1
|
de Oliveira Canedo G, Roddie C, Amrolia PJ. Dual-targeting CAR T cells for B-cell acute lymphoblastic leukemia and B-cell non-Hodgkin lymphoma. Blood Adv 2025; 9:704-721. [PMID: 39631066 PMCID: PMC11869864 DOI: 10.1182/bloodadvances.2024013586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
ABSTRACT Relapse after CD19-directed chimeric antigen receptor (CAR) T-cell therapy remains a major challenge in B-cell acute lymphoblastic leukemia (ALL) and B-cell non-Hodgkin lymphoma (B-NHL). One of the main strategies to avoid CD19-negative relapse has been the development of dual CAR T cells targeting CD19 and an additional target, such as CD22 or CD20. Different methods have been used to achieve this, including coadministration of 2 products targeting 1 single antigen, cotransduction of autologous T cells, use of a bicistronic vector, or the development of bivalent CARs. Phase 1 and 2 trials across all manufacturing strategies have shown this to be a safe approach with equivalent remission rates and initial product expansion. CAR T-cell persistence remains a significant issue, with the majority of relapses being antigen-positive after CAR T-cell infusion. Further, despite adding a second antigen, antigen-negative relapses have not yet been eliminated. This review summarizes the state of the art with dual-targeting CAR T cells for B-cell ALL and B-NHL, the challenges encountered, and possible next steps to overcome them.
Collapse
Affiliation(s)
- Gustavo de Oliveira Canedo
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, United Kingdom
| | - Claire Roddie
- Department of Haematology, University College London Hospitals, London, United Kingdom
| | - Persis J. Amrolia
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
2
|
Sun L, Romancik JT. The Development and Application of Bispecific Antibodies in B-Cell Non-Hodgkin Lymphoma. J Pers Med 2025; 15:51. [PMID: 39997328 PMCID: PMC11856678 DOI: 10.3390/jpm15020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
T-cell-engaging bispecific antibodies (BsAbs) are monoclonal antibodies that redirect the cytotoxic activity of T-cells to target malignant neoplasms. B-cell non-Hodgkin lymphoma (B-NHL) is a heterogenous group of aggressive and indolent malignancies with significant therapeutic challenges due to high relapse rates and limited options for relapsed/refractory disease. BsAbs function by simultaneously binding to CD3 on endogenous T-cells and a tumor-associated antigen, creating an immunologic synapse which results in the death of the target cell. The widespread T-cell activation that occurs with BsAb administration can result in cytokine release syndrome and neurological adverse events. Mosunetuzumab, epcoritamab, and glofitamab are CD20-targeting BsAbs that have demonstrated promising single-agent activity in both indolent and aggressive B-NHL. BsAbs are now being evaluated in combination with other anti-lymphoma agents and in earlier lines of treatment, and the results of ongoing clinical trials involving these agents have the potential to reshape the treatment landscape for B-NHL. In this review, we describe the structural features, clinical data, and toxicity profile associated with the BsAbs currently used to treat B-NHL and then discuss ongoing studies and future directions for this exciting new class of therapeutic agents.
Collapse
Affiliation(s)
- Laura Sun
- Department of Pharmacy, Winship Cancer Institute of Emory University, Atlanta, GA 30308, USA;
| | - Jason T. Romancik
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30308, USA
| |
Collapse
|
3
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
4
|
Pang Y, Ghosh N. Novel and multiple targets for chimeric antigen receptor-based therapies in lymphoma. Front Oncol 2024; 14:1396395. [PMID: 38711850 PMCID: PMC11070555 DOI: 10.3389/fonc.2024.1396395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy targeting CD19 in B-cell non-Hodgkin lymphoma (NHL) validates the utility of CAR-based therapy for lymphomatous malignancies. Despite the success, treatment failure due to CD19 antigen loss, mutation, or down-regulation remains the main obstacle to cure. On-target, off-tumor effect of CD19-CAR T leads to side effects such as prolonged B-cell aplasia, limiting the application of therapy in indolent diseases such as chronic lymphocytic leukemia (CLL). Alternative CAR targets and multi-specific CAR are potential solutions to improving cellular therapy outcomes in B-NHL. For Hodgkin lymphoma and T-cell lymphoma, several cell surface antigens have been studied as CAR targets, some of which already showed promising results in clinical trials. Some antigens are expressed by different lymphomas and could be used for designing tumor-agnostic CAR. Here, we reviewed the antigens that have been studied for novel CAR-based therapies, as well as CARs designed to target two or more antigens in the treatment of lymphoma.
Collapse
Affiliation(s)
- Yifan Pang
- Department of Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute, Wake Forest School of Medicine, Charlotte, NC, United States
| | | |
Collapse
|
5
|
Schuster SJ, Huw LY, Bolen CR, Maximov V, Polson AG, Hatzi K, Lasater EA, Assouline SE, Bartlett NL, Budde LE, Matasar MJ, Koeppen H, Piccione EC, Wilson D, Wei MC, Yin S, Penuel E. Loss of CD20 expression as a mechanism of resistance to mosunetuzumab in relapsed/refractory B-cell lymphomas. Blood 2024; 143:822-832. [PMID: 38048694 PMCID: PMC10934296 DOI: 10.1182/blood.2023022348] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
ABSTRACT CD20 is an established therapeutic target in B-cell malignancies. The CD20 × CD3 bispecific antibody mosunetuzumab has significant efficacy in B-cell non-Hodgkin lymphomas (NHLs). Because target antigen loss is a recognized mechanism of resistance, we evaluated CD20 expression relative to clinical response in patients with relapsed and/or refractory NHL in the phase 1/2 GO29781 trial investigating mosunetuzumab monotherapy. CD20 was studied using immunohistochemistry (IHC), RNA sequencing, and whole-exome sequencing performed centrally in biopsy specimens collected before treatment at predose, during treatment, or upon progression. Before treatment, most patients exhibited a high proportion of tumor cells expressing CD20; however, in 16 of 293 patients (5.5%) the proportion was <10%. Analyses of paired biopsy specimens from patients on treatment revealed that CD20 levels were maintained in 29 of 30 patients (97%) vs at progression, where CD20 loss was observed in 11 of 32 patients (34%). Reduced transcription or acquisition of truncating mutations explained most but not all cases of CD20 loss. In vitro modeling confirmed the effects of CD20 variants identified in clinical samples on reduction of CD20 expression and missense mutations in the extracellular domain that could block mosunetuzumab binding. This study expands the knowledge about the occurrence of target antigen loss after anti-CD20 therapeutics to include CD20-targeting bispecific antibodies and elucidates mechanisms of reduced CD20 expression at disease progression that may be generalizable to other anti-CD20 targeting agents. These results also confirm the utility of readily available IHC staining for CD20 as a tool to inform clinical decisions. This trial was registered at www.ClinicalTrials.gov as #NCT02500407.
Collapse
Affiliation(s)
- Stephen J. Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | | | | | | - Nancy L. Bartlett
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | | | - Shen Yin
- Genentech, Inc., South San Francisco, CA
| | | |
Collapse
|
6
|
Budde LE, Olszewski AJ, Assouline S, Lossos IS, Diefenbach C, Kamdar M, Ghosh N, Modi D, Sabry W, Naik S, Mehta A, Nakhoda SK, Smith SD, Dorritie K, Jia T, Pham S, Huw LY, Jing J, Wu H, Ead WS, To I, Batlevi CL, Wei MC, Chavez JC. Mosunetuzumab with polatuzumab vedotin in relapsed or refractory aggressive large B cell lymphoma: a phase 1b/2 trial. Nat Med 2024; 30:229-239. [PMID: 38072960 PMCID: PMC10803244 DOI: 10.1038/s41591-023-02726-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/16/2023] [Indexed: 01/24/2024]
Abstract
Relapsed/refractory aggressive large B cell lymphoma (LBCL) remains an area of unmet need. Here we report the primary analysis of a phase 1b/2 trial of outpatient mosunetuzumab (a CD20xCD3 T-cell-engaging bispecific antibody) plus polatuzumab vedotin (an anti-CD79B antibody-drug conjugate) in relapsed/refractory LBCL. The phase 2 component is a single arm of an ongoing multi-arm trial. The primary endpoint during dose expansion was independent review committee (IRC)-assessed best overall response rate. Secondary endpoints included investigator-assessed overall response rate, complete response, duration of response, progression-free survival and overall survival. At data cutoff, 120 patients were enrolled (22 dose escalation, 98 dose expansion). The primary endpoint was met during dose expansion, with IRC-assessed best overall response rate and complete response rates of 59.2% (58/98; 95% confidence interval (CI): 48.8-69.0) and 45.9% (45/98; 95% CI: 35.8-56.3), respectively (median follow-up, 23.9 months). Median duration of complete was not reached (95% CI: 20.5-not estimable (NE)). Median progression-free survival was 11.4 months (95% CI: 6.2-18.7). Median overall survival was 23.3 months (95% CI: 14.8-NE). Across dose escalation and expansion, the most common grade 3 or higher adverse events were neutropenia (25.0%, 30/120) and fatigue (6.7%, 8/120). Any-grade cytokine release syndrome occurred in 16.7% of patients. These data demonstrate that mosunetuzumab plus polatuzumab vedotin has a favorable safety profile with highly durable responses suitable as second-line therapy in transplant-ineligible relapsed/refractory LBCL. ClinicalTrials.gov identifier: NCT03671018 .
