 2024; 6:dlae083. [PMID: 38812581 PMCID: PMC11135635 DOI: 10.1093/jacamr/dlae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction In Germany, the growing incidence of invasive fungal infections (IFIs) is a significant health concern, particularly impacting individuals with compromised immune systems due to factors like increasing transplant recipients, an ageing population, and heightened use of immunosuppressive medications. Diagnosing IFI remains challenging, and the integration of biomarker assays into clinical practice is difficult. Antifungal resistance, exemplified by pan-antifungal-resistant Candida auris cases, adds complexity to treatment. This study aims to provide a concise overview of the diagnostic and treatment landscape for IFI in Germany, identifying areas for improvement and paving the way for targeted interventions. Methods Data were collected using an online electronic case report form from October 2021 to February 2023. The survey included questions about institutional practices related to fungal infection diagnosis and treatment, with invitations extended to researchers nationwide. Results The study surveyed 58 hospitals across Germany. Notably, 77.6% managed high-risk patients for IFI. While 86% had onsite microbiology labs, a significant difference was noted for high-risk patients (93% in specialized hospitals versus 62% in others). Microscopy services had 96% coverage, while overall access to culture was 96%. Antigen tests had 96% coverage, and antibody access was reported at 98%. PCR testing was available at 98%. Imaging access showed no significant access differences. Variability existed in amphotericin B formulations based on patient profiles. Therapeutic drug monitoring was more common in high-risk patient institutions (89.5% versus 50.0%). All analysed institutions reported access to surgery (100%). Conclusions Addressing identified disparities in diagnostic and therapeutic resources for IFI is crucial to improving patient outcomes. The study calls for ongoing research and collaboration to optimize strategies for the prevention and treatment of IFI, emphasizing the importance of equitable access to resources, especially in high-risk patient populations.
Collapse
Affiliation(s)
- Jon Salmanton-García
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Institute of Translational Research, Herderstraße 52, 50931 Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Michaela Simon
- Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children’s University Hospital Münster, Münster, Germany
| | - Oliver Kurzai
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Tobias Lahmer
- TUM School of Medicine and Health, Department of Clinical Medicine—Clinical Department for Internal Medicine II, University Medical Centre, Technical University of Munich, Munich, Germany
| | - Thomas Lehrnbecher
- Department of Pediatrics, Division of Hematology, Oncology and Hemostaseology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria Schroeder
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Institute of Translational Research, Herderstraße 52, 50931 Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Jannik Stemler
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Institute of Translational Research, Herderstraße 52, 50931 Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
16
|
Gerber V, Boehn L, Sabou M, Studer A, Ursenbach A, Hansmann Y, Herbrecht R, Lefebvre N, Letscher-Bru V, Danion F. Is there an interest in systematic serum screening for aspergillosis in COVID-19 patients in a medical ward? Infect Dis Now 2024; 54:104918. [PMID: 38636842 DOI: 10.1016/j.idnow.2024.104918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
PURPOSE We evaluated the interest of systematic screening of serum fungal markers in patients hospitalized in a medical ward. METHODS We retrospectively analyzed all patients hospitalized in our infectious disease department from October 1st to October 31st, 2020 for COVID-19 without prior ICU admission, and for whom systematic screening of serum fungal markers was performed. RESULTS Thirty patients were included. The majority of patients received corticosteroids (96.7%). The galactomannan antigen assay was positive for 1/30 patients at D0, and 0/24, 0/16, 0/13 and 0/2 at D4, D7, D10 and D14 respectively. 1,3-ß-D-glucan was positive for 0/30, 1/24, 1/12, 0/12, 0/2 at D0, D4, D7, D10 and D14 respectively. No Aspergillus fumigatus PCR was positive. No cases of aspergillosis were retained. CONCLUSION Our study does not support the interest of systematic screening of fungal markers in immunocompetent patients with COVID-19 in a conventional unit.
Collapse
Affiliation(s)
- Victor Gerber
- Service de maladies infectieuses et tropicales, Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France.
| | - Louis Boehn
- Service de maladies infectieuses et tropicales, Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Marcela Sabou
- Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Antoine Studer
- Service de Médecine Intensive-Réanimation, Hôpitaux Universitaires, Strasbourg, France
| | - Axel Ursenbach
- Service de maladies infectieuses et tropicales, Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France; Service du Trait d'Union, Hôpitaux Universitaires, Université de Strasbourg, Strasbourg, France
| | - Yves Hansmann
- Service de maladies infectieuses et tropicales, Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Raoul Herbrecht
- Department of hematology, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Nicolas Lefebvre
- Service de maladies infectieuses et tropicales, Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Valérie Letscher-Bru
- Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - François Danion
- Service de maladies infectieuses et tropicales, Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France; Inserm UMR_S 1109, Laboratoire d'ImmunoRhumatologie Moléculaire, Strasbourg, France
| |
Collapse
|
17
|
Wang Y, Mirsaeidi MS, Bai C, Yang D. Editorial: A year in review: discussions in pulmonary medicine. Front Med (Lausanne) 2024; 11:1434562. [PMID: 38882663 PMCID: PMC11176607 DOI: 10.3389/fmed.2024.1434562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Affiliation(s)
- Yuan Wang
- Department of Pulmonary and Intensive Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mehdi S Mirsaeidi
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Jacksonville, University of Florida, Gainesville, FL, United States
| | - Chunxue Bai
- Department of Pulmonary and Intensive Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineer and Technology Research, Center of Internet of Things for Respiratory Medicine, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
- Shanghai Respiratory Research Institution, Shanghai, China
- Department of Pulmonary and Intensive Care Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Dawei Yang
- Department of Pulmonary and Intensive Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineer and Technology Research, Center of Internet of Things for Respiratory Medicine, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
- Shanghai Respiratory Research Institution, Shanghai, China
- Department of Pulmonary and Intensive Care Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| |
Collapse
|
18
|
Bienvenu AL, Leray V, Guichon C, Bourget S, Chapuis C, Duréault A, Pavese P, Roux S, Kahale E, Chaabane W, Subtil F, Maucort-Boulch D, Talbot F, Dode X, Ghesquières H, Leboucher G. ANTIFON-CLIC®, a new clinical decision support system for the treatment of invasive aspergillosis: is it clinically relevant? ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:514-521. [PMID: 38000506 DOI: 10.1016/j.pharma.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Invasive aspergillosis (IA) is increasing especially in new groups of patients. Despite advances in management, morbidity and mortality related to IA remain high. Thus, Clinical Decision Support System (CDSS) dedicated to IA are needed to promote the optimal antifungal for each group of patients. PATIENTS AND METHODS This was a retrospective multicenter cohort study involving intensive care units and medical units. Adult patients who received caspofungin, isavuconazole, itraconazole, liposomal amphotericin B, posaconazole, or voriconazole, for the treatment of IA were eligible for enrollment. The primary objective was the concordance between the clinician's prescription and the prescription recommended by the CDSS. The secondary objective was the concordance according to different hospitals, departments, and indications. RESULTS Eighty-eight patients (n=88) from three medical hospitals were included. The overall concordance was 97% (85/88) including 100% (41/41) for center A, 92% (23/25) for center B, and 95% (21/22) for center C. There was no significant difference in concordance among the hospitals (P=0.973), the departments (P=1.000), and the indications (P=0.799). The concordance was 70% (7/10) for isavuconazole due to its use as an empirical treatment and 100% (78/78) for the other antifungals. DISCUSSION The concordance rate was high whatever the hospital, the department, and the indication. The only discrepancy was attributed to the use of isavuconazole as an empirical treatment which is a therapeutic option not included in the CDSS. CONCLUSIONS This new CDSS dedicated to IA is meeting the clinical practice. Its implementation in routine will help to support antifungal stewardship.
Collapse
Affiliation(s)
- A-L Bienvenu
- Service pharmacie, groupement hospitalier nord, hospices civils de Lyon, Lyon, France; Univ Lyon, Malaria Research Unit, SMITh, ICBMS UMR 5246, Lyon, France.
| | - V Leray
- Service d'anesthésie-réanimation, groupement hospitalier centre, hospices civils de Lyon, Lyon, France
| | - C Guichon
- Service d'anesthésie-réanimation, groupement hospitalier nord, Hospices civils de Lyon, Lyon, France
| | - S Bourget
- Service pharmacie, CH de Valence, Valence, France
| | - C Chapuis
- Service de pharmacie, CHU de Grenoble, Grenoble-Alpes, France
| | - A Duréault
- Service des maladies infectieuses, centre hospitalier de Valence, Valence, France
| | - P Pavese
- Service des maladies infectieuses, CHU de Grenoble, Grenoble-Alpes, France
| | - S Roux
- Service des maladies infectieuses et tropicales, hospices civils de Lyon, Lyon, France
| | - E Kahale
- Direction de l'innovation, hospices civils de Lyon, Lyon, France
| | - W Chaabane
- Direction des services numériques, hospices civils de Lyon, Lyon, France
| | - F Subtil
- Service de biostatistique-bioinformatique, hospices civils de Lyon, Lyon, France
| | - D Maucort-Boulch
- Service de biostatistique-bioinformatique, hospices civils de Lyon, Lyon, France
| | - F Talbot
- Direction des services numériques, hospices civils de Lyon, Lyon, France
| | - X Dode
- Service pharmacie, groupement hospitalier est, hospices civils de Lyon, Lyon, France
| | - H Ghesquières
- Service d'hématologie, groupement hospitalier sud, hospices civils de Lyon, Lyon, France
| | - G Leboucher
- Service pharmacie, groupement hospitalier nord, hospices civils de Lyon, Lyon, France
| |
Collapse
|
19
|
Bay P, Audureau E, Préau S, Favory R, Guigon A, Heming N, Gault E, Pham T, Chaghouri A, Turpin M, Morand-Joubert L, Jochmans S, Pitsch A, Meireles S, Contou D, Henry A, Joseph A, Chaix ML, Uhel F, Roux D, Descamps D, Emery M, Garcia-Sanchez C, Levy D, Burrel S, Mayaux J, Kimmoun A, Hartard C, Pène F, Rozenberg F, Gaudry S, Brichler S, Guillon A, Handala L, Tamion F, Moisan A, Daix T, Hantz S, Delamaire F, Thibault V, Souweine B, Henquell C, Picard L, Botterel F, Rodriguez C, Dessap AM, Pawlotsky JM, Fourati S, de Prost N. COVID-19 associated pulmonary aspergillosis in critically-ill patients: a prospective multicenter study in the era of Delta and Omicron variants. Ann Intensive Care 2024; 14:65. [PMID: 38658426 PMCID: PMC11043290 DOI: 10.1186/s13613-024-01296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND During the first COVID-19 pandemic wave, COVID-19-associated pulmonary aspergillosis (CAPA) has been reported in up to 11-28% of critically ill COVID-19 patients and associated with increased mortality. As new SARS-CoV-2 variants emerged, the characteristics of critically ill COVID-19 patients have evolved, particularly in the era of Omicron. The purpose of this study is to investigate the characteristics of CAPA in the era of new variants. METHODS This is a prospective multicenter observational cohort study conducted in France in 36 participating intensive care units (ICU), between December 7th, 2021 and April 26th 2023. Diagnosis criteria of CAPA relied on European Confederation of Medical Mycology (ECMM)/International Society for Human & Animal Mycology (ISHAM) consensus criteria. RESULTS 566 patients were included over the study period. The prevalence of CAPA was 5.1% [95% CI 3.4-7.3], and rose to 9.1% among patients who required invasive mechanical ventilation (IMV). Univariable analysis showed that CAPA patients were more frequently immunosuppressed and required more frequently IMV support, vasopressors and renal replacement therapy during ICU stay than non-CAPA patients. SAPS II score at ICU admission, immunosuppression, and a SARS-CoV-2 Delta variant were independently associated with CAPA in multivariable logistic regression analysis. Although CAPA was not significantly associated with day-28 mortality, patients with CAPA experienced a longer duration of mechanical ventilation and ICU stay. CONCLUSION This study contributes valuable insights into the prevalence, characteristics, and outcomes of CAPA in the era of Delta and Omicron variants. We report a lower prevalence of CAPA (5.1%) among critically-ill COVID-19 patients than previously reported, mainly affecting intubated-patients. Duration of mechanical ventilation and ICU stay were significantly longer in CAPA patients.
