1
|
Parsons BW, Bedford MR, Wyatt CL. Evaluation of the incremental effect of fasting length on pH, select cecal microbial groups, cecal volatile fatty acid concentrations, and secretory IgA excretion in roosters. Poult Sci 2025; 104:105161. [PMID: 40273682 PMCID: PMC12051570 DOI: 10.1016/j.psj.2025.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/05/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025] Open
Abstract
Two experiments were conducted to evaluate the effect of incremental fasting time on the gastrointestinal tract in chickens. Adult White Leghorn roosters with intact ceca were provided a nutrient-adequate corn-soybean meal diet ad libitum for 3 weeks. Prior to initiation of the experimental phase, ad libitum feed intake was recorded for 8 h and immediately after the fasting period commenced. In Experiment 1, roosters were fasted for either 0, 3, 6, 9, 12, 16, or 24 h. At each time point birds were euthanized and pH in the crop, gizzard, and ceca were recorded and cecal contents were collected to measure volatile fatty acids (VFA) and select cecal microbial groups. In Experiment 2, roosters were fasted for 0, 3, 6, 9, 12, 16, and 24 h and excreta were collected to determine secretory IgA (sIgA) excretion. In contrast to Experiment 1, roosters in Experiment 2 were not euthanized and thus sIgA excretion was measured within individual roosters across each time point. Experiments 1 and 2 contained 5 and 8 replicates per treatment, respectively. In Experiment 1, there was a linear increase (P < 0.05) in cecal pH as fasting length increased. Cecal VFA content was reduced (P < 0.05) by 9 to 12 h of fasting and branch-chain FA to VFA ratio increased (P < 0.05) by 6 h of fasting. There were few effects (P > 0.05) of fasting on the microbial groups in cecal contents and mucosa; however, Escherichia coli content was greater (P < 0.05) at 24 h of fasting compared with other time points. In Experiment 2, total sIgA excreted was greater (P < 0.05) at 24 h of fasting, being 1106 µg/h at 24 h compared with a mean of 419 µg/h for all other time points. In conclusion, fasting reduced cecal VFA concentrations and increased cecal pH, Escherichia coli, branched-chain FA to VFA ratio, and sIgA excretion, suggesting that fasting elicited negative effects on the gastrointestinal tract.
Collapse
Affiliation(s)
- B W Parsons
- Department of Poultry Science, University of Arkansas at Fayetteville, AR 72701, USA.
| | | | - C L Wyatt
- AB Vista, Marlborough, United Kingdom
| |
Collapse
|
2
|
Abdel-Moneim AME, Ali SAM, Sallam MG, Elbaz AM, Mesalam NM, Mohamed ZS, Abdelhady AY, Yang B, Elsadek MF. Effects of cold-pressed wheat germ oil and Bacillus subtilis on growth performance, digestibility, immune status, intestinal microbial enumeration, and gene expression of broilers under heat stress. Poult Sci 2025; 104:104708. [PMID: 39753052 PMCID: PMC11754040 DOI: 10.1016/j.psj.2024.104708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/07/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
This study evaluated the effect of wheat germ oil (WGO), Bacillus subtilis, and their combination on growth performance, immune response, nutrient digestibility, intestinal microbial, oxidative status, and gene expression in heat-stressed broilers. Four hundred one-day-old male Ross 308 broilers were distributed into five pens (20 birds/pen) in four experimental groups: a control (CON) without additives, WGO group fed diet with WGO at 200 mg.kg-1, BS group fed diet with B. subtilis at 500 mg.kg-1 containing 5 × 108 CFU.g-1, and CWB group received both WGO and B. subtilis. Heat stress exposure adversely affected broiler growth performance, carcass traits, immune response, and insulin-like growth factor 1 (IGF-1) and mucin2 (MUC2) mRNA expression. However, the CWB group showed a lower FCR, reduced mortality rate, and increased BWG compared to the other groups. Nutrient digestion was also improved, with a higher digestibility of ether extract, dry matter, and crude protein. By day 35, stress biomarkers like corticosterone and glucose levels were reduced, while triiodothyronine levels increased in the BS and CWB groups. The CWB group also showed lower malondialdehyde and interleukin-6 levels, with higher superoxide dismutase activity, and increased levels of IgA, IgG, and interleukin-10. Additionally, the CWB group had higher HDL levels and lower cholesterol and LDL levels (P < 0.05). Notably, CWB supplements modified the structure of the cecal microbial community by increasing Lactobacillus counts and decreasing E. coli and C. perfringens counts. Furthermore, the expressions of intestinal MUC2 and hepatic IGF-1 were up-regulated (P < 0.05) in the CWB group. This study provides evidence that supplementing heat-stressed broiler diets with a mixture of WGO and B. subtilis enhances antioxidant capacity, immune response, growth performance, and gut integrity via modulating the microbial community and regulating gene expression.
Collapse
Affiliation(s)
| | - Safaa A M Ali
- Animal and Poultry Physiology Department, Desert Research Center, Mataria, Cairo, Egypt
| | - M G Sallam
- Animal Production Department, Agricultural and Biology Research Institute, National Research Centre, Cairo, Egypt
| | - Ahmed M Elbaz
- Animal and Poultry Nutrition Department, Desert Research Center, Mataria, Cairo, Egypt
| | - Noura M Mesalam
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, 13759, Egypt
| | - Zangabel S Mohamed
- Poultry Production Animal Production Department, Faculty of Agriculture, Benha University, Egypt
| | | | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Mohamed Farouk Elsadek
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Barbosa AMS, Carvalho MPS, Naves LDP, da Motta SAB, Chaves RF, Resende M, Lima DD, Hansen LHB, Cantarelli VDS. Performance and Health Parameters of Sows and Their Litters Using a Probiotic Supplement Composed of Bacillus subtilis 541 and Bacillus amyloliquefaciens 516. Animals (Basel) 2024; 14:3511. [PMID: 39682476 DOI: 10.3390/ani14233511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigated the efficacy of using probiotics on the performance and health parameters of sows and their litters. A randomized block design was used with 584 sows and 292 replications, with two dietary treatments: the control group (basal diet without probiotics) and the probiotic group (basal diet supplemented with 400 g/ton of a probiotic composed of Bacillus subtilis (B. subtilis) 541 and Bacillus amyloliquefaciens (B. amyloliquefaciens) 516). Feed intake was evaluated throughout the experimental period. Bodyweight and backfat thickness of the sows were measured at the beginning and end of each phase. Piglets were weighed individually at birth and at weaning. Performance variables and physiological parameters were analyzed. Sows that received the probiotic supplement exhibited increased milk production (p = 0.05) and bodyweight loss, along with reduced postpartum cortisol levels (p < 0.05). The piglets from the probiotic treatment group had higher (p < 0.001) weaning weight and fewer (p < 0.05) crushing deaths, received fewer (p < 0.001) medications, and had lower (p < 0.05) excretion of pathogenic bacteria and lower (p < 0.05) excretion of fecal Lactobacillus sp. They also had higher (p < 0.05) concentration of fecal myeloperoxidase (MPO) close to weaning and improved ileal histomorphometric measures. In conclusion, supplementation with the probiotic product improves performance and promotes health parameters of the sows their litters.
Collapse
Affiliation(s)
- Aline Maria Silva Barbosa
- Faculty of Medicine Veterinary and Animal Science, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - Maria Paula Souza Carvalho
- Faculty of Medicine Veterinary and Animal Science, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - Luciana de Paula Naves
- Faculty of Medicine Veterinary and Animal Science, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | | | - Rhuan Filipe Chaves
- Animalnutri Ciência e Tecnologia, José de Santana, Centro, 520, Patos de Minas 38700-052, MG, Brazil
| | - Maíra Resende
- Animalnutri Ciência e Tecnologia, José de Santana, Centro, 520, Patos de Minas 38700-052, MG, Brazil
| | | | | | | |
Collapse
|
4
|
Ghimire S, Subedi K, Zhang X, Wu C. Efficacy of Bacillus subtilis probiotic in preventing necrotic enteritis in broilers: a systematic review and meta-analysis. Avian Pathol 2024; 53:451-466. [PMID: 38776185 DOI: 10.1080/03079457.2024.2359596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024]
Abstract
Probiotics can enhance broiler chicken health by improving intestinal microbiota, potentially replacing antibiotics. They protect against bacterial diseases like necrotic enteritis (NE) in poultry. Understanding their role is crucial for managing bacterial diseases, including NE. This study conducted a meta-analysis to assess the effects of Bacillus subtilis probiotic supplementation on feed conversion ratio (FCR), NE lesion score, and mortality. Additionally, a systematic review analysed gut microbiota changes in broilers challenged with Clostridium perfringens with or without the probiotic supplementation. Effect sizes from the studies were estimated in terms of standardized mean difference (SMD). Random effect models were fitted to estimate the pooled effect size and 95% confidence interval (CI) of the pooled effect size between the control [probiotic-free + C. perfringens] and the treatment [Bacillus subtilis supplemented + C. perfringens] groups. Overall variance was computed by heterogeneity (Q). The meta-analysis showed that Bacillus subtilis probiotic supplementation significantly improved FCR and reduced NE lesion score but had no effect on mortality rates. The estimated overall effects of probiotic supplementation on FCR, NE lesion score and mortality percentage in terms of SMD were -0.91 (CI = -1.34, -0.49; P < 0.001*); -0.67 (CI = -1.11, -0.22; P = 0.006*), and -0.32 (CI = -0.70, 0.06; P = 0.08), respectively. Heterogeneity analysis indicated significant variations across studies for FCR (Q = 69.66; P < 0.001*) and NE lesion score (Q = 42.35; P < 0.001*) while heterogeneity was not significant for mortality (Q = 2.72; P = 0.74). Bacillus subtilis probiotic supplementation enriched specific gut microbiota including Streptococcus, Butyricicoccus, Faecalibacterium, and Ruminococcus. These microbiotas were found to upregulate expression of various genes such as TJ proteins occluding, ZO-1, junctional adhesion 2 (JAM2), interferon gamma, IL12-β and transforming growth factor-β4. Moreover, downregulated mucin-2 expression was involved in restoring the intestinal physical barrier, reducing intestinal inflammation, and recovering the physiological functions of damaged intestines. These findings highlight the potential benefits of probiotic supplementation in poultry management, particularly in combating bacterial diseases and promoting intestinal health.
Collapse
Affiliation(s)
- Shweta Ghimire
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Keshab Subedi
- Christiana Care Health Systems, Institute for Research on Equity and Community Health (iREACH), Wilmington, DE, USA
| | - Xinwen Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
5
|
Sun L, Liu Y, Xiao P, Zhang K, Bai S, Wang J, Zeng Q, Peng H, Mu Y, Xuan Y, Li S, Ding X. Probiotic Bacillus subtilis QST713 improved growth performance and enhanced the intestinal health of yellow-feather broilers challenged with coccidia and Clostridium perfringens. Poult Sci 2024; 103:104319. [PMID: 39353329 PMCID: PMC11472712 DOI: 10.1016/j.psj.2024.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
In this study, we investigated the effects of dietary supplementation with Bacillus subtilis (QST713) on the performance and intestinal health of yellow feather broilers under Coccidia and Clostridium perfringens (CP) challenge or CP alone. One-day-old yellow-feathered broiler roosters (n = 600) were randomly assigned to 5 groups (6 replicates with 20 roosters per replicate): the Con blank group, the CIC.p group (d24 Coccidia+d28-30 of CP challenge), the CIC.p + BS group (CIC.p +100 mg/kg B. subtilis), the C.p group (d 28-34 of CP challenge), and the C.p +BS group (C.p +100 mg/kg B. subtilis). The experiment lasted 80 d. The birds were evaluated for parameters such as average daily gain (ADG), average daily feed intake (ADFI), feed efficiency (F/G), intestinal lesion score, villus histomorphometry, intestinal tight junctions, inflammatory factors, and cecal microorganisms. The results revealed that 1) C.p. increased the F/G of broilers from 22 to 42 d (P < 0.05), whereas CIC.p. significantly decreased the 42 d and 80 d body weights (BW) and 22-42 d and 1-80 d ADG (P < 0.05) and significantly increased the 22 to 42 d and 1 to 80 d F/G (P < 0.05). The number of intestinal lesions significantly increased at 35 d and 42 d (P < 0.05). CIC.p significantly decreased the jejunum and ileum villus height (VH) and the ileum villus height/crypt depth (P < 0.05) at 35 d. The challenge significantly upregulated the expression of Claudin-1 and IL-4 mRNAs in the jejunum at 35 d and significantly downregulated the expression of IL-10 mRNA in the ileum at 35 d (P < 0.05); the number of unique OTUs in the challenge group decreased significantly after challenge treatment, and the relative abundances of Romboutsia at 35 d and Cladomyces and Lactobacillus at 42 d decreased significantly (P < 0.05). 2) Compared with the challenge groups, the addition of BS decreased the F/G of broilers from 22 to 42 d. Compared with the CIC group, the addition of BS significantly increased the F/G of broilers from 22 to 42 d. Compared with that in the CIC.p group, the addition of BS significantly increased the VH in the jejunum and ileum at 35 d (P < 0.05). Compared with the challenge groups, the BS groups presented significantly lower mRNA expression levels of Claudin-1 (P < 0.05) in the jejunum at 35 d. The Shannon and Chao indices suggested that BS increased the alpha diversity of cecum microorganisms in broilers. Dietary supplementation with B. subtilis can alleviate the damage to intestinal morphology and intestinal barrier function, as well as the altered cecal flora structure in broilers caused by Coccidia and C. perfringens infections.
