1
|
Hu X, Liu C, Tang Z, Pan M, Fang A, Li L, Meng X, Tang X, Liu Y, Wang X, Gao H, Zou J, Qiu Z. Sophoraflavanone G as an ectosteric inhibitor of cathepsin K attenuates ovariectomy-induced bone loss by suppressing bone resorption. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156720. [PMID: 40220429 DOI: 10.1016/j.phymed.2025.156720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Cathepsin K (CTSK) is a key enzyme in bone resorption, making it a promising target for osteoporosis treatment. Active-site inhibitors of CTSK are effective but have undesirable side effects, while ectosteric inhibitors may provide a safer alternative. PURPOSE This study investigates whether Sophoraflavanone G (SG), derived from Rhizoma Drynariae, can act as an ectosteric CTSK inhibitor to attenuate osteoporotic bone loss and explores its underlying mechanisms. STUDY DESIGN SG's effects were evaluated in an ovariectomized (OVX) osteoporotic mice model, with in vitro experiments assessing SG's interaction and binding affinity with CTSK. METHODS Micro-CT, histology, and mechanical testing were used to evaluate bone density and strength. CTSK activity and expression were assessed by immunohistochemistry and western blotting. Cell thermal shift assays, isothermal titration calorimetry, CTSK site-specific degradation assays, molecular docking and dynamic simulation were performed to study SG's binding affinity and inhibitory effects. Biosafety, including body weight, uterine histomorphometry, and toxicity of the heart and lung, was also assessed. RESULTS SG improved bone mineral density, microarchitecture, and strength, primarily by inhibiting bone resorption. It inhibited CTSK's enzymatic activity with a strong binding affinity (KD: 8.49 μM) and effectively inhibited osteoclast function. CTSK site-specific assays showed SG inhibited CTSK-mediated degradation of type I collagen. Unlike odanacatib, SG did not affect gelatin or TGF-β1 degradation in fibroblasts. Biosafety assessments revealed no adverse effects. CONCLUSION SG acts as an ectosteric CTSK inhibitor, offering a safer alternative for postmenopausal osteoporosis treatment by selectively inhibiting bone resorption without the side effects associated with active-site inhibitors.
Collapse
Affiliation(s)
- Xueling Hu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine/ Jinan University, Guangzhou 510632, China
| | - Chunxia Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Ziling Tang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine/ Jinan University, Guangzhou 510632, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ailing Fang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine/ Jinan University, Guangzhou 510632, China
| | - Ling Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
| | - Xiangbo Meng
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
| | - Xiyang Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yanzhi Liu
- Shenzhen Osteomore Biotechnology Co., Ltd., Shenzhen 518118, China
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Jian Zou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Zuocheng Qiu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine/ Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Hsiao YC, Chung CH, Lin CJ, Tsai LJ, Kuo SW, Lu CH, Chien WC. Role of traditional Chinese medicine on fracture, hospitalization, and total mortality risks in patients with hyperthyroidism and osteoporosis. Medicine (Baltimore) 2025; 104:e42484. [PMID: 40388732 PMCID: PMC12091615 DOI: 10.1097/md.0000000000042484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 05/02/2025] [Indexed: 05/21/2025] Open
Abstract
Previous studies have confirmed that hyperthyroidism is one of the common causes of secondary osteoporosis and can aggravate the disease severity in patients with osteoporosis. This study is mainly based on the Taiwan National Health Insurance Database and through big data analysis shows that combining traditional Chinese medicine (TCM) treatment can help the health of patients with hyperthyroidism and osteoporosis. There were 4980 patients who received TCM treatment and 19,920 controls who did not receive TCM treatment selected from Taiwan National Health Insurance Database in a 4:1 ratio of gender, age, and index year. Cox proportional hazards analyzes were performed to compare fracture, inpatient, and all-cause mortality over an average follow-up period of 15 years. A total of 4745/5823/3487 enrolled subjects (19.06%/23.39%/14.00%) suffered fractures/hospitalization/all-cause death which TCM group was 452/987/511 (15.10%/19.82%/10.26%); control group was 3993/4836/2976 (20.05%/24.28%/14.94%). Cox proportional hazards regression analysis showed that subjects in the TCM group had lower fractures, hospital mortality, and all-cause mortality (adjusted HR = 0.563; 95% confidence intervals [CI] = 0.392-0.680, P < .001; adjusted HR = 0.614; 95% CI = 0.474-0.714, P < .001; adjusted HR = 0.691; 95% CI = 0.569-0.792, P < .001). Kaplan-Meier analysis showed that the cumulative risk of fracture, hospitalization and death were lower in TCM group with significant differences (all log-rank P < .001). The analysis of this study shows that patients with hyperthyroidism and osteoporosis even with comorbidity of atrial fibrillation, atrial flutter, or heart failure combined with TCM treatment are associated with a lower risk of fractures, hospitalization, or all-cause death, providing clinicians with a treatment option.
Collapse
Affiliation(s)
- Yuan-Chih Hsiao
- Shanghai Medical College of Fudan University, Shanghai, China
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan, ROC
| | - Chien-Jung Lin
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Li-Jen Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shi-Wen Kuo
- Department of Internal Medicine, The Division of Endocrinology and Metabolism, Taipei Tzu Chi Hospital, Taiwan, ROC
| | - Chieh-Hua Lu
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
3
|
Zhang X, Meng S, Xu Y, He X, Cao Y, Tang B, Zhang Y, Shi X, Liu K. New Qiangguyin activates Wnt/β-catenin pathway by down-regulating Notum to improve osteoporosis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119745. [PMID: 40210176 DOI: 10.1016/j.jep.2025.119745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Qiangguyin (QGY) is a traditional Chinese medicine prescription for postmenopausal osteoporosis. We modified the formula based on QGY and named it new QGY (N-QGY), and studied the therapeutic mechanism of N-QGY on osteoporosis. METHOD Osteoporosis rat model was established by bilateral ovariectomy, and the rats were treated with exosomes from osteoclasts treated with N-QGY. Then the bone morphological parameters were detected by micro-computed tomography, the levels of Procollagen I N-terminal Propeptide (PINP), β-crosslaps (β-CTX), Estrogen and osteocalcin (OCN) were detected by ELISA, and the expressions of Alkaline phosphatase (ALP), Runt-related transcription factor 2 (RUNX2), Osteopontin (OPN), Notum and β-catenin were detected by Western blot. Subsequently, the primary cultured bone marrow mesenchymal stem cells (BMSCs) were transfected with Notum overexpression plasmid and co-cultured with exosomes from osteoclasts treated with N-QGY or interleukin (IL)-1β. Subsequently, the cell viability and the expression of bone formation-related genes or proteins were detected. ALP staining and alizarin red staining were performed. RESULT In vivo, N-QGY improved the bone morphological indexes and serum levels of PINP, β-CTX, estrogen, ALP, RUNX2 and OPN in bone tissues or serum, down-regulated Notum expressions and activated β-catenin pathway in bone tissues. The exosomes derived from N-QGY-treated osteoclast alleviated the destructive effect of exosomes derived from osteoclast on osteogenic differentiation of BMSCs, which was embodied in promoting the activity of BMSCs, up-regulating the levels of ALP, RUNX2, OPN and OCN, promoting bone mineralization and activating β-catenin pathway. CONCLUSION N-QGY activates Wnt/β-catenin pathway by down-regulating Notum to improve osteoporosis in rats.
Collapse
Affiliation(s)
- Xu Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Shilong Meng
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Yawei Xu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Xiaoming He
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Yanguang Cao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Binbin Tang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Yingkai Zhang
- Xianju Branch of the Second Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Xiaolin Shi
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Kang Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, China; Xianju Branch of the Second Affiliated Hospital of Zhejiang Chinese Medical University, China.
| |
Collapse
|
4
|
Meng S, Zhang X, Yu Y, Tong M, Yuan Y, Cao Y, Zhang W, Shi X, Liu K. New-QiangGuYin-Containing Serum Inhibits Osteoclast-Derived Exosome Secretion and Down-Regulates Notum to Promote Osteoblast Differentiation. Adv Biol (Weinh) 2025; 9:e2400166. [PMID: 38935529 DOI: 10.1002/adbi.202400166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/16/2024] [Indexed: 06/29/2024]
Abstract
New-QiangGuYin (N-QGY), the addition of sea buckthorn on the basis of QGY formula, is herbal formula widely used clinically in China for the treatment of osteoporosis (OP), but its mechanism warrants further exploration. The mechanisms of QGY and N-QGY in the treatment of OP are probed from the perspective of osteoclast-osteoblast balance. Thirty Sprague-Dawley rats are randomly divided into N-QGY group, QGY group, and Control group. Beyond control rats that orally took normal saline, other rats are orally administered with isometric N-QGY or QGY twice every day for 3 days. The drug-containing serum and control serum are prepared and their effects on osteoclast-derived exosome secretion are determined by bicinchoninic acid assay (BCA), nanoparticle tracking analysis, and Western blot. GW4869 and Interleukin-1β (IL-1β) are adopted as the exosome inhibitor and inducer, respectively. Exosome uptake, cell counting kit-8, alkaline phosphatase (ALP) staining, alizarin red staining, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and Western blot are performed to examine the effects of altered osteoclast exosome content on osteogenic differentiation of mesenchymal stem cells (MSCs). N-QGY, QGY, and GW4869 inhibit osteoclast-derived exosome secretion and exosome uptake by MSCs, whereas IL-1β exerted the opposite effects (p < 0.05). Different from IL-1β, N-QGY, QGY, and GW4869 partially elevated MSC viability, osteocalcin secretion, ALP, RUNX Family Transcription Factor 2 (RUNX2) and Osteopontin (OPN) expressions, and calcium deposition in the osteoclast-MSCs coculture system (p < 0.05). Mechanically, osteoclasts increased Notum protein level but decreased β-catenin level, which is enhanced by IL-1β but is reversed by GW4869, QGY, and N-QGY (p < 0.05). And the effect of N-QGY is more conspicuous than that of QGY (P<0.05). N-QGY-containing serum inhibits exosome levels in osteoclasts, thereby enhancing osteogenic differentiation of MSCs via inhibition of Notum protein and promotion of β-catenin protein.
Collapse
Affiliation(s)
- Shilong Meng
- The Second Clinical School, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Xu Zhang
- The Second Clinical School, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Yang Yu
- The Second Clinical School, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Minghao Tong
- The Second Clinical School, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Yifeng Yuan
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310005, China
| | - Yanguang Cao
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310005, China
| | - Wei Zhang
- Xianju Branch of the Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, Taizhou, 317300, China
| | - Xiaolin Shi
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310005, China
| | - Kang Liu
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310005, China
| |
Collapse
|
5
|
Lin Q, Zhao B, Huang J, Chen R, Sun W, Ye Q, Yang L, Zhu X, Li X, Zhang R. Neuropeptides as regulators of bone metabolism: from molecular mechanisms to traditional Chinese medicine intervention strategies. Front Pharmacol 2025; 16:1516038. [PMID: 40093328 PMCID: PMC11906480 DOI: 10.3389/fphar.2025.1516038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Osteoporosis (OP) is a complex bone metabolism disorder disease that affects the skeleton, nervous system, muscles, and multiple tissues. Neuropeptides, which are endogenous substances derived from both bone and brain, play a critical role in maintaining the balance of bone metabolism. This review summarizes research conducted from 1986 to 2024 on the pathological mechanisms of neuropeptides and their receptors in the context of OP. Specifically, the roles of Neuropeptide Y, Vasoactive Intestinal Peptide, Calcitonin Gene-Related Peptide, and Substance P and their receptors in key processes of OP were examined, including their function of bone formation and resorption, osteoblast differentiation, and osteoclast differentiation. Our study showed that these neuropeptides could promote bone formation and inhibit bone resorption, while their receptors in osteocytes exhibit distinct functions, indicating complex regulatory mechanisms that require further investigation. Additionally, we summarize the progress of Traditional Chinese Medicine (TCM) formulae, single TCM herbs, and bioactive compounds derived from TCM in exerting anti-OP effects through neuropeptide modulation. These studies highlight the multi-targeted and multi-mechanistic pharmacological actions of TCM in treating OP. By integrating these findings, we aim to enhance the understanding of neuropeptides' roles in bone metabolism and to explore the development of neuropeptide-targeted TCM therapies for OP management. This comprehensive perspective highlights the potential of neuropeptides as therapeutic targets, paving the way for innovative approaches to treating OP.
Collapse
Affiliation(s)
- Qing Lin
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
| | - Biyi Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jiajia Huang
- The First affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Rumeng Chen
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Weipeng Sun
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Qianyun Ye
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- The First affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Li Yang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Xiaofeng Zhu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- The First affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Ronghua Zhang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Chen Y, Qiu Z, Hu X, Wang T, Li G, Tang Z, Fang C, Sheng W, Zhao J, Yu F, Weng J, Udduttula A, Manivasagam G, Zeng H. Biofunctional supramolecular injectable hydrogel with spongy-like metal-organic coordination for effective repair of critical-sized calvarial defects. Asian J Pharm Sci 2025; 20:100988. [PMID: 39926635 PMCID: PMC11803222 DOI: 10.1016/j.ajps.2024.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/22/2024] [Accepted: 06/15/2024] [Indexed: 02/11/2025] Open
Abstract
In clinical settings, regenerating critical-sized calvarial bone defects presents substantial problems owing to the intricacy of surgical methods, restricted bone growth medications, and a scarcity of commercial bone grafts. To treat this life-threatening issue, improved biofunctional grafts capable of properly healing critical-sized bone defects are required. In this study, we effectively created anti-fracture hydrogel systems using spongy-like metal-organic (magnesium-phosphate) coordinated chitosan-modified injectable hydrogels (CPMg) loaded with a bioinspired neobavaisoflavone (NBF) component. The CPMg-NBF hydrogels showed outstanding anti-fracture capabilities during compression testing and retained exceptional mechanical stability even after 28 d of immersion in phosphate-buffered saline. They also demonstrated prolonged and stable release profiles of Mg2+ and NBF. Importantly, CPMg-NBF hydrogels revealed robust biphasic mineralization and were non-toxic to MC3T3-E1 cells. To better understand the underlying mechanism of Mg2+ and NBF component, as well as their synergistic effect on osteogenesis, we investigated the expression of key osteogenic proteins in the p38 MAPK and NOTCH pathways. Our results showed that CPMg-NBF hydrogels greatly increased the expression of osteogenic proteins (Runx2, OCN, OPN, BMPS and ALP). In vivo experiments showed that the implantation of CPMg-NBF hydrogels resulted in a significant increase in new bone growth within critical-sized calvarial defects. Based on these findings, we expect that the CPMg-NBF supramolecular hydrogel has tremendous promise for use as a therapeutic biomaterial for treating critical-sized calvarial defects.
Collapse
Affiliation(s)
- Yingqi Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zuocheng Qiu
- School of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Xueling Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Tiehua Wang
- Internal Medicine, Shenzhen New Frontier United Family Hospital, Shenzhen 518031, China
| | - Guoqing Li
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Ziling Tang
- School of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou 510632, China
| | - Chongzhou Fang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Weibei Sheng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jin Zhao
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fei Yu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Anjaneyulu Udduttula
- Centre of Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Geetha Manivasagam
- Centre of Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
- Terasaki Institute for Biomedical Innovation, Los Angeles 90024, United States
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
7
|
Li J, HaomingYou, Hu Y, Li R, Ouyang T, Ran Q, Zhang G, Huang Y. Effects of traditional Chinese medicine Zuo-Gui-Wan on gut microbiota in an osteoporotic mouse model. J Orthop Surg Res 2025; 20:128. [PMID: 39891262 PMCID: PMC11786422 DOI: 10.1186/s13018-025-05504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The target and mechanism of oral traditional Chinese medicine (TCM) have been important research directions for a long time. The close relationship between osteoporosis and gut microbiota (GM) has been confirmed. However, the relevance of oral TCM and the "Gut-Bone Axis" is still poorly understood. METHODS Twenty-one SPF C57BL/6J female mice were divided into sham (Sham), ovariectomized (OVX), and Zuo-Gui-Wan-treated (ZGW, 1.4 g/kg) groups. The osteoporosis mouse model was established through ovariectomy. After eight weeks of Zuo-Gui-Wan treatment via gavage, serum calcium, phosphorus, ALT, AST, CREA, and other biochemical indicators were measured. Subsequently, Micro-CT, HE staining, and analysis of gut microbiota were conducted to further explore the potential mechanism. RESULTS The anti-osteoporotic effects of ZGW were confirmed through micro-CT, histological, and biochemical tests in an OVX-induced osteoporosis mouse model. ZGW treatment also alters the diversity and composition of the gut microbiota and altered the Firmicutes/Bacteroidetes ratio. Further analysis reveals a correlation between specific bacterial groups and serum indicators. Mfuzz clustering analysis and metagenomeSeq analysis identified important microbiota species that were rescued or modulated by ZGW treatment. CONCLUSION These findings suggest that changes in gut microbiota abundance may be linked to ZGW's ability to improve osteoporosis. This study provides new insights into how ZGW treats osteoporosis, though further research is needed to clarify the mechanisms by which specific gut microbiota influence bone health.
Collapse
Affiliation(s)
- Junjie Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing University of Chinese Medicine, Chongqing, China
| | - HaomingYou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yucheng Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruxu Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianxin Ouyang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Ran
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guilong Zhang
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Huang
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
8
|
Heinämäki J, Koshovyi O, Botsula I, Shpychak A, Vo HQ, Nguyen HT, Raal A. Plant-Origin Compounds and Materials for Advancing Bone Tissue Engineering and 3D Bioprinting: Traditional Medicine Aspects and Current Perspectives. J Tissue Eng Regen Med 2025; 2025:2812191. [PMID: 40224956 PMCID: PMC11985229 DOI: 10.1155/term/2812191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/13/2024] [Indexed: 04/15/2025]
Abstract
Bone defects are becoming a true challenge in global health care due to the aging population and higher prevalence of musculoskeletal disorders. The interest in using plant-origin compounds and plant-derived biomaterials in bone tissue engineering (BTE) has been increased due to their availability (abundance), safety, biocompatibility, biodegradability, and low cost. Plant-origin compounds have supportive effects on bone tissue healing, and cell-laden plant-derived biomaterials can be applied in formulating bioinks for three-dimensional (3D) bioprinting to facilitate the preparation of native bone tissue-mimicking structures and customized bone scaffolds. Such plant-derived materials also have the capacity to improve cell viability and support osteoconductive and osteoinductive properties of a bone construct. In this article, we review the ethnomedical aspects related to the use of medicinal plants and plant-origin bioactive compounds in bone healing and the recent developments in the 3D bioprinting of bone constructs with plant-derived biomaterials for advancing BTE. The commonly used 3D-bioprinting techniques, the properties of plant-origin compounds and biomaterials (for bone 3D bioprinting), and the selective examples of bone scaffolds fabricated using plant-derived biomaterials are discussed with a special reference set on applicability, performance, advantages, limitations, and challenges. Plant-origin compounds, biomaterials, and biomimetic 3D-bioprinted constructs could be the basis for a next-generation BTE.
Collapse
Affiliation(s)
- Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
- Department of Pharmacognosy, National University of Pharmacy, Kharkiv, Ukraine
| | - Iryna Botsula
- Department of Pharmacognosy, National University of Pharmacy, Kharkiv, Ukraine
| | - Alina Shpychak
- Department of Pharmacognosy, National University of Pharmacy, Kharkiv, Ukraine
| | - Hung Quoc Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Hoai Thi Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
9
|
Zhu L, Wang Y, Zhu Z, Yao X, Zhang R, Xia Y, Liu M. Selection of the Anti-Osteoporosis Active Ingredients of Fructus Psoraleae-Eucommia-Drynariae Rhizoma Based on Solid-Phase Bio-Cell Chromatography and HPLC-MS Analysis. Food Sci Nutr 2025; 13:e4604. [PMID: 39816481 PMCID: PMC11732702 DOI: 10.1002/fsn3.4604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 10/02/2024] [Accepted: 10/27/2024] [Indexed: 01/18/2025] Open
Abstract
Osteoporosis (OP) is a prevalent metabolic bone disease globally. Currently, the development of Traditional Chinese Medicine (TCM) resources to unblock joints, strengthen bones, and enhance muscle function to regulate anti-osteogenic and anabolic metabolism and thus reshape intraosseous homeostasis was an effective way to alleviate OP. The F-E-D formula, comprising Fructus Psoraleae, Eucommia, and Drynariae Rhizoma, has shown efficacy in treating OP. However, its complex natural components necessitate the screening and simplification of bioactive compounds to further elucidate their therapeutic mechanisms and enhance therapeutic efficacy. In this study, we first used drug-target binding to produce different effects, which in turn exhibited different retention characteristics on the stationary phase. Using osteoblasts and osteoclasts as stationary phases, a chromatographic system (Solid-phase Bio-cell Chromatography, SBC) had been constructed to mimic the drug-target interaction, and the separation, analysis, and bioactivity screening of the chemical components of F-E-D had been performed. Then, the above collected eluates were analyzed by fine metabolomics, and 95 effective metabolites were initially screened and combined with database screening to finally select betaine, L-fucose, and itaconic acid as potentially active candidate compound monomers for the interaction with osteoblast-osteoclast in F-E-D. In terms of cell validation experiments, we found that the screened active monomers significantly inhibited the formation of osteoclasts, and the itaconic acid-treated group played a significant inhibitory effect on the expression of inflammatory factors TNF-α and IL-6. The above experimental data showed that the monomeric active ingredients in TCM could be effectively screened by solid-phase bio-chromatography and HPLC-MS, and the in vitro cellular experiments verified that the active monomers of TCM slowed down the progression of OP by inhibiting osteoclast production and alleviating the expression of inflammation.
Collapse
Affiliation(s)
- Liming Zhu
- Department of Osteoporosis Care and ControlXiaoshan Affiliated Hospital of Wenzhou Medical UniversityZhejiangHangzhouChina
| | - Yeqing Wang
- Department of PharmacyXiaoshan Affiliated Hospital of Wenzhou Medical UniversityZhejiangHangzhouChina
| | - Zhongxin Zhu
- Department of Osteoporosis Care and ControlXiaoshan Affiliated Hospital of Wenzhou Medical UniversityZhejiangHangzhouChina
- Department of Clinical Research CenterXiaoshan Affiliated Hospital of Wenzhou Medical UniversityZhejiangHangzhouChina
| | - Xiaocong Yao
- Department of Osteoporosis Care and ControlXiaoshan Affiliated Hospital of Wenzhou Medical UniversityZhejiangHangzhouChina
| | - Ruijuan Zhang
- Department of Research and DevelopmentZhejiang Zhongwei Medical Research CenterZhejiangHangzhouChina
| | - Yujie Xia
- Department of Research and DevelopmentZhejiang Zhongwei Medical Research CenterZhejiangHangzhouChina
| | - Minbo Liu
- Department of Osteoporosis Care and ControlXiaoshan Affiliated Hospital of Wenzhou Medical UniversityZhejiangHangzhouChina
| |
Collapse
|
10
|
Li C, Liu X, Chen X, Zhang J, Liao Y, Fan Z, Zhang X. Bu-Sui-Dan Enhances Osteoblast Differentiation by Upregulating VGLL4 to Counteract TEAD4-Mediated RUNX2 Transcription Suppression in Ovariectomized Rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118690. [PMID: 39142621 DOI: 10.1016/j.jep.2024.118690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Postmenopausal osteoporosis (PMOP) has been considered as a major causative factor for bone-joint pain and inducing pathologic fractures. Bu-Sui-Dan (BSD), a classic ancient herbal formula, has been shown to exhibit osteoprotective effects by promoting bone marrow development and bone growth. However, the exact mechanism of BSD are still unexplored. AIM OF STUDY The study aimed to investigate the protective effect of BSD against osteoporotic injury, and to explore whether BSD regulated BMSCs' osteogenic differentiation by targeting VGLL4, which in turn improved PMOP. MATERIALS AND METHODS The anti-osteoporotic effect of BSD was studied in ovariectomized (OVX) rats and bone marrow mesenchymal stem cells (BMSCs). Micro-CT imaging and HE staining were performed, and the levels of osteogenic protein RUNX2 and osteogenesis-related factor VGLL4 were determined. Co-immunoprecipitation (Co-IP) was further employed to delve into the effects of BSD on the interactions between TEAD4 and RUNX2. The key osteogenic factors 1ALP, COLl1A1, and Osterix expression were detected by RT-qPCR. Co-IP and proximity ligation assay (PLA) were employed to scrutinize the influence of BSD on TEAD4 and RUNX2 inter-binding. Moreover, VGLL4 knockdown in BMSCs was conducted to confirm the role of VGLL4 in the therapeutic mechanism of BSD. RESULTS BSD showed a dose-dependent protective effect against osteoporotic injury, as evidenced by improvement in bone volume, bone microarchitecture, and histomorphometry. Additionally, BSD treatment increased the levels of RUNX2 and its downstream target genes including ALP, COL1A1, and Osterix. Moreover, BSD upregulated VGLL4 expression and lessened TEAD4-RUNX2 interactions. In BMSCs experiment, BSD-containing serum could promote osteogenic differentiation of BMSCs, boosted the expression of osteogenesis-related factors and VGLL4 level. The knockdown of VGLL4 in BMSCs diminished the promotion effect of BSD in osteoblast differentiation, suggesting that VGLL4 play a vital role in the therapeutic effects exerted by BSD. CONCLUSION BSD ameliorated osteoporosis injury and promoted osteoblast differentiation through upregulation of VGLL4 levels, which in turn antagonized TEAD4-mediated RUNX2 transcriptional repression. Our study implied that BSD may be an osteoporosis therapeutic agent.
Collapse
Affiliation(s)
- Chao Li
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, 214000, Jiangsu, China.
| | - Xiaofeng Liu
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| | - Xi Chen
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| | - Jiayan Zhang
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| | - Yitao Liao
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| | - Zhihong Fan
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| | - Xian Zhang
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
11
|
Chen YZ, Zhou Y, Chen JL, Luo YP, Feng CZ, Fan XH. Mechanism of modified danggui buxue decoction in glucocorticoid-induced osteoporosis: A discussion based on network pharmacology and molecular docking. Heliyon 2024; 10:e37249. [PMID: 39286188 PMCID: PMC11402759 DOI: 10.1016/j.heliyon.2024.e37249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Objective Glucocorticoid-induced osteoporosis (GIOP) represents a major complication arising from the long-term use of glucocorticoids, which are widely prescribed for various inflammatory and autoimmune conditions. Despite its prevalence, the current therapeutic options for GIOP are limited in terms of efficacy, safety profiles, and patient compliance. The Modified Danggui Buxue Decoction (DGBXD), a traditional Chinese herbal formulation, has shown promise in preliminary studies for its potential osteoprotective effects. The present study aimed to explore the mechanistic underpinnings of DGBXD's action on GIOP using network pharmacology and molecular docking approaches, bridging traditional medicine with modern pharmacological insights. Method Network pharmacology is applied to screen drug-active compounds and potential core target proteins for disease treatment and to explore the drugs' therapeutic mechanisms. Result Altogether, 78 DGBXD active compounds and 223 DGBXD-related, 146 component-disease common, and 2168 GIOP-associated target genes were obtained. The PPI network had 43 nodes and 462 edges, and a total of 10 core target genes, including TP53, JUN and MAPK3, were identified. The results of the GO enrichment analysis implied that DGBXD might participate in biological activities, including responses to oxidative stress and nutrient levels. The outcomes of the KEGG pathway enrichment analysis showed that DGBXD may treat GIOP through TNF, IL-17, and phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathways. Based on to the molecular docking results, biologically active compounds (beta-carotene, formononetin, luteolin, and isorhamnetin) exhibited good binding to AKT1 and ESR1. Conclusion DGBXD may aid in GIOP treatment by modulating multiple therapeutic targets and signaling pathways.
Collapse
Affiliation(s)
- Yu-Zhou Chen
- Chengdu University of TCM, Chengdu, 610075, China
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yi Zhou
- Department of Traditional Chinese Medicine, The Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu, 611130, China
| | - Jun-Long Chen
- Department of Anorectal, The Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu, 611130, China
| | - Yi-Ping Luo
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Cheng-Zhi Feng
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiao-Hong Fan
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| |
Collapse
|
12
|
Thuong LHH, Hsu CJ, Chen HT, Kuo YH, Tang CH. Caffeic acid derivative MPMCA suppresses osteoclastogenesis and facilitates osteoclast apoptosis: implications for the treatment of bone loss disorders. Aging (Albany NY) 2024; 16:11926-11938. [PMID: 39189924 PMCID: PMC11386915 DOI: 10.18632/aging.206067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024]
Abstract
Osteoclast activity plays a crucial role in the pathological mechanisms of osteoporosis and bone remodeling. The treatment of these disorders involves the use of pharmacological medicines that work by inhibiting the activity of osteoclasts. Nevertheless, the prevalent and infrequent negative consequences of current antiresorptive and bone anabolic treatments pose significant drawbacks, hence restricting their prolonged administration in patients, particularly those who are elderly and/or suffer from many medical conditions. We are currently in the process of creating a new molecule called N-(4-methoxyphen) methyl caffeamide (MPMCA), which is a derivative of caffeic acid. This compound has shown potential in preventing the production of osteoclasts and causing existing osteoclasts to undergo cell apoptosis. Our investigation discovered that MPMCA hinders osteoclast function via suppressing the MAPK pathways. The expectation is that the findings of this study will stimulate the advancement of a novel approach to treating anti-resorption.
Collapse
Affiliation(s)
- Le Huynh Hoai Thuong
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chin-Jung Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Te Chen
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Sports Medicine, China Medical University, Taichung, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
13
|
Chen YJ, Jia LH, Han TH, Zhao ZH, Yang J, Xiao JP, Yang HJ, Yang K. Osteoporosis treatment: current drugs and future developments. Front Pharmacol 2024; 15:1456796. [PMID: 39188952 PMCID: PMC11345277 DOI: 10.3389/fphar.2024.1456796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteoporosis is a common systemic metabolic disease characterized by a decrease in bone density and bone mass, destruction of bone tissue microstructure, and increased bone fragility leading to fracture susceptibility. Pharmacological treatment of osteoporosis is the focus of current research, and anti-osteoporosis drugs usually play a role in inhibiting bone resorption, promoting bone formation, and having a dual role. However, most of the drugs have the disadvantages of single target and high toxic and side effects. There are many types of traditional Chinese medicines (TCM), from a wide range of sources and mostly plants. