1
|
Ma AZ, Yeo YY, Lee JF, Kim CM, Ezzatpour S, Menchaca C, Upadhye V, Annand EJ, Eden JS, Plowright RK, Peel AJ, Buchholz DW, Aguilar HC. Functional assessment of the glycoproteins of a novel Hendra virus variant reveals contrasting fusogenic capacities of the receptor-binding and fusion glycoproteins. mBio 2025; 16:e0348223. [PMID: 39704501 PMCID: PMC11796360 DOI: 10.1128/mbio.03482-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
A novel Hendra virus (HeV) genotype (HeV genotype 2 [HeV-g2]) was recently isolated from a deceased horse, revealing high-sequence conservation and antigenic similarities with the prototypic strain, HeV-g1. As the receptor-binding (G) and fusion (F) glycoproteins of HeV are essential for mediating viral entry, functional characterization of emerging HeV genotypic variants is key to understanding viral entry mechanisms and broader virus-host co-evolution. We first confirmed that HeV-g2 and HeV-g1 glycoproteins share a close phylogenetic relationship, underscoring HeV-g2's relevance to global health. Our in vitro data showed that HeV-g2 glycoproteins induced cell-cell fusion in human cells, shared receptor tropism with HeV-g1, and cross-reacted with antibodies raised against HeV-g1. Despite these similarities, HeV-g2 glycoproteins yielded reduced syncytia formation compared to HeV-g1. By expressing heterotypic combinations of HeV-g2, HeV-g1, and Nipah virus (NiV) glycoproteins, we found that while HeV-g2 G had strong fusion-promoting abilities, HeV-g2 F consistently displayed hypofusogenic properties. These fusion phenotypes were more closely associated with those observed in the related NiV. Further investigation using HeV-g1 and HeV-g2 glycoprotein chimeras revealed that multiple domains may play roles in modulating these fusion phenotypes. Altogether, our findings may establish intrinsic fusogenic capacities of viral glycoproteins as a potential driver behind the emergence of new henipaviral variants. IMPORTANCE HeV is a zoonotic pathogen that causes severe disease across various mammalian hosts, including horses and humans. The identification of unrecognized HeV variants, such as HeV-g2, highlights the need to investigate mechanisms that may drive their evolution, transmission, and pathogenicity. Our study reveals that HeV-g2 and HeV-g1 glycoproteins are highly conserved in identity, function, and receptor tropism, yet they differ in their abilities to induce the formation of multinucleated cells (syncytia), which is a potential marker of viral pathogenesis. By using heterotypic combinations of HeV-g2 with either HeV-g1 or NiV glycoproteins, as well as chimeric HeV-g1/HeV-g2 glycoproteins, we demonstrate that the differences in syncytial formation can be attributed to the intrinsic fusogenic capacities of each glycoprotein. Our data indicate that HeV-g2 glycoproteins have fusion phenotypes closely related to those of NiV and that fusion promotion may be a crucial factor driving the emergence of new henipaviral variants.
Collapse
Affiliation(s)
- Andrew Z. Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yao Yu Yeo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jean F. Lee
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Colin M. Kim
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Carolina Menchaca
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Viraj Upadhye
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Edward J. Annand
- Epidemiology Surveillance and Laboratory Section, Animal Health Policy Branch, Animal Division, Department of Agriculture Fisheries and Forestry, Canberra, Australian Capital Territory, Australia
| | - John-Sebastian Eden
- Westmead Institute for Medical Research, Centre for Virus Research, Westmead, New South Wales, Australia
| | - Raina K. Plowright
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Alison J. Peel
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - David W. Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Cortes-Azuero O, Lefrancq N, Nikolay B, McKee C, Cappelle J, Hul V, Ou TP, Hoem T, Lemey P, Rahman MZ, Islam A, Gurley ES, Duong V, Salje H. The Genetic Diversity of Nipah Virus Across Spatial Scales. J Infect Dis 2024; 230:e1235-e1244. [PMID: 38682164 PMCID: PMC11646605 DOI: 10.1093/infdis/jiae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Nipah virus (NiV), a highly lethal virus in humans, circulates in Pteropus bats throughout South and Southeast Asia. Difficulty in obtaining viral genomes from bats means we have a poor understanding of NiV diversity. METHODS We develop phylogenetic approaches applied to the most comprehensive collection of genomes to date (N = 257, 175 from bats, 73 from humans) from 6 countries over 22 years (1999-2020). We divide the 4 major NiV sublineages into 15 genetic clusters. Using Approximate Bayesian Computation fit to a spatial signature of viral diversity, we estimate the presence and the average size of genetic clusters per area. RESULTS We find that, within any bat roost, there are an average of 2.4 co-circulating genetic clusters, rising to 5.5 clusters at areas of 1500-2000 km2. We estimate that each genetic cluster occupies an average area of 1.3 million km2 (95% confidence interval [CI], .6-2.3 million km2), with 14 clusters in an area of 100 000 km2 (95% CI, 6-24 km2). In the few sites in Bangladesh and Cambodia where genomic surveillance has been concentrated, we estimate that most clusters have been identified, but only approximately 15% of overall NiV diversity has been uncovered. CONCLUSIONS Our findings are consistent with entrenched co-circulation of distinct lineages, even within roosts, coupled with slow migration over larger spatial scales.
