1
|
Uzochukwu IE, Ali LC, Amaefule BC, Okeke CC, Osita CO, Machebe NS, Yancheva V, Somogyi D, Nyeste K. Impact of vitamin E and selenium supplementation on growth, reproductive performance, and oxidative stress in dexamethasone-stressed Japanese quail cocks: Vitamin E & selenium in stressed quail cocks. Poult Sci 2025; 104:104888. [PMID: 39919567 PMCID: PMC11851230 DOI: 10.1016/j.psj.2025.104888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025] Open
Abstract
This study investigated the effects of dietary vitamin E (VE) and selenium (Se) supplementation on body weight changes, blood profile, and semen quality in Dexamethasone (DEX)-stressed Japanese quails. One hundred and five 10-week-old quail cocks were acclimated and divided into five treatment groups: negative control - G1, DEX-treated (20 mgL-1 of drinking water) - G2, DEX + VE (180 mg kg diet-1) - G3; DEX + Se (0.3 mg kg diet-1) - G4; and DEX + VE (180 mg kg diet-1) + Se (0.3 mg kg diet-1) - G5. The birds received their respective treatments over 21 days, and various performance, hematological, and semen quality parameters were measured. Results indicated that DEX treatment significantly reduced weight gain (WG) and feed intake (P < 0.05). Supplementation with VE and Se, individually and combined, ameliorated these effects, with groups G3, G4, and G5 showing similar WG to the control. Hematological analysis revealed significant increases (P < 0.05) in packed cell volume, hemoglobin, and white blood cell count in DEX-treated groups compared to G1. Treatment did not affect blood glucose and cholesterol levels (P ≥ 0.05). Plasma antioxidant assays showed elevated superoxide dismutase and catalase functions and reduced malondialdehyde levels in G3, G4, and G5 compared to G2, indicating reduced oxidative stress. No marked differences were seen in the plasma glutathione peroxidase activities across groups. Sperm motility was impaired in the DEX-only group but improved (P < 0.05) with antioxidant supplementation. In conclusion, dietary VE and Se effectively mitigated the negative impacts of DEX-induced stress on growth, antioxidant status, and spermatozoa motility in Japanese quail cocks. VE and Se supplementation could be beneficial in enhancing the welfare and productivity of poultry under stress.
Collapse
Affiliation(s)
- Ifeanyi Emmanuel Uzochukwu
- Department of Animal Science, University of Nigeria, Nsukka, Enugu, Nigeria; Department of Hydrobiology, University of Debrecen, P.O. Box 57, Debrecen 4010, Hungary; Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Luke Chukwudi Ali
- Department of Animal Science, University of Nigeria, Nsukka, Enugu, Nigeria
| | | | - Chisom C Okeke
- Department of Animal Science, University of Nigeria, Nsukka, Enugu, Nigeria
| | | | | | - Vesela Yancheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, Plovdiv University, Plovdiv 4000, Bulgaria
| | - Dóra Somogyi
- Department of Hydrobiology, University of Debrecen, P.O. Box 57, Debrecen 4010, Hungary.
| | - Krisztián Nyeste
- Department of Hydrobiology, University of Debrecen, P.O. Box 57, Debrecen 4010, Hungary; National Laboratory for Water Science and Water Security, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Kikusato M, Namai F, Yamada K. Effect of Feeding Sugarcane Bagasse-Extracted Polyphenolic Mixture on the Growth Performance, Meat Quality, and Oxidative and Inflammatory Status of Chronic Heat-Stressed Broiler Chickens. Animals (Basel) 2024; 14:3443. [PMID: 39682409 DOI: 10.3390/ani14233443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/10/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the effects of sugarcane bagasse-extracted polyphenolic mixture (SBPM) supplementation on the harmful effects of chronic heat stress (HS) in broiler chickens. METHODS Two hundred and eighty-eight day-old male Ross 308 chicks were fed an SBPM in 0, 75, 150, or 300 ppm-supplemented diets and reared under thermoneutral (TN, 22.1-24.8 °C) or chronic HS (28.3-36.2 °C) conditions from 11 d to 42 d. RESULTS The chronic HS treatment negatively affected body weight, feed intake, and feed conversion ratio (p < 0.05), and these changes were partially attenuated by the SBPM supplementation (p < 0.05). Plasma lipid peroxidation content, inflammatory cytokines [interleukin (IL)-6, IL-β], corticosterone, and uric acid concentrations were significantly increased by HS, and these increases were attenuated by the SBPM supplementation (p < 0.05). Intestinal permeability indicator and serum fluorescein isothiocyanate-dextran levels after oral gavage were increased by HS and were also suppressed by the supplementation (p < 0.05). The HS-decreased muscle drip loss, lipid peroxidation, and glutathione content were also suppressed by the SBPM supplementation. The abovementioned alleviating effects of the SBPM were of a dose-dependent manner in most cases. CONCLUSION This study demonstrated that SBPM supplementation can improve the growth performance, meat quality, inflammation, and intestinal permeability of chronic HS-treated broiler chickens.
Collapse
Affiliation(s)
- Motoi Kikusato
- Laboratory of Animal Nutrition, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Sendai 980-8572, Miyagi, Japan
| | - Fu Namai
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Sendai 980-8572, Miyagi, Japan
| | - Katsushige Yamada
- Advanced Materials Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura 248-8555, Kanagawa, Japan
| |
Collapse
|
3
|
Horyanto D, Bajagai YS, von Hellens J, Chen X, Van TTH, Dunlop MW, Stanley D. The Association between Broiler Litter Microbiota and the Supplementation of Bacillus Probiotics in a Leaky Gut Model. Animals (Basel) 2024; 14:1758. [PMID: 38929376 PMCID: PMC11200599 DOI: 10.3390/ani14121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Probiotics provided from hatch have a major influence on microbiota development, and together with environmental and bedding microbiota, shape the microbial community of the litter. We investigated the influence of probiotic supplementation and a leaky gut challenge induced using dexamethasone (DEX) on the litter microbial community and litter parameters. The probiotic product was a mix of three Bacillus amyloliquefaciens strains. The litter microbiota were compared to the microbial communities from other gut sections. The litter samples had higher microbial diversity compared to the caecum, gizzard, jejunum, and jejunal mucosa. The high similarity between the litter phylum-level microbiota and gizzard microbiota detected in our study could be a consequence of ingested feed and litter passing through the gizzard. Moreover, the litter microbial community is fundamentally distinct from the intestinal microbiota, as evidenced by the number of genera present in the litter but absent from all the intestinal sections and vice versa. Furthermore, LEfSe analysis identified distinct microbial taxa across different groups, with specific genera associated with different treatments. In terms of litter quality, the birds in the DEX groups had a significantly higher moisture content, indicating successful leaky gut challenge, while probiotic supplementation did not significantly affect the moisture levels. These findings provide comprehensive insights into the distinct microbiota characteristics of litter.
Collapse
Affiliation(s)
- Darwin Horyanto
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4701, Australia; (D.H.); (Y.S.B.)
- Bioproton Pty Ltd., Brisbane, QLD 4110, Australia; (J.v.H.)
| | - Yadav S. Bajagai
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4701, Australia; (D.H.); (Y.S.B.)
| | | | - Xiaojing Chen
- Bioproton Pty Ltd., Brisbane, QLD 4110, Australia; (J.v.H.)
| | - Thi Thu Hao Van
- School of Science, RMIT University, Melbourne, VIC 3083, Australia;
| | - Mark W. Dunlop
- Department of Agriculture and Fisheries, Queensland Government, Toowoomba, QLD 4350, Australia;
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4701, Australia; (D.H.); (Y.S.B.)
| |
Collapse
|
4
|
Horyanto D, Bajagai YS, Kayal A, von Hellens J, Chen X, Van TTH, Radovanović A, Stanley D. Bacillus amyloliquefaciens Probiotics Mix Supplementation in a Broiler Leaky Gut Model. Microorganisms 2024; 12:419. [PMID: 38399823 PMCID: PMC10892336 DOI: 10.3390/microorganisms12020419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The supplementation of antimicrobial growth promoters (AGPs) has been banned in many countries because of the emergence of antimicrobial-resistant pathogens in poultry products and the environment. Probiotics have been broadly studied and demonstrated as a promising AGP substitute. Our study is centred on the effects of a multi-strain Bacillus-based probiotic product on broiler production performance and gut microbial profile in a dexamethasone-induced leaky gut challenge. Two hundred and fifty-six broiler chicks were hatched and randomly assigned into four groups (wheat-soybean meal basal diet (BD) = non-supplemented control (C), BD supplemented with dexamethasone in week 4 (CD), BD containing a probiotic from day one (P), and BD containing a probiotic from day one and supplemented with dexamethasone during challenge week 4 (PD)). The production performance and caecal, gizzard, jejunal lumen and jejunal mucosa swab microbiota were studied by 16S rRNA gene sequencing. The Bacillus probiotic product significantly improved production performance and altered caecal gut microbiota (p ≤ 0.05), but no significant impact on microbiota was observed in other gut sections.
Collapse
Affiliation(s)
- Darwin Horyanto
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia (A.K.)
- Bioproton Pty Ltd., Acacia Ridge, QLD 4110, Australia (X.C.)
| | - Yadav S. Bajagai
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia (A.K.)
| | - Advait Kayal
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia (A.K.)
| | | | - Xiaojing Chen
- Bioproton Pty Ltd., Acacia Ridge, QLD 4110, Australia (X.C.)
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Anita Radovanović
- Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia (A.K.)
| |
Collapse
|
5
|
Markov AG, Bikmurzina AE, Fedorova AA, Vinogradova EP, Kruglova NM, Krivoi II, Amasheh S. Prednisolone Targets Claudins in Mouse Brain Blood Vessels. Int J Mol Sci 2023; 25:276. [PMID: 38203447 PMCID: PMC10779016 DOI: 10.3390/ijms25010276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Endothelial cells in brain capillaries are crucial for the function of the blood-brain barrier (BBB), and members of the tight junction protein family of claudins are regarded to be primarily responsible for barrier properties. Thus, the analysis of bioactive substances that can affect the BBB's permeability is of great importance and may be useful for the development of new therapeutic strategies for brain pathologies. In our study, we tested the hypothesis that the application of the glucocorticoid prednisolone affects the murine blood-brain barrier in vivo. Isolated brain tissue of control and prednisolone-injected mice was examined by employing immunoblotting and confocal laser scanning immunofluorescence microscopy, and the physiological and behavioral effects were analyzed. The control tissue samples revealed the expression of barrier-forming tight junction proteins claudin-1, -3, and -5 and of the paracellular cation and water-channel-forming protein claudin-2. Prednisolone administration for 7 days at doses of 70 mg/kg caused physiological and behavioral effects and downregulated claudin-1 and -3 and the channel-forming claudin-2 without altering their localization in cerebral blood vessels. Changes in the expression of these claudins might have effects on the ionic and acid-base balance in brain tissue, suggesting the relevance of our findings for therapeutic options in disorders such as cerebral edema and psychiatric failure.
Collapse
Affiliation(s)
- Alexander G. Markov
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.G.M.); (A.E.B.); (A.A.F.); (N.M.K.); (I.I.K.)
- Interoception Laboratory, Pavlov Institute of Physiology RAS, 199034 St. Petersburg, Russia
| | - Anastasia E. Bikmurzina
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.G.M.); (A.E.B.); (A.A.F.); (N.M.K.); (I.I.K.)
| | - Arina A. Fedorova
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.G.M.); (A.E.B.); (A.A.F.); (N.M.K.); (I.I.K.)
| | - Ekaterina P. Vinogradova
- Department of Higher Nervous Activity and Psychophysiology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Natalia M. Kruglova
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.G.M.); (A.E.B.); (A.A.F.); (N.M.K.); (I.I.K.)
| | - Igor I. Krivoi
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.G.M.); (A.E.B.); (A.A.F.); (N.M.K.); (I.I.K.)
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
6
|
Hernandez-Patlan D, Solis-Cruz B, Latorre JD, Maguey-Gonzalez JA, Castellanos-Huerta I, Beyssac E, Garrait G, Vázquez-Durán A, López-Arellano R, Méndez-Albores A, Hargis BM, Tellez-Isaias G. Evaluation of the Antimicrobial Activity of a Formulation Containing Ascorbic Acid and Eudragit FS 30D Microparticles for the Controlled Release of a Curcumin-Boric Acid Solid Dispersion in Turkey Poults Infected with Salmonella enteritidis: A Therapeutic Model. Int J Mol Sci 2023; 24:16186. [PMID: 38003375 PMCID: PMC10671343 DOI: 10.3390/ijms242216186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The selection of components within a formulation or for treatment must stop being arbitrary and must be focused on scientific evidence that supports the inclusion of each one. Therefore, the objective of the present study was to obtain a formulation based on ascorbic acid (AA) and Eudragit FS 30D microparticles containing curcumin-boric acid (CUR-BA) considering interaction studies between the active components carried out via Fourier transform infrared spectrometry (FTIR) and differential scanning calorimetry (DSC) to minimize antagonistic effects, and comprehensively and effectively treat turkey poults infected with Salmonella enteritidis (S. enteritidis). The DSC and FTIR studies clearly demonstrated the interactions between AA, BA, and CUR. Consequently, the combination of AA with CUR and/or BA should be avoided, but not CUR and BA. Furthermore, the Eudragit FS 30D microparticles containing CUR-BA (SD CUR-BA MP) showed a limited release of CUR-BA in an acidic medium, but they were released at a pH 6.8-7.0, which reduced the interactions between CUR-BA and AA. Finally, in the S. enteritidis infection model, turkey poults treated with the combination of AA and SD CUR-BA MP presented lower counts of S. enteritidis in cecal tonsils after 10 days of treatment. These results pointed out that the use of an adequate combination of AA and CUR-BA as an integral treatment of S. enteritidis infections could be a viable option to replace the indiscriminate use of antibiotics.