Collapse
Affiliation(s)
- Pierre Bay
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), CHU Henri Mondor, 51, Av. de Lattre de Tassigny, CEDEX, 94010, Créteil, France.
- Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), Créteil, France.
- Université Paris-Est-Créteil (UPEC), Créteil, France.
- IMRB INSERM U955, Team "Viruses, Hepatology, Cancer", Créteil, France.
| | - Etienne Audureau
- Université Paris-Est-Créteil (UPEC), Créteil, France
- IMRB INSERM U955, Team CEpiA, Créteil, France
- Unité de Recherche Clinique, Department of Public Health, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Sébastien Préau
- U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, 59000, Lille, France
| | - Raphaël Favory
- U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, 59000, Lille, France
| | - Aurélie Guigon
- Service de Virologie, CHU de Lille, 59000, Lille, France
| | - Nicholas Heming
- Médecine Intensive Réanimation, Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Elyanne Gault
- Laboratoire de Virologie, Hôpital Ambroise Paré, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne, France
| | - Tài Pham
- Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), Créteil, France
- Service de Médecine Intensive-Réanimation, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, DMU 4 CORREVE Maladies du Cœur et des Vaisseaux, FHU Sepsis, Le Kremlin-Bicêtre, France
- Inserm U1018, Equipe d'Epidémiologie Respiratoire Intégrative, CESP, 94807, Villejuif, France
| | - Amal Chaghouri
- Laboratoire de Virologie, Hôpital Paul Brousse, Assistance Publique-Hôpitaux de Paris, Villejuif, France
| | - Matthieu Turpin
- Centre de Recherche Saint-Antoine INSERM, Médecine Intensive Réanimation, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Laurence Morand-Joubert
- INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Sorbonne Université, Paris, France
- Laboratoire de Virologie, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, 75012, Paris, France
| | | | - Aurélia Pitsch
- Laboratoire de Microbiologie, Hôpital Marc Jacquet, Melun, France
| | - Sylvie Meireles
- Service de Réanimation Médico-Chirurgicale, Assistance Publique-Hôpitaux de Paris, Hôpital Ambroise Paré, Boulogne, France
| | - Damien Contou
- Service de Réanimation, Hôpital Victor Dupouy, Argenteuil, France
| | - Amandine Henry
- Service de Virologie, Hôpital Victor Dupouy, Argenteuil, France
| | - Adrien Joseph
- Médecine Intensive Réanimation, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie-Laure Chaix
- Inserm HIPI, Université Paris Cité, 75010, Paris, France
- Laboratoire de Virologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 75010, Paris, France
| | - Fabrice Uhel
- DMU ESPRIT, Service de Médecine Intensive Réanimation, Université Paris Cité, APHP, Hôpital Louis Mourier, Colombes, France
- INSERM U1151, CNRS UMR 8253, Department of Immunology, Infectiology and Hematology, Institut Necker-Enfants Malades (INEM), Paris, France
| | - Damien Roux
- DMU ESPRIT, Service de Médecine Intensive Réanimation, Université Paris Cité, APHP, Hôpital Louis Mourier, Colombes, France
- INSERM U1151, CNRS UMR 8253, Department of Immunology, Infectiology and Hematology, Institut Necker-Enfants Malades (INEM), Paris, France
| | - Diane Descamps
- IAME INSERM UMR 1137, Service de Virologie, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Malo Emery
- Service de Réanimation, Hôpital Saint-Camille, Bry-Sur-Marne, France
| | | | - David Levy
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Réanimation Médicale, Sorbonne Université, Paris, France
| | - Sonia Burrel
- Service de Virologie, CHU de Bordeaux et CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
- Département de Virologie, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Julien Mayaux
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Médecine Intensive Réanimation, Sorbonne Université, Paris, France
| | - Antoine Kimmoun
- CHRU de Nancy, Médecine Intensive et Réanimation Brabois, Université de Lorraine, Vandœuvre-Lès-Nancy, France
- INSERM U942 and U1116, F-CRIN-INIC RCT, Vandœuvre-Lès-Nancy, France
| | - Cédric Hartard
- Service de Virologie, CHRU de Nancy, Vandœuvre-Lès-Nancy, France
| | - Frédéric Pène
- Médecine Intensive Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Flore Rozenberg
- Laboratoire de Virologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stéphane Gaudry
- Service de Réanimation, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Ségolène Brichler
- Laboratoire de Virologie, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Antoine Guillon
- Intensive Care Unit, Tours University Hospital, Research Center for Respiratory Diseases (CEPR), INSERM U1100, University of Tours, Tours, France
| | - Lynda Handala
- INSERM U1259, Université de Tours, Tours, France
- CHRU de Tours, National Reference Center for HIV-Associated Laboratory, Tours, France
| | - Fabienne Tamion
- Service de Médecine Intensive-Réanimation, CHU De Rouen, Rouen, France
| | - Alice Moisan
- INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Virology, Univ Rouen Normandie, Université de Caen Normandie, 76000, Rouen, France
| | - Thomas Daix
- Réanimation Polyvalente, INSERM CIC 1435 and UMR 1092, CHU Limoges, Limoges, France
| | - Sébastien Hantz
- French National Reference Center for Herpesviruses, Bacteriology, Virology, Hygiene Department, CHU Limoges, 87000, Limoges, France
- INSERM, RESINFIT, U1092, 87000, Limoges, France
| | - Flora Delamaire
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
| | - Vincent Thibault
- Laboratoire de Virologie, CHU Rennes, 35000, Rennes, France
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) UMR_S 1085, Univ Rennes, 35000, Rennes, France
| | - Bertrand Souweine
- Service de Médecine Intensive et Réanimation, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Cecile Henquell
- 3IHP, Service de Virologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Lucile Picard
- Département d'Anesthésie Réanimations Chirurgicales, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Françoise Botterel
- Université Paris-Est-Créteil (UPEC), Créteil, France
- Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Christophe Rodriguez
- Université Paris-Est-Créteil (UPEC), Créteil, France
- IMRB INSERM U955, Team "Viruses, Hepatology, Cancer", Créteil, France
- Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Armand Mekontso Dessap
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), CHU Henri Mondor, 51, Av. de Lattre de Tassigny, CEDEX, 94010, Créteil, France
- Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), Créteil, France
- Université Paris-Est-Créteil (UPEC), Créteil, France
| | - Jean-Michel Pawlotsky
- Université Paris-Est-Créteil (UPEC), Créteil, France
- IMRB INSERM U955, Team "Viruses, Hepatology, Cancer", Créteil, France
- Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Slim Fourati
- Université Paris-Est-Créteil (UPEC), Créteil, France
- IMRB INSERM U955, Team "Viruses, Hepatology, Cancer", Créteil, France
- Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Nicolas de Prost
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), CHU Henri Mondor, 51, Av. de Lattre de Tassigny, CEDEX, 94010, Créteil, France
- Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), Créteil, France
- Université Paris-Est-Créteil (UPEC), Créteil, France
| |
Collapse
|
20
|
Iacovelli A, Oliva A, Mirabelli FM, Giannone S, Laguardia M, Morviducci M, Nicolardi ML, Repaci E, Sanzari MT, Leanza C, Raponi G, Mastroianni C, Palange P. Risk factors for COVID-19 associated pulmonary aspergillosis and outcomes in patients with acute respiratory failure in a respiratory sub-intensive care unit. BMC Infect Dis 2024; 24:392. [PMID: 38605300 PMCID: PMC11007928 DOI: 10.1186/s12879-024-09283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND COVID-19-associated pulmonary aspergillosis (CAPA) is burdened by high mortality. Data are lacking about non-ICU patients. Aims of this study were to: (i) assess the incidence and prevalence of CAPA in a respiratory sub-intensive care unit, (ii) evaluate its risk factors and (iii) impact on in-hospital mortality. Secondary aims were to: (i) assess factors associated to mortality, and (ii) evaluate significant features in hematological patients. MATERIALS AND METHODS This was a single-center, retrospective study of COVID-19 patients with acute respiratory failure. A cohort of CAPA patients was compared to a non-CAPA cohort. Among patients with CAPA, a cohort of hematological patients was further compared to another of non-hematological patients. RESULTS Three hundred fifty patients were included in the study. Median P/F ratio at the admission to sub-intensive unit was 225 mmHg (IQR 155-314). 55 (15.7%) developed CAPA (incidence of 5.5%). Eighteen had probable CAPA (37.3%), 37 (67.3%) possible CAPA and none proven CAPA. Diagnosis of CAPA occurred at a median of 17 days (IQR 12-31) from SARS-CoV-2 infection. Independent risk factors for CAPA were hematological malignancy [OR 1.74 (95%CI 0.75-4.37), p = 0.0003], lymphocytopenia [OR 2.29 (95%CI 1.12-4.86), p = 0.02], and COPD [OR 2.74 (95%CI 1.19-5.08), p = 0.014]. Mortality rate was higher in CAPA cohort (61.8% vs 22.7%, p < 0.0001). CAPA resulted an independent risk factor for in-hospital mortality [OR 2.92 (95%CI 1.47-5.89), p = 0.0024]. Among CAPA patients, age > 65 years resulted a predictor of mortality [OR 5.09 (95% CI 1.20-26.92), p = 0.035]. No differences were observed in hematological cohort. CONCLUSION CAPA is a life-threatening condition with high mortality rates. It should be promptly suspected, especially in case of hematological malignancy, COPD and lymphocytopenia.
Collapse
Affiliation(s)
- Alessandra Iacovelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy.