Collapse
Affiliation(s)
- Lihua E Budde
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | | | - Sarit Assouline
- Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Izidore S Lossos
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, USA
| | | | | | - Nilanjan Ghosh
- Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute, Charlotte, NC, USA
| | - Dipenkumar Modi
- Karmanos Cancer Institute/Wayne State University, Detroit, MI, USA
| | - Waleed Sabry
- Saskatoon Cancer Center, Saskatoon, Saskatchewan, Canada
| | - Seema Naik
- Penn State Cancer Institute, Hershey, PA, USA
| | | | | | | | - Kathleen Dorritie
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ting Jia
- Roche (China) Holding Ltd, Shanghai, China
| | - Song Pham
- F. Hoffmann-La Roche Ltd, Mississauga, Ontario, Canada
| | | | - Jing Jing
- Genentech, Inc., South San Francisco, CA, USA
| | - Hao Wu
- Genentech, Inc., South San Francisco, CA, USA
| | - Wahib S Ead
- Genentech, Inc., South San Francisco, CA, USA
| | - Iris To
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | | |
Collapse
|
7
|
Ang Z, Paruzzo L, Hayer KE, Schmidt C, Torres Diz M, Xu F, Zankharia U, Zhang Y, Soldan S, Zheng S, Falkenstein CD, Loftus JP, Yang SY, Asnani M, King Sainos P, Pillai V, Chong E, Li MM, Tasian SK, Barash Y, Lieberman PM, Ruella M, Schuster SJ, Thomas-Tikhonenko A. Alternative splicing of its 5'-UTR limits CD20 mRNA translation and enables resistance to CD20-directed immunotherapies. Blood 2023; 142:1724-1739. [PMID: 37683180 PMCID: PMC10667349 DOI: 10.1182/blood.2023020400] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/04/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Aberrant skipping of coding exons in CD19 and CD22 compromises the response to immunotherapy in B-cell malignancies. Here, we showed that the MS4A1 gene encoding human CD20 also produces several messenger RNA (mRNA) isoforms with distinct 5' untranslated regions. Four variants (V1-4) were detected using RNA sequencing (RNA-seq) at distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma, only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform contained upstream open reading frames and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, whereas V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed chimeric antigen receptor T cells were able to kill both V3- and V1-expressing cells, but the bispecific T-cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on 4 postmosunetuzumab follicular lymphoma relapses and discovered that in 2 of them, the downregulation of CD20 was accompanied by a V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies.
Collapse
Affiliation(s)
- Zhiwei Ang
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Luca Paruzzo
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Katharina E. Hayer
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Carolin Schmidt
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Manuel Torres Diz
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Feng Xu
- Division of Genomic Diagnostic, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Urvi Zankharia
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA
| | - Yunlin Zhang
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Samantha Soldan
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA
| | - Sisi Zheng
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Joseph P. Loftus
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Scarlett Y. Yang
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mukta Asnani
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Vinodh Pillai
- Division of Hematopathology, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Emeline Chong
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Marilyn M. Li
- Division of Genomic Diagnostic, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Hematopathology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sarah K. Tasian
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Paul M. Lieberman
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Stephen J. Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
8
|
Ang Z, Paruzzo L, Hayer KE, Schmidt C, Torres Diz M, Xu F, Zankharia U, Zhang Y, Soldan S, Zheng S, Falkenstein CD, Loftus JP, Yang SY, Asnani M, King Sainos P, Pillai V, Chong E, Li MM, Tasian SK, Barash Y, Lieberman PM, Ruella M, Schuster SJ, Thomas-Tikhonenko A. Alternative splicing of its 5'-UTR limits CD20 mRNA translation and enables resistance to CD20-directed immunotherapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.529123. [PMID: 37645778 PMCID: PMC10461923 DOI: 10.1101/2023.02.19.529123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Aberrant skipping of coding exons in CD19 and CD22 compromises responses to immunotherapy for B-cell malignancies. Here, we show that the MS4A1 gene encoding human CD20 also produces several mRNA isoforms with distinct 5' untranslated regions (5'-UTR). Four variants (V1-4) were detectable by RNA-seq in distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant by far. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform was found to contain upstream open reading frames (uORFs) and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching Morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, while V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed CAR T cells were able to kill both V3- and V1-expressing cells, but the bispecific T cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on four post-mosunetuzumab follicular lymphoma relapses and discovered that in two of them downregulation of CD20 was accompanied by the V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies. Key Points In normal & malignant human B cells, CD20 mRNA is alternatively spliced into four 5'-UTR isoforms, some of which are translation-deficient.The balance between translation-deficient and -competent isoforms modulates CD20 protein levels & responses to CD20-directed immunotherapies. Explanation of Novelty We discovered that in normal and malignant B-cells, CD20 mRNA is alternatively spliced to generate four distinct 5'-UTRs, including the longer translation-deficient V1 variant. Cells predominantly expressing V1 were still sensitive to CD20-targeting chimeric antigen receptor T-cells. However, they were resistant to the bispecific anti-CD3/CD20 antibody mosunetuzumab, and the shift to V1 were observed in CD20-negative post-mosunetuzumab relapses of follicular lymphoma.
Collapse
|
9
|
Goodlad JR, Xiao W, Amador C, Cook JR, Happ L, Thakkar D, Dave S, Dogan A, Duffield A, Nejati R, Ott G, Wasik M, Czader M. Phenotypic and genotypic infidelity in B-lineage neoplasms, including transdifferentiation following targeted therapy: Report from the 2021 SH/EAHP Workshop. Am J Clin Pathol 2023:7135991. [PMID: 37085149 DOI: 10.1093/ajcp/aqad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/13/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVES Session 2 of the 2021 Society for Hematopathology and European Association for Haematopathology Workshop collected examples of lineage infidelity and transdifferentiation in B-lineage neoplasms, including after targeted therapy. METHODS Twenty cases were submitted. Whole-exome sequencing and genome-wide RNA expression analysis were available on a limited subsample. RESULTS A diagnosis of B-cell acute lymphoblastic leukemia (B-ALL) was rendered on at least 1 biopsy from 13 patients. There was 1 case of acute myeloid leukemia (AML); the remaining 6 cases were mature B-cell neoplasms. Targeted therapy was administered in 7 cases of B-ALL and 4 cases of mature B-cell neoplasms. Six cases of B-ALL underwent lineage switch to AML or mixed-phenotype acute leukemia at relapse, 5 of which had rearranged KMT2A. Changes in maturational state without lineage switch were observed in 2 cases. Examples of de novo aberrant T-cell antigen expression (n = 2) were seen among the mature B-cell lymphoma cohort, and their presence correlated with alterations in tumor cell gene expression patterns. CONCLUSIONS This cohort of cases enabled us to illustrate, discuss, and review current concepts of lineage switch and aberrant antigen expression in a variety of B-cell neoplasms and draw attention to the role targeted therapies may have in predisposing neoplasms to transdifferentiation as well as other, less expected changes in maturational status.
Collapse
Affiliation(s)
- John R Goodlad
- Department of Pathology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Catalina Amador
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, US
| | - James R Cook
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, US
| | | | | | - Sandeep Dave
- Center for Genomic and Computational Biology and Department of Medicine, Duke University School of Medicine, Durham, NC, US
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Amy Duffield
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, US
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Mariusz Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, US
| | - Magdalena Czader
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, US
| |
Collapse
|
10
|
Larson SM, Walthers CM, Ji B, Ghafouri SN, Naparstek J, Trent J, Chen JM, Roshandell M, Harris C, Khericha M, Schweppe T, Berent-Maoz B, Gosliner SB, Almaktari A, Ceja MA, Allen-Auerbach MS, Said J, Nawaly K, Mead M, de Vos S, Young PA, Oliai C, Schiller GJ, Timmerman JM, Ribas A, Chen YY. CD19/CD20 Bispecific Chimeric Antigen Receptor (CAR) in Naive/Memory T Cells for the Treatment of Relapsed or Refractory Non-Hodgkin Lymphoma. Cancer Discov 2023; 13:580-597. [PMID: 36416874 PMCID: PMC9992104 DOI: 10.1158/2159-8290.cd-22-0964] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
To address antigen escape and loss of T-cell functionality, we report a phase I clinical trial (NCT04007029) evaluating autologous naive and memory T (TN/MEM) cells engineered to express a bispecific anti-CD19/CD20 chimeric antigen receptor (CAR; CART19/20) for patients with relapsed/refractory non-Hodgkin lymphoma (NHL), with safety as the primary endpoint. Ten patients were treated with 36 × 106 to 165 × 106 CART19/20 cells. No patient experienced neurotoxicity of any grade or over grade 1 cytokine release syndrome. One case of dose-limiting toxicity (persistent cytopenia) was observed. Nine of 10 patients achieved objective response [90% overall response rate (ORR)], with seven achieving complete remission [70% complete responses (CR) rate]. One patient relapsed after 18 months in CR but returned to CR after receiving a second dose of CART19/20 cells. Median progression-free survival was 18 months and median overall survival was not reached with a 17-month median follow-up. In conclusion, CART19/20 TN/MEM cells are safe and effective in patients with relapsed/refractory NHL, with durable responses achieved at low dosage levels. SIGNIFICANCE Autologous CD19/CD20 bispecific CAR-T cell therapy generated from TN/MEM cells for patients with NHL is safe (no neurotoxicity, maximum grade 1 cytokine release syndrome) and demonstrates strong efficacy (90% ORR, 70% CR rate) in a first-in-human, phase I dose-escalation trial. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Sarah M. Larson
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Brenda Ji
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Sanaz N. Ghafouri
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jacob Naparstek
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
| | - Jacqueline Trent
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
| | - Jia Ming Chen
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
| | - Mobina Roshandell
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Caitlin Harris
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Mobina Khericha
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Thomas Schweppe
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Beata Berent-Maoz
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
| | - Stanley B. Gosliner
- Department of Chemical and Biomolecular Engineering, UCLA, Los Angeles, CA, USA
| | - Amr Almaktari
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Melanie Ayala Ceja
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Martin S. Allen-Auerbach
- Ahmanson Translational Theranostics Division, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan Said
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
| | - Karla Nawaly
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
| | - Monica Mead
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Sven de Vos
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patricia A. Young
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Caspian Oliai
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Gary J. Schiller
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John M. Timmerman
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
- Department of Surgery, Division of Surgical Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yvonne Y. Chen
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
- Department of Chemical and Biomolecular Engineering, UCLA, Los Angeles, CA, USA
| |
Collapse
|
11
|
Chen X, Chen LC, Khericha M, Meng X, Salvestrini E, Shafer A, Iyer N, Alag AS, Ding Y, Nicolaou DM, Chen YY. Rational Protein Design Yields a CD20 CAR with Superior Antitumor Efficacy Compared with CD19 CAR. Cancer Immunol Res 2023; 11:150-163. [PMID: 36409926 PMCID: PMC9898126 DOI: 10.1158/2326-6066.cir-22-0504] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Chimeric antigen receptors (CAR) are fusion proteins whose functional domains are often connected in a plug-and-play manner to generate multiple CAR variants. However, CARs with highly similar sequences can exhibit dramatic differences in function. Thus, approaches to rationally optimize CAR proteins are critical to the development of effective CAR T-cell therapies. Here, we report that as few as two amino-acid changes in nonsignaling domains of a CAR were able to significantly enhance in vivo antitumor efficacy. We demonstrate juxtamembrane alanine insertion and single-chain variable fragment sequence hybridization as two strategies that could be combined to maximize CAR functionality, and describe a CD20 CAR that outperformed the CD19 CAR in antitumor efficacy in preclinical in vitro and in vivo assays. Precise changes in the CAR sequence drove dramatically different transcriptomic profiles upon antigen stimulation, with the most efficacious CAR inducing an enrichment in highly functional memory T cells upon antigen stimulation. These findings underscore the importance of sequence-level optimization to CAR T-cell function, and the protein-engineering strategy described here may be applied to the development of additional CARs against diverse antigens. See related Spotlight by Scheller and Hudecek, p. 142.