Collapse
Affiliation(s)
- Daniel Hernandez-Patlan
- Laboratory 5: LEDEFAR, Multidisciplinary Research Unit, Superior Studies Faculty at Cuautitlan (FESC), National Autonomous University of Mexico (UNAM), Cuautitlan Izcalli 54714, Mexico;
- Nanotechnology Engineering Division, Polytechnic University of the Valley of Mexico, Tultitlan 54910, Mexico
| | - Bruno Solis-Cruz
- Laboratory 5: LEDEFAR, Multidisciplinary Research Unit, Superior Studies Faculty at Cuautitlan (FESC), National Autonomous University of Mexico (UNAM), Cuautitlan Izcalli 54714, Mexico;
- Nanotechnology Engineering Division, Polytechnic University of the Valley of Mexico, Tultitlan 54910, Mexico
| | - Juan D. Latorre
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (J.A.M.-G.); (I.C.-H.); (B.M.H.); (G.T.-I.)
| | - Jesus A. Maguey-Gonzalez
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (J.A.M.-G.); (I.C.-H.); (B.M.H.); (G.T.-I.)
| | - Inkar Castellanos-Huerta
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (J.A.M.-G.); (I.C.-H.); (B.M.H.); (G.T.-I.)
| | - Eric Beyssac
- UFR Pharmacie, UMR MEDIS, Université Clermont-Auvergne, F-63001 Clermont-Ferrand, France; (E.B.); (G.G.)
| | - Ghislain Garrait
- UFR Pharmacie, UMR MEDIS, Université Clermont-Auvergne, F-63001 Clermont-Ferrand, France; (E.B.); (G.G.)
| | - Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico; (A.V.-D.); (A.M.-A.)
| | - Raquel López-Arellano
- Laboratory 5: LEDEFAR, Multidisciplinary Research Unit, Superior Studies Faculty at Cuautitlan (FESC), National Autonomous University of Mexico (UNAM), Cuautitlan Izcalli 54714, Mexico;
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico; (A.V.-D.); (A.M.-A.)
| | - Billy M. Hargis
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (J.A.M.-G.); (I.C.-H.); (B.M.H.); (G.T.-I.)
| | - Guillermo Tellez-Isaias
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (J.A.M.-G.); (I.C.-H.); (B.M.H.); (G.T.-I.)
| |
Collapse
|
7
|
Daneshmand A, Sharma NK, Kheravii SK, Hall L, Wu SB. Buffered formic acid and a monoglyceride blend improve performance and modulate gut bacteria and immunity gene expression in broilers under necrotic enteritis challenge. Poult Sci 2023; 102:102978. [PMID: 37598553 PMCID: PMC10458320 DOI: 10.1016/j.psj.2023.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Due to the removal of antibiotics from animal feed, alternatives have been sought to control necrotic enteritis (NE) in broilers. The current study investigated the effects of buffered formic acid (Amasil NA) and monoglycerides of short- and medium-chain fatty acids (Balangut LS P) on the performance and gut health of broilers challenged with NE. A total of 816 as-hatched 1-d-old chicks (Cobb 500) were randomly assigned to 6 treatments with 8 replicates. Treatments were: T1) nonchallenged control; T2) NE challenged control; T3) Amasil NA (challenge plus Amasil NA, 0.3% throughout all phases); T4) Balangut LS P (challenge plus Balangut LS P, 0.5%, 0.3%, and 0.2% in the starter, grower and finisher phases, respectively; T5) Combined (challenge plus combination of T3 and T4); T6) Antibiotic (challenge plus Zn bacitracin, 0.05 % throughout all phases). Birds were orally gavaged with live Eimeria vaccine species (d 9) and with Clostridium perfringens (d 14 and 15). On d 16, birds were sampled to evaluate gut permeability, microbiota, and mRNA abundance in the jejunum. The data were analyzed in JMP software using one-way ANOVA with Tukey's test to separate means, and Kruskal-Wallis test was used for non-normally-distributed parameters. Results showed that Balangut LS P decreased (P<0.05) feed conversion ratio compared to nonchallenged ones at the end of the study. Balangut LS P reduced (P < 0.05) the level of cecal Bacteriods compared to nonchallenged group, whereas Amasil NA shifted the levels of ileal Bifidobacteria, Enterobacteriaceae, and Lactobacillus towards nonchallenged control (P > 0.05). NE challenge upregulated (P < 0.001) the expression of IL-21R, zeta chain of T cell receptor (ZAP70), and dual specificity phosphatase 4 (DUSP4) compared to nonchallenged birds, whereas Balangut LS P showed an intermediate (P > 0.05) expression pattern of these genes towards nonchallenged and antibiotic groups. In conclusion, combination of Balangut LS P and Amasil NA has the potential to be used as an additive to improve the performance and gut health of broiler chickens, especially under challenging conditions such as NE infections.
Collapse
Affiliation(s)
- Ali Daneshmand
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Nishchal K Sharma
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Sarbast K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Leon Hall
- BASF Australia Ltd, 12/28 Freshwater Place, Southbank, VIC 3006, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia.
| |
Collapse
|
8
|
Ambwani S, Dolma R, Sharma R, Kaur A, Singh H, Ruj A, Ambwani TK. Modulation of inflammatory and oxidative stress biomarkers due to dexamethasone exposure in chicken splenocytes. Vet Immunol Immunopathol 2023; 262:110632. [PMID: 37517103 DOI: 10.1016/j.vetimm.2023.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Dexamethasone (DEXA) is a potent corticosteroid, commonly used for treating inflammatory, hypersensitive and allergic conditions. It is administered to birds with tumours. Many studies were conducted on its immunosuppressive effects; however none of the similar study is available employing chicken splenocytes culture system. The present study was conducted to assess DEXA induced alterations in inflammatory and oxidative stress biomarkers in chicken splenocytes due to its in vitro exposure. The maximum non-cytotoxic dose (MNCD) was evaluated and was further used for conducting lymphocytes proliferation assay (LPA), antioxidant assays (lipid peroxidation, GSH, superoxide dismutase and nitric oxide assays) and assessment of mRNA levels of various genes (IL-1β, IL-6, IL-10, LITAF, iNOS, NF-κB1, Nrf-2, Caspase-3 and -9) through qPCR. The MNCD was determined to be 30 ng/ml in chicken splenocytes culture system. DEXA caused reduction in B and T lymphocytes proliferation indicating its immunosuppressive effects, however improved the antioxidant status of the exposed splenocytes. The expression levels of IL-1β, IL-6, iNOS, LITAF and NF-κB1 were significantly reduced while IL-10 was enhanced, which signify potent anti-inflammatory potential of DEXA. NF-κB is a major transcription factor that regulates genes responsible for both, innate and adaptive immune responses and elicits inflammation. The nuclear factor erythroid 2-related factor 2 (Nrf-2) level was found to be up-regulated. Nrf-2 plays important role in combating the oxidant stress and its increased expression could be the reason of improved antioxidant status of DEXA exposed cells. Present findings indicated that DEXA exhibited modulation in anti-inflammatory, immunomodulatory and antioxidant mediators in chicken splenocytes.
Collapse
Affiliation(s)
- Sonu Ambwani
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India.
| | - Rigzin Dolma
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Raunak Sharma
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Amandip Kaur
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Himani Singh
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Anamitra Ruj
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Tanuj Kumar Ambwani
- Department of Veterinary Physiology and Biochemistry, C.V.A.S., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| |
Collapse
|
9
|
Duff AF, Chasser KM, McGovern KE, Trombetta M, Bielke LR. Adapted tissue assay for the assessment of ileal granulocyte degranulation following in ovo inoculation with select bacteria or coccidial challenge in chickens. PLoS One 2023; 18:e0286532. [PMID: 37498859 PMCID: PMC10374004 DOI: 10.1371/journal.pone.0286532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 05/17/2023] [Indexed: 07/29/2023] Open
Abstract
A previously described heterophil degranulation assay was adapted for use with ileal mucosal tissue via quantification of β-D-glucuronidase and assay end product 4-methylumbelliferone (4-MU). Three initial experiments evaluated the effect of in ovo inoculations of Citrobacter freundii (CF) or mixed lactic acid bacteria (LAB) on ileal granulocyte degranulation. Inoculations were administered on embryonic d18, body weights (BW) were recorded on day of hatch (DOH) and d10 to calculate body weight gain (BWG), and ileal mucosal scrapings were collected on DOH or d10 for the 4-MU assay. In all experiments, treatments were statistically analyzed relative to control groups. Treatments minimally affected BWG in all in ovo experiments (p > 0.05) relative to respective control groups. Similarly, ileal degranulation in in ovo treatments did not statistically differ (p > 0.05). Based on BWG, in ovo treatments may have induced low-level inflammation unable to elicit detectable changes via the 4-MU assay. Four subsequent experiments were conducted to evaluate effects of Eimeria maxima (EM) on ileal degranulation. Treatments included non-inoculated controls and low, medium, or high EM infection. Across all four experiments, final BW or BWG over the inoculation period were suppressed (p < 0.05) in EM groups relative to respective controls with the exception of EM-low (p = 0.094) and EM-medium (p = 0.096) in one trial. Ileal mucosal scrapings for the 4-MU assay were collected on day of peak lesions. Resulting values were reduced (p < 0.05) for EM treated birds in three experiments with the exception of EM-medium (p = 0.247). No differences were observed in one experiment (p = 0.351), which may have been attributed to a variation in strain of infecting Eimeria. Although refinement for low level inflammation is warranted, results indicate successful adaptation of the 4-MU assay for use with intestinal tissue during significant gastrointestinal inflammation.
Collapse
Affiliation(s)
- Audrey F Duff
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States of America
| | - Kaylin M Chasser
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States of America
| | - Kate E McGovern
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States of America
| | - Michael Trombetta
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States of America
| | - Lisa R Bielke
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
10
|
Islam R, Sultana N, Haque Z, Rafiqul Islam M. Effect of dietary dexamethasone on the morphologic and morphometric adaptations in the lymphoid organs and mortality rate in broilers. Vet Med Sci 2023. [PMID: 37067539 DOI: 10.1002/vms3.1139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/02/2022] [Accepted: 02/19/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Thymus, bursa of Fabricius and spleen are the major lymphoid organs of avian species that plays a crucial role in their immunity. Though glucocorticoids are reportedly used as growth promoters, they also suppress the immune system. OBJECTIVES The objective of this study was to investigate the morphologic and morphometric adaptations in the lymphoid organs as well as the mortality rate in broilers in response to long-term treatment with dexamethasone (DEX). METHODS A total of 80 one-day-old broiler chicks (Cobb 500) were randomly divided into four homogenous groups (control - C and treatment groups - T1, T2, and T3). The treatment groups received DEX at the rate of 3, 5, and 7 mg/kg commercial feed. Samples, i.e. thymus, bursa of Fabricius, and spleen, were collected on 7, 14, 21, and 28 days of the experiment. Relative weight of the organs was calculated on each sampling day. The tissues were then processed and stained with haematoxylin and eosin stain for morphological and morphometric study. RESULTS The relative weight of lymphoid organs was found substantially (p < 0.05) less in the DEX-treated groups. Significant (p < 0.05) reduction in lobular size and the cortical-medullary ratio was observed in the thymus of the DEX-treated broilers. Follicular atrophy and massive depletion of lymphocytes were evident in the bursa of Fabricius. The mortality rate was also increased which was largely dependent on the dose and duration of DEX treatment. CONCLUSIONS The study results indicate that DEX treatment can alter the morphology and morphometry of lymphoid organs which might result in severe immunosuppression and increased mortality rate in broilers.
Collapse
Affiliation(s)
- Rafiqul Islam
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Nasrin Sultana
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ziaul Haque
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
11
|
Oluwagbenga EM, Tetel V, Tonissen S, Karcher DM, Fraley GS. Chronic treatment with glucocorticoids does not affect egg quality but increases cortisol deposition into egg albumen and elicits changes to the heterophil to lymphocyte ratio in a sex-dependent manner. Front Physiol 2023; 14:1132728. [PMID: 37008003 PMCID: PMC10063882 DOI: 10.3389/fphys.2023.1132728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
During chronic stress, there is an initial increase in glucocorticoid (GC) levels, but they then return to low, albeit not baseline, levels. Recent studies have renewed interest in cortisol in that it may also have important roles in the stress response. The purpose of our study was to test the hypothesis that chronic treatment with low levels of either corticosterone or cortisol would alter HLR and immune organ morphometrics. Further, we wanted to determine if chronic treatment with either GC would elicit an increase in cortisol levels in egg albumen. To test our hypotheses, we implanted silastic capsules that contained corticosterone, cortisol, or empty capsules as controls (N = 5/sex/treatment). Blood serum, smears, body weights, and egg quality data were collected. Ducks were then euthanized and body weight, weights of spleens, livers, and the number of active follicles were recorded. Albumen GC levels were assessed using mass spectrometry. Data were analyzed using a 2- or 3-way ANOVA as appropriate and post-hoc with Fishers PLSD. No treatment elicited differences in egg quality measures or body weight compared to controls. Corticosterone treatment did elicit an increase in serum corticosterone (p < 0.05), but not cortisol, levels compared to controls in both sexes. Both cortisol and corticosterone treatments increased (p < 0.05) serum levels of cortisol compared to controls. Relative spleen weights were higher (p < 0.05) in hens following corticosterone but not cortisol treatment. No other organs showed any differences among the treatment groups. Both GCs elicited an increase (p < 0.001) in HLR in hens at all time-points over the 2-week treatment period compared to controls. Cortisol, not corticosterone, only elicited an increase in HLR for drakes (p < 0.05) compared to controls but only at day 1 after implants. Chronic treatment with cortisol, but not corticosterone, elicited an increase (p < 0.01) in egg albumen cortisol levels compared to other groups. Corticosterone was not detected in any albumen samples. Our results suggest that glucocorticoids elicit differential effects and although corticosterone has been stated to be the predominant GC in avian species, cortisol may provide critical information to further understand bird welfare.
Collapse
|
12
|
Teague KD, Tellez-Isaias G, Chai J, Petrone-Garcia V, Vuong CN, Blanch A, Rasmussen SH, Brown K, Zhao J, Rochell SJ. Dietary soy galactooligosaccharides affect the performance, intestinal function, and gut microbiota composition of growing chicks. Poult Sci 2023; 102:102440. [PMID: 36736136 PMCID: PMC10102551 DOI: 10.1016/j.psj.2022.102440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
The objective of this experiment was to investigate the effects of the dietary soy galactooligosaccharides (GOS), raffinose and stachyose, on performance, gastrointestinal health, and systemic stress in young broilers. Birds were fed a GOS-devoid diet based on soy protein isolate (SPI) or the SPI diet with 0.9, 1.8, 2.7, or 3.6% added stachyose and raffinose in a ratio of 4:1 at the expense of corn starch. These 5 treatments were administered to 10 replicate cages of 8 birds. Performance was measured weekly and excreta moisture, N retention, apparent metabolizeable energy, and complete blood cell counts were determined at 14 and 21 d. At 21 d, 2 birds per cage were orally gavaged with fluorescein isothiocyanate-dextran (FITC-d) and serum samples were analyzed for FITC-d as a marker of gut leakage. Additionally, intestinal morphology, crop presumptive lactic acid bacteria (LAB) counts, crop and cecal pH, and cecal microbiota via16S rRNA microbial sequencing were evaluated at 21 d. From 0 to 21 d, feed intake increased linearly (P < 0.01) as dietary GOS increased, whereas BWG increased (P < 0.05) quadratically. Feed conversion ratio increased (P < 0.01) linearly as GOS increased. There were linear increases (P < 0.05) in excreta moisture as dietary GOS increased at 14 and 21 d, as well as dose-dependent responses (P < 0.05) in N retention, AME, and AMEn. There was a quadratic increase (P < 0.05) in crop LAB recovery and a linear decrease (P < 0.01) in ceca pH as GOS increased. At 14 d, a linear increase (P < 0.05) in blood heterophil to lymphocyte ratio was observed as dietary GOS increased. Serum concentrations of FITC-d increased quadratically (P < 0.01) to dietary GOS. Increasing levels of GOS influenced alpha and beta diversities and composition of gut microbiota, including the abundance of Ruminococcus and Bifidobacterium. Results from this trial indicate that soy-derived GOS exert dose-dependent effects on nutrient utilization and intestinal health in young broilers.
