1
|
Wang Z, Wang C, Zhang D, Wang X, Wu Y, Sun R, Sun X, Li Q, Bi K, Jiang G. The up-regulation of TGF-β1 by miRNA-132-3p/WT1 is involved in inducing leukemia cells to differentiate into macrophages. PLoS One 2025; 20:e0306150. [PMID: 40327646 PMCID: PMC12054920 DOI: 10.1371/journal.pone.0306150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/18/2025] [Indexed: 05/08/2025] Open
Abstract
Although it has been shown that abnormal expression of Wilm's tumor gene 1 (WT1) is associated with the occurrence of leukemia, the specific mechanism via which it induces leukemia cells to differentiate into macrophages remains poorly understood. Based on the prediction that the microRNA miRNA-132-3p is the miRNA that possibly lies upstream of the WT1 gene, we hypothesized that miRNA-132-3p may participate in the polarization process of macrophages through regulating expression of the WT1 gene. The focus of the present study was therefore to investigate the role of the miRNA-132-3p/WT1 signaling axis in the differentiation of THP-1 leukemia cells into macrophages induced by PMA. The results obtained indicated that, compared with the control group, the proliferation of THP-1 cells was clearly inhibited by PMA, and the cell cycle was arrested at G0/G1 phase, associated with an upregulation of CD11b and CD14 expression. Induced by PMA, the expression level of miRNA-132-3p was increased, WT1 expression was decreased, and the expression level of TGF-β1 was increased. Following transfection with miRNA-132-3p mimics, however, the expression of WT1 in the THP-1 cells was downregulated, with upregulation of the CD11b and CD14 antigens, whereas this downregulation of WT1 mediated by miRNA-132-3p mimics could be reversed by co-transfection with WT1 vector, which was accompanied by downregulation of the CD11b and CD14 antigens. The luciferase activity of the co-transfected miRNA-132-3p mimic + WT1-wild-type (WT) group was found to be statistically significantly lower compared with that of the co-transfected miRNA-132-3p mimic + WT1-mutated (MUT) group. Furthermore, chromatin immunoprecipitation experiments showed that WT1 was able to directly target the promoter of the downstream target gene TGF-β1, which led to the negative modulation of TGF-β1 expression, whereas downregulation of WT1 led to an upregulation of the expression of TGF-β1, which thereby promoted the differentiation of THP-1 cells into macrophages. Taken together, the present study has provided evidence, to the best of the authors' knowledge for the first time, that the miRNA-132-3p/WT1/TGF-β1 axis is able to regulate the committed differentiation of leukemia cells into macrophages.
Collapse
Affiliation(s)
- Zhimin Wang
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
- Department of Hematology, Binzhou people̛s Hospital, Binzhou, Shandong, P.R. China
| | - Chaozhe Wang
- Department of Blood transfusion, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, Shandong, P.R. China
- Department of Immunology, College of Basic medicine, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Danfeng Zhang
- Department of Laboratory Medicine, Lixia District People’s Hospital, Jinan, Shandong, P.R. China
| | - Xidi Wang
- Department of Laboratory Medicine, Zhangqiu District People’s Hospital, Jinan, Shandong, P.R. China
| | - Yunhua Wu
- Department of Immunology, College of Basic medicine, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Ruijing Sun
- Department of Immunology, College of Basic medicine, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Xiaolin Sun
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong, P.R. China
| | - Qing Li
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong, P.R. China
| | - Kehong Bi
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Guosheng Jiang
- Department of Immunology, College of Basic medicine, Binzhou Medical University, Yantai, Shandong, P.R. China
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong, P.R. China
| |
Collapse
|
2
|
Leitch HA. Iron Overload, Oxidative Stress, and Somatic Mutations in MDS: What Is the Association? Eur J Haematol 2025; 114:710-732. [PMID: 39876029 DOI: 10.1111/ejh.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Iron overload (IOL) accumulates in myelodysplastic syndromes (MDS) from expanded erythropoiesis and transfusions. Somatic mutations (SM) are frequent in MDS and stratify patient risk. MDS treatments reversing or limiting transfusion dependence are limited. METHODS The literature was reviewed on how IOL and oxidative stress interact with specific SM in MDS to influence cellular physiology. PubMed searches included keywords of each specific mutation combined with iron, oxidative stress, and reactive oxygens species (ROS). Papers relevant to hematopoietic stem/progenitor cells, the bone marrow microenvironment, MDS, AML or other myeloid disorders were preferred. Included were the most frequent SM in MDS, SM of the International Prognostic Scoring System-Molecular (IPSS-M), of familial predisposing conditions and the CMML PSS-molecular. RESULTS About 31 SM plus four familial conditions were searched. Discussed are the frequency of each SM, whether function is gained or lost, early or late SM status, a function of the unmutated gene, and function considering iron and oxidative stress. DISCUSSION Given limited effective MDS therapies, considering how IOL and ROS interact with SM to influence cellular physiology in the hematopoietic system, increasing bone marrow failure progression or malignant transformation may be of benefit and support optimization of measures to reduce IOL or neutralize ROS.
Collapse
Affiliation(s)
- Heather A Leitch
- Hematology, St. Paul's Hospital and The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Rondoni M, Marconi G, Nicoletti A, Giannini B, Zuffa E, Giannini MB, Mianulli A, Norata M, Monaco F, Zaccheo I, Rocchi S, Zannetti BA, Santoni A, Graziano C, Bocchia M, Lanza F. Low WT1 Expression Identifies a Subset of Acute Myeloid Leukemia with a Distinct Genotype. Cancers (Basel) 2025; 17:1213. [PMID: 40227798 PMCID: PMC11988028 DOI: 10.3390/cancers17071213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Wilms' tumor gene 1 (WT1) is a critical player in acute myeloid leukemia (AML), often serving as a biomarker for measurable residual disease (MRD). The WT1 gene is overexpressed in the majority of AML cases at diagnosis, with apparently no correlation with prognosis, and in the meantime, its role in patients with low-level expression is still undefined. This study investigates the mutational landscape and clinical outcomes of AML patients with low WT1 expression at diagnosis. Methods: We analyzed 34 AML patients with low WT1 expression (WT1/ABL1 < 250) diagnosed and treated from 2013 to 2017 at three institutions. Next-generation sequencing (NGS) was employed to investigate the mutational status of 32 genes commonly mutated in AML. The presence of specific mutations, as well as clinical outcomes, was compared to the general AML population. Results: Patients with low WT1 expression showed a significantly higher mutational burden, with a median of 3.4 mutations per patient, compared to the general AML population. Notably, clonal hematopoiesis (CHIP) or myelodysplasia-related (MR) mutations, particularly in ASXL1, TET2, and SRSF2, were present in most patients with low WT1 expression. All but one case of NPM1- or FLT3-mutant AML in the low-WT1 cohort harbored more CHIP or MR mutations. Patients with low WT1 expression had an overall survival (OS) that was superimposable to the OS expected in MR AML. Conclusions: Low WT1 expression in AML is associated with a distinct and complex mutational profile, marked by frequent CHIP and MR mutations.
Collapse
Affiliation(s)
- Michela Rondoni
- UO Ematologia, Ospedale S. Maria delle Croci, Via Randi 5, 48121 Ravenna, Italy; (G.M.); (F.L.)
| | - Giovanni Marconi
- UO Ematologia, Ospedale S. Maria delle Croci, Via Randi 5, 48121 Ravenna, Italy; (G.M.); (F.L.)
- Department of Medicine and Surgery (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Annalisa Nicoletti
- U.O. Genetica Medica, AUSL della Romagna, Piazzale della Liberazione 60, 47522 Pievesestina di Cesena, Italy
| | - Barbara Giannini
- U.O. Genetica Medica, AUSL della Romagna, Piazzale della Liberazione 60, 47522 Pievesestina di Cesena, Italy
| | - Elisa Zuffa
- U.O. Genetica Medica, AUSL della Romagna, Piazzale della Liberazione 60, 47522 Pievesestina di Cesena, Italy
| | - Maria Benedetta Giannini
- IRCSS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy
| | - Annamaria Mianulli
- UO Ematologia, Ospedale Infermi, Viale Luigi Settembrini 2, 47923 Rimini, Italy
| | - Marianna Norata
- IRCSS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy
| | - Federica Monaco
- UO Ematologia, Ospedale Infermi, Viale Luigi Settembrini 2, 47923 Rimini, Italy
| | - Irene Zaccheo
- IRCSS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy
| | - Serena Rocchi
- UO Ematologia, Ospedale S. Maria delle Croci, Via Randi 5, 48121 Ravenna, Italy; (G.M.); (F.L.)
| | - Beatrice Anna Zannetti
- UO Ematologia, Ospedale S. Maria delle Croci, Via Randi 5, 48121 Ravenna, Italy; (G.M.); (F.L.)
| | - Adele Santoni
- Dipartimento Scienze Mediche, Chirurgiche e Neuroscienze, University of Siena, 53100 Siena, Italy
| | - Claudio Graziano
- U.O. Genetica Medica, AUSL della Romagna, Piazzale della Liberazione 60, 47522 Pievesestina di Cesena, Italy
| | - Monica Bocchia
- Dipartimento Scienze Mediche, Chirurgiche e Neuroscienze, University of Siena, 53100 Siena, Italy
| | - Francesco Lanza
- UO Ematologia, Ospedale S. Maria delle Croci, Via Randi 5, 48121 Ravenna, Italy; (G.M.); (F.L.)
- Department of Medicine and Surgery (DIMEC), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
4
|
Dong J, Konopleva M. Preclinical targeting of leukemia-initiating cells in the development future biologics for acute myeloid leukemia. Expert Opin Ther Targets 2025; 29:223-237. [PMID: 40304258 DOI: 10.1080/14728222.2025.2500417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Leukemia-initiating cells (LICs) are a critical subset of cells driving acute myeloid leukemia (AML) relapse and resistance to therapy. They possess unique properties, including metabolic, epigenetic, and microenvironmental dependencies, making them promising therapeutic targets. AREAS COVERED This review summarizes preclinical advances in targeting AML LICs, including strategies to exploit metabolic vulnerabilities, such as the reliance on oxidative phosphorylation (OXPHOS), through the use of mitochondrial inhibitors; target epigenetic regulators like DOT1L (Disruptor of Telomeric Silencing 1-like) to disrupt LIC survival mechanisms; develop immunotherapies, including CAR (chimeric antigen receptor) T-cell therapy, and bispecific antibodies; and disrupt LIC interactions with the bone marrow microenvironment by inhibiting supportive niches. EXPERT OPINION LIC-targeted therapies hold significant promise for revolutionizing AML treatment by reducing relapse rates and improving long-term outcomes. However, challenges such as LIC heterogeneity, therapy resistance, and associated toxicity persist. Recent studies have illuminated the distinct biological characteristics of LICs, advancing our understanding of their behavior and vulnerabilities. These insights offer new opportunities to target LICs at earlier disease stages and to explore combination therapies with other targeted treatments, ultimately enhancing therapeutic efficacy and improving patient outcomes.
Collapse
Affiliation(s)
- Jiaxin Dong
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marina Konopleva
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
5
|
Saxena K, Hung SH, Ryu E, Singh S, Zhang Tatarata Q, Zeng Z, Wang Z, Konopleva MY, Yee C. BH3 mimetics augment cytotoxic T cell killing of acute myeloid leukemia via mitochondrial apoptotic mechanism. Cell Death Discov 2025; 11:120. [PMID: 40140361 PMCID: PMC11947210 DOI: 10.1038/s41420-025-02375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Adoptive cell therapy (ACT) can address an unmet clinical need for patients with relapsed/refractory acute myeloid leukemia (AML), but its effect is often modest in the setting of high tumor burden. In this study, we postulated that strategies to lower the AML apoptotic threshold will augment T cell killing of AML cells. BH3 mimetics, such as venetoclax, are a clinically approved class of compounds that predispose cells to intrinsic apoptosis by inhibiting anti-apoptotic mitochondrial proteins. We explored the anti-leukemic efficacy of BH3 mimetics combined with WT1-specific CD8+ T cells on AML cell lines and primary samples from patients with a diverse array of disease characteristics to evaluate if lowering the cellular apoptotic threshold via inhibition of anti-apoptotic mitochondrial proteins can increase leukemic cell sensitivity to T cell therapy. We found that the combination approach of BH3 mimetic and CD8+ T cells led to significantly increased killing of established AML lines as well as of adverse-risk primary AML leukemic blast cells. In contrast to the hypothesis that enhanced killing would be due to combined activation of the intrinsic and extrinsic apoptotic pathways, our data suggests that CTL-mediated killing of AML cells was accomplished primarily through activation of the intrinsic/mitochondrial apoptotic pathway. This highly effective combinatorial activity due to convergence on the mitochondrial apoptotic pathway was conserved across multiple AML cell lines and primary samples, suggesting that mitochondrial priming may represent a novel mechanism of optimizing adoptive cell therapy for AML patients.
Collapse
Affiliation(s)
- Kapil Saxena
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Gilead Sciences Inc., Foster City, CA, USA
| | - Shao-Hsi Hung
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Esther Ryu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shailbala Singh
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Zhang Tatarata
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhe Wang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marina Y Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Oncology and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Malik F, Eldomery MK, Wang W, Gheorghe G, Khanlari M. Myeloid sarcomas with CBFA2T3 : GLIS2 fusion: clinicopathologic characterization of 4 cases mimicking small round cell tumors. Am J Clin Pathol 2025; 163:377-387. [PMID: 39418128 DOI: 10.1093/ajcp/aqae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVES Acute myeloid leukemia with CBFA2T3::GLIS2 fusion can initially present as extramedullary lesions (myeloid sarcoma), leading to a misdiagnosis of nonhematologic pediatric solid tumors. METHODS We characterized the clinicopathologic features of 4 cases of CBFA2T3::GLIS2 fusion-positive myeloid sarcoma in pediatric patients where the sarcoma presented either without leukemic involvement (isolated myeloid sarcoma; 3/4 [75%]) or had concurrent leukemic disease (1/4 [25%]). RESULTS All cases mimicked nonhematopoietic tumors at morphologic and immunophenotypic levels, so the initial evaluation did not raise suspicion for acute myeloid leukemia/myeloid sarcoma. After extensive workup, however, including molecular studies, the diagnosis of myeloid sarcoma with CBFA2T3::GLIS2 fusion was rendered. CONCLUSIONS This study highlights the need for a high suspicion index of GLIS2-rearranged myeloid sarcoma in the differential diagnosis of pediatric small round cell tumors in tissue biopsies and the application of adequate workup to avoid misdiagnosing this entity.
Collapse
MESH Headings
- Humans
- Sarcoma, Myeloid/genetics
- Sarcoma, Myeloid/pathology
- Sarcoma, Myeloid/diagnosis
- Diagnosis, Differential
- Female
- Male
- Child
- Oncogene Proteins, Fusion/genetics
- Child, Preschool
- Adolescent
- Sarcoma, Small Cell/diagnosis
- Sarcoma, Small Cell/genetics
- Sarcoma, Small Cell/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/pathology
Collapse
Affiliation(s)
- Faizan Malik
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| | - Mohammad K Eldomery
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| | - Wei Wang
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, US
| | - Gabriela Gheorghe
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| | - Mahsa Khanlari
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| |
Collapse
|
7
|
Hawking ZL, Allan JM. Landscape of TET2 Mutations: From Hematological Malignancies to Solid Tumors. Cancer Med 2025; 14:e70792. [PMID: 40116537 PMCID: PMC11926918 DOI: 10.1002/cam4.70792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/29/2025] [Accepted: 03/09/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND The ten-eleven translocation (TET) enzyme family is a key regulator of DNA methylation, responsible for the conversion of 5-methylcytosine to 5-hydroxymethylcytosine to promote locus-specific demethylation. Thus, it is not surprising that loss or attenuation of TET enzymes is implicated in genomic hypermethylation and transcriptional reprogramming that drives cancer development. Somatic mutations in TET2 are observed in the bone marrow of 5%-10% of healthy adults over 65 years of age, imparting a hematopoietic stem cell advantage and subsequent clonal hematopoiesis of indeterminate potential (CHIP), a condition which is associated with increased risk of myeloid malignancy. Somatic TET2 mutations are frequently reported in myeloid disorders, including myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Evidence suggests that TET2 mutations also affect prognosis in myeloid leukemia and other hematopoietic malignancies. However, there is a paucity of collated data on the frequency of TET2 mutations in solid human cancers. OBJECTIVES We review the published literature on TET2 mutation in human solid cancers and explore their frequency and impact on patient outcomes. RESULTS & CONCLUSIONS Somatic TET2 mutations are reported in numerous solid human cancers, including those arising in the skin, lung and prostate. Many of the somatic TET2 mutations reported in solid cancers are recurrent, suggesting functionality. There is also evidence to suggest that somatic TET2 mutations affect prognosis in solid human cancers.
Collapse
Affiliation(s)
- Zoë L. Hawking
- Newcastle University Centre for Cancer, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - James M. Allan
- Newcastle University Centre for Cancer, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
8
|
Li J, Liu S, Kim S, Goell J, Drum Z, Flores J, Ma A, Mahata B, Escobar M, Raterink A, Ahn JH, Terán E, Guerra-Resendez R, Zhou Y, Yu B, Diehl M, Wang GG, Gustavsson AK, Phanstiel D, Hilton I. Biomolecular condensation of human IDRs initiates endogenous transcription via intrachromosomal looping or high-density promoter localization. Nucleic Acids Res 2025; 53:gkaf056. [PMID: 39933697 PMCID: PMC11811730 DOI: 10.1093/nar/gkaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/02/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Protein intrinsically disordered regions (IDRs) are critical gene-regulatory components and aberrant fusions between IDRs and DNA-binding/chromatin-associating domains cause diverse human cancers. Despite this importance, how IDRs influence gene expression, and how aberrant IDR fusion proteins provoke oncogenesis, remains incompletely understood. Here we develop a series of synthetic dCas9-IDR fusions to establish that locus-specific recruitment of IDRs can be sufficient to stimulate endogenous gene expression. Using dCas9 fused to the paradigmatic leukemogenic NUP98 IDR, we also demonstrate that IDRs can activate transcription via localized biomolecular condensation and in a manner that is dependent upon overall IDR concentration, local binding density, and amino acid composition. To better clarify the oncogenic role of IDRs, we construct clinically observed NUP98 IDR fusions and show that, while generally non-overlapping, oncogenic NUP98-IDR fusions convergently drive a core leukemogenic gene expression program in donor-derived human hematopoietic stem cells. Interestingly, we find that this leukemic program arises through differing mechanistic routes based upon IDR fusion partner; either distributed intragenic binding and intrachromosomal looping, or dense binding at promoters. Altogether, our studies clarify the gene-regulatory roles of IDRs and, for the NUP98 IDR, connect this capacity to pathological cellular programs, creating potential opportunities for generalized and mechanistically tailored therapies.
Collapse
Affiliation(s)
- Jing Li
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
| | - Shizhe Liu
- Department of BioSciences, Rice University, Houston, TX, 77030, United States
| | - Sunghwan Kim
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
| | - Jacob Goell
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
| | - Zachary Allen Drum
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, United States
| | - John Patrick Flores
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, United States
| | - Alex J Ma
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
| | - Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
| | - Mario Escobar
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
| | - Alex Raterink
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, 77030, United States
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, United States
| | - Erik R Terán
- Department of BioSciences, Rice University, Houston, TX, 77030, United States
| | | | - Yuhao Zhou
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
| | - Bo Yu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Michael R Diehl
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
- Department of Chemistry, Rice University, Houston, TX, 77030, United States
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, United States
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC, 27710, United States
| | - Anna-Karin Gustavsson
- Department of BioSciences, Rice University, Houston, TX, 77030, United States
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, 77030, United States
- Department of Chemistry, Rice University, Houston, TX, 77030, United States
| | - Douglas H Phanstiel
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, United States
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
- Department of BioSciences, Rice University, Houston, TX, 77030, United States
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, 77030, United States
| |
Collapse
|
9
|
Nian Q, Lin Y, Zeng J, Zhang Y, Liu R. Multifaceted functions of the Wilms tumor 1 protein: From its expression in various malignancies to targeted therapy. Transl Oncol 2025; 52:102237. [PMID: 39672002 PMCID: PMC11700300 DOI: 10.1016/j.tranon.2024.102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024] Open
Abstract
Wilms tumor 1 (WT1) is a multifaceted protein with dual functions, acting both as a tumor suppressor and as a transcriptional activator of oncogenes. WT1 is highly expressed in various types of solid tumors and leukemia, and its elevated expression is associated with a poor prognosis for patients. High WT1 expression also indicates a greater risk of refractory disease or relapse. Consequently, targeting WT1 is an effective strategy for disease prevention and relapse mitigation. Substantial information is available on the pathogenesis of WT1 in various diseases, and several WT1-targeted therapies, including chemical drugs, natural products, and targeted vaccines, are available. We provide a comprehensive review of the mechanisms by which WT1 influences malignancies and summarize the resulting therapeutic approaches thoroughly. This article provides information on the roles of WT1 in the pathogenesis of different cancers and provides insights into drugs and immunotherapies targeting WT1. The goal of this work is to provide a systematic understanding of the current research landscape and of future directions for WT1-related studies.
Collapse
Affiliation(s)
- Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32W. Sec. 2, 1st Ring Rd., Qingyang District, Chengdu, Sichuan, China, 610072.
| | - Yan Lin
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shierqiaolu, Chengdu, Sichuan, China, 610072
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shierqiaolu, Chengdu, Sichuan, China, 610072
| | - Yanna Zhang
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32W. Sec. 2, 1st Ring Rd., Qingyang District, Chengdu, Sichuan, China, 610072
| | - Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 183 Xinqiao Road, Chongqing, China, 400000.
| |
Collapse
|
10
|
Yee C, Saxena K, Ryu E, Hung SH, Singh S, Zhang Q, Zeng Z, Wang Z, Konopleva M. BH3 Mimetics Augment Cytotoxic T Cell Killing of Acute Myeloid Leukemia via Mitochondrial Apoptotic Mechanism. RESEARCH SQUARE 2024:rs.3.rs-5307127. [PMID: 39711535 PMCID: PMC11661303 DOI: 10.21203/rs.3.rs-5307127/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Adoptive cell therapy (ACT) can address an unmet clinical need for patients with relapsed/refractory acute myeloid leukemia (AML), but its effect is often modest in the setting of high tumor burden. In this study, we postulated that strategies to lower the AML apoptotic threshold will augment T cell killing of AML cells. BH3 mimetics, such as venetoclax, are a clinically approved class of compounds that predispose cells to intrinsic apoptosis by inhibiting anti-apoptotic mitochondrial proteins. We explored the anti-leukemic efficacy of BH3 mimetics combined with WT1-specific CD8 + T cells on AML cell lines and primary samples from patients with a diverse array of disease characteristics to evaluate if lowering the cellular apoptotic threshold via inhibition of anti-apoptotic mitochondrial proteins can increase leukemic cell sensitivity to T cell therapy. We found that the combination approach of BH3 mimetic and CD8 + T cells led to significantly increased killing of established AML lines as well as of adverse-risk primary AML leukemic blast cells. In contrast to the hypothesis that enhanced killing would be due to combined activation of the intrinsic and extrinsic apoptotic pathways, we found that CTL-mediated killing of AML cells was accomplished primarily through activation of the intrinsic/mitochondrial apoptotic pathway. This highly effective combinatorial activity due to convergence on the same apoptotic pathway was conserved across multiple AML cell lines and primary samples, suggesting that mitochondrial priming may represent a novel mechanism of optimizing adoptive cell therapy for AML patients.
Collapse
Affiliation(s)
- Cassian Yee
- The University of Texas MD Anderson Cancer Center
| | | | - Esther Ryu
- University of Texas MD Anderson Cancer Center
| | | | | | - Qi Zhang
- University of Texas MD Anderson Cancer Center
| | | | - Zhe Wang
- University of Texas MD Anderson Cancer Center
| | | |
Collapse
|
11
|
Kebede AM, Garfinkle EAR, Mathew MT, Varga E, Colace SI, Wheeler G, Kelly BJ, Schieffer KM, Miller KE, Mardis ER, Cottrell CE, Potter SL. Comprehensive genomic characterization of hematologic malignancies at a pediatric tertiary care center. Front Oncol 2024; 14:1498409. [PMID: 39687881 PMCID: PMC11647012 DOI: 10.3389/fonc.2024.1498409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024] Open
Abstract
Despite the increasing availability of comprehensive next generation sequencing (NGS), its role in characterizing pediatric hematologic malignancies remains undefined. We describe findings from comprehensive genomic profiling of hematologic malignancies at a pediatric tertiary care center. Patients enrolled on a translational research protocol to aid in cancer diagnosis, prognostication, treatment, and detection of cancer predisposition. Disease-involved samples underwent exome and RNA sequencing and analysis for single nucleotide variation, insertion/deletions, copy number alteration, structural variation, fusions, and gene expression. Twenty-eight patients with hematologic malignancies were nominated between 2018-2021. Eighteen individuals received both germline and somatic sequencing; two received germline sequencing only. Germline testing identified patients with cancer predisposition syndromes and non-cancer carrier states. Fifteen patients (15/18, 83%) had cancer-relevant somatic findings. Potential therapeutic targets were identified in seven patients (7/18, 38.9%); three (3/7, 42.9%) received targeted therapies and remain in remission an average of 47 months later.
Collapse
Affiliation(s)
- Ann M. Kebede
- Division of Pediatric Heme/Onc/BMT, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Elizabeth A. R. Garfinkle
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mariam T. Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Elizabeth Varga
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Susan I. Colace
- Division of Pediatric Heme/Onc/BMT, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Gregory Wheeler
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Benjamin J. Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kathleen M. Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Katherine E. Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Catherine E. Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Samara L. Potter
- Division of Pediatric Heme/Onc/BMT, Nationwide Children’s Hospital, Columbus, OH, United States
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Atnaf A, Akelew Y, Abebaw D, Muche Y, Getachew M, Mengist HM, Tsegaye A. The role of long noncoding RNAs in the diagnosis, prognosis and therapeutic biomarkers of acute myeloid leukemia. Ann Hematol 2024; 103:4931-4942. [PMID: 39264436 DOI: 10.1007/s00277-024-05987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Acute myeloid leukemia (AML) is the abnormal proliferation of immature myeloid blast cells in the bone marrow. Currently, there are no universally recognized biomarkers for the early diagnosis, prognosis and effective treatment of AML to improve the overall survival of patients. Recent studies, however, have demonstrated that long noncoding RNAs (lncRNAs) are promising targets for the early diagnosis, prognosis and treatment of AML. A critical review of available data would be important to identify study gaps and provide perspectives. In this review, we explored comprehensive information on the potential use of lncRNAs as targets for the diagnosis, prognosis, and treatment of AML. LncRNAs are nonprotein-coding RNAs that are approximately 200 nucleotides long and play important roles in the regulation, metabolism and differentiation of tissues. In addition, they play important roles in the diagnosis, prognosis and treatment of different cancers, including AML. LncRNAs play multifaceted roles as oncogenes or tumor suppressor genes. Recently, deregulated lncRNAs were identified as novel players in the development of AML, making them promising prognostic indicators. Given that lncRNAs could have potential diagnostic marker roles, the lack of sufficient evidence identifying specific lncRNAs expressed in specific cancers hampers the use of lncRNAs as diagnostic markers of AML. The complex roles of lncRNAs in the pathophysiology of AML require further scrutiny to identify specific lncRNAs. This review, despite the lack of sufficient literature, discusses the therapeutic, diagnostic and prognostic roles of lncRNAs in AML and provides future insights that will contribute to studies targeting lncRNAs in the diagnosis, treatment, and management of AML.
Collapse
Affiliation(s)
- Aytenew Atnaf
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia.
| | - Yibeltal Akelew
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, 3168, Australia
| | - Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Hylemariam Mihiretie Mengist
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Aster Tsegaye
- Department of Medical Laboratory Sciences, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Oliva EN, Cuzzola M, Porta MD, Candoni A, Salutari P, Palumbo GA, Reda G, Iannì G, Zampini M, D’Amico S, Tripepi G, Capelli D, Alati C, Cannatà MC, Niscola P, Serio B, Barillà S, Musto P, Vigna E, Melillo LMA, Tripepi R, Zannier ME, Nannya Y, Ogawa S, Mammì C. Translational Research on Azacitidine Post-Remission Therapy of Acute Myeloid Leukemia in Elderly Patients (QOL-ONE Trans-2). Int J Mol Sci 2024; 25:11646. [PMID: 39519198 PMCID: PMC11545844 DOI: 10.3390/ijms252111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The achievement of complete remission (CR) is crucial for acute myeloid leukemia (AML) patients undertaking curative therapy, but relapse often occurs within months, highlighting the need for strategies to prolong disease-free survival (DFS). Our phase III study compared the efficacy and safety of azacitidine (AZA) to best supportive care (BSC) in elderly AML patients who achieved CR following intensive induction and consolidation therapy. This ancillary study (QOL-ONE Trans-2) evaluated biological changes in bone marrow using Next-Generation Sequencing (NGS). We analyzed baseline, randomization, and 6-month post-remission samples from 24 patients (median age of 71 and 12 males). High-throughput NGS targeted 350 myeloid malignancy-related genes, considering variants with a variant allele frequency ≥ 4%. At diagnosis, all patients had 5 to 17 (median = 10) mutations, with DNMT3A (42%), NPM1 (33%), and TET2 (33%) being most frequent. FANCA mutations in four patients were linked to a higher relapse risk (HR = 4.96, p = 0.02) for DFS at both 2 and 5 years. Further HLA-specific NGS analyses are ongoing to confirm these results and their therapeutic implications.
Collapse
Affiliation(s)
- Esther Natalie Oliva
- Hematology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio di Calabria, Italy; (C.A.); (S.B.)
| | - Maria Cuzzola
- UOSD Tipizzazione Tissutale, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio di Calabria, Italy;
| | - Matteo Della Porta
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (M.D.P.); (M.Z.); (S.D.)
| | - Anna Candoni
- Clinica Ematologica, ASUFC, University of Udine, 33100 Udine, Italy; (A.C.); (M.E.Z.)
| | - Prassede Salutari
- Dipartimento Oncologico-Ematologico Ospedale Civile Spirito Santo Pescara, 65124 Pescara, Italy;
| | - Giuseppe A. Palumbo
- Dipartimento di Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Gianluigi Reda
- Hematology Department, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
| | - Giuseppe Iannì
- Dielnet SRL, CRO Reggio Calabria, 89124 Reggio Calabria, Italy;
| | - Matteo Zampini
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (M.D.P.); (M.Z.); (S.D.)
| | - Saverio D’Amico
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (M.D.P.); (M.Z.); (S.D.)
| | - Giovanni Tripepi
- IFC-CNR Institute of Clinical Physiology Reggio Calabria, 89124 Reggio Calabria, Italy;
| | - Debora Capelli
- Clinica di Ematologia Azienda Ospedaliera Universitaria, Ospedali Riuniti di Ancona, 60126 Ancona, Italy;
| | - Caterina Alati
- Hematology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio di Calabria, Italy; (C.A.); (S.B.)
| | - Maria Concetta Cannatà
- UOSD Medical Genetics, Great Metropolitan Hospital, 89124 Reggio Calabria, Italy; (M.C.C.); (C.M.)
| | | | - Bianca Serio
- Dipartimento di Oncoematologia, AOU San Giovanni di Dio e Ruggi D’Aragona, 84125 Salerno, Italy;
| | - Santina Barillà
- Hematology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio di Calabria, Italy; (C.A.); (S.B.)
| | - Pellegrino Musto
- Department of Precision and Translational Medicine with Ionian Area, “Aldo Moro” University School of Medicine, 70121 Bari, Italy;
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, 70124 Bari, Italy
| | - Ernesto Vigna
- UO di Ematologia, Ospedale L’Annunziata, 87100 Cosenza, Italy;
| | - Lorella Maria Antonia Melillo
- UOC Ematologia e Trapianto di Cellule Staminali Emopoietiche, Policlinico Foggia Ospedaliero-Universitario, 71122 Foggia, Italy;
| | - Rocco Tripepi
- Nephology, Dialysis and Transplantation Unit-GOM “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy;
| | - Maria Elena Zannier
- Clinica Ematologica, ASUFC, University of Udine, 33100 Udine, Italy; (A.C.); (M.E.Z.)
| | - Yasuhito Nannya
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-0071, Japan;
| | - Seishi Ogawa
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8303, Japan;
| | - Corrado Mammì
- UOSD Medical Genetics, Great Metropolitan Hospital, 89124 Reggio Calabria, Italy; (M.C.C.); (C.M.)
| |
Collapse
|
14
|
Aydin S, Schmitz J, Dellacasa CM, Dogliotti I, Giaccone L, Busca A. WT1 Expression Is Associated with Poor Overall Survival after Azacytidine and DLI in a Cohort of Adult AML and MDS Patients. Cancers (Basel) 2024; 16:3070. [PMID: 39272929 PMCID: PMC11394520 DOI: 10.3390/cancers16173070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction: Post-transplant relapse of acute myeloid leukemia and myelodysplastic syndrome faces restricted effective salvage regimens. We retrospectively analyzed the use of Azacitidine-donor lymphocyte infusion (AZA/DLI) in this setting. Furthermore, data on bone marrow Wilms tumor gene 1 (WT1) expression were collected. Methods: A Cox proportional hazards model, an outcome-oriented approach for the lowest smoothed plot of the martingale residuals, was performed for the cut-point determination of the respective WT1 expression levels. Finally, a Cox proportional hazards model investigated the association of overall survival (OS) with predictors. Results: An overall response of 41.4% with a median duration of 11.9 months for stable disease and 19.5 months for complete response (CR) patients was achieved. The disease risk index (DRI) high-/very high-risk patients had a shorter OS of 4.4 months than intermediate-risk patients, with 14.5 months, p = 0.007. At transplant, WT1-overexpressing patients (>150 copies) had a shorter median OS of 5.3 months than low-WT1-expressing ones, with 13.5 months, p = 0.024. Furthermore, patients with ≤1000 WT1 copies at relapse had a significantly longer OS with 15.3 months than patients overexpressing WT1, with 4.4 months, p = 0.0002. Conclusions: DRI and WT1 expression associate significantly with OS after AZA/DLI. Hence, WT1 may represent an MRD marker, especially in CR patients at high risk.
Collapse
Affiliation(s)
- Semra Aydin
- Department of Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital of Bonn, 53127 Bonn, Germany
- Division of Hematology, Department of Oncology, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Jennifer Schmitz
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Chiara M Dellacasa
- Stem Cell Transplant Center, Citta della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Irene Dogliotti
- Stem Cell Transplant Center, Hematology U, Città della Salute e della Scienza Turin, 10126 Turin, Italy
| | - Luisa Giaccone
- Stem Cell Transplant Center, Hematology U, Città della Salute e della Scienza Turin, 10126 Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Alessandro Busca
- Stem Cell Transplant Center, Citta della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
15
|
Wu CJ, Livak F, Ashwell JD. The histone methyltransferase KMT2D maintains cellular glucocorticoid responsiveness by shielding the glucocorticoid receptor from degradation. J Biol Chem 2024; 300:107581. [PMID: 39025450 PMCID: PMC11350265 DOI: 10.1016/j.jbc.2024.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Because of their ability to induce lymphocyte apoptosis, glucocorticoids (GC) are widely used to treat hematological malignancies such as lymphomas and multiple myeloma. Their effectiveness is often limited, however, due to the development of glucocorticoid resistance by a variety of molecular mechanisms. Here we performed an unbiased genome-wide CRISPR screen with the human T-cell leukemia cell line Jurkat to find previously unidentified genes required for GC-induced apoptosis. One such gene was KMT2D (also known as MLL2 or MLL4), which encodes a histone lysine methyltransferase whose mutations are associated with a variety of cancers, blood malignancies in particular, and are considered markers of poor prognosis. Knockout of KMT2D by CRISPR/Cas9 gene editing in Jurkat and several multiple myeloma cell lines downregulated GR protein expression. Surprisingly, this was not due to a reduction in GR transcripts, but rather to a decrease in the protein's half-life, primarily due to proteasomal degradation. Reconstitution of KMT2D expression restored GR levels. In contrast to the known ability of KMT2D to control gene transcription through covalent histone methylation, KMT2D-mediated upregulation of GR levels did not require its methyltransferase activity. Co-immunoprecipitation and proximity ligation assays found constitutive binding of KMT2D to the GR, which was enhanced in the presence of GC. These observations reveal KMT2D to be essential for the stabilization of cellular GR levels, and suggest a possible mechanism by which KMT2D mutations may lead to GC resistance in some malignancies.
Collapse
Affiliation(s)
- Chuan-Jin Wu
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ferenc Livak
- Laboratory of Genome Integrity Flow Cytometry Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
16
|
Kassner J, Abdellatif B, Yamshon S, Monge J, Kaner J. Current landscape of CD3 bispecific antibodies in hematologic malignancies. Trends Cancer 2024; 10:708-732. [PMID: 38987076 DOI: 10.1016/j.trecan.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Over the past 30 years the incorporation of monoclonal antibody (mAb) treatments into the management of hematologic malignancies has led to significant improvements in patient outcomes. The key limitation of mAb treatments is the necessity for target antigen presentation on major histocompatibility complex (MHC) and costimulatory molecules to elicit a cytotoxic immune response. With the advent of bispecific antibodies (BsAbs), these limitations can be overcome through direct stimulation of cytotoxic T cells, thus limiting tumor cell evasion. BsAbs are rapidly being incorporated into treatment regimens for hematologic malignancies, and there are now seven FDA-approved treatments in this class, six of which have been approved in the past year. In this review we describe the function, complications, and clinical trial data available for CD3 BsAbs in the treatment of lymphoma, myeloma, and leukemia.
Collapse
Affiliation(s)
- Joshua Kassner
- Department of Internal Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY, USA; Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Samuel Yamshon
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jorge Monge
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Justin Kaner
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Schwede M, Jahn K, Kuipers J, Miles LA, Bowman RL, Robinson T, Furudate K, Uryu H, Tanaka T, Sasaki Y, Ediriwickrema A, Benard B, Gentles AJ, Levine R, Beerenwinkel N, Takahashi K, Majeti R. Mutation order in acute myeloid leukemia identifies uncommon patterns of evolution and illuminates phenotypic heterogeneity. Leukemia 2024; 38:1501-1510. [PMID: 38467769 PMCID: PMC11250774 DOI: 10.1038/s41375-024-02211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Acute myeloid leukemia (AML) has a poor prognosis and a heterogeneous mutation landscape. Although common mutations are well-studied, little research has characterized how the sequence of mutations relates to clinical features. Using published, single-cell DNA sequencing data from three institutions, we compared clonal evolution patterns in AML to patient characteristics, disease phenotype, and outcomes. Mutation trees, which represent the order of select mutations, were created for 207 patients from targeted panel sequencing data using 1 639 162 cells, 823 mutations, and 275 samples. In 224 distinct orderings of mutated genes, mutations related to DNA methylation typically preceded those related to cell signaling, but signaling-first cases did occur, and had higher peripheral cell counts, increased signaling mutation homozygosity, and younger patient age. Serial sample analysis suggested that NPM1 and DNA methylation mutations provide an advantage to signaling mutations in AML. Interestingly, WT1 mutation evolution shared features with signaling mutations, such as WT1-early being proliferative and occurring in younger individuals, trends that remained in multivariable regression. Some mutation orderings had a worse prognosis, but this was mediated by unfavorable mutations, not mutation order. These findings add a dimension to the mutation landscape of AML, identifying uncommon patterns of leukemogenesis and shedding light on heterogeneous phenotypes.
Collapse
Affiliation(s)
- Matthew Schwede
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, CA, USA
| | - Katharina Jahn
- Biomedical Data Science, Institute for Computer Science, Free University of Berlin, Berlin, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Linde A Miles
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Robert L Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Troy Robinson
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ken Furudate
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hidetaka Uryu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomoyuki Tanaka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuya Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Asiri Ediriwickrema
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooks Benard
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Andrew J Gentles
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - Ross Levine
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
18
|
Carey-Smith SL, Kotecha RS, Cheung LC, Malinge S. Insights into the Clinical, Biological and Therapeutic Impact of Copy Number Alteration in Cancer. Int J Mol Sci 2024; 25:6815. [PMID: 38999925 PMCID: PMC11241182 DOI: 10.3390/ijms25136815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Copy number alterations (CNAs), resulting from the gain or loss of genetic material from as little as 50 base pairs or as big as entire chromosome(s), have been associated with many congenital diseases, de novo syndromes and cancer. It is established that CNAs disturb the dosage of genomic regions including enhancers/promoters, long non-coding RNA and gene(s) among others, ultimately leading to an altered balance of key cellular functions. In cancer, CNAs have been associated with almost all steps of the disease: predisposition, initiation, development, maintenance, response to treatment, resistance, and relapse. Therefore, understanding how specific CNAs contribute to tumourigenesis may provide prognostic insight and ultimately lead to the development of new therapeutic approaches to improve patient outcomes. In this review, we provide a snapshot of what is currently known about CNAs and cancer, incorporating topics regarding their detection, clinical impact, origin, and nature, and discuss the integration of innovative genetic engineering strategies, to highlight the potential for targeting CNAs using novel, dosage-sensitive and less toxic therapies for CNA-driven cancer.
Collapse
Affiliation(s)
- Shannon L. Carey-Smith
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Sébastien Malinge
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
19
|
Sánchez-Guixé M, Muiños F, Pinheiro-Santin M, González-Huici V, Rodriguez-Hernandez CJ, Avgustinova A, Lavarino C, González-Pérez A, Mora J, López-Bigas N. Origins of Second Malignancies in Children and Mutational Footprint of Chemotherapy in Normal Tissues. Cancer Discov 2024; 14:953-964. [PMID: 38501975 PMCID: PMC11145171 DOI: 10.1158/2159-8290.cd-23-1186] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Pediatric cancers are rare diseases, and children without known germline predisposing conditions who develop a second malignancy during developmental ages are extremely rare. We present four such clinical cases and, through whole-genome and error-correcting ultra-deep duplex sequencing of tumor and normal samples, we explored the origin of the second malignancy in four children, uncovering different routes of development. The exposure to cytotoxic therapies was linked to the emergence of a secondary acute myeloid leukemia. A common somatic mutation acquired early during embryonic development was the driver of two solid malignancies in another child. In two cases, the two tumors developed from completely independent clones diverging during embryogenesis. Importantly, we demonstrate that platinum-based therapies contributed at least one order of magnitude more mutations per day of exposure than aging to normal tissues in these children. SIGNIFICANCE Using whole-genome and error-correcting ultra-deep duplex sequencing, we uncover different origins for second neoplasms in four children. We also uncover the presence of platinum-related mutations across 10 normal tissues of exposed individuals, highlighting the impact that the use of cytotoxic therapies may have on cancer survivors. See related commentary by Pacyna and Nangalia, p. 900. This article is featured in Selected Articles from This Issue, p. 897.
Collapse
Affiliation(s)
- Mònica Sánchez-Guixé
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Morena Pinheiro-Santin
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Víctor González-Huici
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Alexandra Avgustinova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Cinzia Lavarino
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Abel González-Pérez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaume Mora
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
20
|
Kim N, Hahn S, Choi YJ, Cho H, Chung H, Jang JE, Lyu CJ, Lee ST, Choi JR, Cheong JW, Shin S. Comprehensive insights into AML relapse: genetic mutations, clonal evolution, and clinical outcomes. Cancer Cell Int 2024; 24:174. [PMID: 38764048 PMCID: PMC11103850 DOI: 10.1186/s12935-024-03368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex hematologic malignancy characterized by uncontrolled proliferation of myeloid precursor cells within bone marrow. Despite advances in understanding of its molecular underpinnings, AML remains a therapeutic challenge due to its high relapse rate and clonal evolution. METHODS In this retrospective study, we analyzed data from 24 AML patients diagnosed at a single institution between January 2017 and August 2023. Comprehensive genetic analyses, including chromosomal karyotyping, next-generation sequencing, and gene fusion assays, were performed on bone marrow samples obtained at initial diagnosis and relapse. Clinical data, treatment regimens, and patient outcomes were also documented. RESULTS Mutations in core genes of FLT3, NPM1, DNMT3A, and IDH2 were frequently discovered in diagnostic sample and remained in relapse sample. FLT3-ITD, TP53, KIT, RUNX1, and WT1 mutation were acquired at relapse in one patient each. Gene fusion assays revealed stable patterns, while chromosomal karyotype analyses indicated a greater diversity of mutations in relapsed patients. Clonal evolution patterns varied, with some cases showing linear or branching evolution and others exhibiting no substantial change in core mutations between diagnosis and relapse. CONCLUSIONS Our study integrates karyotype, gene rearrangements, and gene mutation results to provide a further understanding of AML heterogeneity and evolution. We demonstrate the clinical relevance of specific mutations and clonal evolution patterns, emphasizing the need for personalized therapies and measurable residual disease monitoring in AML management. By bridging the gap between genetics and clinical outcome, we move closer to tailored AML therapies and improved patient prognoses.
Collapse
Affiliation(s)
- Namsoo Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Seungmin Hahn
- Department of Pediatric Hematology-Oncology, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Jeong Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hyunsoo Cho
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Haerim Chung
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Ji Eun Jang
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Chuhl Joo Lyu
- Department of Pediatric Hematology-Oncology, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- Dxome Co. Ltd, Seongnam-si, Gyeonggi-do, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- Dxome Co. Ltd, Seongnam-si, Gyeonggi-do, Korea
| | - June-Won Cheong
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
21
|
Baranwal A, Basmaci R, He R, Viswanatha D, Greipp P, Murthy HS, Foran J, Palmer J, Hogan WJ, Litzow MR, Hefazi M, Mangaonkar A, Shah MV, Al-Kali A, Alkhateeb HB. Genetic features and outcomes of allogeneic transplantation in patients with WT1-mutated myeloid neoplasms. Blood Adv 2024; 8:562-570. [PMID: 38011614 PMCID: PMC10837491 DOI: 10.1182/bloodadvances.2023010960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/05/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Affiliation(s)
| | - Rami Basmaci
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Rong He
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - David Viswanatha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Patricia Greipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - James Foran
- Division of Hematology, Mayo Clinic, Jacksonville, FL
| | | | | | | | | | | | | | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
22
|
Torban E, Goodyer P. Wilms' tumor gene 1: lessons from the interface between kidney development and cancer. Am J Physiol Renal Physiol 2024; 326:F3-F19. [PMID: 37916284 DOI: 10.1152/ajprenal.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
In 1990, mutations of the Wilms' tumor-1 gene (WT1), encoding a transcription factor in the embryonic kidney, were found in 10-15% of Wilms' tumors; germline WT1 mutations were associated with hereditary syndromes involving glomerular and reproductive tract dysplasia. For more than three decades, these discoveries prompted investigators to explore the embryonic role of WT1 and the mechanisms by which loss of WT1 leads to malignant transformation. Here, we discuss how alternative splicing of WT1 generates isoforms that act in a context-specific manner to activate or repress target gene transcription. WT1 also regulates posttranscriptional regulation, alters the epigenetic landscape, and activates miRNA expression. WT1 functions at multiple stages of kidney development, including the transition from resting stem cells to committed nephron progenitor, which it primes to respond to WNT9b signals from the ureteric bud. WT1 then drives nephrogenesis by activating WNT4 expression and directing the development of glomerular podocytes. We review the WT1 mutations that account for Denys-Drash syndrome, Frasier syndrome, and WAGR syndrome. Although the WT1 story began with Wilms' tumors, an understanding of the pathways that link aberrant kidney development to malignant transformation still has some important gaps. Loss of WT1 in nephrogenic rests may leave these premalignant clones with inadequate DNA repair enzymes and may disturb the epigenetic landscape. Yet none of these observations provide a complete picture of Wilms' tumor pathogenesis. It appears that the WT1 odyssey is unfinished and still holds a great deal of untilled ground to be explored.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University and Research Institute of McGill University Health Center, Montreal, Quebec, Canada
| | - Paul Goodyer
- Department of Human Genetics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Mojarad BA, Crees ZD, Schroeder MC, Xiang Z, Vader J, Sina J, Jacoby M, Frater JL, Duncavage EJ, Spencer DH, Lavine K, Neidich JA, Amarillo I. Clinical whole-genome sequencing and FISH identify two different fusion partners for NUP98 in a patient with acute myeloid leukemia: A case report. Cancer Genet 2024; 280-281:1-5. [PMID: 38056049 DOI: 10.1016/j.cancergen.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/15/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Only rare cases of acute myeloid leukemia (AML) have been shown to harbor a t(8;11)(p11.2;p15.4). This translocation is believed to involve the fusion of NSD3 or FGFR1 with NUP98; however, apart from targeted mRNA quantitative PCR analysis, no molecular approaches have been utilized to define the chimeric fusions present in these rare cases. CASE PRESENTATION Here we present the case of a 51-year-old female with AML with myelodysplastic-related morphologic changes, 13q deletion and t(8;11), where initial fluorescence in situ hybridization (FISH) assays were consistent with the presence of NUP98 and FGFR1 rearrangements, and suggestive of NUP98/FGFR1 fusion. Using a streamlined clinical whole-genome sequencing approach, we resolved the breakpoints of this translocation to intron 4 of NSD3 and intron 12 of NUP98, indicating NUP98/NSD3 rearrangement as the likely underlying aberration. Furthermore, our approach identified small variants in WT1 and STAG2, as well as an interstitial deletion on the short arm of chromosome 12, which were cryptic in G-banded chromosomes. CONCLUSIONS NUP98 fusions in acute leukemia are predictive of poor prognosis. The associated fusion partner and the presence of co-occurring mutations, such as WT1, further refine this prognosis with potential clinical implications. Using a clinical whole-genome sequencing analysis, we resolved t(8;11) breakpoints to NSD3 and NUP98, ruling out the involvement of FGFR1 suggested by FISH while also identifying multiple chromosomal and sequence level aberrations.
Collapse
Affiliation(s)
- Bahareh A Mojarad
- Cytogenetics and Molecular Pathology Lab, Division of Lab and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, MO, USA.
| | - Zachary D Crees
- Division of Oncology, Department of Medicine, Washington University School of Medicine in Saint Louis, MO, USA
| | - Molly C Schroeder
- Cytogenetics and Molecular Pathology Lab, Division of Lab and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, MO, USA
| | - Zhifu Xiang
- Division of Oncology, Department of Medicine, Washington University School of Medicine in Saint Louis, MO, USA
| | - Justin Vader
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine in Saint Louis, MO, USA
| | - Jason Sina
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, MO, USA
| | - Meagan Jacoby
- Division of Oncology, Department of Medicine, Washington University School of Medicine in Saint Louis, MO, USA
| | - John L Frater
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, MO, USA
| | - Eric J Duncavage
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, MO, USA
| | - David H Spencer
- Division of Oncology, Department of Medicine, Washington University School of Medicine in Saint Louis, MO, USA
| | - Kory Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine in Saint Louis, MO, USA
| | - Julie A Neidich
- Cytogenetics and Molecular Pathology Lab, Division of Lab and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine in Saint Louis, MO, USA
| | - Ina Amarillo
- Cytogenetics and Molecular Pathology Lab, Division of Lab and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, MO, USA
| |
Collapse
|
24
|
Mansoor A, Akhter A, Shabani-Rad MT, Deschenes J, Yilmaz A, Trpkov K, Stewart D. Primary testicular lymphoma demonstrates overexpression of the Wilms tumor 1 gene and different mRNA and miRNA expression profiles compared to nodal diffuse large B-cell lymphoma. Hematol Oncol 2023; 41:828-837. [PMID: 37291944 DOI: 10.1002/hon.3190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/30/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) shows a high degree of clinical and biological heterogeneity. Primary testicular lymphoma (PTL) is an extranodal variant of DLBCL associated with a higher risk of recurrence, including contralateral testicles and central nervous system sanctuary sites. Several molecular aberrations, including somatic mutation of MYD88, CD79B, and upregulation of NF-kB, PDL-1, and PDL-2, are thought to contribute to the pathogenesis and poor prognosis of PTL. However, additional biomarkers are needed that may improve the prognosis and help understand the PTL biology and lead to new therapeutic targets. RNA from diagnostic tissue biopsies of the PTL-ABC subtype and matched nodal DLBCL-ABC subtype patients was evaluated by mRNA and miRNA expression. Screening of 730 essential oncogenic genes was performed, and their epigenetic connections were examined using the nCounter PAN-cancer pathway, and Human miRNA assays with the nCounter System (NanoString Technologies). PTL and nodal DLBCL patients were comparable in age, gender, and putative cell of origin (p > 0.05). Wilms tumor 1 (WT1) expression in PTL exceeded that in nodal DLBCL (>6-fold; p = 0.01, FDR <0.01) and WT1 associated pathway genes THBS4, PTPN5, PLA2G2A, and IFNA17 were upregulated in PTL (>2.0-fold, p < 0.01, FDR <0.01). Additionally, miRNAs targeting WT1 (hsa15a-5p, hsa-miR-16-5p, has-miR-361-5p, has-miR-27b-3p, has-miR-199a-5p, has-miR-199b-5p, has-miR-132-3p, and hsa-miR-128-3p) showed higher expression in PTL compared to nodal DLBCL (≥2.0-fold; FDR 0.01). Lower expression of BMP7, LAMB3, GAS1, MMP7, and LAMC2 (>2.0-fold, p < 0.01) was observed in PTL compared to nodal DLBCL. This research revealed higher WT1 expression in PTL relative to nodal DLBCL, suggesting that a specific miRNA subset may target WT1 expression and impact the PI3k/Akt pathway in PTL. Further investigation is needed to explore WT1's biological role in PTL and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Adnan Mansoor
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Ariz Akhter
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Meer-Taher Shabani-Rad
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Jean Deschenes
- Department of Laboratory Medicine & Pathology, University of Alberta, Cross Cancer Institute and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Asli Yilmaz
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Kiril Trpkov
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Douglas Stewart
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Wu J, Yan H, Xiang C. Wilms' tumor gene 1 in hematological malignancies: friend or foe? Hematology 2023; 28:2254557. [PMID: 37668240 DOI: 10.1080/16078454.2023.2254557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
Wilms' tumor gene 1 (WT1) is a transcription and post-translational factor that has a crucial role in the biological and pathological processes of several human malignancies. For hematological malignancies, WT1 overexpression or mutation has been found in leukemia and myelodysplastic syndrome. About 70-90% of acute myeloid leukemia patients showed WT1 overexpression, and 6-15% of patients carried WT1 mutations. WT1 has been widely regarded as a marker for monitoring minimal residual disease in acute myeloid leukemia. Many researchers were interested in developing WT1 targeting therapy. In this review, we summarized biological and pathological functions, correlation with other genes and clinical features, prognosis value and targeting therapy of WT1 in hematological features.
Collapse
Affiliation(s)
- Jie Wu
- Department of Emergency Medicine, The Fifth People's Hospital of Huai'an and Huai'an Hospital Affiliated to Yangzhou University, Huai'an, People's Republic of China
| | - Hui Yan
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Chunli Xiang
- Department of General Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, People's Republic of China
| |
Collapse
|
26
|
Giannakopoulou E, Lehander M, Virding Culleton S, Yang W, Li Y, Karpanen T, Yoshizato T, Rustad EH, Nielsen MM, Bollineni RC, Tran TT, Delic-Sarac M, Gjerdingen TJ, Douvlataniotis K, Laos M, Ali M, Hillen A, Mazzi S, Chin DWL, Mehta A, Holm JS, Bentzen AK, Bill M, Griffioen M, Gedde-Dahl T, Lehmann S, Jacobsen SEW, Woll PS, Olweus J. A T cell receptor targeting a recurrent driver mutation in FLT3 mediates elimination of primary human acute myeloid leukemia in vivo. NATURE CANCER 2023; 4:1474-1490. [PMID: 37783807 PMCID: PMC10597840 DOI: 10.1038/s43018-023-00642-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
Acute myeloid leukemia (AML), the most frequent leukemia in adults, is driven by recurrent somatically acquired genetic lesions in a restricted number of genes. Treatment with tyrosine kinase inhibitors has demonstrated that targeting of prevalent FMS-related receptor tyrosine kinase 3 (FLT3) gain-of-function mutations can provide significant survival benefits for patients, although the efficacy of FLT3 inhibitors in eliminating FLT3-mutated clones is variable. We identified a T cell receptor (TCR) reactive to the recurrent D835Y driver mutation in the FLT3 tyrosine kinase domain (TCRFLT3D/Y). TCRFLT3D/Y-redirected T cells selectively eliminated primary human AML cells harboring the FLT3D835Y mutation in vitro and in vivo. TCRFLT3D/Y cells rejected both CD34+ and CD34- AML in mice engrafted with primary leukemia from patients, reaching minimal residual disease-negative levels, and eliminated primary CD34+ AML leukemia-propagating cells in vivo. Thus, T cells targeting a single shared mutation can provide efficient immunotherapy toward selective elimination of clonally involved primary AML cells in vivo.
Collapse
Grants
- G0801073 Medical Research Council
- MC_UU_00016/5 Medical Research Council
- MC_UU_12009/5 Medical Research Council
- South-Eastern Regional Health Authority Norway, the Research Council of Norway, the Norwegian Cancer Society, the Norwegian Childhood Cancer Foundation, Stiftelsen Kristian Gerhard Jebsen, European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 865805), the University of Oslo and Oslo University Hospital and Novo Nordisk Foundation.
- Knut and Alice Wallenberg Foundation, The Swedish Research Council, Tobias Foundation, Torsten Söderberg Foundation, Center for Innovative Medicine (CIMED) at Karolinska Institutet, and The UK Medical Research Council
- Technical University of Denmark (DTU)
- Aarhus University Hospital
- Leiden University Medical Center
- Oslo University Hospital
- Karolinska University Hospital
- University of Oslo and Oslo University Hospital
Collapse
Affiliation(s)
- Eirini Giannakopoulou
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Madeleine Lehander
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stina Virding Culleton
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Weiwen Yang
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yingqian Li
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Terhi Karpanen
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Tetsuichi Yoshizato
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Even H Rustad
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Morten Milek Nielsen
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ravi Chand Bollineni
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trung T Tran
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Marina Delic-Sarac
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thea Johanne Gjerdingen
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Karolos Douvlataniotis
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maarja Laos
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Muhammad Ali
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Amy Hillen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Stefania Mazzi
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Desmond Wai Loon Chin
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Adi Mehta
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jeppe Sejerø Holm
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Amalie Kai Bentzen
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marie Bill
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tobias Gedde-Dahl
- Hematology Department, Section for Stem Cell Transplantation, Oslo University Hospital, Rikshospitalet, Clinic for Cancer Medicine, Oslo, Norway
| | - Sören Lehmann
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Sten Eirik W Jacobsen
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Karolinska University Hospital, Stockholm, Sweden.
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Petter S Woll
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Johanna Olweus
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
27
|
Niktoreh N, Weber L, Walter C, Karimifard M, Hoffmeister LM, Breiter H, Thivakaran A, Soldierer M, Drexler HG, Schaal H, Sendker S, Reinhardt D, Schneider M, Hanenberg H. Understanding WT1 Alterations and Expression Profiles in Hematological Malignancies. Cancers (Basel) 2023; 15:3491. [PMID: 37444601 DOI: 10.3390/cancers15133491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
WT1 is a true chameleon, both acting as an oncogene and tumor suppressor. As its exact role in leukemogenesis is still ambiguous, research with model systems representing natural conditions surrounding the genetic alterations in WT1 is necessary. In a cohort of 59 leukemia/lymphoma cell lines, we showed aberrant expression for WT1 mRNA, which does not always translate into protein levels. We also analyzed the expression pattern of the four major WT1 protein isoforms in the cell lines and primary AML blasts with/without WT1 mutations and demonstrated that the presence of mutations does not influence these patterns. By introduction of key intronic and exonic sequences of WT1 into a lentiviral expression vector, we developed a unique tool that can stably overexpress the four WT1 isoforms at their naturally occurring tissue-dependent ratio. To develop better cellular model systems for WT1, we sequenced large parts of its gene locus and also other important myeloid risk factor genes and revealed previously unknown alterations. Functionally, inhibition of the nonsense-mediated mRNA decay machinery revealed that under natural conditions, the mutated WT1 alleles go through a robust degradation. These results offer new insights and model systems regarding the characteristics of WT1 in leukemia and lymphoma.
Collapse
Affiliation(s)
- Naghmeh Niktoreh
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lisa Weber
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christiane Walter
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Mahshad Karimifard
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lina Marie Hoffmeister
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hannah Breiter
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Aniththa Thivakaran
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Maren Soldierer
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hans Günther Drexler
- Faculty of Life Sciences, Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Stephanie Sendker
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Markus Schneider
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Al-Rawashde FA, Al-Sanabra OM, Alqaraleh M, Jaradat AQ, Al-Wajeeh AS, Johan MF, Wan Taib WR, Ismail I, Al-Jamal HAN. Thymoquinone Enhances Apoptosis of K562 Chronic Myeloid Leukemia Cells through Hypomethylation of SHP-1 and Inhibition of JAK/STAT Signaling Pathway. Pharmaceuticals (Basel) 2023; 16:884. [PMID: 37375831 DOI: 10.3390/ph16060884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The epigenetic silencing of tumor suppressor genes (TSGs) is critical in the development of chronic myeloid leukemia (CML). SHP-1 functions as a TSG and negatively regulates JAK/STAT signaling. Enhancement of SHP-1 expression by demethylation provides molecular targets for the treatment of various cancers. Thymoquinone (TQ), a constituent of Nigella sativa seeds, has shown anti-cancer activities in various cancers. However, TQs effect on methylation is not fully clear. Therefore, the aim of this study is to assess TQs ability to enhance the expression of SHP-1 through modifying DNA methylation in K562 CML cells. The activities of TQ on cell cycle progression and apoptosis were evaluated using a fluorometric-red cell cycle assay and Annexin V-FITC/PI, respectively. The methylation status of SHP-1 was studied by pyrosequencing analysis. The expression of SHP-1, TET2, WT1, DNMT1, DNMT3A, and DNMT3B was determined using RT-qPCR. The protein phosphorylation of STAT3, STAT5, and JAK2 was assessed using Jess Western analysis. TQ significantly downregulated the DNMT1 gene, DNMT3A gene, and DNMT3B gene and upregulated the WT1 gene and TET2 gene. This led to hypomethylation and restoration of SHP-1 expression, resulting in inhibition of JAK/STAT signaling, induction of apoptosis, and cell cycle arrest. The observed findings imply that TQ promotes apoptosis and cell cycle arrest in CML cells by inhibiting JAK/STAT signaling via restoration of the expression of JAK/STAT-negative regulator genes.
Collapse
Affiliation(s)
| | - Ola M Al-Sanabra
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Moath Alqaraleh
- Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ahmad Q Jaradat
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak 61710, Jordan
| | | | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu 21300, Malaysia
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu 21300, Malaysia
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu 21300, Malaysia
| |
Collapse
|
29
|
Shao J, Shah S, Ganguly S, Zu Y, He C, Li Z. Classification of Acute Myeloid Leukemia by Cell-Free DNA 5-Hydroxymethylcytosine. Genes (Basel) 2023; 14:1180. [PMID: 37372359 PMCID: PMC10298116 DOI: 10.3390/genes14061180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Epigenetic abnormality is a hallmark of acute myeloid leukemia (AML), and aberrant 5-hydroxymethylcytosine (5hmC) levels are commonly observed in AML patients. As epigenetic subgroups of AML correlate with different clinical outcomes, we investigated whether plasma cell-free DNA (cfDNA) 5hmC could categorize AML patients into subtypes. We profiled the genome-wide landscape of 5hmC in plasma cfDNA from 54 AML patients. Using an unbiased clustering approach, we found that 5hmC levels in genomic regions with a histone mark H3K4me3 classified AML samples into three distinct clusters that were significantly associated with leukemia burden and survival. Cluster 3 showed the highest leukemia burden, the shortest overall survival of patients, and the lowest 5hmC levels in the TET2 promoter. 5hmC levels in the TET2 promoter could represent TET2 activity resulting from mutations in DNA demethylation genes and other factors. The novel genes and key signaling pathways associated with aberrant 5hmC patterns could add to our understanding of DNA hydroxymethylation and highlight the potential therapeutic targets in AML. Our results identify a novel 5hmC-based AML classification system and further underscore cfDNA 5hmC as a highly sensitive marker for AML.
Collapse
Affiliation(s)
- Jianming Shao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Shilpan Shah
- Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Siddhartha Ganguly
- Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
- Weill Cornell Medical College, New York, NY 10065, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Weill Cornell Medical College, New York, NY 10065, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Chuan He
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Zejuan Li
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Weill Cornell Medical College, New York, NY 10065, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
30
|
Turkalj S, Jakobsen NA, Groom A, Metzner M, Riva SG, Gür ER, Usukhbayar B, Salazar MA, Hentges LD, Mickute G, Clark K, Sopp P, Davies JOJ, Hughes JR, Vyas P. GTAC enables parallel genotyping of multiple genomic loci with chromatin accessibility profiling in single cells. Cell Stem Cell 2023; 30:722-740.e11. [PMID: 37146586 DOI: 10.1016/j.stem.2023.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
Understanding clonal evolution and cancer development requires experimental approaches for characterizing the consequences of somatic mutations on gene regulation. However, no methods currently exist that efficiently link high-content chromatin accessibility with high-confidence genotyping in single cells. To address this, we developed Genotyping with the Assay for Transposase-Accessible Chromatin (GTAC), enabling accurate mutation detection at multiple amplified loci, coupled with robust chromatin accessibility readout. We applied GTAC to primary acute myeloid leukemia, obtaining high-quality chromatin accessibility profiles and clonal identities for multiple mutations in 88% of cells. We traced chromatin variation throughout clonal evolution, showing the restriction of different clones to distinct differentiation stages. Furthermore, we identified switches in transcription factor motif accessibility associated with a specific combination of driver mutations, which biased transformed progenitors toward a leukemia stem cell-like chromatin state. GTAC is a powerful tool to study clonal heterogeneity across a wide spectrum of pre-malignant and neoplastic conditions.
Collapse
Affiliation(s)
- Sven Turkalj
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Niels Asger Jakobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Angus Groom
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Marlen Metzner
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Simone G Riva
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - E Ravza Gür
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Batchimeg Usukhbayar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Mirian Angulo Salazar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Lance D Hentges
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Gerda Mickute
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Kevin Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
31
|
Duployez N, Vasseur L, Kim R, Largeaud L, Passet M, L'Haridon A, Lemaire P, Fenwarth L, Geffroy S, Helevaut N, Celli-Lebras K, Adès L, Lebon D, Berthon C, Marceau-Renaut A, Cheok M, Lambert J, Récher C, Raffoux E, Micol JB, Pigneux A, Gardin C, Delabesse E, Soulier J, Hunault M, Dombret H, Itzykson R, Clappier E, Preudhomme C. UBTF tandem duplications define a distinct subtype of adult de novo acute myeloid leukemia. Leukemia 2023:10.1038/s41375-023-01906-z. [PMID: 37085611 DOI: 10.1038/s41375-023-01906-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Tandem duplications (TDs) of the UBTF gene have been recently described as a recurrent alteration in pediatric acute myeloid leukemia (AML). Here, by screening 1946 newly diagnosed adult AML, we found that UBTF-TDs occur in about 3% of patients aged 18-60 years, in a mutually exclusive pattern with other known AML subtype-defining alterations. The characteristics of 59 adults with UBTF-TD AML included young age (median 37 years), low bone marrow (BM) blast infiltration (median 25%), and high rates of WT1 mutations (61%), FLT3-ITDs (51%) and trisomy 8 (29%). BM morphology frequently demonstrates dysmyelopoiesis albeit modulated by the co-occurrence of FLT3-ITD. UBTF-TD patients have lower complete remission (CR) rates (57% after 1 course and 76% after 2 courses of intensive chemotherapy [ICT]) than UBTF-wild-type patients. In patients enrolled in the ALFA-0702 study (n = 614 patients including 21 with UBTF-TD AML), the 3-year disease-free survival (DFS) and overall survival of UBTF-TD patients were 42.9% (95%CI: 23.4-78.5%) and 57.1% (95%CI: 39.5-82.8%) and did not significantly differ from those of ELN 2022 intermediate/adverse risk patients. Finally, the study of paired diagnosis and relapsed/refractory AML samples suggests that WT1-mutated clones are frequently selected under ICT. This study supports the recognition of UBTF-TD AML as a new AML entity in adults.
Collapse
Affiliation(s)
- Nicolas Duployez
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France.
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France.
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France.
| | - Loïc Vasseur
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Rathana Kim
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laëtitia Largeaud
- Hematology Laboratory, CHU Toulouse, INSERM 1037, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marie Passet
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anaïs L'Haridon
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
| | - Pierre Lemaire
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurène Fenwarth
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Sandrine Geffroy
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Nathalie Helevaut
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | | | - Lionel Adès
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Delphine Lebon
- Hematology Department, CHU Amiens-Picardie, Amiens, France
| | - Céline Berthon
- Hematology Department, Claude Huriez Hospital, CHU Lille, Lille, France
| | - Alice Marceau-Renaut
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Meyling Cheok
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Juliette Lambert
- Hematology Department, Versailles Hospital, University Versailles-Saint-Quentin-en-Yvelines, Le Chesnay, France
| | - Christian Récher
- Service d'Hématologie, CHU Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Emmanuel Raffoux
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | | | - Arnaud Pigneux
- Hematology Department, CHU de Bordeaux, Bordeaux, France
| | - Claude Gardin
- Hematology Department, Avicenne Hospital, AP-HP, Bobigny, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Eric Delabesse
- Hematology Laboratory, CHU Toulouse, INSERM 1037, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Jean Soulier
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Mathilde Hunault
- Hematology Department, Université d'Angers, Université de Nantes, CHU Angers, Inserm, CNRS, CRCI2NA, SFR ICAT, F‑49000, Angers, France
- Fédération Hospitalo-Universitaire, Grand-Ouest Acute Leukemia, Angers, France
| | - Hervé Dombret
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Emmanuelle Clappier
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Claude Preudhomme
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| |
Collapse
|
32
|
Ghalandary M, Gao Y, Amend D, Kutkaite G, Vick B, Spiekermann K, Rothenberg-Thurley M, Metzeler KH, Marcinek A, Subklewe M, Menden MP, Jurinovic V, Bahrami E, Jeremias I. WT1 and DNMT3A play essential roles in the growth of certain patient AML cells in mice. Blood 2023; 141:955-960. [PMID: 36256915 DOI: 10.1182/blood.2022016411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Maryam Ghalandary
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Yuqiao Gao
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Diana Amend
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Ginte Kutkaite
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Department of Biology, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Binje Vick
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Maja Rothenberg-Thurley
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Klaus H Metzeler
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, Ludwig Maximilians University, Munich, Germany
- Department of Hematology and Cell Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Anetta Marcinek
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Marion Subklewe
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Michael P Menden
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Department of Biology, Ludwig-Maximilians University Munich, Martinsried, Germany
- German Centre for Diabetes Research, Neuherberg, Germany
| | - Vindi Jurinovic
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Ehsan Bahrami
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
- Department of Pediatrics, University Hospital, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
33
|
Schorr C, Perna F. Targets for chimeric antigen receptor T-cell therapy of acute myeloid leukemia. Front Immunol 2022; 13:1085978. [PMID: 36605213 PMCID: PMC9809466 DOI: 10.3389/fimmu.2022.1085978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is an aggressive myeloid malignancy associated with high mortality rates (less than 30% 5-year survival). Despite advances in our understanding of the molecular mechanisms underpinning leukemogenesis, standard-of-care therapeutic approaches have not changed over the last couple of decades. Chimeric Antigen Receptor (CAR) T-cell therapy targeting CD19 has shown remarkable clinical outcomes for patients with acute lymphoblastic leukemia (ALL) and is now an FDA-approved therapy. Targeting of myeloid malignancies that are CD19-negative with this promising technology remains challenging largely due to lack of alternate target antigens, complex clonal heterogeneity, and the increased recognition of an immunosuppressive bone marrow. We carefully reviewed a comprehensive list of AML targets currently being used in both proof-of-concept pre-clinical and experimental clinical settings. We analyzed the expression profile of these molecules in leukemic as well normal tissues using reliable protein databases and data reported in the literature and we provide an updated overview of the current clinical trials with CAR T-cells in AML. Our study represents a state-of-art review of the field and serves as a potential guide for selecting known AML-associated targets for adoptive cellular therapies.
Collapse
Affiliation(s)
- Christopher Schorr
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,Department of Biomedical Engineering, Purdue University Weldon School of Biomedical Engineering, West Lafayette, IN, United States
| | - Fabiana Perna
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,*Correspondence: Fabiana Perna,
| |
Collapse
|
34
|
Shahid AM, Um IH, Elshani M, Zhang Y, Harrison DJ. NUC-7738 regulates β-catenin signalling resulting in reduced proliferation and self-renewal of AML cells. PLoS One 2022; 17:e0278209. [PMID: 36520954 PMCID: PMC9754587 DOI: 10.1371/journal.pone.0278209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/13/2022] [Indexed: 12/23/2022] Open
Abstract
Acute myeloid leukemia (AML) stem cells are required for the initiation and maintenance of the disease. Activation of the Wnt/β-catenin pathway is required for the survival and development of AML leukaemia stem cells (LSCs) and therefore, targeting β-catenin is a potential therapeutic strategy. NUC-7738, a phosphoramidate transformation of 3'-deoxyadenosine (3'-dA) monophosphate, is specifically designed to generate the active anti-cancer metabolite 3'-deoxyadenosine triphosphate (3'-dATP) intracellularly, bypassing key limitations of breakdown, transport, and activation. NUC-7738 is currently in a Phase I/II clinical study for the treatment of patients with advanced solid tumors. Protein expression and immunophenotypic profiling revealed that NUC-7738 caused apoptosis in AML cell lines through reducing PI3K-p110α, phosphorylated Akt (Ser473) and phosphorylated GSK3β (Ser9) resulting in reduced β-catenin, c-Myc and CD44 expression. NUC-7738 reduced β-catenin nuclear expression in AML cells. NUC-7738 also decreased the percentage of CD34+ CD38- CD123+ (LSC-like cells) from 81% to 47% and reduced the total number and size of leukemic colonies. These results indicate that therapeutic targeting of the PI3K/Akt/GSK3β axis can inhibit β-catenin signalling, resulting in reduced clonogenicity and eventual apoptosis of AML cells.
Collapse
Affiliation(s)
| | - In Hwa Um
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Mustafa Elshani
- School of Medicine, University of St Andrews, St Andrews, United Kingdom,NuCana plc, Edinburgh, United Kingdom
| | - Ying Zhang
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - David James Harrison
- School of Medicine, University of St Andrews, St Andrews, United Kingdom,NuCana plc, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Jahn N, Jahn E, Saadati M, Bullinger L, Larson RA, Ottone T, Amadori S, Prior TW, Brandwein JM, Appelbaum FR, Medeiros BC, Tallman MS, Ehninger G, Heuser M, Ganser A, Pallaud C, Gathmann I, Krzykalla J, Benner A, Bloomfield CD, Thiede C, Stone RM, Döhner H, Döhner K. Genomic landscape of patients with FLT3-mutated acute myeloid leukemia (AML) treated within the CALGB 10603/RATIFY trial. Leukemia 2022; 36:2218-2227. [PMID: 35922444 PMCID: PMC9417991 DOI: 10.1038/s41375-022-01650-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 02/02/2023]
Abstract
The aim of this study was to characterize the mutational landscape of patients with FLT3-mutated acute myeloid leukemia (AML) treated within the randomized CALGB 10603/RATIFY trial evaluating intensive chemotherapy plus the multi-kinase inhibitor midostaurin versus placebo. We performed sequencing of 262 genes in 475 patients: mutations occurring concurrently with the FLT3-mutation were most frequent in NPM1 (61%), DNMT3A (39%), WT1 (21%), TET2 (12%), NRAS (11%), RUNX1 (11%), PTPN11 (10%), and ASXL1 (8%) genes. To assess effects of clinical and genetic features and their possible interactions, we fitted random survival forests and interpreted the resulting variable importance. Highest prognostic impact was found for WT1 and NPM1 mutations, followed by white blood cell count, FLT3 mutation type (internal tandem duplications vs. tyrosine kinase domain mutations), treatment (midostaurin vs. placebo), ASXL1 mutation, and ECOG performance status. When evaluating two-fold variable combinations the most striking effects were found for WT1:NPM1 (with NPM1 mutation abrogating the negative effect of WT1 mutation), and for WT1:treatment (with midostaurin exerting a beneficial effect in WT1-mutated AML). This targeted gene sequencing study provides important, novel insights into the genomic background of FLT3-mutated AML including the prognostic impact of co-mutations, specific gene-gene interactions, and possible treatment effects of midostaurin.
Collapse
Affiliation(s)
- Nikolaus Jahn
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Ekaterina Jahn
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | | | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité University, Berlin, Germany
| | - Richard A Larson
- Department of Medicine and Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Santa Lucia Foundation, Neuro-Oncohematology, I.R.C.C.S., Rome, Italy
| | - Sergio Amadori
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | | | | | - Frederick R Appelbaum
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bruno C Medeiros
- Division of Hematology, Stanford Comprehensive Cancer Center, Stanford University, Stanford, CA, USA
| | - Martin S Tallman
- Division of Hematologic Malignancies, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gerhard Ehninger
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | | | - Julia Krzykalla
- Division of Biostatistics, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Clara D Bloomfield
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA, USA
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany.
| |
Collapse
|
36
|
Tao Y, Wei L, You H. Ferroptosis-related gene signature predicts the clinical outcome in pediatric acute myeloid leukemia patients and refines the 2017 ELN classification system. Front Mol Biosci 2022; 9:954524. [PMID: 36032681 PMCID: PMC9403410 DOI: 10.3389/fmolb.2022.954524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The prognostic roles of ferroptosis-related mRNAs (FG) and lncRNAs (FL) in pediatric acute myeloid leukemia (P-AML) patients remain unclear. Methods: RNA-seq and clinical data of P-AML patients were downloaded from the TARGET project. Cox and LASSO regression analyses were performed to identify FG, FL, and FGL (combination of FG and FL) prognostic models, and their performances were compared. Tumor microenvironment, functional enrichment, mutation landscape, and anticancer drug sensitivity were analyzed. Results: An FGL model of 22 ferroptosis-related signatures was identified as an independent parameter, and it showed performance better than FG, FL, and four additional public prognostic models. The FGL model divided patients in the discovery cohort (N = 145), validation cohort (N = 111), combination cohort (N = 256), and intermediate-risk group (N = 103) defined by the 2017 European LeukemiaNet (ELN) classification system into two groups with distinct survival. The high-risk group was enriched in apoptosis, hypoxia, TNFA signaling via NFKB, reactive oxygen species pathway, oxidative phosphorylation, and p53 pathway and associated with low immunity, while patients in the low-risk group may benefit from anti-TIM3 antibodies. In addition, patients within the FGL high-risk group might benefit from treatment using SB505124_1194 and JAK_8517_1739. Conclusion: Our established FGL model may refine and provide a reference for clinical prognosis judgment and immunotherapies for P-AML patients.
Collapse
Affiliation(s)
- Yu Tao
- Department of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Li Wei
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
| | - Hua You
- Department of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Hua You,
| |
Collapse
|
37
|
Antileukaemic Cell Proliferation and Cytotoxic Activity of Edible Golden Cordyceps ( Cordyceps militaris) Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5347718. [PMID: 35497915 PMCID: PMC9054435 DOI: 10.1155/2022/5347718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022]
Abstract
Golden cordyceps (Cordyceps militaris) is a mushroom of the genus Cordyceps. It has been used as a food supplement for both healthy and ill people. In this study, the antileukaemic cell proliferation activities of golden cordyceps extracts were examined and compared with standard cordycepin (CDCP) in EoL-1, U937, and KG-1a cells. Wilms' tumour 1 (WT1) protein was used as a biomarker of leukaemic cell proliferation. The cytotoxicity of the extracts on leukaemic cells was determined using the MTT assay. Their inhibitory effects on WT1 protein expression and cell cycle progression of EoL-1 cells were investigated using Western blotting and flow cytometry, respectively. Induction of KG-1a cell differentiation (using CD11b as a marker) was determined using flow cytometry. The golden cordyceps extracts exhibited cytotoxic effects on leukaemic cells with the highest IC50 value of 16.5 ± 3.9 µg/mL, while there was no effect on normal blood cells. The expression levels of WT1 protein in EoL-1 cells were decreased after treatment with the extracts. Moreover, cell cycle progression and cell proliferation were inhibited. The levels of CD11b increased slightly following the treatment. All these findings confirm the antileukaemic proliferation activity of golden cordyceps.
Collapse
|
38
|
Leukemic Stem Cells as a Target for Eliminating Acute Myeloid Leukemia: Gaps in Translational Research. Crit Rev Oncol Hematol 2022; 175:103710. [DOI: 10.1016/j.critrevonc.2022.103710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
|
39
|
Wagstaff M, Tsaponina O, Caalim G, Greenfield H, Milton-Harris L, Mancini EJ, Blair A, Heesom KJ, Tonks A, Darley RL, Roberts SG, Morgan RG. Crosstalk between β-catenin and WT1 signaling activity in acute myeloid leukemia. Haematologica 2022; 108:283-289. [PMID: 35443562 PMCID: PMC9827145 DOI: 10.3324/haematol.2021.280294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
| | | | - Gilian Caalim
- School of Life Sciences, University of Sussex, Brighton
| | | | | | | | - Allison Blair
- Bristol Institute for Transfusion Sciences, NHS Blood & Transplant Filton, Bristol,School of Cellular & Molecular Medicine, University of Bristol, Bristol
| | | | - Alex Tonks
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Richard L. Darley
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Stefan G Roberts
- School of Cellular & Molecular Medicine, University of Bristol, Bristol
| | - Rhys G. Morgan
- School of Life Sciences, University of Sussex, Brighton,RHYS G. MORGAN -
| |
Collapse
|
40
|
Single-cell analysis of transcription factor regulatory networks reveals molecular basis for subtype-specific dysregulation in acute myeloid leukemia. BLOOD SCIENCE 2022; 4:65-75. [PMID: 35957668 PMCID: PMC9362874 DOI: 10.1097/bs9.0000000000000113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Highly heterogeneous acute myeloid leukemia (AML) exhibits dysregulated transcriptional programs. Transcription factor (TF) regulatory networks underlying AML subtypes have not been elucidated at single-cell resolution. Here, we comprehensively mapped malignancy-related TFs activated in different AML subtypes by analyzing single-cell RNA sequencing data from AMLs and healthy donors. We first identified six modules of regulatory networks which were prevalently dysregulated in all AML patients. AML subtypes featured with different malignant cellular composition possessed subtype-specific regulatory TFs associated with differentiation suppression or immune modulation. At last, we validated that ERF was crucial for the development of hematopoietic stem/progenitor cells by performing loss- and gain-of-function experiments in zebrafish embryos. Collectively, our work thoroughly documents an abnormal spectrum of transcriptional regulatory networks in AML and reveals subtype-specific dysregulation basis, which provides a prospective view to AML pathogenesis and potential targets for both diagnosis and therapy.
Collapse
|
41
|
Kang S, Li Y, Qiao J, Meng X, He Z, Gao X, Yu L. Antigen-Specific TCR-T Cells for Acute Myeloid Leukemia: State of the Art and Challenges. Front Oncol 2022; 12:787108. [PMID: 35356211 PMCID: PMC8959347 DOI: 10.3389/fonc.2022.787108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
The cytogenetic abnormalities and molecular mutations involved in acute myeloid leukemia (AML) lead to unique treatment challenges. Although adoptive T-cell therapies (ACT) such as chimeric antigen receptor (CAR) T-cell therapy have shown promising results in the treatment of leukemias, especially B-cell malignancies, the optimal target surface antigen has yet to be discovered for AML. Alternatively, T-cell receptor (TCR)-redirected T cells can target intracellular antigens presented by HLA molecules, allowing the exploration of a broader territory of new therapeutic targets. Immunotherapy using adoptive transfer of WT1 antigen-specific TCR-T cells, for example, has had positive clinical successes in patients with AML. Nevertheless, AML can escape from immune system elimination by producing immunosuppressive factors or releasing several cytokines. This review presents recent advances of antigen-specific TCR-T cells in treating AML and discusses their challenges and future directions in clinical applications.
Collapse
Affiliation(s)
- Synat Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Yisheng Li
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Jingqiao Qiao
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xiangyu Meng
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Ziqian He
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China.,Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
42
|
Targeting β-catenin in acute myeloid leukaemia: past, present, and future perspectives. Biosci Rep 2022; 42:231097. [PMID: 35352805 PMCID: PMC9069440 DOI: 10.1042/bsr20211841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Acute myeloid leukaemia (AML) is an aggressive disease of the bone marrow with a poor prognosis. Evidence suggests long established chemotherapeutic regimens used to treat AML are reaching the limits of their efficacy, necessitating the urgent development of novel targeted therapies. Canonical Wnt signalling is an evolutionary conserved cascade heavily implicated in normal developmental and disease processes in humans. For over 15 years its been known that the central mediator of this pathway, β-catenin, is dysregulated in AML promoting the emergence, maintenance, and drug resistance of leukaemia stem cells. Yet, despite this knowledge, and subsequent studies demonstrating the therapeutic potential of targeting Wnt activity in haematological cancers, β-catenin inhibitors have not yet reached the clinic. The aim of this review is to summarise the current understanding regarding the role and mechanistic dysregulation of β-catenin in AML, and assess the therapeutic merit of pharmacologically targeting this molecule, drawing on lessons from other disease contexts.
Collapse
|
43
|
WT1 Gene Mutations, rs16754 Variant, and WT1 Overexpression as Prognostic Factors in Acute Myeloid Leukemia Patients. J Clin Med 2022; 11:jcm11071873. [PMID: 35407481 PMCID: PMC9000045 DOI: 10.3390/jcm11071873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: The aim of our study was the complex assessment of WT1 variants and their expression in relation to chromosomal changes and molecular prognostic markers in acute myeloid leukemia (AML). It is the first multidimensional study in Polish AML patients; (2) Methods: Bone marrow aspirates of 90 AML patients were used for cell cultures (banding techniques and fluorescence in situ hybridization), and to isolate DNA (WT1 genotyping, array comparative genomic hybridization), and RNA (WT1 expression). Peripheral blood samples from 100 healthy blood donors were used to analyze WT1 rs16754; (3) Results: Allele frequency and distribution of WT1 variant rs16754 (A;G) did not differ significantly among AML patients and controls. Higher expression of WT1 gene was observed in AA genotype (of rs16754) in comparison with GA or GG genotypes—10,556.7 vs. 25,836.5 copies (p = 0.01), respectively. WT1 mutations were more frequent in AML patients under 65 years of age (p < 0.0001) and affected relapse-free survival (RFS). The presence of NPM1 or CEBPA mutations decreased the risk of WT1 mutation presence, odds ratio (OR) = 0.11, 95% CI 0.02−0.46, p = 0.002 or OR = 0.05, 95% CI 0.006−0.46, p = 0.002, respectively. We observed significantly higher WT1 expression in AML CD34+ vs. CD34−, −20,985 vs. 8304 (p = 0.039), respectively. The difference in WT1 expression between patients with normal and abnormal karyotype was statistically insignificant; (4) Conclusions: WT1 gene expression and its rs16754 variant at diagnosis did not affect AML outcome. WT1 mutation may affect RFS in AML.