Collapse
Affiliation(s)
- Lu Sun
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Yangbin Liu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Pan Xiao
- Elanco (Shanghai) Animal Health Co Ltd, Shanghai 201400, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Huanwei Peng
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Yadong Mu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Yue Xuan
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Shanshan Li
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Xuemei Ding
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China.
| |
Collapse
|
6
|
Marashi S, Mostarshedi P, Ghorbanikalateh S, Ghorbanikalateh S, Zoshki A, Taghavi H, Karimi E, Oskoueian E, Jahromi MF, Shokryazdan P. Dietary administration of Bacillus subtilis improves the health parameters and regulates the gene expression in mice receiving zearalenone-contaminated diet. Braz J Microbiol 2024; 55:3751-3758. [PMID: 39190258 PMCID: PMC11711959 DOI: 10.1007/s42770-024-01501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
The biodegradation of mycotoxins has become a specific, efficient, and environmentally protective way to reduce the adverse effects of mycotoxins in both foods and feeds. In the current study, the effectiveness of dietary administration of Bacillus subtilis on health parameters and regulated gene expression in mice receiving zearalenone zearalenone-contaminated diet was explored. In this trial, a total of twenty-four white balb/c mice were randomly assigned to three treatments. Dietary treatments were as follows: T1: The control (fed non-zearalenone-contaminated diet), T2: fed zearalenone-contaminated diet, T3: fed zearalenone-contaminated diet + Bacillus subtilis ARKA-S-3 (1 × 109 cfu/kg) for 28 days. The results showed, B. subtilis notably degraded zearalenone in cultured media during 18 h incubation (p < 0.05). It significantly improved average daily weight gain and feed intake. Dietary B. subtilis notably reduced the adverse effects of zearalenone on serum antioxidant indices (GSH-Px, SOD, ) and saved mice from oxidative stress. Also, treatments with B. subtilis improved morphometric characteristics of the ileum ((Villus Height (µm), Villus Width (µm), and Crypt Depth (µm)) in the mice received zearalenone-contaminated diet (p < 0.05). The molecular analysis illustrated that B. subtilis has also improved the mRNA expression levels and antioxidant-related gene expression of SOD and CAT in the jejunum tissue. Moreover, it alleviated the IL-2 and IFN-γ gene profiling in the jejunum tissue. These findings illustrate that dietary administration of B. subtilis by having a degraded effect on zearalenone, possesses a protective effect on the health parameters and gene expression regulation in mice receiving a zearalenone-contaminated diet.
Collapse
Affiliation(s)
| | - Pegah Mostarshedi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | | - Atiyeh Zoshki
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hila Taghavi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Oskoueian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran.
| | - Mohammad Faseleh Jahromi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran
| | - Parisa Shokryazdan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran
| |
Collapse
|
7
|
Cui Y, Zhu J, Li P, Guo F, Yang B, Su X, Zhou H, Zhu K, Xu F. Assessment of probiotic Bacillus velezensis supplementation to reduce Campylobacter jejuni colonization in chickens. Poult Sci 2024; 103:103897. [PMID: 38865770 PMCID: PMC11223109 DOI: 10.1016/j.psj.2024.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Campylobacter jejuni continues to be a major public health issue worldwide. Poultry are recognized as the main reservoir for this foodborne pathogen. Implementing measures to decrease C. jejuni colonization on farms has been regarded as the most effective strategy to control the incidence of campylobacteriosis. The probiotics supplementation has been regarded as an attractive approach against C. jejuni in chickens. Here the inhibitory effects of one probiotic B. velezensis isolate CAU277 against C. jejuni was evaluated in vitro and in vivo. The in vitro antimicrobial activity showed that the supernatant of B. velezensis exhibited the most pronounced inhibitory effects on Campylobacter strains compared to other bacterial species. When co-cultured with B. velezensis, the growth of C. jejuni reduced significantly from 7.46 log10 CFU/mL (24 h) to 1.02 log10 CFU/mL (48 h). Further, the antimicrobial activity of B. velezensis against C. jejuni remained stable under a broad range of temperature, pH, and protease treatments. The in vivo experiments demonstrated that oral administration of B. velezensis significantly reduced the colonization of C. jejuni by 2.0 log10 CFU/g of feces in chicken cecum at 15 d postinoculation. In addition, the supplementary of B. velezensis significantly increased microbial species richness and diversity in chicken ileum, especially enhanced the bacterial population of Alistipes and Christensenellaceae, and decreased the existence of Lachnoclostridium. Our study presents that B. velezensis possesses antimicrobial activities against C. jejuni and promotes microbiota diversity in chicken intestines. These findings indicate a potential to develop an effective probiotic additive to control C. jejuni infection in chicken.
Collapse
Affiliation(s)
- Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiajia Zhu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Pengxiang Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xia Su
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hongzhuan Zhou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
8
|
Shamshirgaran MA, Golchin M. A comprehensive review of experimental models and induction protocols for avian necrotic enteritis over the past 2 decades. Front Vet Sci 2024; 11:1429637. [PMID: 39113718 PMCID: PMC11304537 DOI: 10.3389/fvets.2024.1429637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 08/10/2024] Open
Abstract
Necrotic enteritis (NE) is a severe gastrointestinal disease that poses a significant threat to the poultry industry. It leads to progressive damage to the small intestine, reduced performance, increased mortality rates, and substantial economic losses. With the removal of antimicrobial agents from chicken feed, there is an urgent need to find alternative approaches for NE control. Various approaches, including vaccination, prebiotics, probiotics, and plant-derived products, have been utilized to address NE in poultry management. To evaluate the efficacy of these preventive measures against NE, successful induction of NE is crucial to observe effects of these approaches in related studies. This study presents a comprehensive overview of the methods and approaches utilized for NE reproduction in related studies from 2004 to 2023. These considerations are the careful selection of a virulent Clostridium perfringens strain, preparation of challenge inoculum, choice of time and the route for challenge inoculum administration, and utilization of one or more predisposing factors to increase the rate of NE occurrence in birds under experiment. We also reviewed the different systems used for lesion scoring of NE-challenged birds. By gaining clarity on these fundamental parameters, researchers can make informed decisions regarding the selection of the most appropriate NE experimental design in their respective studies.
Collapse
|
9
|
Yao T, Wang C, Liang L, Xiang X, Zhou H, Zhou W, Hou R, Wang T, He L, Bin S, Yin Y, Li T. Effects of fermented sweet potato residue on nutrient digestibility, meat quality, and intestinal microbes in broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:75-86. [PMID: 38737580 PMCID: PMC11087712 DOI: 10.1016/j.aninu.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/16/2024] [Accepted: 03/24/2024] [Indexed: 05/14/2024]
Abstract
This study aimed to investigate the effects of different proportions of dietary fermented sweet potato residue (FSPR) supplementation as a substitute for corn on the nutrient digestibility, meat quality, and intestinal microbes of yellow-feathered broilers. Experiment 1 (force-feeding) evaluated the nutrient composition and digestibility of mixtures with different proportions of sweet potato residue (70%, 80%, 90%, and 100%) before and after fermentation. In Experiment 2 (metabolic growth), a total of 420 one-day-old yellow-feathered broilers were randomly allocated to 4 groups and fed corn-soybean meal-based diets with 0, 5%, 8%, and 10% FSPR as a substitute for corn. The force-feeding and metabolic growth experiments were performed for 9 and 70 d, respectively. The treatment of 70% sweet potato residue (after fermentation) had the highest levels of crude protein, ether extract, and crude fiber and improved the digestibility of crude protein and amino acids (P < 0.05). Although dietary FSPR supplementation at different levels had no significant effect on growth performance and intestinal morphology, it improved slaughter rate, half-chamber rate, full clearance rate, and meat color, as well as reduced cooking loss in the breast and thigh muscles (P < 0.05). Dietary supplementation with 8% and 10% FSPR increased the serum immunoglobulin M and immunoglobulin G levels in broilers (P < 0.05). Furthermore, 10% FSPR increased the Shannon index and Ruminococcaceae_UCG-014, Ruminococcaceae_UCG-010 and Romboutsia abundances and decreased Sutterella and Megamonas abundances (P < 0.05). Spearman's correlation analysis showed that meat color was positively correlated with Ruminococcaceae_UCG-014 (P < 0.05) and negatively correlated with Megamonas (P < 0.05). Collectively, 70% sweet potato residue (after fermentation) had the best nutritional value and nutrient digestibility. Dietary supplementation with 8% to 10% FSPR as a substitute for corn can improve the slaughter performance, meat quality, and intestinal microbe profiles of broilers. Our findings suggest that FSPR has the potential to be used as a substitute for corn-soybean meals to improve the meat quality and intestinal health of broilers.
Collapse
Affiliation(s)
- Ting Yao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyu Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Lifen Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, College of Life Science, Guangxi Normal University, Guangxi 541004, China
| | - Xuan Xiang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhou
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Wentao Zhou
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Ruoxin Hou
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Tianli Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Shiyu Bin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, College of Life Science, Guangxi Normal University, Guangxi 541004, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Zhi T, Ma A, Liu X, Chen Z, Li S, Jia Y. Dietary Supplementation of Brevibacillus laterosporus S62-9 Improves Broiler Growth and Immunity by Regulating Cecal Microbiota and Metabolites. Probiotics Antimicrob Proteins 2024; 16:949-963. [PMID: 37211578 DOI: 10.1007/s12602-023-10088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
Brevibacillus laterosporus has been added as a direct-fed microbiota to chicken. Yet, few studies have reported the effects of B. laterosporus on broiler growth and gut microbiota. The aim of this study was to evaluate the effects of B. laterosporus S62-9 on growth performance, immunity, cecal microbiota, and metabolites in broilers. A total of 160 1-day-old broilers were randomly divided into S62-9 and control groups, with or without 106 CFU/g B. laterosporus S62-9 supplementation, respectively. During the 42 days feeding, body weight and feed intake were recorded weekly. Serum was collected for immunoglobulin determination, and cecal contents were taken for 16S rDNA analysis and metabolome at Day 42. Results indicated that the broilers in S62-9 group showed an increase in body weight of 7.2% and 5.19% improvement in feed conversion ratio compared to the control group. The B. laterosporus S62-9 supplementation promoted the maturation of immune organs and increased the concentration of serum immunoglobulins. Furthermore, the α-diversity of cecal microbiota was improved in the S62-9 group. B. laterosporus S62-9 supplementation increased the relative abundance of beneficial bacteria including Akkermansia, Bifidobacterium, and Lactobacillus, while decreased the relative abundance of pathogens including Klebsiella and Pseudomonas. Untargeted metabolomics revealed that 53 differential metabolites between the two groups. The differential metabolites were enriched in 4 amino acid metabolic pathways, including arginine biosynthesis and glutathione metabolism. In summary, B. laterosporus S62-9 supplementation could improve the growth performance and immunity through the regulation of gut microbiota and metabolome in broilers.
Collapse
Affiliation(s)
- Tongxin Zhi
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Xiangfei Liu
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China.
| |
Collapse
|
11
|
Mekonnen YT, Savini F, Indio V, Seguino A, Giacometti F, Serraino A, Candela M, De Cesare A. Systematic review on microbiome-related nutritional interventions interfering with the colonization of foodborne pathogens in broiler gut to prevent contamination of poultry meat. Poult Sci 2024; 103:103607. [PMID: 38493536 PMCID: PMC10959702 DOI: 10.1016/j.psj.2024.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
This systematic review aimed to compile the available body of knowledge about microbiome-related nutritional interventions contributing to improve the chicken health and having an impact on the reduction of colonization by foodborne pathogens in the gut. Original research articles published between 2012 and 2022 were systematically searched in Scopus and PubMed. A total of 1,948 articles were retrieved and 140 fulfilled the inclusion criteria. Overall, 73 papers described 99 interventions against colonization by Escherichia coli and related organisms; 10 papers described 15 interventions against Campylobacter spp.; 36 papers described 54 interventions against Salmonella; 40 papers described 54 interventions against Clostridium perfringens. A total of 197 microbiome-related interventions were identified as effective against one or more of the listed pathogens and included probiotics (n = 80), prebiotics (n = 23), phytobiotics (n = 25), synbiotics (n = 12), organic acids (n = 12), enzymes (n = 4), essential oils (n = 14) and combination of these (n = 27). The identified interventions were mostly administered in the feed (173/197) or through oral gavage (11/197), in the drinking water (7/197), in ovo (2/197), intra amniotic (2/197), in fresh or reused litter (1/197) or both in the feed and water (1/197). The interventions enhanced the beneficial microbial communities in the broiler gut as Lactic acid bacteria, mostly Lactobacillus spp., or modulated multiple microbial populations. The mechanisms promoting the fighting against colonization by foodborne pathogens included competitive exclusion, production of short chain fatty acids, decrease of gut pH, restoration of the microbiome after dysbiosis events, promotion of a more stable microbial ecology, expression of genes improving the integrity of intestinal mucosa, enhancing of mucin production and improvement of host immune response. All the studies extracted from the literature described in vivo trials but performed on a limited number of animals under experimental settings. Moreover, they detailed the effect of the intervention on the chicken gut without details on further impact on poultry meat safety.
Collapse
Affiliation(s)
- Yitagele Terefe Mekonnen
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Federica Savini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy.
| | - Alessandro Seguino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| |
Collapse
|
12
|
Gharib-Naseri K, Kheravii SK, Nguyen HT, Wu SB. Bromelain can reduce the negative effects of a subclinical necrotic enteritis in broiler chickens. Poult Sci 2024; 103:103560. [PMID: 38417336 PMCID: PMC10907841 DOI: 10.1016/j.psj.2024.103560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
This study was conducted to examine the efficacy of a bromelain-based supplementation coded ANR-pf on growth performance and intestinal lesion of broiler chickens under necrotic enteritis (NE) challenge. A total of 540 Ross 308 day-old male chicks were randomly allocated into 6 treatments of 6 replicates. The bromelain formulation was delivered to chickens through gavaging or in drinking water method twice, on d 8 and 13. Nonchallenged groups included 1) without or 2) with the specific bromelain formulation gavaged at 0.8 mL/kg. NE-challenged groups included 3) without the specific bromelain formulation; 4) gavaged with 0.4 mL/kg; 5) gavaged with 0.8 mL/kg and 6) supplemented with 0.8 mL/kg via drinking water. Birds were challenged with Eimeria spp. on d 9 and Clostridium perfringens (NE-18 strain) on d 14 and 15. On d 14 and 19, fresh faecal contents were collected for the determination of oocyst counts. Intestinal lesion scores were determined on d16. Performance and mortality were recorded throughout the entire experiment. Among challenged groups, birds received additive via drinking water had higher weight gain (WG) compared to the remaining groups (P < 0.001) in the grower phase and had lower FCR compared to 0.4 mL/kg inoculated group in the grower and finisher phases (P < 0.001). Bromelain supplementation via drinking water improved the WG of challenged birds, similar to that of the nonchallenged birds (P < 0.001), and lowered FCR compared to other challenged groups (P < 0.001). Nonchallenged birds and birds that received bromelain formulation in drinking water did not have lesions throughout the small intestine whereas challenged birds, either un-supplemented or supplemented with bromelain via inoculation route recorded similar lesion score levels in the jejunum. At d 19, birds received bromelain in drinking water had lower fecal oocyst numbers compared to challenged birds without additive (P < 0.001). In conclusion, bromelain administration via drinking water could ameliorate the negative impacts of NE-infection in broilers by improving performance, lowering the oocyst numbers and lesion scores.
Collapse
Affiliation(s)
- Kosar Gharib-Naseri
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Sarbast K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Hong Thi Nguyen
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia.
| |
Collapse
|
13
|
Gelinas A, Sudan S, Patterson R, Li J, Huyben D, Barta JR, Kiarie EG. Growth performance, organs weight, intestinal histomorphology, and oocyst shedding in broiler chickens offered novel single strain Bacillus subtilis isolated from camel dung and challenged with Eimeria. Poult Sci 2024; 103:103519. [PMID: 38359772 PMCID: PMC10877951 DOI: 10.1016/j.psj.2024.103519] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
We evaluated a single strain Bacillus subtilis BS-9 direct-fed microbial (BSDFM) isolated from camel dung in Eimeria challenged broiler chickens. Seven-hundred d-old Ross 708 male chicks were placed in pens (25 birds/pen) and allocated to 2 treatments (n = 14). From d 0 to 13, control pens received untreated water (-BSDFM), and 2 treated pens received water and 2 mL x 108 colony forming unit/bird/d (+BSDFM); daily water intake (WI) was recorded. On d 9, birds in half (+Eimeria) of pens per treatment received of 1 mL of Eimeria maxima and Eimeria acervulina oocysts orally, and the other half (-Eimeria) sterile saline solution. Birds had ad libitum access to feed and a water line from d 14. Feed intake (FI), body weight (BW) and mortality were recorded for calculating BW gain (BWG) and feed conversion ratio (FCR). On d 14 and 35, samples of birds were necropsied for organ weight and intestinal measurements. Excreta samples were collected from d 14 to 19 for oocyst count. There was no treatment effect (P > 0.05) on growth performance or WI on d 0 to 9. There were interactions between BSDFM and Eimeria on d 19 (P = 0.014) and 29 (P = 0.036) BW with unchallenged +BSDFM birds being heavier than birds in the other treatments. The main effects (P < 0.05) on d 10 to 35 FI, BW, and BWG were such that +BSDFM increased and Eimeria decreased (P < 0.01) these parameters. There was interaction (P = 0.022) between BSDFM and Eimeria on d 10 to 35 FCR such that the FCR of challenged -BSDFM birds was poor than that of unchallenged counterparts, but none differed with +BSDFM birds. There was an interaction (P = 0.039) between BSDFM and Eimeria on d 14 bursa weight with challenged birds exhibiting heavier bursa than unchallenged +BSDFM birds. Eimeria reduced (P = 0.01) and BSDFM (P = 0.002) increased the villi height to crypt depth ratio. Results showed that BSDFM supplementation via water can support the growth performance of broiler chickens challenged with Eimeria and may be a strategy to reduce adverse effects of coccidiosis.
Collapse
Affiliation(s)
- Alison Gelinas
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, USA
| | - Sudhanshu Sudan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, USA
| | | | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, USA
| | - David Huyben
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, USA
| | - John R Barta
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, USA
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, USA.
| |
Collapse
|
14
|
Rodrigues RA, Silva LAM, Brugnera HC, Pereira N, Casagrande MF, Makino LC, Bragança CRS, Schocken-Iturrino RP, Cardozo MV. Association of Bacillus subtilis and Bacillus amyloliquefaciens: minimizes the adverse effects of necrotic enteritis in the gastrointestinal tract and improves zootechnical performance in broiler chickens. Poult Sci 2024; 103:103394. [PMID: 38194830 PMCID: PMC10792630 DOI: 10.1016/j.psj.2023.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
This study aimed to evaluate the efficiency and capacity of the probiotic composed of Bacillus subtilis and Bacillus amyloliquefaciens, in improving the zootechnical performance of broiler chickens challenged with Eimeria spp. and Clostridium perfringens. The broilers were distributed in a completely randomized design in poultry isolators (12 birds each), resulting in 3 treatments: T1 (control, no challenge and no Bacillus in diet), T2 (challenged with Eimeria spp., followed by Clostridium perfringens infection and no Bacillus in the diet), and T3 (challenged with Eimeria spp., Clostridium perfringens and treated with Bacillus subtilis and Bacillus amyloliquefaciens). They were evaluated for a period of 29 d, divided into preinitial (1-7 d of age), initial (8-21 d), and growth (22-29 d) phases. Assessments of body weight, weight gain, feed consumption, and feed conversion were conducted, along with the classification of the scores and optical microscopy of the tract gastrointestinal. The animals challenged and treated with the probiotic containing Bacillus spp. showed improved indicators of zootechnical performance. Additionally, the animals challenged and treated (T3) had a better score for intestinal lesions compared to the other treatment groups. Therefore, the probiotic consisting of Bacillus subtilis and Bacillus amyloliquefaciens could be considered an effective option for disease prevention and improving the zootechnical performance of broiler chickens.
Collapse
Affiliation(s)
- Romário A Rodrigues
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil.
| | - Leandro A M Silva
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Heloisa C Brugnera
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Natália Pereira
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Mariana F Casagrande
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Lilian C Makino
- Department of Fisheries and Aquaculture Resources, School of Agricultural Sciences of Vale do Ribeira, São Paulo State University (UNESP), Registro, São Paulo, Brazil
| | - Caio R S Bragança
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, Minas Gerais State University, Passos, Minas Gerais, Brazil
| | - Rubén Pablo Schocken-Iturrino
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Marita V Cardozo
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, Minas Gerais State University, Passos, Minas Gerais, Brazil
| |
Collapse
|
15
|
Zhang M, Yu A, Wu H, Xiong X, Li J, Chen L. Lactobacillus acidophilus and Bacillus subtilis significantly change the growth performance, serum immunity and cecal microbiota of Cherry Valley ducks during the fattening period. Anim Sci J 2024; 95:e13946. [PMID: 38651265 DOI: 10.1111/asj.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 02/16/2024] [Accepted: 03/10/2024] [Indexed: 04/25/2024]
Abstract
This study explored the effects of a Bacillus subtilis and Lactobacillus acidophilus mixture containing the co-fermented products of the two probiotics on growth performance, serum immunity and cecal microbiota of Cherry Valley ducks. This study included 480 one-day-old Cherry Valley ducks divided into four feeding groups: basal diet (control group) and basal diet supplemented with 300, 500, or 700 mg/kg of the probiotic powder; the ducks were raised for 42 days. Compared with the control group, body weight on day 42 and the average daily gain on days 15-42 significantly increased (p < 0.05), and the feed conversion rate significantly decreased (p < 0.05) in the experimental groups. Furthermore, the serum immunoglobulin (Ig) A, IgG, IgM, and interleukin (IL)-4 levels increased significantly (p < 0.05), and IL-1β, IL-2, and tumor necrosis factor-α decreased significantly (p < 0.05) in the experimental groups. Finally, Sellimonas, Prevotellaceae NK3B31 group, Lachnospiraceae NK4A136 group and Butyricoccus played an important role in the cecal microbiota of the experimental group. Thus, the probiotic powder has impacts on the growth performance, serum immunity and cecal microbiota of Cherry Valley Ducks.
Collapse
Affiliation(s)
- Menghui Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Anan Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Hongzhi Wu
- Chinese Academy of Tropical Agricultural Sciences Tropical Crops Genetic Resources Insititute, Haikou, China
| | - Xiaolan Xiong
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
16
|
Thamm M, Reiß F, Sohl L, Gabel M, Noll M, Scheiner R. Solitary Bees Host More Bacteria and Fungi on Their Cuticle than Social Bees. Microorganisms 2023; 11:2780. [PMID: 38004791 PMCID: PMC10673014 DOI: 10.3390/microorganisms11112780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Bees come into contact with bacteria and fungi from flowering plants during their foraging trips. The Western honeybee (Apis mellifera) shows a pronounced hygienic behavior with social interactions, while the solitary red mason bee (Osmia bicornis) lacks a social immune system. Since both visit the same floral resources, it is intriguing to speculate that the body surface of a solitary bee should harbor a more complex microbiome than that of the social honeybee. We compared the cuticular microbiomes of A. mellifera (including three European subspecies) and O. bicornis for the first time by bacterial 16S rRNA and fungal ITS gene-based high-throughput amplicon sequencing. The cuticular microbiome of the solitary O. bicornis was significantly more complex than that of the social A. mellifera. The microbiome composition of A. mellifera subspecies was very similar. However, we counted significantly different numbers of fungi and a higher diversity in the honeybee subspecies adapted to warmer climates. Our results suggest that the cuticular microbiome of bees is strongly affected by visited plants, lifestyle and adaptation to temperature, which have important implications for the maintenance of the health of bees under conditions of global change.
Collapse
Affiliation(s)
- Markus Thamm
- Behavioral Physiology and Sociobiology, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany; (M.T.); (M.G.)
| | - Fabienne Reiß
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; (F.R.); (L.S.)
| | - Leon Sohl
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; (F.R.); (L.S.)
| | - Martin Gabel
- Behavioral Physiology and Sociobiology, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany; (M.T.); (M.G.)
- Landesbetrieb Landwirtschaft Hessen, Bee Institute Kirchhain, 35274 Kirchhain, Germany
| | - Matthias Noll
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; (F.R.); (L.S.)
- Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, 95447 Bayreuth, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany; (M.T.); (M.G.)
| |
Collapse
|
17
|
Reiß F, Schuhmann A, Sohl L, Thamm M, Scheiner R, Noll M. Fungicides and insecticides can alter the microbial community on the cuticle of honey bees. Front Microbiol 2023; 14:1271498. [PMID: 37965543 PMCID: PMC10642971 DOI: 10.3389/fmicb.2023.1271498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023] Open
Abstract
Honey bees are crucial for our ecosystems as pollinators, but the intensive use of plant protection products (PPPs) in agriculture poses a risk for them. PPPs do not only affect target organisms but also affect non-targets, such as the honey bee Apis mellifera and their microbiome. This study is the first of its kind, aiming to characterize the effect of PPPs on the microbiome of the cuticle of honey bees. We chose PPPs, which have frequently been detected in bee bread, and studied their effects on the cuticular microbial community and function of the bees. The effects of the fungicide Difcor® (difenoconazole), the insecticide Steward® (indoxacarb), the combination of both (mix A) and the fungicide Cantus® Gold (boscalid and dimoxystrobin), the insecticide Mospilan® (acetamiprid), and the combination of both (mix B) were tested. Bacterial 16S rRNA gene and fungal transcribed spacer region gene-based amplicon sequencing and quantification of gene copy numbers were carried out after nucleic acid extraction from the cuticle of honey bees. The treatment with Steward® significantly affected fungal community composition and function. The fungal gene copy numbers were lower on the cuticle of bees treated with Difcor®, Steward®, and PPP mix A in comparison with the controls. However, bacterial and fungal gene copy numbers were increased in bees treated with Cantus® Gold, Mospilan®, or PPP mix B compared to the controls. The bacterial cuticular community composition of bees treated with Cantus® Gold, Mospilan®, and PPP mix B differed significantly from the control. In addition, Mospilan® on its own significantly changed the bacterial functional community composition. Cantus® Gold significantly affected fungal gene copy numbers, community, and functional composition. Our results demonstrate that PPPs show adverse effects on the cuticular microbiome of honey bees and suggest that PPP mixtures can cause stronger effects on the cuticular community than a PPP alone. The cuticular community composition was more diverse after the PPP mix treatments. This may have far-reaching consequences for the health of honey bees.
Collapse
Affiliation(s)
- Fabienne Reiß
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Antonia Schuhmann
- Behavioral Physiology and Sociobiology, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Leon Sohl
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Markus Thamm
- Behavioral Physiology and Sociobiology, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Matthias Noll
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
18
|
Ningsih N, Respati AN, Astuti D, Triswanto T, Purnamayanti L, Yano AA, Putra RP, Jayanegara A, Ratriyanto A, Irawan A. Efficacy of Bacillus subtilis to replace in-feed antibiotics of broiler chickens under necrotic enteritis-challenged experiments: a systematic review and meta-analysis. Poult Sci 2023; 102:102923. [PMID: 37494807 PMCID: PMC10393822 DOI: 10.1016/j.psj.2023.102923] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/28/2023] Open
Abstract
Necrotic enteritis (NE) and coccidiosis are among the most prevalent infectious diseases in broiler chickens, contributing to large profitability losses. Bacillus subtilis is a promising direct-fed probiotic to counter various pathogens infection in broiler chickens. Here, we performed a meta-analysis to investigate the effects of B. subtilis on broiler chickens performance. A total of 28 studies were selected according to a PRISMA checklist. Random-effect model and mixed-effect model of meta-analysis were fitted to estimate the overall effects of B. subtilis (BS) treatment compared to either the control group (CON) or NE-infected group (NEinf) as a baseline. Hedges' g effect size and its variance were used as estimators of standardized mean difference (SMD) calculation where the results were presented at a 95% confidence interval (95% CI) of the SMD. Overall, NEinf broiler chickens depressed (P < 0.01) body weight (BW), average daily gain (ADG), and feed intake, and elevated (P < 0.01) feed conversion ratio (FCR). Treatment with BS improved ADG and final BW of NEinf with no difference (P = 0.15) between BS and antibiotics (AB), indicating that they had comparable efficacy to treat NE in broiler chickens. BS supplemented to uninfected CON (BSS) improved (P < 0.01) final BW, ADG, and FCR. Compared to CON, BS, and AB failed to recover the FCR but these treatments decreased (P < 0.01) FCR when compared to the NEinf group with similar efficacy (P = 0.97). As expected, NEinf birds had a higher mortality rate (P < 0.01) and higher lesion score (P < 0.01) compared to CON, and treatment using AB and BS successfully decreased (P < 0.01) the mortality rate and lesion score. Compared to BS, AB was more effective to lower (P = 0.01) mortality rate, but comparable (P = 0.65) to minimize lesion score. To conclude, B. subtilis could be an effective natural additive to replace in-feed antibiotics in broiler chickens challenged with C. perfringens. However, the efficacy to reduce mortality rate was better with antibiotics treatment.
Collapse
Affiliation(s)
- Niati Ningsih
- Department of Animal Science, Politeknik Negeri Jember, Jember 68101, Indonesia
| | - Adib Norma Respati
- Department of Animal Science, Politeknik Negeri Jember, Jember 68101, Indonesia
| | - Dian Astuti
- Agrotechnology Innovation Center, Universitas Gadjah Mada, Sleman 55573, Indonesia
| | - T Triswanto
- Department of Feed Technology, PT. Charoen Pokphand Indonesia, Jakarta Utara 14350, Indonesia
| | - Lailatul Purnamayanti
- Animal Husbandry Study Program, Politeknik Selaparang Lombok, West Nusa Tenggara 83653, Indonesia
| | | | - Reza Pratama Putra
- Animal Health Vocational Program, Jambi University, Muaro Jambi 36361, Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | | | - Agung Irawan
- Universitas Sebelas Maret, Surakarta 57126, Indonesia; Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
19
|
Goo D, Choi J, Ko H, Choppa VSR, Liu G, Lillehoj HS, Kim WK. Effects of Eimeria maxima infection doses on growth performance and gut health in dual-infection model of necrotic enteritis in broiler chickens. Front Physiol 2023; 14:1269398. [PMID: 37799512 PMCID: PMC10547889 DOI: 10.3389/fphys.2023.1269398] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
The objective of this study was to investigate the effects of the different doses of Eimeria maxima (EM) oocysts on growth performance and intestinal health in broiler chickens challenged with a dual infection model of necrotic enteritis (NE) using EM and NetB+ Clostridium perfringens (CP). A total of 432 fourteen-d-old male Cobb 500 broiler chickens were divided into 6 groups with 6 replicates each. The six different groups were as follows: Control, non-challenged; T0+, challenged with CP at 1 × 109 colony forming unit; T5K+, T0+ + 5,000 EM oocysts; T10K+, T0+ + 10,000 EM oocysts; T20K+; T0+ + 20,000 EM oocysts; and T40K+; T0+ + 40,000 EM oocysts. The challenge groups were orally inoculated with EM strain 41A on d 14, followed by NetB+ CP strain Del-1 on 4 days post inoculation (dpi). Increasing EM oocysts decreased d 21 body weight, body weight gain, feed intake (linear and quadratic, p < 0.001), and feed efficiency (linear, p < 0.001) from 0 to 7 dpi. Increasing EM oocysts increased jejunal NE lesion score and intestinal permeability on 5, 6, and 7 dpi (linear, p < 0.05). On 7 dpi, increasing the infection doses of EM oocysts increased jejunal CP colony counts (linear, p < 0.05) and increased fecal EM oocyst output (linear and quadratic, p < 0.001). Furthermore, increasing the infection doses of EM oocysts decreased the villus height to crypt depth ratios and the goblet cell counts (linear, p < 0.05) on 6 dpi. Increasing EM oocysts downregulated the expression of MUC2, B0AT, B0,+AT, PepT1, GLUT2, AvBD3 and 9, LEAP2, and TLR4, while upregulating CLDN1, CATHL3, IL-1β, IFN-γ, TNFSF15, TNF-α, IL-10, and Gam56 and 82 on 6 dpi (linear, p < 0.05). Additionally, increasing EM oocysts decreased Pielou's evenness and Shannon's entropy (linear, p < 0.01). In conclusion, increasing the infection doses of EM significantly aggravated the severity of NE and exerted negative impact on intestinal health from 5 to 7 dpi.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Hyun Soon Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
20
|
Azzam MM, Chen W, Xia W, Wang S, Zhang Y, El-Senousey HK, Zheng C. The impact of Bacillus subtilis DSM32315 and L-Threonine supplementation on the amino acid composition of eggs and early post-hatch performance of ducklings. Front Vet Sci 2023; 10:1238070. [PMID: 37680390 PMCID: PMC10481339 DOI: 10.3389/fvets.2023.1238070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
Poultry requires Threonine, an essential amino acid, and its metabolites for proper metabolic function. Threonine is crucial in the biosynthesis of mucin, which is essential for intestinal health and nutrient absorption. Bacillus subtilis (B. subtilis) is a potential substitute for antibiotic growth promoters in the poultry industry. The current study was designed to evaluate the simultaneous effect of L-Threonine (Thr) and B. subtilis DSM32315 supplementation on laying duck breeders in order to maximize performance. A total number of 648 female 23-week-old Longyan duck breeders were assigned to a 3 × 2 factorial design with six replicates of 18 birds per replicate. L-Thr was added to the control diet at concentrations of 0, 0.7, and 1.4 g/kg, equating to 3.9, 4.6, and 5.3 g Thr/kg, with or without B. subtilis strain DSM 32315 (0.0 and 0.5 g/kg). Increasing Thr concentrations improved egg production and ducklings' hatchling weight (p < 0.05). In addition, L-Thr supplementation resulted in a tendency for decreased feed conversion ratio without affecting egg quality. There was no significant effect (p > 0.05) of the dietary Thr levels on egg yolk and albumen amino acid concentrations. In contrast, the addition of B. subtilis decreased the concentrations of amino acids, excluding proline, in the egg white (albumen) and the egg yolk (p < 0.05). Furthermore, the supplementation of B. subtilis decreased (p < 0 0.001) the hatching weight of ducklings. The addition of B. subtilis without L-Thr decreased (p < 0.05) the hatchability of fertile eggs and the hatching weight of ducklings compared to those of ducks fed dietary L-Thr along with B. subtilis (p < 0.001). The combining L-Thr at 0.7 g/kg with B. subtilis DSM 32315 at 0.5 g/kg could increase eggshell quality, hatchability, and hatching weight. The current study revealed that the combination supplemented of L-Thr and B. subtilis DSM 32315 is recommended due to its positive effects on the eggshell percentage, hatchability and the body weights of newly hatched ducklings when dietary Thr was added at a rate of 0.7 g/kg and B. subtilis DSM 32315 at 0.5 g/kg. In addition, adding L-Thr separately at 0.7 g/kg could improve the egg production of duck breeders. Further studies are required to find the proper dosages of B. subtilis DSM 32315 with co-dietary inclusion of limiting amino acids in the diets of duck breeders. The findings of these trials will support feed additive interventions to transition into antibiotic-free diets.
Collapse
Affiliation(s)
- Mahmoud Mostafa Azzam
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Wei Chen
- Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangzhou, China
| | - Weiguang Xia
- Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangzhou, China
| | - Shuang Wang
- Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangzhou, China
| | - Yanan Zhang
- Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangzhou, China
| | - HebatAllah Kasem El-Senousey
- Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangzhou, China
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Chuntian Zheng
- Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangzhou, China
| |
Collapse
|
21
|
Stülke J, Grüppen A, Bramkamp M, Pelzer S. Bacillus subtilis, a Swiss Army Knife in Science and Biotechnology. J Bacteriol 2023; 205:e0010223. [PMID: 37140386 PMCID: PMC10210981 DOI: 10.1128/jb.00102-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Next to Escherichia coli, Bacillus subtilis is the most studied and best understood organism that also serves as a model for many important pathogens. Due to its ability to form heat-resistant spores that can germinate even after very long periods of time, B. subtilis has attracted much scientific interest. Another feature of B. subtilis is its genetic competence, a developmental state in which B. subtilis actively takes up exogenous DNA. This makes B. subtilis amenable to genetic manipulation and investigation. The bacterium was one of the first with a fully sequenced genome, and it has been subject to a wide variety of genome- and proteome-wide studies that give important insights into many aspects of the biology of B. subtilis. Due to its ability to secrete large amounts of proteins and to produce a wide range of commercially interesting compounds, B. subtilis has become a major workhorse in biotechnology. Here, we review the development of important aspects of the research on B. subtilis with a specific focus on its cell biology and biotechnological and practical applications from vitamin production to concrete healing. The intriguing complexity of the developmental programs of B. subtilis, paired with the availability of sophisticated tools for genetic manipulation, positions it at the leading edge for discovering new biological concepts and deepening our understanding of the organization of bacterial cells.
Collapse
Affiliation(s)
- Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | |
Collapse
|
22
|
Obianwuna UE, Agbai Kalu N, Wang J, Zhang H, Qi G, Qiu K, Wu S. Recent Trends on Mitigative Effect of Probiotics on Oxidative-Stress-Induced Gut Dysfunction in Broilers under Necrotic Enteritis Challenge: A Review. Antioxidants (Basel) 2023; 12:antiox12040911. [PMID: 37107286 PMCID: PMC10136232 DOI: 10.3390/antiox12040911] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
Gut health includes normal intestinal physiology, complete intestinal epithelial barrier, efficient immune response, sustained inflammatory balance, healthy microbiota, high nutrient absorption efficiency, nutrient metabolism, and energy balance. One of the diseases that causes severe economic losses to farmers is necrotic enteritis, which occurs primarily in the gut and is associated with high mortality rate. Necrotic enteritis (NE) primarily damages the intestinal mucosa, thereby inducing intestinal inflammation and high immune response which diverts nutrients and energy needed for growth to response mediated effects. In the era of antibiotic ban, dietary interventions like microbial therapy (probiotics) to reduce inflammation, paracellular permeability, and promote gut homeostasis may be the best way to reduce broiler production losses. The current review highlights the severity effects of NE; intestinal inflammation, gut lesions, alteration of gut microbiota balance, cell apoptosis, reduced growth performance, and death. These negative effects are consequences of; disrupted intestinal barrier function and villi development, altered expression of tight junction proteins and protein structure, increased translocation of endotoxins and excessive stimulation of proinflammatory cytokines. We further explored the mechanisms by which probiotics mitigate NE challenge and restore the gut integrity of birds under disease stress; synthesis of metabolites and bacteriocins, competitive exclusion of pathogens, upregulation of tight junction proteins and adhesion molecules, increased secretion of intestinal secretory immunoglobulins and enzymes, reduction in pro-inflammatory cytokines and immune response and the increased production of anti-inflammatory cytokines and immune boost via the modulation of the TLR/NF-ĸ pathway. Furthermore, increased beneficial microbes in the gut microbiome improve nutrient utilization, host immunity, and energy metabolism. Probiotics along with biosecurity measures could mitigate the adverse effects of NE in broiler production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nenna Agbai Kalu
- Department of Animal Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
23
|
Probiotic Bacillus Strains Enhance T Cell Responses in Chicken. Microorganisms 2023; 11:microorganisms11020269. [PMID: 36838233 PMCID: PMC9965164 DOI: 10.3390/microorganisms11020269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
Banning antibiotic growth promotors and other antimicrobials in poultry production due to the increasing antimicrobial resistance leads to increased feeding of potential alternatives such as probiotics. However, the modes of action of those feed additives are not entirely understood. They could act even with a direct effect on the immune system. A previously established animal-related in vitro system using primary cultured peripheral blood mononuclear cells (PBMCs) was applied to investigate the effects of immune-modulating feed additives. Here, the immunomodulation of different preparations of two probiotic Bacillus strains, B. subtilis DSM 32315 (BS), and B. amyloliquefaciens CECT 5940 (BA) was evaluated. The count of T-helper cells and activated T-helper cells increased after treatment in a ratio of 1:3 (PBMCs: Bacillus) with vital BS (CD4+: p < 0.05; CD4+CD25+: p < 0.01). Furthermore, vital BS enhanced the proliferation and activation of cytotoxic T cells (CD8+: p < 0.05; CD8+CD25+: p < 0.05). Cell-free probiotic culture supernatants of BS increased the count of activated T-helper cells (CD4+CD25+: p < 0.1). UV-inactivated BS increased the proportion of cytotoxic T cells significantly (CD8+: p < 0.01). Our results point towards a possible involvement of secreted factors of BS in T-helper cell activation and proliferation, whereas it stimulates cytotoxic T cells presumably through surface contact. We could not observe any effect on B cells after treatment with different preparations of BS. After treatment with vital BA in a ratio of 1:3 (PBMCs:Bacillus), the count of T-helper cells and activated T-helper cells increased (CD4+: p < 0.01; CD4+CD25+: p < 0.05). Cell-free probiotic culture supernatants of BA as well as UV-inactivated BA had no effect on T cell proliferation and activation. Furthermore, we found no effect of BA preparations on B cells. Overall, we demonstrate that the two different Bacillus strains enhanced T cell activation and proliferation, which points towards an immune-modulating effect of both strains on chicken immune cells in vitro. Therefore, we suggest that administering these probiotics can improve the cellular adaptive immune defense in chickens, thereby enabling the prevention and reduction of antimicrobials in chicken farming.