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Flavio Marco Mirabelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Silvia Giannone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Marianna Laguardia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Matteo Morviducci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Maria Luisa Nicolardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Emma Repaci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Maria Teresa Sanzari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Cristiana Leanza
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Claudio Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| |
Collapse
|
21
|
Bassetti M, Giacobbe DR, Agvald-Ohman C, Akova M, Alastruey-Izquierdo A, Arikan-Akdagli S, Azoulay E, Blot S, Cornely OA, Cuenca-Estrella M, de Lange DW, De Rosa FG, De Waele JJ, Dimopoulos G, Garnacho-Montero J, Hoenigl M, Kanj SS, Koehler P, Kullberg BJ, Lamoth F, Lass-Flörl C, Maertens J, Martin-Loeches I, Muñoz P, Poulakou G, Rello J, Sanguinetti M, Taccone FS, Timsit JF, Torres A, Vazquez JA, Wauters J, Asperges E, Cortegiani A, Grecchi C, Karaiskos I, Le Bihan C, Mercier T, Mortensen KL, Peghin M, Rebuffi C, Tejada S, Vena A, Zuccaro V, Scudeller L, Calandra T. Invasive Fungal Diseases in Adult Patients in Intensive Care Unit (FUNDICU): 2024 consensus definitions from ESGCIP, EFISG, ESICM, ECMM, MSGERC, ISAC, and ISHAM. Intensive Care Med 2024; 50:502-515. [PMID: 38512399 PMCID: PMC11018656 DOI: 10.1007/s00134-024-07341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE The aim of this document was to develop standardized research definitions of invasive fungal diseases (IFD) in non-neutropenic, adult patients without classical host factors for IFD, admitted to intensive care units (ICUs). METHODS After a systematic assessment of the diagnostic performance for IFD in the target population of already existing definitions and laboratory tests, consensus definitions were developed by a panel of experts using the RAND/UCLA appropriateness method. RESULTS Standardized research definitions were developed for proven invasive candidiasis, probable deep-seated candidiasis, proven invasive aspergillosis, probable invasive pulmonary aspergillosis, and probable tracheobronchial aspergillosis. The limited evidence on the performance of existing definitions and laboratory tests for the diagnosis of IFD other than candidiasis and aspergillosis precluded the development of dedicated definitions, at least pending further data. The standardized definitions provided in the present document are aimed to speed-up the design, and increase the feasibility, of future comparative research studies.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy.
| | - Daniele R Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Christina Agvald-Ohman
- Anaesthesiology and Intensive Care, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Murat Akova
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas-CIBERINFEC, Madrid, Spain
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Elie Azoulay
- Université de Paris, Paris, France
- Service de Médecine Intensive Et Réanimation, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Stijn Blot
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Oliver A Cornely
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Dylan W de Lange
- Department of Intensive Care Medicine, University Medical Center, University Utrecht, Utrecht, The Netherlands
| | - Francesco G De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Jan J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - George Dimopoulos
- Department of Critical Care, University Hospital Attikon, Attikon Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
- Translational Mycology Working Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Souha S Kanj
- Division of Infectious Diseases, and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Philipp Koehler
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty and University Hospital Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Bart J Kullberg
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frédéric Lamoth
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Immunology and Allergy and Center of Human Immunology Lausanne, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James' Hospital, Dublin, Ireland
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Garyphallia Poulakou
- Third Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University, Athens, Greece
| | - Jordi Rello
- Clinical Research/Epidemiology in Pneumonia and Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain
- Clinical Research in the ICU, CHU Nimes, Universite de Nimes-Montpellier, Nimes, France
- Medicine Department, Universitat Internacional de Catalunya (UIC), Sant Cugat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio E Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabio S Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean-François Timsit
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France
- IAME UMR 1137, Université Paris-Cité, Paris, France
| | - Antoni Torres
- Department of Pneumology, Hospital Clinic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centres in Respiratory Diseases (CIBERES), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jose A Vazquez
- Department of Medicine/Division of Infectious Disease, Medical College of Georgia/Augusta University, Augusta, GA, USA
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven, Louvain, Belgium
| | - Erika Asperges
- Infectious Diseases Unit, IRCCS San Matteo, Pavia, Italy
| | - Andrea Cortegiani
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
- Department of Anesthesia Intensive Care and Emergency, University Hospital Policlinico Paolo Giaccone, Palermo, Italy
| | - Cecilia Grecchi
- Malattie Infettive, Azienda Socio Sanitaria Territoriale (ASST) di Lodi, Lodi, Italy
| | - Ilias Karaiskos
- 1st Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Clément Le Bihan
- Saint Eloi Department of Anesthesiology and Critical Care Medicine, Montpellier University Health Care Center, Montpellier, France
| | - Toine Mercier
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
- Department of Hematology, University Hospitals Leuven, Louvain, Belgium
| | - Klaus L Mortensen
- Department of Medicine, Regional Hospital West Jutland, Herning, Denmark
| | - Maddalena Peghin
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Chiara Rebuffi
- Scientific Direction, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sofia Tejada
- Clinical Research/Epidemiology in Pneumonia and Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | | | - Luigia Scudeller
- Research and Innovation Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Thierry Calandra
- Service of Immunology and Allergy and Center of Human Immunology Lausanne, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Shankar J, Thakur R, Clemons KV, Stevens DA. Interplay of Cytokines and Chemokines in Aspergillosis. J Fungi (Basel) 2024; 10:251. [PMID: 38667922 PMCID: PMC11051073 DOI: 10.3390/jof10040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Aspergillosis is a fungal infection caused by various species of Aspergillus, most notably A. fumigatus. This fungus causes a spectrum of diseases, including allergic bronchopulmonary aspergillosis, aspergilloma, chronic pulmonary aspergillosis, and invasive aspergillosis. The clinical manifestations and severity of aspergillosis can vary depending on individual immune status and the specific species of Aspergillus involved. The recognition of Aspergillus involves pathogen-associated molecular patterns (PAMPs) such as glucan, galactomannan, mannose, and conidial surface proteins. These are recognized by the pathogen recognition receptors present on immune cells such as Toll-like receptors (TLR-1,2,3,4, etc.) and C-type lectins (Dectin-1 and Dectin-2). We discuss the roles of cytokines and pathogen recognition in aspergillosis from both the perspective of human and experimental infection. Several cytokines and chemokines have been implicated in the immune response to Aspergillus infection, including interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), CCR4, CCR17, and other interleukins. For example, allergic bronchopulmonary aspergillosis (ABPA) is characterized by Th2 and Th9 cell-type immunity and involves interleukin (IL)-4, IL-5, IL-13, and IL-10. In contrast, it has been observed that invasive aspergillosis involves Th1 and Th17 cell-type immunity via IFN-γ, IL-1, IL-6, and IL-17. These cytokines activate various immune cells and stimulate the production of other immune molecules, such as antimicrobial peptides and reactive oxygen species, which aid in the clearance of the fungal pathogen. Moreover, they help to initiate and coordinate the immune response, recruit immune cells to the site of infection, and promote clearance of the fungus. Insight into the host response from both human and animal studies may aid in understanding the immune response in aspergillosis, possibly leading to harnessing the power of cytokines or cytokine (receptor) antagonists and transforming them into precise immunotherapeutic strategies. This could advance personalized medicine.
Collapse
Affiliation(s)
- Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan 173234, Himachal Pradesh, India
| | - Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar 144001, Punjab, India;
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| |
Collapse
|
23
|
Salmanton-García J, Koehler P, Grothe JH, Mellinghoff SC, Sal E, Simon M, Stemler J, Cornely OA, Sprute R. The Cologne ECMM Excellence Center: A Two-Year Analysis of External Consultation Service for Invasive Fungal Infections. Mycopathologia 2024; 189:25. [PMID: 38466469 PMCID: PMC10927858 DOI: 10.1007/s11046-023-00822-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 03/13/2024]
Abstract
The European Confederation of Medical Mycology (ECMM), formed due to the surge in invasive fungal infections (IFI), initiated the Excellence Centers program in 2016 to guide stakeholders to leading medical mycology sites. This report focuses on the Cologne ECMM Excellence Center, recognized with Diamond status for active global involvement in 2017. The center offers free consultation via email and phone, responding within 24 h for life-threatening IFI, collecting data on origin, pathogens, infection details, and more. Over two years, 189 requests were received globally, predominantly from Germany (85%), mainly involving Aspergillus spp., Mucorales, and Candida spp. Fungal mixed infections occurred in 4% of cases. The center's service effectively addresses IFI challenges, advocating for a comprehensive study encompassing all ECMM Excellence Centers to enhance global mycological care. Proactive expansion of consultancy platforms is crucial, with future analyses needed to assess expert advice's impact on patient outcomes.
Collapse
Affiliation(s)
- Jon Salmanton-García
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Herderstraße 52, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Philipp Koehler
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Herderstraße 52, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Jan-Hendrik Grothe
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Herderstraße 52, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
| | - Sibylle C Mellinghoff
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Herderstraße 52, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Ertan Sal
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Herderstraße 52, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
| | - Michaela Simon
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Herderstraße 52, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
| | - Jannik Stemler
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Herderstraße 52, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Herderstraße 52, 50931, Cologne, Germany.
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany.
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany.
| | - Rosanne Sprute
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Herderstraße 52, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
24
|
Gioia F, Walti LN, Orchanian-Cheff A, Husain S. Risk factors for COVID-19-associated pulmonary aspergillosis: a systematic review and meta-analysis. THE LANCET. RESPIRATORY MEDICINE 2024; 12:207-216. [PMID: 38185135 DOI: 10.1016/s2213-2600(23)00408-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND COVID-19-associated pulmonary aspergillosis (CAPA) has been reported to be an emerging and potentially fatal complication of severe COVID-19. However, risk factors for CAPA have not been systematically addressed to date. METHODS In this systematic review and meta-analysis to identify factors associated with CAPA, we comprehensively searched five medical databases: Ovid MEDLINE; Ovid Embase; the Cochrane Database of Systematic Reviews; the Cochrane Central Register of Controlled Trials; and the WHO COVID-19 Database. All case-control and cohort studies in adults (aged >18 years) that described at least six cases of CAPA and evaluated any risk factors for CAPA, published from Dec 1, 2019, to July 27, 2023, were screened and assessed for inclusion. Only studies with a control population of COVID-19-positive individuals without aspergillosis were included. Two reviewers independently screened search results and extracted outcome data as summary estimates from eligible studies. The primary outcome was to identify the factors associated with CAPA. Meta-analysis was done with random-effects models, with use of the Mantel-Haenszel method to assess dichotomous outcomes as potential risk factors, or the inverse variance method to assess continuous variables for potential association with CAPA. Publication bias was assessed with funnel plots for factors associated with CAPA. The study is registered with PROSPERO, CRD42022334405. FINDINGS Of 3561 records identified, 27 articles were included in the meta-analysis. 6848 patients with COVID-19 were included, of whom 1324 (19·3%) were diagnosed with CAPA. Diagnosis rates of CAPA ranged from 2·5% (14 of 566 patients) to 47·2% (58 of 123). We identified eight risk factors for CAPA. These factors included pre-existing comorbidities of chronic liver disease (odds ratio [OR] 2·70 [95% CI 1·21-6·04], p=0·02; I2=53%), haematological malignancies (OR 2·47 [1·27-4·83], p=0·008; I2=50%), chronic obstructive pulmonary disease (OR 2·00 [1·42-2·83], p<0·0001; I2=26%), and cerebrovascular disease (OR 1·31 [1·01-1·71], p=0·05; I2=46%). Use of invasive mechanical ventilation (OR 2·83; 95% CI 1·88-4·24; p<0·0001; I2=69%), use of renal replacement therapy (OR 2·26 [1·76-2·90], p<0·0001; I2=14%), treatment of COVID-19 with interleukin-6 inhibitors (OR 2·88 [1·52-5·43], p=0·001; I2=89%), and treatment of COVID-19 with corticosteroids (OR 1·88 [1·28-2·77], p=0·001; I2=66%) were also associated with CAPA. Patients with CAPA were typically older than those without CAPA (mean age 66·6 years [SD 3·6] vs 63·5 years [5·3]; mean difference 2·90 [1·48-4·33], p<0·0001; I2=86%). The duration of mechanical ventilation in patients with CAPA was longer than in those without CAPA (n=7 studies; mean duration 19·3 days [8·9] vs 13·5 days [6·8]; mean difference 5·53 days [1·30-9·77], p=0·01; I2=88%). In post-hoc analysis, patients with CAPA had higher all-cause mortality than those without CAPA (n=20 studies; OR 2·65 [2·04-3·45], p<0·0001; I2=51%). INTERPRETATION The identified risk factors for CAPA could eventually be addressed with targeted antifungal prophylaxis in patients with severe COVID-19. FUNDING None.
