1
|
Li Z, Huang J, Xiao M, Zhu Z, Huang T, Huang M. Investigation into the effects of acute heat stress on stress level, meat quality, myofibrillar proteins properties and serum metabolites release of Muscovy ducks (Cairina moschata). Food Chem 2025; 482:144104. [PMID: 40184737 DOI: 10.1016/j.foodchem.2025.144104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
This study systematically investigated the effects of acute heat stress (AHS) on Muscovy ducks, focusing on plasma stress indicators, meat quality, myofibrillar proteins (MPs) properties, and serum metabolite profiles. AHS significantly elevated stress level, impairing meat quality, as evidenced by higher L* value, shear force, drip loss, and cooking loss (P < 0.05). It also induced MPs oxidation and aggregation, reflected by elevated carbonyl content, turbidity, zeta potential, and particle size. MPs structural alterations were confirmed by fluorescence quenching and increased exposure of hydrophobic groups. Correlation analysis revealed strong associations between physicochemical changes and MPs oxidation. Metabolomic analysis identified 161 and 105 differential metabolites in the CON vs. LS and CON vs. SS comparisons, respectively, involving 25 metabolic pathways related to energy, amino acids, and fatty acids. These findings provide novel insights into the molecular pathways of AHS-induced meat quality deterioration and reveal potential intervention timing for the poultry industry.
Collapse
Affiliation(s)
- Zimu Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jichao Huang
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mengchao Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Zongshuai Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tianran Huang
- Jiangsu Research Center for Livestock and Poultry Products Processing Engineering Technology, Nanjing Huangjiaoshou Food Science and Technology Co. Ltd., Nanjing, Jiangsu 211200, PR China
| | - Ming Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
2
|
Iliopoulou E, Brouklogiannis I, Paraskeuas VV, Griela E, Anagnostopoulos EC, Kefalas G, Mountzouris KC. Dietary phytogenic inclusion level affects performance and expression of heat shock, cytoprotective, inflammatory and apoptotic genes in the duodenum and the liver of cyclic heat-challenged broilers. Poult Sci 2025; 104:105348. [PMID: 40451072 PMCID: PMC12164185 DOI: 10.1016/j.psj.2025.105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/21/2025] [Accepted: 05/25/2025] [Indexed: 06/16/2025] Open
Abstract
This study was conducted to investigate the inclusion level effect of a phytogenic blend (PB) on performance and the expression of genes relevant to heat shock response, detoxification, antioxidant capacity, inflammation and apoptosis in the duodenum and the liver of broilers under heat challenge conditions. The PB consisted of bioactive substances derived from oregano, thyme and olive oil polyphenols. Depending on PB inclusion level (i.e., 0, 500, 1,000, 1,500 and 2000 mg/kg diet) in the basal diet, 490 male broilers Ross 308, 1-d-old were assigned into 5 treatments: CON, PB500, PB1000, PB1500, and PB2000, with 7 replicates of 14 broilers, each. Birds were reared for 35 days under thermoneutral conditions and then subjected to 7 h cyclic heat stress (32 ± 1°C; RH 55 ± 5 %) for 5 consecutive days. Performance responses were closely monitored per growth phase (starter 1-10d, grower 11-24, finisher 25-40) and overall. At the end of the experiment (d40), duodenal and liver samples from 7 broilers per treatment were appropriately collected, snap frozen and subsequently stored at -80°C until gene expression analysis. Results revealed that PB inclusion level, improved (P < 0.05) Feed Conversion Ratio, Protein Efficiency Ratio, Energy Efficiency Ratio and the Nutritional Efficiency in a quadratic manner, compared to CON. At the molecular level, PB inclusion down-regulated (P < 0.05) most of the heat shock and inflammation-related genes, both in the duodenum and liver, in a linear manner with PB inclusion level. In addition, PΒ cytoprotective capacity was demonstrated via beneficial changes (P < 0.05) seen for the majority of the antioxidant and detoxification-related genes assessed, with the PB1500 displaying most significant differences, compared to CON. Conclusively, in heat challenged broilers, the multi-pathway nutrigenomic analysis provided new mechanistic support behind the improved broiler performance responses with PB inclusion.
Collapse
Affiliation(s)
- Eugenia Iliopoulou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Ioannis Brouklogiannis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece; Feed Innovations & Technologies P.C., a spin-off company of the Agricultural University of Athens, Matsa 10, Kifisia 14665, Greece
| | - Vasileios V Paraskeuas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Eirini Griela
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Evangelos C Anagnostopoulos
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | | | - Konstantinos C Mountzouris
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece; Feed Innovations & Technologies P.C., a spin-off company of the Agricultural University of Athens, Matsa 10, Kifisia 14665, Greece.
| |
Collapse
|
3
|
Prates JAM. Impact of Heat Stress on Carcass Traits, Meat Quality, and Nutritional Value in Monogastric Animals: Underlying Mechanisms and Nutritional Mitigation Strategies. Foods 2025; 14:1612. [PMID: 40361694 PMCID: PMC12071813 DOI: 10.3390/foods14091612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
This review examines the impact of heat stress (HS) on carcass traits, meat quality, and nutritional composition in monogastric animals, specifically poultry and swine, and evaluates targeted nutritional strategies for mitigation. With rising global temperatures and intensified heat waves, HS has emerged as a key threat to animal welfare, production efficiency, and meat quality. Physiological disturbances induced by HS, including oxidative stress, protein denaturation, mitochondrial dysfunction, and hormonal imbalances, contribute to reduced carcass yield, muscle degradation, and inferior sensory attributes such as tenderness, juiciness, and flavour. HS also diminishes the nutritional value of meat by depleting essential amino acids, polyunsaturated fatty acids, and antioxidant micronutrients. This review highlights nutritional interventions, including antioxidant supplementation (e.g., vitamin E, selenium, polyphenols), osmolytes (e.g., betaine, taurine), probiotics, prebiotics, and optimised energy-to-protein ratios, as promising tools to enhance thermotolerance and meat quality. Emerging feed additives such as phytochemicals also show potential for protecting muscle integrity and improving oxidative stability. Given species-specific responses and production system variability, integrating these dietary approaches with stage-specific management is essential for resilience under climate stress. Future research should focus on the precision nutrition, biomarker identification, and validation of synergistic nutritional strategies that safeguard performance and meat quality in monogastric production systems.
Collapse
Affiliation(s)
- José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
4
|
Yehia M, Alfonso-Avila AR, Allard Prus JM, Ouellet V, Alnahhas N. Effect of in ovo-fed amino acids on muscle and liver metabolome of broiler chickens at 24 h post-hatch. Front Physiol 2025; 16:1542426. [PMID: 40352141 PMCID: PMC12061718 DOI: 10.3389/fphys.2025.1542426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
In ovo administration of amino acids has been shown to alleviate the adverse effects of heat stress on broiler chickens during the finisher phase. However, their specific influence on thermogenic organs in the early post-hatch period is not fully understood. Therefore, the aim of the present study was to explore and investigate the effects of in ovo-fed amino acids on amino acid metabolism in the liver and muscle of one-day-old broiler chicks. To achieve this, breast muscle and liver samples were taken from six randomly selected chicks per experimental group and subjected to a targeted metabolomic analysis. The experimental groups included a control group injected with 52 µL of sterile diluent/egg (CTRL), a group injected with 3.0 mg of L-Met + 2.0 mg of L-Cys/egg (T1), and a group injected with 0.4 mg of L-Leu + 1.6 mg of L-Met + 1.6 mg of L-Cys/egg (T2). The Sparse Partial Least Square - Discriminant Analysis (sPLS-DA) showed that T1 and T2 had very similar metabolomic profiles. Consequently, data from T1 and T2 were merged into a single group (Injected) for statistical analysis. Compared to CTRL, multiple pathways were significantly enriched in the muscle and liver of the Injected group. These enriched pathways included those involved in the metabolism of cysteine and methionine (FDR = 0.01), glutathione (FDR < 0.001), histidine (FDR = 0.01), taurine (FDR = 0.01), glycine, serine, and threonine (FDR = 0.01) as well as the pathway of arginine biosynthesis (FDR = 0.03). Moreover, only four muscle metabolites: homocysteine (r = -0.63, P = 0.03), S-Adenosyl-homocysteine (r = -0.62, P = 0.03), phosphocholine (r = 0.50, P = 0.01), and betaine (r = 0.52, P = 0.004), as well as four liver metabolites: phenyl pyruvic acid (r = 0.55, P = 0.02), dimethylglycine (r = 0.55, P = 0.03), phenylalanine (r = 0.50, P = 0.02), and alpha-aminobutyric acid (r = -0.53, P = 0.02) were significantly correlated with the rectal temperature of sampled chicks, suggesting a role of these metabolites in thermoregulation. In conclusion, the in ovo feeding of amino acids on embryonic day 18 was associated with the enrichment of pathways directly or indirectly involved in the response of the antioxidant defense system to oxidative stress in the liver and muscle tissues.
Collapse
Affiliation(s)
- Moustafa Yehia
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City, QC, Canada
| | | | | | - Véronique Ouellet
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City, QC, Canada
| | - Nabeel Alnahhas
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City, QC, Canada
- Swine and Poultry Infectious Diseases Research Center, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
5
|
Adomako K, Asamoah L. Effects of naked neck and frizzle genes on growth and egg-laying performance of chickens in the tropics in an era of climate change. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025; 69:709-724. [PMID: 39856460 DOI: 10.1007/s00484-025-02853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/06/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
In regions characterized by tropical and subtropical climates, the elevated ambient temperatures exert adverse effects on both broiler and laying chickens, impacting their growth and egg production performance. To mitigate the challenges posed by heat stress, genetic strategies aimed at reducing feather coverage have gained prominence in hot climate areas. Among these approaches, the naked neck (Na) and frizzle (F) genes have emerged as particularly noteworthy. The Na and F genes play a pivotal role in facilitating heat dissipation and temperature regulation. By decreasing feather insulation, these genes enable efficient heat dissipation through exposed areas of the chickens' bodies. This reduction in feather coverage leads to elevated body surface temperature, which, in turn, enhances the capacity for heat loss and contributes to overall body temperature reduction. A substantial body of literature underscores the well-established positive impacts of the naked neck and frizzle genes on growth and egg-laying performance. As a result, these genes hold significant potential for integration into broiler and layer production systems, especially in regions characterized by high tropical temperatures. In the context of broiler farming under challenging heat conditions, the Na and F genes have demonstrated favorable effects on crucial parameters such as feed conversion ratio, body weight gain, disease resistance, and carcass attributes. Likewise, layers exposed to elevated temperatures exhibit enhanced egg production, eggshell quality, fertility, hatchability, and resistance to diseases when these genes are incorporated. Given that the prevalence of the naked neck and frizzle genes is primarily observed in indigenous chicken populations, it becomes imperative to prioritize measures for their conservation due to their exceptional performance in heat-stressed environments. To unlock the full genetic potential of exotic poultry reared in hot and humid conditions, the integration of the Na and F genes is a strongly recommended strategy.
Collapse
Affiliation(s)
- K Adomako
- Department of Animal Science, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - L Asamoah
- Department of Biochemistry and Biotechnology, Faculty of Biosciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
6
|
El-Tahan HM, Lim CI, Alhimaidi AR, Ammari AA, Cho S, Kim IH, El-Tahan HM. Fish oil a source of omega-3 fatty acids affects hypothalamus heat resistance genes expressions and fatty acid composition in heat-stressed chicks. Domest Anim Endocrinol 2025; 91:106915. [PMID: 39892223 DOI: 10.1016/j.domaniend.2025.106915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
This study investigated the effects of fish oil (FO) supplementation on the hypothalamus heat resistance gene expressions and fatty acid composition of chicks under acute high-temperature stress, for treating Cholestasis. A total of 48 chicks (Ross 308) at age of 14 days were acclimatized to corn oil or FO (n = 24 for each) by oral gavaging for 10 days, and then subjected to heat stress (35 ± 1 °C, HT) for 3 h or maintained at the normal temperature (26 ± 1 °C, NT) as grouped as NT and FO-NT control and HT and FO-HT (n = 12 for each).. The results showed that FO supplementation had no significant (P > 0.05) effect on feed intake or body weight. The FO-HT group exhibited (P<0.05) a lower rectal temperature, and plasma interleukin-6 (IL-6), triglyceride and corticosterone levels, in accompany with lower expressions of hypothalamic adenine nucleotide translocators (ANT) and uncoupling protein (UCP) but increased (P<0.05) plasma superoxide dismutase activity and hypothalamic neuropeptide-Y (NPY) and heat shock protein-70 (HSP-70) expressions.. Additionally, the FO-HT group (P < 0.05) demonstrated a higher unsaturated fatty acid/saturated fatty acid (UFA/SFA) ratio in the breast muscle. These findings suggest that FO supplementation can enhance the heat resistance of broiler chicks under acute heat stress and alter the fatty acid composition of their breast muscle. However, further studies are needed to determine whether desirable fatty acids can cross the blood-brain barrier and their implications for human health.
Collapse
Affiliation(s)
- Hatem M El-Tahan
- Animal Production Research Institute, Ministry of Agriculture, Giza, 12619, Egypt; Department of Animal Science, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Chun Ik Lim
- Department of Animal Science, Jeonbuk National University, Jeonju, 54896, South Korea; Poultry Research Institute, National Institute of Animal Science, RDA, Pyeongchang, 25342, South Korea
| | - Ahmad R Alhimaidi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Aiman A Ammari
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sungbo Cho
- Animal Resource and Science Department, Dankook University, Cheonan, 31116, South Korea
| | - In Ho Kim
- Animal Resource and Science Department, Dankook University, Cheonan, 31116, South Korea; Smart Animal Bio Institute, Dankook University, Cheonan, South Korea.
| | - Hossam M El-Tahan
- Animal Production Research Institute, Ministry of Agriculture, Giza, 12619, Egypt; Animal Resource and Science Department, Dankook University, Cheonan, 31116, South Korea; Smart Animal Bio Institute, Dankook University, Cheonan, South Korea
| |
Collapse
|
7
|
Dunga GT, Adomako K, Hagan BA, Hamidu JA, Olympio OS. The effects of naked neck and frizzle genes on the fertility, hatchability, egg quality and pterylosis of locally developed commercial layer parent lines. Trop Anim Health Prod 2025; 57:86. [PMID: 40016361 DOI: 10.1007/s11250-025-04335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
In this study, the effects of feather cover and feather colour genotypes and their interactions on the fertility, hatchability, external and internal egg qualities of 24-week-old locally developed layer parent lines were assessed. A 2 x 3 factorial experiment laid out in a randomized complete block design of two feather colour variants (brown and white) and three feather cover genotypes (naked neck, frizzle and normal feather) was used for this study. A total of 3,196 eggs from 360 layers of three feather genotypes were set for incubation. Data on fertility, hatchability, egg quality characteristics and chick weight were analysed using the PROC MIXED of SAS and differences between means were separated using LSD at 5% probability level. Percentage fertility of eggs of naked neck and frizzle feathered birds were significantly higher (p<0.05) than those in the normal feathered birds (71.98%, 70.29% vs 63.17%). Eggs of frizzle feathered birds (76.81%) recorded higher (p<0.05) hatchability than those of the naked neck (65.07%) and normal feathered birds (59.64%). Feather cover genotype had no significant difference (p>0.05) on weight of day-old chick. Feather colour genotype significantly (p<0.05) influenced egg weight but not other external egg characteristics. Feather cover and colour genotypes had significant (p<0.05) effect on some of the internal egg qualities. Follicle numbers in the ventral, dorsal and lateral regions were lower (p<0.05) in the naked neck birds relative to the frizzle and normal feathered birds. The incorporation of F and Na alleles into layer parent stocks in hot humid areas could improve fertility, hatchability and egg quality traits of birds.
Collapse
Affiliation(s)
- Gregory Tamba Dunga
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwaku Adomako
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bernard Ato Hagan
- Department of Animal Production and Health, School of Agriculture and Technology, University of Energy and Natural Resources, Sunyani, Ghana.
| | - Jacob Alhassan Hamidu
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Oscar Simon Olympio
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
8
|
Litchman E. Climate change effects on the human gut microbiome: complex mechanisms and global inequities. Lancet Planet Health 2025; 9:e134-e144. [PMID: 39986317 DOI: 10.1016/s2542-5196(24)00332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 02/24/2025]
Abstract
Ongoing global climate change is affecting all aspects of life on Earth, including human health. The gut microbiota is an important determinant of health in humans and other organisms, but how climate change affects gut microbiota remains largely unexplored. In this Review, I discuss how the changing climate might affect gut microbiota by altering the quantity and quality of food, as well as environmental microbiomes, such as enteric pathogen pressure and host physiology. Climate change-induced variability in food supply, shifts in elemental and macromolecular composition of plant and animal food, the proliferation of enteric pathogens, and the direct effects of high temperatures on gut physiology might alter gut microbiota in undesirable ways, increasing the health burden of climate change. The importance of different pathways might depend on many geographical, economic, and ecological factors. Microbiomes of populations in low-income countries might be disproportionally affected through greater climate change effects and poor mitigation on diet, pathogen burden, and host physiology.
Collapse
Affiliation(s)
- Elena Litchman
- Kellogg Biological Station and Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USA.
| |
Collapse
|
9
|
Duhra D, Beaulieu D, Shynkaruk T, Dorigam JCDP, Whelan R, Schwean-Lardner K. Maximizing the performance of heat stressed broilers by optimizing starch-to-lipid ratios, digestible amino acid, and metabolizable energy during the finisher phase. Poult Sci 2025; 104:104729. [PMID: 39756107 PMCID: PMC11757756 DOI: 10.1016/j.psj.2024.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025] Open
Abstract
This study investigated the effects and interactions among diets formulated to have high starch-to-lipid ratios (S:L), amino acid density [indicated as % digestible lysine (DigLys)], and AME on growth performance and carcass characteristics of heat stressed broilers. A {3,3} simplex lattice design was used to assess relative effects and generate predictive models. Three basal finisher diets were formulated to have the highest S:L ratio (Basal A; 20:1), DigLys (Basal B; 1.30 %), or AME (Basal C; 3300 kcal/kg). These diets were blended at levels of 0.00, 0.33, 0.67, or 1.00 to produce 10 finisher diets. The mixtures allowed varying S:L ratios (4:1 to 20:1), DigLys (0.80 to 1.30 %), and AME (2800 to 3300 kcal/kg) content of diets. sex-separated (n = 6,864) Ross 708 broiler chicks were placed in separate rooms (5 male and 4 female) with a pen stocking density of 31 kg/m2. Sex-specific starter and grower diets were fed until d 21. The rooms were maintained at 21°C during d 21 to 27. From d 27 to 32, the birds were subjected to cyclical heat stress, with 12 h of 31°C followed by 12 h of 21°C, with a minimum RH of 50 %. BW and feed residual weights were measured on d 21, 27, and 32, then used to calculate BW gain (BWG) and feed-to-gain ratios (F:G). On d 33, 20 birds per treatment per sex were slaughtered to determine carcass characteristics. Under these conditions (d 21 to 32), maximum male BWG of 926 g was estimated to occur when fed a diet comprised of 42.2 % Basal B and 57.8 % Basal C with a S:L ratio of 4:1, AME of 3089 kcal/kg, and 1.01 % DigLys. Diet did not influence female BWG during heat stress. Although a practical recommendation was not possible for optimal breast meat yield (% live weight) and F:G ratios, the results, indicated that increasing DigLys would improve these parameters under heat stress.
Collapse
Affiliation(s)
- Dilshaan Duhra
- College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Denise Beaulieu
- College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Tory Shynkaruk
- College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | | | - Rose Whelan
- Evonik Operations GmbH, Hanau-Wolfgang, Essen 63457, Germany
| | - Karen Schwean-Lardner
- College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada.
| |
Collapse
|
10
|
Khongthong S, Piewngam P, Roekngam N, Maliwan P, Kongpuckdee S, Jeenkeawpleam J, Rodjan P. Effects of dietary Bacillus subtilis 14823 on growth performance, gut barrier integrity and inflammatory response of broilers raised in a stressful tropical environment. Poult Sci 2025; 104:104518. [PMID: 39580901 PMCID: PMC11625347 DOI: 10.1016/j.psj.2024.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Heat stress (HS) has become a major concern for the poultry industry in many countries. HS impacts gut health by causing damaged mucosal microstructures, increased oxidative stress, weakened immunity, and heightened permeability to toxins and poultry pathogens. We investigated the potential benefits to broiler chickens subjected to HS of dietary supplementation with Bacillus subtilis 14823. Growth performance, gut barrier integrity, and expressions of inflammatory cytokines were analyzed. The results indicated that dietary supplementation with B. subtilis spores at concentrations of 1 × 106 CFU/g of feed (BS6 group) and 1 × 107 CFU/g of feed (BS7 group) improved body weight and body weight gain during d 0-42 (P < 0.05), while the feed intake of the BS7 group was highest (P < 0.05). Additionally, the BS6 group showed a better feed conversion ratio than the control (CON) group (P < 0.05). The BS7 group showed the lowest serum fluorescein isothiocyanate-dextran levels (P < 0.05), and both the BS6 and BS7 groups showed lower corticosterone levels than the CON group (P < 0.05). Additionally, both the BS6 and BS7 groups demonstrated increased villi height and villus height/crypt depth ratio, along with decreased crypt depth in the duodenum and ileum (P < 0.05). However, only the BS7 group exhibited greater improvements than the CON group in the jejunum at d 35. Furthermore, at d 14 and 35, mRNA expressions of occludin, claudin-1, and tight junction protein-1 in the jejunum were upregulated (P < 0.05), and expression levels of five inflammatory cytokine genes were downregulated in the ileum (P < 0.05). Our findings provide new insights and evidence supporting the application of B. subtilis 14823 for enhancing growth performance, gut barrier integrity, and modulating inflammatory cytokines in broilers.
Collapse
Affiliation(s)
- Sunisa Khongthong
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Thung-Yai, Nakhon Si Thammarat 80240, Thailand
| | - Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Natthrit Roekngam
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Thung-Yai, Nakhon Si Thammarat 80240, Thailand
| | - Prapot Maliwan
- Department of Animal Science, Faculty of Agriculture, Rajamangala University of Technology Srivijaya, Thung-Yai, Nakhon Si Thammarat 80240, Thailand
| | - Sonsawan Kongpuckdee
- Department of Thai Traditional Medicine, Faculty of Health and Sports Science, Thaksin University, Pa Phayom, Phatthalung 93210, Thailand
| | - Juthatip Jeenkeawpleam
- One Health Research Center, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Prawit Rodjan
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; Food Technology and Innovation Center of Excellence, Walailak University, Nakhon Si Thammarat 80160, Thailand; Center of Excellence in Innovation on Essential oil, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
11
|
Xin L, Prorok M, Zhang Z, Barboza G, More R, Bonfiglio M, Cheng L, Robbie K, Ren S, Li Y. Rapid Development of High Concentration Protein Formulation Driven by High-Throughput Technologies. Pharm Res 2025; 42:151-171. [PMID: 39824982 DOI: 10.1007/s11095-024-03801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/01/2024] [Indexed: 01/20/2025]
Abstract
BACKGROUND High concentration protein formulation (HCPF) development needs to balance protein stability attributes such as conformational/colloidal stability, chemical stability, and solution properties such as viscosity and osmolality. METHODOLOGY A three-phase design is established in this work. In Phase 1, conformational and colloidal stability are measured by 384-well-based high-throughput (HT) biophysical screening while viscosity reduction screening is performed with HT viscosity screening. Collectively, the biophysical and viscosity screening data are leveraged to design the phase 2 of short-term stability study, executed using 96-well plates under thermal and freeze/thaw stresses. In phase 2, samples are analyzed by stability-indicating assays and processed with pair-wise Student's t-test analyses to choose the final formulations. In phase 3, the final formulations are then confirmed through a one-month accelerated stability in glass vials. RESULTS Using a model antibody A (mAb-A), the initial HT screening successfully established the 384-well based platform. A lead formulation was chosen from the second round based on statistical analyses and subsequently tested against the commercial formulation of mAb-A as a control. Compared to the control, the lead formulation reduced the viscosity of mAb-A by 30% and decreased subvisible particles after thermal stress by 80%. CONCLUSIONS HT biophysical screening in 384-well plates was demonstrated to effectively guide the rational design of a high-throughput stability screening study using 96-well plates. This platform enables the identification of a high concentration formulation within seven weeks within the first two phases of study that strategically balance stability with solution properties, thus achieving a rapid development of HCPF.
Collapse
Affiliation(s)
- Lun Xin
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Monika Prorok
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Zhe Zhang
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Guilherme Barboza
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Rahul More
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Michael Bonfiglio
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Lv Cheng
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Kevin Robbie
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Steven Ren
- CMC Management, WuXi Biologics, Cranbury, NJ, USA
| | - Yunsong Li
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA.
| |
Collapse
|
12
|
Wan Y, Zhang J, Zhang X, He J, Shi N, Li Y, Li J, Wang Y. Characterization of the C5H11ORF96 gene in chickens: cloning, tissue distribution and investigation of its potential function in stress response regulation. Poult Sci 2025; 104:104500. [PMID: 39580900 PMCID: PMC11625329 DOI: 10.1016/j.psj.2024.104500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Chicken is an important economic animal that encounter various stressors including high temperature, high stocking density, bacterial infections and transportation, etc. affecting the poultry production with serious economic loss. To be in response to the varied stimulus, the hypothalamic-pituitary-adrenal (HPA) axis is activated through the controlling of the synthesis and secretion of glucocorticoids (GCs). Present study characterized a novel gene C5H11ORF96, that demonstrated significant upregulation after the DEX injection in chicken, which simulates the stress stimulus. Our results showed that: (1) cC5H11ORF96 cDNA encodes a 120 amino acids protein, which shares high sequence identity with that of birds, mammals, reptiles, frogs and fish; (2) cC5H11ORF96 has a fully conserved RFKTQP motif and high proportion of serine, indicating its multiple potential phosphorylation sites; (3) cC5H11ORF96 is widely expressed in various chicken tissues, with high expression levels in the parathyroid gland, adrenal gland, and pituitary; (4) glucocorticoids (GCs) and stress significantly upregulate C5H11ORF96 mRNA and protein expression in the chicken pituitary and hypothalamus, suggesting its involvement in regulating stress response by influencing the negative feedback of GCs on the HPA axis in chickens. The characterization of the C5H11ORF96 gene in the chicken stress response provides potential targets for stress adaptability and poultry production. Meanwhile, our finding provides essential insights into the physiological functions of C11ORF96 gene in vertebrates.
