1
|
Chen D, Chen J, Dong Z, Cao Q, Ye H, Feng D, Zhang C, Zuo J, Wang W. Supplemental glucose oxidase as an antibiotic substitute alleviates diarrhea and improves intestinal health in weaned piglets. Vet Q 2025; 45:1-9. [PMID: 39742888 DOI: 10.1080/01652176.2024.2447592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025] Open
Abstract
Weaning stress-induced diarrhea is a serious issue in pig production. This study aimed to evaluate the potential of glucose oxidase (GOD) as an antibiotic substitute to alleviate diarrhea and improve gut health in weaned piglets. According to a randomized complete block design, 250 piglets weaned around 21 d of age were allocated into 5 groups (5 replicates/group), which received a basal diet without or with supplemental 200 mg/kg antibiotic, 500, 1000 and 2000 U/kg GOD, respectively. Dietary treatments did not affect (p > 0.05) growth performance of piglets. However, supplemental all doses of GOD were equivalent or superior to antibiotic to reduce (p < 0.05) diarrhea as well as increase (p < 0.05) thymus index, hepatic and colonic antioxidant properties. GOD addition at 1000 and 2000 U/kg reduced (p < 0.05) cecal and rectal pH value, respectively. They also displayed similar or superior efficacy to antibiotic in improving (p < 0.05) duodenal and jejunal morphology along with certain tight junction proteins expression of jejunum and colon. Collectively, GOD represents an antibiotic alternative to reduce diarrhea of weaned piglets through associating with ameliorations of intestinal structure and functions.
Collapse
Affiliation(s)
- Dan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- Research Institute of Wens Foodstuff Group, Yunfu, China
| | - Jiaming Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zemin Dong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingyun Cao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dingyuan Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Changming Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jianjun Zuo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Weiwei Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Hou L, Qiu H, Dong J, Liu H, Gao S, Chen F. Lactiplantibacillus plantarum ameliorated the negative effects of a low-protein diet on growth performance, antioxidant capacity, immune status, and gut microbiota of laying chicks. Front Microbiol 2025; 16:1507752. [PMID: 39973937 PMCID: PMC11835938 DOI: 10.3389/fmicb.2025.1507752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
This experiment was conducted to investigate the effects of adding Lactiplantibacillus plantarum to a low-protein diet on the growth performance, ability immune status, and intestinal microbiota of 0-21-day-old layer chickens. A total of 180 one-day-old healthy Hy-line brown laying chicks were randomly divided into three groups with three replicates each of 20 chicks. The control group was fed a basal diet containing 19% protein, the low-protein (LP) group was fed a diet containing 17% protein, and the probiotic (LPL) group was fed with the 17% protein diet supplemented with L. plantarum (1.0 × 109 CFU/kg). The growth performance, antioxidant capacity, immune status, and gut microbiota of laying chickens were detected. We found that L. plantarum supplementation increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and levels of immunoglobulin (Ig) A, IgG, and interleukin-10 (IL-10) in serum of 17% protein +1.0 × 109 CFU/kg L. plantarum (LPL) compared to the 19% protein group (control). Furthermore, L. plantarum supplementation increased the liver index, GSH-Px and T-AOC activity in serum, and changed the microflora structure, diversity, and polyketose unit bioanabolic metabolism of 17% protein +1.0 × 109 CFU/kg L. plantarum (LPL) compared to the 17% protein group (LP). In conclusion, L. plantarum supplementation could compensate for the adverse effects of low-protein diets in chicks, and the combination of a low-protein diet and L. plantarum is a feasible way to reduce protein in the diet.
Collapse
Affiliation(s)
- Lele Hou
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huiling Qiu
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, Haidu College, Qingdao Agricultural University, Laiyang, China
| | - Jihong Dong
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huawei Liu
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Shansong Gao
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fu Chen
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Chen X, Liang X, Shi N, He L, Ma Y, Zhu D, Ni Z, Chen H. New wheat straw fermentation feed: recombinant Schizosaccharomyces pombe efficient degradation of lignocellulose and increase feed protein. Prep Biochem Biotechnol 2025; 55:36-44. [PMID: 38824495 DOI: 10.1080/10826068.2024.2353637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Wheat straw contains a high amount of lignin, hindering the action of cellulase and hemicellulase enzymes, leading to difficulties in nutrient absorption by animals from straw feed. However, currently, the biological treatment of straw relies primarily on fungal degradation and cannot be directly utilized for the preparation of livestock feed. This study focuses on enzymatic co-fermentation of wheat straw to produce high-protein, low-cellulose biological feed, integrating lignin degradation with feed manufacturing, thereby simplifying the feed production process. After the optimization using Box-Behnken Design for the feed formulation, with a glucose oxidase addition of 2.46%, laccase addition of 3.4%, and malonic acid addition of 0.6%, the wheat straw feed prepared in this experiment exhibited a true protein content of 9.35%. This represented a fourfold increase compared to the non-fermented state, and the lignocellulose degradation rate of wheat straw reached 45.42%. These results not only highlight the substantial enhancement in protein content but also underscore the significant advancement in lignocellulose breakdown. This formulation significantly enhanced the palatability and nutritional value of the straw feed, contributing to the industrial development of straw feed.
Collapse
Affiliation(s)
- Xihua Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoyu Liang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Na Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Lu He
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yi Ma
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Daochen Zhu
- School of Environmental Safety, Jiangsu University, Zhenjiang, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Jin Q, Wang F, Ye W, Wang Q, Xu S, Jiang S, Li X, Yue M, Yu D, Jin M, Fu A, Li W. Compound Bacillus improves eggshell quality and egg metabolites of hens by promoting the metabolism balance of calcium and phosphorus and uterine cell proliferation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:355-369. [PMID: 39640545 PMCID: PMC11617893 DOI: 10.1016/j.aninu.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 12/07/2024]
Abstract
Probiotics have beneficial effects on improving egg quality, but there is little research about the effect of probiotics on metabolite composition, and the mechanisms are not yet fully understood. The aim of this study was to investigate the potential mechanisms by which compound Bacillus improves egg quality and metabolite composition. A total of 20,000 Jingfen No. 6 laying hens at 381 d old were randomly divided into two treatments: control group with a basal diet, and the basal diet with 5 × 108 CFU/kg compound Bacillus supplementation (Ba) group. The trial lasted eight weeks. The results showed that compound Bacillus improved the gloss and strength of eggshells and reduced the ratio of sand-shell eggs by 23.8%. Specifically, the effective layer of eggshell was thicker and its calcite column was closely connected. Compound Bacillus increased the contents of beneficial fatty acids in the egg yolk, and lipids and lipid-like molecules in the albumen (P < 0.01), while decreased the contents of total cholesterol, triglycerides, and benzene ring compounds in the egg yolk and organic oxygen compounds in the albumen (P < 0.01). In addition, the compound Bacillus increased the calcium absorption in the duodenum by up-regulating the expression of transporters and serum hormone synergism (P < 0.05), and promoted metabolic balance of calcium and phosphorus. Simultaneously, uterine transcriptome showed that the expression of ChaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1), glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase 1 (C1GALT1), phosphatidylinositol-4-phosphate 5-kinase type 1 beta (PIP5K1B), methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), brain enriched myelin associated protein 1 (BCAS1), and squalene epoxidase (SQLE) genes were increased (P < 0.01), indicating that nutrient metabolism activity was enhanced. The expression of the BCAS1, C1GALT1, KLF transcription factor 13 (KLF13), and leucine rich repeat neuronal 1 (LRRN1) was increased (P < 0.01), indicating that the cell proliferation was enhanced, which slowed uterus aging. In conclusion, compound Bacillus improved the eggshell strength and metabolite composition in the egg by promoting metabolic balance of calcium and phosphorus, cell proliferation, and nutrient metabolism in the uterus.
Collapse
Affiliation(s)
- Qian Jin
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, Hainan Province, China
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Weisheng Ye
- Agriculture and Rural Bureau, Yunhe County 323600, Zhejiang Province, China
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Shaoxiong Jiang
- Agriculture and Rural Bureau, Yunhe County 323600, Zhejiang Province, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Min Yue
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, Hainan Province, China
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Dongyou Yu
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, Hainan Province, China
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Aikun Fu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
5
|
Wang Q, Jin Q, Wang F, Wang Y, Li X, Zhou Y, Xu S, Fu A, Li W. Bacillus amyloliquefaciens SC06 alleviates LPS-induced intestinal damage by inhibiting endoplasmic reticulum stress and mitochondrial dysfunction in piglets. Int J Biol Macromol 2024; 282:137307. [PMID: 39510464 DOI: 10.1016/j.ijbiomac.2024.137307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 09/17/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Endoplasmic reticulum stress (ERS) and mitochondrial dysfunction play an important role in the pathogenesis of intestinal diseases. Our studies investigated the effects of Bacillus amyloliquefaciens SC06 on jejunal mitochondria and ER in piglets under the LPS-induced intestinal injury model. Eighteen piglets (male, 21 days old) were randomly assigned to three treatments: CON (basal diet), LPS (basal diet +100 μg/kg LPS), and SC06 + LPS (basal diet +1 × 108 cfu/kg SC06 + 100 μg/kg LPS). Compared to the LPS group, administration of SC06 improved jejunal morphology and barrier function. In addition, SC06 reduced reactive oxygen species (ROS) and MDA generation in the jejunum by activating the Nrf2/keap1 pathway, which increased the activity of CAT, GSH and SOD in LPS-challenged pigs. In addition, SC06 reduced LPS-induced mitochondrial dysfunction and ERS as evidenced by a decrease in ROS, an improvement in mitochondrial membrane potential and an increase in adenosine triphosphate levels. The results of in vitro IPEC-J2 cell experiments also indicate that SC06 can reduce LPS-induced oxidative stress, mitochondrial dysfunction, ERS, and intestinal barrier function damage by activating the Nrf2/keap1 signaling pathway. Finally, treatment with the Nrf2-specific inhibitor ML-385 inhibited the upregulated effect of SC06 on antioxidant capacity and intestinal barrier function in IPEC-J2 cells. In conclusion, SC06 ameliorated intestinal damage and mitochondrial dysfunction and attenuated endoplasmic reticulum stress via activation of the Nrf2/keap1 signaling pathway in LPS-challenged piglets.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Aikun Fu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Jiang Z, Huang Z, Du H, Li Y, Wang M, Chen D, Lu J, Liu G, Mei L, Li Y, Liang W, Yang B, Guo Y. Effects of high-dose glucose oxidase on broiler growth performance, antioxidant function, and intestinal microbiota in broilers. Front Microbiol 2024; 15:1439481. [PMID: 39529676 PMCID: PMC11551609 DOI: 10.3389/fmicb.2024.1439481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Glucose oxidase (GOD) has been investigated as a potential additive for enhancing intestinal health and growth performance in poultry. However, limited research exists on the effects of ultra-high doses of GOD in practical poultry production. This study aimed to investigate the impact of high dietary GOD levels on broiler growth performance, antioxidant capacity, and intestinal microbiota. A total of 400 healthy, 1-day-old, slow-growing broiler chickens were randomly assigned to four treatment groups. The control group was fed a standard basal diet, while the other groups (G1, G2, and G3) were fed the basal diet supplemented with 4 U/g, 20 U/g, and 100 U/g of VTR GOD, respectively. The results showed that a dose of 100 U/g GOD significantly improved the final body weight and average daily feed intake (ADFI) (p < 0.05). Additionally, the G3 group exhibited a marked increase in glutathione peroxidase (GSH-Px) activity (p < 0.05), reflecting enhanced antioxidant function. Gut morphology remained intact across all groups, indicating no adverse effects on intestinal barrier integrity. Microbiota analysis revealed significant increases (p < 0.05) in Firmicutes and Verrucomicrobiota abundance at the phylum level in the GOD-supplemented groups. Moreover, GOD treatments significantly increased the abundance of Faecalibacterium, Mucispirllum, and CHKCI001 at the genus level. Metabolic function predictions suggested that high-dose GOD supplementation enriched carbohydrate metabolism, particularly starch and sucrose metabolism. Correlation analysis indicated that Faecalibacterium and CHCKI001 were two bacteria strongly influenced by GOD supplementation and were associated with enhanced growth performance and improved gut health. In conclusion, high-dose GOD supplementation had no adverse effects and demonstrated significant benefits, promoting both growth performance and gut health in broilers.
Collapse
Affiliation(s)
- Zipeng Jiang
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
- South China University of Technology, School of Biology and Biological Engineering, Guangzhou, China
| | - Zhiyi Huang
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Hongfang Du
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Yangyuan Li
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Min Wang
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Dandie Chen
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Jingyi Lu
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Ge Liu
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Liang Mei
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Yuqi Li
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | | | - Bo Yang
- South China University of Technology, School of Biology and Biological Engineering, Guangzhou, China
| | - Yuguang Guo
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| |
Collapse
|
7
|
Bumbie GZ, Abormegah L, Asiedu P, Oduro-Owusu AD, Koranteng AAA, Ansah KO, Lamptey VK, Chen C, Mohamed TM, Tang Z. Influence of Pediococcus pentosaceus GT001 on Performance, Meat Quality, Immune Function, Antioxidant and Cecum Microbial in Broiler Chickens Challenged by Salmonella typhimurium. Animals (Basel) 2024; 14:1676. [PMID: 38891723 PMCID: PMC11171082 DOI: 10.3390/ani14111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
This study evaluated the effects of Pediococcus pentosaceus GT001 on Salmonella typhimurium (S. typhimurium)-challenged broiler chickens. Two hundred Ross 708 broiler day-old chicks with comparable weight were distributed at random into four treatments with five replicates and ten chicks per replicate. The following were the treatment groups: (B) basal diet (control); (B + S) basal diet and birds were challenged with S. typhimurium at 1.0 × 107 cfu/g; (B + P) basal diet + Pediococcus pentosaceus GT001 at 4.0 × 108 cfu/g; (B + P + S) basal diet + P. pentosaceus GT001 at 4.0 × 108 cfu/g and birds were challenged with S. typhimurium at 1.0 × 107 cfu/g. There was a significant reduction (p < 0.05) in the body weight of the Salmonella-infected birds compared to the other treatment groups. However, the FCRs of the broilers were comparable among the different treatment groups (p > 0.05). The lipid profile and liver function indices measured were significantly enhanced in the P. pentosaceus GT001-supplemented groups (B + P and B + P + S) compared to the group that was Salmonella-challenged (p < 0.05) but were similar to those in the control group. The serum antioxidant activities, such as the T-AOC, SOD, CAT, GHS-Px and MDA, were significantly improved in the P. pentosaceus GT001-supplemented groups (B + P and B + P + S) (p < 0.05). The MDA was similar in the B + P and B + P + S groups, but both were significantly lower than the control and the Salmonella groups. The administration of P. pentosaceus GT001 enhanced the lipase and amylase levels in both the serum and intestine of the broilers (p < 0.05). The immunoglobin (IgA, IgG, IgM) and cytokine (IL-10 and IL-6) levels in the serum were significantly higher in the B, B + P and B + P + S treatment groups (p < 0.05). The immune-related organs (bursa and spleen) were significantly influenced in the birds fed with P. pentosaceus GT001. No significant variation was noted among all the dietary treatments in terms of the measured meat quality indices. The small intestinal digesta content of the Salmonella load was below a detectable range after 14 days of infection (p < 0.05). No significant differences were observed among the different treatment groups in terms of the breast pH, drip loss and meat color (p > 0.05). The inclusion of P. pentosaceus GT001 also modified the community structure in the cecum. This indicates that it has health benefits and could be incorporated in the broiler diet.
Collapse
Affiliation(s)
- Gifty Ziema Bumbie
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Z.B.); (C.C.)
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Leonardo Abormegah
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Peter Asiedu
- Department of Animal Production and Health, School of Agricultural and Technology, University of Energy and Natural Resources, Sunyani 214, Ghana;
| | - Akua Durowaa Oduro-Owusu
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Achiamaa Asafu-Adjaye Koranteng
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Kwabena Owusu Ansah
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Vida Korkor Lamptey
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Chen Chen
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Z.B.); (C.C.)
| | - Taha Mohamed Mohamed
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Z.B.); (C.C.)
| |
Collapse
|
8
|
Vlasatikova L, Zeman M, Crhanova M, Matiasovicova J, Karasova D, Faldynova M, Prikrylova H, Sebkova A, Rychlik I. Colonization of chickens with competitive exclusion products results in extensive differences in metabolite composition in cecal digesta. Poult Sci 2024; 103:103217. [PMID: 37980752 PMCID: PMC10684392 DOI: 10.1016/j.psj.2023.103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023] Open
Abstract
The concept of competitive exclusion is well established in poultry and different products are used to suppress the multiplication of enteric pathogens in the chicken intestinal tract. While the effect has been repeatedly confirmed, the specific principles of competitive exclusion are less clear. The aim of the study was to compare metabolites in the cecal digesta of differently colonized chickens. Metabolites in the cecal contents of chickens treated with a commercial competitive exclusion product or with an experimental product consisting of 23 gut anaerobes or in control untreated chickens were determined by mass spectrometry. Extensive differences in metabolite composition among the digesta of all 3 groups of chickens were recorded. Out of 1,706 detected compounds, 495 and 279 were differently abundant in the chicks treated with a commercial or experimental competitive exclusion product in comparison to the control group, respectively. Soyasaponins, betaine, carnitine, glutamate, tyramine, phenylacetaldehyde, or 3-methyladenine were more abundant in the digesta of control chicks while 4-oxododecanedioic acid, nucleotides, dipeptides, amino acids (except for glutamate), and vitamins were enriched in the digesta of chickens colonized by competitive exclusion products. Metabolites enriched in the digesta of control chicks can be classified as of plant feed origin released in the digesta by degradative activities of the chicken. Some of these molecules disappeared from the digesta of chicks colonized by complex microbiota due to them being metabolized. Instead, nucleotides, amino acids, and vitamins increased in the digesta of colonized chicks as a consequence of the additional digestive potential brought to the cecum by microbiota from competitive exclusion products. It is therefore possible to affect metabolite profiles in the chicken cecum by its colonization with selected bacterial species.
Collapse
Affiliation(s)
| | - Michal Zeman
- Veterinary Research Institute, 62100 Brno, Czech Republic
| | | | | | | | | | | | - Alena Sebkova
- Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Ivan Rychlik
- Veterinary Research Institute, 62100 Brno, Czech Republic.
| |
Collapse
|
9
|
Wang F, Mei X, Wang Q, Zhao P, Zhou Y, Tang L, Wang B, Xu S, Li X, Jin Q, Xiao Y, Li W. Compound Bacillus alleviates diarrhea by regulating gut microbes, metabolites, and inflammatory responses in pet cats. Anim Microbiome 2023; 5:49. [PMID: 37817260 PMCID: PMC10566145 DOI: 10.1186/s42523-023-00270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Pet cats frequently have diarrhea in their daily life. Bacillus has a protective role that has crucial beneficial functions on intestinal homeostasis. The aim of this research was to investigate the effects of the compound Bacillus on the prevention of diarrhea, microbiota and metabolism in pet cats. A total of 20 pet cats (1-2 years old, 3.91 ± 0.92 kg) were randomly divided into two groups and fed with a basal diet (Control group), or a basal diet supplemented with 3 × 109 CFU/kg compound Bacillus (Probiotics group). The experiment lasted 33 days. RESULTS Results showed that the compound Bacillus significantly reduced the rate of soft stools and diarrhea in pet cats compared with the control group (P < 0.05, n = 10). Meanwhile, compared with the control group, the probiotics group significantly decreased the content of IL-1β and IL-6 and significantly increased IL-10 (P < 0.05, n = 6) in the serum. In addition, feeding probiotics significantly increased the abundance of p_Patescibacter and g_Plectosphaerella, decreased the abundance of p_Firmicutes, p_Gemmatimonadetes, g_Ruminococcaceae_UCG-005, g_Ascochytahe and g_Saccharomyces in the feces of the pet cats (P < 0.05, n = 6). And it also can significantly increase the content of total SCFAs, acetic acid and butyric acid in the feces (P < 0.05, n = 6). The fecal and serum metabolomics analyses revealed that most fecal and serum compounds were involved in metabolism, particularly in chemical structure transformation maps and amino acid metabolism. Also, eugenitol and methyl sulfate were the most significantly increased serum metabolites, and log2FC were 38.73 and 37.12, respectively. Pearson's correlation analysis showed that changes in serum metabolism and fecal microbiota were closely related to immune factors. There was also a strong correlation between serum metabolites and microbiota composition. CONCLUSIONS The results of this research highlight the potential of the compound Bacillus as a dietary supplement to alleviate diarrhea in pet cats.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Xiaoying Mei
- Hangzhou Wangmiao Biotechnology Co., LTD, Hangzhou, 311112 China
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Pengwei Zhao
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
10
|
Kim HJ, Kim HS, Yun YS, Kang HK. Effect of Bacillus subtilis and Oregano Oil on Performance, Gut Microbiome, and Intestinal Morphology in Pullets. Animals (Basel) 2023; 13:2550. [PMID: 37627340 PMCID: PMC10451296 DOI: 10.3390/ani13162550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to examine the effect of probiotics containing Bacillus subtilis and oregano essential oil on the growth performance, intestinal morphology, and cecal microbial composition in pullets aged 0-18 weeks. A total of 324 day-old Hy-Line Brown chicks were randomly assigned to three treatment groups, with six replicates per group and 18 birds per pen. The experimental treatments consisted of the following: a control group receiving a basal diet (Con), a group receiving a basal diet supplemented with 1 g/kg (3 × 108 cfu/kg) of Bacillus subtilis (BS), and a group receiving a basal diet supplemented with 0.3 g/kg of oregano essential oil (ORO). The groups supplemented with BS and ORO demonstrated significantly higher villus height/crypt depth ratios than the Con group. Microbial richness was significantly higher in groups supplemented with BS (p = 0.0317) and ORO (p = 0.00794) than in the Con group. These findings revealed a distinct separation between gut microbial communities of the Con group and those supplemented with ORO, based on unweighted and weighted UniFrac indices. Therefore, supplementation with Bacillus subtilis and oregano oil improved the composition of the microbiota, suggesting their positive effects on the gut health of pullets.
Collapse
Affiliation(s)
| | | | | | - Hwan-Ku Kang
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Republic of Korea; (H.-J.K.); (H.-S.K.); (Y.-S.Y.)
| |
Collapse
|
11
|
Wang Y, Xu Y, Cao G, Zhou X, Wang Q, Fu A, Zhan X. Bacillus subtilis DSM29784 attenuates Clostridium perfringens-induced intestinal damage of broilers by modulating intestinal microbiota and the metabolome. Front Microbiol 2023; 14:1138903. [PMID: 37007491 PMCID: PMC10060821 DOI: 10.3389/fmicb.2023.1138903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Necrotic enteritis (NE), especially subclinical NE (SNE), without clinical symptoms, in chicks has become one of the most threatening problems to the poultry industry. Therefore, increasing attention has been focused on the research and application of effective probiotic strains as an alternative to antibiotics to prevent SNE in broilers. In the present study, we evaluated the effects of Bacillus subtilis DSM29784 (BS) on the prevention of subclinical necrotic enteritis (SNE) in broilers. A total of 480 1-day-old broiler chickens were randomly assigned to four dietary treatments, each with six replicates pens of twenty birds for 63 d. The negative (Ctr group) and positive (SNE group) groups were only fed a basal diet, while the two treatment groups received basal diets supplemented with BS (1 × 109 colony-forming units BS/kg) (BS group) and 10mg/kg enramycin (ER group), respectively. On days 15, birds except those in the Ctr group were challenged with 20-fold dose coccidiosis vaccine, and then with 1 ml of C. perfringens (2 × 108) at days 18 to 21 for SNE induction. BS, similar to ER, effectively attenuated CP-induced poor growth performance. Moreover, BS pretreatment increased villi height, claudin-1 expression, maltase activity, and immunoglobulin abundance, while decreasing lesional scores, as well as mucosal IFN-γ and TNF-α concentrations. In addition, BS pretreatment increased the relative abundance of beneficial bacteria and decreased that of pathogenic species; many lipid metabolites were enriched in the cecum of treated chickens. These results suggest that BS potentially provides active ingredients that may serve as an antibiotic substitute, effectively preventing SNE-induced growth decline by enhancing intestinal health in broilers.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yibin Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | | | - Xihong Zhou
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qian Wang
- Yancheng Biological Engineering Higher Vocational Technology School, Yancheng, China
| | - Aikun Fu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Xiuan Zhan, ; Aikun Fu,
| | - Xiuan Zhan
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Xiuan Zhan, ; Aikun Fu,
| |
Collapse
|
12
|
Zhao W, Huang Y, Cui N, Wang R, Xiao Z, Su X. Glucose oxidase as an alternative to antibiotic growth promoters improves the immunity function, antioxidative status, and cecal microbiota environment in white-feathered broilers. Front Microbiol 2023; 14:1100465. [PMID: 36937262 PMCID: PMC10020722 DOI: 10.3389/fmicb.2023.1100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to demonstrate the effects of glucose oxidase (GOD) on broilers as a potential antibiotic substitute. A total of four hundred twenty 1-day-old male Cobb500 broilers were randomly assigned into five dietary treatments, each with six replicates (12 chicks per replicate). The treatments included two control groups (a basal diet and a basal diet with 50 mg/kg aureomycin) and three GOD-additive groups involving three different concentrations of GOD. Analysis after the t-test showed that, on day 21, the feed:gain ratio significantly decreased in the 1,200 U/kg GOD-supplied group (GOD1200) compared to the antibiotic group (Ant). The same effect was also observed in GOD1200 during days 22-42 and in the 600 U/kg GOD-supplied group (GOD600) when compared to the control group (Ctr). The serum tests indicated that, on day 21, the TGF-β cytokine was significantly decreased in both GOD600 and GOD1200 when compared with Ctr. A decrease in malondialdehyde and an increase in superoxide dismutase in GOD1200 were observed, which is similar to the effects seen in Ant. On day 42, the D-lactate and glutathione peroxidase activity changed remarkably in GOD1200 and surpassed Ant. Furthermore, GOD upregulated the expression of the jejunal barrier genes (MUC-2 and ZO-1) in two phases relative to Ctr. In the aureomycin-supplied group, the secretory immunoglobulin A significantly decreased in the jejunum at 42 days. Changes in microbial genera were also discovered in the cecum by sequencing 16S rRNA genes at 42 days. The biomarkers for GOD supplementation were identified as Colidextribacter, Oscillibacter, Flavonifractor, Oscillospira, and Shuttleworthia. Except for Shuttleworthia, all the abovementioned genera were n-butyrate producers known for imparting their various benefits to broilers. The PICRUSt prediction of microbial communities revealed 11 pathways that were enriched in both the control and GOD-supplied groups. GOD1200 accounted for an increased number of metabolic pathways, demonstrating their potential in aiding nutrient absorption and digestion. In conclusion, a diet containing GOD can be beneficial to broiler health, particularly at a GOD concentration of 1,200 U/kg. The improved feed conversion ratio, immunity, antioxidative capacity, and intestinal condition demonstrated that GOD could be a valuable alternative to antibiotics in broiler breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoou Su
- Key Laboratory of Agro-Product Quality and Safety of the Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Wang F, Zou P, Xu S, Wang Q, Zhou Y, Li X, Tang L, Wang B, Jin Q, Yu D, Li W. Dietary supplementation of Macleaya cordata extract and Bacillus in combination improve laying performance by regulating reproductive hormones, intestinal microbiota and barrier function of laying hens. J Anim Sci Biotechnol 2022; 13:118. [PMID: 36224643 PMCID: PMC9559840 DOI: 10.1186/s40104-022-00766-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate whether the combination of Macleaya cordata extract (MCE) and Bacillus could improve the laying performance and health of laying hens better. METHODS A total of 360 29-week-old Jingbai laying hens were randomly divided into 4 treatments: control group (basal diet), MCE group (basal diet + MCE), Probiotics Bacillus Compound (PBC) group (basal diet + compound Bacillus), MCE + PBC group (basal diet + MCE + compound Bacillus). The feeding experiment lasted for 42 d. RESULTS The results showed that the laying rate and the average daily egg mass in the MCE + PBC group were significantly higher than those in the control group (P < 0.05) and better than the MCE and PBC group. Combination of MCE and Bacillus significantly increased the content of follicle-stimulating hormone (FSH) in the serum and up-regulated the expression of related hormone receptor gene (estrogen receptor-β, FSHR and luteinizing hormone/choriogonadotropin receptor) in the ovary of laying hens (P < 0.05). In the MCE + PBC group, the mRNA expressions of zonula occluden-1, Occludin and mucin-2 in jejunum was increased and the intestinal epithelial barrier detected by transmission electron microscopy was enhanced compared with the control group (P < 0.05). In addition, compared with the control group, combination of MCE and Bacillus significantly increased the total antioxidant capacity and catalase activity (P < 0.05), and down-regulated the mRNA expressions of inflammation-related genes (interleukin-1β and tumor necrosis factor-α) as well as apoptosis-related genes (Caspase 3, Caspase 8 and P53) (P < 0.05). The concentration of acetic acid and butyric acid in the cecum content of laying hens in the MCE + PBC group was significantly increased compared with the control group (P < 0.05). CONCLUSIONS Collectively, dietary supplementation of 600 μg/kg MCE and 5 × 108 CFU/kg compound Bacillus can improve laying performance by improving microbiota to enhance antioxidant capacity and intestinal barrier, regulate reproductive hormones and the concentration of cecal short-chain fatty acids of laying hens, and the combined effect of MCE and Bacillus is better than that of single supplementation.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Peng Zou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Dongyou Yu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| |
Collapse
|
14
|
Wang W, Xie R, Cao Q, Ye H, Zhang C, Dong Z, Feng D, Zuo J. Effects of glucose oxidase on growth performance, clinical symptoms, serum parameters, and intestinal health in piglets challenged by enterotoxigenic Escherichia coli. Front Microbiol 2022; 13:994151. [PMID: 36267185 PMCID: PMC9578003 DOI: 10.3389/fmicb.2022.994151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Glucose oxidase (GOD) could benefit intestinal health and growth performance in animals. However, it is unknown whether GOD can protect piglets against bacterial challenge. This study aimed to evaluate the protective effects of GOD on growth performance, clinical symptoms, serum parameters, and intestinal health in piglets challenged by enterotoxigenic Escherichia coli (ETEC). A total of 44 male weaned piglets around 38 days old were divided into four groups (11 replicates/group): negative control (NC), positive control (PC), CS group (PC piglets +40 g/t colistin sulfate), and GOD group (PC piglets +200 g/t GOD). All piglets except those in NC were challenged with ETEC (E. coli K88) on the 11th day of the experiment. Parameter analysis was performed on the 21st day of the experiment. The results showed that the ETEC challenge elevated (p < 0.05) the rectal temperature and fecal score of piglets at certain time-points post-challenge, reduced (p < 0.05) serum glucose and IgG levels but increased (p < 0.05) serum alanine aminotransferase activity, as well as caused (p < 0.05) intestinal morphology impairment and inflammation. Supplemental GOD could replace CS to reverse (p < 0.05) the above changes and tended to increase (p = 0.099) average daily gain during the ETEC challenge. Besides, GOD addition reversed ETEC-induced losses (p < 0.05) in several beneficial bacteria (e.g., Lactobacillus salivarius) along with increases (p < 0.05) in certain harmful bacteria (e.g., Enterobacteriaceae and Escherichia/Shigella). Functional prediction of gut microbiota revealed that ETEC-induced upregulations (p < 0.05) of certain pathogenicity-related pathways (e.g., bacterial invasion of epithelial cells and shigellosis) were blocked by GOD addition, which also normalized the observed downregulations (p < 0.05) of bacterial pathways related to the metabolism of sugars, functional amino acids, nucleobases, and bile acids in challenged piglets. Collectively, GOD could be used as a potential antibiotic alternative to improve growth and serum parameters, as well as attenuate clinical symptoms and intestinal disruption in ETEC-challenged piglets, which could be associated with its ability to mitigate gut microbiota dysbiosis. Our findings provided evidence for the usage of GOD as an approach to restrict ETEC infection in pigs.
Collapse
|
15
|
Liang Z, Yan Y, Zhang W, Luo H, Yao B, Huang H, Tu T. Review of glucose oxidase as a feed additive: production, engineering, applications, growth-promoting mechanisms, and outlook. Crit Rev Biotechnol 2022:1-18. [PMID: 35723581 DOI: 10.1080/07388551.2022.2057275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation and prohibition of antibiotics used as growth promoters (AGP) in the feed field are increasing because they cause antimicrobial resistance and drug residue issues and threaten community health. Recently, glucose oxidase (GOx) has attracted increasing interest in the feed industry as an alternative to antibiotics. GOx specifically catalyzes the production of gluconic acid (GA) and hydrogen peroxide (H2O2) by consuming molecular oxygen, and plays an important role in relieving oxidative stress, preserving health, and promoting animal growth. To expand the application of GOx in the feed field, considerable efforts have been made to mine new genetic resources. Efforts have also been made to heterologously overexpress relevant genes to reduce production costs and to engineer proteins by modifying enzyme properties, both of which are bottleneck problems that limit industrial feed applications. Herein, the: different sources, diverse biochemical properties, distinct structural features, and various strategies of GOx engineering and heterologous overexpression are summarized. The mechanism through which GOx promotes growth in animal production, including the improvement of antioxidant capacity, maintenance of intestinal microbiota homeostasis, and enhancement of gut function, are also systematically addressed. Finally, a new perspective is provided for the future development of GOx applications in the feed field.
Collapse
Affiliation(s)
- Ziqi Liang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yaru Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Sun X, Chen DD, Deng S, Zhang G, Peng X, SA R. Using combined Lactobacillus and quorum quenching enzyme supplementation as an antibiotic alternative to improve broiler growth performance, anti-oxidative status, immune response, and gut microbiota. Poult Sci 2022; 101:101997. [PMID: 35841646 PMCID: PMC9289872 DOI: 10.1016/j.psj.2022.101997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/03/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022] Open
|
17
|
Liang Q, Yuan M, Xu L, Lio E, Zhang F, Mou H, Secundo F. Application of enzymes as a feed additive in aquaculture. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:208-221. [PMID: 37073222 PMCID: PMC10077164 DOI: 10.1007/s42995-022-00128-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/28/2022] [Indexed: 05/03/2023]
Abstract
Modern aquaculture must be sustainable in terms of energy consumption, raw materials used, and environmental impact, so alternatives are needed to replace fish feed with other raw materials. Enzyme use in the agri-food industry is based on their efficiency, safety, and protection of the environment, which aligns with the requirements of a resource-saving production system. Enzyme supplementation in fish feed can improve digestibility and absorption of both plant- and animal-derived ingredients, increasing the growth parameters of aquacultural animals. Herein we summarized the recent literature that reported the use of digestive enzymes (amylases, lipases, proteases, cellulases, and hemicellulases) and non-digestive enzymes (phytases, glucose oxidase, and lysozyme) in fish feed. In addition, we analyzed how critical steps of the pelleting process, including microencapsulation and immobilization, can interfere with enzyme activity in the final fish feed product. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00128-z.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Mingxue Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Liping Xu
- College of Biology and Geography, Yili Normal University, Yining, 835000 China
| | - Elia Lio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR, Via Mario Bianco n. 9, 20131 Milan, Italy
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR, Via Mario Bianco n. 9, 20131 Milan, Italy
| |
Collapse
|
18
|
Effects of glucose oxidase and its combination with B. amyloliquefaciens SC06 on intestinal microbiota, immune response and antioxidative capacity in broilers. Animal 2022; 16:100473. [PMID: 35218993 DOI: 10.1016/j.animal.2022.100473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Glucose oxidase (GOD) is an aerobic dehydrogenase, which catalyses the oxidation of β-D-glucose to gluconic acid and hydrogen peroxide. This study aimed to investigate the effects of dietary glucose oxidase and its combined effects with Bacillus amyloliquefaciens SC06 (BaSC06) on the intestinal microbiota, immune function and antioxidant capacity of broilers. One-day-old male Lingnan yellow-feathered broilers (n = 720) were randomly assigned to four treatment groups: Control group (basal diet), Anti group (basal diet supplemented with 200 mg/kg enramycin), GOD group (basal diet supplemented with 75 U/kg GOD), and combination of GOD and BaSC06 (GB) group (GOD diet (75 U/kg) supplemented with 1 × 108 colony-forming units BaSC06/kg feed), with six replicates per group and 30 birds per replicate. The experiment was conducted over 52 days. The results indicated a significant decrease in α-diversity (Observed species, Chao1, PD_whole_tree and Shannon) with GOD treatment, compared with the control group. GB treatment also significantly decreased the Shannon index of cecal microbiota. GOD treatment significantly decreased the α-diversity, whereas GB treatment significantly increased these indices except for the Chao1 index, compared with the Anti group. Compared with the control group, the relative abundance of Bacteroides in the GOD and GB groups was significantly increased, whereas a decrease in Firmicutes was observed. Compared with the Anti group, GOD treatment significantly increased the relative abundances of Bacteroides and Lactobacillales, while GB treatment significantly increased Lactobacillales and decreased Proteobacteria levels. In addition, GOD treatment significantly decreased interleukin-10 and interferon-γ levels, compared with the control group. In contrast, GB treatment significantly downregulated interferon-γ levels and upregulated secretory immunoglobulin A, transforming growth factor-β and interleukin-2 expression in the jejunal mucosa. GOD treatment significantly decreased transforming growth factor-β and interleukin-10 levels, whereas GB treatment markedly increased interferon-γ expression in the jejunal mucosa compared with the Anti group. Furthermore, GB treatment significantly increased the total antioxidant capability levels and the total superoxide dismutase (T-SOD) and catalase (CAT) activities compared with the control group. Meanwhile, GOD treatment significantly increased glutathione peroxidase (GSH-Px) activity in the jejunal mucosa. Total superoxide dismutase, GSH-Px and CAT activities in the Anti group were higher than in the GOD and GB groups. The malondialdehyde levels in the control group were the highest among all groups. In conclusion, our results indicated that supplementation with GOD alone and its combination with BaSC06 in diet could increase antioxidant capacity, immune function and improve the intestinal microbiota composition of broilers. Combination treatment with GOD with BaSC06 exerted stronger effects than GOD treatment only.
Collapse
|
19
|
Sun Y, Zhang Y, Liu M, Li J, Lai W, Geng S, Yuan T, Liu Y, Di Y, Zhang W, Zhang L. Effects of dietary Bacillus amyloliquefaciens CECT 5940 supplementation on growth performance, antioxidant status, immunity, and digestive enzyme activity of broilers fed corn-wheat-soybean meal diets. Poult Sci 2022; 101:101585. [PMID: 34920383 PMCID: PMC8686056 DOI: 10.1016/j.psj.2021.101585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/18/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
This experiment was conducted to investigate the effects of dietary supplementation with Bacillus amyloliquefaciens CECT 5940 (BA-5940) on growth performance, antioxidant capacity, immunity, and digestive enzyme activity of broiler chickens. A total of 720 one-day-old Arbor Acres male broiler chicks (average body weight, 45.87 ± 0.86 g) were randomly allocated to 5 treatments of 8 replicates with 18 chicks in each replicate. Broilers in the control group were fed a corn-wheat-soybean basal diet, the other 4 groups were fed the same basal diet supplemented with 500, 1,000, 1,500, or 2,000 mg/kg Ecobiol (1.27 × 109 CFU/g BA-5940) for 42 d, respectively. Broilers fed diets supplemented with BA-5940 showed a quadratic response (P < 0.05) of average daily gain (ADG) and feed to gain ratio (F:G) during d 22 to 42 and d 0 to 42. The glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities in serum and liver, and total antioxidant capacity (T-AOC) in liver of broilers on d 42 increased linearly (P < 0.05) with increasing levels of BA-5940, while malondialdehyde (MDA) level in serum decreased linearly (P < 0.05). Concentrations of serum immunoglobulin (Ig) A and IgM on d 21, and IgM on d 42 increased linearly (P < 0.05) as BA-5940 levels increased. Supplementation with increasing levels of BA-5940 linearly decreased serum tumor necrosis factor-α (TNF-α) levels on d 21 and 42, while increased interleukin (IL)-10 concentration (linear, P < 0.05) on d 21. Meanwhile, the levels of IL-1β, IL-6, and TNF-α in the mucosa of jejunum and ileum were decreased (linear, P < 0.05) on d 42 as dietary supplementation of BA-5940 increased. Additionally, supplementation with BA-5940 also increased the activities of amylase (linear, P < 0.01), lipase (linear, P < 0.05) and chymotrypsin (linear, P < 0.01) in jejunal digesta, and lipase (linear, P < 0.05) in ileal digesta of broilers on d 42. To summarize, inclusion of BA-5940 in corn-wheat-soybean meal-based diet improved growth performance of broilers through improving antioxidant capacity, immunity, and digestive enzyme activity. Based on the results of this study, 1.1-1.6 × 109 CFU/kg BA-5940 is recommended for supplementation in broiler diets.
Collapse
Affiliation(s)
- Yongbo Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yuxin Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Miaoyi Liu
- Evonik (China) Co., Ltd., Beijing 100600, China
| | - Juntao Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Wenqing Lai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Shixia Geng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Tianyao Yuan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yuting Di
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | | | - Liying Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Zhao Y, Fu J, Li P, Chen N, Liu Y, Liu D, Guo Y. Effects of dietary glucose oxidase on growth performance and intestinal health of AA broilers challenged by Clostridium perfringens. Poult Sci 2022; 101:101553. [PMID: 34852314 PMCID: PMC8639461 DOI: 10.1016/j.psj.2021.101553] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/07/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Arbor Acre (AA) broilers were used as the research object to investigate whether glucose oxidase (GOD) has preventive and relieving effects on necrotic enteritis. The experiment was designed as a factorial arrangement of 2 dietary treatments × 2 infection states. Chickens were fed a basal diet or a diet with 150 U/kg GOD, and were challenged with Clostridium perfringens (Cp) or sterile culture medium. In our study, Cp challenge led to intestinal injury, as evidenced by reducing the average daily gain and the average daily feed intake of AA broilers of 14 to 21 d (P < 0.05), increasing the intestinal jejunal lesion score (P < 0.05), reducing the jejunal villi height and villi height/crypt depth (P < 0.05), upregulating the mRNA expression levels jejunal IFN-γ (P < 0.05). The dietary GOD had no significant effects on the growth performance of each growth period, but significantly decreased the ileal pH, increased the height of villi and the ratio of villi height to crypt depth (P < 0.05) and the expression levels of Occludin and Zonula occludens-1 (ZO-1) at d 21. Moreover, dietary GOD and the Cp challenge significantly altered the composition of 21-d ileal microbiota. The Cp challenge decreased the relative abundance of genus Lactobacillus (P = 0.057), and increased the relative abundance of genus Romboutsia (P < 0.05) and genus Veillonella (P = 0.088). The dietary GOD tended to increase the relative abundance of genus Helicobacter (P = 0.066) and decrease the relative abundance of genus Streptococcus (P = 0.071). This study has shown that the supplementation of GOD could promote the integrity of intestinal barrier and the balance of ileal microbiota, but the effects of GOD on NE broilers and its application in actual production need to be further confirmed.
Collapse
Affiliation(s)
- Yizhu Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiahuan Fu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ningbo Chen
- Jinan Bestzyme Bio-Engineering Co., LTD., Jinan, China
| | - Yanjie Liu
- Jinan Bestzyme Bio-Engineering Co., LTD., Jinan, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Meng Y, Huo H, Zhang Y, Bai S, Wang R, Zhang K, Ding X, Wang J, Zeng Q, Peng H, Xuan Y. Effects of Dietary Glucose Oxidase Supplementation on the Performance, Apparent Ileal Amino Acids Digestibility, and Ileal Microbiota of Broiler Chickens. Animals (Basel) 2021; 11:ani11102909. [PMID: 34679930 PMCID: PMC8532941 DOI: 10.3390/ani11102909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Glucose oxidase was used as a potential additive to improve intestinal health in livestock and poultry industry. This study aimed to investigate the effects of glucose oxidase supplementation on performance, ileal microbiota, ileal short-chain fatty acids profile, and apparent ileal digestibility in grower broilers. Our findings will provide a valuable insight into the possibility of glucose oxidase as an alternative of antibiotic growth promoters in broiler diets. Abstract This study aimed to investigate the effects of glucose oxidase (GOD) supplementation on growth performance, apparent ileal digestibility (AID) of nutrients, intestinal morphology, and short-chain fatty acids (SCFAs) and microbiota in the ileum of broilers. Six hundred 1-day-old male broilers were randomly allotted to four groups of 10 replicates each with 15 birds per replicate cage. The four treatments included the basal diet without antibiotics (Control) and the basal diet supplemented with 250, 500, or 1000 U GOD/kg diet (E250, E500 or E1000). The samples of different intestinal segments, ileal mucosa, and ileal digesta were collected on d 42. Dietary GOD supplementation did not affect daily bodyweight gain (DBWG) and the ratio of feed consumption and bodyweight gain (FCR) during d 1-21 (p > 0.05); however, the E250 treatment increased DBWG (p = 0.03) during d 22–42 as compared to control. Dietary GOD supplementation increased the AIDs of arginine, isoleucine, lysine, methionine, threonine, cysteine, serine, and tyrosine (p < 0.05), while no significant difference was observed among the GOD added groups. The E250 treatment increased the villus height of the jejunum and ileum. The concentrations of secreted immunoglobulin A (sIgA) in ileal mucosa and the contents of acetic acid and butyric acid in ileal digesta were higher in the E250 group than in the control (p < 0.05), whereas no significant differences among E500, E1000, and control groups. The E250 treatment increased the richness of ileal microbiota, but E500 and E100 treatment did not significantly affect it. Dietary E250 treatment increased the relative abundance of Firmicutes phylum and Lactobacillus genus, while it decreased the relative abundance of genus Escherichina-Shigella (p < 0.05). Phylum Fusobacteria only colonized in the ileal digesta of E500 treated broilers and E500 and E1000 did not affect the relative abundance of Firmicutes phylum and Lactobacillus and Escherichina-Shigella genera as compared to control. These results suggested that dietary supplementation of 250 U GOD/kg diet improves the growth performance of broilers during d 22–42, which might be associated with the alteration of the intestinal morphology, SCFAs composition, and ileal microbiota composition.
Collapse
Affiliation(s)
- Yong Meng
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
- Mianyang Habio Bioengineering Co., Ltd., Mianyang 610000, China;
| | - Haonan Huo
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Yang Zhang
- Mianyang Habio Bioengineering Co., Ltd., Mianyang 610000, China;
| | - Shiping Bai
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
- Correspondence: ; Tel.: +86-28-86290922
| | - Ruisheng Wang
- Chongqing Academy of Animal Science, Chongqiang 402460, China;
| | - Keying Zhang
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Xuemei Ding
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Jianping Wang
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Qiufeng Zeng
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Huanwei Peng
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Yue Xuan
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| |
Collapse
|
22
|
Wang Y, Xu Y, Xu S, Yang J, Wang K, Zhan X. Bacillus subtilis DSM29784 Alleviates Negative Effects on Growth Performance in Broilers by Improving the Intestinal Health Under Necrotic Enteritis Challenge. Front Microbiol 2021; 12:723187. [PMID: 34603247 PMCID: PMC8481782 DOI: 10.3389/fmicb.2021.723187] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Along with banning antibiotics, necrotic enteritis (NE), especially subclinical enteritis (SNE), poses a significant threat to the chicken industry; however, probiotics are a potentially promising intervention. We aimed to investigate the beneficial effects of Bacillus subtilis DSM29784 (BS) on the treatment of Clostridium perfringens (CP)-induced SNE in broilers. A total of 360 1-day-old broiler chicks were divided into three treatment groups, namely control (Ctr), SNE, and BS treatment (BST) groups, all of which were fed with a basal died for 21days, and then from day 22 onward, only the BST group had a BS supplemented diet (1×109 colony-forming units BS/kg). On day 15, all chicks, except the Ctr group, were challenged with a 20-fold dose coccidiosis vaccine and 1ml CP (2×108) on days 18–21 for SNE induction. Beneficial effects were observed on growth performance in BST compared to SNE broilers. BST treatment alleviated intestinal lesions and increased the villus height/crypt depth ratio. Further, BST broilers showed increased maltase activity in the duodenum compared with SNE chicks, and a significantly decreased caspase-3 protein expression in the jejunum mucosa. Moreover, an increased abundance of Ruminococcaceae and Bifidobacterium beneficial gut bacteria and an altered gut metabolome were observed. Taken together, we demonstrate that the manipulation of microbial gut composition using probiotics may be a promising prevention strategy for SNE by improving the composition and metabolism of the intestinal microbiota, intestinal structure, and reducing inflammation and apoptosis. Hence, BS potentially has active ingredients that may be used as antibiotic substitutes and effectively reduces the economic losses caused by SNE. The findings of this study provide a scientific foundation for BS application in broiler feed in the future.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yibin Xu
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shengliang Xu
- Haiyan Animal Husbandry and Veterinary Bureau, Haiyan, China
| | - Jinyong Yang
- Zhejiang Animal Husbandry Technology Extension and Livestock and Poultry Monitoring Station, Hangzhou, China
| | - Kaiying Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiuan Zhan
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Wang Z, Zhang DW, Xiao ZZ, Qi CH, Yuan J, Feng HX. Preliminary study on alleviation of heat-induced intestinal inflammation through compensatory effects of glucose oxidase. Br Poult Sci 2021; 63:235-243. [PMID: 34406099 DOI: 10.1080/00071668.2021.1969645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. The influence of glucose oxidase (GOD) supplementation on growth, gut inflammation and its compensatory effects in broilers was investigated before and after heat stress.2. Before heat stress, one-day-old broilers were divided into two groups: the control (CON) and GOD (100 g/t complete feed) groups. On d 21, the CON group was equally divided into CON1 and CON2 groups, and heat stress (35°C) was applied to the CON2 and GOD groups for 8 h/day to the end of the study, d 27 of age. The chickens were either killed before heat stress and 2 d after heat stress for the determination of cytokines in the liver and ileum, serum antioxidant enzymes and ileal microbiota. Growth performance was determined before and 7 d after heat stress.3. The GOD decreased Clostridiales and Enterobacteriaceae families of bacteria and increased ileal nuclear factor-κB, interleukin-1β, and interferon-γ (P < 0.05) before heat stress. The broilers exhibited compensatory effects, including increases in ileal sirtuin-1, heat shock protein 70 expression, liver nuclear factor erythroid 2-related factor 2 content, serum total antioxidant capacity and glutathione peroxidase level (P < 0.05). At 2 d after heat stress, inflammatory factors were increased in both the CON2 and GOD groups, but the levels were lower in the GOD than CON2 (P < 0.05). On d 7 after heat stress, GOS alleviated heat stress induced growth retardation (P < 0.05).4. These data suggested that GOD supplementation in broiler diets before heat stress stimulated intestinal oxidative stress and produced a compensatory response, which prevented a rapid increase in intestinal inflammatory factors and helped to maintain growth performance under heat stress.
Collapse
Affiliation(s)
- Z Wang
- R & D Center, GBW Group, Qingdao, Shandong, China
| | - D-W Zhang
- R & D Center, GBW Group, Qingdao, Shandong, China
| | - Z-Z Xiao
- R & D Center, GBW Group, Qingdao, Shandong, China
| | - C-H Qi
- R & D Center, GBW Group, Qingdao, Shandong, China
| | - J Yuan
- R & D Center, GBW Group, Qingdao, Shandong, China
| | - H-X Feng
- R & D Center, GBW Group, Qingdao, Shandong, China
| |
Collapse
|
24
|
Qu W, Liu J. Effects of Glucose Oxidase Supplementation on the Growth Performance, Antioxidative and Inflammatory Status, Gut Function, and Microbiota Composition of Broilers Fed Moldy Corn. Front Physiol 2021; 12:646393. [PMID: 34220529 PMCID: PMC8244819 DOI: 10.3389/fphys.2021.646393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background Glucose oxidase is widely used as a livestock feed additive owing to its beneficial effects on growth performance and antioxidant activity. However, little is known about the effects of the enzyme on intestinal health. Methods To investigate the effects of glucose oxidase supplementation on the growth performance, intestinal function, and microbiota composition of broilers fed moldy corn, newly hatched Arbor Acres broilers were each randomly assigned to one of four groups, which were fed a basal diet (CON), a contaminated diet (10% moldy corn) (MC), a basal diet supplemented with 0.01% glucose oxidase (GOD), or a contaminated diet supplemented with 0.01% glucose oxidase (MCG). Results We found that the average weight gain (ADG) of the MC group was significantly lower than those of the CON and GOD groups, and there were no significant differences in ADG between the MCG group and the CON and GOD groups. Intestinal morphology results revealed irregularly arranged villi and microvilli in the ilea from the MC group, whereas those from the other three groups were aligned regularly. Tight-junction protein analysis showed that both ZO-1 expression and claudin-4 expression in the MC group were significantly lower than those in the other groups. Inflammation cytokines analysis showed lower serum concentration of interleukin-10, as well as its mRNA expression in the ileum of the MC group, when compared with those of the other groups. Additionally, we observed lower glutathione peroxidase and total superoxide dismutase activity and higher malonaldehyde concentration in the MC group than those in the MCG group. The α and β diversity of microbiota profiling indicated that the cecal microbiota in the MC group differed from those in the other three groups. Conclusion The results indicated that glucose oxidase supplementation was able to prevent the adverse effects from mycotoxin exposure on growth performance, antioxidant activity, inflammatory response, intestinal function, and microbiota composition in broilers. We suggested that glucose oxidase supplementation can be used in broilers to mitigate the adverse effects of moldy feed, and its benefits are due to its effect on intestinal microbiota composition.
Collapse
Affiliation(s)
- Wenhui Qu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiaguo Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Wang B, Zhou Y, Tang L, Zeng Z, Gong L, Wu Y, Li WF. Effects of Bacillus amyloliquefaciens Instead of Antibiotics on Growth Performance, Intestinal Health, and Intestinal Microbiota of Broilers. Front Vet Sci 2021; 8:679368. [PMID: 34150896 PMCID: PMC8212984 DOI: 10.3389/fvets.2021.679368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate the dietary effects of Bacillus amyloliquefaciens SC06 (SC06) instead of antibiotics on the growth performance, intestinal health, and intestinal microbiota of broilers. A total of 360 30-day-old Lingnan yellow broilers were randomly allocated into two groups with six replicates per group (30 birds per replicate). The broilers were fed either a non-supplemented diet or a diet supplemented with 108 colony-forming units lyophilized SC06 per kilogram feed for 30 days. Results showed that SC06 supplementation had no effect on the growth performance compared with that of the control group. SC06 treatment significantly (P <0.05) increased the total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD) activity in the liver, and the activities of trypsin, α-amylase (AMS), and Na+K+-ATPase in the ileum, whereas it decreased (P < 0.05) lipase, gamma glutamyl transpeptidase (γ-GT), and maltase activities in the ileum. Meanwhile, SC06 treatment also improved the immune function indicated by the significantly (P < 0.05) increased anti-inflammatory cytokine [interleukin (IL)-10] level and the decreased (P < 0.05) pro-inflammatory cytokine [IL-6 and tumor necrosis factor (TNF)-α] levels in the ileum. Furthermore, we also found that SC06 enhanced the intestinal epithelial intercellular integrity (tight junction and adhesion belt) in the ileum. Microbial analysis showed that SC06 mainly increased the alpha diversity indices in the jejunum, ileum, and cecum. SC06 treatment also significantly (P < 0.05) increased the abundances of Bacteroidetes, Bacteroidales, Bacteroides, Fusobacteria, Clostridiaceae, and Veillonellaceae in the cecum and simultaneously decreased the abundances of Planococcaceae in the duodenum, Microbacteriaceae in the jejunum, and Lachnospiraceae, [Ruminococcus] and Ruminococcus in cecum. In conclusion, these results suggested that B. amyloliquefaciens instead of antibiotics showed a potential beneficial effect on the intestinal health of broilers.
Collapse
Affiliation(s)
- Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zihan Zeng
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Gong
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China.,School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yanping Wu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wei-Fen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Dang DX, Liu Y, Chen N, Kim IH. Dietary supplementation of Aspergillus niger-expressed glucose oxidase ameliorates weaning stress and improves growth performance in weaning pigs. J Anim Physiol Anim Nutr (Berl) 2021; 106:258-265. [PMID: 34075632 DOI: 10.1111/jpn.13576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
Weaning is one of the most stressful events in the pig's life, which disrupts physiological balance and leads to oxidative stress. It is reported that glucose oxidase supplementation could alleviate oxidative stress in animals by increasing the concentration of antioxidant enzymes in vivo. The purpose of this study was to evaluate the effects of dietary supplementation of Aspergillus niger-expressed glucose oxidase (AN-GOX) on growth performance, nutrient digestibility, faecal microbiota, faecal gas emission and serum antioxidant enzyme parameters in weaning pigs. A total of 120 21-day-old weaning pigs [(Yorkshire ×Landrace) × Duroc] with an initial body weight of 6.54 ± 0.55 kg were used in a 21-day experiment (phase 1, days 1-7; phase 2, days 8-21) with a completely randomized block design. Pigs were randomly divided into 4 treatment groups with 6 replicate pens per treatment and 5 pigs per pen (2 barrows and 3 gilts). Dietary treatments were corn-soybean meal-based basal diet supplemented with 0, 0.01, 0.03 or 0.05% AN-GOX (1000 unit/g). The results of this study showed that average daily gain during days 1-7 and 1-21 and the concentrations of serum glutathione peroxidase and glutathione increased linearly at graduated doses of AN-GOX increased in the diet. However, dietary supplementation of AN-GOX had no effects on the apparent nutrient digestibility, faecal microbiota and faecal gas emission. In conclusion, supplementing AN-GOX to the diet of weaning pigs ameliorated weaning stress, which manifested as the increase in serum antioxidant enzyme levels, thus improving growth performance. The suitable dosage of AN-GOX used in the diet of weaning pigs was 0.05%.
Collapse
Affiliation(s)
- De Xin Dang
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| | - Yanjie Liu
- Jinan Bestzyme-Bio Engineering Co, LTD, Jinan, China
| | - Ningbo Chen
- Jinan Bestzyme-Bio Engineering Co, LTD, Jinan, China
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
27
|
Dang DX, Hoque MR, Liu Y, Chen N, Kim IH. Dietary glucose oxidase supplementation improves growth performance, apparent nutrient digestibility, and serum antioxidant enzyme parameters in growing pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1984853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- De Xin Dang
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Md Raihanul Hoque
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Yanjie Liu
- Jinan Bestzyme-Bio Engineering Co., LTD, Jinan, China
| | - Ningbo Chen
- Jinan Bestzyme-Bio Engineering Co., LTD, Jinan, China
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
28
|
Liu T, Li C, Zhong H, Feng F. Dietary medium-chain α-monoglycerides increase BW, feed intake, and carcass yield in broilers with muscle composition alteration. Poult Sci 2021; 100:186-195. [PMID: 33357680 PMCID: PMC7772667 DOI: 10.1016/j.psj.2020.09.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/16/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
Glycerol monolaurate (GML), a member of medium-chain α-monoglycerides (MG), is proved to be beneficial for productive performance, feed efficiency, and health of broilers based on recent research. The present study aims to evaluate the effect of MG mixture rich in GML and glycerol monodecanoate on performance, intestinal development, serum parameters, carcass yield, and muscle composition in broilers. A total of 528 chicks were weighed and randomly assigned into 4 groups (22 chicks/replicate, 6 replicates/group) for a 56-d experiment. The control group received a basal diet containing 0 mg/kg MG (CON), and the treated groups fed basal diets containing 300 (MG300), 450 and 600 mg/kg MG. The results revealed that the BW (P < 0.05), ADG, and ADFI were notably increased in MG-containing groups during the finisher phase compared with the CON group. Remarkable intestinal improvements were observed in the duodenum and jejunum of MG-treated groups, but no statistical differences were obtained. Dietary MG significantly (P < 0.05) increased the serum high-density lipoprotein cholesterol, total protein, and superoxide dismutase content in broilers. Inclusion of 300 mg/kg MG in diet increased the eviscerated yield (P = 0.066), leg muscle (P < 0.01) and breast muscle yield (P = 0.083), and improved the fresh meat quality with reduced drip loss (P < 0.01) and pH decline (P < 0.01) compared with the CON group. Moreover, the saturated fatty acid (P = 0.073), flavor amino acid (P < 0.05), and total amino acid (P < 0.05) content was notably higher in the muscle of the MG300 group than that in the CON group. In summary, these findings revealed that mixed MG can be used as an effective and novel feed supplement to improve productive performance and quality of broilers.
Collapse
Affiliation(s)
- Tao Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Institute of Zhejiang University, Zhejiang University, Ningbo 315100, China
| | - Chuang Li
- School of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Hao Zhong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Institute of Zhejiang University, Zhejiang University, Ningbo 315100, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Institute of Zhejiang University, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
29
|
Zhao Y, Li P, Chen N, Liu Y, Liu D, Guo Y. Effects of housing systems and glucose oxidase on growth performance and intestinal health of Beijing You Chickens. Poult Sci 2020; 100:100943. [PMID: 33652241 PMCID: PMC7921002 DOI: 10.1016/j.psj.2020.12.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 01/14/2023] Open
Abstract
We investigated the effects of housing systems and dietary glucose oxidase (GOD) on the growth performance and intestinal health of Beijing You chickens (BYC). The experiment was designed as a factorial arrangement of 2 housing systems × 2 dietary treatments. Chickens were fed a basal diet or a diet with 200 U/kg GOD and were reared on the floor with deep litter or in the cages. Compared with the litter floor groups, the decreased average daily feed intake of 1 to 42 d, decreased feed conversion ratio (FCR), improved average daily gain of 42 to 77 d, and the whole period were identified in the cage rearing groups (P < 0.05). The FCR of 42 to 77 d and the whole period, the 42-d ileal pH, and 77-d jejunal and ileal pH decreased with the supplement of GOD (P < 0.05). Additionally, 16S rRNA gene of ileum contents was sequenced by high-throughput sequencing. Sequencing data indicated that the Firmicutes phylum of 42 d and the Bacteroidetes phylum were significantly higher in the litter group with GOD supplement (P < 0.05). The jejunal Occludin, Mucin-2 mRNA expression levels were higher in the litter floor groups than those in the cage rearing groups on 42 d (P < 0.05). The Mucin-2 and TNF-α mRNA expression levels increased with cage rearing on 77 d (P < 0.05). The Occludin and TLR-4 mRNA expression levels increased with the supplementation of GOD on 77 d (P < 0.05). Moreover, the upregulation effects of Occludin and ZO-1 mRNA expression levels were more obvious in the litter floor group fed with GOD diet on 77 d (P < 0.05). The serum endotoxin content of 42-day-old cage rearing groups were higher than that of the litter floor groups, and the serum endotoxin content significantly decreased with the supplement of GOD on 77 d. The results indicated that the litter floor systems were beneficial to the development of intestinal barrier junction in the early stage, but the cage systems were more conducive to the growth performance of BYC. The dietary GOD could inhibit the harmful bacteria and promote the beneficial bacteria, which might be related to the improvement of the growth performance and intestinal barrier function.
Collapse
Affiliation(s)
- Yizhu Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ningbo Chen
- Jinan Bestzyme Bio-Engineering Co., Ltd., Jinan, China
| | - Yanjie Liu
- Jinan Bestzyme Bio-Engineering Co., Ltd., Jinan, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Liu J, Liu G, Chen Z, Zheng A, Cai H, Chang W, Li C, Chen J, Wu Z. Effects of glucose oxidase on growth performance, immune function, and intestinal barrier of ducks infected with Escherichia coli O88. Poult Sci 2020; 99:6549-6558. [PMID: 33248570 PMCID: PMC7705042 DOI: 10.1016/j.psj.2020.09.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/29/2020] [Accepted: 09/11/2020] [Indexed: 01/03/2023] Open
Abstract
The negative effects of dietary antibiotics have become a widespread concern. It is imperative to search for a new type of green, safe, and efficient feed additive that can replace antibiotics. This study was to investigate the effects of glucose oxidase (GOD) on growth performance, immune function, and intestinal barrier in ducks infected with Escherichia coli O88. First, we established the E. coli challenge model of ducks through a preliminary experiment and then carried out the formal experiment by using 144 1-day-old male lean Peking ducklings (50 ± 2.75 g). All ducks were randomly assigned to 1 of 3 dietary treatment groups of basal diet (control), 30 mg/kg virginiamycin (antibiotic), and 200 U/kg GOD (1,000 U/g). Each group consisted of 6 replications with 8 birds per replicate. At day 7, all ducks were orally administered 0.2 mL E coli O88 (3 × 109 cfu/mL) twice, 8 h apart based on the preliminary experiment. The experiment lasted for 28 d. Dietary supplementation with GOD improved growth performance of ducks infected with E. coli. The GOD increased contents of Ig in plasma and secreted Ig A in jejunal mucosa. The GOD group had lower concentrations of inflammatory cytokines (tumor necrosis factor-α, IL-1β, and IL-6) and their upstream regulator Toll-like receptor 4 in the jejunum of ducks than the control group. Supplementation with GOD increased villus height and decreased crypt depth in the jejunum. The gene expression of tight junction proteins (zonula occludens-1, claudin-1 and claudin-2) was enhanced by adding GOD. The GOD decreased intestinal permeability by reducing the concentrations of diamine oxidase and D-lactic in plasma of ducks. There were no significant differences in almost all the indices tested between the GOD and the antibiotic groups. In conclusion, supplementation of GOD improved growth performance, immune function, and intestinal barrier of ducks infected with E. coli O88. Glucose oxidase may serve as a promising alternative therapy to antibiotics to relieve or prevent colibacillosis in ducks.
Collapse
Affiliation(s)
- Jiao Liu
- Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guohua Liu
- Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhimin Chen
- Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aijuan Zheng
- Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiyi Cai
- Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenhuan Chang
- Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Chong Li
- Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiang Chen
- Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengke Wu
- Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Supplemental Bacillus subtilis DSM 29784 and enzymes, alone or in combination, as alternatives for antibiotics to improve growth performance, digestive enzyme activity, anti-oxidative status, immune response and the intestinal barrier of broiler chickens. Br J Nutr 2020; 125:494-507. [PMID: 32693847 PMCID: PMC7885174 DOI: 10.1017/s0007114520002755] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study investigated the effect of Bacillus subtilis DSM 29784 (Ba) and enzymes (xylanase and β-glucanases; Enz), alone or in combination (BE) as antibiotic replacements, on the growth performance, digestive enzyme activity, immune response and the intestinal barrier of broiler chickens. In total, 1200 1-d-old broilers were randomly assigned to five dietary treatments, each with six replicate pens of forty birds for 63 d as follows: (a) basal diet (control), supplemented with (b) 1 × 109 colony-forming units (cfu)/kg Ba, (c) 300 mg/kg Enz, (d) 1 × 109 cfu/kg Ba and 300 mg/kg Enz and (e) 250 mg/kg enramycin (ER). Ba, Enz and BE, similar to ER, decreased the feed conversion rate, maintained intestinal integrity with a higher villus height:crypt depth ratio and increased the numbers of goblet cells. The BE group exhibited higher expression of claudin-1 and mucin 2 than the other four groups. BE supplementation significantly increased the α-diversity and β-diversity of the intestinal microbiota and markedly enhanced lipase activity in the duodenal mucosa. Serum endotoxin was significantly decreased in the BE group. Compared with those in the control group, increased superoxide dismutase and glutathione peroxidase activities were observed in the jejunal mucosa of the Ba and BE groups, respectively. In conclusion, the results suggested that dietary treatment with Ba, Enz or BE has beneficial effects on growth performance and anti-oxidative capacity, and BE had better effects than Ba or Enz alone on digestive enzyme activity and the intestinal microbiota. Ba or Enz could be used as an alternative to antibiotics for broiler chickens.
Collapse
|
32
|
Wu S, Chen X, Li T, Ren H, Zheng L, Yang X. Changes in the gut microbiota mediate the differential regulatory effects of two glucose oxidases produced by Aspergillus niger and Penicillium amagasakiense on the meat quality and growth performance of broilers. J Anim Sci Biotechnol 2020; 11:73. [PMID: 32647570 PMCID: PMC7336442 DOI: 10.1186/s40104-020-00480-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Glucose oxidase (GOD), an aerobic dehydrogenase, has been used as an antibiotic substitute in feed. A study was conducted to evaluate the differential effects of 2 different GODs fermented by Aspergillus niger or Penicillium amagasakiense on caecal microbiota and to further illuminate the potential roles of changes in the gut microbiota in regulating the growth performance and meat quality of broiler chickens. RESULTS A total of 420 one-day-old healthy Arbor Acres broilers were randomly assigned to 4 treatments: the control group, the antibiotic growth promoter (AGP) supplementation group, and the GOD-A and GOD-P (GODs produced by A. niger and P. amagasakiense, respectively) groups. As a result, supplementation with GOD produced by P. amagasakiense could significantly improve the average daily weight gain and average daily feed intake of broilers before 21 days of age by significantly increasing the enzymatic activities of jejunal amylase and those of ileal amylase, chymotrypsin, and lipase in 21-day-old broilers and could increase the enzymatic activities of duodenal amylase, jejunal amylase and lipase, and ileal chymotrypsin and lipase in 42-day-old broilers. Meanwhile, compared with AGP treatment, supplementation with GOD produced by P. amagasakiense significantly decreased the L value of 21-day-old broilers and the ΔpH and L* value of 42-day-old broilers, while supplementation with GOD produced by A. niger significantly increased the pH24 h value of 21-day-old and 42-day-old broilers by reducing plasma malondialdehyde content. By using 16S rRNA sequencing, we found that the beneficial bacteria and microbiota in broilers were not disturbed but were improved by GOD supplementation compared with ADP treatment, including the genera Eubacterium and Christensenella and the species uncultured_Eubacterium_sp, Clostridium_asparagiforme, and uncultured_Christensenella_sp, which were positively related to the improved intestinal digestive enzymatic activities, growth performance, and meat quality of broilers. CONCLUSION The altered gut microbiota induced by supplementation with glucose oxidase produced by P. amagasakiense mediate better regulatory effects on the meat quality and growth performance of broilers than that induced by supplementation with glucose oxidase produced by A. niger.
Collapse
Affiliation(s)
- Shengru Wu
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China ,grid.4714.60000 0004 1937 0626Center for Translational Microbiome Research, Department of Molecular, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaodong Chen
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| | - Taohuan Li
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China ,Jiangxi Zhengbang Technology Co., Ltd., Nanchang, Jiangxi China
| | - Hao Ren
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| | - Lixin Zheng
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| | - Xiaojun Yang
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|