Collapse
Affiliation(s)
- Francesca Gioia
- Ajmera Transplant Centre, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, ON, Canada; Infectious Diseases Department, Hospital Ramón y Cajal, Consorcio Centro de Investigación Biomédica en Red (CB21/13/00084), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Laura N Walti
- Ajmera Transplant Centre, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ani Orchanian-Cheff
- Library and Information Services, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Shahid Husain
- Ajmera Transplant Centre, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Luo H, Wen J, Yang H, Ran Q, Hou Y. Allograft function predicts mortality in kidney transplant recipients with severe COVID-19: a paradoxical risk factor. Front Immunol 2024; 15:1335148. [PMID: 38415244 PMCID: PMC10896886 DOI: 10.3389/fimmu.2024.1335148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction Kidney transplant recipients (KTRs) are at a higher risk of severe coronavirus disease (COVID-19) because of their immunocompromised status. However, the effect of allograft function on the prognosis of severe COVID-19 in KTRs is unclear. In this study, we aimed to analyze the correlation between pre-infection allograft function and the prognosis of severe COVID-19 in KTRs. Methods This retrospective cohort study included 82 patients who underwent kidney transplantation at the Sichuan Provincial Peoples Hospital between October 1, 2014 and December 1, 2022 and were diagnosed with severe COVID-19. The patients were divided into decreased eGFR and normal eGFR groups based on the allograft function before COVID-19 diagnosis (n=32 [decreased eGFR group], mean age: 43.00 years; n=50 [normal eGFR group, mean age: 41.88 years). We performed logistic regression analysis to identify risk factors for death in patients with severe COVID-19. The nomogram was used to visualize the logistic regression model results. Results The mortality rate of KTRs with pre-infection allograft function insufficiency in the decreased eGFR group was significantly higher than that of KTRs in the normal eGFR group (31.25% [10/32] vs. 8.00% [4/50], P=0.006). Pre-infection allograft function insufficiency (OR=6.96, 95% CI: 1.4633.18, P=0.015) and maintenance of a mycophenolic acid dose >1500 mg/day before infection (OR=7.59, 95% CI: 1.0853.20, P=0.041) were independent risk factors, and the use of nirmatrelvir/ritonavir before severe COVID-19 (OR=0.15, 95% CI: 0.030.72, P=0.018) was a protective factor against death in severe COVID-19. Conclusions Pre-infection allograft function is a good predictor of death in patients with severe COVID-19. Allograft function was improved after treatment for severe COVID-19, which was not observed in patients with non-severe COVID-19.
Collapse
Affiliation(s)
- Han Luo
- Department of Organ Transplantation, Sichuan Provincial Peoples Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingyu Wen
- Department of Medical Insurance, Sichuan Provincial Peoples Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongji Yang
- Department of Organ Transplantation, Sichuan Provincial Peoples Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial Peoples Hospital, Chengdu, China
| | - Qing Ran
- Department of Organ Transplantation, Sichuan Provincial Peoples Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifu Hou
- Department of Organ Transplantation, Sichuan Provincial Peoples Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial Peoples Hospital, Chengdu, China
| |
Collapse
|
26
|
Kang Y, Li Q, Yao Y, Xu C, Qiu Z, Jia W, Li G, Wang P. Epidemiology and Azole Resistance of Clinical Isolates of Aspergillus fumigatus from a Large Tertiary Hospital in Ningxia, China. Infect Drug Resist 2024; 17:427-439. [PMID: 38328338 PMCID: PMC10849152 DOI: 10.2147/idr.s440363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Purpose The objective of this study was to determine the clinical distribution, in vitro antifungal susceptibility and underlying resistance mechanisms of Aspergillus fumigatus (A. fumigatus) isolates from the General Hospital of Ningxia Medical University between November 2021 and May 2023. Methods Antifungal susceptibility testing was performed using the Sensititre YeastOne YO10, and isolates with high minimal inhibitory concentrations (MICs) were further confirmed using the standard broth microdilution assays established by the Clinical and Laboratory Standards Institute (CLSI) M38-third edition. Whole-Genome Resequencing and RT-qPCR in azole-resistant A. fumigatus strains were performed to investigate the underlying resistance mechanisms. Results Overall, a total of 276 A. fumigatus isolates were identified from various clinical departments, showing an increasing trend in the number of isolates over the past 3 years. Two azole-resistant A. fumigatus strains (0.72%) were observed, one of which showed overexpression of cyp51A, cyp51B, cdr1B, MDR1/2, artR, srbA, erg24A, and erg4B, but no cyp51A mutation. However, the other strain harbored two alterations in the cyp51A sequences (L98H/S297T). Therefore, we first described two azole-resistant clinical A. fumigatus strains in Ningxia, China, and reported one azole-resistant strain that has the L98H/S297T mutations in the cyp51A gene without any tandem repeat (TR) sequences in the promoter region. Conclusions This study emphasizes the importance of enhancing attention and surveillance of azole-resistant A. fumigatus, particularly those with non-TR point mutations of cyp51A or non-cyp51A mutations, in order to gain a better understanding of their prevalence and spread in the region.
Collapse
Affiliation(s)
- Yuting Kang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Qiujie Li
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Yao Yao
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Chao Xu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Zhuoran Qiu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Wei Jia
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Gang Li
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Pengtao Wang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| |
Collapse
|
27
|
Vena A, Bassetti M, Mezzogori L, Marchesi F, Hoenigl M, Giacobbe DR, Corcione S, Bartoletti M, Stemler J, Pagano L, Cornely OA, Salmanton-García J. Laboratory and clinical management capacity for invasive fungal infections: the Italian landscape. Infection 2024; 52:197-208. [PMID: 37656348 PMCID: PMC10811091 DOI: 10.1007/s15010-023-02084-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND We assessed the laboratory diagnosis and treatment of invasive fungal disease (IFD) in Italy to detect limitations and potential for improvement. METHODS The survey was available online at www.clinicalsurveys.net/uc/IFI management capacity/, and collected variables such as (a) institution profile, (b) perceptions of IFD in the respective institution, (c) microscopy, (d) culture and fungal identification, (e) serology, (f) antigen detection, (g) molecular tests, (h) susceptibility testing and (i) therapeutic drug monitoring (TDM). RESULTS The laboratory capacity study received responses from 49 Italian centres, with an equitable geographical distribution of locations. The majority of respondents (n = 36, 73%) assessed the occurrence of IFD as moderate-high, with Aspergillus spp. being the pathogen of highest concern, followed by Candida spp. and Mucorales. Although 46 (94%) of the institutions had access to microscopy, less than half of them performed direct microscopy on clinical specimens always when IFD was suspected. Cultures were available in all assessed laboratories, while molecular testing and serology were available in 41 (83%), each. Antigen detection tests and antifungal drugs were also generally accessible (> 90%) among the participating institutions. Nevertheless, access to TDM was limited (n = 31, 63%), with a significant association established between therapeutic drug monitoring availability and higher gross domestic product per capita. CONCLUSIONS Apart from TDM, Italy is adequately prepared for the diagnosis and treatment of IFD, with no significant disparities depending on gross domestic product. Future efforts may need to focus on enhancing the availability and application of direct microscopic methods, as well as TDM, to promote optimal treatment and better patient outcomes.
Collapse
Affiliation(s)
- Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Laura Mezzogori
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | | | - Martin Hoenigl
- Division of Infectious Diseases, Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of Infectious Diseases, ECMM Center of Excellence for Medical Mycology, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
- Tufts University School of Medicine, Boston, MA, USA
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Jannik Stemler
- Faculty of Medicine, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Herderstraße 52-54, 50931, Cologne, Germany
- Partner Site Bonn-Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
| | - Livio Pagano
- Hematology Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Hematology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Oliver A Cornely
- Faculty of Medicine, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Herderstraße 52-54, 50931, Cologne, Germany
- Partner Site Bonn-Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
- Faculty of Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, University Hospital Cologne, Cologne, Germany
- Faculty of Medicine, University of Cologne, University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Jon Salmanton-García
- Faculty of Medicine, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Cologne, Germany.
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Herderstraße 52-54, 50931, Cologne, Germany.
- Partner Site Bonn-Cologne, German Centre for Infection Research (DZIF), Cologne, Germany.
| |
Collapse
|
28
|
Russo A, Serraino R, Serapide F, Bruni A, Garofalo E, Longhini F, Trecarichi EM, Torti C. COVID-19-associated pulmonary aspergillosis in intensive care unit: A real-life experience. Heliyon 2024; 10:e24298. [PMID: 38293516 PMCID: PMC10825494 DOI: 10.1016/j.heliyon.2024.e24298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Since 2020, cases of COVID-19-associated pulmonary aspergillosis (CAPA) have been frequently described, representing an important cause of mortality, especially among patients admitted to intensive care unit (ICU). A predisposition to invasive infection caused by Aspergillus spp. in SARS-CoV-2 infected patients can be ascribed either to the direct viral-mediated damage of the respiratory epithelium or to the dysregulated immunity associated with COVID-19. In this case series we have collected the clinical, laboratory and radiological data of 10 patients admitted to the ICU with diagnosis of probable CAPA, according to the recent expert consensus statement, from March 2020 to December 2022 in the Teaching Hospital of Catanzaro in Italy. Overall, 249 patients were admitted to the COVID-19-ICU from March 2020 to December 2022; out of these, 4% developed a probable CAPA. Most of patients were male with a mean age of 62 years. Only two patients had an underlying immunocompromising condition. The observed mortality was 70%. In our institution, all COVID-19 patients requiring invasive mechanical ventilation systematically underwent bronchoscopy with bronchoalveolar lavage for an early evaluation of bacterial and/or fungal co- or super-infections, including galactomannan test. Patients were re-evaluated by an infectious diseases consultant team every 24-48 hours and the galactomannan test was systematically repeated based on patient's clinical course. Even though the numbers in this study are very small, we report our experience about the role of early diagnosis and careful choice of antifungal therapy, considering the fragility of these patients, and its relationship with outcomes. Despite a systemic approach allowing early diagnosis and initiation of anti-fungal therapy, the mortality rate turned out to be very high (70%).
Collapse
Affiliation(s)
- Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, Italy
| | - Riccardo Serraino
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, Italy
| | - Francesca Serapide
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, Italy
| | - Andrea Bruni
- Anesthesia and Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, Italy
| | - Eugenio Garofalo
- Anesthesia and Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, Italy
| | - Carlo Torti
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, Italy
| |
Collapse
|
29
|
Fernandes R, Sabino R, Cunha C, Cornely OA, Carvalho A, Salmanton-García J. Multicentric Study on the Clinical Mycology Capacity and Access to Antifungal Treatment in Portugal. Mycopathologia 2024; 189:15. [PMID: 38265528 PMCID: PMC10808446 DOI: 10.1007/s11046-024-00830-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
The success of the clinical management of invasive fungal diseases (IFD) is highly dependent on suitable tools for timely and accurate diagnosis for effective treatment. An in-depth analysis of the ability of European institutions to promptly and accurately diagnose IFD was previously conducted to identify limitations and aspects to improve. Here, we evaluated and discussed the specific case of Portugal, for which, to our knowledge, there are no reports describing the national mycological diagnostic capacity and access to antifungal treatment. Data from 16 Portuguese medical institutions were collected via an online electronic case report form covering different parameters, including institution profile, self-perceived IFD incidence, target patients, diagnostic methods and reagents, and available antifungals. The majority of participating institutions (69%) reported a low-very low incidence of IFD, with Candida spp. indicated as the most relevant fungal pathogen, followed by Aspergillus spp. and Cryptococcus spp. All institutions had access to culture and microscopy, whereas 94 and 88% were able to run antigen-detection assays and molecular tests, respectively. All of the institutions capable of providing antifungal therapy declared to have access to at least one antifungal. However, echinocandins were only available at 85% of the sites. Therapeutic drug monitoring (TDM) was reported to remain a very restricted practice in Portugal, being available in 19% of the institutions, with the TDM of itraconazole and posaconazole performed in only 6% of them. Importantly, several of these resources are outsourced to external entities. Except for TDM, Portugal appears to be well-prepared concerning the overall capacity to diagnose and treat IFD. Future efforts should focus on promoting the widespread availability of TDM and improved access to multiple classes of antifungals, to further improve patient outcomes.
Collapse
Affiliation(s)
- Raquel Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Raquel Sabino
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Faculdade de Medicina, Instituto de Saúde Ambiental, Universidade de Lisboa, Lisbon, Portugal
- Laboratório Associado TERRA-Laboratório para o Uso Sustentável da Terra e dos Serviços dos Ecossistemas, Instituto Superior de Agronomia, Lisbon, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Herderstr. 52, 50931, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Jon Salmanton-García
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Herderstr. 52, 50931, Cologne, Germany.
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany.
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
30
|
He R, Wei P, Odiba AS, Gao L, Usman S, Gong X, Wang B, Wang L, Jin C, Lu G, Fang W. Amino sugars influence Aspergillus fumigatus cell wall polysaccharide biosynthesis, and biofilm formation through interfering galactosaminogalactan deacetylation. Carbohydr Polym 2024; 324:121511. [PMID: 37985096 DOI: 10.1016/j.carbpol.2023.121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Aspergillus fumigatus is a ubiquitous fungal pathogen responsible for a significant number of deaths annually due to invasive aspergillosis infection. While the utilization of diverse carbon sources, including amino sugars, has been explored in other fungi, its impact on A. fumigatus remains uncharted territory. In this study, we investigated A. fumigatus responses to glucose (Glc), glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) as carbon sources. GlcN inhibited growth, reduced sporulation and delayed germination, while GlcNAc had no such effects. Both amino sugars induced alterations in cell wall composition, leading to a reduction in glucan and galactomannan levels while increasing chitin and mannan content, rendering A. fumigatus susceptible to cell wall stress and osmotic stress. GlcN repressed biofilm formation via downregulation of galactosaminogalactan (GAG) cluster genes, notably agd3, which encodes a GAG-specific deacetylase. Moreover, GlcN increased biofilm susceptibility to echinocandins, suggesting its potential for enhancing the effectiveness of antifungal treatments. This study sheds light on the multifaceted effects of amino sugars on A. fumigatus, encompassing growth, cell wall biosynthesis, and biofilm formation, offering promising avenues for innovative aspergillosis treatment strategies.
Collapse
Affiliation(s)
- Rui He
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China; Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Pingzhen Wei
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Arome Solomon Odiba
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linlu Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sayed Usman
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China; Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Xiufang Gong
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Wang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guangtao Lu
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Wenxia Fang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China; Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| |
Collapse
|
31
|
Thakur R, Shishodia SK, Sharma A, Chauhan A, Kaur S, Shankar J. Accelerating the understanding of Aspergillus terreus: Epidemiology, physiology, immunology and advances. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100220. [PMID: 38303967 PMCID: PMC10831165 DOI: 10.1016/j.crmicr.2024.100220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Aspergillus species encompass a variety of infections, ranging from invasive aspergillosis to allergic conditions, contingent upon the immune status of the host. In this spectrum, Aspergillus terreus stands out due to its emergence as a notable pathogen and its intrinsic resistance to amphotericin-B. The significance of Aspergillus-associated infections has witnessed a marked increase in the past few decades, particularly with the increasing number of immunocompromised individuals. The exploration of epidemiology, morphological transitions, immunopathology, and novel treatment approaches such as new antifungal drugs (PC945, olorofim) and combinational therapy using antifungal drugs and phytochemicals (Phytochemicals: quercetin, shikonin, artemisinin), also using immunotherapies to modulate immune response has resulted in better outcomes. Furthermore, in the context COVID-19 era and its aftermath, fungal infections have emerged as a substantial challenge for both immunocompromised and immunocompetent individuals. This is attributed to the use of immune-suppressing therapies during COVID-19 infections and the increase in transplant cases. Consequently, this review aims to provide an updated overview encompassing the epidemiology, germination events, immunopathology, and novel drug treatment strategies against Aspergillus terreus-associated infections.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | | | - Ananya Sharma
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sumanpreet Kaur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | - Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| |
Collapse
|
32
|
Sharma A, Sharma A, Soubani AO. Incidence and inhospital outcomes of coronavirus disease 2019-associated pulmonary aspergillosis in the United States. Ann Thorac Med 2024; 19:87-95. [PMID: 38444990 PMCID: PMC10911242 DOI: 10.4103/atm.atm_190_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVE The aim of this study was to estimate the predictors, associations, and outcomes of COVID-19-associated pulmonary disease (CAPA) in the United States. STUDY DESIGN AND METHODS This retrospective cohort study was performed by using the National Inpatient Sample Database 2020 to identify coronavirus disease 2019 (COVID-19) and CAPA hospitalizations. Baseline variables and outcomes were compared between COVID-19 hospitalizations without aspergillosis and those with aspergillosis. These variables were then used to perform an adjusted analysis for obtaining predictors and factors associated with CAPA and its inhospital mortality. RESULTS Of the 1,020,880 hospitalizations identified with the principal diagnosis of COVID-19, CAPA was identified in 1510 (0.1%) hospitalizations. The CAPA cohort consisted of a higher proportion of males (58%) as well as racial and ethnic minorities (Hispanics, Blacks, and others [including Asian or Pacific islanders, native Americans]). Inhospital mortality was significantly higher (47.35% vs. 10.87%, P < 0.001), the average length of stay was longer (27.61 vs. 7.29 days, P < 0.001), and the mean cost per hospitalization was higher ($121,560 vs. $18,423, P < 0.001) in the CAPA group compared to COVID-19 without aspergillosis. History of solid organ transplant, chronic obstructive pulmonary disease, and venous thromboembolism were associated with higher odds of CAPA among other factors. The use of invasive mechanical ventilation (adjusted odds ratio [aOR] 6.24, P < 0.001), acute kidney injury (aOR 2.02, P = 0.028), and septic shock (aOR 2.07, P = 0.018) were associated with higher inhospital mortality in the CAPA cohort. CONCLUSION While CAPA is an infrequent complication during hospitalizations for COVID-19, it significantly increases all-cause mortality, prolongs hospital stays, and leads to higher hospital expenses compared to COVID-19 cases without aspergillosis.
Collapse
Affiliation(s)
- Aditya Sharma
- Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aditi Sharma
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ayman O. Soubani
- Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
33
|
Hernández-Silva G, Corzo-León DE, Becerril-Vargas E, Peralta-Prado AB, Odalis RG, Morales-Villarreal F, Ríos-Ayala MA, Alonso TG, Agustín FLD, Ramón AF, Hugo ATV. Clinical characteristics, bacterial coinfections and outcomes in COVID-19-associated pulmonary aspergillosis in a third-level Mexican hospital during the COVID-19 pre-vaccination era. Mycoses 2024; 67:e13693. [PMID: 38214372 DOI: 10.1111/myc.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Damage due to respiratory viruses increases the risk of bacterial and fungal coinfections and superinfections. High rates of invasive aspergillosis are seen in severe influenza and COVID-19. This report describes CAPA cases diagnosed during the first wave in the biggest reference centre for severe COVID-19 in Mexico. OBJECTIVES To describe the clinical, microbiological and radiological characteristics of patients with invasive pulmonary aspergillosis associated with critical COVID-19, as well as to describe the variables associated with mortality. METHODS This retrospective study identified CAPA cases among individuals with COVID-19 and ARDS, hospitalised from 1 March 2020 to 31 March 2021. CAPA was defined according to ECMM/ISHAM consensus criteria. Prevalence was estimated. Clinical and microbiological characteristics including bacterial superinfections, antifungal susceptibility testing and outcomes were documented. RESULTS Possible CAPA was diagnosed in 86 patients among 2080 individuals with severe COVID-19, representing 4.13% prevalence. All CAPA cases had a positive respiratory culture for Aspergillus species. Aspergillus fumigatus was the most frequent isolate (64%, n = 55/86). Seven isolates (9%, n = 7/80) were resistant to amphotericin B (A. fumigatus n = 5/55, 9%; A. niger, n = 2/7, 28%), two A. fumigatus isolates were resistant to itraconazole (3.6%, n = 2/55). Tracheal galactomannan values ranged between 1.2 and 4.05, while serum galactomannan was positive only in 11% (n = 3/26). Bacterial coinfection were documented in 46% (n = 40/86). Gram negatives were the most frequent cause (77%, n = 31/40 isolates), from which 13% (n = 4/31) were reported as multidrug-resistant bacteria. Mortality rate was 60% and worse prognosis was seen in older persons, high tracheal galactomannan index and high HbA1c level. CONCLUSIONS One in 10 individuals with CAPA carry a resistant Aspergillus isolate and/or will be affected by a MDR bacteria. High mortality rates are seen in this population.
Collapse
Affiliation(s)
- Graciela Hernández-Silva
- Infectious Diseases Department, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Eduardo Becerril-Vargas
- Microbiology Clinical Laboratory, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Amy Bethel Peralta-Prado
- Research Centre of Infectious Diseases, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Rodríguez-Ganes Odalis
- Pharmacology Department, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | | | | | | | - Avilez-Félix Ramón
- Pneumology Service, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | |
Collapse
|
34
|
Almhanedi H, Aldajani A, Steinberg E, Tewfik M. Most Common Pathogens Causing Rhinosinusitis in Patients Who Underwent Endoscopic Sinus Surgery Before, During, and After the COVID-19 Pandemic. J Otolaryngol Head Neck Surg 2024; 53:19160216241291808. [PMID: 39474827 PMCID: PMC11528599 DOI: 10.1177/19160216241291808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 11/03/2024] Open
Abstract
IMPORTANCE Chronic rhinosinusitis (CRS) significantly impacts patients' quality of life and incurs substantial healthcare costs. Understanding pathogen trends before, during, and after the COVID-19 pandemic can inform better management and treatment strategies. OBJECTIVE To identify the common pathogens associated with CRS and compare them across pre-pandemic, during-pandemic, and post-pandemic periods. DESIGN Retrospective chart review. SETTING McGill University Health Centre, Montreal, Canada. PARTICIPANTS Around 147 patients were 18 years and older, diagnosed with CRS, underwent endoscopic sinus surgery within the specified timeframe (January 2017 to September 2023), and whose charts contained relevant microbiology information. Patients were categorized into 3 groups based on surgery dates: pre- (January 2018 to November 2019), during- (January 2020 to December 2021), and post-pandemic (February 2022 to September 2023). MAIN OUTCOME MEASURES Distribution and prevalence of pathogens associated with CRS across the 3 time periods. Microbiology results from nasal cultures were analyzed to identify predominant pathogens. RESULTS Among the 147 patients, 46 distinct organisms were identified. Staphylococcus aureus was the most prevalent pathogen, increasing during the COVID-19 period (24.7%) compared to pre-pandemic (17.9%) and post-pandemic (21.5%) periods. Significant increases during the COVID-19 period were noted for Aspergillus fumigatus (6.8%, P < .001), Enterobacter cloacae (6.8%, P = .01), and Cutibacterium acnes (6.8%, P = .03). Post-pandemic, significant rises were observed in Serratia marcescens (P < .001) and Achromobacter denitrificans (P = .03). CONCLUSIONS AND RELEVANCE Significant shifts in CRS-associated pathogens occurred during the COVID-19 pandemic. Notable changes in the prevalence of S. aureus, A. fumigatus, E. cloacae, and C. acnes were observed during the pandemic, with increases in S. marcescens and A. denitrificans post-pandemic. These findings suggest that the pandemic's impact on healthcare practices and environmental factors influenced the microbial etiologies of CRS. Future research may explore the mechanisms driving these changes and their long-term implications for CRS management.