Collapse
Affiliation(s)
| | - Noémie Lefrancq
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Birgit Nikolay
- Department of Epidemiology and Training, Epicentre, Paris, France
| | - Clifton McKee
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Julien Cappelle
- Joint Research Unit, Animal Santé Territoires Risques Ecosystèmes, Centre de coopération internationale en recherche agronomique pour le développement, Montpellier, France
| | - Vibol Hul
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Tey Putita Ou
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Thavry Hoem
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | | - Ausraful Islam
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Emily S Gurley
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Wickenhagen A, van Tol S, Munster V. Molecular determinants of cross-species transmission in emerging viral infections. Microbiol Mol Biol Rev 2024; 88:e0000123. [PMID: 38912755 PMCID: PMC11426021 DOI: 10.1128/mmbr.00001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
SUMMARYSeveral examples of high-impact cross-species transmission of newly emerging or re-emerging bat-borne viruses, such as Sudan virus, Nipah virus, and severe acute respiratory syndrome coronavirus 2, have occurred in the past decades. Recent advancements in next-generation sequencing have strengthened ongoing efforts to catalog the global virome, in particular from the multitude of different bat species. However, functional characterization of these novel viruses and virus sequences is typically limited with regard to assessment of their cross-species potential. Our understanding of the intricate interplay between virus and host underlying successful cross-species transmission has focused on the basic mechanisms of entry and replication, as well as the importance of host innate immune responses. In this review, we discuss the various roles of the respective molecular mechanisms underlying cross-species transmission using different recent bat-borne viruses as examples. To delineate the crucial cellular and molecular steps underlying cross-species transmission, we propose a framework of overall characterization to improve our capacity to characterize viruses as benign, of interest, or of concern.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Sarah van Tol
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
4
|
Meier K, Olejnik J, Hume AJ, Mühlberger E. A Comparative Assessment of the Pathogenic Potential of Newly Discovered Henipaviruses. Pathogens 2024; 13:587. [PMID: 39057814 PMCID: PMC11280395 DOI: 10.3390/pathogens13070587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Recent advances in high-throughput sequencing technologies have led to the discovery of a plethora of previously unknown viruses in animal samples. Some of these newly detected viruses are closely related to human pathogens. A prime example are the henipaviruses. Both Nipah (NiV) and Hendra virus (HeV) cause severe disease in humans. Henipaviruses are of zoonotic origin, and animal hosts, including intermediate hosts, play a critical role in viral transmission to humans. The natural reservoir hosts of NiV and HeV seem to be restricted to a few fruit bat species of the Pteropus genus in distinct geographic areas. However, the recent discovery of novel henipa- and henipa-like viruses suggests that these viruses are far more widespread than was originally thought. To date, these new viruses have been found in a wide range of animal hosts, including bats, shrews, and rodents in Asia, Africa, Europe, and South America. Since these viruses are closely related to human pathogens, it is important to learn whether they pose a threat to human health. In this article, we summarize what is known about the newly discovered henipaviruses, highlight differences to NiV and HeV, and discuss their pathogenic potential.
Collapse
Affiliation(s)
- Kristina Meier
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Judith Olejnik
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Adam J. Hume
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Elke Mühlberger
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| |
Collapse
|
5
|
Linnegar B, Kerlin DH, Eby P, Kemsley P, McCallum H, Peel AJ. Horse populations are severely underestimated in a region at risk of Hendra virus spillover. Aust Vet J 2024; 102:342-352. [PMID: 38567676 DOI: 10.1111/avj.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE To identify the size and distribution of the horse population in the Northern Rivers Region of NSW, including changes from 2007 to 2021, to better understand populations at risk of Hendra virus transmission. METHODS Census data from the 2007 Equine Influenza (EI) outbreak were compared with data collected annually by New South Wales Local Land Services (LLS) (2011-2021), and with field observations via road line transects (2021). RESULTS The horse populations reported to LLS in 2011 (3000 horses; 0.77 horses/km2) was 145% larger than that reported during the EI outbreak in 2007 (1225 horses; 0.32 horses/km2). This was inconsistent with the 6% increase in horses recorded from 2011 to 2020 within the longitudinal LLS dataset. Linear modelling suggested the true horse population of this region in 2007 was at least double that reported at the time. Distance sampling in 2021 estimated the region's population at 10,185 horses (3.89 per km2; 95% CI = 4854-21,372). Field sampling and modelling identified higher horse densities in rural cropland, with the percentage of conservation land, modified grazing, and rural residential land identified as the best predictors of horse densities. CONCLUSIONS Data from the 2007 EI outbreak no longer correlates to the current horse population in size or distribution and was likely not a true representation at the time. Current LLS data also likely underestimates horse populations. Ongoing efforts to further quantify and map horse populations in Australia are important for estimating and managing the risk of equine zoonoses.
Collapse
Affiliation(s)
- B Linnegar
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| | - D H Kerlin
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| | - P Eby
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
- School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Large Landscape Conservation, Bozeman, Montana, USA
| | - P Kemsley
- North Coast Local Land Services, Wollongbar, New South Wales, Australia
| | - H McCallum
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| | - A J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
6
|
Passchier TC, White JBR, Maskell DP, Byrne MJ, Ranson NA, Edwards TA, Barr JN. The cryoEM structure of the Hendra henipavirus nucleoprotein reveals insights into paramyxoviral nucleocapsid architectures. Sci Rep 2024; 14:14099. [PMID: 38890308 PMCID: PMC11189427 DOI: 10.1038/s41598-024-58243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/27/2024] [Indexed: 06/20/2024] Open
Abstract
We report the first cryoEM structure of the Hendra henipavirus nucleoprotein in complex with RNA, at 3.5 Å resolution, derived from single particle analysis of a double homotetradecameric RNA-bound N protein ring assembly exhibiting D14 symmetry. The structure of the HeV N protein adopts the common bi-lobed paramyxoviral N protein fold; the N-terminal and C-terminal globular domains are bisected by an RNA binding cleft containing six RNA nucleotides and are flanked by the N-terminal and C-terminal arms, respectively. In common with other paramyxoviral nucleocapsids, the lateral interface between adjacent Ni and Ni+1 protomers involves electrostatic and hydrophobic interactions mediated primarily through the N-terminal arm and globular domains with minor contribution from the C-terminal arm. However, the HeV N multimeric assembly uniquely identifies an additional protomer-protomer contact between the Ni+1 N-terminus and Ni-1 C-terminal arm linker. The model presented here broadens the understanding of RNA-bound paramyxoviral nucleocapsid architectures and provides a platform for further insight into the molecular biology of HeV, as well as the development of antiviral interventions.