Collapse
Affiliation(s)
- K D Teague
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - G Tellez-Isaias
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Jianmin Chai
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, USA; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - V Petrone-Garcia
- Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, Cuautitlan Izcalli, State of Mexico, Mexico
| | - C N Vuong
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - A Blanch
- Hamlet Protein A/S, DK-8700 Horsens, Denmark
| | | | - K Brown
- Hamlet Protein A/S, DK-8700 Horsens, Denmark
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, USA
| | - S J Rochell
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA; Department of Poultry Science, Auburn University, Auburn, AL, USA.
| |
Collapse
|
13
|
Chlorogenic acid improves growth performance and intestinal health through autophagy-mediated nuclear factor erythroid 2-related factor 2 pathway in oxidatively stressed broilers induced by dexamethasone. Poult Sci 2022; 101:102036. [PMID: 35901652 PMCID: PMC9326338 DOI: 10.1016/j.psj.2022.102036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/06/2023] Open
Abstract
The effects of chlorogenic acid (CGA) on growth performance, intestinal morphology, antioxidant capacity, and the autophagy-mediated nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in oxidatively stressed broilers were investigated. A total of 400 one-day-old male Cobb broilers were divided randomly into 4 groups using a 2 × 2 factorial arrangement with 2 CGA supplemental levels (0 and 500 mg/kg) and 2 dexamethasone (DEX) challenge levels (0 and 3 mg/kg body weight). All the broilers were injected intraperitoneally with DEX or sterile saline beginning at the age of 15 d for 6 consecutive days. The experiment lasted for 21 d. The CGA increased average daily gain (ADG), villus height, villus height/crypt depth (V/C) value, and the protein expressions of Occludin and ZO-1 in the ileum and decreased the feed:gain (F:G) ratio, which were impaired by the DEX challenge. Superoxide dismutase (SOD), catalase (CAT), gutathione S-transferase (GST), and heme oxygenase-1 (HO-1) activities in the serum and ileum were increased by CGA, whereas protein carboxyl (PCO) level in the serum and ileum, and malondialdehyde (MDA) level in the ileum were decreased of the DEX challenged broilers. The DEX challenge decreased microtubule-associated protein 1 light chain 3 (LC3)-II, Beclin1, and autophagy-related gene (ATG) 7 mRNA expressions, and the LC3-II/LC3-I value and increased LC3-I, cysteinyl aspartate specific proteinase (Caspase)-3 and Caspase-9 mRNA expressions in the ileum, which were improved by CGA. DEX also decreased the protein expressions of Kelch-like ECH-associated protein-1 (Keap1), Nrf2, HO-1, NADPH quinone oxidoreductase-1(NQO-1) and increased sequestosome 1 (p62) in the ileum, which were improved by CGA. Interactions occurred between DEX and CGA for the ADG, F:G ratio, villus height, crypt depth, V/C value, and SOD, CAT, GST, and HO-1 activities, MDA and PCO levels, LC3-II/LC3-I value, and expressions of LC3-I, LC3-II, Beclin1, ATG7, Caspase-3, Caspase-9, Occludin, ZO-1, Keap1, Nrf2, HO-1, NQO-1, and p62. In conclusion, CGA improved the growth performance and intestinal health of oxidatively stressed broilers by activating the autophagy-mediated Nrf2 pathway.
Collapse
|
14
|
Lisnahan CV, Nahak OR, Welsiliana W, Pardosi L. Effect of L-arginine and L-Lysine HCl ratio on growth performance and ileum morphology of native chickens aged 2-14 weeks. Vet World 2022; 15:1365-1372. [PMID: 35765480 PMCID: PMC9210845 DOI: 10.14202/vetworld.2022.1365-1372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Background and Aim: Micronutrients such as essential amino acids in chicken feed must be balanced to promote optimal development. The balance of the amino acids arginine and lysine in chicken feed is particularly important. This study aimed to examine the effect of the ratio of L-arginine to L-Lysine HCl on growth performance and ileum morphology of native chickens aged 2-14 weeks-old. Materials and Methods: One hundred and eighty 2-week-old native chickens which initial weight 78.10±4.97 g were classified into six treatments and five repetitions using a completely randomized design. Treatments were based on the ratio of arginine to lysine in the feed: T1 (0.50% L-arginine: 0.85% L-lysine HCl); T2 (0.75% L-arginine: 0.85% L-lysine HCl); T3 (1.00% L-arginine: 0.85% L-lysine HCl); T4 (0.50% L-arginine: 1.00% L-lysine HCl); T5 (0.75% L-arginine: 1.00% L-lysine HCl); and T6 (1.00% L-arginine: 1.00% L-lysine HCl). Results: Groups T3 and T6 had the highest feed consumption (42.06±0.29 and 42.78±0.72 g/bird/day, respectively), while Group T6 had the highest body weight and body weight gain rate (1505.60±103.20 kg/bird and 16.99±1.24 g/bird/day, respectively). Groups T3 and T6 also had the highest carcass weight (916.16±46.99 and 947.18±62.32 g/bird, respectively). The best feed conversion was seen for Groups T3, T5, and T6 (2.55±0.14, 2.50±0.20, and 2.53±0.19, respectively). For ileum morphometry, the highest villus height occurred in Groups T2, T3, T5, and T6 (962.80±23.31, 982.80±10.03, 972.80±18.99, and 989.80±10.69 μm, respectively); and Group T6 had the highest crypt depth and villus width (340.80±11.52 and 302.00±4.00 μm, respectively). Statistical analysis indicated significant differences among the treatment groups for all variables examined (p<0.05). Conclusion: The highest ratio of arginine-lysine was associated with the largest increase in native chicken feed consumption, body weight gain, feed conversion, and carcass weight, as well as villus height and width, and crypt depth in the ileum. Overall, an arginine-lysine ratio of 0.8-1.20 promoted optimal growth of native chickens aged 2-14 weeks. In the future, it is important to increase the arginine-lysine ratio with low feed protein levels in native chickens.
Collapse
Affiliation(s)
- Charles Venirius Lisnahan
- Department of Animal Husbandry, Faculty of Agriculture, University of Timor, East Nusa Tenggara 85613, Indonesia
| | - Oktovianus R. Nahak
- Department of Animal Husbandry, Faculty of Agriculture, University of Timor, East Nusa Tenggara 85613, Indonesia
| | - Welsiliana Welsiliana
- Department of Biology, Faculty of Agriculture, University of Timor, East Nusa Tenggara 85613, Indonesia
| | - Lukas Pardosi
- Department of Biology, Faculty of Agriculture, University of Timor, East Nusa Tenggara 85613, Indonesia
| |
Collapse
|
15
|
Rocchi A, Ruff J, Maynard CJ, Forga AJ, Señas-Cuesta R, Greene ES, Latorre JD, Vuong CN, Graham BD, Hernandez-Velasco X, Tellez G, Petrone-Garcia VM, Laverty L, Hargis BM, Erf GF, Owens CM, Tellez-Isaias G. Experimental Cyclic Heat Stress on Intestinal Permeability, Bone Mineralization, Leukocyte Proportions and Meat Quality in Broiler Chickens. Animals (Basel) 2022; 12:ani12101273. [PMID: 35625119 PMCID: PMC9138156 DOI: 10.3390/ani12101273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The goal of this research was to assess cyclic heat stress on gut permeability, bone mineralization, and meat quality in chickens. Two separate trials were directed. 320 day-of-hatch Cobb 500 male chicks were randomly assigned to four thermoneutral (TN) and four cyclic heat stress (HS) chambers with two pens each, providing eight replicates per treatment in each trial (n = 20 chicks/replicate). Environmental conditions in the TN group were established to simulate commercial production settings. Heat stress chickens were exposed to cyclic HS at 35 °C for 12 h/day from days 7−42. Performance parameters, intestinal permeability, bone parameters, meat quality, and leukocyte proportions were estimated. There was a significant (p < 0.05) reduction in body weight (BW), BW gain, and feed intake, but the feed conversion ratio increased in chickens under cyclic HS. Moreover, HS chickens had a significantly higher gut permeability, monocyte and basophil levels, but less bone mineralization than TN chickens. Nevertheless, the TN group had significant increases in breast yield, woody breast, and white striping in breast fillets compared to HS. These results present an alternative model to our previously published continuous HS model to better reflect commercial conditions to evaluate commercially available nutraceuticals or products with claims of reducing the severity of heat stress.
Collapse
Affiliation(s)
- Alessandro Rocchi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Jared Ruff
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Clay J. Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Aaron J. Forga
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Roberto Señas-Cuesta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Elizabeth S. Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Christine N. Vuong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Brittany D. Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico;
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Victor M. Petrone-Garcia
- Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlan Izcalli 54121, Mexico;
| | - Lauren Laverty
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Gisela F. Erf
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Casey M. Owens
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
- Correspondence:
| |
Collapse
|
16
|
Sommerfeld S, Mundim AV, Silva RR, Queiroz JS, Rios MP, Notário FO, Medeiros Ronchi AA, Beletti ME, Franco RR, Espindola FS, Goulart LR, Fonseca BB. Physiological Changes in Chicken Embryos Inoculated with Drugs and Viruses Highlight the Need for More Standardization of this Animal Model. Animals (Basel) 2022; 12:1156. [PMID: 35565581 PMCID: PMC9099557 DOI: 10.3390/ani12091156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 01/01/2023] Open
Abstract
Several studies have been developed using the Gallus gallus embryo as an experimental model to study the toxicity of drugs and infections. Studies that seek to standardize the evaluated parameters are needed to better understand and identify the viability of CEs as an experimental model. Therefore, we sought to verify whether macroscopic, histopathological, blood count, metabolites and/or enzymes changes and oxidative stress in CE of different ages are specific to the model. To achieve this goal, in ovo assays were performed by injecting a virus (Gammacoronavirus) and two drugs (filgrastim and dexamethasone) that cause known changes in adult animals. Although congestion and inflammatory infiltrate were visible in the case of viral infections, the white blood cell count and inflammation biomarkers did not change. Filgrastim (FG) testing did not increase granulocytes as we expected. On the other hand, CE weight and red blood cell count were lower with dexamethasone (DX), whereas white blood cell count and biomarkers varied depended on the stage of CE development. Our work reinforces the importance of standardization and correct use of the model so that the results of infection, toxicity and pharmacokinetics are reproducible.
Collapse
Affiliation(s)
- Simone Sommerfeld
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
| | - Antonio Vicente Mundim
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
| | - Rogério Reis Silva
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
| | - Jéssica Santos Queiroz
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
| | - Maisa Paschoal Rios
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
| | - Fabiana Oliveira Notário
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
| | - Alessandra Aparecida Medeiros Ronchi
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
| | - Marcelo Emílio Beletti
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-319, Brazil;
| | - Rodrigo Rodrigues Franco
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, Brazil; (R.R.F.); (F.S.E.); (L.R.G.)
| | - Foued Salmen Espindola
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, Brazil; (R.R.F.); (F.S.E.); (L.R.G.)
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, Brazil; (R.R.F.); (F.S.E.); (L.R.G.)
| | - Belchiolina Beatriz Fonseca
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (A.V.M.); (R.R.S.); (J.S.Q.); (M.P.R.); (F.O.N.); (A.A.M.R.); (B.B.F.)
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, Brazil; (R.R.F.); (F.S.E.); (L.R.G.)
| |
Collapse
|
17
|
Tellez-Isaias G, Latorre JD. Editorial: Alternatives to Antimicrobial Growth Promoters and Their Impact in Gut Microbiota, Health and Disease: Volume II. Front Vet Sci 2022; 9:857583. [PMID: 35310415 PMCID: PMC8926388 DOI: 10.3389/fvets.2022.857583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
|
18
|
Tena-Garitaonaindia M, Arredondo-Amador M, Mascaraque C, Asensio M, Marin JJG, Martínez-Augustin O, Sánchez de Medina F. MODULATION OF INTESTINAL BARRIER FUNCTION BY GLUCOCORTICOIDS: LESSONS FROM PRECLINICAL MODELS. Pharmacol Res 2022; 177:106056. [PMID: 34995794 DOI: 10.1016/j.phrs.2022.106056] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 01/01/2022] [Indexed: 12/15/2022]
Abstract
Glucocorticoids (GCs) are widely used drugs for their anti-inflammatory and immunosuppressant effects, but they are associated with multiple adverse effects. Despite their frequent oral administration, relatively little attention has been paid to the effects of GCs on intestinal barrier function. In this review, we present a summary of the published studies on this matter carried out in animal models and cultured cells. In cultured intestinal epithelial cells, GCs have variable effects in basal conditions and generally enhance barrier function in the presence of inflammatory cytokines such as tumor necrosis factor (TNF). In turn, in rodents and other animals, GCs have been shown to weaken barrier function, with increased permeability and lower production of IgA, which may account for some features observed in stress models. When given to animals with experimental colitis, barrier function may be debilitated or strengthened, despite a positive anti-inflammatory activity. In sepsis models, GCs have a barrier-enhancing effect. These effects are probably related to the inhibition of epithelial cell proliferation and wound healing, modulation of the microbiota and mucus production, and interference with the mucosal immune system. The available information on underlying mechanisms is described and discussed.
Collapse
Affiliation(s)
- Mireia Tena-Garitaonaindia
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María Arredondo-Amador
- Department of Pharmacology, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Mascaraque
- Department of Pharmacology, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Fermín Sánchez de Medina
- Department of Pharmacology, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
19
|
Biochemical and morphological attributes of broiler kidney in response to dietary glucocorticoid, dexamethasone. Saudi J Biol Sci 2021; 28:6721-6729. [PMID: 34866971 PMCID: PMC8626208 DOI: 10.1016/j.sjbs.2021.07.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Glucocorticoids (GCs) initiate oxidative stress and cause renal damage which lead to hypertension, heart failure and ultimately death. The current study aimed to investigate the alterations in serum biochemical parameters i.e. HDL and LDL; gross anatomy, histomorphology and histomorphometry of broiler kidney in response to dietary GC, dexamethasone (DEX). Day old chicks (DOCs) were randomly assigned into four groups: control and three treatment groups (T1, T2 and T3). The control group was fed commercial broiler type ration and the treated groups were fed commercial broiler type ration containing GC (Dexamethasone @ 3, 5 and 7 mg/kg in T1, T2 and T3 group respectively). To measure the biochemical parameters, blood samples were collected on days 7, 14, 21, and 28 of the experiment. For histological investigation, kidney (left) samples were collected from the individual birds after sacrificing on days 7, 14, 21, and 28 of the experiment. Histomorphological alterations of the kidney were assessed by routine hematoxylin and eosin (H&E) staining. Biochemical analysis showed significantly increased serum HDL and LDL level compared to the control. In gross study, dark congested kidney was found with significantly decreased weight, length and width. Treatment with DEX augmented congestion, inflammation and fibrosis in kidney, as evidence by histomorphometric study. Extensively degenerated and atrophied glomeruli, degenerated tubular epithelium with distorted tubules and inter tubular empty spaces were seen. Percentage of atrophied glomeruli increased significantly and maximum percentage of glomerular atrophy was seen at day 28. These changes were found more explicitly in the higher dose group. Histomorphometric study also revealed significant decrease in the diameter of glomerulus. The findings of this study suggest that DEX may alter the serum biochemical parameters as well as kidney gross and histomorphology.
Collapse
|
20
|
Feyera T, Shifaw AY, Ruhnke I, Sharpe B, Elliott T, Walkden-Brown SW. Ascaridia galli challenge model for worm propagation in young chickens with or without immunosuppression. Vet Parasitol 2021; 301:109624. [PMID: 34883322 DOI: 10.1016/j.vetpar.2021.109624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
With the continued growth of free-range egg production, the importance of the chicken roundworm Ascaridia galli is increasing. Investigations into this parasite would be facilitated by the availability of characterised strains and clear guidelines on optimal methods of multiplication and maintenance. Currently, there is lack of well-defined in vivo models for maintaining A. galli and the potential of using host immunosuppression to boost parasite development and worm egg output has not been investigated. To determine the most efficient way of propagating A. galli in young chickens an experiment with a 2 × 3 × 4 × 2 factorial design involving age of chicken at infection (day-old or 14 days old), immunosuppression (dexamethasone (DEX), cyclophosphamide (CY) or sham), infective egg dose (0, 100, 300 or 900 embryonated eggs/bird) and time of worm recovery after infection (8 or 10 weeks post-infection) was conducted. The experiment used a total of 384 layer cockerel chicks. Infection was delivered orally in 3 split doses over one week and immunosuppressants were administered by intramuscular injection concurrently with the infections. Body weight, excreta egg counts, intestinal worm count and worm establishment rate were assessed. The only sign of ascaridiosis noted was mild diarrhoea at the time of slaughter in some birds with a significant- positive association with worm count. Infection caused a significant dose dependent reduction in body weight in non-immunosuppressed birds but this effect was ameliorated by immunosuppression. Age at infection had no significant effect on the studied variables although both worm and egg counts were numerically higher in the day-old infected groups. Egg dose significantly influenced the prevalence of infection, worm establishment rate, worm egg production and mean worm count. The 300 and 900 egg doses resulted in significantly higher worm count and egg production than the 100 egg dose. A significant negative correlation was observed between egg dose and worm establishment rate indicating an inverse relationship. Immunosuppression with DEX, but not CY resulted in significantly higher mean worm burden than in control chickens with excreta egg counts also considerably higher in DEX treated birds. Our results suggest that trickle infection at day-old with infective doses of 300 eggs coupled with immunosuppression with DEX would provide the most efficient way to propagate A. galli worms in vivo, as using older birds or a higher egg dose did not provide any advantage.
Collapse
Affiliation(s)
- Teka Feyera
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia; Department of Veterinary Clinical Studies, College of Veterinary Medicine, Jigjiga University, Jigjiga, P.O. Box 1020, Ethiopia.
| | - Anwar Yesuf Shifaw
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Isabelle Ruhnke
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | | | - Timothy Elliott
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Stephen W Walkden-Brown
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
21
|
Telomere Length, Apoptotic, and Inflammatory Genes: Novel Biomarkers of Gastrointestinal Tract Pathology and Meat Quality Traits in Chickens under Chronic Stress ( Gallus gallus domesticus). Animals (Basel) 2021; 11:ani11113276. [PMID: 34828008 PMCID: PMC8614256 DOI: 10.3390/ani11113276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The assessment of poultry’s gastrointestinal (GI) tract and meat quality traits are crucial for sustainable poultry production in the tropics. The search for well-conserved and more reliable biomarkers for the GI tract and meat traits has faced many challenges. In this study, we observed the effect of corticosterone (CORT) and age on body weight, buffy coat telomere length, GI tract, and meat quality traits. The critical evaluation of the GI tract and meat traits in this study revealed that telomere length, mitochondria, and acute phase protein genes were altered by chronic stress and were associated with the traits. This study informed us of the potential of telomere length, mitochondria, and acute phase protein genes in the assessment of GI tract pathological conditions and meat quality in the poultry sector for sustainable production. Abstract This study was designed to examine the potentials of telomere length, mitochondria, and acute phase protein genes as novel biomarkers of gastrointestinal (GI) tract pathologies and meat quality traits. Chickens were fed a diet containing corticosterone (CORT) for 4 weeks and records on body weight, telomere length, GI tract and muscle histopathological test, meat quality traits, mitochondria, and acute phase protein genes were obtained at weeks 4 and 6 of age. The body weight of CORT-fed chickens was significantly suppressed (p < 0.05). CORT significantly altered the GI tract and meat quality traits. The interaction effect of CORT and age on body weight, duodenum and ileum crypt depth, pH, and meat color was significant (p < 0.05). CORT significantly (p < 0.05) shortened buffy coat telomere length. UCP3 and COX6A1 were diversely and significantly expressed in the muscle, liver, and heart of the CORT-fed chicken. Significant expression of SAAL1 and CRP in the liver and hypothalamus of the CORT-fed chickens was observed at week 4 and 6. Therefore, telomere lengths, mitochondria, and acute phase protein genes could be used as novel biomarkers for GI tract pathologies and meat quality traits.
Collapse
|
22
|
Abdelli N, Francisco Pérez J, Vilarrasa E, Melo-Duran D, Cabeza Luna I, Karimirad R, Solà-Oriol D. Microencapsulation Improved Fumaric Acid and Thymol Effects on Broiler Chickens Challenged With a Short-Term Fasting Period. Front Vet Sci 2021; 8:686143. [PMID: 34722691 PMCID: PMC8554117 DOI: 10.3389/fvets.2021.686143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
The first objective of this study was to demonstrate the usefulness of the microencapsulation technique to protect fumaric acid and thymol, avoiding their early absorption and ensuring their slow release throughout the gastrointestinal tract (GIT). For this purpose, the release of a lipid matrix microencapsulated brilliant blue (BB) was assessed in vitro, using a simulated broiler intestinal fluid, and in vivo. In vitro results showed that more than 60% of BB color reached the lower intestine, including 26.6 and 29.7% in the jejunum and ileum, respectively. The second objective was to determine the effects of microencapsulated fumaric acid, thymol, and their mixture on the performance and gut health of broilers challenged with a short-term fasting period (FP). One-day-old male ROSS 308 chickens (n = 280) were randomly distributed into seven treatments, with 10 replicates of four birds each. Dietary treatments consisted of a basal diet as negative control (NC), which was then supplemented by either non-microencapsulated fumaric acid (0.9 g/kg), thymol (0.6 g/kg), or a mixture of them. The same additive doses were also administered in a microencapsulated form (1.5 and 3 g/kg for the fumaric acid and thymol, respectively). At day 21, chickens were subjected to a 16.5-h short-term FP to induce an increase in intestinal permeability. Growth performance was assessed weekly. At day 35, ileal tissue and cecal content were collected from one bird per replicate to analyze intestinal histomorphology and microbiota, respectively. No treatment effect was observed on growth performance from day 1 to 21 (p > 0.05). Microencapsulated fumaric acid, thymol, or their mixture improved the overall FCR (feed conversion ratio) and increased ileal villi height-to-crypt depth ratio (VH:CD) (p < 0.001) on day 35 of the experiment. The microencapsulated mixture of fumaric acid and thymol increased cecal abundance of Bacteroidetes, Bacillaceae, and Rikenellaceae, while decreasing that of Pseudomonadaceae. These results indicate that the microencapsulation technique used in the current study can be useful to protect fumaric acid and thymol, avoiding early absorption, ensure their slow release throughout the GIT, and improve their effects on fasted broiler chickens.
Collapse
Affiliation(s)
- Nedra Abdelli
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Francisco Pérez
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Diego Melo-Duran
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Razzagh Karimirad
- Department of Animal Science, Lorestan University, Khorramabad, Iran
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Science, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Hosseinian S, Ansari S. Prophylactic effects of dietary ascorbic acid on oxidative stress indices, physiological and behavioural responses of domestic pigeons exposed to road transport stress. Vet Med Sci 2021; 7:2389-2398. [PMID: 34797959 PMCID: PMC8604146 DOI: 10.1002/vms3.609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transport disturbs birds' welfare and health status which lead to oxidative stress and dietary ascorbic acid mitigates the adverse effects of transport stress. The present study was aimed to evaluate the impacts of ascorbic acid administration on oxidative stress indices, cortisol, H/L ratio, tonic immobility reaction and rectal temperature of pigeons exposed to road transport. A total of 80 clinically healthy pigeons were selected and randomly divided to eight equal groups as follow: (1) Ctrl- : fed by basal diet and no subjected to transport stress; (2) Ctrl+: fed by the basal diet and subjected to transport stress; (3, 4) 1DBS10 and 1DBS16: received ascorbic acid from 1 day before transport stress at doses of 10 g/100 L and 16 g/100 L of drinking water, respectively; (5, 6) 3DBS10 and 3DBS16: treated with ascorbic acid from 3 consecutive days before transport stress at doses of 10 g/100 L and 16 g/100 L, respectively and (7, 8) 7DBS10 and 7DBS16: received ascorbic acid from 7 consecutive days before the transport at doses 10 g/100 L and 16 g/100 L, respectively. Birds were transported for 3 h over a distance of about 200 km. The total antioxidant capacity, malondialdehyde and cortisol were measured before transport and at 6, 24 and 72 h post-transportation. The rectal temperature and tunic immobility reactions were recorded. Dietary ascorbic acid led to a decrease in tonic immobility response, hetrophil to lymphocyte ratio, circulating cortisol and total antioxidant capacity, and an increase in circulating malondialdehyde in pigeons exposed to transport stress compare to Ctrl+ group. In conclusion, ascorbic acid administration at dose 16 g/100 L of drinking water from 3 and 7 days before exposure to stress helps attenuate undesirable effects of oxidative stress in pigeons.
Collapse
Affiliation(s)
- S.A. Hosseinian
- Department of Clinical Science, School of Veterinary MedicineShiraz UniversityShirazIran
| | - S. Ansari
- Department of Clinical Science, School of Veterinary MedicineShiraz UniversityShirazIran
| |
Collapse
|
24
|
Gilani S, Chrystal PV, Barekatain R. Current experimental models, assessment and dietary modulations of intestinal permeability in broiler chickens. ACTA ACUST UNITED AC 2021; 7:801-811. [PMID: 34466684 PMCID: PMC8384772 DOI: 10.1016/j.aninu.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Maintaining and optimising the intestinal barrier (IB) function in poultry has important implications for the health and performance of the birds. As a key aspect of the IB, intestinal permeability (IP) is mainly controlled by complex junctional proteins called tight junction proteins (TJ) that link enterocytes together. The disruption of TJ is associated with increased gut leakage with possible subsequent implications for bacterial translocation, intestinal inflammation, compromised health and performance of the birds. Despite considerable data being available for other species, research on IP in broiler chickens and in general avian species is still an understudied topic. This paper reviews the available literature with a specific focus on IP in broiler chickens with consideration given to practical factors affecting the IP, current assessment methods, markers and nutritional modulation of IP. Several experimental models to induce gut leakage are discussed including pathogens, rye-based diets, feed deprivation and stress-inducing agents such as exogenous glucocorticoids and heat stress. Although various markers including fluorescein isothiocyanate dextran, expression of TJ and bacterial translocation have been widely utilized to study IP, recent studies have identified a number of excreta biomarkers to evaluate intestinal integrity, in particular non-invasive IP. Although the research on various nutrients and feed additives to potentially modulate IP is still at an early stage, the most promising outcomes are anticipated for probiotics, prebiotics, amino acids and those feed ingredients, nutrients and additives with anti-inflammatory properties. Considerable research gaps are identified for the mechanistic mode of action of various nutrients to influence IP under different experimental models. The modulation of IP through various strategies (i.e. nutritional manipulation of diet) may be regarded as a new frontier for disease prevention and improving the health and performance of poultry particularly in an antibiotic-free production system.
Collapse
Affiliation(s)
- Saad Gilani
- Danisco Animal Nutrition (IFF), Oegstgeest, the Netherlands
| | | | - Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
- Corresponding author. South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia.
| |
Collapse
|
25
|
Barekatain R, Chalvon-Demersay T, McLaughlan C, Lambert W. Intestinal Barrier Function and Performance of Broiler Chickens Fed Additional Arginine, Combination of Arginine and Glutamine or an Amino Acid-Based Solution. Animals (Basel) 2021; 11:2416. [PMID: 34438873 PMCID: PMC8388668 DOI: 10.3390/ani11082416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Two experiments were conducted to investigate the effect of arginine (Arg); the combination of Arg and glutamine (Gln); as well as an amino acid-based solution (MIX) containing Arg, Gln, threonine (Thr), and grape extract, on performance, intestinal permeability, and expression of selected mechanistic genes. Using 240 male Ross 308 off-sex broiler chickens, four experimental treatments were replicated six times with 10 birds per replicate. The experimental treatments included 5 g/kg Arg, 2.5 g/kg Arg and 2.5 g/kg Gln, and 1 g/kg MIX added to a basal diet as control. In the second study, the four dietary treatments were then given to 24 birds with or without a synthetic glucocorticoid, dexamethasone (DEX), as a gut dysfunction model. Feed conversion ratio was improved by all the supplemented treatments from day 7 to 35 of age (p < 0.001). DEX injections increased (p < 0.001) the intestinal permeability in all treatments, which tended to be reversed by Arg or MIX. Additional Arg, Arg-Gln, and MIX suppressed (p < 0.05) the overexpression of IL-1β generated by DEX. Feeding birds with MIX treatment increased (p < 0.05) expression of SGLT-1 and glutathione synthetase. In conclusion, tested amino acid supplements were effective in improving feed efficiency and restraining intestinal inflammation caused by DEX through IL-1β pathway.
Collapse
Affiliation(s)
- Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia;
| | | | - Clive McLaughlan
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia;
| | - William Lambert
- METEX NOOVISTAGO, 32 Rue Guersant, 75017 Paris, France; (T.C.-D.); (W.L.)
| |
Collapse
|
26
|
Fries-Craft K, Meyer MM, Bobeck EA. Algae-based feed ingredient protects intestinal health during Eimeria challenge and alters systemic immune responses with differential outcomes observed during acute feed restriction. Poult Sci 2021; 100:101369. [PMID: 34333388 PMCID: PMC8342793 DOI: 10.1016/j.psj.2021.101369] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/29/2023] Open
Abstract
Compounds in microalgae-derived feed ingredients in poultry diets may improve intestinal physiology and immunity to protect against damage induced by physiological and pathogen challenges, but mechanisms are examined sparingly. The study objective was to evaluate changes to intestinal morphology, permeability, and systemic immunity in broilers fed a proprietary microalgae ingredient during 2 separate challenge studies. In study 1, two replicate 28 d battery cage trials used 200 Ross 308 broilers each (n = 400) fed a control diet ± 0.175% algae ingredient. Half of the birds were subjected to a 12 h feed restriction challenge and fluorescein isothiocyanate dextran (FITC-D) intestinal permeability assay on d 28. Study 2 used 800 broilers randomly assigned to the same dietary treatments and housed in floor pens for 42 d. At d 14, intestine and spleen samples were collected from 10 birds/ diet. Half of the remainder was orally inoculated with 10X Coccivac-B52 vaccine in a 2 × 2 factorial treatment design (diet and Eimeria inoculation). The FITC-D assay was conducted at 1, 3, 7, and 14 d post-inoculation (pi) while intestinal and spleen samples were collected at 3, 7, 14, and 28 dpi for histomorphology and flow cytometric immune cell assessment. Study 1 validated intestinal leakage via FITC-D absorbance induced by feed restriction but showed no algae-associated protective effects. In study 2, algae preserved intestinal integrity during coccidiosis (P = 0.04) and simultaneously protected jejunal villus height as early as 7dpi (P < 0.0001), whereas intestinal damage resolution in control birds did not occur until 14 dpi. Algae inclusion increased splenic T cells in unchallenged broilers at d 14 by 29.6% vs. control (P < 0.0001), specifically γδ T cell populations, without impacting performance (P < 0.03). During Eimeria challenge, splenic T cells in algae-fed birds did not show evidence of recruitment to peripheral tissues, while control birds showed a 16.7% reduction compared to their uninoculated counterparts from 3 to 7 dpi (P < 0.0001). This evidence suggests the algae ingredient altered the immune response in a manner that reduced recruitment from secondary lymphoid organs in addition to protecting intestinal physiology.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - M M Meyer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
27
|
Wu QJ, Zhu DD, Wang DD, Zhang BB, Ren A, Zhang ZB. Effects of dietary supplementation with glutamine on the lymphocyte proliferation and intestinal immune gene expression in broiler chickens infected with Salmonella Enteritidis. Res Vet Sci 2021; 139:18-24. [PMID: 34229107 DOI: 10.1016/j.rvsc.2021.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
An experiment was conducted to investigate the effects of glutamine (Gln) on the lymphocyte proliferation and intestinal immune relevant gene expression in broilers infected with Salmonella Enteritidis. 240 1-day-old broilers were divided randomly into four groups in a completely randomized design, each of which had 6 replicates. Birds were reared in battery cages for 21 days. The experimental groups were as follows: control group (unchallenged group, CON), basal diet; Salmonella Enteritidis challenged group (challenged with 2.0 × 104 CFU/mL of Salmonella Enteritidis, SCC), basal diet; Gln 1, basal diet plus Salmonella Enteritidis challenged plus Gln at 0.5% diet; Gln 2, basal diet plus Salmonella Enteritidis challenged plus Gln at 1.0% diet. The results showed that Salmonella Enteritidis infection led to some decrease in the relative weight of spleen and bursa (except at 21 d), lymphocyte percentage, number of proliferation peripheral blood T and B lymphocytes, and increased the heterophil percentage, H/L ratio, mRNA expression levels of TNF-α, NF-κB p65, IL-1β, IL-6, and IL-8 in the jejunal and ileal mucosa compared with the measurements of these parameters in the CON group at d 4, 7, 14, and 21 (p < 0.05). On the other hand, chickens fed the Gln showed improved the relative weight of spleen and bursa, increased the lymphocyte percentage, number of proliferation peripheral blood T and B lymphocytes, and decreased the heterophil percentage, H/L ratio, and immune relevant gene expression in the jejunal and ileal mucosa compared with the measurements of these parameters in the SCC group (p < 0.05). These results suggest that Gln as a feed additive could be effective for reducing the detrimental effects of Salmonella Enteritidis infection, and increase the intestinal immune barrier function of broilers.
Collapse
Affiliation(s)
- Qiu Jue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China.
| | - Dou Dou Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Dou Dou Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Bing Bing Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Ao Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Zhi Bin Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| |
Collapse
|
28
|
Azizi T, Daneshyar M, Allymehr M, Jalali AS, Behroozyar HK, Tukmechi A. The impact of deoxynivalenol contaminated diet on performance, immune response, intestine morphology and jejunal gene expression in broiler chicken. Toxicon 2021; 199:72-78. [PMID: 34111455 DOI: 10.1016/j.toxicon.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to determine the effects of deoxynivalenol (DON) contaminated diet on performance, immune system, gut morphology and jejunal gene expression in broiler chickens. Eighty-one-day old chicks were randomly allotted into two treatments with 4 replicates (10 birds in each replication). Experimental diets were the control diet (maize-soybean meal) and an experimentally contaminated diet with 10 mg/kg DON. The results indicated that DON-challenged birds had decreased (P < 0.05) average feed intake (AFI) during starter period as compared to control group. Also, average daily gain (ADG), AFI and feed conversion ratio (FCR) were not affected (P > 0.05) by inclusion of DON contaminated diet during the whole experimental period. Dietary addition of DON to the basal diet caused Fabricius bursa relative weight reduction, while increased the abdominal fat and serum triglyceride (TG) concentration (P < 0.05). Dietary DON feeding caused an enhancement (P < 0.05) in the blood aspartate aminotransferase (AST) and gamma glutamytransferase (GGT) contents. Moreover, DON decreased the serum total protein (TP) and albumin (ALB) concentrations. Inclusion of DON in diet reduced (P < 0.05) the white blood cell (WBC) count, lymphocyte number and antibody titer against Newcastle disease virus, but increased (P < 0.05) the blood heterophil count. The DON consumption also diminished (P < 0.05) the villus height, villus to crypt ratio, mucosa thickness and villus surface area in the duodenum. Mucin-2 expression was decreased (P < 0.05) by DON consumption, but toll-like receptor-4 (TLR-4) and claudin-5 (CLDN-5) expressions were not affected (P > 0.05) by dietary treatments. In conclusion, although DON could not influence the performance attributes in broiler chickens, it adversely affected the immune response, muc-2 gene expressions in the jejunum and gut morphology, enhanced the liver enzyme indices and lessened the blood protein contents.
Collapse
Affiliation(s)
- Tayebe Azizi
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, P. O. Box 165, Urmia, Iran
| | - Mohsen Daneshyar
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, P. O. Box 165, Urmia, Iran.
| | - Manoochehr Allymehr
- Department of Poultry Health and Diseases, Faculty of Veterinary Medicine, Urmia University, P. O. Box 165, Urmia, Iran
| | - Ali Shalizar Jalali
- Department of Veterinary Basic Sciences, Faculty of Veterinary Medicine, Urmia University, P. O. Box 165, Urmia, Iran
| | | | - Amir Tukmechi
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, P. O. Box 165, Urmia, Iran
| |
Collapse
|
29
|
Assay considerations for fluorescein isothiocyanate-dextran (FITC-d): an indicator of intestinal permeability in broiler chickens. Poult Sci 2021; 100:101202. [PMID: 34111612 PMCID: PMC8192867 DOI: 10.1016/j.psj.2021.101202] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescein isothiocyanate-dextran (FITC-d) is being used as an indicator of intestinal paracellular permeability in poultry research. Especially with the industry moving toward antibiotic-free production, intestinal function and integrity issues have been a research focus. An increasing number of scientific conference abstracts and peer-reviewed journal publications have shown that 4-kDa FITC-d is an efficient marker candidate for measurement of intestinal permeability and can be applied in broiler research. However, experimental protocols vary by personnel, instruments used, and research institution, and potential concerns related to this assay have yet to receive the same amount of attention. Understanding protocol consistency within and across laboratories is vital for obtaining accurate, consistent, and comparable experimental results. This review is aimed to 1) summarize different FITC-d assays in broiler research from peer-reviewed publications during the past 6 yr and 2) discuss factors that can potentially affect intestinal permeability results when conducting the FITC-d assay. In summary, it is essential to pay attention to details, including gavage dose, fasting period, sample handling and lab analysis details when conducting the assay in broiler research. Differences in birds (breed/strain, age, and gender) and experimental design (diet, health status/challenge model, and sampling age) need to be considered when comparing serum FITC-d concentration results between different in vivo animal trials.
Collapse
|
30
|
Kikusato M. Phytobiotics to improve health and production of broiler chickens: functions beyond the antioxidant activity. Anim Biosci 2021; 34:345-353. [PMID: 33705621 PMCID: PMC7961201 DOI: 10.5713/ab.20.0842] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 12/17/2022] Open
Abstract
Phytobiotics, also known as phytochemicals or phytogenics, have a wide variety of biological activities and have recently emerged as alternatives to synthetic antibiotic growth promoters. Numerous studies have reported the growth-promoting effects of phytobiotics in chickens, but their precise mechanism of action is yet to be elucidated. Phytobiotics are traditionally known for their antioxidant activity. However, extensive investigations have shown that these compounds also have anti-inflammatory, antimicrobial, and transcription-modulating effects. Phytobiotics are non-nutritive constituents, and their bioavailability is low. Nonetheless, their beneficial effects have been observed in several tissues or organs. The health benefits of the ingestion of phytobiotics are attributed to their antioxidant activity. However, several studies have revealed that not all these benefits could be explained by the antioxidant effects alone. In this review, I focused on the bioavailability of phytobiotics and the possible mechanisms underlying their overall effects on intestinal barrier functions, inflammatory status, gut microbiota, systemic inflammation, and metabolism, rather than the specific effects of each compound. I also discuss the possible mechanisms by which phytobiotics contribute to growth promotion in chickens.
Collapse
Affiliation(s)
- Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
31
|
Leyva-Diaz AA, Hernandez-Patlan D, Solis-Cruz B, Adhikari B, Kwon YM, Latorre JD, Hernandez-Velasco X, Fuente-Martinez B, Hargis BM, Lopez-Arellano R, Tellez-Isaias G. Evaluation of curcumin and copper acetate against Salmonella Typhimurium infection, intestinal permeability, and cecal microbiota composition in broiler chickens. J Anim Sci Biotechnol 2021; 12:23. [PMID: 33541441 PMCID: PMC7863265 DOI: 10.1186/s40104-021-00545-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Interest in the use of natural feed additives as an alternative to antimicrobials in the poultry industry has increased in recent years because of the risk of bacterial resistance. One of the most studied groups are polyphenolic compounds, given their advantages over other types of additives and their easy potentiation of effects when complexes are formed with metal ions. Therefore, the objective of the present study was to evaluate the impact of dietary supplementation of copper acetate (CA), curcumin (CR), and their combination (CA-CR) against Salmonella Typhimurium colonization, intestinal permeability, and cecal microbiota composition in broiler chickens through a laboratory Salmonella infection model. S. Typhimurium recovery was determined on day 10 post-challenge by isolating Salmonella in homogenates of the right cecal tonsil (12 chickens per group) on Xylose Lysine Tergitol-4 (XLT-4) with novobiocin and nalidixic acid. Intestinal integrity was indirectly determined by the fluorometric measurement of fluorescein isothiocyanate dextran (FITC-d) in serum samples from blood obtained on d 10 post-S. Typhimurium challenge. Finally, microbiota analysis was performed using the content of the left caecal tonsil of 5 chickens per group by sequencing V4 region of 16S rRNA gene. RESULTS The results showed that in two independent studies, all experimental treatments were able to significantly reduce the S. Typhimurium colonization in cecal tonsils (CT, P < 0.0001) compared to the positive control (PC) group. However, only CA-CR was the most effective treatment in reducing S. Typhimurium counts in both independent studies. Furthermore, the serum fluorescein isothiocyanate dextran (FITC-d) concentration in chickens treated with CR was significantly lower when compared to PC (P = 0.0084), which is related to a decrease in intestinal permeability and therefore intestinal integrity. The effect of dietary treatments in reducing Salmonella was further supported by the analysis of 16S rRNA gene sequences using Linear discriminant analysis effect size (LEfSe) since Salmonella was significantly enriched in PC group (LDA score > 2.0 and P < 0.05) compared to other groups. In addition, Coprobacillus, Eubacterium, and Clostridium were significantly higher in the PC group compared to other treatment groups. On the contrary, Fecalibacterium and Enterococcus in CR, unknown genus of Erysipelotrichaceae at CA-CR, and unknown genus of Lachnospiraceae at CA were significantly more abundant respectively. CONCLUSIONS CR treatment was the most effective treatment to reduce S. Typhimurium intestinal colonization and maintain better intestinal homeostasis which might be achieved through modulation of cecal microbiota.
Collapse
Affiliation(s)
- Anaisa A. Leyva-Diaz
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510 Ciudad de Mexico, Mexico
| | - Daniel Hernandez-Patlan
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), 54714 Cuautitlan Izcalli, Mexico
| | - Bruno Solis-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), 54714 Cuautitlan Izcalli, Mexico
| | - Bishnu Adhikari
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Young Min Kwon
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Juan D. Latorre
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510 Ciudad de Mexico, Mexico
| | - Benjamin Fuente-Martinez
- Centro de Ensenanza, Investigacion y Extension en Produccion Avicola, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de Mexico, Mexico
| | - Billy M. Hargis
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Raquel Lopez-Arellano
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), 54714 Cuautitlan Izcalli, Mexico
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| |
Collapse
|
32
|
Effects of Dietary Fiber on Nutrients Utilization and Gut Health of Poultry: A Review of Challenges and Opportunities. Animals (Basel) 2021; 11:ani11010181. [PMID: 33466662 PMCID: PMC7828824 DOI: 10.3390/ani11010181] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The inclusion of agricultural co-products has been increased to utilize the nutrients in these products available at low cost, but inherently, it adds a high dietary fiber content in the poultry diets. The use of exogenous feed enzymes along with advancements in feed milling, feed formulation, and processing of these non-conventional ingredients to improve their digestibility and utilization have played an emphatic role in boosting their use globally. Despite such developments, the presence of a high level of dietary fibers (DF) acting in an anti-nutritive manner still poses challenges in poultry feeding. Various isolated forms of fiber or feed enzymes to break DF into fermentable substrates are being used extensively to provide potential prebiotics to support beneficial gut microbiota or probiotics to improve the gut health of poultry raised without antibiotic growth promoters (AGP). This review reports and discusses the existing challenges in feeding high-DF feed ingredients to poultry and the opportunities that are available to improve the nutritive value of such non-conventional feed ingredients by adopting various technologies. Abstract Many fibrous ingredients incorporated in poultry feed to reduce production costs have low digestibility and cause poor growth in poultry. However, all plant-based fibers are not equal, and thus exert variable physiological effects on the birds, including but not limited to, digestibility, growth performance, and microbial fermentation. Several types of fibers, especially oligosaccharides, when supplemented in poultry diets in isolated form, exhibit prebiotic effects by enhancing beneficial gut microbiota, modulating gut immunity, boosting intestinal mucosal health, and increasing the production of short-chain fatty acids (SCFA) in the gut. Recently, poultry producers are also facing the challenge of limiting the use of antibiotic growth promoters (AGP) in poultry feed. In addition to other alternatives in use, exogenous non-starch polysaccharides digesting enzymes (NSPase) and prebiotics are being used to provide substrates to support the gut microbiome. We also conducted a meta-analysis of different studies conducted in similar experimental conditions to evaluate the variability and conclusiveness in effects of NSPase on growth performance of broilers fed fibrous ingredients. This review presents a holistic approach in discussing the existing challenges of incorporating high-fiber ingredients in poultry feed, as well as strategies to fully utilize the potential of such ingredients in improving feed efficiency and gut health of poultry.
Collapse
|
33
|
Tilbrook AJ, Fisher AD. Stress, health and the welfare of laying hens. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an19666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is essential to understand responses to stress and the impact of stress on physiological and behavioural functioning of hens, so as to assess their welfare. The current understanding of stress in laying hens is comprehensively reviewed here. Most research on stress in hens has focussed on the activity of the adrenal glands, with the most common approach being to measure corticosterone, which is the predominant glucocorticoid produced by birds in response to stress. While these measures are useful, there is a need to understand how the brain regulates stress responses in hens. A greater understanding of the sympathoadrenal system and its interaction with the hypothalamo–pituitary–adrenal axis is required. There is also a lack of knowledge about the many other peptides and regulatory systems involved in stress responses in hens. The usefulness of understanding stress in hens in terms of assessing welfare depends on appreciating that different stressors elicit different responses and that there are often differences in responses to, and impacts of, acute and chronic stress. It is also important to establish the actions and fate of stress hormones within target tissues. It is the consequences of these actions that are important to welfare. A range of other measures has been used to assess stress in hens, including a ratio of heterophils to lymphocytes and haematocrit:packed cell-volume ratio and measures of corticosterone or its metabolites in eggs, excreta, feathers and the secretions of the uropygial gland. Measures in eggs have proffered varying results while measures in feathers may be useful to assess chronic stress. There are various studies in laying hens to indicate impacts of stress on the immune system, health, metabolism, appetite, and the quality of egg production, but, generally, these are limited, variable and are influenced by the management system, environment, genetic selection, type of stressor and whether or not the birds are subjected to acute or chronic stress. Further research to understand the regulation of stress responses and the impact of stress on normal functioning of hens will provide important advances in the assessment of stress and, in turn, the assessment of welfare of laying hens.
Collapse
|
34
|
Zanu HK, Kheravii SK, Morgan NK, Bedford MR, Swick RA. Over-processed meat and bone meal and phytase effects on broilers challenged with subclinical necrotic enteritis: Part 2. Inositol phosphate esters hydrolysis, intestinal permeability, hematology, jejunal gene expression and intestinal morphology. ACTA ACUST UNITED AC 2020; 6:488-498. [PMID: 33364465 PMCID: PMC7750796 DOI: 10.1016/j.aninu.2020.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/16/2020] [Accepted: 03/27/2020] [Indexed: 11/25/2022]
Abstract
This study investigated the hypothesis that feeding broilers over-processed meat and bone meal (MBM) would impair gut health in the absence of phytase and in turn, affect inositol phosphate (inositol x-phosphate, IPx: IP3, IP4, IP5 and IP6) ester hydrolysis, intestinal permeability, hematology, jejunal gene expression and intestinal morphology during necrotic enteritis (NE). Ross 308 male broilers (n = 768) were assigned to one of 8 dietary treatments in a 2 × 2 × 2 factorial arrangement, with 6 replicate pens per diet and 16 birds per pen in a completely randomized design. Factors were: NE challenge (no or yes), phytase level (500 or 5,000 FTU/kg) and MBM processing (as-received or over-processed). For the NE challenge, half of the birds were challenged with field strains of Eimeria spp. on d 9 and 108 CFU/mL of Clostridium perfringens strain EHE-NE18 on d 14 and 15. A 3-way challenge, phytase and MBM processing interaction was detected for IP5 (P < 0.05) and IP6 (P < 0.05) levels in the ileum. Birds fed low phytase had increased IP5 and IP6 in unchallenged birds only when diets contained over-processed MBM. Challenge with NE increased intestinal permeability as measured by serum fluorescein isothiocyanate dextran (FITC-d; P < 0.001), increased white blood cells (WBC; P < 0.001), decreased mean corpuscular volume (MCV; P < 0.001) and mean corpuscular hemoglobin (MCH; P < 0.05), and decreased crypt-to-villi ratio (P < 0.05). The over-processed MBM reduced the villi-to-crypt ratio (P < 0.05). A 3-way challenge × phytase × MBM processing interaction was detected for mucin 2 (MUC-2) expression (P < 0.05) where only in unchallenged birds fed over-processed MBM did high phytase reduce MUC-2 expression. A lower expression of aminopeptidase N (APN; P < 0.001) and vitamin D receptor (VDR; P < 0.001) were recorded in NE challenged birds. In conclusion, NE has a negative impact on the gut and hematology of broilers, but its effect on phytate hydrolysis is minimal.
Collapse
Affiliation(s)
- Holy K Zanu
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Sarbast K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Natalie K Morgan
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | | | - Robert A Swick
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
35
|
Differential expression of intestinal genes in necrotic enteritis challenged broiler chickens with 2 different Clostridium perfringens strains. Poult Sci 2020; 100:100886. [PMID: 33516477 PMCID: PMC7936145 DOI: 10.1016/j.psj.2020.11.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
The primary cause of necrotic enteritis (NE) disease in chickens is the NetB-positive Clostridium perfringens bacterium. Many factors are known to affect the severity of NE in the challenge models of broiler chickens, and one of these factors is the virulence of C. perfringens strain. This study was conducted to evaluate the effect of 2 pathogenic C. perfringens strains in a NE challenge model on gut health and mRNA expression of genes encoding apoptosis, tight junction, immunity, and nutrient transporters in broilers. Day-old Ross-308 male broilers (n = 468) were allocated in a 2 × 3 factorial arrangement of treatments with in-feed antibiotics (no or yes) and challenge (Non, C. perfringens strain NE18, and C. perfringens strain NE36) as the factors. The birds in the challenged groups were inoculated with Eimeria species on day 9 and with a fresh suspension of C. perfringens NE18 or NE36 on day 14 and 15. Sample collection was performed on 2 birds of each pen on day 16. Necrotic enteritis challenge, impaired feed conversion ratio during day 0 to 16 compared with the control group where the effect of the NE36 challenge was more severe than that with NE18 (P < 0.001). The mRNA expression of mucin-2, immunoglobulin-G, occludin (P < 0.001), and tight junction protein-1 (P < 0.05) genes were downregulated in both challenged groups compared with the nonchallenged counterparts. Antibiotic supplementation, on the other hand, increased weight gain, and feed intake in all challenged birds (P < 0.01), but upregulated mucin-5ac and alanine, serine, cysteine, and threonine transporter-1 (P < 0.05) only in the NE18 challenged birds. The challenge with NE36 significantly upregulated caspase-8 and claudin-1 (P < 0.001), but downregulated glucose transporter-2 (P < 0.001) compared with the NE18 challenge. These results suggest that NE challenge is detrimental to the performance of broilers through compromised intestinal health, and different C. perfringens strains can affect the severity of the disease through modulating the expression of intestinal genes encoding proteins responsible for apoptosis, gut integrity, immunity, mucus production, and nutrient transporters.
Collapse
|
36
|
Kikusato M, Xue G, Pastor A, Niewold TA, Toyomizu M. Effects of plant-derived isoquinoline alkaloids on growth performance and intestinal function of broiler chickens under heat stress. Poult Sci 2020; 100:957-963. [PMID: 33518149 PMCID: PMC7858171 DOI: 10.1016/j.psj.2020.11.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022] Open
Abstract
Broiler chickens reared under heat stress (HS) conditions have decreased growth performance and show metabolic and immunologic alterations. This study aimed to evaluate the effect of supplementation with a standardized blend of plant-derived isoquinoline alkaloids (IQ) on the growth performance, protein catabolism, intestinal barrier function, and inflammatory status of HS-treated chickens. Three hundred sixty 0-day-old Ross 308 male broiler chickens were randomly distributed into 2 treatment groups: control diet (no additives) or diet supplemented with 100 ppm IQ. At day 14, the chicks in each diet group were further divided into 2 groups, each of which was reared under thermoneutral (TN) (22.4°C) or constant HS (33.0°C) conditions until day 42. Each group consisted of 6 replicates with 15 birds per replicate, and chickens were provided ad libitum access to water and feed. During days 15–21, the body weight gain (BWG) and feed intake (FI) were significantly lower in the HS treatment group than in the TN group, and feed conversion ratio was higher (P < 0.05); these factors were not alleviated by IQ supplementation. During days 22–42, the final BW, BWG, and FI of the HS birds were better among those administered IQ than those that were not (P < 0.05). HS treatment increased plasma lipid peroxide, corticosterone, and uric acid concentrations as well as serum fluorescein isothiocyanate–dextran, a marker of intestinal barrier function, and decreased plasma total protein content (P < 0.05). These changes were not observed in the IQ group, suggesting that IQ supplementation improved oxidative damage, protein catabolism, and intestinal barrier function of chickens under HS. Isoquinoline alkaloid supplementation inhibited the expression of intestinal inflammatory factors, IL-6, tumor necrosis factor–like factor 1A, and inducible nitric oxide synthase under HS treatment (P < 0.05). These results suggest that IQ supplementation can improve the growth performance of broiler chickens under HS conditions, which may be associated with amelioration of oxidative damage, protein catabolism, intestinal barrier function, and inflammation.
Collapse
Affiliation(s)
- Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.
| | - Guangda Xue
- Phytobiotics Futterzusatzstoffe GmbH, 65343 Eltville, Germany
| | - Anja Pastor
- Phytobiotics Futterzusatzstoffe GmbH, 65343 Eltville, Germany
| | | | - Masaaki Toyomizu
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
37
|
Modulations of genes related to gut integrity, apoptosis, and immunity underlie the beneficial effects of Bacillus amyloliquefaciens CECT 5940 in broilers fed diets with different protein levels in a necrotic enteritis challenge model. J Anim Sci Biotechnol 2020; 11:104. [PMID: 33088501 PMCID: PMC7566066 DOI: 10.1186/s40104-020-00508-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/26/2020] [Indexed: 01/25/2023] Open
Abstract
Background The ban of in-feed antimicrobial additives has negatively affected the poultry industry by causing necrotic enteritis (NE) to emerge in the flocks. Alternatives such as Bacillus probiotics have shown to be effective on eliminating the negative effects of this disease. Two experiments were conducted to investigate the effect of Bacillus amyloliquefaciens CECT 5940 (BA) in broiler chickens under NE challenge and/or fed diets with different protein levels. Methods In both experiments, 480 day-old mix-sexed Ross-308 broilers were arranged in a 2 × 2 factorial arrangement of treatments. In experiment 1, the factors were NE challenge (yes or no) and probiotic (yes or no). In experiment 2, the factors were dietary crude protein levels (standard or reduced) and probiotic (yes or no) and were used under NE challenge condition. Oral administration of Eimeria oocysts (day 9) followed by inoculation with Clostridium perfringens (day 14 and 15) was used to induce NE challenge. On day 16, two birds from each treatment were gavaged with fluorescein isothiocyanate-dextran (FITC-d) and blood samples were collected for gut integrity evaluation, and jejunal samples were collected for gene expression assay. Results In experiment 1, BA supplementation decreased caspase-3 (CASP3) (P < 0.001) and caspase-8 (CASP8) (P < 0.05) and increased occludin (OCLD) (P < 0.05) expression regardless of the challenge. Additionally, BA supplementation downregulated interfron-γ (IFN-γ) expression (P < 0.01) and upregulated immunoglobulin-G (IgG) (P < 0.01) and immunoglobulin-M (IgM) (P < 0.05) only in challenged birds. In experiment 2, the expression of genes encoding mucin-2 (MUC2) (P < 0.001), tight junction protein-1 (TJP1) (P < 0.05) and OCLD (P < 0.05) were upregulated by the addition of BA in the diet, regardless of the crude protein level. Further, BA supplementation downregulated INF-γ (P < 0.01) and upregulated immunoglobulin-A (IgA) (P < 0.05), IgM (P < 0.05) and IgG (P < 0.01) regardless of the crude protein level. Conclusion These findings suggest that supplementation of BA in broiler diets can improve gut health by modulation of genes related to the mucosal barrier, tight junction, and immunity in broilers challenged by unfavourable conditions such as NE challenge.
Collapse
|
38
|
Zanu HK, Kheravii SK, Morgan NK, Bedford MR, Swick RA. Interactive effect of dietary calcium and phytase on broilers challenged with subclinical necrotic enteritis: part 2. Gut permeability, phytate ester concentrations, jejunal gene expression, and intestinal morphology. Poult Sci 2020; 99:4914-4928. [PMID: 32988528 PMCID: PMC7598120 DOI: 10.1016/j.psj.2020.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/04/2020] [Accepted: 06/19/2020] [Indexed: 02/09/2023] Open
Abstract
Calcium has the capacity to interact with phytate-P to form Ca-phytate complexes and decrease the ability of exogenous phytase to degrade phytic acid. This study investigated the hypothesis that high dietary Ca would impair gut permeability, phytate esters (inositol x-phosphate, IPx: IP3, IP4, IP5, and IP6) degradation, jejunal gene expression, and intestinal morphology. Ross 308 day-old male broilers (n = 768) were distributed into 48-floor pens each housing 16 birds in a factorial arrangement. Factors were NE challenge-no or yes; phytase level of 500 or 1,500 FTU/kg, and Ca level 0.6 or 1.0% starter, 0.5 or 0.9% grower, 0.4 or 0.8% finisher with available P in each phase. Challenged birds were gavaged with 3 field strains of Eimeria on day 9 and 108 CFU per mL of Clostridium perfringens Strain EHE-NE18 on day 14 and day 15. A phytase × Ca interaction was observed in the ileum for IP3 (P < 0.01), IP4 (P < 0.05), and IP6 (P < 0.01). The IP3 and IP4 concentrations were similar for both doses of phytase in the presence of low Ca, but with high Ca, both increased significantly but to a greater extent when the high dose of phytase was used. While IP6 concentrations were low and similar between both doses of phytase at low Ca levels, increasing dietary Ca levels increased IP6 concentrations regardless of phytase dose, but the effect was greater in the low phytase diet. A phytase × Ca interaction was detected for vitamin D receptor (VDR) (P < 0.05) expression where bird fed low phytase and low Ca recorded the highest expression of VDR, all other treatments being equivalent. The challenge decreased crypt depth to villus height ratio (P < 0.001). Challenge birds had higher fluorescein isothiocyanate dextran (P < 0.05) in blood compared with unchallenged birds. Thus, high Ca and high phytase, while not the best for IP6 destruction, did not lead to huge reductions in indicators of gut health.