Collapse
Affiliation(s)
- Hamad Almhanedi
- Department of Otolaryngology—Head and Neck Surgery, McGill University, Montreal, QC, Canada
| | - Ahmad Aldajani
- Department of Otolaryngology—Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Department of Otolaryngology—Head and Neck Surgery, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Emily Steinberg
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Marc Tewfik
- Department of Otolaryngology—Head and Neck Surgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
35
|
Ulloque-Badaracco JR, Copaja-Corzo C, Hernandez-Bustamante EA, Cabrera-Guzmán JC, Huayta-Cortez MA, Carballo-Tello XL, Seminario-Amez RA, Hueda-Zavaleta M, Benites-Zapata VA. Fungal infections in patients after recovering from COVID-19: a systematic review. Ther Adv Infect Dis 2024; 11:20499361241242963. [PMID: 38706456 PMCID: PMC11070125 DOI: 10.1177/20499361241242963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 05/07/2024] Open
Abstract
Background and aims The presence of fungal infections has been described in patients after recovering from COVID-19. This study aims to conduct a systematic review of studies that reported fungal infections (Mucor spp., Pneumocystis jirovecii, or Aspergillus spp.) in adults after recovering from COVID-19. Methods We performed a systematic review through PubMed, Web of Science, OVID-Medline, Embase, and Scopus. The study selection process was performed independently and by at least two authors. We performed a risk of bias assessment using the Newcastle-Ottawa Scale for cohort and case-control studies, and the Joanna Briggs Institute's Checklists for Case Series and Case Reports. Results The systematic search found 33 studies meeting all inclusion criteria. There was a total population of 774 participants, ranging from 21 to 87 years. From them, 746 developed a fungal infection. In 19 studies, Mucor spp. was reported as the main mycosis. In 10 studies, P. jirovecii was reported as the main mycosis. In seven studies, Aspergillus spp. was reported as the main mycosis. Regarding the quality assessment, 12 studies were classified as low risk of bias and the remaining studies as high risk of bias. Conclusion Patients' clinical presentation and prognosis after recovering from COVID-19 with fungal infection differ from those reported patients with acute COVID-19 infection and those without COVID-19 infection.
Collapse
Affiliation(s)
| | | | - Enrique A. Hernandez-Bustamante
- Grupo Peruano de Investigación Epidemiológica, Unidad para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
- Sociedad Científica de Estudiantes de Medicina de la Universidad Nacional de Trujillo, Trujillo, Peru
| | | | | | | | | | | | - Vicente A. Benites-Zapata
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
36
|
Salmanton-García J. Update on invasive fungal infections: emerging trends in the incidence of fungal infections in immunosuppressed patients and associated conditions. Ther Adv Infect Dis 2024; 11:20499361241282835. [PMID: 39376744 PMCID: PMC11457195 DOI: 10.1177/20499361241282835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Affiliation(s)
- Jon Salmanton-García
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Institute of Translational Research, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Herderstraße 52, Cologne 50931, Germany
| |
Collapse
|
37
|
Dumoulin E, Thornton CS, MacGregor JH, Tremblay A, Chan C, MacEachern PR, Kelly MM, Somayaji R, Parkins MD, Mody CH. Combined medical-interventional approaches for the management of complex fungal balls: a case series as a viable alternative in non-surgical patients. Ther Adv Respir Dis 2024; 18:17534666241255203. [PMID: 38785071 PMCID: PMC11119499 DOI: 10.1177/17534666241255203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Intracavitary pulmonary aspergilloma is a persistent and life-threatening infection that carries a mortality rate of up to 15%. It occurs when Aspergillus species gain entry to an existing lung cavity. In the absence of definitive treatment, patients may succumb to severe complications such as massive hemoptysis, cachexia, or secondary infections. Aspergillomas often show limited response to antifungal medications, mainly due to insufficient drug concentrations within the cavities. Surgery is frequently the preferred treatment option, but it poses significant risks, and many individuals are ineligible due to underlying health issues. We present the most extensive non-surgical fungal ball cohort to date, managed using an innovative multimodal strategy that combines antifungal therapy before and after bronchoscopic debulking. This was a cross-sectional observational study. For those who cannot undergo surgery, our medical center has pioneered a multimodal approach to aspergilloma resection. This approach combines bronchoscopic endoscopy with antifungal therapy and has been applied successfully to more than 18 patients that are presented in this series. The median age of the cohort was 58 years (range: 32-73), with an equal sex distribution. The mean percent predicted FEV1 was 65.3%. The mean follow-up duration was 3.6 years (range: 0.5-10 years). The cohort receiving antifungals systematically prior to debridement showed a reduction of the pre-existing cavity (40.38 mm versus 34.02 mm, p = 0.021). Across the 18 patients during the follow-up period, 94% remained recurrence-free (defined by symptoms and radiology). Our study fills a critical knowledge gap regarding the significance of initiating antifungal treatment before bronchoscopic debulking and presents a viable approach in these cases for which there is a current unmet therapeutic need.
Collapse
Affiliation(s)
- Elaine Dumoulin
- Department of Medicine, Cumming School of Medicine, University of Calgary, Pulmonary Diagnostics, South Health Campus, 4448 Front Street SE, Calgary, AB T3M 1M4, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, CanadaDepartment of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - John H. MacGregor
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alain Tremblay
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chrystal Chan
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Paul R. MacEachern
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Margaret M. Kelly
- Deptartment of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ranjani Somayaji
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, CanadaDepartment of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Michael D. Parkins
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, CanadaDepartment of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Christopher H. Mody
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, CanadaDepartment of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
38
|
Kumar M, Mazumder P, Silori R, Manna S, Panday DP, Das N, Sethy SK, Kuroda K, Mahapatra DM, Mahlknecht J, Tyagi VK, Singh R, Zang J, Barceló D. Prevalence of pharmaceuticals and personal care products, microplastics and co-infecting microbes in the post-COVID-19 era and its implications on antimicrobial resistance and potential endocrine disruptive effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166419. [PMID: 37625721 DOI: 10.1016/j.scitotenv.2023.166419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The COVID-19 (coronavirus disease 2019) pandemic's steady condition coupled with predominance of emerging contaminants in the environment and its synergistic implications in recent times has stoked interest in combating medical emergencies in this dynamic environment. In this context, high concentrations of pharmaceutical and personal care products (PPCPs), microplastics (MPs), antimicrobial resistance (AMR), and soaring coinfecting microbes, tied with potential endocrine disruptive (ED) are critical environmental concerns that requires a detailed documentation and analysis. During the pandemic, the identification, enumeration, and assessment of potential hazards of PPCPs and MPs and (used as anti-COVID-19 agents/applications) in aquatic habitats have been attempted globally. Albeit receding threats in the magnitude of COVID-19 infections, both these pollutants have still posed serious consequences to aquatic ecosystems and the very health and hygiene of the population in the vicinity. The surge in the contaminants post-COVID also renders them to be potent vectors to harbor and amplify AMR. Pertinently, the present work attempts to critically review such instances to understand the underlying mechanism, interactions swaying the current health of our environment during this post-COVID-19 era. During this juncture, although prevention of diseases, patient care, and self-hygiene have taken precedence, nevertheless antimicrobial stewardship (AMS) efforts have been overlooked. Unnecessary usage of PPCPs and plastics during the pandemic has resulted in increased emerging contaminants (i.e., active pharmaceutical ingredients and MPs) in various environmental matrices. It was also noticed that among COVID-19 patients, while the bacterial co-infection prevalence was 0.2-51%, the fungi, viral, protozoan and helminth were 0.3-49, 1-22, 2-15, 0.4-15% respectively, rendering them resistant to residual PPCPs. There are inevitable chances of ED effects from PPCPs and MPs applied previously, that could pose far-reaching health concerns. Furthermore, clinical and other experimental evidence for many newer compounds is very scarce and demands further research. Pro-active measures targeting effective waste management, evolved environmental policies aiding strict regulatory measures, and scientific research would be crucial in minimizing the impact and creating better preparedness towards such events among the masses fostering sustainability.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico.
| | - Payal Mazumder
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rahul Silori
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Suvendu Manna
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Durga Prasad Panday
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Nilotpal Das
- ENCORE Insoltech Pvt. Ltd, Randesan, Gandhinagar, Gujarat 382421, India
| | - Susanta Kumar Sethy
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu 939 0398, Japan
| | - Durga Madhab Mahapatra
- Department of Chemical and Petroleum Engineering, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Jürgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Vinay Kumar Tyagi
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Rajesh Singh
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Jian Zang
- Department of Civil Engineering, Chongqing University, China
| | - Damià Barceló
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| |
Collapse
|
39
|
Vrabec TR, Anderson DR, Shah PK, Milman T. Sudden vision loss heralding COVID-19-associated aspergillosis. Report of 2 cases. Am J Ophthalmol Case Rep 2023; 32:101924. [PMID: 37860668 PMCID: PMC10582270 DOI: 10.1016/j.ajoc.2023.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/08/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Purpose To describe clinical, radiographic, laboratory and cytopathologic findings in 2 patients who developed vision loss due to endogenous aspergillus endophthalmitis during hospitalization for COVID-19 pneumonia. Observations Two unvaccinated sexagenarian male smokers lost vision within one month of contracting COVID-19 pneumonia. Initially, both received high dose steroids, nasal cannula oxygen and remdesivir. Immunomodulators tocilizumab or baricitinib were added during week 2 in case 1 and 2 respectively. Upon presentation after discharge from a post-COVID rehabilitation unit, visual acuities were light perception and hand motion. In both cases, inpatient blood and ocular fluid cultures were negative, serum 1,3-beta-D-glucan was positive, and vitreous cytopathology revealed filamentous fungi and PCR was positive for Aspergillus fumigatus. Large solitary intravitreal fungus balls were debulked in patient 1 and excised in patient 2. Final visual acuities were no light perception and 20/200 respectively. MRI revealed previously unsuspected brain and lung lesions consistent with disseminated aspergillosis in patient 2. Conclusions Vision loss due to fungal endophthalmitis may be the first or only sign of systemic aspergillosis associated with COVID-19 pneumonia. Aspergillosis should be suspected in patients who develop vision loss. Diagnosis limited by negative fungal cultures may be confirmed by vitreous cytopathology and PCR. Systemic imaging for disseminated aspergillosis is indicated. Ultimate visual acuity may depend upon surgical approach.