Collapse
Affiliation(s)
- Yiping Wan
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Jiannan Zhang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Xiao Zhang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Jiliang He
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Ningkun Shi
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yuanyou Li
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Juan Li
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yajun Wang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, PR China.
| |
Collapse
|
13
|
Lu P, Guo R, Zou C, Chen H, Chen D, Yang L, Tan H, Wu S, Lv Y, Xiao Z, Gao C. Insight into the chemical composition, antioxidant capacity, meat quality, fatty acid profile, and volatile compounds of yellow-feathered chickens fed with fermented pineapple residue. Food Chem X 2024; 24:101874. [PMID: 39444437 PMCID: PMC11497432 DOI: 10.1016/j.fochx.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
This study aimed to evaluated the effect of dietary fermented pineapple residue (FPR) on the chemical composition, antioxidant capacity, meat quality, fatty acid profile, and volatile compounds in yellow-feathered chickens. GC-IMS technique combined with multivariate analysis were performed to clarify the key volatile compounds. The results showed that dietary FPR improved meat quality by increasing the antioxidant capacity and pH value and decreasing cooking loss of breast muscle. The fatty acid profile was altered in breast muscle of chickens that fed with FPR. GC-IMS detected 43 volatile compounds in breast muscle, including mainly aldehydes, alcohols, esters, and ketones. Among them, 12 volatile compounds could serve as potential aroma markers to distinguish meat flavor of chickens fed with FPR. Correlation analysis revealed that C18:1n9c, C18:2n6, and PUFA are important contributors for meat flavor formation. In conclusion, dietary FPR improved antioxidant capacity, meat quality, fatty acid profile, and volatile compounds of breast muscle in chickens.
Collapse
Affiliation(s)
- Panpan Lu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
- Henry Fork School of Biology and Agriculture, Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Ruiting Guo
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Chunlian Zou
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Hang Chen
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Dan Chen
- Wens Foodstuff Group Co., Ltd., Yunfu 527439, China
| | - Lu Yang
- Wens Foodstuff Group Co., Ltd., Yunfu 527439, China
| | - Huize Tan
- Wens Foodstuff Group Co., Ltd., Yunfu 527439, China
| | - Siqiao Wu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Yaxue Lv
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Zhengzhong Xiao
- Henry Fork School of Biology and Agriculture, Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Chunqi Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| |
Collapse
|
14
|
Liu Y, Liu Z, Xing T, Li J, Zhang L, Zhao L, Gao F. Effects of chronic heat stress on Ca 2+ homeostasis, apoptosis, and protein carbonylation profiles in the breast muscle of broilers. Poult Sci 2024; 103:104342. [PMID: 39369492 PMCID: PMC11491962 DOI: 10.1016/j.psj.2024.104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024] Open
Abstract
Heat stress (HS) largely impairs the quality of broiler breast meat through protein oxidative modification. This study aimed to investigate the carbonylation pattern of Ca2+ channels and apoptotic proteins in the breast muscle of heat-stressed broilers. A total of 144 twenty-eight-day-old male Arbor Acres broilers were randomly divided into three treatment groups. The normal control (NC) group was kept at 22°C and provided with unlimited feed. The HS group was exposed to 32°C and provided with unlimited feed. The pair-fed (PF) group was kept at 22°C and given an amount of feed equivalent to that consumed by the HS group on the previous day. Results showed that broilers under HS conditions had a higher respiratory rate than those in NC and PF groups (P < 0.05). HS disrupted the morphology and structure of breast muscle fibers by decreasing the average diameters and average density of myofibers compared to the NC group (P < 0.05). HS increased the mean fluorescence intensity of the positive carbonyl signal in breast muscle compared with the NC group (P < 0.05). Besides, the pectoral Ca2+ concentration in the sarcoplasmic reticulum, cytoplasm, and mitochondria was elevated by HS when compared with the NC group (P < 0.05). In comparison to the NC and PF groups, HS increased the apoptosis rate and caspase-3 activity in the breast muscle (P < 0.05). Furthermore, HS elevated the relative protein expressions of plasma membrane Ca2+-ATPase, Na+/Ca2+ exchanger 1, and sarco/endoplasmic reticulum calcium transport ATPase 1 compared to the NC group (P < 0.05). Higher relative protein expression of μ-calpain and lower relative protein expression of cytosolic cytochrome complex were found in the HS group than the NC group (P < 0.05). HS decreased the carbonylation levels of transient receptor potential canonical 1 and inositol 1,4,5-trisphosphate receptor compared to the NC group (P < 0.05). Additionally, the carbonylation levels of cleaved caspase-3 and precursor caspase-9 were increased and decreased, respectively, by HS treatment compared to the NC group (P < 0.05). In conclusion, HS damages the myofiber based on Ca2+ dyshomeostasis and apoptosis, which are potentially associated with protein carbonylation. These results shed new light on the possible mechanism behind the development of poor meat quality in broilers due to HS.
Collapse
Affiliation(s)
- Yingsen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaolong Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Kwon SH, Lee JH, Kim HW, Kim DY, Kil DY. Effect of increasing supplementation of dietary glycine on growth performance, meat quality, liver characteristics, and intestinal health in broiler chickens raised under heat stress conditions. Poult Sci 2024; 103:104352. [PMID: 39383666 PMCID: PMC11490916 DOI: 10.1016/j.psj.2024.104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
The current study aimed to investigate the effect of increasing supplementation of dietary glycine (Gly) on growth performance, meat quality, liver characteristics, and intestinal health in broiler chickens raised under heat stress (HS) conditions. A total of one thousand six hundred 25-d-old broiler chickens were randomly allotted to 1 of 5 dietary treatments with 8 replicates. Each replicate comprised 20 male and 20 female birds. A negative control (NC) diet was prepared to meet or exceed energy and nutrient requirement estimates, whereas a positive control (PC) diet was formulated to contain increasing concentrations of AMEn by 50 kcal/kg as well as those of digestible amino acids, total Ca, and available P by 10% compared with the respective concentrations in the NC diet. Three additional diets were prepared by supplementing the NC diet with 0.4, 0.8, or 1.6% Gly. All chickens were raised under cyclic HS conditions at 29°C ± 0.89°C for 10 h/d and 23°C ± 1.45°C for the remaining time over an 18-d feeding trial. Results indicated that broiler chickens fed the NC diet had a greater (P < 0.05) FCR than those fed the PC diet under HS conditions. Increasing supplementation of up to 1.6% Gly in diets decreased (linear, P < 0.001) FCR in broiler chickens. Increasing supplementation of dietary Gly tended to increase (linear, P = 0.070) water holding capacity in the breast meat. Increasing supplementation of dietary Gly decreased (linear, P < 0.05) serum aspartate aminotransferase concentrations and tended to decrease blood heterophil:lymphocyte (linear, P = 0.083) and liver malondialdehyde concentrations (quadratic, P = 0.084). A tendency for increased villus height (linear, P = 0.086) and a significant increase in villus height:crypt depth ratio and goblet cell numbers (linear, P < 0.05) were identified following increasing Gly supplementation. In conclusion, increasing supplementation of dietary Gly improved feed efficiency, meat quality, liver health, and intestinal morphology possibly by mitigating oxidative stress and stress response in broiler chickens raised under HS conditions.
Collapse
Affiliation(s)
- Sung Hoon Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Ji Hye Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Deok Yun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
16
|
Wu P, Xia S, Yu H, Zhao X, Zhang G, Wang K. RNA-seq reveals changes in the transcriptome of the breast muscle of adult female chickens in response to heat stress. BMC Genomics 2024; 25:1158. [PMID: 39614141 DOI: 10.1186/s12864-024-11024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Heat stress has caused significant impacts on the poultry industry globally. Tianjin-monkey Chicken (TM) is a local naked neck chicken genetic resource in China, characterized by its heat stress resistance due to a low feather coverage. RESULTS We conducted heat stress stimulation tests on TM and a normal feathered chicken (Jingfen No. 6 Layer, JF), and the breast muscle tissues were collected for transcriptome sequencing. A total of 157 differentially expressed genes (DEGs) and 1435 DEGs were respectively obtained from the comparisons of JFN-vs-JFT and TMN-vs-TMT. GO enrichment analysis found that biological process (BP) terms including phospholipid homeostasis, regulation of aggrephagy, positive regulation of aggrephagy, and negative regulation of lipase activity may be closely related to heat stress resistance in JF chickens. While catabolism-related BP terms were mainly enriched for DEGs of TM, such as catabolic process, protein catabolic process and cellular catabolic process. KEGG pathway analysis showed that the MAPK signaling pathway was enriched both in TM and JF with high connectivity. In addition, some pathways with higher connectivity (Metabolic pathways, FoxO signaling pathway, TGF-beta signaling pathway and AMPK signaling pathway) may be closely associated with resistance to heat stress in JF. In Tianjin-monkey Chicken, we also identified several pathways potentially involved in heat stress regulation, including Ubiquitin mediated proteolysis, Autophagy-animal and Regulation of actin cytoskeleton. Protein-Protein Interaction Networks (PPI) for the 24 co-differentially expressed genes revealed four key genes (Klf9, Asb2, Tmem164 and Arrdc2) associated with heat stress both in JF and TM. CONCLUSIONS Our findings will enrich the research on heat stress resistance in chicken skeletal muscle, while also providing a theoretical basis for the genetic improvement of heat stress resistance in chickens.
Collapse
Affiliation(s)
- Pengfei Wu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Shuli Xia
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Haitao Yu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Xianghua Zhao
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
17
|
Kikusato M, Namai F, Yamada K. Effect of Feeding Sugarcane Bagasse-Extracted Polyphenolic Mixture on the Growth Performance, Meat Quality, and Oxidative and Inflammatory Status of Chronic Heat-Stressed Broiler Chickens. Animals (Basel) 2024; 14:3443. [PMID: 39682409 DOI: 10.3390/ani14233443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/10/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the effects of sugarcane bagasse-extracted polyphenolic mixture (SBPM) supplementation on the harmful effects of chronic heat stress (HS) in broiler chickens. METHODS Two hundred and eighty-eight day-old male Ross 308 chicks were fed an SBPM in 0, 75, 150, or 300 ppm-supplemented diets and reared under thermoneutral (TN, 22.1-24.8 °C) or chronic HS (28.3-36.2 °C) conditions from 11 d to 42 d. RESULTS The chronic HS treatment negatively affected body weight, feed intake, and feed conversion ratio (p < 0.05), and these changes were partially attenuated by the SBPM supplementation (p < 0.05). Plasma lipid peroxidation content, inflammatory cytokines [interleukin (IL)-6, IL-β], corticosterone, and uric acid concentrations were significantly increased by HS, and these increases were attenuated by the SBPM supplementation (p < 0.05). Intestinal permeability indicator and serum fluorescein isothiocyanate-dextran levels after oral gavage were increased by HS and were also suppressed by the supplementation (p < 0.05). The HS-decreased muscle drip loss, lipid peroxidation, and glutathione content were also suppressed by the SBPM supplementation. The abovementioned alleviating effects of the SBPM were of a dose-dependent manner in most cases. CONCLUSION This study demonstrated that SBPM supplementation can improve the growth performance, meat quality, inflammation, and intestinal permeability of chronic HS-treated broiler chickens.
Collapse
Affiliation(s)
- Motoi Kikusato
- Laboratory of Animal Nutrition, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Sendai 980-8572, Miyagi, Japan
| | - Fu Namai
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Sendai 980-8572, Miyagi, Japan
| | - Katsushige Yamada
- Advanced Materials Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura 248-8555, Kanagawa, Japan
| |
Collapse
|
18
|
Chen C, Qu M, Li G, Wan G, Liu P, Omar SM, Mei W, Hu Z, Zhou Q, Xu L. Dietary Tributyrin Improves Growth Performance, Meat Quality, Muscle Oxidative Status, and Gut Microbiota in Taihe Silky Fowls under Cyclic Heat Stress. Animals (Basel) 2024; 14:3041. [PMID: 39457971 PMCID: PMC11504407 DOI: 10.3390/ani14203041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Heat stress adversely affects poultry production and meat quality, leading to economic losses. This study aimed to investigate the effects of adding tributyrin on growth performance, meat quality, muscle oxidative status, and gut microbiota of Taihe silky fowls under cyclic heat stress (CHS) conditions. In this study, 120-day-old Taihe silky fowls (male) were randomly divided into six dietary treatments. These treatments included a normal control treatment (NC, fed a basal diet), a heat stress control treatment (HS, fed a basal diet), and HS control treatments supplemented with 0.04%, 0.08%, 0.16%, and 0.32% tributyrin, respectively. The NC treatment group was kept at 24 ± 1 °C, while the HS treatment birds were exposed to 34 ± 1 °C for 8 h/d for 4 weeks. Results showed that CHS decreased growth performance and compromised the meat quality of broilers (p < 0.05). However, tributyrin supplementation improved ADG and FCR in broilers exposed to CHS (p < 0.05). Additionally, tributyrin supplementation resulted in increased shear force value and GSH-Px activity, as well as a decrease in drip loss, ether extract content, and MDA content of the breast muscle in broilers under CHS (p < 0.05). Furthermore, tributyrin supplementation up-regulated the mRNA expressions of Nrf2, NQO1, HO-1, SOD, and GSH-Px of the breast muscle in broilers exposed to CHS (p < 0.05). Based on these positive effects, the study delved deeper to investigate the impact of 0.16% tributyrin supplementation (HS + 0.16%T) on the cecum microbiota. The HS + 0.16%T treatment showed an increase in the relative abundance of Rikenellaceae_RC9_gut_group (p < 0.05) and a trend towards an increase in Lactobacillus (p = 0.096) compared to the HS treatment. The results indicate that supplementation successfully improved the growth performance and meat quality of Taihe silky fowls. Furthermore, tributyrin supplementation, particularly at levels of 0.16%, improved meat quality by enhancing muscle antioxidant capacity, which is believed to be associated with activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lanjiao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (C.C.); (M.Q.); (G.L.); (G.W.); (P.L.); (S.M.O.); (W.M.); (Z.H.); (Q.Z.)
| |
Collapse
|
19
|
Liu Z, Liu Y, Xing T, Li J, Zhang L, Zhao L, Jiang Y, Gao F. Unraveling the role of long non-coding RNAs in chronic heat stress-induced muscle injury in broilers. J Anim Sci Biotechnol 2024; 15:135. [PMID: 39375773 PMCID: PMC11459952 DOI: 10.1186/s40104-024-01093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Chronic heat stress (CHS) is a detrimental environmental stressor with a negative impact on the meat quality of broilers. However, the underlying mechanisms are not fully understood. This study investigates the effects of CHS on long non-coding RNA (lncRNA) expression and muscle injury in broilers, with a focus on its implications for meat quality. RESULTS The results showed that CHS diminished breast muscle yield, elevated abdominal fat deposition, induced cellular apoptosis (P < 0.05), and caused myofibrosis. Transcriptomic analysis revealed 151 differentially expressed (DE) lncRNAs when comparing the normal control (NC) and HS groups, 214 DE lncRNAs when comparing the HS and PF groups, and 79 DE lncRNAs when comparing the NC and pair-fed (PF) groups. After eliminating the confounding effect of feed intake, 68 lncRNAs were identified, primarily associated with cellular growth and death, signal transduction, and metabolic regulation. Notably, the apoptosis-related pathway P53, lysosomes, and the fibrosis-related gene TGF-β2 were significantly upregulated by lncRNAs. CONCLUSIONS These findings indicate that chronic heat stress induces cellular apoptosis and muscle injury through lncRNA, leading to connective tissue accumulation, which likely contributes to reduced breast muscle yield and meat quality in broilers.
Collapse
Affiliation(s)
- Zhen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yingsen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jiaolong Li
- Institute of Agro-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
20
|
Bai H, Zhao N, Li X, Ding Y, Guo Q, Chen G, Chang G. Whole-genome resequencing identifies candidate genes associated with heat adaptation in chickens. Poult Sci 2024; 103:104139. [PMID: 39127007 PMCID: PMC11367107 DOI: 10.1016/j.psj.2024.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The wide distribution and diverse varieties of chickens make them important models for studying genetic adaptation. The aim of this study was to identify genes that alter heat adaptation in commercial chicken breeds by comparing genetic differences between tropical and cold-resistant chickens. We analyzed whole-genome resequencing data of 186 chickens across various regions in Asia, including the following breeds: Bian chickens (B), Dagu chickens (DG), Beijing-You chickens (BY), and Gallus gallus jabouillei from China; Gallus gallus murghi from India; Vietnam native chickens (VN); Thailand native chickens (TN) and Gallus gallus spadiceus from Thailand; and Indonesia native chickens (IN), Gallus gallus gallus, and Gallus gallus bankiva from Indonesia. In total, 5,454,765 SNPs were identified for further analyses. Population genetic structure analysis revealed that each local chicken breed had undergone independent evolution. Additionally, when K = 5, B, BY, and DG chickens shared a common ancestor and exhibited high levels of inbreeding, suggesting that northern cold-resistant chickens are likely the result of artificial selection. In contrast, the runs of homozygosity (ROH) and the ROH-based genomic inbreeding coefficient (FROH) results for IN, TN, and VN chickens showed low levels of inbreeding. Low population differentiation index values indicated low differentiation levels, suggesting low genetic diversity in tropical chickens, implying increased vulnerability to environmental changes, decreased adaptability, and disease resistance. Whole-genome selection sweep analysis revealed 69 candidate genes, including LGR4, G6PC, and NBR1, between tropical and cold-resistant chickens. The genes were further subjected to GO and KEGG enrichment analyses, revealing that most of the genes were primarily enriched in biological synthesis processes, metabolic processes, central nervous system development, ion transmembrane transport, and the Wnt signaling pathway. Our study identified heat adaptation genes and their functions in chickens that primarily affect chickens in high-temperature environments through metabolic pathways. These heat-resistance genes provide a theoretical basis for improving the heat-adaptation capacity of commercial chicken breeds.
Collapse
Affiliation(s)
- Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ning Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xing Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yifan Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qixin Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
21
|
Aydin SS, Hatipoglu D. Probiotic strategies for mitigating heat stress effects on broiler chicken performance. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2153-2171. [PMID: 39320540 DOI: 10.1007/s00484-024-02779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
The primary objective of this study was to evaluate the effects of liquid (Fructose-added lactic acid bacteria, F-LAB) and commercial (Commercial LAB, C-LAB) probiotics sourced from Rye-Grass Lactic Acid Bacteria (LAB) on broiler chickens experiencing heat stress (HS). The research involved 240 broiler chicks, divided into six groups: control, F-LAB, C-LAB (raised at 24 °C), HS, F-LAB/HS, and C-LAB/HS (exposed to 5-7 h of 34-36 °C daily). The study followed a randomized complete block design, with each group consisting of 40 chicks. F-LAB and HS/F-LAB groups received a natural probiotic added to their drinking water at a rate of 0.5 ml/L, while C-LAB and HS/C-LAB groups were supplemented with a commercial probiotic at the same dosage. Control and HS groups received no probiotic supplementation. The duration of the study was 42 days, with data collected on growth performance, feed intake, feed conversion ratio, and health parameters. Statistical analyses were performed using ANOVA, and significant differences between groups were determined using post hoc tests. The results revealed that without probiotic supplementation, heat stress led to a decrease in body weight gain, T3 levels, citrulline, and growth hormone levels, along with an increase in the feed conversion ratio, serum corticosterone, HSP70, ALT, AST, and leptin levels (p < 0.05 for all). Heat stress also adversely affected cecal microbiota, reducing lactic acid bacteria count (LABC) while increasing Escherichia coli and coliform bacteria (CBC) counts. However, in the groups receiving probiotic supplementation under heat stress (F-LAB/HS and C-LAB/HS), these effects were alleviated (p < 0.05 for all). Particularly noteworthy was the observation that broiler chickens supplemented with natural lactic acid bacteria (F-LAB) exhibited greater resilience to heat stress compared to those receiving the commercial probiotic, as evidenced by improvements in growth, liver function, hormonal balance, intestinal health, and cecal microbiome ecology (p < 0.05). These findings suggest that the supplementation of naturally sourced probiotics (F-LAB) may positively impact the intestinal health of broiler chickens exposed to heat stress, potentially supporting growth and health parameters.
Collapse
Affiliation(s)
- Sadik Serkan Aydin
- Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Türkiye
| | - Durmus Hatipoglu
- Department of Physiology, Faculty of Veterinary Medicine, Selcuk University, 42130, Konya, Türkiye.
| |
Collapse
|
22
|
Yang Y, Zhang S, Peng H, Chen G, Nie Q, Zhang X, Luo W. Effects of long-time and short-time heat stress on the meat quality of geese. Poult Sci 2024; 103:104112. [PMID: 39106699 PMCID: PMC11343063 DOI: 10.1016/j.psj.2024.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 08/09/2024] Open
Abstract
This investigation sought to reveal the effects of heat stress on the meat quality of geese. Wuzong geese were subjected to heat stress at 35°C for 25 d or 4 h to examine different heat stress time on meat quality. Short-time heat stress reduced muscle drip loss and meat color L* value while increasing pH value and meat color a* and b* values. Long-time heat stress decreased body weight and increased leg muscle pH value and meat color b* value. Amino acid profile of geese breast muscle revealed that both LHS and SHS can induce L-Cystine but reduced L-Cystathionine, which were positive correlated with cooking loss and meat color lightness, respectively. Lipidome analysis indicated that heat stress would alter the synthesis of unsaturated fatty acids, and the difference between LHS and SHS on lipids mainly focused on Hex1Cer and TG. Non-target metabolome analysis indicated effects of heat stress on Glycerolipid metabolism, Arachidonic acid metabolism, and Pyrimidine metabolism. Proteome analysis showed that heat stress mainly affects cellular respiration metabolism and immune response. These findings highlight the diverse effects of heat stress on meat quality, amino acid composition, lipidome, metabolome, and proteome in geese.
Collapse
Affiliation(s)
- Ying Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Shuai Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Haoqi Peng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Genghua Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
23
|
Li Y, Yuan J, Sun S, Ma F, Xiong Y, He S. Optimizing growth and antioxidant function in heat-stressed broilers with vitamin C and betaine supplementation. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1953-1960. [PMID: 38834879 DOI: 10.1007/s00484-024-02717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
This study investigates the potential of vitamin C (VC) and/or betaine (Bet) to enhance growth performance, regulate serum metabolism, and bolster antioxidant function aiming to mitigate the impact of heat stress (HS) on broilers. Two hundred Ross 308 broilers at 28 days of age were randomly assigned to five groups. The control group, housed at 24 ± 1℃, was fed a basal diet. High-temperature treatment groups, housed at 32 ± 1℃, received a basal diet with 0 (HS group), 250 mg/kg VC (HSVC group), 1000 mg/kg Bet (HSBe group), and 250 mg/kg VC + 1000 mg/kg Bet (HSVCBe group). On day 42, assessments were made on growth performance, muscle quality, serum biochemistry, and antioxidant function. Results revealed that HS significantly lowered (P < 0.05) average daily feed intake (ADFI), the degree of redness (a*) in muscles, and serum total superoxide dismutase (T-SOD) level. It also reduced (P < 0.01) average daily gain (ADG), and serum total antioxidant capacity (T-AOC) level, while increasing (P < 0.05) shear force, serum direct bilirubin (D-BIL), uric acid (UA), and malondialdehyde (MDA) levels compared with the control group. Dietary supplementation of VC and Bet, either alone or in combination, significantly decreased shear force and serum UA level, while increasing ADG and serum T-AOC, T-SOD level compared with the HS group (P < 0.05). In conclusion, the addition of VC and/or Bet to the diet proves effective in enhancing the growth performance of HS-exposed broilers through the positive regulation of serum chemical metabolism and the alleviation of oxidative damage.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Fengyang, 233100, Anhui, China
| | - Junjun Yuan
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Fengyang, 233100, Anhui, China
| | - Shiang Sun
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Fengyang, 233100, Anhui, China
| | - Feiyang Ma
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Fengyang, 233100, Anhui, China
| | - Yongjie Xiong
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Fengyang, 233100, Anhui, China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Fengyang, 233100, Anhui, China.
| |
Collapse
|
24
|
Yue 岳珂 K, Cao 曹芹芹 QQ, Shaukat A, Zhang 张才 C, Huang 黄淑成 SC. Insights into the evaluation, influential factors and improvement strategies for poultry meat quality: a review. NPJ Sci Food 2024; 8:62. [PMID: 39251637 PMCID: PMC11385947 DOI: 10.1038/s41538-024-00306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Poultry meat, an essential source of animal protein, requires stringent safety and quality measures to address public health concerns and growing international attention. This review examines both direct and indirect factors that compromise poultry meat quality in intensive farming systems. It highlights the integration of rapid and micro-testing with traditional methods to assess meat safety. The paper advocates for adopting probiotics, prebiotics, and plant extracts to improve poultry meat quality.
Collapse
Affiliation(s)
- Ke Yue 岳珂
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qin-Qin Cao 曹芹芹
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, China
| | - Cai Zhang 张才
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shu-Cheng Huang 黄淑成
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
25
|
Fayed RH, Ali SE, Yassin AM, Madian K, Bawish BM. Terminalia bellirica and Andrographis paniculata dietary supplementation in mitigating heat stress-induced behavioral, metabolic and genetic alterations in broiler chickens. BMC Vet Res 2024; 20:388. [PMID: 39227945 PMCID: PMC11370032 DOI: 10.1186/s12917-024-04233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Heat stress (HS) is one of the most significant environmental stressors on poultry production and welfare worldwide. Identification of innovative and effective solutions is necessary. This study evaluated the effects of phytogenic feed additives (PHY) containing Terminalia bellirica and Andrographis paniculata on behavioral patterns, hematological and biochemical parameters, Oxidative stress biomarkers, and HSP70, I-FABP2, IL10, TLR4, and mTOR genes expression in different organs of broiler chickens under chronic HS conditions. A total of 208 one-day-old Avian-480 broiler chicks were randomly allocated into four treatments (4 replicate/treatment, 52 birds/treatment): Thermoneutral control treatment (TN, fed basal diet); Thermoneutral treatment (TN, fed basal diet + 1 kg/ton feed PHY); Heat stress treatment (HS, fed basal diet); Heat stress treatment (HS, fed basal diet + 1 kg/ton feed PHY). RESULTS The findings of the study indicate that HS led to a decrease in feeding, foraging, walking, and comfort behavior while increasing drinking and resting behavior, also HS increased red, and white blood cells (RBCs and WBCs) counts, and the heterophile/ lymphocyte (H/L) ratio (P < 0.05); while both mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) were decreased (P < 0.05). In addition, HS negatively impacted lipid, protein, and glucose levels, liver and kidney function tests, and oxidative biomarkers by increasing malondialdehyde (MDA) levels and decreasing reduced glutathion (GSH) activity (P < 0.05). Heat stress (HS) caused the upregulation in HSP70, duodenal TLR4 gene expression, and the downregulation of I-FABP2, IL10, mTOR in all investigated tissues, and hepatic TLR4 (P < 0.05) compared with the TN treatment. Phytogenic feed additives (PHY) effectively mitigated heat stress's negative impacts on broilers via an improvement of broilers' behavior, hematological, biochemical, and oxidative stress biomarkers with a marked decrease in HSP70 expression levels while all tissues showed increased I-FABP2, IL10, TLR4, and mTOR (except liver) levels (P < 0.05). CONCLUSION Phytogenic feed additives (PHY) containing Terminalia bellirica and Andrographis paniculata have ameliorated the HS-induced oxidative stress and improved the immunity as well as the gut health and welfare of broiler chickens.
Collapse
Affiliation(s)
- Rabie H Fayed
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - K Madian
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Basma M Bawish
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
26
|
Orlowski S, Greene E, Lassiter K, Tabler T, Bottje W, Dridi S. Research Note: Carcass yield and meat quality in high- and low-water efficient broiler lines exposed to heat stress. Poult Sci 2024; 103:103921. [PMID: 39013298 PMCID: PMC11305290 DOI: 10.1016/j.psj.2024.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/18/2024] Open
Abstract
Heat stress (HS) and water scarcity are significant challenges to sustainable poultry production worldwide. It is, therefore, critical to identify effective strategies to prevent, withstand, or adapt to these challenges. After four generations of divergent selection for water efficiency, the present study was undertaken to determine the effect of HS on meat quality and muscle myopathy incidences in high (HWE)- and low (LWE)-water efficient broilers. Day-old male chicks (240 chicks/line) were allotted randomly by line and body weight-matched groups to 12 controlled-environmental chambers (2 pens/chamber). At d29, birds were exposed to 2 environmental conditions (thermoneutral (TN), 25°C; or cyclic HS, 36°C, 9h/d) in a 2 × 2 factorial design. On d49, birds were processed, carcass parts were weighed, meat quality and muscle myopathy incidence were assessed. Processing data were analyzed by Two-way ANOVA and Tukey's HSD multiple comparison test, and frequency of muscle myopathy score between groups was determined using Chi-square and Fisher's exact test. Significance was set at P < 0.05. As no significant environment by line interaction was discerned, the 2 main factors were analyzed separately. High water efficient birds had significantly higher tender- and leg quarter (LQ)-weight as well as carcass without giblet (WOG), chilled carcass WOG (CWOG), wing, LQ, and rack yields compared to their LWE counterparts. Both abdominal fat content and yields were significantly greater in LWE than HWE chickens. Chronic HS exposure significantly decreased dock, WOG, fat, CWOG, breast, tender, wing, and LQ weights as well as breast yield. HWE chickens had a significantly lower b* value compared to the LWE birds and HS significantly reduced the drip loss and the b* value compared to TN condition. Compared to LWE, HWE birds had higher and lower incidence of severe woody breast (WB) and white striping (WS) under TN and HS, respectively. HS reduced the incidence of both myopathies in both lines. In conclusion, the genetic selection for water efficiency seems to improve carcass yield, reduce fat content, and decrease the breast b* value. HWE birds had higher incidences of WB and WS under TN, which is reversed under HS conditions.
Collapse
Affiliation(s)
- Sara Orlowski
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Elisabeth Greene
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Kentu Lassiter
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Travis Tabler
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Walter Bottje
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
27
|
Li S, Li X, Wang K, Liu L, Chen K, Shan W, Liu L, Kahiel M, Li C. Embryo thermal manipulation enhances mitochondrial function in the skeletal muscle of heat-stressed broilers by regulating transient receptor potential V2 expression. Poult Sci 2024; 103:104034. [PMID: 39003798 PMCID: PMC11298950 DOI: 10.1016/j.psj.2024.104034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Heat stress induces mitochondrial dysfunction, thereby impeding skeletal muscle development and significantly impacting the economic efficiency of poultry production. This study aimed to investigate the effects of embryo thermal manipulation (TM, 41.5°C, 65% RH, 3 h/d during 16-18th embryonic age) on the mitochondrial function of the pectoralis major (PM) in broiler chickens exposed to thermoneutral (24 ± 1°C, 60% RH) or cyclic heat stress (35 ± 1°C, 60% RH, 12 h/d) from day 22 to 28, and to explore potential mechanisms involving transient receptor potential V2 (TRPV2). Additionally, in vitro experiments were conducted to assess the regulatory effects of TRPV2 pharmacological activation and inhibition on mitochondrial function in primary myotubes. The results revealed that TM had no discernible effect on the body weight and feed intake of broiler chickens under heat stress conditions (P > 0.05). However, it did delay the increase in rectal temperature and accelerate the decrease in serum T3 levels (P < 0.05). Furthermore, TM promoted the development of PM muscle fibers, significantly increasing myofiber diameter and cross-sectional area (P < 0.05). Under heat stress conditions, TM significantly upregulated the expression of mitochondrial electron transport chain (ETC) genes and TRPV2 in broiler PM muscle (P < 0.05), with a clear positive correlation observed between the two (P < 0.05). In vitro, pharmacological activation of TRPV2 not only increased its own expression but also enhanced mitochondrial ETC genes expression and oxidative phosphorylation function by upregulating intracellular calcium ion levels (P < 0.05). Conversely, TRPV2 inhibition had the opposite effect. Overall, this study underscores the potential of prenatal thermal manipulation in regulating postnatal broiler skeletal muscle development and mitochondrial function through the modulation of TRPV2 expression.
Collapse
Affiliation(s)
- Sheng Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoqing Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Liu
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ketian Chen
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhan Shan
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Luyao Liu
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mohamed Kahiel
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
28
|
Oke OE, Akosile OA, Oni AI, Opowoye IO, Ishola CA, Adebiyi JO, Odeyemi AJ, Adjei-Mensah B, Uyanga VA, Abioja MO. Oxidative stress in poultry production. Poult Sci 2024; 103:104003. [PMID: 39084145 PMCID: PMC11341942 DOI: 10.1016/j.psj.2024.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Oxidative stress (OS) is a major concern that impacts the overall health of chickens in modern production systems. It is characterized by an imbalance between antioxidant defence mechanisms and the production of reactive oxygen species (ROS). This literature review aims to provide a comprehensive overview of oxidative stress in poultry production, with an emphasis on its effects on growth performance, immune responses, and reproductive outcomes. This review highlights the intricate mechanisms underlying OS and discusses how various factors, including dietary components, genetic predispositions, and environmental stressors can exacerbate the production of ROS. Additionally, the impact of oxidative stress on the production performance and physiological systems of poultry is examined. The study also emphasizes the relationship between oxidative stress and poultry diseases, highlighting how impaired antioxidant defenses increase bird's susceptibility to infections. The review assesses the existing approaches to reducing oxidative stress in chickens in response to these challenges. This includes managing techniques to lower stress in the production environment, antioxidant supplements, and nutritional interventions. The effectiveness of naturally occurring antioxidants, including plant extracts, minerals, and vitamins to improve poultry resistance to oxidative damage is also examined. To improve the antioxidant defenses of poultry under stress conditions, the activation of cellular homeostatic networks termed vitagenes, such as Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is necessary for the synthesis of protective factors that can counteract the increased production of ROS and RNS. Future studies into novel strategies for managing oxidative stress in chicken production would build on these research advances and the knowledge gaps identified in this review.
Collapse
Affiliation(s)
- O E Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria; Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo.
| | - O A Akosile
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - A I Oni
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - I O Opowoye
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - C A Ishola
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - J O Adebiyi
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - A J Odeyemi
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - B Adjei-Mensah
- Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo
| | - V A Uyanga
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - M O Abioja
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
29
|
Liu Y, Sun D, Xu C, Liu X, Tang M, Ying S. In-depth transcriptome profiling of Cherry Valley duck lungs exposed to chronic heat stress. Front Vet Sci 2024; 11:1417244. [PMID: 39104549 PMCID: PMC11298465 DOI: 10.3389/fvets.2024.1417244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Amidst rising global temperatures, chronic heat stress (CHS) is increasingly problematic for the poultry industry. While mammalian CHS responses are well-studied, avian-specific research is lacking. This study uses in-depth transcriptome sequencing to evaluate the pulmonary response of Cherry Valley ducks to CHS at ambient temperatures of 20°C and a heat-stressed 29°C. We detailed the CHS-induced gene expression changes, encompassing mRNAs, lncRNAs, and miRNAs. Through protein-protein interaction network analysis, we identified central genes involved in the heat stress response-TLR7, IGF1, MAP3K1, CIITA, LCP2, PRKCB, and PLCB2. Subsequent functional enrichment analysis of the differentially expressed genes and RNA targets revealed significant engagement in immune responses and regulatory processes. KEGG pathway analysis underscored crucial immune pathways, specifically those related to intestinal IgA production and Toll-like receptor signaling, as well as Salmonella infection and calcium signaling pathways. Importantly, we determined six miRNAs-miR-146, miR-217, miR-29a-3p, miR-10926, miR-146b-5p, and miR-17-1-3p-as potential key regulators within the ceRNA network. These findings enhance our comprehension of the physiological adaptation of ducks to CHS and may provide a foundation for developing strategies to improve duck production under thermal stress.
Collapse
Affiliation(s)
- Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dongyue Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Congcong Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shijia Ying
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
30
|
Yehia M, Alfonso-Avila AR, Prus JMA, Ouellet V, Alnahhas N. The potential of in ovo-fed amino acids to alleviate the effects of heat stress on broiler chickens: effect on performance, body temperature, and oxidative status during the finisher phase. Poult Sci 2024; 103:103821. [PMID: 38823160 PMCID: PMC11179241 DOI: 10.1016/j.psj.2024.103821] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024] Open
Abstract
The aim of the current study was to investigate the potential of in ovo-fed amino acids (AA) to reduce the effects of heat stress on finishing broiler chickens. To achieve this, a total of 1,400 fertile hatching eggs were randomly distributed into 5 groups (n = 280/group) and injected with one of the following in ovo treatments on embryonic day 18: 52 µL of sterile diluent/egg (CTRL), CTRL + 1.0 mg of L-Leucine (T1), CTRL + 0.45 mg of leucine + 1.15 mg of methionine (T2), CTRL + 3.0 mg of methionine + 2.0 mg of cysteine (T3), and CTRL + 0.40 mg of leucine + 1.60 mg of methionine + 1.60 mg of cysteine (T4). After hatch, chicks were allocated according to a complete randomized block design comprising 2 thermal conditions: thermoneutral (24°C, 45% RH) and heat stress (34°C, 55-60% RH) with 5 pens/group/condition. The cyclical heat stress regimen (10 h/d) was then applied from d 29 to d 34. Compared to the CTRL group, T3 and T4 exhibited a higher BW during the starter phase (P < 0.001). T4 also had a lower feed conversion ratio (FCR) than CTRL during this same phase (P = 0.03). During the grower phase, males of all treatment groups consistently exhibited higher BW compared to the CTRL group, which was not observed among female birds (PSex × TRT = 0.005). During the finisher phase, the in ovo treatment effect on performance was not significant. However, heat-stressed birds from treatment group T3 and T4 exhibited lower facial temperatures (Pday × TRT < 0.001) as well as lower plasma (Pcondition x TRT = 0.039) and liver (Pcondition x TRT < 0.001) malonaldehyde concentrations compared to the CTRL group. In conclusion, in ovo-fed AA have the potential to modulate the effects of heat stress on finishing broiler chickens by limiting its detrimental consequences, including increased body temperature and oxidative damage.
Collapse
Affiliation(s)
- Moustafa Yehia
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City G1V 0A6, Quebec, Canada
| | | | | | - Véronique Ouellet
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City G1V 0A6, Quebec, Canada
| | - Nabeel Alnahhas
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City G1V 0A6, Quebec, Canada; Swine and Poultry Infectious Diseases Research Center, Université de Montréal, Saint-Hyacinthe J2S 2M2, Quebec, Canada.
| |
Collapse
|
31
|
Chen X, Zheng A, Shoaib AP, Chen Z, Qiu K, Wang Z, Chang W, Cai H, Liu G. Evaluation of Clostridium autoethanogenum protein as a new protein source for broiler chickens in replacement of soybean meal. Anim Biosci 2024; 37:1236-1245. [PMID: 38575131 PMCID: PMC11222844 DOI: 10.5713/ab.23.0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE The object of this study was to investigate the effect of replacing soybean meal with Clostridium autoethanogenum protein (CAP) in broiler diets on growth performance, blood indicators, antioxidant capacity, and immune function. METHODS A total of 180 Arbor Acres broilers were randomly divided into three treatments, each treatment with six replicates and 10 broilers per replicate for a 42-day feeding trial. The control group (CON) was fed corn-soybean meal based diet. The CAP-1 and CAP-2 groups were considered to use CAP to replace 25% or 50% of soybean meal in the diet, respectively. The average daily gain and average daily feed intake of broilers at 1 to 21 d, 22 to 42 d, and 1 to 42 d were measured, and the feed conversion ratio was calculated. At the 42nd day of age, two broilers with similar weights and fasted for 12 h were selected in each replicate for blood collection from the brachial wing vein. The blood routine indicators, serum biochemical indicators, serum antioxidant capacity, and immunoglobulin content of broiler chickens were measured. RESULTS Replacement of soybean meal with 25% (CAP-1) and 50% (CAP-2) CAP significantly increased the average daily gain of 22 to 42 d and 1 to 42 d and decreased the average daily feed intake and feed conversion rate (p<0.05). The CAP-1 group, and CAP-2 group significantly increased hemoglobulin in the blood of broilers, while the CAP-2 group increased hematocrit content (p<0.05). Compared with the control group, the contents of superoxide dismutase and immunoglobulin A in serum of the CAP-2 group were significantly increased, while the contents of malondialdehyde in CAP group were significantly decreased (p<0.05). CONCLUSION Replacing soybean meal with CAP led to significant improvements in the growth performance, antioxidant capacity, and immunoglobulin content of broilers.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081,
China
| | - Aijuan Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081,
China
| | - Ahmed Pirzado Shoaib
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081,
China
| | - Zhimin Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081,
China
| | - Kai Qiu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081,
China
| | - Zedong Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081,
China
| | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081,
China
| | - Huiyi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081,
China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081,
China
| |
Collapse
|
32
|
Alessandroni L, Sagratini G, Bravo SB, Gagaoua M. Data-independent acquisition-based SWATH-MS proteomics profiling to decipher the impact of farming system and chicken strain and discovery of biomarkers of authenticity in organic versus antibiotic-free chicken meat. Curr Res Food Sci 2024; 8:100757. [PMID: 38736908 PMCID: PMC11087922 DOI: 10.1016/j.crfs.2024.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
In the literature, there is a paucity of methods and tools that allow the identification of biomarkers of authenticity to discriminate organic and non-organic chicken meat products. Shotgun proteomics is a powerful tool that allows the investigation of the entire proteome of a muscle and/or meat sample. In this study, a shotgun proteomics approach using Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) has been applied for the first time to characterize and identify candidate protein biomarkers of authenticity in post-mortem chicken Pectoralis major muscles produced under organic and non-organic farming systems (antibiotic-free). The proteomics characterization was further performed within two chicken strains, these being Ross 308 and Ranger Classic, which differ in their growth rate. From the candidate protein biomarkers, the bioinformatics enrichment analyses revealed significant differences in the muscle proteome between the two chicken strains, which may be related to their genetic background and rearing conditions. The results further provided novel insights on the potential interconnected pathways at interplay that are associated with the differences as a consequence of farming system of chicken strain, such as muscle contraction and energy metabolism. This study could pave the way to more in-depth investigations in proteomics applications to assess chicken meat authenticity and better understand the impact of farming systems on the chicken muscle and meat quality.
Collapse
Affiliation(s)
- Laura Alessandroni
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032, Camerino, Italy
| | - Gianni Sagratini
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032, Camerino, Italy
| | - Susana B. Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | | |
Collapse
|
33
|
Mangan M, Siwek M. Strategies to combat heat stress in poultry production-A review. J Anim Physiol Anim Nutr (Berl) 2024; 108:576-595. [PMID: 38152002 DOI: 10.1111/jpn.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
The effects of heat stress (HS) caused by high temperatures continue to be a global concern in poultry production. Poultry birds are homoeothermic, however, modern-day chickens are highly susceptible to HS due to their inefficiency in dissipating heat from their body due to the lack of sweat glands. During HS, the heat load is higher than the chickens' ability to regulate it. This can disturb normal physiological functioning, affect metabolism and cause behavioural changes, respiratory alkalosis and immune dysregulation in birds. These adverse effects cause gut dysbiosis and, therefore, reduce nutrient absorption and energy metabolism. This consequently reduces production performances and causes economic losses. Several strategies have been explored to combat the effects of HS. These include environmentally controlled houses, provision of clean cold water, low stocking density, supplementation of appropriate feed additives, dual and restricted feeding regimes, early heat conditioning and genetic selection of poultry lines to produce heat-resistant birds. Despite all these efforts, HS still remains a challenge in the poultry sector. Therefore, there is a need to explore effective strategies to address this long-lasting problem. The most recent strategy to ameliorate HS in poultry is early perinatal programming using the in ovo technology. Such an approach seems particularly justified in broilers because chick embryo development (21 days) equals half of the chickens' posthatch lifespan (42 days). As such, this strategy is expected to be more efficient and cost-effective to mitigate the effects of HS on poultry and improve the performance and health of birds. Therefore, this review discusses the impact of HS on poultry, the advantages and limitations of the different strategies. Finally recommend a promising strategy that could be efficient in ameliorating the adverse effects of HS in poultry.
Collapse
Affiliation(s)
- Modou Mangan
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| |
Collapse
|
34
|
Lesiów T, Xiong YL. Heat/Cold Stress and Methods to Mitigate Its Detrimental Impact on Pork and Poultry Meat: A Review. Foods 2024; 13:1333. [PMID: 38731703 PMCID: PMC11083837 DOI: 10.3390/foods13091333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
This paper aims to provide an updated review and current understanding of the impact of extreme temperatures-focusing on heat stress (HS)-on the quality of pork and poultry meat, particularly amidst an unprecedented global rise in environmental temperatures. Acute or chronic HS can lead to the development of pale, soft, and exudative (PSE) meat during short transportation or of dark, firm, and dry (DFD) meat associated with long transportation and seasonal changes in pork and poultry meat. While HS is more likely to result in PSE meat, cold stress (CS) is more commonly linked to the development of DFD meat. Methods aimed at mitigating the effects of HS include showering (water sprinkling/misting) during transport, as well as control and adequate ventilation rates in the truck, which not only improve animal welfare but also reduce mortality and the incidence of PSE meat. To mitigate CS, bedding on trailers and closing the tracks' curtains (insulation) are viable strategies. Ongoing efforts to minimize meat quality deterioration due to HS or CS must prioritize the welfare of the livestock and focus on the scaleup of laboratory testing to commercial applications.
Collapse
Affiliation(s)
- Tomasz Lesiów
- Department of Agri-Engineering and Quality Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland
| | - Youling L. Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA;
| |
Collapse
|
35
|
Xu C, Sun D, Liu Y, Pan Z, Dai Z, Chen F, Guo R, Chen R, Shi Z, Ying S. Effects of ambient temperature on growth performance, slaughter traits, meat quality and serum antioxidant function in Pekin duck. Front Vet Sci 2024; 11:1363355. [PMID: 38601909 PMCID: PMC11005821 DOI: 10.3389/fvets.2024.1363355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024] Open
Abstract
The present study investigated the effects of temperature on growth performance, slaughtering traits, meat quality and antioxidant function of Pekin ducks from 21-42 d of age. Single factor analysis of variance was used in this experiment, 144 21 d-old Pekin ducks were randomly allotted to 4 environmentally controlled chambers: T20 (20°C), T23 (23°C), T26 (26°C) and T29 (29°C), with 3 replicates in each group (12 ducks in each replicate), the relative humidity of all groups is 74%. During the 21-day trial period, feed and water were freely available. At 42 d, the BW (body weight) and ADG (average daily gain) of T26 were significantly lower than T20 (p < 0.05), and the T29 was significantly lower than T20 and T23 (p < 0.05). The ADFI (average daily feed intake) of T26 and T29 were significantly lower than T20 and T23 (p < 0.05). Compared to the T29, the T20 showed a significant increase oblique body length and chest width, and both the keel length and thigh muscle weight significantly increased in both the T20 and T23, while the pectoral muscle weight increased significantly in other groups (p < 0.05). The cooking loss of the T29 was the lowest (p < 0.05). The T-AOC (total antioxidant capacity) of T29 was significantly higher than the other groups (p < 0.05), the SOD (superoxide dismutase) in the T29 was significantly higher than the T23 and T26 (p < 0.05). In conditions of 74% relative humidity, the BW and ADFI of Pekin ducks significantly decrease when the environmental temperature exceeds 26°C, and the development of body size and muscle weight follows this pattern. The growth development and serum redox state of Pekin ducks are more ideal and stable at temperatures of 20°C and 23°C.
Collapse
Affiliation(s)
- Congcong Xu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Animal Science and Technology, Beijing University of Agricultural, Beijing, China
| | - Dongyue Sun
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ziyi Pan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zichun Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fang Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rihong Guo
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhendan Shi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| | - Shijia Ying
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
36
|
Liu Z, Liu Y, Xing T, Li J, Zhang L, Zhao L, Jiang Y, Gao F. Chronic heat stress inhibits glycogen synthesis through gga-miR-212-5p/GYS1 axis in the breast muscle of broilers. Poult Sci 2024; 103:103455. [PMID: 38295503 PMCID: PMC10846392 DOI: 10.1016/j.psj.2024.103455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/24/2023] [Accepted: 01/07/2024] [Indexed: 02/02/2024] Open
Abstract
Studies have demonstrated that chronic heat stress can accelerate glycolysis, decrease glycogen content in muscle, and affect muscle quality. However, the consequences of chronic heat stress on glycogen synthesis, miRNA expression in pectoralis major (PM) muscle, and its regulatory functions remain unknown. In this study, high-throughput sequencing and cell experiments were used to explore the effects of chronic heat stress on miRNA expression profiles and the regulatory mechanisms of miRNAs in glycogen synthesis under chronic heat stress. In total, 144 cocks were allocated into 3 groups: the normal control (NC) group, the heat stress (HS) group, and the pair-fed (PF) group. In total, 30 differently expressed (DE) miRNAs were screened after excluding the effect of feed intake, which were mainly related to metabolism, signal transduction, cell growth and death. Furthermore, the gga-miR-212-5p/GYS1 axis was predicted to participate in glycogen synthesis through the miRNA-mRNA analysis, and a dual-luciferase reporter test assay confirmed the target relationship. Mechanistically, chronic heat stress up-regulated gga-miR-212-5p, which could inhibit the expression of GYS1 in the PM muscle. Knocking down gga-miR-212-5p alleviates the reduction of glycogen content caused by chronic heat stress; overexpression of gga-miR-212-5p can reduce glycogen content. This study provided another important mechanism for the decreased glycogen contents within the PM muscle of broilers under heat stress, which might contribute to impaired meat quality.
Collapse
Affiliation(s)
- Zhen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, People's Republic of China
| | - Yingsen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jiaolong Li
- Institute of Agro-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
37
|
Aloui L, Greene ES, Tabler T, Lassiter K, Thompson K, Bottje WG, Orlowski S, Dridi S. Effect of heat stress on the hypothalamic expression profile of water homeostasis-associated genes in low- and high-water efficient chicken lines. Physiol Rep 2024; 12:e15972. [PMID: 38467563 DOI: 10.14814/phy2.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
With climate change, selection for water efficiency and heat resilience are vitally important. We undertook this study to determine the effect of chronic cyclic heat stress (HS) on the hypothalamic expression profile of water homeostasis-associated markers in high (HWE)- and low (LWE)-water efficient chicken lines. HS significantly elevated core body temperatures of both lines. However, the amplitude was higher by 0.5-1°C in HWE compared to their LWE counterparts. HWE line drank significantly less water than LWE during both thermoneutral (TN) and HS conditions, and HS increased water intake in both lines with pronounced magnitude in LWE birds. HWE had better feed conversion ratio (FCR), water conversion ratio (WCR), and water to feed intake ratio. At the molecular level, the overall hypothalamic expression of aquaporins (AQP8 and AQP12), arginine vasopressin (AVP) and its related receptor AVP2R, angiotensinogen (AGT), angiotensin II receptor type 1 (AT1), and calbindin 2 (CALB2) were significantly lower; however, CALB1 mRNA and AQP2 protein levels were higher in HWE compared to LWE line. Compared to TN conditions, HS exposure significantly increased mRNA abundances of AQPs (8, 12), AVPR1a, natriuretic peptide A (NPPA), angiotensin I-converting enzyme (ACE), CALB1 and 2, and transient receptor potential cation channel subfamily V member 1 and 4 (TRPV1 and TRPV4) as well as the protein levels of AQP2, however it decreased that of AQP4 gene expression. A significant line by environment interaction was observed in several hypothalamic genes. Heat stress significantly upregulated AQP2 and SCT at mRNA levels and AQP1 and AQP3 at both mRNA and protein levels, but it downregulated that of AQP4 protein only in LWE birds. In HWE broilers, however, HS upregulated the hypothalamic expression of renin (REN) and AVPR1b genes and AQP5 proteins, but it downregulated that of AQP3 protein. The hypothalamic expression of AQP (5, 7, 10, and 11) genes was increased by HS in both chicken lines. In summary, this is the first report showing improvement of growth performances in HWE birds. The hypothalamic expression of several genes was affected in a line- and/or environment-dependent manner, revealing potential molecular signatures for water efficiency and/or heat tolerance in chickens.
Collapse
Affiliation(s)
- Loujain Aloui
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
- Higher School of Agriculture of Mograne, University of Carthage, Zaghouan, Tunisia
| | - Elizabeth S Greene
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Travis Tabler
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kentu Lassiter
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kevin Thompson
- Center for Agricultural Data Analyses, Divion of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Walter G Bottje
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sara Orlowski
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
38
|
He Y, Yu J, Song Z, Tang Z, Duan JA, Zhu H, Liu H, Zhou J, Cao Z. Anti-oxidant effects of herbal residue from Shengxuebao mixture on heat-stressed New Zealand rabbits. J Therm Biol 2024; 119:103752. [PMID: 38194751 DOI: 10.1016/j.jtherbio.2023.103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 01/11/2024]
Abstract
Heat stress can lead to hormonal imbalances, weakened immune system, increased metabolic pressure on the liver, and ultimately higher animal mortality rates. This not only seriously impairs the welfare status of animals, but also causes significant economic losses to the livestock industry. Due to its rich residual bioactive components and good safety characteristics, traditional Chinese medicine (TCM) residue is expected to become a high-quality feed additive with anti-oxidative stress alleviating function. This study focuses on the potential of Shengxuebao mixture herbal residue (SXBR) as an anti-heat stress feed additive. Through the UPLC (ultra performance liquid chromatography) technology, the average residue rate of main active ingredients from SXBR were found to be 25.39%. SXBR were then added into the basal diet of heat stressed New Zealand rabbits at the rates of 5% (SXBRl), 10% (SXBRm) and 20% (SXBRh). Heat stress significantly decreased the weight gain, as well as increased neck and ear temperature, drip loss in meat, inflammation and oxidative stress. Also, the hormone levels were disrupted, with a significant increase in serum levels of CA, COR and INS. After the consumption of SXBR in the basal diet for 3 weeks, the weight of New Zealand rabbits increased significantly, and the SXBRh group restored the redness value of the meat to a similar level as the control group. Furthermore, the serum levels T3 thyroid hormone in the SXBRh group and T4 thyroid hormone in the SXBRm group increased significantly, the SXBRh group showed a significant restoration in inflammation markers (IL-1β, IL-6, and TNF-α) and oxidative stress markers (total antioxidant capacity, HSP-70, MDA, and ROS) levels. Moreover, the real-time fluorescence quantitative PCR analysis found that, the expression levels of antioxidant genes such as Nrf2, HO-1, NQO1, and GPX1 were significantly upregulated in the SXBRh group, and the expression level of the Keap1 gene was significantly downregulated. Additionally, the SXBRm group showed significant upregulation in the expression levels of HO-1 and NQO1 genes. Western blot experiments further confirmed the up-regulation of Nrf2, Ho-1 and NQO1 proteins. This study provides a strategy for the utilization of SXBR and is of great significance for the green recycling of the TCM residues, improving the development of animal husbandry and animal welfare.
Collapse
Affiliation(s)
- Yu He
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jingao Yu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Zhongxing Song
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Zhishu Tang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; China Academy of Chinese Medical Sciences, Beijing, 10070, China.
| | - Jin-Ao Duan
- Nanjing University of Chinese Medicine, Jiangsu Provincial Engineering Research Center for Deep Processing of Plant Medicines, Jiangsu Province Collaborative Innovation Center for Industrialization of Traditional Chinese Medicine Resources, Nanjing, 210023, China
| | - Huaxu Zhu
- Nanjing University of Chinese Medicine, Jiangsu Provincial Engineering Research Center for Deep Processing of Plant Medicines, Jiangsu Province Collaborative Innovation Center for Industrialization of Traditional Chinese Medicine Resources, Nanjing, 210023, China
| | - Hongna Liu
- Tsing Hua De Ren Xi'an Happiness Pharmaceutical Co., Ltd., Xi'an, 710043, China
| | - Jianping Zhou
- Tsing Hua De Ren Xi'an Happiness Pharmaceutical Co., Ltd., Xi'an, 710043, China
| | - Zhaojun Cao
- Tsing Hua De Ren Xi'an Happiness Pharmaceutical Co., Ltd., Xi'an, 710043, China
| |
Collapse
|
39
|
Sake B, Volkmann N, Kemper N, Schulz J. Heat Stress Trends in Regions of Intensive Turkey Production in Germany-A Challenge in Times of Climate Change. Animals (Basel) 2023; 14:72. [PMID: 38200803 PMCID: PMC10778477 DOI: 10.3390/ani14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
This study analyzed trends of enthalpy and the temperature-humidity index (THI) over a period of 50 years in outer air, which lead to severe heat stress in turkeys. Weather station data from 15 German districts with high densities of turkey production were used to investigate the heat input into the barns. Therefore, the parameters of enthalpy and THI with specified thresholds were used for heat stress assessment. Trends in extreme weather situations where these thresholds were exceeded were analyzed and tested for significance using the Mann-Kendall test. In all districts, the heat load increased between 1973 and 2022 for both parameters. Statistically significant heat stress trends were found in 9 of the 15 districts for enthalpy and 14 out of 15 districts for THI. Thus, the established THI thresholds seem to be more sensitive for the detection of heat stress than the chosen enthalpy values. As heat stress is an important issue and a rising concern in times of climate change, farmers and constructors of farm animal facilities should take this into account in future sustainable work.
Collapse
Affiliation(s)
- Björn Sake
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (N.V.); (N.K.); (J.S.)
| | | | | | | |
Collapse
|
40
|
Mählis G, Kleine A, Lüschow D, Bartel A, Wiegard M, Thoene-Reineke C. Clicker Training as an Applied Refinement Measure in Chickens. Animals (Basel) 2023; 13:3836. [PMID: 38136873 PMCID: PMC10740453 DOI: 10.3390/ani13243836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
When using chickens in animal studies, the handling of these animals for sample collection or general examinations is considered stressful due to their prey nature. For the study presented here, plasma and salivary corticosterone as well as New Area Test behavior and fecal output were used to evaluate whether it is possible to influence this stress perception using a three-week clicker training program. The results indicate that clicker training seems to be a suitable refinement measure in the sense of cognitive enrichment for the husbandry of this species. However, since it was also shown that three-week training was not sufficient to sustainably reduce the stress perception with regard to prolonged stressor exposure, and since it was also evident that manipulations such as routine blood sampling are perceived as less stressful than assumed, further studies with prolonged training intervals and situations with higher stressor potential are warranted. Also, further parameters for training assessment must be considered. For the general use of training as a supportive measure in animal experiments, its proportionality must be considered, particularly considering the expected stress and adequate training time.
Collapse
Affiliation(s)
- Gordon Mählis
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany; (M.W.); (C.T.-R.)
| | - Anne Kleine
- Division for Poultry, Farm Animal Clinic, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 63, 14163 Berlin, Germany; (A.K.); (D.L.)
| | - Dörte Lüschow
- Division for Poultry, Farm Animal Clinic, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 63, 14163 Berlin, Germany; (A.K.); (D.L.)
| | - Alexander Bartel
- Institute of Veterinary Epidemiology and Biostatistics, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - Mechthild Wiegard
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany; (M.W.); (C.T.-R.)
| | - Christa Thoene-Reineke
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany; (M.W.); (C.T.-R.)
| |
Collapse
|
41
|
Nguyen TQ, Martínez-Álvaro M, Lima J, Auffret MD, Rutherford KMD, Simm G, Dewhurst RJ, Baima ET, Roehe R. Identification of intestinal and fecal microbial biomarkers using a porcine social stress model. Front Microbiol 2023; 14:1197371. [PMID: 38029169 PMCID: PMC10670831 DOI: 10.3389/fmicb.2023.1197371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Understanding the relationships between social stress and the gastrointestinal microbiota, and how they influence host health and performance is expected to have many scientific and commercial implementations in different species, including identification and improvement of challenges to animal welfare and health. In particular, the study of the stress impact on the gastrointestinal microbiota of pigs may be of interest as a model for human health. A porcine stress model based on repeated regrouping and reduced space allowance during the last 4 weeks of the finishing period was developed to identify stress-induced changes in the gut microbiome composition. The application of the porcine stress model resulted in a significant increase in salivary cortisol concentration over the course of the trial and decreased growth performance and appetite. The applied social stress resulted in 32 bacteria being either enriched (13) or depleted (19) in the intestine and feces. Fecal samples showed a greater number of microbial genera influenced by stress than caecum or colon samples. Our trial revealed that the opportunistic pathogens Treponema and Clostridium were enriched in colonic and fecal samples from stressed pigs. Additionally, genera such as Streptococcus, Parabacteroides, Desulfovibrio, Terrisporobacter, Marvinbryantia, and Romboutsia were found to be enriched in response to social stress. In contrast, the genera Prevotella, Faecalibacterium, Butyricicoccus, Dialister, Alloprevotella, Megasphaera, and Mitsuokella were depleted. These depleted bacteria are of great interest because they synthesize metabolites [e.g., short-chain fatty acids (SCFA), in particular, butyrate] showing beneficial health benefits due to inhibitory effects on pathogenic bacteria in different animal species. Of particular interest are Dialister and Faecalibacterium, as their depletion was identified in a human study to be associated with inferior quality of life and depression. We also revealed that some pigs were more susceptible to pathogens as indicated by large enrichments of opportunistic pathogens of Clostridium, Treponema, Streptococcus and Campylobacter. Generally, our results provide further evidence for the microbiota-gut-brain axis as indicated by an increase in cortisol concentration due to social stress regulated by the hypothalamic-pituitary-adrenal axis, and a change in microbiota composition, particularly of bacteria known to be associated with pathogenicity and mental health diseases.
Collapse
Affiliation(s)
- Tuan Q. Nguyen
- Scotland’s Rural College, Edinburgh, United Kingdom
- Department of Animal Breeding, Faculty of Animal Science and Veterinary Medicine, Nong Lam University – Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Joana Lima
- Scotland’s Rural College, Edinburgh, United Kingdom
| | | | | | - Geoff Simm
- Global Academy of Agriculture and Food Security, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Eric T. Baima
- Zoetis Inc., Parsippany-Troy Hills, NJ, United States
| | - Rainer Roehe
- Scotland’s Rural College, Edinburgh, United Kingdom
| |
Collapse
|
42
|
Wu X, Zheng B, Mei Z, Yu C, Song Z, Sheng Z, Gong Y. Key parameters of physiological responses to acute heat stress in two commercial layers determined by Fisher discriminant analyses. J Therm Biol 2023; 117:103694. [PMID: 37683355 DOI: 10.1016/j.jtherbio.2023.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/01/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Given the escalating global warming and the intense nature of modern poultry production, layers are becoming increasingly susceptible to heat stress. This stress disrupts the physiological processes of layers, which leads to reduced productivity and welfare. To address this issue, it is crucial to first evaluate the stress response systematically. However, such evaluations are still lacking in this field. The objective of this study was to accurately monitor the impact of thermal stress and identify common and key indicators that would support decision-making to maintain layer welfare and productivity under stress. We constructed two heat stress models to reflect moderate (32 °C) to severe (36 °C) stress effects and obtained a comprehensive profile of blood physiological parameters associated with the layers' responses to heat stress. We found that genetic differences had limited influence on their physiological responses to heat stress after 32 °C heat challenges. Using 8 selected and significantly changed parameters, layers' physiological status under heat stress could be accurately determined (judgmental accuracy of 98%). As ambient temperature increased to 36 °C, birds suffered more severe challenges that parameters changed in larger percentages. Additionally, breed variations of the physiological responses became apparent, a Fisher discriminant function based on 5 selected parameters could distinguish heat stress effects at 32 °C or 36 °C with 80% accuracy. The results obtained from this study provide two discriminant models for assessing heat stress and shed lights on developing effective and widely applicable heat stress mitigation strategies targeting these indicators.
Collapse
Affiliation(s)
- Xiaohui Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bin Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zi Mei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chengzhi Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhenquan Song
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zheya Sheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
43
|
Yang S, Yang Y, Long X, Li H, Zhang F, Wang Z. Integrated Analysis of the Effects of Cecal Microbiota and Serum Metabolome on Market Weights of Chinese Native Chickens. Animals (Basel) 2023; 13:3034. [PMID: 37835639 PMCID: PMC10571757 DOI: 10.3390/ani13193034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The gut microbiota plays an important role in the physiological activities of the host and affects the formation of important economic traits in livestock farming. The effects of cecal microbiota on chicken weights were investigated using the Guizhou yellow chicken as a model. Experimental cohorts from chickens with high- (HC, n = 16) and low-market-weights (LC, n = 16) were collected. Microbial 16S rRNA gene sequencing and non-targeted serum metabolome data were integrated to explore the effect and metabolic mechanism of cecal microbiota on market weight. The genera Lachnoclostridium, Alistipes, Negativibacillus, Sellimonas, and Ruminococcus torques were enriched in the HC group, while Phascolarctobacterium was enriched in the LC group (p < 0.05). Metabolomic analysis determined that pantothenic acid (vitamin B5), luvangetin (2H-1-benzopyran-6-acrylic acid), and menadione (vitamin K3) were significantly higher in HC serum, while beclomethasone dipropionate (a glucocorticoid) and chlorophene (2-benzyl-4-chlorophenol) were present at higher levels in the LC group. The microbes enriched in HC were significantly positively correlated with metabolites, including pantothenic acid and menadione, and negatively correlated with beclomethasone dipropionate and chlorophene. These results indicated that specific cecal bacteria in Guizhou yellow chickens alter the host metabolism and growth performance. This study provides a reference for revealing the mechanism of cecal microbe actions that affect chicken body weight.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (S.Y.); (Y.Y.); (X.L.); (H.L.); (F.Z.)
| |
Collapse
|
44
|
Onagbesan OM, Uyanga VA, Oso O, Tona K, Oke OE. Alleviating heat stress effects in poultry: updates on methods and mechanisms of actions. Front Vet Sci 2023; 10:1255520. [PMID: 37841463 PMCID: PMC10569619 DOI: 10.3389/fvets.2023.1255520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Heat stress is a threat that can lead to significant financial losses in the production of poultry in the world's tropical and arid regions. The degree of heat stress (mild, moderate, severe) experienced by poultry depends mainly on thermal radiation, humidity, the animal's thermoregulatory ability, metabolic rate, age, intensity, and duration of the heat stress. Contemporary commercial broiler chickens have a rapid metabolism, which makes them produce higher heat and be prone to heat stress. The negative effect of heat stress on poultry birds' physiology, health, production, welfare, and behaviors are reviewed in detail in this work. The appropriate mitigation strategies for heat stress in poultry are equally explored in this review. Interestingly, each of these strategies finds its applicability at different stages of a poultry's lifecycle. For instance, gene mapping prior to breeding and genetic selection during breeding are promising tools for developing heat-resistant breeds. Thermal conditioning during embryonic development or early life enhances the ability of birds to tolerate heat during their adult life. Nutritional management such as dietary manipulations, nighttime feeding, and wet feeding often, applied with timely and effective correction of environmental conditions have been proven to ameliorate the effect of heat stress in chicks and adult birds. As long as the climatic crises persist, heat stress may continue to require considerable attention; thus, it is imperative to explore the current happenings and pay attention to the future trajectory of heat stress effects on poultry production.
Collapse
Affiliation(s)
| | | | - Oluwadamilola Oso
- Centre of Excellence in Avian Sciences, University of Lome, Lomé, Togo
| | - Kokou Tona
- Centre of Excellence in Avian Sciences, University of Lome, Lomé, Togo
| | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
45
|
Juiputta J, Chankitisakul V, Boonkum W. Appropriate Genetic Approaches for Heat Tolerance and Maintaining Good Productivity in Tropical Poultry Production: A Review. Vet Sci 2023; 10:591. [PMID: 37888543 PMCID: PMC10611393 DOI: 10.3390/vetsci10100591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Heat stress is a major environmental threat to poultry production systems, especially in tropical areas. The effects of heat stress have been discovered in several areas, including reduced growth rate, reduced egg production, low feed efficiency, impaired immunological responses, changes in intestinal microflora, metabolic changes, and deterioration of meat quality. Although several methods have been used to address the heat stress problem, it persists. The answer to this problem can be remedied sustainably if genetic improvement approaches are available. Therefore, the purpose of this review article was to present the application of different approaches to genetic improvement in poultry in the hope that users will find suitable solutions for their poultry population and be able to plan future poultry breeding programs.
Collapse
Affiliation(s)
- Jiraporn Juiputta
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (V.C.)
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (V.C.)
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (V.C.)
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
46
|
Cartoni Mancinelli A, Baldi G, Soglia F, Mattioli S, Sirri F, Petracci M, Castellini C, Zampiga M. Impact of chronic heat stress on behavior, oxidative status and meat quality traits of fast-growing broiler chickens. Front Physiol 2023; 14:1242094. [PMID: 37772060 PMCID: PMC10522860 DOI: 10.3389/fphys.2023.1242094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
This research aimed to investigate, through a multifactorial approach, the relationship among some in-vivo parameters (i.e., behavior and blood traits) in broilers exposed to chronic HS, and their implications on proximate composition, technological properties, and oxidative stability of breast meat. A total of 300 Ross 308 male chickens were exposed, from 35 to 41 days of age, to either thermoneutral conditions (TNT group: 20°C; six replicates of 25 birds/each) or elevated ambient temperature (HS group: 24 h/d at 30°C; six replicates of 25 birds/each). In order to deal with thermal stress, HS chickens firstly varied the frequency of some behaviors that are normally expressed also in physiological conditions (i.e., increasing "drinking" and decreasing "feeding") and then exhibited a behavioral pattern finalized at dissipating heat, primarily represented by "roosting," "panting" and "elevating wings." Such modifications become evident when the temperature reached 25°C, while the behavioral frequencies tended to stabilize at 27°C with no further substantial changes over the 6 days of thermal challenge. The multifactorial approach highlighted that these behavioral changes were associated with oxidative and inflammatory status as indicated by lower blood γ-tocopherol and higher carbonyls level (0.38 vs. 0.18 nmol/mL, and 2.39 vs. 7.19 nmol/mg proteins, respectively for TNT and HS; p < 0.001). HS affected breast meat quality by reducing the moisture:protein ratio (3.17 vs. 3.01, respectively for TNT and HS; p < 0.05) as well as the muscular acidification (ultimate pH = 5.81 vs. 6.00, respectively; p < 0.01), resulting in meat with higher holding capacity and tenderness. HS conditions reduced thiobarbituric acid reactive substances (TBARS) concentration in the breast meat while increased protein oxidation. Overall results evidenced a dynamic response of broiler chickens to HS exposure that induced behavioral and physiological modifications strictly linked to alterations of blood parameters and meat quality characteristics.
Collapse
Affiliation(s)
- Alice Cartoni Mancinelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Giulia Baldi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Simona Mattioli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Zmrhal V, Svoradova A, Venusova E, Slama P. The Influence of Heat Stress on Chicken Immune System and Mitigation of Negative Impacts by Baicalin and Baicalein. Animals (Basel) 2023; 13:2564. [PMID: 37627355 PMCID: PMC10451628 DOI: 10.3390/ani13162564] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Heat stress (HS) in poultry husbandry is an important stressor and with increasing global temperatures its importance will increase. The negative effects of stress on the quality and quantity of poultry production are described in a range of research studies. However, a lack of attention is devoted to the impacts of HS on individual chicken immune cells and whole lymphoid tissue in birds. Oxidative stress and increased inflammation are accompanying processes of HS, but with deleterious effects on the whole organism. They play a key role in the inflammation and oxidative stress of the chicken immune system. There are a range of strategies that can help mitigate the adverse effects of HS in poultry. Phytochemicals are well studied and some of them report promising results to mitigate oxidative stress and inflammation, a major consequence of HS. Current studies revealed that mitigating these two main impacts of HS will be a key factor in solving the problem of increasing temperatures in poultry production. Improved function of the chicken immune system is another benefit of using phytochemicals in poultry due to the importance of poultry health management in today's post pandemic world. Based on the current literature, baicalin and baicalein have proven to have strong anti-inflammatory and antioxidative effects in mammalian and avian models. Taken together, this review is dedicated to collecting the literature about the known effects of HS on chicken immune cells and lymphoid tissue. The second part of the review is dedicated to the potential use of baicalin and baicalein in poultry to mitigate the negative impacts of HS on poultry production.
Collapse
Affiliation(s)
- Vladimir Zmrhal
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
| | - Andrea Svoradova
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
- NPPC, Research Institute for Animal Production in Nitra, 951 41 Luzianky, Slovakia
| | - Eva Venusova
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic; (V.Z.); (A.S.); (E.V.)
| |
Collapse
|
48
|
Hu H, Zhu H, Yang H, Yao W, Zheng W. In vitro fermentation properties of magnesium hydride and related modulation effects on broiler cecal microbiome and metabolome. Front Microbiol 2023; 14:1175858. [PMID: 37621394 PMCID: PMC10445219 DOI: 10.3389/fmicb.2023.1175858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Magnesium hydride (MGH), a highly promising hydrogen-producing substance/additive for hydrogen production through its hydrolysis reaction, has the potential to enhance broiler production. However, before incorporating MGH as a hydrogen-producing additive in broiler feed, it is crucial to fully understand its impact on microbiota and metabolites. In vitro fermentation models provide a fast, reproducible, and direct assessment tool for microbiota metabolism and composition. This study aims to investigate the effects of MGH and coated-magnesium hydride (CMG) on fermentation characteristics, as well as the microbiota and metabolome in the culture of in vitro fermentation using cecal inocula from broilers. After 48 h of incubation, it was observed that the presence of MGH had a significant impact on various factors. Specifically, the content of N-NH3 decreased, while the total hydrogen gas and total SCFAs increased. Furthermore, the presence of MGH promoted the abundance of SCFA-producing bacteria such as Ruminococcus, Blautia, Coprobacillus, and Dysgonomonas. On the other hand, the presence of CMG led to an increase in the concentration of lactic acid, acetic acid, and valeric acid. Additionally, CMG affected the diversity of microbiota in the culture, resulting in an enrichment of the relative abundance of Firmicutes, as well as genera of Lactobacillus, Coprococcus, and Eubacterium. Conversely, the relative abundance of the phylum Proteobacteria and pathogenic bacteria Shigella decreased. Metabolome analysis revealed that MGH and CMG treatment caused significant changes in 21 co-regulated metabolites, primarily associated with lipid, amino acid, benzenoids, and organooxygen compounds. Importantly, joint correlation analysis revealed that MGH or CMG treatments had a direct impact on the microbiota, which in turn indirectly influenced metabolites in the culture. In summary, the results of this study suggested that both MGH and coated-MGH have similar yet distinct positive effects on the microbiota and metabolites of the broiler cecal in an in vitro fermentation model.
Collapse
Affiliation(s)
- Heng Hu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - He Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Haiyan Yang
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
49
|
Ambwani S, Dolma R, Sharma R, Kaur A, Singh H, Ruj A, Ambwani TK. Modulation of inflammatory and oxidative stress biomarkers due to dexamethasone exposure in chicken splenocytes. Vet Immunol Immunopathol 2023; 262:110632. [PMID: 37517103 DOI: 10.1016/j.vetimm.2023.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Dexamethasone (DEXA) is a potent corticosteroid, commonly used for treating inflammatory, hypersensitive and allergic conditions. It is administered to birds with tumours. Many studies were conducted on its immunosuppressive effects; however none of the similar study is available employing chicken splenocytes culture system. The present study was conducted to assess DEXA induced alterations in inflammatory and oxidative stress biomarkers in chicken splenocytes due to its in vitro exposure. The maximum non-cytotoxic dose (MNCD) was evaluated and was further used for conducting lymphocytes proliferation assay (LPA), antioxidant assays (lipid peroxidation, GSH, superoxide dismutase and nitric oxide assays) and assessment of mRNA levels of various genes (IL-1β, IL-6, IL-10, LITAF, iNOS, NF-κB1, Nrf-2, Caspase-3 and -9) through qPCR. The MNCD was determined to be 30 ng/ml in chicken splenocytes culture system. DEXA caused reduction in B and T lymphocytes proliferation indicating its immunosuppressive effects, however improved the antioxidant status of the exposed splenocytes. The expression levels of IL-1β, IL-6, iNOS, LITAF and NF-κB1 were significantly reduced while IL-10 was enhanced, which signify potent anti-inflammatory potential of DEXA. NF-κB is a major transcription factor that regulates genes responsible for both, innate and adaptive immune responses and elicits inflammation. The nuclear factor erythroid 2-related factor 2 (Nrf-2) level was found to be up-regulated. Nrf-2 plays important role in combating the oxidant stress and its increased expression could be the reason of improved antioxidant status of DEXA exposed cells. Present findings indicated that DEXA exhibited modulation in anti-inflammatory, immunomodulatory and antioxidant mediators in chicken splenocytes.
Collapse
Affiliation(s)
- Sonu Ambwani
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India.
| | - Rigzin Dolma
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Raunak Sharma
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Amandip Kaur
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Himani Singh
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Anamitra Ruj
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Tanuj Kumar Ambwani
- Department of Veterinary Physiology and Biochemistry, C.V.A.S., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| |
Collapse
|
50
|
Olutumise AI. Intensity of adaptations to heat stress in poultry farms: A behavioural analysis of farmers in Ondo state, Nigeria. J Therm Biol 2023; 115:103614. [PMID: 37336113 DOI: 10.1016/j.jtherbio.2023.103614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The detrimental consequences of heat stress due to high ambient temperatures, particularly in the poultry industry, have led to the invention of several adaptation strategies. However, there is still limited information on the intensity of adaptations and the likely behavioural factors that influence farmers' decisions. Thus, understanding the practical adaptation behaviours of poultry farmers would improve our knowledge of the fundamental mechanisms for developing effective interventions. To fill this void, using a count data model, the study empirically examines the farmers' behavioural factors and the intensity of heat stress adaptation strategies' adoption among poultry farmers in Ondo State, Nigeria. The data were drawn from a survey of 150 poultry farmers using a multistage sampling procedure. The empirical results show that the majority of the farmers perceived an increase in temperature, frequently experienced heat stress, and believed that heat stress is induced by climate change. An average of six adaptation strategies were simultaneously adopted to mitigate heat stress in the area. The results of the count regression model reveal that farm-level factors such as permanent water sources, the quantity of feed, and bird stock density exert a significant effect on the intensity of adaptations. Climate-related factors such as access to climate information, training participation, perceived increases in temperature, attitudes toward climate change, and motives for adoption have a significant behavioural effect on the intensity of adaptations. Likewise, variables such as poultry farming experience, educational status, and access to credit are accounted for as socioeconomic behavioural factors that influence the intensity of adopting heat stress adaptation strategies in the area. This concludes that behavioural factors are crucial in addressing heat stress adaptations and assisting in improving environmental management, which would form a key variable in the policy interventions.
Collapse
Affiliation(s)
- Adewale Isaac Olutumise
- Department of Agricultural Economics, Adekunle Ajasin University, P.M.B. 001, Akungba-Akoko, Ondo State, Nigeria; Department of Economic and Business Sciences, Walter Sisulu University, South Africa.
| |
Collapse
|