Collapse
Affiliation(s)
- Ximin Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laurence C. Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mobina Khericha
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiangzhi Meng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emma Salvestrini
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amanda Shafer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neha Iyer
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Anya S. Alag
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yunfeng Ding
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Demetri M. Nicolaou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yvonne Y. Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Tian Y, Wang X, Ai H, Lyu X, Wang Q, Wei X, Song Y, Yin Q. The different predictive effects of the intensity and proportion of CD20 expression on the prognosis of B-lineage acute lymphocyte leukemia. EJHAEM 2022; 3:443-452. [PMID: 35846053 PMCID: PMC9176059 DOI: 10.1002/jha2.414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/30/2022]
Abstract
The prognostic effects of the CD20 positivity have been studied extensively in B-lineage acute lymphocyte leukemia (B-ALL) patients, but the results remain controversial. The aim of this study is to investigate the different predictive effects of the intensity and proportion of CD20 expression on the prognosis for B-ALL patients by retrospective analysis. The mean fluorescence intensity (MFI) and percentage of CD20 on B-ALL cells from 206 patients with B-ALL were dynamically measured by flow cytometry, and their optimal cut-off values were determined using the receiver operating characteristic curve. Changes in MFI and percentage of CD20 at various time points and their relationship with prognosis were analyzed. We found that a low baseline CD20 MFI or high CD20 proportion was significantly associated with shorter 5-year overall survival and progression-free survival, and the combination of these two factors could more accurately predict worse survival for B-ALL patients. Furthermore, low CD20 MFI or a high CD20 proportion had different predictive effects for ALL patients with different clinical characteristics and could serve as an independent risk factor for adverse prognosis. There were significant decreases in both the intensity and proportion of CD20 after recurrence in the absence of rituximab treatment, particularly with CD20 intensity. Notably, the decrease of CD20 intensity after recurrence indicated a more shortened survival time. Finally, we conclude that a low intensity or high proportion of CD20 expression may be used as an indicator for inferior prognosis for B-ALL patients. CD20 intensity is more likely to be a more universal biomarker for worse prognosis.
Collapse
Affiliation(s)
- Yun Tian
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| | - Xiaojiao Wang
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| | - Hao Ai
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| | - Xiaodong Lyu
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| | - Qian Wang
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| | - Xudong Wei
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| | - Yongping Song
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| | - Qingsong Yin
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| |
Collapse
|
13
|
Tsao LC, Force J, Hartman ZC. Mechanisms of Therapeutic Antitumor Monoclonal Antibodies. Cancer Res 2021; 81:4641-4651. [PMID: 34145037 PMCID: PMC8448950 DOI: 10.1158/0008-5472.can-21-1109] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/24/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
Monoclonal antibodies (mAb) are a major component of cancer therapy. In this review, we summarize the different therapeutic mAbs that have been successfully developed against various tumor-expressed antigens and examine our current understanding of their different mechanisms of antitumor action. These mechanisms of action (MOA) largely center on the stimulation of different innate immune effector processes, which appear to be principally responsible for the efficacy of most unconjugated mAb therapies against cancer. This is evident in studies of mAbs targeting antigens for hematologic cancers, with emerging data also demonstrating the critical nature of innate immune-mediated mechanisms in the efficacy of anti-HER2 mAbs against solid HER2+ cancers. Although HER2-targeted mAbs were originally described as inhibitors of HER2-mediated signaling, multiple studies have since demonstrated these mAbs function largely through their engagement with Fc receptors to activate innate immune effector functions as well as complement activity. Next-generation mAbs are capitalizing on these MOAs through improvements to enhance Fc-activity, although regulation of these mechanisms may vary in different tumor microenvironments. In addition, novel antibody-drug conjugates have emerged as an important means to activate different MOAs. Although many unknowns remain, an improved understanding of these immunologic MOAs will be essential for the future of mAb therapy and cancer immunotherapy.
Collapse
Affiliation(s)
- Li-Chung Tsao
- Department of Surgery, Duke University, Durham, North Carolina
| | - Jeremy Force
- Department of Medicine, Duke University, Durham, North Carolina
| | - Zachary C Hartman
- Department of Surgery, Duke University, Durham, North Carolina.
- Department of Pathology, Duke University, Durham, North Carolina
| |
Collapse
|
14
|
Abstract
Immunotherapy marked a milestone in cancer treatment and has shown unprecedented efficacy in a variety of hematological malignancies. Downregulation or loss of target antigens is commonly seen after immunotherapy, which often causes diagnostic dilemma and represents a key mechanism that tumor escapes from immunotherapy. The awareness of phenotypic changes after targeted immunotherapy is important to avoid misdiagnosis. Further understanding of the mechanisms of antigen loss is paramount for the development of therapeutic approaches that can prevent or overcome antigen escape in future immunotherapy.
Collapse
Affiliation(s)
- Ting Zhou
- Flow Cytometry Unit, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hao-Wei Wang
- Flow Cytometry Unit, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Pavlasova G, Mraz M. The regulation and function of CD20: an "enigma" of B-cell biology and targeted therapy. Haematologica 2021; 105:1494-1506. [PMID: 32482755 PMCID: PMC7271567 DOI: 10.3324/haematol.2019.243543] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by MS4A1) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the "BCR inhibitor" ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications.
Collapse
Affiliation(s)
- Gabriela Pavlasova
- Central European Institute of Technology, Masaryk University, Brno.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno .,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
16
|
Michot JM, Buet-Elfassy A, Annereau M, Lazarovici J, Danu A, Sarkozy C, Chahine C, Bigenwald C, Bosq J, Rossignol J, Romano-Martin P, Baldini C, Ghez D, Dartigues P, Massard C, Ribrag V. Clinical significance of the loss of CD20 antigen on tumor cells in patients with relapsed or refractory follicular lymphoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:710-718. [PMID: 35582306 PMCID: PMC9094080 DOI: 10.20517/cdr.2020.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/14/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022]
Abstract
Aim: Anti-CD20 monoclonal antibody is a cornerstone therapy for follicular lymphoma. Following anti-CD20 therapy, a potential decrease in CD20 antigen, and therefore a loss of the tumor target might be expected. However, the incidence and clinical significance of CD20 loss on tumor cells in patients with relapsed or refractory follicular lymphoma are unknown. This study aims to investigate the incidence and outcome of patients with relapsed or refractory follicular lymphoma patients harboring the loss of the tumor target, CD20. Methods: All consecutive adult patients with relapsed or refractory follicular lymphoma referred to the Early Drug Department at Gustave Roussy were included. The main objectives were to assess the incidence and prognosis of the loss in expression of CD20 antigen on the surface of tumor cells on patient outcome. Results: Over the study period 2013-2018, 131 patients were screened for clinical trials with B-cell malignancies in the early drug department of Gustave Roussy in France. Forty-four patients presented with relapsed or refractory follicular lymphoma and 32 had tumor biopsies at the time of relapse that were retained for analysis. The median (range) age was 67.5 years (55.3-75.3) and the median number of prior anti-cancer systemic therapies was 3 (2-4). At the time of relapse, CD20 expression was positive in 84% of tumors (n = 27) and negative in 16% of tumors (n = 5). At a median follow-up of 18.3 (0.6-83.3) months, CD20 negativity was associated with a poorer prognosis with a median overall survival of 8.9 months (95%CI: 2.4-19.1) in comparison to CD20 positive patients (28.3 months, 95%CI: 25.1-75.3 months, P = 0.019). Conclusion: The loss of the tumor target antigen, CD20, occurred in 16% of patients with relapse or refractory follicular lymphoma. Due to confounding factors in patients who received anti-CD20 immunotherapy, it was not possible to formally establish the prognostic significance of CD20 negativity. However, we suggest that a check for CD20 antigen positivity nevertheless be performed to adapt subsequent therapies for patients with relapsed or refractory follicular lymphoma.
Collapse
Affiliation(s)
- Jean-Marie Michot
- Gustave Roussy, Université Paris-Saclay, Département des Innovations Thérapeutiques et Essais Précoces, Villejuif 94800, France
| | - Alice Buet-Elfassy
- Gustave Roussy, Université Paris-Saclay, Pharmacy Departement, Villejuif 94800, France
| | - Maxime Annereau
- Gustave Roussy, Université Paris-Saclay, Pharmacy Departement, Villejuif 94800, France
| | - Julien Lazarovici
- Gustave Roussy, Université Paris-Saclay, Departement of Hematology, Villejuif 94800, France
| | - Alina Danu
- Gustave Roussy, Université Paris-Saclay, Departement of Hematology, Villejuif 94800, France
| | - Clémentine Sarkozy
- Gustave Roussy, Université Paris-Saclay, Département des Innovations Thérapeutiques et Essais Précoces, Villejuif 94800, France
| | - Claude Chahine
- Gustave Roussy, Université Paris-Saclay, Departement of Hematology, Villejuif 94800, France
| | - Camille Bigenwald
- Gustave Roussy, Université Paris-Saclay, Departement of Hematology, Villejuif 94800, France
| | - Jacques Bosq
- Gustave Roussy, Université Paris-Saclay, Departement of Pathology, Villejuif 94800, France
| | - Julien Rossignol
- Gustave Roussy, Université Paris-Saclay, Departement of Hematology, Villejuif 94800, France
| | - Patricia Romano-Martin
- Gustave Roussy, Université Paris-Saclay, Département des Innovations Thérapeutiques et Essais Précoces, Villejuif 94800, France
| | - Capucine Baldini
- Gustave Roussy, Université Paris-Saclay, Département des Innovations Thérapeutiques et Essais Précoces, Villejuif 94800, France
| | - David Ghez
- Gustave Roussy, Université Paris-Saclay, Departement of Hematology, Villejuif 94800, France
| | - Peggy Dartigues
- Gustave Roussy, Université Paris-Saclay, Departement of Pathology, Villejuif 94800, France
| | - Christophe Massard
- Gustave Roussy, Université Paris-Saclay, Département des Innovations Thérapeutiques et Essais Précoces, Villejuif 94800, France
| | - Vincent Ribrag
- Gustave Roussy, Université Paris-Saclay, Departement of Hematology, Villejuif 94800, France
| |
Collapse
|
17
|
Zou L, Song G, Gu S, Kong L, Sun S, Yang L, Cho WC. Mechanism and Treatment of Rituximab Resistance in Diffuse Large Bcell Lymphoma. Curr Cancer Drug Targets 2020; 19:681-687. [PMID: 31142246 DOI: 10.2174/1568009619666190126125251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype B non-Hodgkin lymphoma in adults. After rituximab being introduced to treat DLBCL, the current first-line treatment is R-CHOP regimen. This regimen greatly improves patient's prognosis, however, relapsed or refractory cases are commonly seen, mainly due to the resistance to rituximab. Although a large number of experiments have been conducted to investigate rituximab resistance, the exac mechanisms and solutions are still unclear. This review mainly explores the possible mechanisms oft rituximab resistance and current new effective treatments for rituximab resistance in DLBCL.
Collapse
Affiliation(s)
- Linqing Zou
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Guoqi Song
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Siyu Gu
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Lingling Kong
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Shiqi Sun
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Li Yang
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
18
|
Rushton CK, Arthur SE, Alcaide M, Cheung M, Jiang A, Coyle KM, Cleary KLS, Thomas N, Hilton LK, Michaud N, Daigle S, Davidson J, Bushell K, Yu S, Rys RN, Jain M, Shepherd L, Marra MA, Kuruvilla J, Crump M, Mann K, Assouline S, Connors JM, Steidl C, Cragg MS, Scott DW, Johnson NA, Morin RD. Genetic and evolutionary patterns of treatment resistance in relapsed B-cell lymphoma. Blood Adv 2020; 4:2886-2898. [PMID: 32589730 PMCID: PMC7362366 DOI: 10.1182/bloodadvances.2020001696] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) patients are typically treated with immunochemotherapy containing rituximab (rituximab, cyclophosphamide, hydroxydaunorubicin-vincristine (Oncovin), and prednisone [R-CHOP]); however, prognosis is extremely poor if R-CHOP fails. To identify genetic mechanisms contributing to primary or acquired R-CHOP resistance, we performed target-panel sequencing of 135 relapsed/refractory DLBCLs (rrDLBCLs), primarily comprising circulating tumor DNA from patients on clinical trials. Comparison with a metacohort of 1670 diagnostic DLBCLs identified 6 genes significantly enriched for mutations upon relapse. TP53 and KMT2D were mutated in the majority of rrDLBCLs, and these mutations remained clonally persistent throughout treatment in paired diagnostic-relapse samples, suggesting a role in primary treatment resistance. Nonsense and missense mutations affecting MS4A1, which encodes CD20, are exceedingly rare in diagnostic samples but show recurrent patterns of clonal expansion following rituximab-based therapy. MS4A1 missense mutations within the transmembrane domains lead to loss of CD20 in vitro, and patient tumors harboring these mutations lacked CD20 protein expression. In a time series from a patient treated with multiple rounds of therapy, tumor heterogeneity and minor MS4A1-harboring subclones contributed to rapid disease recurrence, with MS4A1 mutations as founding events for these subclones. TP53 and KMT2D mutation status, in combination with other prognostic factors, may be used to identify high-risk patients prior to R-CHOP for posttreatment monitoring. Using liquid biopsies, we show the potential to identify tumors with loss of CD20 surface expression stemming from MS4A1 mutations. Implementation of noninvasive assays to detect such features of acquired treatment resistance may allow timely transition to more effective treatment regimens.
Collapse
Affiliation(s)
- Christopher K Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Sarah E Arthur
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - Miguel Alcaide
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Matthew Cheung
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Aixiang Jiang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - Krysta M Coyle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Kirstie L S Cleary
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nicole Thomas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Laura K Hilton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | | | - Jordan Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Kevin Bushell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Stephen Yu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | - Michael Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Lois Shepherd
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | - Marco A Marra
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - John Kuruvilla
- Princess Margaret Cancer Centre, Toronto, ON, Canada; and
| | - Michael Crump
- Princess Margaret Cancer Centre, Toronto, ON, Canada; and
| | - Koren Mann
- Lady Davis Institute for Medical Research
- Jewish General Hospital, Montreal, QC, Canada
| | | | | | | | - Mark S Cragg
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - David W Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | | | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
19
|
Maeshima AM, Taniguchi H, Fujino T, Saito Y, Ito Y, Hatta S, Yuda S, Makita S, Fukuhara S, Munakata W, Suzuki T, Maruyama D, Izutsu K. Immunohistochemical CD20-negative change in B-cell non-Hodgkin lymphomas after rituximab-containing therapy. Ann Hematol 2020; 99:2141-2148. [PMID: 32451711 DOI: 10.1007/s00277-019-03853-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/17/2019] [Indexed: 11/24/2022]
Abstract
CD20- change after rituximab-containing therapy is considered one of the main reasons of rituximab resistance of B-cell non-Hodgkin lymphomas (B-NHLs). However, the clinicopathological characteristics of B-NHL with CD20- change are not entirely understood. In this study, 252 B-NHL patients who were CD20+ at initial diagnosis, whose diseases relapsed or were refractory after rituximab-containing therapy, and who were re-biopsied between 2000 and 2018, were included. The median number of rituximab administration was 11 (range, 1-48). Completely negative (cCD20-) and partially negative (pCD20-) change of CD20 was observed in 49 (20%) and 16 (6%) cases, respectively. Among cCD20- and pCD20- cases, 74% and 62% of the cases changed to CD20- at the second relapse or later, respectively. Overall survival was significantly shorter in cCD20- follicular lymphoma (FL) cases than in CD20+ FL cases. Seven histopathological patterns, such as CD20- change without histological change, histological transformation (HT) to CD20- diffuse large B-cell lymphoma, and proliferation of plasmablastic/plasmacytoid tumor cells, were associated with CD20- change. HT occurred more frequently in FLs with CD20- change than in FLs continuously expressing CD20 (P < 0.0001), regardless of the timing of HT. Nine out of 25 cases (36%) showed regain or heterogeneous regain of CD20 expression. In conclusion, 20% and 6% of the 252 B-NHL cases show cCD20- and pCD20- changes with 7 histological patterns after rituximab-containing therapy. Because changes in morphology and CD20 expression after rituximab-containing therapy vary, and recovery of CD20 expression is not rare, careful follow-up and re-biopsy in B-NHL patients are recommended.
Collapse
Affiliation(s)
- Akiko Miyagi Maeshima
- Department of Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Hirokazu Taniguchi
- Department of Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takahiro Fujino
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Yo Saito
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuta Ito
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Shunsuke Hatta
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Sayako Yuda
- Department of Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Shinichi Makita
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Suguru Fukuhara
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Wataru Munakata
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuya Suzuki
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Dai Maruyama
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Koji Izutsu
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
20
|
Engelberts PJ, Hiemstra IH, de Jong B, Schuurhuis DH, Meesters J, Beltran Hernandez I, Oostindie SC, Neijssen J, van den Brink EN, Horbach GJ, Verploegen S, Labrijn AF, Salcedo T, Schuurman J, Parren PWHI, Breij ECW. DuoBody-CD3xCD20 induces potent T-cell-mediated killing of malignant B cells in preclinical models and provides opportunities for subcutaneous dosing. EBioMedicine 2020; 52:102625. [PMID: 31981978 PMCID: PMC6992935 DOI: 10.1016/j.ebiom.2019.102625] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022] Open
Abstract
Background DuoBody®-CD3xCD20 (GEN3013) is a full-length human IgG1 bispecific antibody (bsAb) recognizing CD3 and CD20, generated by controlled Fab-arm exchange. Its Fc domain was silenced by introduction of mutations L234F L235E D265A. Methods T-cell activation and T-cell-mediated cytotoxicity were measured by flow cytometry following co-culture with tumour cells. Anti-tumour activity of DuoBody-CD3xCD20 was assessed in humanized mouse models in vivo. Non-clinical safety studies were performed in cynomolgus monkeys. Findings DuoBody-CD3xCD20 induced highly potent T-cell activation and T-cell-mediated cytotoxicity towards malignant B cells in vitro. Comparison of DuoBody-CD3xCD20 to CD3 bsAb targeting alternative B-cell antigens, or to CD3xCD20 bsAb generated using alternative CD20 Ab, emphasized its exceptional potency. In vitro comparison with other CD3xCD20 bsAb in clinical development showed that DuoBody-CD3xCD20 was significantly more potent than three other bsAb with single CD3 and CD20 binding regions and equally potent as a bsAb with a single CD3 and two CD20 binding regions. DuoBody-CD3xCD20 showed promising anti-tumour activity in vivo, also in the presence of excess levels of a CD20 Ab that competes for binding. In cynomolgus monkeys, DuoBody-CD3xCD20 demonstrated profound and long-lasting B-cell depletion from peripheral blood and lymphoid organs, which was comparable after subcutaneous and intravenous administration. Peak plasma levels of DuoBody-CD3xCD20 were lower and delayed after subcutaneous administration, which was associated with a reduction in plasma cytokine levels compared to intravenous administration, while bioavailability was comparable. Interpretation Based on these preclinical studies, a clinical trial was initiated to assess the clinical safety of subcutaneous DuoBody-CD3xCD20 in patients with B-cell malignancies. Funding Genmab
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antibody Specificity/immunology
- Antibody-Dependent Cell Cytotoxicity
- Antigens, CD20/metabolism
- Antineoplastic Agents, Immunological/pharmacology
- CD3 Complex/metabolism
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Humans
- Leukemia, B-Cell/drug therapy
- Leukemia, B-Cell/etiology
- Leukemia, B-Cell/pathology
- Lymphocyte Activation/immunology
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/pathology
- Macaca fascicularis
- Mice
- Mutation
- Recombinant Proteins
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | | | | | | | | | | | - Simone C Oostindie
- Genmab, Utrecht, The Netherlands; Dept of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | - Paul W H I Parren
- Genmab, Utrecht, The Netherlands; Dept of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
21
|
Milcent B, Josseaume N, Riller Q, Giglioli I, Rabia E, Deligne C, Latouche JB, Hamieh M, Couture A, Toutirais O, Lone YC, Jeger-Madiot R, Graff-Dubois S, Amorim S, Loiseau P, Toubert A, Brice P, Thieblemont C, Teillaud JL, Sibéril S. Presence of T cells directed against CD20-derived peptides in healthy individuals and lymphoma patients. Cancer Immunol Immunother 2019; 68:1561-1572. [PMID: 31494742 PMCID: PMC6805815 DOI: 10.1007/s00262-019-02389-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
Preclinical and clinical studies have suggested that cancer treatment with antitumor antibodies induces a specific adaptive T cell response. A central role in this process has been attributed to CD4+ T cells, but the relevant T cell epitopes, mostly derived from non-mutated self-antigens, are largely unknown. In this study, we have characterized human CD20-derived epitopes restricted by HLA-DR1, HLA-DR3, HLA-DR4, and HLA-DR7, and investigated whether T cell responses directed against CD20-derived peptides can be elicited in human HLA-DR-transgenic mice and human samples. Based on in vitro binding assays to recombinant human MHC II molecules and on in vivo immunization assays in H-2 KO/HLA-A2+-DR1+ transgenic mice, we have identified 21 MHC II-restricted long peptides derived from intracellular, membrane, or extracellular domains of the human non-mutated CD20 protein that trigger in vitro IFN-γ production by PBMCs and splenocytes from healthy individuals and by PBMCs from follicular lymphoma patients. These CD20-derived MHC II-restricted peptides could serve as a therapeutic tool for improving and/or monitoring anti-CD20 T cell activity in patients treated with rituximab or other anti-CD20 antibodies.
Collapse
Affiliation(s)
- Benoit Milcent
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France
| | - Nathalie Josseaume
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France
| | - Quentin Riller
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France
| | - Ilenia Giglioli
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France
| | - Emilia Rabia
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France
| | - Claire Deligne
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France
| | - Jean-Baptiste Latouche
- Inserm U1245, Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, Rouen University Hospital, Rouen, France
| | - Mohamad Hamieh
- Inserm U1245, Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, Rouen University Hospital, Rouen, France
| | - Alexandre Couture
- Inserm U1245, Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, Rouen University Hospital, Rouen, France
| | - Olivier Toutirais
- Unicaen, Inserm 1237, Physiopathology and Imaging of Neurological Disorders, Normandie University, Caen, France.,French Blood Service (Etablissement Français du Sang, EFS), Caen, France
| | - Yu-Chun Lone
- Inserm U1014, Hôpital Paul Brousse, Villejuif, France
| | - Raphaël Jeger-Madiot
- Inserm U1135, CNRS ERL8255, Center for Immunology and Microbial Infection, Paris, France
| | - Stéphanie Graff-Dubois
- Inserm U1135, CNRS ERL8255, Center for Immunology and Microbial Infection, Paris, France
| | - Sandy Amorim
- APHP, Saint-Louis Hospital, Hemato-oncology, Diderot University, Sorbonne Paris Cité, Paris, France
| | - Pascale Loiseau
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Paris, France.,Inserm UMR-S 1160, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot-Paris 7, Paris, France
| | - Antoine Toubert
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Paris, France.,Inserm UMR-S 1160, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot-Paris 7, Paris, France
| | - Pauline Brice
- APHP, Saint-Louis Hospital, Hemato-oncology, Diderot University, Sorbonne Paris Cité, Paris, France
| | - Catherine Thieblemont
- APHP, Saint-Louis Hospital, Hemato-oncology, Diderot University, Sorbonne Paris Cité, Paris, France.,EA7324 Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Luc Teillaud
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France.,Laboratory "Immune Microenvironment and Immunotherapy", Sorbonne Université UMRS 1135, INSERM U.1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI), Paris, France
| | - Sophie Sibéril
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France. .,Cordeliers Research Center-Inserm UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, 15 rue de l'Ecole de Médecine, 75006, Paris, France.
| |
Collapse
|
22
|
Freeman CL, Sehn LH. A tale of two antibodies: obinutuzumabversusrituximab. Br J Haematol 2018; 182:29-45. [DOI: 10.1111/bjh.15232] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ciara L. Freeman
- Centre for Lymphoid Cancer; British Columbia Cancer and the University of British Columbia; Vancouver BC Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer; British Columbia Cancer and the University of British Columbia; Vancouver BC Canada
| |
Collapse
|
23
|
Rasheed AA, Samad A, Raheem A, Hirani SI, Shabbir- Moosajee M. Cd20 Expression and Effects on Outcome of Relapsed/
Refractory Diffuse Large B Cell Lymphoma after Treatment
with Rituximab. Asian Pac J Cancer Prev 2018; 19:331-335. [PMID: 29479962 PMCID: PMC5980916 DOI: 10.22034/apjcp.2018.19.2.331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction: Down regulation of CD20 expression has been reported in diffuse large B cell lymphoma (DLBCL)). Therefore, it is important to determine whether chemotherapy with rituximab induces CD20 down regulation and effects survival. Objectives: To determine the incidence of down regulation of CD20 expression in relapsed DLBCL after treatment with rituximab and to compare outcomes and assess pattern of relapse between CD20 negative and CD20 positive cases. Methodology: We retrospectively reviewed patients with relapsed DLBCL who received rituximab in the first line setting at Aga Khan University Hospital between January 2007 and December 2014. Data were recorded on predesigned questionnaires, with variables including demographics, details regarding date of diagnosis and relapse, histology, staging, international prognostic index, treatment and outcomes at initial diagnosis and at relapse. The Chi square test was applied to determine statistical significance between categorical variables. Survival curves were generated by the Kaplan–Meier method. Results: A total of 54 patients with relapsed DLBCL were included in our study, 38 (70 %) males and 16(30%) females. Some 23 (43%) patients were at stage IV at the time of diagnosis and 34 (63%) had B symptoms. The most frequent R-IPI at diagnosis was II in 24 (44%) patients. Only 6 (11%) did not show CD20 expression on re-biopsy for relapsed/refractory disease, 2 with CD20 negative DLBCL responding to second line chemotherapy. A complete response after salvage chemotherapy was noted in 16 (29.6%) cases with relapsed/refractory DLBCL. Seven (13%) patients underwent an autologous bone marrow transplant as consolidation after second line treatment. Median overall survival was 18 months in CD20 positive vs. 13 months in CD20 negative patients. Conclusion: This study demonstrated that a small percentage of patients treated with rituximab lose their CD20 expression at the time of relapse. However, it is unclear whether this is associated with an inferior outcome.
Collapse
Affiliation(s)
- Afshan Asghar Rasheed
- Department of Oncology, Section of Medical Oncology, the Aga Khan University Hospital, Karachi, Pakistan.
| | | | | | | | | |
Collapse
|
24
|
Wang W, Zhou GY, Zhang W. Early relapse in a case of primary bone marrow diffuse large B-cell lymphoma treated with rituximab-CHOP. Immunotherapy 2017; 9:379-385. [PMID: 28357915 DOI: 10.2217/imt-2017-0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As an uncommon disease, primary bone marrow diffuse large B-cell lymphoma (PBM DLBCL) is rarely reported in recent years. In this paper, we discuss a case of a 58-year-old man who presented with fever and fatigue, and was diagnosed with PBM DLBCL. Although the initial diagnosis reflected a positive expression of CD20 by lymphoma cells, the course of disease appeared as a rapid remission but a quick recurrence, after eight cycles of rituximab-based immunochemotherapy (R-CHOP). With the positive expression of CD20 in recurrent lesions, he received another four cycles of rituximab-based immunochemotherapy (R-GDP). However, an earlier relapse still occurred, and he died of CNS involvement. PBM DLBCL has been classified as an aggressive type of DLBCL, which should be heavily treated since the initial diagnosis. MYC-BCL2 gene rearrangement and P53 gene mutation cannot be ignored. Of note, rituximab resistance has become a severe and urgent problem in the rituximab era.
Collapse
Affiliation(s)
- Wanning Wang
- Department of Nephrology, First Hospital of Jilin University, Changchun, China
| | - Guang-Yu Zhou
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wenlong Zhang
- Departments of Hematology & Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
25
|
Tomita A. Genetic and Epigenetic Modulation of CD20 Expression in B-Cell Malignancies: Molecular Mechanisms and Significance to Rituximab Resistance. J Clin Exp Hematop 2017; 56:89-99. [PMID: 27980307 DOI: 10.3960/jslrt.56.89] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CD20 is a differentiation related cell surface phosphoprotein that is expressed during early pre-B cell stages until plasma cell differentiation, and is a suitable molecular target for B-cell malignancies by monoclonal antibodies such as rituximab, ofatumumab, obinutuzumab and others. CD20 expression is confirmed in most B-cell malignancies; however, the protein expression level varies in each patient, even in de novo tumors, and down-modulation of CD20 expression after chemoimmunotherapy with rituximab, resulting in rituximab resistance, has been recognized in the clinical setting. Recent reports suggest that genetic and epigenetic mechanisms are correlated with aberrantly low CD20 expression in de novo tumors and relapsed/refractory disease after using rituximab. Furthermore, some targeting drugs, such as lenalidomide, bortezomib and ibrutinib, directly or indirectly affect CD20 protein expression. CD20-negative phenotypically-changed DLBCL after rituximab use tends to show an aggressive clinical course and poor outcome with resistance to not only rituximab, but also conventional salvage chemo-regimens. Understanding of the mechanisms of CD20-negative phenotype may contribute to establish strategies for overcoming chemo-refractory B-cell malignancies. In this manuscript, recent progress of research on molecular and clinical features of CD20 protein and CD20-negative B-cell malignancies was reviewed.
Collapse
Affiliation(s)
- Akihiro Tomita
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine
| |
Collapse
|
26
|
Camicia R, Winkler HC, Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Mol Cancer 2015; 14:207. [PMID: 26654227 PMCID: PMC4676894 DOI: 10.1186/s12943-015-0474-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous lymphoid malignancy and the most common subtype of non-Hodgkin's lymphoma in adults, with one of the highest mortality rates in most developed areas of the world. More than half of DLBLC patients can be cured with standard R-CHOP regimens, however approximately 30 to 40 % of patients will develop relapsed/refractory disease that remains a major cause of morbidity and mortality due to the limited therapeutic options.Recent advances in gene expression profiling have led to the identification of at least three distinct molecular subtypes of DLBCL: a germinal center B cell-like subtype, an activated B cell-like subtype, and a primary mediastinal B-cell lymphoma subtype. Moreover, recent findings have not only increased our understanding of the molecular basis of chemotherapy resistance but have also helped identify molecular subsets of DLBCL and rational targets for drug interventions that may allow for subtype/subset-specific molecularly targeted precision medicine and personalized combinations to both prevent and treat relapsed/refractory DLBCL. Novel agents such as lenalidomide, ibrutinib, bortezomib, CC-122, epratuzumab or pidilizumab used as single-agent or in combination with (rituximab-based) chemotherapy have already demonstrated promising activity in patients with relapsed/refractory DLBCL. Several novel potential drug targets have been recently identified such as the BET bromodomain protein (BRD)-4, phosphoribosyl-pyrophosphate synthetase (PRPS)-2, macrodomain-containing mono-ADP-ribosyltransferase (ARTD)-9 (also known as PARP9), deltex-3-like E3 ubiquitin ligase (DTX3L) (also known as BBAP), NF-kappaB inducing kinase (NIK) and transforming growth factor beta receptor (TGFβR).This review highlights the new insights into the molecular basis of relapsed/refractory DLBCL and summarizes the most promising drug targets and experimental treatments for relapsed/refractory DLBCL, including the use of novel agents such as lenalidomide, ibrutinib, bortezomib, pidilizumab, epratuzumab, brentuximab-vedotin or CAR T cells, dual inhibitors, as well as mechanism-based combinatorial experimental therapies. We also provide a comprehensive and updated list of current drugs, drug targets and preclinical and clinical experimental studies in DLBCL. A special focus is given on STAT1, ARTD9, DTX3L and ARTD8 (also known as PARP14) as novel potential drug targets in distinct molecular subsets of DLBCL.
Collapse
Affiliation(s)
- Rosalba Camicia
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Stem Cell Research Laboratory, NHS Blood and Transplant, Nuffield Division of Clinical, Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.,MRC-UCL Laboratory for Molecular Cell Biology Unit, University College London, Gower Street, London, WC1E6BT, UK
| | - Hans C Winkler
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
27
|
Wong SW, Comenzo RL. CD38 Monoclonal Antibody Therapies for Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:635-45. [PMID: 26443328 DOI: 10.1016/j.clml.2015.07.642] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/23/2015] [Accepted: 07/28/2015] [Indexed: 11/27/2022]
Abstract
The goal of this review is to provide historical, recent preclinical, and current clinical summaries of efforts to understand the CD38 molecule and to develop monoclonal antibodies that target it. We focus particularly on efforts involving multiple myeloma, a malignancy of terminally differentiated B cells that remains incurable despite many advances. An era of anti-CD38 monoclonal antibody therapy for myeloma is approaching, one that, we hope, will enable patients to live longer and better lives.
Collapse
Affiliation(s)
- Sandy W Wong
- Departments of Medicine and Pathology and the Division of Hematology-Oncology, Tufts Medical Center, Boston, MA.
| | - Raymond L Comenzo
- Departments of Medicine and Pathology and the Division of Hematology-Oncology, Tufts Medical Center, Boston, MA
| |
Collapse
|
28
|
Pérez-Callejo D, González-Rincón J, Sánchez A, Provencio M, Sánchez-Beato M. Action and resistance of monoclonal CD20 antibodies therapy in B-cell Non-Hodgkin Lymphomas. Cancer Treat Rev 2015; 41:680-9. [PMID: 26045227 DOI: 10.1016/j.ctrv.2015.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 11/18/2022]
Abstract
Anti-CD20 monoclonal antibodies (mAbs) have improved patient's survival with Non-Hodgkin Lymphoma, when combined with chemotherapy. Several mechanisms of action have been reported, including antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity and induction of apoptosis. Despite the large amount of studies and published data, the role each mechanism played in vivo is not fully understood. Furthermore, the reason why a significant percentage of patients are refractory or resistant remains unknown. Several activated intracellular signaling pathways have been implicated in the mechanisms of resistance of rituximab. In the present manuscript, we review those mechanisms and new anti-CD20 mAbs, as well as the efforts being accomplished to overcome it, focusing on new drugs targeting pathways implicated in resistance to rituximab.
Collapse
Affiliation(s)
- D Pérez-Callejo
- Medical Oncology Service, HU Puerta de Hierro-Majadahonda, Onco-Hematology Area, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain.
| | - J González-Rincón
- Medical Oncology Service, HU Puerta de Hierro-Majadahonda, Onco-Hematology Area, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain.
| | - A Sánchez
- Medical Oncology Service, HU Puerta de Hierro-Majadahonda, Onco-Hematology Area, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain.
| | - M Provencio
- Medical Oncology Service, HU Puerta de Hierro-Majadahonda, Onco-Hematology Area, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain.
| | - M Sánchez-Beato
- Medical Oncology Service, HU Puerta de Hierro-Majadahonda, Onco-Hematology Area, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain.
| |
Collapse
|
29
|
Ezell SA, Mayo M, Bihani T, Tepsuporn S, Wang S, Passino M, Grosskurth SE, Collins M, Parmentier J, Reimer C, Byth KF. Synergistic induction of apoptosis by combination of BTK and dual mTORC1/2 inhibitors in diffuse large B cell lymphoma. Oncotarget 2015; 5:4990-5001. [PMID: 24970801 PMCID: PMC4148116 DOI: 10.18632/oncotarget.2071] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Diffuse large B cell lymphoma is generally treated by chemotherapy and there is an unmet medical need for novel targeted therapies or combination therapies. Using in vitro screening, we have identified the combination of ibrutinib, an inhibitor of the tyrosine kinase BTK, and AZD2014, an mTOR catalytic inhibitor, as being highly synergistic in killing ABC-subtype DLBCL cell lines. Simultaneous inhibition of BTK and mTOR causes apoptosis both in vitro and in vivo and results in tumor regression in a xenograft model. We identify two parallel mechanisms that underlie apoptosis in this setting: cooperative inhibition of cap-dependent translation, and the inhibition of an NF-κB/IL10/STAT3 autocrine loop. Combined disruption of these pathways is required for apoptosis. These data represent a rational basis for the dual inhibition of BTK and mTOR as a potential treatment for ABC-subtype DLBCL.
Collapse
Affiliation(s)
| | | | | | | | - Suping Wang
- AstraZeneca R&D Boston, Waltham, Massachusetts
| | | | | | | | | | | | - Kate F Byth
- AstraZeneca R&D Boston, Waltham, Massachusetts
| |
Collapse
|
30
|
Zhang LN, Wang L, Fang C, Zou ZJ, Fan L, Zhang R, Young KH, Li JY, Xu W. The significance of single nucleotide polymorphism rs2070770 in CD20 gene in Chinese patients with diffuse large B-cell lymphoma. Leuk Lymphoma 2015; 56:676-681. [PMID: 24898664 DOI: 10.3109/10428194.2014.927455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to investigate the significance of polymorphisms in the CD20 gene in patients with diffuse large B-cell lymphoma (DLBCL). We sequenced exons 3-8 in 160 patients with de novo DLBCL and detected the expression of CD20 via immunohistochemistry. We found two single nucleotide polymorphisms (SNPs): rs17155019 in the 5' untranslated region and rs2070770 (ILE72/ILE72) in exon 4. There was no significant difference in genotype frequencies of SNPs between patients and controls (p = 0.855 and 0.251, respectively). In patients who received rituximab-containing chemotherapies, the T allele of rs2070770 was significantly associated with superior overall survival (OS) (p = 0.029) and progression-free survival (p = 0.045). Analogously, in patients who did not receive rituximab, the T allele of rs2070770 (p = 0.047) was also significantly associated with longer OS. In conclusion, SNPs of CD20 were not high risk factors of DLBCL, but the T allele of rs2070770 was a potential indicator of superior survival.
Collapse
Affiliation(s)
- Li-Na Zhang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing , China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Watanabe K, Terakura S, Martens AC, van Meerten T, Uchiyama S, Imai M, Sakemura R, Goto T, Hanajiri R, Imahashi N, Shimada K, Tomita A, Kiyoi H, Nishida T, Naoe T, Murata M. Target antigen density governs the efficacy of anti-CD20-CD28-CD3 ζ chimeric antigen receptor-modified effector CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2014; 194:911-20. [PMID: 25520398 DOI: 10.4049/jimmunol.1402346] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effectiveness of chimeric Ag receptor (CAR)-transduced T (CAR-T) cells has been attributed to supraphysiological signaling through CARs. Second- and later-generation CARs simultaneously transmit costimulatory signals with CD3ζ signals upon ligation, but may lead to severe adverse effects owing to the recognition of minimal Ag expression outside the target tumor. Currently, the threshold target Ag density for CAR-T cell lysis and further activation, including cytokine production, has not yet been investigated in detail. Therefore, we determined the threshold target Ag density required to induce CAR-T cell responses using novel anti-CD20 CAR-T cells with a CD28 intracellular domain and a CD20-transduced CEM cell model. The newly developed CD20CAR-T cells demonstrated Ag-specific lysis and cytokine secretion, which was a reasonable level as a second-generation CAR. For lytic activity, the threshold Ag density was determined to be ∼200 molecules per target cell, whereas the Ag density required for cytokine production of CAR-T cells was ∼10-fold higher, at a few thousand per target cell. CD20CAR-T cells responded efficiently to CD20-downregulated lymphoma and leukemia targets, including rituximab- or ofatumumab-refractory primary chronic lymphocytic leukemia cells. Despite the potential influence of the structure, localization, and binding affinity of the CAR/Ag, the threshold determined may be used for target Ag selection. An Ag density below the threshold may not result in adverse effects, whereas that above the threshold may be sufficient for practical effectiveness. CD20CAR-T cells also demonstrated significant lytic activity against CD20-downregulated tumor cells and may exhibit effectiveness for CD20-positive lymphoid malignancies.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan;
| | - Anton C Martens
- Department of Hematology, VU University Medical Center Amsterdam, 1007 MB Amsterdam, the Netherlands; Department of Immunology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Tom van Meerten
- Department of Hematology, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Susumu Uchiyama
- Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Misa Imai
- Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Reona Sakemura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Tatsunori Goto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Ryo Hanajiri
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Nobuhiko Imahashi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Kazuyuki Shimada
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan; and
| | - Akihiro Tomita
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Tetsuya Nishida
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Tomoki Naoe
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; National Hospital Organization Nagoya Medical Center, Nagoya 460-0001, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| |
Collapse
|
32
|
Cheah CY, Lingaratnam S, Seymour JF. Rituximab for the treatment of follicular lymphoma. Future Oncol 2013; 9:1283-98. [DOI: 10.2217/fon.13.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rituximab is the first and most widely adopted anti-CD20 monoclonal antibody, and has dramatically improved outcomes for patients with B-cell malignancies. Rituximab is active as a single agent and when combined with chemotherapy improves both response rates and survival compared with chemotherapy alone. This approach has become standard of care in this setting. A number of Phase III studies using extended applications of rituximab have demonstrated that patients achieve a significantly longer progression-free survival, at the cost of an increase in infective complications. This has resulted in the widespread adoption of maintenance rituximab following the completion of primary therapy. Rituximab is useful in both previously untreated patients and at relapse, although a subset of patients develop disease that is rituximab resistant, which along with histologic transformation remains a significant management problem for patients with follicular lymphoma. The toxicities are modest and manageable, including infusion reactions, late-onset neutropenia, impaired humoral immunity, reactivation of hepatitis and possibly pulmonary toxicity.
Collapse
Affiliation(s)
- Chan Y Cheah
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- University of Melbourne, Parkville, Victoria, Australia
| | - Senthil Lingaratnam
- Pharmacy Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - John F Seymour
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Ding H, Jin X, Ding N, Fu Z, Song Y, Zhu J. Single nucleotide polymorphisms of CD20 gene and their relationship with clinical efficacy of R-CHOP in patients with diffuse large B cell lymphoma. Cancer Cell Int 2013; 13:58. [PMID: 23758737 PMCID: PMC3686705 DOI: 10.1186/1475-2867-13-58] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/06/2013] [Indexed: 01/08/2023] Open
Abstract
Background R-CHOP has significantly improved survival rates of patients with diffuse large B cell lymphoma (DLBCL) by ~20% as compared to CHOP. CD20 antigen, highly expressed on more than 80% of B-cell lymphomas, is the target for rituximab. The goal of our study was to examine polymorphism in the CD20 gene in Chinese DLBCL population and whether CD20 gene polymorphism is associated with clinical response to R-CHOP. Method CD20 gene polymorphism was detected in the entire coding regions including 6 exons by polymerase chain reaction (PCR)-sequencing assay in 164 patients with DLBCL. Among them, 129 patients treated with R-CHOP as frontline therapy (R ≥ 4 cycles) were assessable for the efficacy. Results Polymorphisms at three single nucleotides (SNP) were identified in the entire coding regions of the CD20 gene in the 164 patients. One of them, CD20 Exon2 [216] was found to be highly correlated with response to R-CHOP. Patients with homozygous C genotype showed a trend toward higher overall response rate than others with CT plus TT genotype (90.6% vs. 79.5%; P =0.166). A trend toward higher complete remission (CR) rate was observed in patients with homozygous C genotype (67.4%) compared with CT plus TT genotype (47.1%) (P = 0.091). Conclusion These results suggest that there are 3 SNPs in CDS of the CD20 gene in Chinese DLBCL population. The CC genotype at Exon2 [216] appears to be associated with favourable response to R-CHOP.
Collapse
Affiliation(s)
- Huirong Ding
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xuan Jin
- Department of Internal Medicine Oncology, Peking University First Hospital, Beijing 100034, China
| | - Ning Ding
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhiying Fu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yuqin Song
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jun Zhu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
34
|
Liu J, Tan Y, Zhang R. Construction and characterization of a camelized, human, VH-based peptide vaccine against CD20 antigen. Immunotherapy 2013; 5:135-41. [PMID: 23413905 DOI: 10.2217/imt.12.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The purpose of this study was to construct and characterize a camelized, human, heavy-chain variable (VH) fragment-based peptide vaccine against CD20 antigen. MATERIALS & METHODS Camelized, human VH with improved solubility and stability was used as a vaccine scaffold. A CD20 B-cell epitope was introduced into the complementarity determining region 3 of the engineered VH and a measles virus-derived T-helper epitope was grafted into the complementarity determining region 3. The chimeric VH fragment was synthesized in bacteria and purified for immunization of mice. The titers and antigen-binding specificity of the antibody elicited by the chimeric peptide vaccine were assessed in vitro. RESULTS Notably, the CD20 epitope within the chimeric VH peptide elicited high-titered anti-CD20 antibody. Besides binding to GST-CD20 fusion protein, the antibody was cross-reactive with the native CD20 antigen on Raji cells. CONCLUSION In conclusion, the chimeric VH peptide vaccine consisting of the CD20 epitope can induce the production of the CD20-specific antibody, likely having potential implications in preventing CD20 overexpression cancers.
Collapse
Affiliation(s)
- Jianbin Liu
- Air Force General Hospital, People's Liberation Army, 30 Fucheng Road, Haidian District, Beijing 100142, People's Republic of China.
| | | | | |
Collapse
|
35
|
Klein C, Lammens A, Schäfer W, Georges G, Schwaiger M, Mössner E, Hopfner KP, Umaña P, Niederfellner G. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs 2012; 5:22-33. [PMID: 23211638 DOI: 10.4161/mabs.22771] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several novel anti-CD20 monoclonal antibodies are currently in development with the aim of improving the treatment of B cell malignancies. Mutagenesis and epitope mapping studies have revealed differences between the CD20 epitopes recognized by these antibodies. Recently, X-ray crystallography studies confirmed that the Type I CD20 antibody rituximab and the Type II CD20 antibody obinutuzumab (GA101) differ fundamentally in their interaction with CD20 despite recognizing a partially overlapping epitope on CD20. The Type I CD20 antibodies rituximab and ofatumumab are known to bind to different epitopes. The differences suggest that the biological properties of these antibodies are not solely determined by their core epitope sequences, but also depend on other factors, such as the elbow hinge angle, the orientation of the bound antibody and differential effects mediated by the Fc region of the antibody. Taken together, these factors may explain differences in the preclinical properties and clinical efficacy of anti-CD20 antibodies.
Collapse
Affiliation(s)
- Christian Klein
- Discovery Oncology, Pharma Research and Early Development, Roche Glycart AG, Schlieren, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nakamaki T, Fukuchi K, Nakashima H, Ariizumi H, Maeda T, Saito B, Yanagisawa K, Tomoyasu S, Homma M, Shiozawa E, Yamochi-Onizuka T, Ota H. CD20 gene deletion causes a CD20-negative relapse in diffuse large B-cell lymphoma. Eur J Haematol 2012; 89:350-5. [PMID: 22805426 DOI: 10.1111/j.1600-0609.2012.01838.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2012] [Indexed: 11/30/2022]
Abstract
In diffuse large B-cell lymphoma (DLBCL), a CD20-negative relapse is clinically significant because it is associated with chemo-refractory phenotypes and loss of a therapeutic target. The alteration of the CD20 gene is reported as infrequent in CD20-negative relapse in B-cell lymphoma. We established a DLBCL cell line with loss of CD20 expression (SD07) from a patient at CD20-negative relapse. She was initially diagnosed with CD20-positive DLBCL and received repeated immuno-chemotherapy that included rituximab. SD07, which has an immunoglobulin κ rearrangement identical to that of lymphoma cells at CD20-negative relapse, showed homozygous deletion of the CD20 gene with loss of the copy number of 11q12. SD07 is the first case in which it is proven that the loss of CD20 expression in relapsed DLBCL is the result of deletion of the CD20 gene. Deletion of the CD20 gene is a molecular mechanism of CD20-negative relapse in a subset of DLBCL.
Collapse
Affiliation(s)
- Tsuyoshi Nakamaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Miyoshi H, Arakawa F, Sato K, Kimura Y, Kiyasu J, Takeuchi M, Yoshida M, Ichikawa A, Ishibashi Y, Nakamura Y, Nakashima S, Niino D, Sugita Y, Ohshima K. Comparison of CD20 expression in B-cell lymphoma between newly diagnosed, untreated cases and those after rituximab treatment. Cancer Sci 2012; 103:1567-73. [PMID: 22500644 PMCID: PMC7659217 DOI: 10.1111/j.1349-7006.2012.02307.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/04/2012] [Accepted: 04/09/2012] [Indexed: 12/18/2022] Open
Abstract
Few studies have statistically investigated reduced CD20 expression in B-cell lymphoma after rituximab therapy and genomic mutation of CD20 associated with reduction. We examined CD20-positive rate in follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) by flow cytometry (FCM) and immunohistochemical staining (IHS), comparing 138 cases after rituximab therapy with 360 initial, not yet treated cases. Sequence analysis of exons 3 to 8 of CD20 was performed on 22 cases with low CD20-positive rate after rituximab treatment. The results showed a statistical correlation between CD20-positive rate in FCM and IHS. By FCM, the CD20-positive rate among post-rituximab cases was significantly lower than among initial cases in DLBCL, non-germinal center origin B-cell type (average values [avg] 57.8 and 87.9, respectively) (P < 0.0001), FL2 (avg, 93.9; 103.2) (P = 0.0083), and FL3A (avg, 90.6; 100.7) (P = 0.033). Stratified analyses of post-rituximab cases showed significantly lower CD20-positive rate in cases that were resistant at the start of the treatment and cases with progressive disease during rituximab therapy before biopsy. Sequence analysis showed silent mutation of exon 4 (632 C/T) in seven cases, although this number was not statistically significant. These results suggest the influence of B-lymphoma subtype and a therapeutic effect before biopsy on CD20 expression at relapse and contribute to a better therapeutic approach for relapse cases after rituximab therapy.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- Antigens, CD20/genetics
- Antigens, CD20/metabolism
- Antineoplastic Agents/therapeutic use
- Female
- Flow Cytometry
- Gene Expression
- Humans
- Immunohistochemistry
- Lymphoma, Follicular/drug therapy
- Lymphoma, Follicular/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Male
- Middle Aged
- Rituximab
- Sequence Analysis
- Young Adult
Collapse
Affiliation(s)
- Hiroaki Miyoshi
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Thomas X. Inotuzumab ozogamicin in the treatment of B-cell acute lymphoblastic leukemia. Expert Opin Investig Drugs 2012; 21:871-8. [DOI: 10.1517/13543784.2012.679359] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Mishima Y, Terui Y, Takeuchi K, Matsumoto-Mishima Y, Matsusaka S, Utsubo-Kuniyoshi R, Hatake K. The identification of irreversible rituximab-resistant lymphoma caused by CD20 gene mutations. Blood Cancer J 2011; 1:e15. [PMID: 22829136 PMCID: PMC3255244 DOI: 10.1038/bcj.2011.11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/07/2011] [Accepted: 02/01/2011] [Indexed: 01/08/2023] Open
Abstract
C-terminal mutations of CD20 constitute part of the mechanisms that resist rituximab therapy. Most CD20 having a C-terminal mutation was not recognized by L26 antibody. As the exact epitope of L26 has not been determined, expression and localization of mutated CD20 have not been completely elucidated. In this study, we revealed that the binding site of L26 monoclonal antibody is located in the C-terminal cytoplasmic region of CD20 molecule, which was often lost in mutated CD20 molecules. This indicates that it is difficult to distinguish the mutation of CD20 from under expression of the CD20 protein. To detect comprehensive CD20 molecules including the resistant mutants, we developed a novel monoclonal antibody that recognizes the N-terminal cytoplasm region of CD20 molecule. We screened L26-negative cases with our antibody and found several mutations. A rituximab-binding analysis using the cryopreserved specimen that mutation was identified in CD20 molecules indicated that the C-terminal region of CD20 undertakes a critical role in presentation of the large loop in which the rituximab-binding site locates. Thus, combination of antibodies of two kinds of epitope permits the identification of C-terminal CD20 mutations associated with irreversible resistance to rituximab and may help the decision of the treatment strategy.