Collapse
Affiliation(s)
| | | | | | - Tatyana Milman
- Wills Eye Hospital, Pathology Department, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
40
|
Kusakabe T, Lin WY, Cheong JG, Singh G, Ravishankar A, Yeung ST, Mesko M, DeCelie MB, Carriche G, Zhao Z, Rand S, Doron I, Putzel GG, Worgall S, Cushing M, Westblade L, Inghirami G, Parkhurst CN, Guo CJ, Schotsaert M, García-Sastre A, Josefowicz SZ, Salvatore M, Iliev ID. Fungal microbiota sustains lasting immune activation of neutrophils and their progenitors in severe COVID-19. Nat Immunol 2023; 24:1879-1889. [PMID: 37872315 PMCID: PMC10805066 DOI: 10.1038/s41590-023-01637-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/06/2023] [Indexed: 10/25/2023]
Abstract
Gastrointestinal fungal dysbiosis is a hallmark of several diseases marked by systemic immune activation. Whether persistent pathobiont colonization during immune alterations and impaired gut barrier function has a durable impact on host immunity is unknown. We found that elevated levels of Candida albicans immunoglobulin G (IgG) antibodies marked patients with severe COVID-19 (sCOVID-19) who had intestinal Candida overgrowth, mycobiota dysbiosis and systemic neutrophilia. Analysis of hematopoietic stem cell progenitors in sCOVID-19 revealed transcriptional changes in antifungal immunity pathways and reprogramming of granulocyte myeloid progenitors (GMPs) for up to a year. Mice colonized with C. albicans patient isolates experienced increased lung neutrophilia and pulmonary NETosis during severe acute respiratory syndrome coronavirus-2 infection, which were partially resolved with antifungal treatment or by interleukin-6 receptor blockade. sCOVID-19 patients treated with tocilizumab experienced sustained reductions in C. albicans IgG antibodies titers and GMP transcriptional changes. These findings suggest that gut fungal pathobionts may contribute to immune activation during inflammatory diseases, offering potential mycobiota-immune therapeutic strategies for sCOVID-19 with prolonged symptoms.
Collapse
Affiliation(s)
- Takato Kusakabe
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Woan-Yu Lin
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA
| | - Jin-Gyu Cheong
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Arjun Ravishankar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Stephen T Yeung
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Department of Microbiology, New York University, Langone Health, New York City, NY, USA
| | - Marissa Mesko
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Meghan Bialt DeCelie
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Guilhermina Carriche
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Sophie Rand
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Itai Doron
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Gregory G Putzel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Stefan Worgall
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA
- Department of Pediatrics, Weill Cornell Medicine, New York City, NY, USA
| | - Melissa Cushing
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Lars Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Christopher N Parkhurst
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Chun-Jun Guo
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York City, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai New York, New York City, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Steven Z Josefowicz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Mirella Salvatore
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York City, NY, USA
| | - Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA.
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York City, NY, USA.
| |
Collapse
|
41
|
Hashim Z, Nath A, Khan A, Gupta M, Kumar A, Chatterjee R, Dhiman RK, Hoenigl M, Tripathy NK. Effect of glucocorticoids on the development of COVID-19-associated pulmonary aspergillosis: A meta-analysis of 21 studies and 5174 patients. Mycoses 2023; 66:941-952. [PMID: 37551043 DOI: 10.1111/myc.13637] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
COVID-19-associated pulmonary aspergillosis (CAPA) remains a high mortality mycotic infection throughout the pandemic, and glucocorticoids (GC) may be its root cause. Our aim was to evaluate the effect of systemic GC treatment on the development of CAPA. We systematically searched the PubMed, Google Scholar, Scopus and Embase databases to collect eligible studies published until 31 December 2022. The pooled outcome of CAPA development was calculated as the log odds ratio (LOR) with 95% confidence intervals (CI) using a random effect model. A total of 21 studies with 5174 patients were included. Of these, 20 studies with 4675 patients consisting of 2565 treated with GC but without other immunomodulators (GC group) and 2110 treated without GC or other immunomodulators (controls) were analysed. The pooled LOR of CAPA development was higher for the GC group than for the controls (0.54; 95% CI: 0.22, 0.86; p < .01). In the subgroups, the pooled LOR was higher for high-dose GC (0.90; 95% CI: 0.17, 1.62: p = .01) and dexamethasone (0.71; 95% CI: 0.35, 1.07; p < .01) but had no significant difference for low-dose GC (0.41; 95% CI: -0.07, 0.89; p = .09), and non-dexamethasone GC (0.21; 95% CI: -0.36, 0.79; p = .47), treated patients versus controls. GC treatment increases the risk of CAPA development, and this risk is particularly associated with the use of high-dose GC or dexamethasone treatment.
Collapse
Affiliation(s)
- Zia Hashim
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Alok Nath
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ajmal Khan
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Anup Kumar
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Riksoam Chatterjee
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Radha Krishan Dhiman
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Naresh Kumar Tripathy
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
42
|
Martins AC, Psaltikidis EM, Cristiano de Lima T, Fagnani R, Gomide HCAC, Gilli FH, Schreiber AZ, de Oliveira Conterno L, Matsuzawa T, Watanabe A, Kamei K, Brandalise SR, Trabasso P, Resende MR, Moretti ML. Clinical outcomes of aspergillosis among paediatric and adult inpatients: A multicentre study in a Brazilian metropolitan area. J Mycol Med 2023; 33:101435. [PMID: 37708696 DOI: 10.1016/j.mycmed.2023.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Invasive Aspergillosis (IA) is a disease of significant clinical relevance, especially among immunosuppressed patients, and is associated with high mortality rates. In this study, we evaluated the epidemiological features and clinical outcomes in children and adults with IA. METHODS This was an observational, multicentre, prospective surveillance study of inpatients with IA at two different hospitals in Campinas, Brazil, between 2018 and 2021. RESULTS A total of 44 patients were identified (54.5% males), with a median age of 42 years (interquartile range (IQR):19.25-59 years, varying between 1 and 89 years). The following baseline conditions were identified: 61.4% were oncohaematological patients and 20.5% were solid organ transplant recipients. Among oncohaematological patients, 77.8% exhibited severe or persistent neutropenia. The median time between the onset of neutropenia and the diagnosis of fungal infection was 20 days (IQR: 10.5-26 days; range, 0-68 days). The interval between neutropenia onset and fungal infection was longer in paediatric than in general hospital (average, 29 vs. 13.4 days; median 26 vs 11 days; p=0.010). After the diagnosis of IA, the survival rates were 44.2% and 30.0% at 180 and 360 days, respectively. Survival was greater in patients aged ≤ 21 years (p = 0.040; log-rank test). They observed no difference in IA mortality related to COVID-19 pandemic. CONCLUSION High mortality associated with IA was observed in both hospitals. Individuals over the age of 21 have a lower survival rate than younger patients.
Collapse
Affiliation(s)
- Antonio Camargo Martins
- School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil; Young Medical Leadership Program of the National Academy of Medicine, Brazil
| | | | | | - Renata Fagnani
- School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | | | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | - Plinio Trabasso
- School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Maria Luiza Moretti
- School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
43
|
De Francesco MA. Drug-Resistant Aspergillus spp.: A Literature Review of Its Resistance Mechanisms and Its Prevalence in Europe. Pathogens 2023; 12:1305. [PMID: 38003770 PMCID: PMC10674884 DOI: 10.3390/pathogens12111305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Infections due to the Aspergillus species constitute an important challenge for human health. Invasive aspergillosis represents a life-threatening disease, mostly in patients with immune defects. Drugs used for fungal infections comprise amphotericin B, triazoles, and echinocandins. However, in the last decade, an increased emergence of azole-resistant Aspergillus strains has been reported, principally belonging to Aspergillus fumigatus species. Therefore, both the early diagnosis of aspergillosis and its epidemiological surveillance are very important to establish the correct antifungal therapy and to ensure a successful patient outcome. In this paper, a literature review is performed to analyze the prevalence of Aspergillus antifungal resistance in European countries. Amphotericin B resistance is observed in 2.6% and 10.8% of Aspergillus fumigatus isolates in Denmark and Greece, respectively. A prevalence of 84% of amphotericin B-resistant Aspergillus flavus isolates is reported in France, followed by 49.4%, 35.1%, 21.7%, and 20% in Spain, Portugal, Greece, and amphotericin B resistance of Aspergillus niger isolates is observed in Greece and Belgium with a prevalence of 75% and 12.8%, respectively. The prevalence of triazole resistance of Aspergillus fumigatus isolates, the most studied mold obtained from the included studies, is 0.3% in Austria, 1% in Greece, 1.2% in Switzerland, 2.1% in France, 3.9% in Portugal, 4.9% in Italy, 5.3% in Germany, 6.1% in Denmark, 7.4% in Spain, 8.3% in Belgium, 11% in the Netherlands, and 13.2% in the United Kingdom. The mechanism of resistance is mainly driven by the TR34/L98H mutation. In Europe, no in vivo resistance is reported for echinocandins. Future studies are needed to implement the knowledge on the spread of drug-resistant Aspergillus spp. with the aim of defining optimal treatment strategies.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
44
|
Jin Y, Liu H, Zhao B, Pan W. ChatGPT and mycosis- a new weapon in the knowledge battlefield. BMC Infect Dis 2023; 23:731. [PMID: 37891532 PMCID: PMC10605453 DOI: 10.1186/s12879-023-08724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
As current trend for physician tools, ChatGPT can sift through massive amounts of information and solve problems through easy-to-understand conversations, ultimately improving efficiency. Mycosis is currently facing great challenges, including high fungal burdens, high mortality, limited choice of antifungal drugs and increasing drug resistance. To address these challenges, We asked ChatGPT for fungal infection scenario-based questions and assessed its appropriateness, consistency, and potential pitfalls. We concluded ChatGPT can provide compelling responses to most prompts, including diagnosis, recommendations for examination, treatment and rational drug use. Moreover, we summarized exciting future applications in mycosis, such as clinical work, scientific research, education and healthcare. However, the largest barriers to implementation are deficits in indiviudal advice, timely literature updates, consistency, accuracy and data safety. To fully embrace the opportunity, we need to address these barriers and manage the risks. We expect that ChatGPT will become a new weapon in in the battlefield of mycosis.
Collapse
Affiliation(s)
- Yi Jin
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, P.R. China
| | - Hua Liu
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Zhao
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, P.R. China.
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, P.R. China.
| |
Collapse
|
45
|
Prillaman M. Inflammation in severe COVID linked to bad fungal microbiome. Nature 2023:10.1038/d41586-023-03295-w. [PMID: 37872448 DOI: 10.1038/d41586-023-03295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
|
46
|
Singh A, Kaur A, Chowdhary A. Fungal pathogens and COVID-19. Curr Opin Microbiol 2023; 75:102365. [PMID: 37625261 DOI: 10.1016/j.mib.2023.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023]
Abstract
COVID-19 pandemic highlighted the complications of secondary fungal infections that occurred globally in severe cases of coronavirus disease managed in the intensive care units. Furthermore, varied underlying host factors, such as preexisting immunosuppression, the use of immunomodulatory agents, and invasive procedures predisposing lung tissues to fungal colonization and proliferation, caused increased susceptibility to fungal infections in COVID-19 patient populations. These invasive fungal infections directly impact the overall length of hospitalization and mortality. The most commonly reported fungal infections in patients with COVID-19 include aspergillosis, invasive candidiasis, and mucormycosis. An overall worldwide increase in the prevalence of candidiasis and aspergillosis was observed in COVID-19 patients , whereas outbreaks of mucormycosis were mainly recorded from India. Diagnostic challenges and limited antifungal treatment options make secondary fungal infections among COVID-19 patients more burdensome, which results in improper management and increased mortality.
Collapse
Affiliation(s)
- Ashutosh Singh
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India; National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Amtoj Kaur
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India; National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.
| |
Collapse
|
47
|
Krivosikova L, Kuracinova T, Martanovic P, Hyblova M, Kaluzay J, Uhrinova A, Janega P, Babal P. Long COVID Complicated by Fatal Cytomegalovirus and Aspergillus Infection of the Lungs: An Autopsy Case Report. Viruses 2023; 15:1810. [PMID: 37766216 PMCID: PMC10535245 DOI: 10.3390/v15091810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
After the acute phase of COVID-19, some patients develop long COVID. This term is used for a variety of conditions with a complex, yet not fully elucidated etiology, likely including the prolonged persistence of the virus in the organism and progression to lung fibrosis. We present a unique autopsy case of a patient with severe COVID-19 with prolonged viral persistence who developed interstitial lung fibrosis complicated by a fatal combination of cytomegalovirus and Aspergillus infection. SARS-CoV-2 virus was detected at autopsy in the lungs more than two months after the acute infection, although tests from the nasopharynx were negative. Immune dysregulation after COVID-19 and the administration of corticoid therapy created favorable conditions for the cytomegalovirus and Aspergillus infection that were uncovered at autopsy. These pathogens may represent a risk for opportunistic infections, complicating not only the acute coronavirus infection but also long COVID, as was documented in the presented case.
Collapse
Affiliation(s)
- Lucia Krivosikova
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava, 814 99 Bratislava, Slovakia; (L.K.); (T.K.); (P.J.)
| | - Tereza Kuracinova
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava, 814 99 Bratislava, Slovakia; (L.K.); (T.K.); (P.J.)
| | - Peter Martanovic
- Health Care Surveillance Authority, 829 24 Bratislava, Slovakia;
| | | | - Jozef Kaluzay
- 4th Department of Internal Medicine, Comenius University in Bratislava, 814 99 Bratislava, Slovakia;
| | | | - Pavol Janega
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava, 814 99 Bratislava, Slovakia; (L.K.); (T.K.); (P.J.)
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia
| | - Pavel Babal
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava, 814 99 Bratislava, Slovakia; (L.K.); (T.K.); (P.J.)
- Medirex Group Academy, n.p.o., 949 05 Nitra, Slovakia;
| |
Collapse
|
48
|
Viceconte G, Buonomo AR, D’Agostino A, Foggia M, Di Fusco A, Pinchera B, Scotto R, Iacovazzo C, Fanasca L, Messina G, Cacciatore F, Salvatore P, Gentile I, on behalf of the Federico II COVID Team. Risk Factors for Pneumocystis jirovecii Pneumonia in Non-HIV Patients Hospitalized for COVID-19: A Case-Control Study. J Fungi (Basel) 2023; 9:838. [PMID: 37623609 PMCID: PMC10455879 DOI: 10.3390/jof9080838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Very few cases of Pneumocystis jirovecii pneumonia (PJP) have been reported in COVID-19 so far, and mostly in patients with concomitant HIV infection or in solid-organ transplant recipients. Despite COVID-19 being associated with lymphopenia and the use of steroids, there are no studies specifically aimed at investigating the risk factors for PJP in COVID-19. METHODS A retrospective case-control study was performed. We matched PJP cases with controls with a 1:2 ratio, based on age ± 10 years, solid-organ transplantation (SOT), hematological malignancies, and in the setting of PJP development (ICU vs. non-ICU). A direct immunofluorescence assay on bronchoalveolar lavage fluid was used to diagnose PJP. RESULTS We enrolled 54 patients. Among 18 cases of PJP, 16 were diagnosed as "proven". Seven of the eighteen cases were immunocompromised, while the other patients had no previous immunological impairment. Patients with PJP had significantly lower median lymphocyte values (p = 0.033), longer COVID-19 duration (p = 0.014), a higher dose of steroid received (p = 0.026), higher CRP values (p = 0.005), and a lower SARS-CoV-2 vaccination rate than the controls (p = 0.029). Cumulative steroid dose is the independent risk factor for PJP development (OR = 1.004, 95%CI = 1-1.008, p = 0.042). CONCLUSIONS PJP develops in COVID-19 patients regardless of immunosuppressive conditions and the severity of disease, and it is correlated to the corticosteroid dose received.
Collapse
Affiliation(s)
- Giulio Viceconte
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Sergio Pansini n.5, 8031 Naples, Italy; (A.R.B.); (A.D.); (M.F.); (A.D.F.); (B.P.); (R.S.); (I.G.)
| | - Antonio Riccardo Buonomo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Sergio Pansini n.5, 8031 Naples, Italy; (A.R.B.); (A.D.); (M.F.); (A.D.F.); (B.P.); (R.S.); (I.G.)
| | - Alessia D’Agostino
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Sergio Pansini n.5, 8031 Naples, Italy; (A.R.B.); (A.D.); (M.F.); (A.D.F.); (B.P.); (R.S.); (I.G.)
| | - Maria Foggia
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Sergio Pansini n.5, 8031 Naples, Italy; (A.R.B.); (A.D.); (M.F.); (A.D.F.); (B.P.); (R.S.); (I.G.)
| | - Antonio Di Fusco
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Sergio Pansini n.5, 8031 Naples, Italy; (A.R.B.); (A.D.); (M.F.); (A.D.F.); (B.P.); (R.S.); (I.G.)
| | - Biagio Pinchera
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Sergio Pansini n.5, 8031 Naples, Italy; (A.R.B.); (A.D.); (M.F.); (A.D.F.); (B.P.); (R.S.); (I.G.)
| | - Riccardo Scotto
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Sergio Pansini n.5, 8031 Naples, Italy; (A.R.B.); (A.D.); (M.F.); (A.D.F.); (B.P.); (R.S.); (I.G.)
| | - Carmine Iacovazzo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Via Sergio Pansini n.5, 8031 Naples, Italy;
| | - Luca Fanasca
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 8031 Naples, Italy; (L.F.); (P.S.)
| | - Gaetana Messina
- Thoracic Surgery Unit, University of Campania “Luigi Vanvitelli”, Via Sergio Pansini n.5, 8031 Naples, Italy;
| | - Francesco Cacciatore
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Sergio Pansini n.5, 8031 Naples, Italy;
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 8031 Naples, Italy; (L.F.); (P.S.)
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Sergio Pansini n.5, 8031 Naples, Italy; (A.R.B.); (A.D.); (M.F.); (A.D.F.); (B.P.); (R.S.); (I.G.)
| | | |
Collapse
|
49
|
Sprute R, Nacov JA, Neofytos D, Oliverio M, Prattes J, Reinhold I, Cornely OA, Stemler J. Antifungal prophylaxis and pre-emptive therapy: When and how? Mol Aspects Med 2023; 92:101190. [PMID: 37207579 DOI: 10.1016/j.mam.2023.101190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
The growing pool of critically ill or immunocompromised patients leads to a constant increase of life-threatening invasive infections by fungi such as Aspergillus spp., Candida spp. and Pneumocystis jirovecii. In response to this, prophylactic and pre-emptive antifungal treatment strategies have been developed and implemented for high-risk patient populations. The benefit by risk reduction needs to be carefully weighed against potential harm caused by prolonged exposure against antifungal agents. This includes adverse effects and development of resistance as well as costs for the healthcare system. In this review, we summarise evidence and discuss advantages and downsides of antifungal prophylaxis and pre-emptive treatment in the setting of malignancies such as acute leukaemia, haematopoietic stem cell transplantation, CAR-T cell therapy, and solid organ transplant. We also address preventive strategies in patients after abdominal surgery and with viral pneumonia as well as individuals with inherited immunodeficiencies. Notable progress has been made in haematology research, where strong recommendations regarding antifungal prophylaxis and pre-emptive treatment are backed by data from randomized controlled trials, whereas other critical areas still lack high-quality evidence. In these areas, paucity of definitive data translates into centre-specific strategies that are based on interpretation of available data, local expertise, and epidemiology. The development of novel immunomodulating anticancer drugs, high-end intensive care treatment and the development of new antifungals with new modes of action, adverse effects and routes of administration will have implications on future prophylactic and pre-emptive approaches.
Collapse
Affiliation(s)
- Rosanne Sprute
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Julia A Nacov
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Dionysios Neofytos
- Division of Infectious Diseases, Transplant Infectious Disease Service, University Hospital of Geneva, Geneva, Switzerland
| | - Matteo Oliverio
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Juergen Prattes
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Medical University of Graz, Department of Internal Medicine, Division of Infectious Disease, Excellence Center for Medical Mycology (ECMM), Graz, Austria
| | - Ilana Reinhold
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Zurich, Switzerland
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Jannik Stemler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
50
|
Platt AP, Bradley BT, Nasir N, Stein SR, Ramelli SC, Ramos-Benitez MJ, Dickey JM, Purcell M, Singireddy S, Hays N, Wu J, Raja K, Curto R, Salipante SJ, Chisholm C, Carnes S, Marshall DA, Cookson BT, Vannella KM, Madathil RJ, Soherwardi S, McCurdy MT, Saharia KK, Rabin J, Nih Covid-Autopsy Consortium, Grazioli A, Kleiner DE, Hewitt SM, Lieberman JA, Chertow DS. Pulmonary Co-Infections Detected Premortem Underestimate Postmortem Findings in a COVID-19 Autopsy Case Series. Pathogens 2023; 12:932. [PMID: 37513779 PMCID: PMC10383307 DOI: 10.3390/pathogens12070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial and fungal co-infections are reported complications of coronavirus disease 2019 (COVID-19) in critically ill patients but may go unrecognized premortem due to diagnostic limitations. We compared the premortem with the postmortem detection of pulmonary co-infections in 55 fatal COVID-19 cases from March 2020 to March 2021. The concordance in the premortem versus the postmortem diagnoses and the pathogen identification were evaluated. Premortem pulmonary co-infections were extracted from medical charts while applying standard diagnostic definitions. Postmortem co-infection was defined by compatible lung histopathology with or without the detection of an organism in tissue by bacterial or fungal staining, or polymerase chain reaction (PCR) with broad-range bacterial and fungal primers. Pulmonary co-infection was detected premortem in significantly fewer cases (15/55, 27%) than were detected postmortem (36/55, 65%; p < 0.0001). Among cases in which co-infection was detected postmortem by histopathology, an organism was identified in 27/36 (75%) of cases. Pseudomonas, Enterobacterales, and Staphylococcus aureus were the most frequently identified bacteria both premortem and postmortem. Invasive pulmonary fungal infection was detected in five cases postmortem, but in no cases premortem. According to the univariate analyses, the patients with undiagnosed pulmonary co-infection had significantly shorter hospital (p = 0.0012) and intensive care unit (p = 0.0006) stays and significantly fewer extra-pulmonary infections (p = 0.0021). Bacterial and fungal pulmonary co-infection are under-recognized complications in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Andrew P Platt
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Benjamin T Bradley
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Nadia Nasir
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sydney R Stein
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Sabrina C Ramelli
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcos J Ramos-Benitez
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
- Department of Basic Sciences, Division of Microbiology, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - James M Dickey
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | - Nicole Hays
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jocelyn Wu
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katherine Raja
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ryan Curto
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Claire Chisholm
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | | | - Desiree A Marshall
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Brad T Cookson
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Kevin M Vannella
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Ronson J Madathil
- Department of Surgery, Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Michael T McCurdy
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland St. Joseph Medical Center, Towson, MD 21204, USA
| | - Kapil K Saharia
- Institute of Human Virology, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph Rabin
- R Adams Cowley Shock Trauma Center, Department of Surgery and Program in Trauma, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Alison Grazioli
- R Adams Cowley Shock Trauma Center, Department of Medicine and Program in Trauma, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua A Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Daniel S Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| |
Collapse
|