Collapse
Affiliation(s)
- Tim C Passchier
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Department of Biology, University of York, York, YO10 5DD, UK.
| | - Joshua B R White
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel P Maskell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew J Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Exscientia, The Schrödinger Building Oxford Science Park, Oxford, OX4 4GE, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- College of Biomedical Sciences, Larkin University, 18301 N Miami Avenue, Miami, FL, 33169, USA.
| | - John N Barr
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
7
|
Li X, Yang Y, López CB. Indiscriminate activities of different henipavirus polymerase complex proteins allow for efficient minigenome replication in hybrid systems. J Virol 2024; 98:e0050324. [PMID: 38780245 PMCID: PMC11237569 DOI: 10.1128/jvi.00503-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The henipaviruses, including Nipah virus (NiV) and Hendra virus (HeV), are biosafety level 4 (BSL-4) zoonotic pathogens that cause severe neurological and respiratory disease in humans. To study the replication machinery of these viruses, we developed robust minigenome systems that can be safely used in BSL-2 conditions. The nucleocapsid (N), phosphoprotein (P), and large protein (L) of henipaviruses are critical elements of their replication machinery and thus essential support components of the minigenome systems. Here, we tested the effects of diverse combinations of the replication support proteins on the replication capacity of the NiV and HeV minigenomes by exchanging the helper plasmids coding for these proteins among the two viruses. We demonstrate that all combinations including one or more heterologous proteins were capable of replicating both the NiV and HeV minigenomes. Sequence alignment showed identities of 92% for the N protein, 67% for P, and 87% for L. Notably, variations in amino acid residues were not concentrated in the N-P and P-L interacting regions implying that dissimilarities in amino acid composition among NiV and HeV polymerase complex proteins may not impact their interactions. The observed indiscriminate activity of NiV and HeV polymerase complex proteins is different from related viruses, which can support the replication of heterologous genomes only when the whole polymerase complex belongs to the same virus. This newly observed promiscuous property of the henipavirus polymerase complex proteins likely attributed to their conserved interaction regions could potentially be harnessed to develop universal anti-henipavirus antivirals.IMPORTANCEGiven the severity of disease induced by Hendra and Nipah viruses in humans and the continuous emergence of new henipaviruses as well as henipa-like viruses, it is necessary to conduct a more comprehensive investigation of the biology of henipaviruses and their interaction with the host. The replication of henipaviruses and the development of antiviral agents can be studied in systems that allow experiments to be performed under biosafety level 2 conditions. Here, we developed robust minigenome systems for the Nipah virus (NiV) and Hendra virus (HeV) that provide a convenient alternative for studying NiV and HeV replication. Using these systems, we demonstrate that any combination of the three polymerase complex proteins of NiV and HeV could effectively initiate the replication of both viral minigenomes, which suggests that the interaction regions of the polymerase complex proteins could be effective targets for universal and effective anti-henipavirus interventions.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular Microbiology and Center for Women's Infectious Diseases Research, Washington University in St Louis, St. Louis, Missouri, USA
| | - Yanling Yang
- Department of Molecular Microbiology and Center for Women's Infectious Diseases Research, Washington University in St Louis, St. Louis, Missouri, USA
| | - Carolina B. López
- Department of Molecular Microbiology and Center for Women's Infectious Diseases Research, Washington University in St Louis, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Fan P, Sun M, Zhang X, Zhang H, Liu Y, Yao Y, Li M, Fang T, Sun B, Chen Z, Chi X, Chen L, Peng C, Chen Z, Zhang G, Ren Y, Liu Z, Li Y, Li J, Li E, Guan W, Li S, Gong R, Zhang K, Yu C, Chiu S. A potent Henipavirus cross-neutralizing antibody reveals a dynamic fusion-triggering pattern of the G-tetramer. Nat Commun 2024; 15:4330. [PMID: 38773072 PMCID: PMC11109247 DOI: 10.1038/s41467-024-48601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
The Hendra and Nipah viruses (HNVs) are highly pathogenic pathogens without approved interventions for human use. In addition, the interaction pattern between the attachment (G) and fusion (F) glycoproteins required for virus entry remains unclear. Here, we isolate a panel of Macaca-derived G-specific antibodies that cross-neutralize HNVs via multiple mechanisms. The most potent antibody, 1E5, confers adequate protection against the Nipah virus challenge in female hamsters. Crystallography demonstrates that 1E5 has a highly similar binding pattern to the receptor. In cryo-electron microscopy studies, the tendency of 1E5 to bind to the upper or lower heads results in two distinct quaternary structures of G. Furthermore, we identify the extended outer loop β1S2-β1S3 of G and two pockets on the apical region of fusion (F) glycoprotein as the essential sites for G-F interactions. This work highlights promising drug candidates against HNVs and contributes deeper insights into the viruses.
Collapse
Grants
- the Defense Industrial Technology Development Program, Grant No. JCKY2020802B001
- the Ministry of Science and Technology of China,Grant No. 2022YFC2303700; the Fundamental Research Funds for the Central Universities, Grant No. WK9100000032
- Hubei Jiangxia Laboratory, Grant No. JXBS002
- the Ministry of Science and Technology of China,Grant No. 2022YFC2303700, Grant No. 2022YFA1302700; the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB0490000; the Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Grant No. QYPY20220019; the Fundamental Research Funds for the Central Universities, Grant No. WK9100000044
- the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No. XDB0490000
Collapse
Affiliation(s)
- Pengfei Fan
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China.
| | - Mengmeng Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Huajun Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yujiao Liu
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yanfeng Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ming Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ting Fang
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Bingjie Sun
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Zhengshan Chen
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Xiangyang Chi
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Li Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Guanying Zhang
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yi Ren
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Zixuan Liu
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Jianmin Li
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wuxiang Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Gong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Changming Yu
- Laboratory of Advanced Biotechnology, Institute of Biotechnology, Beijing, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
| |
Collapse
|
9
|
Wang Z, McCallum M, Yan L, Gibson CA, Sharkey W, Park YJ, Dang HV, Amaya M, Person A, Broder CC, Veesler D. Structure and design of Langya virus glycoprotein antigens. Proc Natl Acad Sci U S A 2024; 121:e2314990121. [PMID: 38593070 PMCID: PMC11032465 DOI: 10.1073/pnas.2314990121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse, and hamster target cells using a different, yet unknown, receptor than Nipah virus (NiV) and Hendra virus (HeV) and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G. We determined cryoelectron microscopy structures of LayV F, in the prefusion and postfusion states, and of LayV G, revealing their conformational landscape and distinct antigenicity relative to NiV and HeV. We computationally designed stabilized LayV G constructs and demonstrate the generalizability of an HNV F prefusion-stabilization strategy. Our data will support the development of vaccines and therapeutics against LayV and closely related HNVs.
Collapse
Affiliation(s)
- Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD20814
| | - Cecily A. Gibson
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - William Sharkey
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA98195
- HHMI, Seattle, WA98195
| | - Ha V. Dang
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD20814
| | - Ashley Person
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD20814
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA98195
- HHMI, Seattle, WA98195
| |
Collapse
|
10
|
Barry K, Harpur C, Lam M, Tate MD, Mansell A. Aggregated Hendra virus C-protein activates the NLRP3 inflammasome to induce inflammation. J Inflamm (Lond) 2023; 20:38. [PMID: 37950278 PMCID: PMC10636811 DOI: 10.1186/s12950-023-00365-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Hendra virus is an emerging virus with a geographically broad host reservoir. In humans, Hendra virus causes excessive inflammatory disease of the lung and nervous system. Our current understanding as to how Hendra virus or what factors induce inflammation is limited and as such, there are currently no therapeutic options available for patients who contract Hendra virus. Recent studies have identified viral aggregating proteins as drivers of inflammation in influenza A virus and SARS-CoV-2 virus. In this study, we sought to identify potential aggregating Hendra virus proteins as proof-of-concept that inflammasome activation may induce inflammation and contribute to disease pathology. RESULTS Here, we have identified that a peptide analogue of Hendra virus C protein (termed HeVc) forms aggregates and activates the NLRP3 inflammasome through phagocytic uptake into cells in vitro. Treatment of cells with the specific NLRP3 inhibitor MCC950 ameliorated IL-1β secretion responses in vitro. Critically, in vivo intranasal inoculation of mice with aggregated HeVc peptide induced pulmonary inflammation, suggesting HeVc may drive immunopathology during infection. Importantly, mice treated with MCC950 demonstrated reduced IL-1β secretion into the bronchoalveolar space, highlighting the role of NLRP3 in host HeV infections and a potential therapeutic strategy to reduce disease pathology. CONCLUSION Taken together, these results identify Hendra virus C protein as a possible contributor to immunopathology during Hendra virus infections. Importantly, these studies highlight a potential role for NLRP3 in driving disease-associated inflammation, critically identifying a possible therapeutic strategy to alleviate disease-associated inflammation of infected patients through targeting of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Kristian Barry
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Christopher Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Maggie Lam
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
11
|
Azuero OC, Lefrancq N, Nikolay B, McKee C, Cappelle J, Hul V, Ou TP, Hoem T, Lemey P, Rahman MZ, Islam A, Gurley ES, Duong V, Salje H. The genetic diversity of Nipah virus across spatial scales. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.14.23292668. [PMID: 37502973 PMCID: PMC10370237 DOI: 10.1101/2023.07.14.23292668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nipah virus (NiV), a highly lethal virus in humans, circulates silently in Pteropus bats throughout South and Southeast Asia. Difficulty in obtaining genomes from bats means we have a poor understanding of NiV diversity, including how many lineages circulate within a roost and the spread of NiV over increasing spatial scales. Here we develop phylogenetic approaches applied to the most comprehensive collection of genomes to date (N=257, 175 from bats, 73 from humans) from six countries over 22 years (1999-2020). In Bangladesh, where most human infections occur, we find evidence of increased spillover risk from one of the two co-circulating sublineages. We divide the four major NiV sublineages into 15 genetic clusters (emerged 20-44 years ago). Within any bat roost, there are an average of 2.4 co-circulating genetic clusters, rising to 5.5 clusters at areas of 1,500-2,000 km2. Using Approximate Bayesian Computation fit to a spatial signature of viral diversity, we estimate that each genetic cluster occupies an average area of 1.3 million km2 (95%CI: 0.6-2.3 million), with 14 clusters in an area of 100,000 km2 (95%CI: 6-24). In the few sites in Bangladesh and Cambodia where genomic surveillance has been concentrated, we estimate that most of the genetic clusters have been identified, but only ~15% of overall NiV diversity has been uncovered. Our findings are consistent with entrenched co-circulation of distinct lineages, even within individual roosts, coupled with slow migration over larger spatial scales.
Collapse
Affiliation(s)
| | - Noémie Lefrancq
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Clifton McKee
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Vibol Hul
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Tey Putita Ou
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Thavry Hoem
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium
| | | | - Ausraful Islam
- Infectious Diseases Division, icddr,b, Dhaka 1000, Bangladesh
| | - Emily S. Gurley
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
12
|
Pigeaud DD, Geisbert TW, Woolsey C. Animal Models for Henipavirus Research. Viruses 2023; 15:1980. [PMID: 37896758 PMCID: PMC10610982 DOI: 10.3390/v15101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are zoonotic paramyxoviruses in the genus Henipavirus (HNV) that emerged nearly thirty years ago. Outbreaks of HeV and NiV have led to severe respiratory disease and encephalitis in humans and animals characterized by a high mortality rate. Despite the grave threat HNVs pose to public health and global biosecurity, no approved medical countermeasures for human use currently exist against HeV or NiV. To develop candidate vaccines and therapeutics and advance the field's understanding of HNV pathogenesis, animal models of HeV and NiV have been instrumental and remain indispensable. Various species, including rodents, ferrets, and nonhuman primates (NHPs), have been employed for HNV investigations. Among these, NHPs have demonstrated the closest resemblance to human HNV disease, although other animal models replicate some key disease features. Here, we provide a comprehensive review of the currently available animal models (mice, hamsters, guinea pigs, ferrets, cats, dogs, nonhuman primates, horses, and swine) to support HNV research. We also discuss the strengths and limitations of each model for conducting pathogenesis and transmission studies on HeV and NiV and for the evaluation of medical countermeasures.