Collapse
Affiliation(s)
- H K Zanu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - S K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - N K Morgan
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - M R Bedford
- AB Vista, Marlborough, Wiltshire SN8 4AN, United Kingdom
| | - R A Swick
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
39
|
Hollemans MS, van Baal J, de Vries Reilingh G, Kemp B, Lammers A, de Vries S. Intestinal epithelium integrity after delayed onset of nutrition in broiler chickens. Poult Sci 2020; 99:6818-6827. [PMID: 33248597 PMCID: PMC7704972 DOI: 10.1016/j.psj.2020.08.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Fasting older broiler chickens (>7 d of age) enlarges the intestinal tight junction (TJ) pore size, resulting in high paracellular intestinal permeability. Broiler chickens often do not receive feed and water (nutrition) directly after hatch, which may result in fasting up to 72 h of age. Whether perinatal fasting affects intestinal permeability is minimally studied. We therefore investigated whether delayed access to nutrition after hatch increases intestinal permeability, compared with broilers receiving early access to nutrition. Therefore, 432 hatched broilers received nutrition 72 h after hatch (delayed nutrition [DN]) or directly after hatch (early nutrition [EN]) and were reared under similar conditions until 14 d of age. Two hours after application of an oral pulse dose (3.85 mg) of fluorescein isothiocyanate-dextran (4000 Da) at 4, 10, and 14 d of age, blood plasma concentrations of the marker were measured in 24 to 36 broilers per treatment and time point. Marker concentration in plasma did not differ between DN and EN broilers at any age. The villus width measured in at least 8 broilers per treatment was smaller in DN than in EN broilers at 4 d for both the ileum (92 ± 3 μm vs. 121 ± 4; P < 0.001) and colon (100 ± 3 vs. 120 ± 4; P < 0.01). Real-time quantitative PCR revealed that the expression of TJ protein claudin 3 in the ceca was elevated in DN, compared with EN broilers at 4 d of age, whereas that of zonula occludens 1 in the ileum was reduced. Expression of host defense-related genes was reduced in DN, compared with EN broilers, in the ileum (cyclo-oxygenase 2, mucin 2) and ceca (interleukin 1β, cyclo-oxygenase 2). We conclude that 72-hour DN reduced the BW up to 14 d of age, coinciding with transient effects on the villus width in the ileum and colon, and divergent expression of genes involved in TJ formation and host defense. These effects likely reflect the delayed onset of intestinal and immune development in DN, compared with EN broilers, while DN does not fundamentally alter intestinal permeability.
Collapse
Affiliation(s)
- M S Hollemans
- Innovation Team, Coppens Diervoeding B.V., NL-5700AB Helmond, The Netherlands; Adaptation Physiology Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands; Animal Nutrition Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands.
| | - J van Baal
- Animal Nutrition Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands
| | - G de Vries Reilingh
- Adaptation Physiology Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands
| | - B Kemp
- Adaptation Physiology Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands
| | - A Lammers
- Adaptation Physiology Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands
| | - S de Vries
- Animal Nutrition Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands
| |
Collapse
|
40
|
Barekatain R, Chrystal PV, Gilani S, McLaughlan CJ. Expression of selected genes encoding mechanistic pathways, nutrient and amino acid transporters in jejunum and ileum of broiler chickens fed a reduced protein diet supplemented with arginine, glutamine and glycine under stress stimulated by dexamethasone. J Anim Physiol Anim Nutr (Berl) 2020; 105:90-98. [PMID: 32654243 DOI: 10.1111/jpn.13416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Reducing crude protein and supplementation with synthetic amino acids in poultry nutrition is a recent trend to avoid wastage of protein and ammonia in production systems. Stress has been shown to impair intestinal barrier and increase inflammatory response. This study was performed on intestinal tissues of broiler chickens to understand the mechanism of stress induced by a synthetic glucocorticoid, dexamethasone (DEX) and the effect of supplementation of arginine, glutamine and glycine in reduced protein diets. Intestinal tissue samples from a previous study were utilized. Male Ross 308 chickens received a basal diet for the first seven days and then fed with crude protein that was reduced to 194 g/kg in grower experimental diets supplemented with glutamine, glycine and additional arginine at 10, 10 and 5 g/kg respectively. Half of the 96 individual birds were injected with DEX (0.5 mg/kg body weight) or saline on days 14, 16, 18 and 20 of age. mRNA expression for jejunum and ileum for amino acid transporters (y+LAT-1, Bo,+ AT, EAAT-3 and CAT-1), mechanistic genes (SGLT-1, mTOR, IAP and FABP-2) and pro-inflammatory genes (MUC-2, NF-κB, iNOS, IL-8 and IL-1β) were analysed using real-time PCR. The results showed that DEX decreased y+ LAT1 in jejunum, Bo ,+ AT and EAAT-3 in ileum. Arginine increased CAT-1 in the jejunum and ileum under DEX treatment. Through an interaction, DEX reduced IAP in jejunum of glycine and arginine supplemented group and reduced mTOR in jejunum independently. DEX reduced MUC-2 and iNOS in jejunum and increased iNOS and IL8 in the ileum. Amino acid supplementation did not appear to ameliorate these effects; however, there were some positive effects of glycine on NF-κB and arginine through increased CAT-1. Mechanistic understanding of amino acid supplementation in broiler diets warrants further research particularly when dietary protein is reduced below the level tested in the present study.
Collapse
Affiliation(s)
- Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia.,School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | | | - Saad Gilani
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Clive J McLaughlan
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
| |
Collapse
|
41
|
Duff AF, Bielke LR, Relling AE. Technical note: fluorescein as an indicator of enteric mucosal barrier function in preruminant lambs. J Anim Sci 2020; 98:skaa198. [PMID: 32564064 PMCID: PMC7333214 DOI: 10.1093/jas/skaa198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/12/2020] [Indexed: 11/14/2022] Open
Abstract
Increased intestinal permeability can be observed during the physiologic stress response and has been linked to suppression of animal health and performance. Previously published data have shown the efficacy of fluorescein isothiocyanate dextran (FITC-d; 4.17 mg/kg) as a marker of enteric inflammation and mucosal barrier function in multiple species. Fluorescein is a smaller, less expensive alternative molecule possessing similar properties. The following two experiments compared FITC-d and fluorescein as potential indicators of intestinal permeability in pre- and postweaned lambs administered daily intramuscular injections of dexamethasone (Dex; 0.1 mg/kg) for 1 wk. Experiment 1 consisted of five preweaned lambs that were placed in one of two treatment groups: fluorescein with Dex (F+Dex) or fluorescein only (F). On day 7, blood was collected before and 1 h after oral administration of fluorescein (50 mg/kg). Experiment 2 included 12 weaned lambs and four treatment groups: F+Dex, F, FITC-d with Dex (Fd+Dex), and FITC-d only (Fd). On day 7, blood was collected before and 2 h after oral administration of FITC-d (4.17 mg/kg) or fluorescein (50 mg/kg). Plasma fluorescence was reported as the ratio between T1h/T0 or T2h/T0 for experiment 1 or 2, respectively. Experiment 1 showed a significant increase in T1h/T0 ratio of F+Dex relative to F lambs (P = 0.05) indicative of increased leaky gut; however, no differences (P = 0.22) were obtained in experiment 2. Results of these experiments suggest fluorescein may serve as a suitable marker of enteric permeability in preruminant lambs, but not in those with functional rumens.
Collapse
Affiliation(s)
- Audrey F Duff
- Department of Animal Sciences, The Ohio State University, Wooster, OH
| | - Lisa R Bielke
- Department of Animal Sciences, The Ohio State University, Wooster, OH
| | | |
Collapse
|
42
|
Tellez G, Arreguin-Nava MA, Maguey JA, Michel MA, Latorre JD, Merino-Guzman R, Hernandez-Velasco X, Moore PA, Hargis BM, Tellez-Isaias G. Effect of Bacillus-direct-fed microbial on leaky gut, serum peptide YY concentration, bone mineralization, and ammonia excretion in neonatal female turkey poults fed with a rye-based diet. Poult Sci 2020; 99:4514-4520. [PMID: 32867995 PMCID: PMC7598103 DOI: 10.1016/j.psj.2020.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/28/2020] [Accepted: 06/13/2020] [Indexed: 01/19/2023] Open
Abstract
Rye is high in nonstarch polysaccharides (NSP), a complex carbohydrate which cannot be digested by poultry as they lack the endogenous enzymes to do so. Exogenous carbohydrases must therefore be supplemented to avoid the antinutritional effects associated with a high NSP diet. The objectives of the present study were to evaluate the effects of a rye-based diet with and without supplementation of a Bacillus direct-fed microbial (DFM) on body weight, bone mineralization, and leaky gut, as well as its role on influencing serum concentrations of peptide YY (PPY) and the ammonia concentration in turkey manure. Two independent trials were conducted. In each experiment, day-of-hatch female turkey poults were neck tagged and randomly assigned to either a control rye-based diet or a rye-based diet supplemented with the DFM (n = 25 birds/group). At 10 days-of-age, poults in both groups were administered with an appropriate dose of fluorescein isothiocyanate-dextran (FITC-d) by oral gavage. One hour later, all poults were euthanized. Blood was collected to evaluate serum FITC-d and PPY concentrations. Furthermore, in Trial 2 only, both tibias were removed for assessment of bone parameters, and turkey manure was collected to evaluate physicochemical analysis. In both trials, poults treated with the DFM showed a significant increase (P < 0.05) in body weight and body weight gain as compared with control nontreated poults. Poults that received the DFM also had a significant reduction in serum levels of PPY and FITC-d when compared with control nontreated poults. In Trial 2, turkeys treated with the DFM had a substantial increase in tibia strength, tibia diameter, total ash, calcium, and phosphorus when compared with control nontreated turkeys. Their manure was also shown to have a significant reduction in the concentration of ammonia. This is the first report of a commercial DFM reducing the concentration of this compound in turkey manure. In summary, the results of the present study confirm that turkeys fed with a rye-based diet have a significant increase in gut permeability, a reduced body weight, and decreased bone mineralization when compared with turkeys fed with the DFM. Turkeys that received the rye-based diet supplemented with the Bacillus-DFM also had a significant reduction in the serum concentration of PPY when compared with control turkeys. This finding suggests a possible prebiotic effect of rye, warranting future studies to test this effect. Further studies to evaluate the microbiota diversity, as well as the concentration of ceca short-chain fatty acids, are also necessary to confirm the reliability of PPY as a potential metabolomic biomarker in poultry.
Collapse
Affiliation(s)
- G Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - J A Maguey
- College of Superior Studies Cuautitlan, National Autonomous University of Mexico (UNAM), 54714, Mexico
| | - M A Michel
- College of Veterinary Medicine, National University of Nordeste, Corrientes, Argentina
| | - J D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - R Merino-Guzman
- Avian Medicine Department, College of Veterinary Medicine, UNAM, 04510, Mexico
| | - X Hernandez-Velasco
- Avian Medicine Department, College of Veterinary Medicine, UNAM, 04510, Mexico
| | - P A Moore
- USDA-ARS, Poultry Production and Product Safety Research Unit, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - B M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - G Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
43
|
Meyer MM, Fries-Craft KA, Bobeck EA. Composition and inclusion of probiotics in broiler diets alter intestinal permeability and spleen immune cell profiles without negatively affecting performance1. J Anim Sci 2020; 98:5682675. [PMID: 31863089 DOI: 10.1093/jas/skz383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
Probiotic feed additives with potential to enhance performance, health, and immunity have gained considerable popularity in commercial broiler production. The study objectives were to measure broiler performance, gut integrity, and splenic immune cell profiles in birds fed one of two probiotics at two inclusion levels. Nine hundred sixty Ross 708 broilers (12 per pen) were randomly assigned to no additive control, 0.05% or 0.10% LactoCare (Lactobacillus reuteri), or 0.05% or 0.10% LactoPlan (Lactobacillus plantarum) dietary treatments for 6 wk. On day 27, a 20-pen subset was utilized for a fluorescein isothiocyanate dextran (FITC-d) assay, where half of the pens were subject to a 12-h feed restriction (FR) pregavage. Serum collected from blood drawn 1-h postgavage was analyzed for relative fluorescence of FITC-d absorbed across the intestinal barrier as a gut leakiness indicator. On day 42, spleens from eight birds per treatment were collected for immune cell profile analysis by multicolor flow cytometry. Although performance outcomes were not affected by dietary treatment, FITC-d absorption post-FR was increased 57% in the 0.05% LactoPlan treatment, and was decreased by 12.6% in the 0.05% LactoCare diet, 12% in the 0.10% LactoCare diet, and 22% in the 0.10% LactoPlan diet compared with the control. This indicates a positive impact in barrier integrity maintenance due to 0.05% and 0.10% LactoCare and 0.10% LactoPlan diet following a challenge. Immune cell profiles varied between the two probiotic compositions, with an approximately 50% reduction in splenic innate immune cells (monocyte/macrophage+) in birds fed LactoPlan (P < 0.0001) and greater overall percentages of CD45+ leukocytes and CD3+ T cells in birds fed 0.10% LactoCare (P < 0.0001). LactoPlan diets shifted splenic T-cell populations in favor of CD8α + cytotoxic T cells (TC; P = 0.007), while higher inclusions (0.10%) of either probiotic increased the percentage of activated CD4+ helper T cells (TH; P < 0.0001). These results indicate that compositionally different probiotics had varying effects on the gut permeability and splenic immune cell profiles in broiler chickens, particularly at higher inclusion rates, but observed changes to underlying physiology did not negatively impact performance outcomes. The ability of a probiotic to alter gut permeability and immune cell profile, therefore, may depend on the compositional complexity of the product as well as inclusion rate.