Collapse
|
44
|
Increasing Role of Targeted Immunotherapies in the Treatment of AML. Int J Mol Sci 2022; 23:ijms23063304. [PMID: 35328721 PMCID: PMC8953556 DOI: 10.3390/ijms23063304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The standard of care in medically and physically fit patients is intensive induction therapy. The majority of these intensively treated patients achieve a complete remission. However, a high number of these patients will experience relapse. In patients older than 60 years, the results are even worse. Therefore, new therapeutic approaches are desperately needed. One promising approach in high-risk leukemia to prevent relapse is the induction of the immune system simultaneously or after reduction of the initial tumor burden. Different immunotherapeutic approaches such as allogenic stem cell transplantation or donor lymphocyte infusions are already standard therapies, but other options for AML treatment are in the pipeline. Moreover, the therapeutic landscape in AML is rapidly changing, and in the last years, a number of immunogenic targets structures eligible for specific therapy, risk assessment or evaluation of disease course were determined. For example, leukemia-associated antigens (LAA) showed to be critical as biomarkers of disease state and survival, as well as markers of minimal residual disease (MRD). Yet many mechanisms and properties are still insufficiently understood, which also represents a great potential for this form of therapy. Therefore, targeted therapy as immunotherapy could turn into an efficient tool to clear residual disease, improve the outcome of AML patients and reduce the relapse risk. In this review, established but also emerging immunotherapeutic approaches for AML patients will be discussed.
Collapse
|
45
|
Friedman R. The molecular mechanisms behind activation of FLT3 in acute myeloid leukemia and resistance to therapy by selective inhibitors. Biochim Biophys Acta Rev Cancer 2021; 1877:188666. [PMID: 34896257 DOI: 10.1016/j.bbcan.2021.188666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia is an aggressive cancer, which, in spite of increasingly better understanding of its genetic background remains difficult to treat. Mutations in the FLT3 gene are observed in ≈30% of the patients. Most of these mutations are internal tandem duplications (ITDs) of a sequence within the protein coding region, an activation mechanism that is almost non-existent with other genes and cancers. As patients each carry their own unique set of mutations, it is challenging to understand how ITDs activate the protein, and ascertain the risk for each individual patient. Available treatment options are limited due to development of drug resistance. Here, recent studies are reviewed that help to better understand the molecular mechanism behind activation of the FLT3 protein due to mutations. It is argued that difference in mutation sequences and especially location might be coupled to prognosis. When it comes to FLT3 inhibitors, key differences between them can be attributed to the mode of inhibition (type-1 and type-2 inhibitors), effective inhibitory coefficient in the blood plasma and off-target binding. Accounting for the position and length of insertions may in the future be used to predict prognosis and rationalise treatment. Development of new inhibitors must take into account the potential for resistance mutations. Inhibitors aimed at multiple specific targets are currently being developed. These, and as well as combination therapies will hopefully lead to longer periods during which targeted FLT3 therapy will remain effective.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnæus University, 391 82 Kalmar, Sweden.
| |
Collapse
|
46
|
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246192. [PMID: 34944812 PMCID: PMC8699817 DOI: 10.3390/cancers13246192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia is a clinically and biologically heterogeneous blood cancer with variable prognosis and response to conventional therapies. Comprehensive sequencing enabled the discovery of recurrent mutations and chromosomal aberrations in AML. Mouse models are essential to study the biological function of these genes and to identify relevant drug targets. This comprehensive review describes the evidence currently available from mouse models for the leukemogenic function of mutations in seven functional gene groups: cell signaling genes, epigenetic modifier genes, nucleophosmin 1 (NPM1), transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes. Additionally, we provide a synergy map of frequently cooperating mutations in AML development and correlate prognosis of these mutations with leukemogenicity in mouse models to better understand the co-dependence of mutations in AML.
Collapse
|
47
|
Trial Watch: Adoptive TCR-Engineered T-Cell Immunotherapy for Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13184519. [PMID: 34572745 PMCID: PMC8469736 DOI: 10.3390/cancers13184519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a type of blood cancer with an extremely grim prognosis. This is due to the fact that the majority of patients will relapse after frontline treatment. Overall survival of relapsed AML is very low, and treatment options are few. T lymphocytes harnessed with antitumor T-cell receptors (TCRs) can produce objective clinical responses in certain cancers, such as melanoma, but have not entered the main road for AML. In this review, we describe the current status of the field of TCR-T-cell therapies for AML. Abstract Despite the advent of novel therapies, acute myeloid leukemia (AML) remains associated with a grim prognosis. This is exemplified by 5-year overall survival rates not exceeding 30%. Even with frontline high-intensity chemotherapy regimens and allogeneic hematopoietic stem cell transplantation, the majority of patients with AML will relapse. For these patients, treatment options are few, and novel therapies are urgently needed. Adoptive T-cell therapies represent an attractive therapeutic avenue due to the intrinsic ability of T lymphocytes to recognize tumor cells with high specificity and efficiency. In particular, T-cell therapies focused on introducing T-cell receptors (TCRs) against tumor antigens have achieved objective clinical responses in solid tumors such as synovial sarcoma and melanoma. However, contrary to chimeric antigen receptor (CAR)-T cells with groundbreaking results in B-cell malignancies, the use of TCR-T cells for hematological malignancies is still in its infancy. In this review, we provide an overview of the status and clinical advances in adoptive TCR-T-cell therapy for the treatment of AML.
Collapse
|
48
|
Comparison of high-resolution melting analysis with direct sequencing for detection of FLT3-TKD, FLT3-ITD and WT1 mutations in acute myeloid leukemia. Cancer Treat Res Commun 2021; 28:100432. [PMID: 34303121 DOI: 10.1016/j.ctarc.2021.100432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/28/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Acute Myeloid Leukemia (AML) is a group of hematologic diseases characterized by a variety of clinically important genetic alterations. Genetic mutations affecting the FMS-like receptor tyrosine kinase-3 (FLT3) and Wilm's tumor (WT-1) genes are associated with poor prognosis in AML. In this work, efficiency of HRM method for detection of FLT3-ITD, FLT3-TKD, and WT-1 mutations was assessed in comparison with direct sequencing. METHOD A total of 58 formalin-fixed, paraffin-embedded BM biopsy specimens of AML patients were analyzed. Mutation detection was performed by HRM method and the results were consequently compared with direct sequencing RESULTS: FLT3 and WT-1 mutations were detected in 21 (36.2%) and 3 (5.17%) samples, respectively. Among all FLT3 mutations, 10 (17.2%) and 11 (18.2%) samples were harboring the FLT3-ITD and-TKD gene mutations, respectively. Frequency of the FLT3-ITD was not statistically different in females (51%) and males (49%). Also, FLT3-TKD was more common in males although the differences in gender distribution were not statistically significant (P = 0.721 and P = 0.626, respectively). CONCLUSIONS Regarded as the desirable characteristic, the present study is generally distinguished by the similar previous ones due to assessing the FFPE BM tissue from the perspective of the type of assessed sample. This discrepancy between our results and those in prior studies may be due to the disparity of the studied population size, adopted methods as well as the sample type. In this survey, regarding to low amount of extracted DNA from the paraffinized samples, the HRM method was efficient in determining the mentioned mutations.
Collapse
|
49
|
Targeting intracellular WT1 in AML with a novel RMF-peptide-MHC specific T-cell bispecific antibody. Blood 2021; 138:2655-2669. [PMID: 34280257 DOI: 10.1182/blood.2020010477] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/01/2021] [Indexed: 11/20/2022] Open
Abstract
Antibody-based immunotherapy is a promising strategy for targeting chemo-resistant leukemic cells. However, classical antibody-based approaches are restricted to targeting lineage-specific cell-surface antigens. By targeting intracellular antigens, a large number of other leukemia-associated targets would become accessible. In this study, we evaluated a novel T-cell bispecific (TCB) antibody, generated using CrossMab and knob-into-holes technology, containing a bivalent T-cell receptor-like binding domain that recognizes the RMFPNAPYL peptide derived from the intracellular tumor antigen Wilms' tumor 1 (WT1) in the context of human leukocyte antigen (HLA) A*02. Binding to CD3ε recruits T cells irrespective of their T-cell receptor specificity. WT1-TCB elicited antibody-mediated T-cell cytotoxicity against AML cell lines in a WT1- and HLA-restricted manner. Specific lysis of primary AML cells was mediated in ex vivo long-term co-cultures utilizing allogenic (mean specific lysis: 67±6% after 13-14 days; ±SEM; n=18) or autologous, patient-derived T cells (mean specific lysis: 54±12% after 11-14 days; ±SEM; n=8). WT1-TCB-treated T cells exhibited higher cytotoxicity against primary AML cells than an HLA-A*02 RMF-specific T-cell clone. Combining WT1-TCB with the immunomodulatory drug lenalidomide further enhanced antibody-mediated T-cell cytotoxicity against primary AML cells (mean specific lysis on day 3-4: 45.4±9.0% vs 70.8±8.3%; p=0.015; ±SEM; n=9-10). In vivo, WT1-TCB-treated humanized mice bearing SKM-1 tumors showed a significant and dose-dependent reduction in tumor growth. In summary, we show that WT1-TCB facilitates potent in vitro, ex vivo and in vivo killing of AML cell lines and primary AML cells; these results led to the initiation of a phase I trial in patients with r/r AML (NCT04580121).
Collapse
|
50
|
Grant AH, Ayala-Marin YM, Mohl JE, Robles-Escajeda E, Rodriguez G, Dutil J, Kirken RA. The Genomic Landscape of a Restricted ALL Cohort from Patients Residing on the U.S./Mexico Border. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147345. [PMID: 34299796 PMCID: PMC8307122 DOI: 10.3390/ijerph18147345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/12/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Next-generation sequencing (NGS) has identified unique biomarkers yielding new strategies in precision medicine for the treatment of Acute lymphoblastic leukemia (ALL). Hispanics show marked health disparities in ALL, often absent in clinical trials or cancer research. Thus, it is unknown whether Hispanics would benefit equally from curated data currently guiding precision oncology. Using whole-exome sequencing, nine ALL patients were screened for mutations within genes known to possess diagnostic, prognostic and therapeutic value. Genes mutated in Hispanic ALL patients from the borderland were mined for potentially pathogenic variants within clinically relevant genes. KRAS G12A was detected in this unique cohort and its frequency in Hispanics from the TARGET-ALL Phase II database was three-fold greater than that of non-Hispanics. STAT5B N642H was also detected with low frequency in Hispanic and non-Hispanic individuals within TARGET. Its detection within this small cohort may reflect a common event in this demographic. Such variants occurring in the MAPK and JAK/STAT pathways may be contributing to Hispanic health disparities in ALL. Notable variants in ROS1, WT1, and NOTCH2 were observed in the ALL borderland cohort, with NOTCH2 C19W occurring most frequently. Further investigations on the pathogenicity of these variants are needed to assess their relevance in ALL.
Collapse
Affiliation(s)
- Alice Hernandez Grant
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.H.G.); (Y.M.A.-M.); (E.R.-E.); (G.R.)
| | - Yoshira Marie Ayala-Marin
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.H.G.); (Y.M.A.-M.); (E.R.-E.); (G.R.)
| | - Jonathon Edward Mohl
- Department of Mathematical Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Elisa Robles-Escajeda
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.H.G.); (Y.M.A.-M.); (E.R.-E.); (G.R.)
| | - Georgialina Rodriguez
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.H.G.); (Y.M.A.-M.); (E.R.-E.); (G.R.)
| | - Julie Dutil
- Department of Biochemistry, Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716, USA;
| | - Robert Arthur Kirken
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.H.G.); (Y.M.A.-M.); (E.R.-E.); (G.R.)
- Correspondence: ; Tel.: +1-(915)-747-5536
| |
Collapse
|