Collapse
Affiliation(s)
- Declan D. Pigeaud
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
13
|
Wang Z, McCallum M, Yan L, Sharkey W, Park YJ, Dang HV, Amaya M, Person A, Broder CC, Veesler D. Structure and design of Langya virus glycoprotein antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554025. [PMID: 37645760 PMCID: PMC10462157 DOI: 10.1101/2023.08.20.554025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse and hamster target cells using a different, yet unknown, receptor than NiV and HeV and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G. We determined cryo-electron microscopy structures of LayV F, in the prefusion and postfusion states, and of LayV G, revealing previously unknown conformational landscapes and their distinct antigenicity relative to NiV and HeV. We computationally designed stabilized LayV G constructs and demonstrate the generalizability of an HNV F prefusion-stabilization strategy. Our data will support the development of vaccines and therapeutics against LayV and closely related HNVs.
Collapse
Affiliation(s)
- Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - William Sharkey
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ha V. Dang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Ashley Person
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Li H, Kim JYV, Pickering BS. Henipavirus zoonosis: outbreaks, animal hosts and potential new emergence. Front Microbiol 2023; 14:1167085. [PMID: 37529329 PMCID: PMC10387552 DOI: 10.3389/fmicb.2023.1167085] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has caused sporadic infections in horses and a small number of human cases in Australia since 1994. The NiV Malaysia genotype (NiV-M) was responsible for the 1998-1999 epizootic outbreak in pigs with spillover to humans in Malaysia and Singapore. Since 2001, the NiV Bangladesh genotype (NiV-B) has been the predominant strain leading to outbreaks almost every year in Bangladesh and India, with hundreds of infections in humans. The natural reservoir hosts of HeV and NiV are fruit bats, which carry the viruses without clinical manifestation. The transmission pathways of henipaviruses from bats to humans remain poorly understood. Transmissions are often bridged by an intermediate animal host, which amplifies and spreads the viruses to humans. Horses and pigs are known intermediate hosts for the HeV outbreaks in Australia and NiV-M epidemic in Malaysia and Singapore, respectively. During the NiV-B outbreaks in Bangladesh, following initial spillover thought to be through the consumption of date palm sap, the spread of infection was largely human-to-human transmission. Spillover of NiV-B in recent outbreaks in India is less understood, with the primary route of transmission from bat reservoir to the initial human infection case(s) unknown and no intermediate host established. This review aims to provide a concise update on the epidemiology of henipaviruses covering their previous and current outbreaks with emphasis on the known and potential role of livestock as intermediate hosts in disease transmission. Also included is an up-to-date summary of newly emerging henipa-like viruses and animal hosts. In these contexts we discuss knowledge gaps and new challenges in the field and propose potential future directions.
Collapse
Affiliation(s)
- Hongzhao Li
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Ji-Young V. Kim
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Bradley S. Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
15
|
Kropich-Grant JN, Wiley KE, Manyweathers J, Thompson KR, Brookes VJ. Communication Interventions and Assessment of Drivers for Hendra Virus Vaccination Uptake. Vaccines (Basel) 2023; 11:vaccines11050936. [PMID: 37243040 DOI: 10.3390/vaccines11050936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Hendra virus disease (HeVD) is an emerging zoonosis in Australia, resulting from the transmission of Hendra virus (HeV) to horses from Pteropus bats. Vaccine uptake for horses is low despite the high case fatality rate of HeVD in both horses and people. We reviewed evidence-based communication interventions to promote and improve HeV vaccine uptake for horses by horse owners and conducted a preliminary evaluation of potential drivers for HeV vaccine uptake using the Behavioural and Social Drivers of Vaccination (BeSD) framework developed by the World Health Organization. Six records were eligible for review following a comprehensive search and review strategy of peer-reviewed literature, but evidence-based communication interventions to promote and improve HeV vaccine uptake for horses were lacking. An evaluation of potential drivers for HeV vaccine uptake using the BeSD framework indicated that horse owners' perceptions, beliefs, social processes, and practical issues are similar to those experienced by parents making decisions about childhood vaccines, although the overall motivation to vaccinate is lower amongst horse owners. Some aspects of HeV vaccine uptake are not accounted for in the BeSD framework (for example, alternative mitigation strategies such as covered feeding stations or the zoonotic risk of HeV). Overall, problems associated with HeV vaccine uptake appear well-documented. We, therefore, propose to move from a problems-focused to a solutions-focused approach to reduce the risk of HeV for humans and horses. Following our findings, we suggest that the BeSD framework could be modified and used to develop and evaluate communication interventions to promote and improve HeV vaccine uptake by horse owners, which could have a global application to promote vaccine uptake for other zoonotic diseases in animals, such as rabies.