Collapse
Affiliation(s)
- Meaghan M Meyer
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | |
Collapse
|
44
|
Hirakawa R, Nurjanah S, Furukawa K, Murai A, Kikusato M, Nochi T, Toyomizu M. Heat Stress Causes Immune Abnormalities via Massive Damage to Effect Proliferation and Differentiation of Lymphocytes in Broiler Chickens. Front Vet Sci 2020; 7:46. [PMID: 32118068 PMCID: PMC7020782 DOI: 10.3389/fvets.2020.00046] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Broiler chickens are highly sensitive to high ambient temperatures due to their feathers, lack of skin sweat glands, and high productivity. Heat stress (HS) is a major concern for the poultry industry because it negatively affects growth as well as immune functions, which increase the potential risk of infectious disease outbreaks. Therefore, it is vital to elucidate HS's effect on the avian immune system, especially considering the global rise in average surface temperature. Our study identified a series of immunological disorders in heat-stressed broiler chickens. We exposed 22-day-old broiler chickens to a continuous HS condition (34.5 ± 0.5°C) for 14 days and immunized them with a prototype bovine serum albumin (BSA) antigen. The plasma and lymphoid tissues (thymus, bursa of Fabricius, and spleen) were harvested at the end of the experiments to investigate the induction of BSA-specific immune responses. Our results revealed that plasma titers of immunoglobulin (Ig)Y, IgM, and IgA antibodies specific for BSA were lower than those of thermoneutral chickens immunized with BSA. Furthermore, the spleens of the heat-stressed broiler chickens displayed severe depression of Bu1+ B cells and CD3+ T cells, including CD4+ T cells and CD8+ T cells, and lacked a fully developed germinal center (GC), which is crucial for B cell proliferation. These immunological abnormalities might be associated with severe depression of CD4−CD8− or CD4+CD8+ cells, which are precursors of either helper or killer T cells in the thymus and Bu1+ B cells in the bursa of Fabricius. Importantly, HS severely damaged the morphology of the thymic cortex and bursal follicles, where functional maturation of T and B cells occur. These results indicate that HS causes multiple immune abnormalities in broiler chickens by impairing the developmental process and functional maturation of T and B cells in both primary and secondary lymphoid tissues.
Collapse
Affiliation(s)
- Ryota Hirakawa
- Laboratory of Animal Nutrition, Division of Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Siti Nurjanah
- Laboratory of Animal Nutrition, Division of Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kyohei Furukawa
- Laboratory of Animal Nutrition, Division of Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Atsushi Murai
- Laboratory of Animal Nutrition, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Motoi Kikusato
- Laboratory of Animal Nutrition, Division of Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Functional Morphology, Division of Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,International Research and Development Center for Mucosal Vaccine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Toyomizu
- Laboratory of Animal Nutrition, Division of Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
45
|
Jin CL, Zeng HR, Xie WY, Gao CQ, Yan HC, Wang XQ. Dietary supplementation with pioglitazone hydrochloride improves intramuscular fat, fatty acid profile, and antioxidant ability of thigh muscle in yellow-feathered chickens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:665-671. [PMID: 31583700 DOI: 10.1002/jsfa.10062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Muscle fat content and fatty acid composition play an important role in poultry flavor and taste. To investigate the effects of pioglitazone hydrochloride (PGZ) on growth performance and thigh muscle quality in yellow-feathered chickens, 360 female chickens were randomly divided into three groups and treated with three doses of PGZ (0, 7.5, and 15 mg kg-1 ) for 28 days. Each group had six replicates of 20 chickens. RESULTS The results showed that dietary supplementation with 15 mg kg-1 PGZ increased average daily feed intake (ADFI) and the average daily gain (ADG) from 0 to 14 days. Furthermore, the triglyceride (TG) level was decreased by 15 mg kg-1 PGZ, whereas the eviscerated yield was increased. The relative weight of the heart and kidneys showed a linear increase with dietary PGZ supplementation, and the drip loss of the thigh muscle was significantly decreased by 15 mg kg-1 PGZ supplementation. Moreover, a* value, intramuscular fat (IMF), and polyunsaturated fatty acids (PUFAs) showed a linear increase, and pH24 h and drip loss showed a quadratic influence with the levels of PGZ supplementation. In particular, the PUFA proportion was increased by 7.63% and 9.14% in the 7.5 mg kg-1 PGZ and 15 mg kg-1 PGZ groups, respectively. Additionally, 15 mg kg-1 of PGZ increased the total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-PX ) activity. CONCLUSION In summary, 15 mg kg-1 PGZ has substantial effects on growth performance and meat quality, particularly by decreasing drip loss and increasing IMF content, PUFA proportions, and antioxidant ability. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng-Long Jin
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Huan-Ren Zeng
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Wen-Yan Xie
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
46
|
Bentley A, Porter L, Van Blois L, Van Wyk B, Vuong CN, Tellez-Isaias G, Shafer D, Tucker Z, Fraley SM, Hargis BM, Fraley GS. A feed restriction milieu for Pekin meat ducks that may improve gait characteristics but also affects gut leakiness. Poult Sci 2020; 99:39-47. [PMID: 32416824 PMCID: PMC7587728 DOI: 10.3382/ps/pez551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 11/20/2022] Open
Abstract
In a previous study, we demonstrated that a 15% feed restriction (FR) during the first 2 wk after hatch could improve gait in Pekin meat ducks, but did result in reduced breast mass. We hypothesized that feed restriction after day 5 following muscle satellite cell development would allow the full growth of the breast meat. To accomplish this goal, 300 1-day-old ducklings (Maple Leaf Farms Inc.) were randomly allocated to 1 of the 3 groups (n = 4 pens, 25 ducks per pen): (1) Control group fed to ad libitum; (2) 85% daily feed intake from days 1 to 14 (FR 85% 1-14); 85% daily feed intake from days 5 to 14 (FR 85% 5-14). All ducks were vaccinated with inactivated Salmonella enteritidis on day 14 and boosted on day 26. The FR 85% 5-14 did show similar production standards to controls, and improved gait characteristics (P < 0.05). To determine if the partial feed restriction would have an impact on intestinal epithelial tight junction integrity, we treated ducks on days 7, 14, 21, 28, and 35 with 8.32 mg/kg FITC-d in water per os and blood samples were obtained via the tibial vein 1 h later. Serum samples were analyzed for presence and quantification of FITC-d. Feed restriction elicited a significant increase in FITC-d permeability at all points of evaluation. Anti-S. enteritidis specific IgY responses were assessed by ELISA from serum collected at 14 D, 28 D, and 35 D. Although all ducks showed an increase humoral immune response to the S. enteritidis, both feed restricted groups showed reduced IgY production compared to ad lib controls. Our data suggest that although the FR 5-14 feed restriction paradigm may reduce gait abnormalities without affecting production rates, some challenges exist due to increased gut leakiness or decreased acquired immune activity. Future studies will look at altering the feed restriction milieu to ameliorate these challenges.
Collapse
Affiliation(s)
- A Bentley
- Department of Biology, Hope College, Holland, MI 49423, USA
| | - L Porter
- Department of Biology, Hope College, Holland, MI 49423, USA
| | - L Van Blois
- Department of Biology, Hope College, Holland, MI 49423, USA
| | - B Van Wyk
- Department of Biology, Hope College, Holland, MI 49423, USA
| | - C N Vuong
- Poultry Health Laboratory & Department of Poultry Science, University of Arkansas, Fayetteville, AK 72701, USA
| | - G Tellez-Isaias
- Poultry Health Laboratory & Department of Poultry Science, University of Arkansas, Fayetteville, AK 72701, USA
| | - D Shafer
- Maple Leaf Farms, Inc. Leesburg, Indiana 46538, USA
| | - Z Tucker
- Maple Leaf Farms, Inc. Leesburg, Indiana 46538, USA
| | - S M Fraley
- Department of Biology, Hope College, Holland, MI 49423, USA; South Crossing Veterinary Center, Caledonia, MI 49316, USA
| | - B M Hargis
- Poultry Health Laboratory & Department of Poultry Science, University of Arkansas, Fayetteville, AK 72701, USA
| | - G S Fraley
- Department of Biology, Hope College, Holland, MI 49423, USA.
| |
Collapse
|
47
|
Hernandez-Patlan D, Solis-Cruz B, Pontin KP, Latorre JD, Hernandez-Velasco X, Merino-Guzman R, Mendez-Albores A, Hargis BM, Lopez-Arellano R, Tellez-Isaias G. Evaluation of Ascorbic Acid or Curcumin Formulated in a Solid Dispersion on Salmonella Enteritidis Infection and Intestinal Integrity in Broiler Chickens. Pathogens 2019; 8:pathogens8040229. [PMID: 31717681 PMCID: PMC6963554 DOI: 10.3390/pathogens8040229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Two experimental models were conducted to evaluate and compare the effect of ascorbic acid (AA) or curcumin formulated in a solid dispersion (SD-CUR) as prophylactic or therapeutic alternatives to prevent or control S. Enteritidis (SE) infection in broiler chickens. In the prophylactic model, dietary administration of AA showed a significant reduction in SE counts in crop compared to the positive control (PC) group (p < 0.05), whereas in cecal tonsils (CT), SD-CUR significantly reduced SE recovery. Superoxide dismutase (SOD) activity was significantly higher in chickens supplemented with AA or SD-CUR, and total intestinal IgA levels were significantly lower in both treatments when compared to the PC group. Serum fluorescein isothiocyanate-dextran (FITC-d) levels were reduced by SD-CUR compared to PC, while AA presented significantly lower total aerobic bacteria. In the therapeutic model, only the dietary administration of AA significantly decreased SE in crop and CT on days 3 and 10 post-challenge. FITC-d levels were significantly lower in both treated groups in comparison to PC, but IgA levels were significantly reduced only by AA. The results suggest that dietary AA and SD-CUR have different modes of action to reduce SE intestinal colonization in two different challenge models in broiler chickens.
Collapse
Affiliation(s)
- Daniel Hernandez-Patlan
- Laboratorio 5, LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), Cuautitlan Izcalli 54714, Mexico; (D.H.-P.); (R.L.-A.)
| | - Bruno Solis-Cruz
- Laboratorio 5, LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), Cuautitlan Izcalli 54714, Mexico; (D.H.-P.); (R.L.-A.)
| | - Karine P. Pontin
- Departamento de Medicina Veterinária Preventiva, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Universidade Federal do Rio Grande do Sul, Porto Alegre RS 97105-900, Brazil;
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA; (J.D.L.); (B.M.H.)
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de Mexico 04510, Mexico; (X.H.-V.); (R.M.-G.)
| | - Ruben Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de Mexico 04510, Mexico; (X.H.-V.); (R.M.-G.)
| | - Abraham Mendez-Albores
- Laboratorio 14, Alimentos, Micotoxinas y Micotoxicosis, Unidad de Investigacion Multidisciplinaria, FES Cuautitlan, UNAM, Cuautitlan Izcalli 54714, Mexico;
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA; (J.D.L.); (B.M.H.)
| | - Raquel Lopez-Arellano
- Laboratorio 5, LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), Cuautitlan Izcalli 54714, Mexico; (D.H.-P.); (R.L.-A.)
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA; (J.D.L.); (B.M.H.)
- Correspondence:
| |
Collapse
|
48
|
Duff AF, Baxter MFA, Graham BD, Hargis BM, Bielke LR. Mode of Action of Dietary Dexamethasone May Not Be Dependent Upon Microbial Mechanisms in Broilers. Microorganisms 2019; 7:microorganisms7090346. [PMID: 31547289 PMCID: PMC6780751 DOI: 10.3390/microorganisms7090346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022] Open
Abstract
Dexamethasone (Dex), a synthetic glucocorticoid (GC), in feed has been shown to increase gut permeability via stress-mediated mechanisms, but the exact mode of action on gut barrier function is not fully understood. Stress has been reported to alter the profile and virulence of intestinal flora predisposing for opportunistic disease. This study aimed to evaluate the relationship between dietary Dex and recoverable intestinal microbial profile in broilers to better understand mode of action and refine future uses of the model. Three experiments were conducted that administered Dex-treated feed for one week in conjunction with the antibiotics BMD (bacitracin methylene disalicylate) or Baytril® (enrofloxacin) to evaluate if enteric microbial mechanisms were important in Dex-induced permeability. Serum fluorescein isothiocyanate-dextran (FITC-d) and bacterial translocation (BT) have been reported to increase after Dex treatment and were used to assess gut epithelial leakage. Shifts in bacterial profiles were also measured on selective agar. Combining Dex with BMD or Baytril resulted in increased (P < 0.05) serum FITC-d versus Dex-only. Additionally, Baytril did not reduce aerobic BT and bacterial profiles remained similar after Dex. These results suggest a minimal role of intestinal microbes in Dex-induced changes to intestinal barrier function.
Collapse
Affiliation(s)
- Audrey F Duff
- Department of Animal Sciences The Ohio State University, Columbus, OH 43210, USA.
| | - Mikayla F A Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | - B Danielle Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Lisa R Bielke
- Department of Animal Sciences The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
49
|
Barekatain R, Nattrass G, Tilbrook AJ, Chousalkar K, Gilani S. Reduced protein diet and amino acid concentration alter intestinal barrier function and performance of broiler chickens with or without synthetic glucocorticoid. Poult Sci 2019; 98:3662-3675. [DOI: 10.3382/ps/pey563] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
|
50
|
Nasr MAF, Mohammed H, Hassan RA, Swelum AA, Saadeldin IM. Does light intensity affect the behavior, welfare, performance, meat quality, amino acid profile, and egg quality of Japanese quails? Poult Sci 2019; 98:3093-3102. [PMID: 30839083 DOI: 10.3382/ps/pez089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
The current study aimed to explore the impact of different light intensities on behavior, welfare, performance, meat quality, amino acid content, and egg quality of Japanese quails. A total of 600 1-day-old Japanese quail chicks were used (300/batch). Chicks were homogeneously classified into 3 groups (each of 100); low (10 lux), moderate (50 lux). and high light intensity (250 lux) groups. There was a significant effect (P < 0.05) of light intensity in most of the Japanese quails' behaviors. Quails reared on low light intensity showed the lowest behavior of feeding, drinking, flying, and feather picking, while the highest behaviors were preening, dust bathing, leg and wing stretching, and body shaking when compared with the other groups. Moreover, they had the better welfare (lowest H/L ratio and corticosterone levels). Quails of low light intensity groups possessed the heaviest body weight (145.17 g, P = 0.000) with the lowest daily feed intake (14.17 g) but with the best feed conversion ratio (3.39%, P = 0.000). Moreover, they had the heaviest slaughter (132.47 g, P = 0.000) and carcass weight (109.29 g, P = 0.000) and carcass yield (75.37%, P = 0.000) when compared with the others groups. Muscles of quails (both of pectoral and thigh) kept under low light intensity revealed the highest percentage of lightness, yellowness, and water-holding capacity with the lowest percentage of cooking loss, thiobarbituric acid reactive substances, and some amino acids. They also had the heaviest egg weight (11.24 g, P = 0.000) with the best external and internal egg-quality grades (P < 0.05). Consequently, low light intensity is suggested for improving quail's welfare, performance, and reproduction, while the high light intensity had a detrimental effect on both welfare and performance.
Collapse
Affiliation(s)
- Mohammed A F Nasr
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Hesham Mohammed
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Rania A Hassan
- Animal Wealth Development Department, Animal Production Division, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia.,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| |
Collapse
|