Collapse
|
40
|
Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type I/II distinction of CD20 antibodies. Blood 2011; 118:358-67. [PMID: 21444918 DOI: 10.1182/blood-2010-09-305847] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD20 is a cell-surface marker of normal and malignant B cells. Rituximab, a monoclonal antibody targeting CD20, has improved the treatment of malignant lymphomas. Therapeutic CD20 antibodies are classified as either type I or II based on different mechanisms of killing malignant B cells. To reveal the molecular basis of this distinction, we fine-mapped the epitopes recognized by both types. We also determined the first X-ray structure of a type II antibody by crystallizing the obinutuzumab (GA101) Fab fragment alone and in complex with a CD20 cyclopeptide. Despite recognizing an overlapping epitope, GA101 binds CD20 in a completely different orientation than type I antibodies. Moreover, the elbow angle of GA101 is almost 30° wider than in type I antibodies, potentially resulting in different spatial arrangements of 2 CD20 molecules bound to a single GA101 or rituximab molecule. Using protein tomography, different CD20 complexes were found to be associated with the 2 antibodies, and confocal microscopy showed different membrane compartmentalization of these subpopulations of the cellular CD20 pool. Our findings offer a possible molecular explanation for the different cellular responses elicited by type I and II antibodies.
Collapse
|
41
|
Interindividual Variability of Response to Rituximab: From Biological Origins to Individualized Therapies. Clin Cancer Res 2011; 17:19-30. [DOI: 10.1158/1078-0432.ccr-10-1292] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Miura Y, Fukuhara N, Yamamoto J, Kohata K, Ishizawa K, Ichinohasama R, Harigae H. Clinicopathological Features of Malignant Lymphoma in Japan: The Miyagi Study. TOHOKU J EXP MED 2011; 224:151-60. [DOI: 10.1620/tjem.224.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yukiko Miura
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Noriko Fukuhara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Joji Yamamoto
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Katsura Kohata
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Kenichi Ishizawa
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Ryo Ichinohasama
- Department of Hematopathology, Tohoku University Graduate School of Medicine
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| |
Collapse
|
43
|
Abstract
B-lineage acute lymphoblastic leukemia (ALL) may express CD52 and CD20. Alemtuzumab (ALM) and rituximab (RTX) are therapeutic antibodies directed against CD52 and CD20, respectively, but showed limited activity against ALL in clinical trials. The mechanisms for the impaired responses remained unclear. We studied expression of CD52 and CD20 on ALL cells and found that most cases coexpressed CD52 and CD20. However, distinct CD52-negative (CD52(-)) subpopulations were detected in most cases as the result of defective glycophosphatidyl-inositol anchoring. Although ALM efficiently eradicated CD52-positive (CD52(+)) cells in NOD/scid mice engrafted with primary human ALL, CD52(-) subclones escaped therapy. In the same model, RTX showed limited activity resulting from occurrence of CD20 down-modulation. However, CD52(-) cells concurrently lacked the glycophosphatidyl-inositol-anchored complement regulators CD55 and CD59 and showed increased susceptibility to RTX-mediated complement-dependent cytotoxicity in vitro. At the same time, ALM was shown to inhibit down-modulation of CD20 in response to RTX by depleting the trogocytic capacity of phagocytic cells. Probably because of these complementary mechanisms, combined administration of ALM and RTX induced complete responses in vivo. Based on these data, we propose a mechanistic rationale for combined application of RTX and ALM in ALL.
Collapse
|
44
|
|
45
|
Identification of an alternative CD20 transcript variant in B-cell malignancies coding for a novel protein associated to rituximab resistance. Blood 2010; 115:2420-9. [DOI: 10.1182/blood-2009-06-229112] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractHuman CD20 is a B-cell lineage–specific marker expressed by normal and leukemic B cells from the pre-B to the plasma-cell stages and is a target for rituximab (RTX) immunotherapy. A CD20 reverse transcriptase–polymerase chain reaction (PCR) on B-cell lines cDNA yielded a short PCR product (ΔCD20) corresponding to a spliced mRNA transcript linking the exon 3 and exon 7 ends. We established here that this novel, alternatively spliced CD20 transcript is expressed and detectable at various levels in leukemic B cells, lymphoma B cells, in vivo tonsil- or in vitro CD40L-activated B cells, and Epstein-Barr virus (EBV)–transformed B cells, but not in resting CD19+- or CD20+-sorted B cells from peripheral blood or bone marrow of healthy donors. The truncated CD20 sequence is within the reading frame, codes a protein of 130 amino acids (∼ 15-17 kDa) lacking large parts of the 4 transmembrane segments, suggesting that ΔCD20 is a nonanchored membrane protein. We demonstrated the translation into a ΔCD20 protein which is associated with the membrane CD20 protein and showed its involvement in RTX resistance. Study of patient samples before and after RTX resistance or escape confirms our in vitro findings.
Collapse
|
46
|
Stolz C, Schuler M. Molecular mechanisms of resistance to Rituximab and pharmacologic strategies for its circumvention. Leuk Lymphoma 2009; 50:873-85. [PMID: 19373595 DOI: 10.1080/10428190902878471] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The introduction of Rituximab has greatly improved therapeutic options for patients with B-cell non-Hodgkin lymphoma (B-NHL). However, a substantial fraction of patients with aggressive B-NHL fails first-line therapy, and most patients with relapsing indolent B-NHL eventually acquire Rituximab resistance. Molecular understanding of the underlying mechanisms facilitates the development of pharmacologic strategies to overcome resistance. Rituximab exerts its activity on CD20-expressing B-cells by indirect and direct effector mechanisms. Indirect mechanisms are complement-dependent cytotoxicity (CDC), and antibody-dependent cell-mediated cytotoxicity (ADCC). Direct activities, such as growth inhibition, induction of apoptosis and chemosensitisation, have been reported, but are less defined. Moreover, the relative contribution of CDC, ADCC and direct mechanisms to the activity of Rituximab in vivo is unclear. Down-regulation of CD20 and expression of complement inhibitors have been described as escape mechanisms in B-NHL. Recent reports suggest that deregulated phosphoinositide-3-kinase (PI3K)/Akt, mitogen-activated kinases (MAPK) and nuclear-factor kappaB (NF-kappaB), as well as up-regulation of anti-apoptotic proteins may determine the efficacy of Rituximab to kill B-NHL cells in vitro and in vivo. The latter signalling pathways are attractive targets for pharmacologic modulation of resistance to Rituximab. With the advent of new inhibitors and antibodies, rationally designed clinical trials addressing Rituximab resistance are feasible.
Collapse
Affiliation(s)
- Claudia Stolz
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, University Lund, Sweden
| | | |
Collapse
|
47
|
New developments in the pathology of malignant lymphoma: a review of the literature published from January to August 2009. J Hematop 2009; 2:171-83. [PMID: 20309425 PMCID: PMC2766446 DOI: 10.1007/s12308-009-0046-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
48
|
Rituximab retherapy in patients with relapsed aggressive B cell and mantle cell lymphoma. Ann Hematol 2009; 89:283-9. [PMID: 19727725 PMCID: PMC2808532 DOI: 10.1007/s00277-009-0820-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 08/13/2009] [Indexed: 11/06/2022]
Abstract
Neither effective salvage regimens nor the outcome and response to retherapy with rituximab containing chemotherapy have been defined for rituximab pre-treated patients with relapsing aggressive lymphoma. We report here a single-centre retrospective outcome analysis of second-line immunochemotherapy with rituximab. In 28 patients with relapsed or refractory diffuse large B cell lymphomas, first-line immunochemotherapy had induced objective responses in 18 patients. Nine of 28 patients responded to rituximab containing salvage therapy, leading to a median overall survival of 243 days after start of second immunochemotherapy. Long-term disease free survivors (1,260 and 949 days) were restricted to the group of twelve patients that had received allogeneic stem cell transplantation as consolidation therapy. In 21 patients with relapsed mantle cell lymphomas (MCL), 19 patients had reached remissions with first-line therapy. Of those, 16 patients experienced responses to salvage therapy with a median overall survival of 226 days. Noteworthy, none of patients with initial non-responding disease reached a remission with second immunochemotherapy. Seven patients with MCL stayed free from progression after high-dose therapy with autologous or allogeneic stem cell transplantation in two and five cases, respectively. In summary, responses to repeated immunotherapy with rituximab were observed in approximately one third and two thirds of initially responding patients with aggressive B cell lymphoma and mantle cell lymphoma, respectively, but not in primarily refractory disease. Lasting remissions were achieved only by high-dose chemotherapy with stem cell transplantation.
Collapse
|