Collapse
Affiliation(s)
- Jessica N Kropich-Grant
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown 2006, Australia
| | - Kerrie E Wiley
- Sydney School of Public Health, The University of Sydney, Camperdown 2006, Australia
| | - Jennifer Manyweathers
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga 2678, Australia
| | - Kirrilly R Thompson
- College of Health, Medicine and Well-Being, University of Newcastle, Callaghan 2308, Australia
- Hunter New England Local Health District, Wallsend 2287, Australia
| | - Victoria J Brookes
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown 2006, Australia
| |
Collapse
|
16
|
Narayanan KK, Amaya M, Tsang N, Yin R, Jays A, Broder CC, Shukla D, Procko E. The Sequence Basis for Selectivity of Ephrin-B2 Ligand for Eph Receptors and Pathogenic Henipavirus G Glycoproteins: Selective Ephrin-B2 Decoys for Nipah and Hendra Virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538420. [PMID: 37162958 PMCID: PMC10168364 DOI: 10.1101/2023.04.26.538420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ephrin-B2 (EFNB2) is a ligand for six Eph receptors in humans and functions as a cell entry receptor for several henipaviruses including Nipah virus (NiV), a pathogenic zoonotic virus with pandemic potential. To understand the sequence basis of promiscuity for EFNB2 binding to the attachment glycoprotein of NiV (NiV-G) and Eph receptors, we performed deep mutagenesis on EFNB2 to identify mutations that enhance binding to NiV-G over EphB2, one of the highest affinity Eph receptors. The mutations highlight how different EFNB2 conformations are selected by NiV-G versus EphB2. Specificity mutations are enriched at the base of the G-H binding loop of EFNB2, especially surrounding a phenylalanine hinge upon which the G-H loop pivots, and at a phenylalanine hook that rotates away from the EFNB2 core to engage Eph receptors. One EFNB2 mutant, D62Q, possesses pan-specificity to the attachment glycoproteins of closely related henipaviruses and has markedly diminished binding to the six Eph receptors. However, EFNB2-D62Q has high residual binding to EphB3 and EphB4. A second deep mutational scan of EFNB2 identified combinatorial mutations to further enhance specificity to NiV-G. A triple mutant of soluble EFNB2, D62Q-Q130L-V167L, has minimal binding to Eph receptors but maintains binding, albeit reduced, to NiV-G. Soluble EFNB2 decoy receptors carrying the specificity mutations were potent neutralizers of chimeric henipaviruses. These findings demonstrate how specific residue changes at the shared binding interface of a promiscuous ligand (EFNB2) can influence selectivity for multiple receptors, and may also offer insight towards the development of henipavirus therapeutics and diagnostics.
Collapse
Affiliation(s)
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
| | - Natalie Tsang
- Department of Biochemistry, University of Illinois, Urbana IL, USA
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda MD, USA
| | - Alka Jays
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda MD, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois, Urbana IL, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana IL, USA
- Cancer Center at Illinois, University of Illinois, Urbana IL, USA
- Cyrus Biotechnology, Seattle WA, USA
| |
Collapse
|
17
|
Tulloch RL, Kim K, Sikazwe C, Michie A, Burrell R, Holmes EC, Dwyer DE, Britton PN, Kok J, Eden JS. RAPID prep: A Simple, Fast Protocol for RNA Metagenomic Sequencing of Clinical Samples. Viruses 2023; 15:v15041006. [PMID: 37112986 PMCID: PMC10146689 DOI: 10.3390/v15041006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Emerging infectious disease threats require rapid response tools to inform diagnostics, treatment, and outbreak control. RNA-based metagenomics offers this; however, most approaches are time-consuming and laborious. Here, we present a simple and fast protocol, the RAPIDprep assay, with the aim of providing a cause-agnostic laboratory diagnosis of infection within 24 h of sample collection by sequencing ribosomal RNA-depleted total RNA. The method is based on the synthesis and amplification of double-stranded cDNA followed by short-read sequencing, with minimal handling and clean-up steps to improve processing time. The approach was optimized and applied to a range of clinical respiratory samples to demonstrate diagnostic and quantitative performance. Our results showed robust depletion of both human and microbial rRNA, and library amplification across different sample types, qualities, and extraction kits using a single workflow without input nucleic-acid quantification or quality assessment. Furthermore, we demonstrated the genomic yield of both known and undiagnosed pathogens with complete genomes recovered in most cases to inform molecular epidemiological investigations and vaccine design. The RAPIDprep assay is a simple and effective tool, and representative of an important shift toward the integration of modern genomic techniques with infectious disease investigations.
Collapse
Affiliation(s)
- Rachel L Tulloch
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Karan Kim
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chisha Sikazwe
- PathWest Laboratory Medicine WA, Department of Microbiology, Nedlands, WA 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Alice Michie
- PathWest Laboratory Medicine WA, Department of Microbiology, Nedlands, WA 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Rebecca Burrell
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Departments of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dominic E Dwyer
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- NSW Health Pathology Institute for Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Philip N Britton
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Departments of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Jen Kok
- NSW Health Pathology Institute for Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - John-Sebastian Eden
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Wang X, Wise JC, Stewart AJ. Hendra Virus: An Update on Diagnosis, Vaccination, and Biosecurity Protocols for Horses. Vet Clin North Am Equine Pract 2023; 39:89-98. [PMID: 36737284 DOI: 10.1016/j.cveq.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hendra virus (HeV) emerged as a zoonotic pathogen in the 1990s, causing low morbidity but high mortality in humans and horses. Pteropid bats are the natural reservoir of HeV and other important zoonotic viruses such as Nipah and Ebola viruses. Equivac HeV, manufactured by Zoetis (Parkville, Victoria, Australia), is the only commercially available vaccine for horses. There is no commercial vaccine for humans. The epidemiology, clinical features, pathology, diagnosis, management, and prevention of HeV will be reviewed.
Collapse
Affiliation(s)
- Xueli Wang
- School of Veterinary Science, The University of Queensland, Gatton Campus, Building 8114, Inner Ring Road, Gatton, Queensland 4343, Australia
| | - Jessica C Wise
- School of Veterinary Science, The University of Queensland, Gatton Campus, Building 8114, Inner Ring Road, Gatton, Queensland 4343, Australia
| | - Allison J Stewart
- School of Veterinary Science, The University of Queensland, Gatton Campus, Building 8114, Inner Ring Road, Gatton, Queensland 4343, Australia.
| |
Collapse
|
19
|
Maamary J, Maddocks S, Barnett Y, Wong S, Rodriguez M, Hueston L, Jeoffreys N, Eden JS, Dwyer DE, Floyd T, Plit M, Kok J, Brew B. New Detection of Locally Acquired Japanese Encephalitis Virus Using Clinical Metagenomics, New South Wales, Australia. Emerg Infect Dis 2023; 29:627-630. [PMID: 36823673 PMCID: PMC9973708 DOI: 10.3201/eid2903.220632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
In the context of an emerging Japanese encephalitis outbreak within Australia, we describe a novel locally acquired case in New South Wales. A man in his 70s had rapidly progressive, fatal meningoencephalitis, diagnosed as caused by Japanese encephalitis virus by RNA-based metagenomic next-generation sequencing performed on postmortem brain tissue.
Collapse
|
20
|
Pseudotyped Virus for Henipavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:175-190. [PMID: 36920697 DOI: 10.1007/978-981-99-0113-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The genus Henipavirus (HNV) includes two virulent infectious viruses, Nipah virus (NiV) and Hendra virus (HeV), which are the focus of considerable public health research efforts and have been classified as priority infectious diseases by the World Health Organization. Both viruses are high risk and should be handled in biosafety level 4 laboratories. Pseudotyped viruses containing the envelope proteins of HNV viruses have the same envelope protein structure as the authentic viruses; thus, they can mimic the receptor-binding and membrane fusion processes of authentic viruses with host cells and can be handled in biosafety level 2 laboratories. These characteristics enable pseudotyped viruses to be widely used in studies of viral infection mechanisms (packaging, budding, virus attachment, membrane fusion, viral entry, and glycosylation), inhibitory drug screening assays, and monoclonal antibody neutralization characteristics. This review will provide an overview of the progress of research concerning pseudotyped virus packaging systems for NiV and HeV.
Collapse
|
21
|
Sikazwe C, Neave MJ, Michie A, Mileto P, Wang J, Cooper N, Levy A, Imrie A, Baird RW, Currie BJ, Speers D, Mackenzie JS, Smith DW, Williams DT. Molecular detection and characterisation of the first Japanese encephalitis virus belonging to genotype IV acquired in Australia. PLoS Negl Trop Dis 2022; 16:e0010754. [PMID: 36409739 PMCID: PMC9721490 DOI: 10.1371/journal.pntd.0010754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/05/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND A fatal case of Japanese encephalitis (JE) occurred in a resident of the Tiwi Islands, in the Northern Territory of Australia in February 2021, preceding the large JE outbreak in south-eastern Australia in 2022. This study reports the detection, whole genome sequencing and analysis of the virus responsible (designated JEV/Australia/NT_Tiwi Islands/2021). METHODS Reverse transcription quantitative PCR (RT-qPCR) testing was performed on post-mortem brain specimens using a range of JE virus (JEV)-specific assays. Virus isolation from brain specimens was attempted by inoculation of mosquito and mammalian cells or embryonated chicken eggs. Whole genome sequencing was undertaken using a combination of Illumina next generation sequencing methodologies, including a tiling amplicon approach. Phylogenetic and selection analyses were performed using alignments of the Tiwi Islands JEV genome and envelope (E) protein gene sequences and publicly available JEV sequences. RESULTS Virus isolation was unsuccessful and JEV RNA was detected only by RT-qPCR assays capable of detecting all JEV genotypes. Phylogenetic analysis revealed that the Tiwi Islands strain is a divergent member of genotype IV (GIV) and is closely related to the 2022 Australian outbreak virus (99.8% nucleotide identity). The Australian strains share highest levels of nucleotide identity with Indonesian viruses from 2017 and 2019 (96.7-96.8%). The most recent common ancestor of this Australian-Indonesian clade was estimated to have emerged in 2007 (95% HPD range: 1998-2014). Positive selection was detected using two methods (MEME and FEL) at several sites in the E and non-structural protein genes, including a single site in the E protein (S194N) unique to the Australian GIV strains. CONCLUSION This case represents the first detection of GIV JEV acquired in Australia, and only the second confirmed fatal human infection with a GIV JEV strain. The close phylogenetic relationship between the Tiwi Islands strain and recent Indonesian viruses is indicative of the origin of this novel GIV lineage, which we estimate has circulated in the region for several years prior to the Tiwi Islands case.
Collapse
Affiliation(s)
- Chisha Sikazwe
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - Matthew J. Neave
- CSIRO Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Alice Michie
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - Patrick Mileto
- CSIRO Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Jianning Wang
- CSIRO Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Natalie Cooper
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - Avram Levy
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Allison Imrie
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Robert W. Baird
- Pathology and Infectious Diseases Departments, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Bart J. Currie
- Pathology and Infectious Diseases Departments, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - David Speers
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - John S. Mackenzie
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
- Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - David W. Smith
- PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
- * E-mail: (DWS); (DTW)
| | - David T. Williams
- CSIRO Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
- * E-mail: (DWS); (DTW)
| |
Collapse
|
22
|
Emerging Genotype IV Japanese Encephalitis Virus Outbreak in New South Wales, Australia. Viruses 2022; 14:v14091853. [PMID: 36146660 PMCID: PMC9505215 DOI: 10.3390/v14091853] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
The detection of a new and unexpected Japanese encephalitis virus (JEV) outbreak in March 2022 in Australia, where JEV is not endemic, demanded the rapid development of a robust diagnostic framework to facilitate the testing of suspected patients across the state of New South Wales (NSW). This nascent but comprehensive JEV diagnostic service encompassed serological, molecular and metagenomics testing within a centralised reference laboratory. Over the first three months of the outbreak (4 March 2022 to 31 May 2022), 1,061 prospective samples were received from 878 NSW residents for JEV testing. Twelve confirmed cases of Japanese encephalitis (JE) were identified, including ten cases diagnosed by serology alone, one case by metagenomic next generation sequencing and real-time polymerase chain reaction (RT-PCR) of brain tissue and serology, and one case by RT-PCR of cerebrospinal fluid, providing an incidence of JE over this period of 0.15/100,000 persons in NSW. As encephalitis manifests in <1% of cases of JEV infection, the population-wide prevalence of JEV infection is likely to be substantially higher. Close collaboration with referring laboratories and clinicians was pivotal to establishing successful JEV case ascertainment for this new outbreak. Sustained and coordinated animal, human and environmental surveillance within a OneHealth framework is critical to monitor the evolution of the current outbreak, understand its origins and optimise preparedness for future JEV and arbovirus outbreaks.
Collapse
|
23
|
Pham D, Howard-Jones AR, Hueston L, Jeoffreys N, Doggett S, Rockett R, Eden JS, Sintchenko V, Chen SCA, O’Sullivan MV, Maddocks S, Dwyer DE, Kok J. Emergence of Japanese encephalitis in Australia: a diagnostic perspective. Pathology 2022; 54:669-677. [DOI: 10.1016/j.pathol.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
|
24
|
Novel variant Hendra virus genotype 2 infection in a horse in the greater Newcastle region, New South Wales, Australia. One Health 2022; 15:100423. [PMID: 36277112 PMCID: PMC9582560 DOI: 10.1016/j.onehlt.2022.100423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022] Open
Abstract
In October 2021, the first contemporary detection of Hendra virus genotype 2 (HeV-g2) was made by veterinary priority disease investigation in a horse near Newcastle, New South Wales, Australia, as part of routine veterinary priority disease surveillance. This discovery followed an update of Hendra virus diagnostic assays following retrospective identification of this variant from 2015 via sentinel emerging infectious disease research, enabling timely detection of this case. The sole infected horse was euthanized in moribund condition. As the southernmost recognised HeV spill-over detection to date, it extends the southern limit of known cases by approximately 95 km. The event occurred near a large urban centre, characterised by equine populations of diverse type, husbandry, and purpose, with low HeV vaccination rates. Urgent multi-agency outbreak response involved risk assessment and monitoring of 11 exposed people and biosecurity management of at-risk animals. No human or additional animal cases were recognised. This One Health investigation highlights need for research on risk perception and strategic engagement to support owners confronted with the death of companion animals and potential human exposure to a high consequence virus. The location and timing of this spill-over event diverging from that established for prototype HeV (HeV-g1), highlight benefit in proactive One Health surveillance and research activities that improve understanding of dynamic transmission and spill-over risks of both HeV genotypic lineages and related but divergent emerging pathogens. In October 2021 an equine case of Hendra virus genotype 2 (HeV-g2) was detected near Newcastle, Australia Detection was facilitated through recent adoption by animal health of an updated PCR assay able to detect HeV-g2 The case occurred outside of the southern winter season typical for HeV and marks the southernmost equine detection to date This event highlights the expanded geographical risk of spillover from flying-foxes to horses that is presented by HeV-g2
Collapse
|
25
|
Wang Z, Dang HV, Amaya M, Xu Y, Yin R, Yan L, Hickey AC, Annand EJ, Horsburgh BA, Reid PA, Smith I, Eden JS, Xu K, Broder CC, Veesler D. Potent monoclonal antibody-mediated neutralization of a divergent Hendra virus variant. Proc Natl Acad Sci U S A 2022; 119:e2122769119. [PMID: 35617431 PMCID: PMC9295758 DOI: 10.1073/pnas.2122769119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/16/2022] [Indexed: 12/27/2022] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic Henipaviruses (HNVs) responsible for recurrent outbreaks in humans and domestic species of highly fatal (50 to 95%) disease. A HeV variant (HeV-g2) of unprecedented genetic divergence has been identified in two fatally diseased horses, and in two flying fox species in regions of Australia not previously considered at risk for HeV spillover. Given the HeV-g2 divergence from HeV while retaining equivalent pathogenicity and spillover potential, understanding receptor usage and antigenic properties is urgently required to guide One Health biosecurity. Here, we show that the HeV-g2 G glycoprotein shares a conserved receptor tropism with prototypic HeV and that a panel of monoclonal antibodies recognizing the G and F glycoproteins potently neutralizes HeV-g2– and HeV G/F–mediated entry into cells. We determined a crystal structure of the Fab fragment of the hAH1.3 antibody bound to the HeV G head domain, revealing an antigenic site associated with potent cross-neutralization of both HeV-g2 and HeV. Structure-guided formulation of a tetravalent monoclonal antibody (mAb) mixture, targeting four distinct G head antigenic sites, results in potent neutralization of HeV and HeV-g2 and delineates a path forward for implementing multivalent mAb combinations for postexposure treatment of HNV infections.
Collapse
Affiliation(s)
- Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Ha V. Dang
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814
| | - Yan Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814
| | - Andrew C. Hickey
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814
- US Public Health Services Commissioned Corps, Rockville, MD 20852
| | - Edward J. Annand
- Sydney School of Veterinary Science, University of Sydney, Sydney, 2570 NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, 2006 NSW, Australia
- Black Mountain Laboratories, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, 2601 ACT, Australia
- Equine Veterinary and One Health Epidemiology, EquiEpiVet, Aireys Inlet, Surf Coast, 3231 VIC, Australia
| | - Bethany A. Horsburgh
- University of Sydney School of Medicine, Sydney, 2006 NSW, Australia
- Westmead Institute for Medical Research, Sydney, 2145 NSW, Australia
| | - Peter A. Reid
- Private Equine Veterinary Practice, Brisbane, 4034 QLD, Australia
| | - Ina Smith
- Black Mountain Laboratories, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, 2601 ACT, Australia
| | - John-Sebastian Eden
- University of Sydney School of Medicine, Sydney, 2006 NSW, Australia
- Westmead Institute for Medical Research, Sydney, 2145 NSW, Australia
| | - Kai Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- HHMI, University of Washington, Seattle, WA 98195
| |
Collapse
|
26
|
Peel AJ, Yinda CK, Annand EJ, Dale AS, Eby P, Eden JS, Jones DN, Kessler MK, Lunn TJ, Pearson T, Schulz JE, Smith IL, Munster VJ, Plowright RK. Novel Hendra Virus Variant Circulating in Black Flying Foxes and Grey-Headed Flying Foxes, Australia. Emerg Infect Dis 2022; 28:1043-1047. [PMID: 35447052 PMCID: PMC9045453 DOI: 10.3201/eid2805.212338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A novel Hendra virus variant, genotype 2, was recently discovered in a horse that died after acute illness and in Pteropus flying fox tissues in Australia. We detected the variant in flying fox urine, the pathway relevant for spillover, supporting an expanded geographic range of Hendra virus risk to horses and humans.
Collapse
|