Collapse
|
24
|
García-Reyna A, Cortes-Cuevas A, Juárez-Ramírez M, Márquez-Mota CC, Gómez-Verduzco G, Arce-Menocal J, Ávila-González E. Performance, Gut Integrity, Enterobacteria Content in Ceca of Broiler Fed Different Eubiotic Additives. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2023. [DOI: 10.1590/1806-9061-2021-1608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
| | | | | | | | | | - J Arce-Menocal
- Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | | |
Collapse
|
25
|
Elleithy EMM, Bawish BM, Kamel S, Ismael E, Bashir DW, Hamza D, Fahmy KNED. Influence of dietary Bacillus coagulans and/or Bacillus licheniformis-based probiotics on performance, gut health, gene expression, and litter quality of broiler chickens. Trop Anim Health Prod 2023; 55:38. [PMID: 36640209 PMCID: PMC9840593 DOI: 10.1007/s11250-023-03453-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Probiotics are non-pathogenic microorganisms that are potentially important non-antibiotic alternatives. This study aimed to compare novel multi-strain and single-strain Bacillus probiotics and their respective influences on broiler chickens' performance, gut health, litter quality, immune response, and NBN and TLR gene expression. A total of 1200 Arbor-Acres 1-day-old broiler chicks were randomly allocated into three treatments (T1 was a control, T2 was supplemented with a combined Bacillus coagulans (2 × 109 cfu/g) and Bacillus licheniformis (8 × 109 cfu/g) probiotic strains (0.2 kg/ton of feed), and T3 was supplemented with Bacillus licheniformis (3.2 × 109 cfu/g) probiotic (0.5 kg/ton of feed) with eight replicas of each. Supplementing the broiler diet with either the single-strain (T3) or the multi-strain (T2) Bacillus-based probiotic raised the overall birds' body weight, body weight gain, feed conversion ratio, and European production efficiency factor compared to the control (T1), with a significant enhancement achieved by the multi-strain Bacillus product (P = 0.005). T2 and T3 exhibited significantly improved cholesterol, Alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase levels than the control (P ≤ 0.05). The transcript levels of both NBN and TLR genes were upregulated in the liver in the T2 and T3 groups. The T2 group experienced significant reductions in gut bacterial counts, especially for Clostridia, and recorded the lowest litter moisture and nitrogen. In conclusion, supplementing broiler diets with probiotics of multiple Bacillus strains increased production profitability by promoting bird growth, improving feed intake, enhancing gut mucosa and immune organs, and upregulating genes responsible for immunity. All these inhibit the overgrowth of enteric pathogens and sustain litter quality.
Collapse
Affiliation(s)
- Ebtihal M M Elleithy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Basma M Bawish
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Elshaimaa Ismael
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Dina W Bashir
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Dalia Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, 12211, Egypt.
| | - Khaled Nasr El-Din Fahmy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
26
|
Li P, Zheng L, Qi Y, Liu Z, Du E, Wei J, Zhang Z, Guo S, Ding B. Dietary Lactobacillus fermentum and Lactobacillus paracasei improve the intestinal health of broilers challenged with coccidia and Clostridium perfringens. Front Vet Sci 2022; 9:1025677. [PMID: 36590818 PMCID: PMC9797813 DOI: 10.3389/fvets.2022.1025677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Necrotic enteritis (NE) is a great threat to the intestinal health of broilers, resulting in decreased growth performance and significant economic losses. Lactobacillus fermentum (LF) and Lactobacillus paracasei (LP) exert beneficial effects on intestinal health. The aim of the present study was to investigate the effects of dietary LF and LP on the intestinal health and growth performance of broilers challenged with coccidia and Clostridium perfringens (CCP). The animal trial was carried out using 336 broilers (Ross 308) for 35 days with a completely randomized design. The broilers were divided into 4 groups based on treatment as follows: the control (CTR) group was fed the basal diet and without CCP challenge and the CCP group was fed the basal diet and with CCP challenge. The broilers in the CCP+LF and CCP+LP groups were challenged by CCP, and meanwhile, LF (1 × 109 CFU/g) and LP (1 × 109 CFU/g) were supplemented into the basal diets, respectively. The results showed that the growth performance and the intestinal morphology were negatively affected by the CCP challenge. In addition, the number of coccidia in the intestinal digesta and the relative abundance of Escherichia coli in the cecal digesta were increased. Besides, the mRNA level of IgA in the jejunum was downregulated, and the transcript level of IL-8 was upregulated by the CCP challenge. Dietary LF and LP failed to improve the growth performance of broilers with the CCP challenge. However, they were beneficial for intestinal barrier function. In addition, dietary LF was able to alleviate the downregulation of TGF-β mRNA level in the spleen with CCP challenge and decreased the lesion scores compared with the CCP group. Furthermore, dietary LP alleviated the upregulation of the IL-8 mRNA level in the jejunum with CCP challenge and reduced the number of coccidia in the ileal digesta. In conclusion, dietary LF and LP failed to mitigate the negative effects of CCP infection on growth performance; however, they were able to improve the intestinal health of broilers challenged with CCP by strengthening the intestinal barrier and alleviating inflammation.
Collapse
Affiliation(s)
- Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Liyun Zheng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Ya Qi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Zhipeng Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Encun Du
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jintao Wei
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhengfan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China,*Correspondence: Shuangshuang Guo
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China,Binying Ding
| |
Collapse
|
27
|
Tous N, Marcos S, Goodarzi Boroojeni F, Pérez de Rozas A, Zentek J, Estonba A, Sandvang D, Gilbert MTP, Esteve-Garcia E, Finn R, Alberdi A, Tarradas J. Novel strategies to improve chicken performance and welfare by unveiling host-microbiota interactions through hologenomics. Front Physiol 2022; 13:884925. [PMID: 36148301 PMCID: PMC9485813 DOI: 10.3389/fphys.2022.884925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Fast optimisation of farming practices is essential to meet environmental sustainability challenges. Hologenomics, the joint study of the genomic features of animals and the microbial communities associated with them, opens new avenues to obtain in-depth knowledge on how host-microbiota interactions affect animal performance and welfare, and in doing so, improve the quality and sustainability of animal production. Here, we introduce the animal trials conducted with broiler chickens in the H2020 project HoloFood, and our strategy to implement hologenomic analyses in light of the initial results, which despite yielding negligible effects of tested feed additives, provide relevant information to understand how host genomic features, microbiota development dynamics and host-microbiota interactions shape animal welfare and performance. We report the most relevant results, propose hypotheses to explain the observed patterns, and outline how these questions will be addressed through the generation and analysis of animal-microbiota multi-omic data during the HoloFood project.
Collapse
Affiliation(s)
- Núria Tous
- Animal Nutrition, Institute of Agrifood Research and Technology (IRTA), Constantí, Spain
| | - Sofia Marcos
- Applied Genomics and Bioinformatics, University of the Basque Country (UPV/EHU, Bilbao, Spain
| | - Farshad Goodarzi Boroojeni
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin (FUB), Berlin, Germany
| | - Ana Pérez de Rozas
- Animal Health-CReSA, Institute of Agrifood Research and Technology (IRTA), Bellaterra, Spain
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin (FUB), Berlin, Germany
| | - Andone Estonba
- Applied Genomics and Bioinformatics, University of the Basque Country (UPV/EHU, Bilbao, Spain
| | - Dorthe Sandvang
- Chr. Hansen A/S, Animal Health Innovation, Hoersholm, Denmark
| | - M. Thomas P. Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Enric Esteve-Garcia
- Animal Nutrition, Institute of Agrifood Research and Technology (IRTA), Constantí, Spain
| | - Robert Finn
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Antton Alberdi,
| | - Joan Tarradas
- Animal Nutrition, Institute of Agrifood Research and Technology (IRTA), Constantí, Spain
| |
Collapse
|
28
|
Probiotics as Alternatives to Antibiotics for the Prevention and Control of Necrotic Enteritis in Chickens. Pathogens 2022; 11:pathogens11060692. [PMID: 35745546 PMCID: PMC9229159 DOI: 10.3390/pathogens11060692] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Necrotic enteritis (NE) in poultry is an economically important disease caused by Clostridium perfringens type A bacteria. A global trend on restricting the use of antibiotics as feed supplements in food animal production has caused a spike in the NE incidences in chickens, particularly in broiler populations. Amongst several non-antibiotic strategies for NE control tried so far, probiotics seem to offer promising avenues. The current review focuses on studies that have evaluated probiotic effects on C. perfringens growth and NE development. Several probiotic species, including Lactobacillus, Enterococcus, Bacillus, and Bacteroides bacteria as well as some yeast species have been tested in chickens against C. perfringens and NE development. These findings have shown to improve bird performance, reduce C. perfringens colonization and NE-associated pathology. The underlying probiotic mechanisms of NE control suggest that probiotics can help maintain a healthy gut microbial balance by modifying its composition, improve mucosal integrity by upregulating expression of tight-junction proteins, and modulate immune responses by downregulating expression of inflammatory cytokines. Collectively, these studies indicate that probiotics can offer a promising platform for NE control and that more investigations are needed to study whether these experimental probiotics can effectively prevent NE in commercial poultry operational settings.
Collapse
|
29
|
Lei T, Wu D, Song Z, Ren Y, Yu Q, Qi C, Xiao P, Gong J. Research Note:Effects of different anticoccidial regimens on the growth performance, hematological parameters, immune response, and intestinal coccidial lesion scores of yellow-feathered broilers. Poult Sci 2022; 101:102019. [PMID: 35973348 PMCID: PMC9396393 DOI: 10.1016/j.psj.2022.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Yellow-feathered broiler chickens generally have a longer growth cycle than white broilers and therefore face different coccidiosis challenges. General single vaccine and drug regimens struggle to prevent coccidiosis for yellow broilers. In this study, a single vaccine, and a combination of coccidiostat regimens was employed to explore the preventative and control effects of different pilot regimens on coccidiosis in yellow-feathered broilers. A total of 2,000 one day old Chinese Huang Youma female broilers were allocated into 4 experimental groups, each with 5 replicates. All birds were fed the same starter feed from Days 1 to 25, and all groups were inoculated with a vaccine on Day 4. After Day 26, the groups were then fed as follows: (1) Negative control group: basal diet + vaccine (NC); (2) NC + maduramycin (NCMD); (3) NC + narasin (NCNR); and (4) NC + salinomycin (NCSL). From Days 26 to 75, the NCNR group had a lower FCR than the other groups. The 75-d BW was higher in the NCNR group than in the NCSL group but was not significantly higher than that in the NC and NCMD groups. The growth performance followed the same trend during the whole experiment (Days 1–75). Compared to the NC group, the NCNR and NCSL groups had higher intestinal mucosa SIgA concentrations at Day 40 and Day 60 (P < 0.001); however the NCMD group had lower IgG levels at Day 40 and Day 60 (P = 0.036, P = 0.006 respectively). The combination groups had significantly reduced AKP levels and urine acid concentrations at Day 60 in comparison to those of the NC group (P = 0.004). The NCNR and NCMD groups had less severe intestinal coccidiosis lesion scores than the NC and NCSL groups in older birds. Thus, a single vaccine and/or combinations with different coccidiostats had different effects on broilers. The NCNR group showed comparatively better growth performance, blood biochemical indices, immune response, and coccidiosis lesion scores.
Collapse
Affiliation(s)
- Ting Lei
- Elanco (Shanghai) Animal Health Co., Ltd, Shanghai, China.
| | - Dawei Wu
- Hesheng Food Group Co., Ltd, Jiangsu, China
| | - Zheng Song
- Elanco (Shanghai) Animal Health Co., Ltd, Shanghai, China
| | - Yu Ren
- Hesheng Food Group Co., Ltd, Jiangsu, China
| | - Qiang Yu
- Elanco (Shanghai) Animal Health Co., Ltd, Shanghai, China
| | - Changxue Qi
- Elanco (Shanghai) Animal Health Co., Ltd, Shanghai, China
| | - Pan Xiao
- Elanco (Shanghai) Animal Health Co., Ltd, Shanghai, China
| | - Jun Gong
- Elanco (Shanghai) Animal Health Co., Ltd, Shanghai, China
| |
Collapse
|
30
|
Effects of a direct fed microbial (DFM) on broiler chickens exposed to acute and chronic cyclic heat stress in two consecutive experiments. Poult Sci 2022; 101:101705. [PMID: 35183990 PMCID: PMC8861399 DOI: 10.1016/j.psj.2022.101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022] Open
Abstract
Two consecutive 35 d experiments were conducted to investigate the effects of a multistrain DFM fed continuously to broiler chickens exposed to HS from 28 to 35 d on broiler performance, body composition, ileal digestibility, and intestinal permeability using serum Fluorescein Isothiocyanate Dextran (FITC-d) concentration. The treatments were arranged as a 2 × 2 factorial with temperature: Elevated (HS: 33 ± 2°C for 6 h and 27.7°C for the remaining 18 h from 28 to 35 days of age) and Thermoneutral (TN: 22 to 24°C over the entire 24-h day from 28 to 35 days of age) and diet: corn-soybean meal based with and without DFM (3-strain Bacillus; Enviva PRO) fed over the entire 35-d period as the two factors. Experimental diets were formulated to meet all nutrient recommendations based on breed standards using a starter (0–10 d), grower (10–21 d), and finisher (21–35 d) period. For each of the 2 experiments, 648 Ross 708 broiler chicks were allotted among the treatments with 9 replicate pens of 18 broilers. Data were analyzed as a 2 × 2 factorial within each experiment in JMP 14. In both experiments, cloacal temperatures were increased (P ≤ 0.05) in the broilers subjected to the HS treatment at both 28 d (acute) and 35 d (chronic). Supplementing birds with DFM reduced cloacal temperatures in the Experiment 1 at 28 d, but not at the other time periods. The HS treatment reduced body weight gain and lean tissue accretion from 0 to 35 d in both experiments (P ≤ 0.05). In Experiment 2, when the litter was reused BWG was increased by 36 g/bird with supplementation of DFM (P ≤ 0.05). Ileal digestibility at 28 d (2 h post HS) was improved with DFM supplementation in both experiments (P ≤ 0.05). Serum FITC-d increased with HS at both 28 and 35 d. Serum FITC-d was generally decreased with DFM at 28 d but the response was inconsistent at 35 d. Overall, the results suggest that HS reduced broiler performance and DFM treatment improved intestinal permeability and nutrient digestibility responses to HS in both experiments but did not improve performance until built up litter was used in Experiment 2.
Collapse
|
31
|
Bhogoju S, Nahashon S. Recent Advances in Probiotic Application in Animal Health and Nutrition: A Review. AGRICULTURE 2022; 12:304. [DOI: 10.3390/agriculture12020304] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Biotechnological advances in animal health and nutrition continue to play a significant role in the improvement of animal health, growth, and production performance. These biotechnological advancements, especially the use of direct-fed microbials, also termed probiotics, those genetically modified and otherwise, have minimized many challenges facing livestock production around the world. Such advancements result in healthy animals and animal products, such as meat, for a growing population worldwide. Increasing demand for productivity, healthy animals, and consumer food safety concerns, especially those emanating from excessive use of antibiotics or growth promoters, are a driving force for investing in safer alternatives, such as probiotics. The advent of vastly diverse pathogens and bacterial organisms, some of which have acquired antimicrobial resistance due to therapeutic use of these antibiotics, has had a negative impact on the animal and food industries. Probiotics have been chosen as substitutes to counter this excessive use of antibiotics and antibiotic resistance. Over the last decade, probiotics have gained recognition, increased in importance, and stimulated growing interest in the animal health and nutrition industry. Probiotics are considered to be favorable live microorganisms by the host organism by maintaining microbial homeostasis and healthy gut, and can be a viable alternative to antibiotics in addition to providing other growth-promoting properties. Even though various studies describe the modes of action of probiotics, more research is needed to illuminate the exact mechanism of action of probiotics and how they benefit the host. This review describes the importance of probiotics in animal health, nutrition, and in growth and production performance. It also provides a thorough review of recent advances in probiotics research and application in animal health and nutrition and future directions on probiotic research to enhance animal performance.
Collapse
Affiliation(s)
- Sarayu Bhogoju
- College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Samuel Nahashon
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
32
|
Luise D, Bosi P, Raff L, Amatucci L, Virdis S, Trevisi P. Bacillus spp. Probiotic Strains as a Potential Tool for Limiting the Use of Antibiotics, and Improving the Growth and Health of Pigs and Chickens. Front Microbiol 2022; 13:801827. [PMID: 35197953 PMCID: PMC8859173 DOI: 10.3389/fmicb.2022.801827] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/14/2022] [Indexed: 01/20/2023] Open
Abstract
The pressure to increasingly optimize the breeding of livestock monogastric animals resulted in antimicrobials often being misused in an attempt to improve growth performance and counteract diseases in these animals, leading to an increase in the problem of antibiotic resistance. To tackle this problem, the use of probiotics, also known as direct in-feed microbials (DFM), seems to be one of the most promising strategies. Among probiotics, the interest in Bacillus strains has been intensively increased in recent decades in pigs and poultry. The aim of the present review was to evaluate the effectiveness of Bacillus strains as probiotics and as a potential strategy for reducing the misuse of antibiotics in monogastric animals. Thus, the potential modes of action, and the effects on the performance and health of pigs (weaning pigs, lactation and gestation sows) and broilers are discussed. These searches yielded 131 articles (published before January 2021). The present review showed that Bacillus strains could favor growth in terms of the average daily gain (ADG) of post-weaning piglets and broilers, and reduce the incidence of post-weaning diarrhea in pigs by 30% and mortality in broilers by 6-8%. The benefits of Bacillus strains on these parameters showed results comparable to the benefit obtained by the use of antibiotics. Furthermore, the use of Bacillus strains gives promising results in enhancing the local adaptative immune response and in reducing the oxidative stress of broilers. Fewer data were available regarding the effect on sows. Discordant effects have been reported regarding the effect on body weight (BW) and feed intake while a number of studies have supported the hypothesis that feeding probiotics to sows could benefit their reproductive performance, namely the BW and ADG of the litters. Taken all the above-mentioned facts together, this review confirmed the effectiveness of Bacillus strains as probiotics in young pigs and broilers, favoring their health and contributing to a reduction in the misuse of direct in-feed antibiotics. The continuous development and research regarding probiotics will support a decrease in the misuse of antibiotics in livestock production in order to endorse a more sustainable rearing system in the near future.
Collapse
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Lena Raff
- Chr. Hansen, Animal Health and Nutrition, Hørsholm, Denmark
| | - Laura Amatucci
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Sara Virdis
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Gomez-Osorio LM, Yepes-Medina V, Ballou A, Parini M, Angel R. Short and Medium Chain Fatty Acids and Their Derivatives as a Natural Strategy in the Control of Necrotic Enteritis and Microbial Homeostasis in Broiler Chickens. Front Vet Sci 2022; 8:773372. [PMID: 34970616 PMCID: PMC8712453 DOI: 10.3389/fvets.2021.773372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
The use of antibiotic growth promoters (AGPs) has historically been the most important prophylactic strategy for the control of Necrotic Enteritis (NE) caused by some Clostridium perfringens toxin types in poultry. During the last five decades, AGPs have also been supplemented in feed to improve body weight gain and feed efficiency as well as to modulate the microbiome (consisting of microbes and their genes both beneficial and potentially harmful) and reduce enteric pathogens, among other benefits. New regulatory requirements and consumer preferences have led to strong interest in natural alternatives to the AGPs for the prevention and control of illnesses caused by enteric pathogens. This interest is not just focused on the direct removal or inhibition of the causative microorganisms but also the improvement of intestinal health and homeostasis using a range of feed additives. A group of promising feed additives is short- and medium-chain fatty acids (SCFA and MCFA, respectively) and their derivatives. The use of SCFA and MCFA, including butyric, caproic, caprylic, capric, and lauric acids, has shown strong effects against NE in broilers both at experimental and commercial levels. These fatty acids also benefit intestinal health integrity and homeostasis. Other effects have also been documented, including increases in intestinal angiogenesis and gene expression of tight junctions. Chemical modifications to improve stability and point of release in the intestine have been shown to improve the efficacy of SCFA and MCFA and their derivatives. The aim of this review is to give an overview of SCFA, MCFA and their derivatives, as an alternative to replace AGPs to control the incidence and severity of NE in poultry.
Collapse
Affiliation(s)
| | | | - Anne Ballou
- Iluma Innovation Labs, Durham, NC, United States
| | | | - Roselina Angel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
34
|
Zhao Y, Fu J, Li P, Chen N, Liu Y, Liu D, Guo Y. Effects of dietary glucose oxidase on growth performance and intestinal health of AA broilers challenged by Clostridium perfringens. Poult Sci 2022; 101:101553. [PMID: 34852314 PMCID: PMC8639461 DOI: 10.1016/j.psj.2021.101553] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/07/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Arbor Acre (AA) broilers were used as the research object to investigate whether glucose oxidase (GOD) has preventive and relieving effects on necrotic enteritis. The experiment was designed as a factorial arrangement of 2 dietary treatments × 2 infection states. Chickens were fed a basal diet or a diet with 150 U/kg GOD, and were challenged with Clostridium perfringens (Cp) or sterile culture medium. In our study, Cp challenge led to intestinal injury, as evidenced by reducing the average daily gain and the average daily feed intake of AA broilers of 14 to 21 d (P < 0.05), increasing the intestinal jejunal lesion score (P < 0.05), reducing the jejunal villi height and villi height/crypt depth (P < 0.05), upregulating the mRNA expression levels jejunal IFN-γ (P < 0.05). The dietary GOD had no significant effects on the growth performance of each growth period, but significantly decreased the ileal pH, increased the height of villi and the ratio of villi height to crypt depth (P < 0.05) and the expression levels of Occludin and Zonula occludens-1 (ZO-1) at d 21. Moreover, dietary GOD and the Cp challenge significantly altered the composition of 21-d ileal microbiota. The Cp challenge decreased the relative abundance of genus Lactobacillus (P = 0.057), and increased the relative abundance of genus Romboutsia (P < 0.05) and genus Veillonella (P = 0.088). The dietary GOD tended to increase the relative abundance of genus Helicobacter (P = 0.066) and decrease the relative abundance of genus Streptococcus (P = 0.071). This study has shown that the supplementation of GOD could promote the integrity of intestinal barrier and the balance of ileal microbiota, but the effects of GOD on NE broilers and its application in actual production need to be further confirmed.
Collapse
Affiliation(s)
- Yizhu Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiahuan Fu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ningbo Chen
- Jinan Bestzyme Bio-Engineering Co., LTD., Jinan, China
| | - Yanjie Liu
- Jinan Bestzyme Bio-Engineering Co., LTD., Jinan, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Qiu K, Li CL, Wang J, Qi GH, Gao J, Zhang HJ, Wu SG. Effects of Dietary Supplementation With Bacillus subtilis, as an Alternative to Antibiotics, on Growth Performance, Serum Immunity, and Intestinal Health in Broiler Chickens. Front Nutr 2021; 8:786878. [PMID: 34917643 PMCID: PMC8668418 DOI: 10.3389/fnut.2021.786878] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Bacillus subtilis (B. subtilis) as in-feed probiotics is a potential alternative for antibiotic growth promoters (AGP) in the poultry industry. The current study investigated the effects of B. subtilis on the performance, immunity, gut microbiota, and intestinal barrier function of broiler chickens. A 42-day feeding trial was conducted with a total of 600 1-day-old Arbor Acres broilers with similar initial body weight, which was randomly divided into one of five dietary treatments: the basal diet (Ctrl), Ctrl + virginiamycin (AGP), Ctrl + B. subtilis A (BSA), Ctrl + B. subtilis B (BSB), and Ctrl + B. subtilis A + B (1:1, BSAB). The results showed significantly increased average daily gain in a step-wise manner from the control, B. subtilis, and to the AGP groups. The mortality rate of the B. subtilis group was significantly lower than the AGP group. The concentrations of serum immunoglobulin (Ig) G (IgG), IgA, and IgM in the B. subtilis and AGP groups were higher than the control group, and the B. subtilis groups had the highest content of serum lysozyme and relative weight of thymus. Dietary B. subtilis increased the relative length of ileum and the relative weight of jejunum compared with the AGP group. The villus height (V), crypt depth (C), V/C, and intestinal wall thickness of the jejunum in the B. subtilis and AGP groups were increased relative to the control group. Dietary B. subtilis increased the messenger RNA (mRNA) expression of ZO-1, Occludin, and Claudin-1, the same as AGP. The contents of lactic acid, succinic acid, and butyric acid in the ileum and cecum were increased by dietary B. subtilis. Dietary B. subtilis significantly increased the lactobacillus and bifidobacteria in the ileum and cecum and decreased the coliforms and Clostridium perfringens in the cecum. The improved performance and decreased mortality rate observed in the feeding trial could be accrued to the positive effects of B. subtilis on the immune response capacity, gut health, and gut microflora balance, and the combination of two strains showed additional benefits on the intestinal morphology and tight junction protein expressions. Therefore, it can be concluded that dietary B. subtilis A and B could be used as alternatives to synthetic antibiotics in the promotion of gut health and productivity index in broiler production.
Collapse
Affiliation(s)
- Kai Qiu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng-Liang Li
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Gao
- Animal Nutrition, Nutrition and Care, Evonik (China) Co., Ltd., Beijing, China
| | - Hai-Jun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
Tang X, Liu X, Liu H. Effects of Dietary Probiotic ( Bacillus subtilis) Supplementation on Carcass Traits, Meat Quality, Amino Acid, and Fatty Acid Profile of Broiler Chickens. Front Vet Sci 2021; 8:767802. [PMID: 34881321 PMCID: PMC8645685 DOI: 10.3389/fvets.2021.767802] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to evaluate the effects of dietary supplementation with or without Bacillus subtilis (B. subtilis) on carcass traits, meat quality, amino acids, and fatty acids of broiler chickens. In total, 160 1-day-old Arbor Acres male broiler chicks were divided into two groups with eight replicates of 10 chicks each. Chickens received basal diets without (CN group) or with 500 mg/kg B. subtilis (BS group) for 42 days. Eight chickens from each group were slaughtered at the end of the trial, and carcass traits, meat quality, chemical composition, amino acid, and fatty acid profile of meat were measured. The results showed that the breast muscle (%) was higher in BS than in CN (p < 0.05), while abdominal fat decreased (p < 0.05). The pH24h of thigh muscle was increased (p < 0.05) when supplemented with BS; however, drip loss, cooking loss of breast muscle, and shear force of thigh muscle decreased (p < 0.05). Lysine (Lys), methionine (Met), glutamic acid (Glu), and total essential amino acid (EAA) in breast muscle and Glu in thigh muscle were greater in BS than in CN (p < 0.05). C16:1, C18:1n9c, and MUFA in breast muscle and thigh muscle were greater in BS than in CN (p < 0.05). In conclusion, dietary supplementation with B. subtilis could improve the carcass traits and meat quality of broilers, which is beneficial for the consumers due to the improved fatty acid profile and amino acid composition.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karet Science, Guizhou Normal University, Guiyang, China
| | - Xuguang Liu
- State Engineering Technology Institute for Karst Desertfication Control, School of Karet Science, Guizhou Normal University, Guiyang, China
| | - Hu Liu
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
37
|
Dietary supplementation of Bacillus-based probiotics on the growth performance, gut morphology, intestinal microbiota and immune response in low biosecurity broiler chickens. Vet Anim Sci 2021; 14:100216. [PMID: 34825107 PMCID: PMC8604666 DOI: 10.1016/j.vas.2021.100216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
A feeding trial was conducted to evaluate the effects of Bacillus-based probiotics on growth performance, intestinal histo-morphology, gut microbial population and immune response in broilers. A total of 2000 Hubbard Classic day-old chicks were randomly enrolled in four experimental groups and 4 replicates of 500 birds in each group, and reared for 35 days under a low- level of biosecurity measures. The trial groups were assigned treatment-1 (T1): basal diet(control), treatment-2 (T2): basal diet plus Bacillus licheniformis (DSM17236), treatment-3 (T3): basal diet plus Bacillus subtilis (PB6), and treatment-4 (T4) basal diet plus 4% Flavomycin. All four groups were fed with maize-soybean based prepared feeds (starter, grower and finisher). Dietary inclusion of B. licheniformis significantly improved body weight gain and lessened FCR in T2 compared to other groups (p < 0.05). Probiotics increased the population of Bacillus spp. and decreased the population of Clostrium perfringens, Salmonella spp. and Escherichia coli in the jejunum and ileum in broiler birds on day 21 and 35 (p < 0.05). The highest antibody production was observed in B. licheniformis treated group (T2) compared to other probiotic treated group (T1). Taken together, the study findings suggest that B. licheniformis probiotics could be used as a feasible alternative to antimicrobials in the broiler production considering beneficial impacts at low biosecurity broiler farms.
Collapse
|
38
|
Jia L, Zhang X, Li X, Schilling W, David Peebles E, Kiess AS, Zhai W, Zhang L. Bacitracin, Bacillus subtilis, and Eimeria spp. challenge exacerbates woody breast incidence and severity in broilers. Poult Sci 2021; 101:101512. [PMID: 34788711 PMCID: PMC8605194 DOI: 10.1016/j.psj.2021.101512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022] Open
Abstract
Woody breast (WB) is a myopathy that is related to the increasing growth rate. Understanding the influence of management factors on WB formation and development is important to minimize WB. This study was conducted to define how management factors affect broiler growth performance, processing yield, and WB incidence. Ross × Ross 708 chicks were randomly assigned to a 3 (diet) × 2 (cocci challenge) × 2 (sex) factorial arrangement of treatments. The 3 dietary treatments were: control diet (corn-soybean meal basal diet), antibiotic diet (basal diet + 6.075 mg bacitracin /kg feed), and probiotic diet (basal diet + 2.2 × 108 CFU Bacillus subtilis PB6/kg feed). Birds in cocci challenge treatments received 20 × live cocci vaccine on d 14. The hardness of breast muscle in live birds was determined by palpation and grouped into Normal, Slight, Moderate, and Severe categories. Across diet and sex treatments, the cocci challenge resulted in decreases in body weight (BW) on d 29 and 35 (P < 0.0001 and = 0.032) in body weight gain (BWG) from d 14 to 29 (P < 0.0001). However, an increase of BW occurred on d 35 (P = 0.032) and an increase of BWG occurred from d 29 to 35 and d 35 to 43 (P = 0.0001 and 0.002), and the cocci challenge increased WB incidence on d 29 (P = 0.043) and d 43 (P = 0.013). Across challenge and sex treatments, birds fed the antibiotic diet exhibited a higher growth rate (GR) than those fed the control or probiotic diet from d 0 to 14 (P = 0.016), but not after d 14 (P > 0.05). Across sex, the antibiotic and probiotic diets increased WB incidence for those birds that did not receive a cocci challenge on d 43 (P = 0.040). Across challenge and diet treatments, males exhibited a higher BW, BWG, and GR throughout all growth phases, and males showed a higher WB incidence on d 29, 35, and 43 (P = 0.002, P < 0.0001, and P = 0.0002, respectively). In conclusion, bacitracin and Eimeria spp. increased WB incidence, BW, and GR. However, Bacillus subtilis increased WB incidence in male broilers without affecting BW and GR.
Collapse
Affiliation(s)
- Linan Jia
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xue Zhang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xiaofei Li
- Department of Agricultural Economics, Mississippi State University, Mississippi State, MS 39762, USA
| | - Wes Schilling
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA
| | - E David Peebles
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Aaron S Kiess
- Prestage Department of Poultry Science, North Carolina State University, Raleigh NC 27695, USA
| | - Wei Zhai
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
39
|
Lu C, Yan Y, Jian F, Ning C. Coccidia-Microbiota Interactions and Their Effects on the Host. Front Cell Infect Microbiol 2021; 11:751481. [PMID: 34660347 PMCID: PMC8517481 DOI: 10.3389/fcimb.2021.751481] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
As a common parasitic disease in animals, coccidiosis substantially affects the health of the host, even in the absence of clinical symptoms and intestinal tract colonization. Gut microbiota is an important part of organisms and is closely related to the parasite and host. Parasitic infections often have adverse effects on the host, and their pathogenic effects are related to the parasite species, parasitic site and host-parasite interactions. Coccidia-microbiota-host interactions represent a complex network in which changes in one link may affect the other two factors. Furthermore, coccidia-microbiota interactions are not well understood and require further research. Here, we discuss the mechanisms by which coccidia interact directly or indirectly with the gut microbiota and the effects on the host. Understanding the mechanisms underlying coccidia-microbiota-host interactions is important to identify new probiotic strategies for the prevention and control of coccidiosis.
Collapse
Affiliation(s)
- Chenyang Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yaqun Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Changshen Ning
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
40
|
Menconi A, Sokale AO, Mendoza SM, Whelan R, Doranalli K. Effect of Bacillus subtilis DSM 32315 under Different Necrotic Enteritis Models in Broiler Chickens: A Meta-Analysis of Five Independent Research Trials. Avian Dis 2021; 64:379-385. [PMID: 33205174 DOI: 10.1637/aviandiseases-d-19-00116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 04/01/2020] [Indexed: 11/05/2022]
Abstract
Challenge models are needed to understand the pathogenesis of necrotic enteritis (NE) and provide the basis of evaluating nonantibiotic feed-additive interventions. In the category of nonantibiotic feed additives, the application of probiotics to improve intestinal health and growth performance of broiler chickens in the face of an NE challenge has been well described. However, it is crucial to evaluate the consistency of specific probiotics for mitigating the disease challenge and improving performance. Therefore, a meta-analysis of five independent research trials was conducted with the objective of evaluating the effect of Bacillus subtilis DSM 32315 (probiotic) on body weight gain (BWG), feed conversion ratio (FCR), NE mortality, and lesion score (LS) of broiler chickens challenged with NE. These independent studies were conducted in three countries (the United States, Thailand, and Finland). The statistical analysis used fixed and random effects to estimate the mean effect size (MES) of the difference between NE-challenged birds (control) and NE-challenged probiotic-fed birds and the 95% confidence interval of MES. A meta-regression was performed to evaluate heterogeneity (MES variance) among studies. The statistical analysis was performed using a robust variance estimation strategy with a SAS macro. Probiotic-supplemented birds had a significantly higher BWG (MES = 1.04, P = 0.009) and a significantly lower FCR (MES = -1.39, P = 0.020), NE mortality (MES = -1.15, P = 0.012), and LS (MES = -1.29, P = 0.045). Response variables of BWG (Q = 2.81, P = 0.560) and NE mortality (Q = 5.60, P = 0.354) did not present heterogeneity. Heterogeneity was found for FCR (Q = 10.34, P = 0.035) and LS (Q = 16.13, P = 0.001). Overall, dietary supplementation of B. subtilis DSM 32315 significantly improved BWG and reduced FCR, mortality, and LS in a repeatable large-scale manner.
Collapse
Affiliation(s)
- A Menconi
- Evonik Corporation, 1701 Barrett Lakes Blvd., Kennesaw, GA, 30144
| | - A O Sokale
- Evonik Corporation, 1701 Barrett Lakes Blvd., Kennesaw, GA, 30144
| | - S M Mendoza
- Evonik Corporation, 1701 Barrett Lakes Blvd., Kennesaw, GA, 30144
| | - R Whelan
- Evonik Nutrition & Care GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany
| | - K Doranalli
- Evonik Nutrition & Care GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany
| |
Collapse
|
41
|
Emami NK, Dalloul RA. Centennial Review: Recent developments in host-pathogen interactions during necrotic enteritis in poultry. Poult Sci 2021; 100:101330. [PMID: 34280643 PMCID: PMC8318987 DOI: 10.1016/j.psj.2021.101330] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
Necrotic enteritis (NE) is a significant enteric disease in commercial poultry with considerable economic effect on profitability manifested by an estimated $6 billion in annual losses to the global industry. NE presents a unique challenge, being a complex enteric disease that often leads to either clinical (acute) or subclinical (chronic) form. The latter typically results in poor performance (reduced feed intake, weight gain and eventually higher feed conversion ratio [FCR]) with low mortality rates, and represents the greatest economic impact on poultry production. The use of antibiotic growth promoters (AGPs) has been an effective tool in protecting birds from enteric diseases by maintaining enteric health and modifying gut microbiota, thus improving broilers’ production efficiency and overall health. The removal of AGPs presented the poultry industry with several challenges, including reduced bird health and immunity as well as questioning the safety of poultry products. Consequently, research on antibiotic alternatives that can support gut health was intensified. Probiotics, prebiotics, essential oils, and organic acids were among various additives that have been tested for their efficacy against NE with some being effective but not to the level of AGPs. The focus of this review is on the relationship between NE pathogenesis, microbiome, and host immune responses, along with references to recent reviews addressing production aspects of NE. With a comprehensive understanding of these dynamic changes, new and programmed strategies could be developed to make use of the current products more effectively or build a stepping stone toward the development of a new generation of supplements.
Collapse
Affiliation(s)
- Nima K Emami
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Rami A Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
42
|
Guo S, Xi Y, Xia Y, Wu T, Zhao D, Zhang Z, Ding B. Dietary Lactobacillus fermentum and Bacillus coagulans Supplementation Modulates Intestinal Immunity and Microbiota of Broiler Chickens Challenged by Clostridium perfringens. Front Vet Sci 2021; 8:680742. [PMID: 34136557 PMCID: PMC8200825 DOI: 10.3389/fvets.2021.680742] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Preventative effects of Lactobacillus fermentum and Bacillus coagulans against Clostridium perfringens infection in broilers have been well-demonstrated. The present study was conducted to investigate the modulation of these two probiotics on intestinal immunity and microbiota of C. perfringens-challenged birds. The 336 one-day-old broilers were assigned to four groups with six replicates in each group. Birds in the control were unchallenged and fed a basal diet, and birds in the three challenged groups were dietary supplemented with nothing (Cp group), 1 × 109 CFU/kg of L. fermentum (Lf_Cp group), or 1 × 1010 CFU/kg of B. coagulans (Bc_Cp group). Challenge was performed from days 14 to 20, and samples were collected on days 21 and 28. Challenge upregulated interleukin (IL)-1β and transforming growth factor (TGF)-β4 mRNA expression in jejunum on day 21, which was downregulated by B. coagulans and L. fermentum, respectively (P < 0.05). Both probiotic groups upregulated jejunal IL-1β, interferon (IFN)-γ, IL-17, and TGF-β4 on day 28 as well as IFN-γ on day 21 (P < 0.05). The Bc_Cp group increased CD3+ T cell counts in the jejunal crypt on day 21 (P < 0.05). Challenge decreased the ileal ACE index on day 21 and cecal microbial richness on day 28, which were increased by probiotic treatments, and ileal bacterial richness decreased in the Bc_Cp group on day 28 (P < 0.05). Only ileal microbiota on day 21 was distinctly affected with an R-value at 0.3116 by ANOSIM analysis (P < 0.05). Compared with the control, ileal Firmicutes increased on day 21, and ileal Bacteroidetes and cecal Proteobacteria decreased on day 28 in challenged groups (P < 0.05). Challenge increased Romboutsia spp. in the ileum as well as unclassified f_Lachnospiraceae and Ruminococcus_torques group in the cecum, and decreased Lactobacillus spp. in the ileum on day 21, which were all conversely modulated by L. fermentum (P < 0.05). Challenge increased amino acid metabolism of ileal microbiota and membrane transport of cecal microbiota, and decreased amino acid metabolism of cecal microbiota on day 21, which were conversely regulated by both probiotics (P < 0.05). In conclusion, L. fermentum and B. coagulans attenuated the intestinal inflammation and microbial dysbiosis soon after C. perfringens challenge.
Collapse
Affiliation(s)
- Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yu Xi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yi Xia
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhengfan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
43
|
Bacillus subtilis-Based Probiotic Improves Skeletal Health and Immunity in Broiler Chickens Exposed to Heat Stress. Animals (Basel) 2021; 11:ani11061494. [PMID: 34064126 PMCID: PMC8224346 DOI: 10.3390/ani11061494] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary High ambient temperature is a major environmental stressor affecting the physiological and behavioral status of animals, increasing stress susceptibility and immunosuppression, and consequently increasing intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or decrease stress-associated detrimental effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate that a dietary probiotic supplement, Bacillus subtilis, reduces heat stress-induced abnormal behaviors and negative effects on skeletal health in broilers through a variety of cellular responses, regulating the functioning of the microbiota–gut–brain axis and/or microbiota-modulated immunity during bone remodeling under thermoneutral and heat-stressed conditions. Abstract The elevation of ambient temperature beyond the thermoneutral zone leads to heat stress, which is a growing health and welfare issue for homeothermic animals aiming to maintain relatively constant reproducibility and survivability. Particularly, global warming over the past decades has resulted in more hot days with more intense, frequent, and long-lasting heat waves, resulting in a global surge in animals suffering from heat stress. Heat stress causes pathophysiological changes in animals, increasing stress sensitivity and immunosuppression, consequently leading to increased intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or reduce stress-induced negative effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate dietary supplementation with a Bacillus subtilis-based probiotic has similar functions in poultry. This review highlights the recent findings on the effects of the probiotic Bacillus subtilis on skeletal health of broiler chickens exposed to heat stress. It provides insights to aid in the development of practical strategies for improving health and performance in poultry.
Collapse
|
44
|
Kan L, Guo F, Liu Y, Pham VH, Guo Y, Wang Z. Probiotics Bacillus licheniformis Improves Intestinal Health of Subclinical Necrotic Enteritis-Challenged Broilers. Front Microbiol 2021; 12:623739. [PMID: 34084155 PMCID: PMC8168541 DOI: 10.3389/fmicb.2021.623739] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Necrotic enteritis infection poses a serious threat to poultry production, and there is an urgent need for searching effective antibiotic alternatives to control it with the global ban on in-feed antibiotics. This study was conducted to investigate the effects of dietary Bacillus licheniformis replacing enramycin on the growth performance and intestinal health of subclinical necrotic enteritis (SNE)-challenged broilers. In total, 504 1-day-old Arbor Acres male chickens were selected and subsequently assigned into three treatments, including PC (basal diet + SNE challenge), PA (basal diet extra 10 mg/kg enramycin + SNE challenge), and PG (basal diet extra 3.20 × 109 and 1.60 × 109 CFU B. licheniformis per kg diet during 1-21 days and 22-42 days, respectively + SNE challenge). Results showed that B. licheniformis significantly decreased the intestinal lesion scores and down-regulated the Claudin-3 mRNA levels in jejunum of SNE-infected broilers on day 25, but increased the mucin-2 gene expression in broilers on day 42. In addition, B. licheniformis significantly up-regulated the mRNA levels of TRIF and NF-κB of SNE-challenged broilers compared with the control group on day 25 and TLR-4, TRIF compared with the control and the antibiotic group on day 42. The mRNA expression of growth factors (GLP-2 and TGF-β2) and HSPs (HSP60, HSP70, and HSP90) were up-regulated in B. licheniformis supplementary group on days 25 and 42 compared with group PC. LEfSe analysis showed that the relative abundance of Lachnospiraceae_UCG_010 was enriched in the PG group; nevertheless, Clostridiales_vadinBB60 and Rnminococcaceae_NK4A214 were in PA. PICRUSt analysis found that the metabolism of cofactors and vitamins, amino acid metabolism, and carbohydrate metabolism pathways were enriched, whereas energy metabolism, membrane transport, cell motility, and lipid metabolism were suppressed in B. licheniformis-supplemented groups as compared with the PC control. In conclusion, dietary supplementation of B. licheniformis alleviated the intestinal damage caused by SNE challenge that coincided with modulating intestinal microflora structure and barrier function as well as regulating intestinal mucosal immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Sandvang D, Skjoet-Rasmussen L, Cantor MD, Mathis GF, Lumpkins BS, Blanch A. Effects of feed supplementation with 3 different probiotic Bacillus strains and their combination on the performance of broiler chickens challenged with Clostridium perfringens. Poult Sci 2021; 100:100982. [PMID: 33647715 PMCID: PMC7921869 DOI: 10.1016/j.psj.2021.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/07/2020] [Accepted: 01/01/2021] [Indexed: 12/27/2022] Open
Abstract
The application of probiotics in broiler feed, to alleviate performance deficiencies due to mild infections by coccidia and Clostridium perfringens, is of increasing interest for the poultry industry. Therefore, our objective was to evaluate the capacity of 3 Bacillus strains and their combination as probiotics in vitro and in vivo. Thus, protein and carbohydrate degradation and C. perfringens growth inhibition capabilities were assessed by colometry measurement and an agar diffusion bioassay, respectively. A total of 2,250 1-day-old male broiler chicks were assigned to 5 dietary treatments: 1) non-probiotic-supplemented control (control); 2) control + DSM 32324 at 0.8 × 106 cfu/g of feed; 3) control + DSM 32325 at 0.5 × 106 cfu/g of feed; 4) control + DSM 25840 at 0.3 × 106 cfu/g of feed; and 5) control + DSM 32324 + DSM 32325 + DSM 25840 at 1.6 × 106 cfu/g of feed. A pathogenic field strain of C. perfringens was used to induce the necrotic enteritis challenge on day 19, 20, and 21. All birds and remaining feed were weighed on pen basis on day 0, 21, 35, and 42, to calculate BW gain and mortality-adjusted feed conversion. Mortality and mortality due to necrotic enteritis were recorded daily. On day 21, 45 birds per treatment were evaluated for macroscopic intestinal necrotic enteritis lesions. Performance data were statistically analyzed using an ANOVA and subjected to a least significant difference comparison. Necrotic enteritis lesion scores were statistically analyzed using nonparametric Kruskal-Wallis test. Dunn's test was used for treatment comparison. The tested strains showed different abilities of degrading protein and carbohydrates and inhibiting C. perfringens growth in vitro. The birds fed the multi-train combination presented significantly better performance and lower necrotic enteritis lesion score than those in the control group. Dietary supplementation with probiotics resulted in significantly lower necrotic enteritis mortality. The results demonstrate the suitability of the evaluated Bacillus multistrain combination as an effective probiotic in C. perfringens-challenged chickens.
Collapse
Affiliation(s)
| | | | | | - Greg F Mathis
- Southern Poultry Feed and Research, Inc. 30607-3153 Georgia, USA
| | - Brett S Lumpkins
- Southern Poultry Feed and Research, Inc. 30607-3153 Georgia, USA
| | - Alfred Blanch
- Addimus, Providing Trust, S.L., 08012 Barcelona, Spain
| |
Collapse
|
46
|
Bonos E, Giannenas I, Sidiropoulou E, Stylianaki I, Tzora A, Skoufos I, Barbe F, Demey V, Christaki E. Effect of Bacillus pumilus supplementation on performance, intestinal morphology, gut microflora and meat quality of broilers fed different energy concentrations. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Sallam EA, Mohammed LS, Elbasuni SS, Azam AE, Soliman MM. Impacts of Microbial based Therapy on Growth Performance, Intestinal Health, Carcass Traits and Economic Efficiency of Clostridium perfringens-Infected Cobb and Arbor Acres Broilers. Vet Med Sci 2021; 7:773-791. [PMID: 33720539 PMCID: PMC8136931 DOI: 10.1002/vms3.412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023] Open
Abstract
The poultry farms need a safe and effective alternative for antibiotics that can counteract the negative impacts of necrotic enteritis (NE), which causes severe mortalities and economic losses. The current study was aimed to examine the influence of antibiotic (Flagymox) and the microbial‐based administration on carcass traits in Clostridium(C.)perfringens‐infected Cobb and Arbor Acres broilers. A total number of 360 Cobb and Arbor Acres broiler chicks (180 numbers per breed) were allocated to four groups; negative control group (without any treatments); positive control group (administration of C. perfringens at the rate of 1 × 109cfu/bird via crop gavage twice daily from day 16 to 18 post‐hatch); C. perfringens challenge plus antibiotic (Flagymox®) group, and Clostridiumperfringens challenge plus microbial‐based treatment (Big‐lactoα®) group. The results indicated that the Flagymox and Big‐lactoα treated Cobb breed group achieved a significant increase in their body weight (BW) than the positive control group at the third week post‐infection. Also, the Arbor Acres breed gained significantly higher weight compared to the Cobb breed at the third week. Total weight gain (TWG) from 0 to the fifth week in the Cobb and Arbor Acres breeds were higher in the groups treated with Flagymox and Big‐lactoα compared to the birds challenged with C. perfringens without any treatment, thus, increasing the total return (TR) in the treated groups. Economic efficiency showed no significant differences (p < .05) between the treatment groups of both the breeds. Although the treatment cost of Flagymox is higher than the microbial‐based treatment (0.86 versus 0.35 LE), there were no mortalities reported in the microbial‐based groups in both the breeds resulting in significantly low losses compared to the Flagymox treated groups. The groups treated with the microbial‐based products in both breeds were superior in dressing percentage (75.16 and 77.06% for Cobb and Arbor Acres, respectively) compared to that of the other groups. In conclusion, microbial‐based therapy improved the growth rate, carcass traits, survival rate, and economic efficiency in necrotic enteritis induced in Cobb and Arbor Acres broilers.
Collapse
Affiliation(s)
- Eman A Sallam
- Animal and Poultry Production, Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Liza S Mohammed
- Veterinary Economics and Farm Management, Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Sawsan S Elbasuni
- Avian and Rabbit diseases Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Aya E Azam
- Animal Hygiene and Veterinary Management, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| |
Collapse
|
48
|
Emami NK, White MB, Calik A, Kimminau EA, Dalloul RA. Managing broilers gut health with antibiotic-free diets during subclinical necrotic enteritis. Poult Sci 2021; 100:101055. [PMID: 33744613 PMCID: PMC8005826 DOI: 10.1016/j.psj.2021.101055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022] Open
Abstract
Necrotic enteritis (NE) caused by Clostridium perfringens is among the most important enteric diseases in poultry production. This study examined the effects of 2 probiotics (Prob) and a synbiotic (Synb) during a naturally occurring NE challenge. On the day of hatch, 1200 Cobb male broilers were randomly allocated to 5 groups (8 pens/treatment, 30 birds/pen) including 1) negative control (NC): corn-soybean meal diet; 2) positive control (PC): NC + 453 g Stafac20/907 kg feed; 3) Prob 1: NC + 453 g Prob 1/907 kg feed; 4) Prob 2: NC + 453 g Prob 2/907 kg feed; and 5) Synb: NC + 453 g Synb/907 kg feed. One day after placement, birds were challenged by a coccidia vaccine to induce NE. Feed intake and body weights were measured on day 8 (NE onset) and end of starter (day 14) and grower (28) periods. On day 8, the small intestines of 3 birds/pen were examined for NE lesions. Ileal mucosal scrapings from one bird/pen were collected on day 8 and day 28 to profile the microbiota using 16S rRNA sequencing. Data were analyzed in JMP or QIIME 2 and significance between treatments identified by LSD or linear discriminant analysis effect size (P < 0.05). The Synb group significantly lowered NE lesion scores on day 8 and reduced day 0-14 mortality by 50% compared with NC. FCR was significantly better in all the groups, whereas ADG was higher in PC, Synb, and Prob 2 groups compared with NC from day 0 to day 28. Lower lesion scores in the Synb group were accompanied by lower relative abundance of Alistipes, ASF356, Faecalibaculum, Lachnospiraceae UCG-001, Muribaculum, Oscillibacter, Parabacteroides, Rikenellaceae RC9 gut group, Ruminococcaceae UCG-014, and Ruminiclostridium 9 compared with NC on day 8. On day 28, relative abundance of Lactobacillus was lower, whereas abundance of Bacteroides, Barnesiella, Butyricicoccus, CHKCI001, Eisenbergiella, Eubacterium hallii group, Helicobacter, Ruminococcaceae UCG-005, Ruminococcus torques group, and Sellimonas was significantly higher in the NC birds than in the Synb and Prob 2 groups. Collectively, these data indicate that during a subclinical naturally occurring NE, supplementation of specific additives could be effective in reducing intestinal lesions and mortality, and improving performance potentially through developing a signature microbial profile in the intestinal mucosal layer.
Collapse
Affiliation(s)
- Nima K Emami
- Avian Immunobiology Laboratory, Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg 24061, USA
| | - Mallory B White
- Avian Immunobiology Laboratory, Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg 24061, USA
| | - Ali Calik
- Avian Immunobiology Laboratory, Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg 24061, USA; Department of Animal Nutrition & Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey
| | - Emily A Kimminau
- Huvepharma, Inc., Technical Service, Peachtree City, GA 30269, USA
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg 24061, USA; Department of Poultry Science, University of Georgia, Athens 30602, USA.
| |
Collapse
|
49
|
Bacillus amyloliquefaciens TL Downregulates the Ileal Expression of Genes Involved in Immune Responses in Broiler Chickens to Improve Growth Performance. Microorganisms 2021; 9:microorganisms9020382. [PMID: 33668643 PMCID: PMC7918048 DOI: 10.3390/microorganisms9020382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
Bacillus amyloliquefaciens TL promotes broiler chicken performance by improving nutrient absorption and utilization and reducing intestinal inflammation. In this study, RNA-sequencing (RNA-seq)-based transcriptomes of ileal tissues collected from probiotic-fed and control broiler chickens were analyzed to elucidate the effects of the probiotic B. amyloliquefaciens TL, as a feed additive, on the gut immune function. In total, 475 genes were significantly differentially expressed between the ileum of probiotic-fed and control birds. The expression of genes encoding pyruvate kinase, prothymosin-α, and heat stress proteins was high in the ileum of probiotic-fed birds (FPKM > 500), but not in the control group. The gene ontology functional enrichment and pathway enrichment analyses revealed that the uniquely expressed genes in the control group were mostly involved in immune responses, whereas those in the probiotic group were involved in fibroblast growth factor receptor signaling pathways and positive regulation of cell proliferation. Bacillus amyloliquefaciens TL downregulated the expression of certain proinflammatory factors and affected the cytokine–cytokine receptor interaction pathway. Furthermore, B. amyloliquefaciens TL in broiler diets altered the expression of genes involved in immune functions in the ileum. Thus, it might contribute to improved broiler growth by regulating the immune system and reducing intestinal damage in broilers.
Collapse
|
50
|
Muszynski S, Maurer F, Henjes S, Horn MA, Noll M. Fungal and Bacterial Diversity Patterns of Two Diversity Levels Retrieved From a Late Decaying Fagus sylvatica Under Two Temperature Regimes. Front Microbiol 2021; 11:548793. [PMID: 33584553 PMCID: PMC7874115 DOI: 10.3389/fmicb.2020.548793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/19/2020] [Indexed: 11/25/2022] Open
Abstract
Environmental fluctuations are a common occurrence in an ecosystem, which have an impact on organismic diversity and associated ecosystem services. The aim of this study was to investigate how a natural and a species richness-reduced wood decaying community diversity were capable of decomposing Fagus sylvatica dead wood under a constant and a fluctuating temperature regime. Therefore, microcosms with both diversity levels (natural and species richness-reduced) were prepared and incubated for 8 weeks under both temperature regimes. Relative wood mass loss, wood pH, carbon dioxide, and methane emissions, as well as fungal and bacterial community compositions in terms of Simpson‘s diversity, richness and evenness were investigated. Community interaction patterns and co-occurrence networks were calculated. Community composition was affected by temperature regime and natural diversity caused significantly higher mass loss than richness-reduced diversity. In contrast, richness-reduced diversity increased wood pH. The bacterial community composition was less affected by richness reduction and temperature regimes than the fungal community composition. Microbial interaction patterns showed more mutual exclusions in richness-reduced compared to natural diversity as the reduction mainly reduced abundant fungal species and disintegrated previous interaction patterns. Microbial communities reassembled in richness-reduced diversity with a focus on nitrate reducing and dinitrogen-fixing bacteria as connectors in the network, indicating their high relevance to reestablish ecosystem functions. Therefore, a stochastic richness reduction was followed by functional trait based reassembly to recover previous ecosystem productivity.
Collapse
Affiliation(s)
- Sarah Muszynski
- Department of Applied Science, Institute of Bioanalysis, University of Coburg, Coburg, Germany
| | - Florian Maurer
- Department of Applied Science, Institute of Bioanalysis, University of Coburg, Coburg, Germany
| | - Sina Henjes
- Institute of Microbiology, Leibniz University of Hannover, Hanover, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University of Hannover, Hanover, Germany
| | - Matthias Noll
- Department of Applied Science, Institute of Bioanalysis, University of Coburg, Coburg, Germany
| |
Collapse
|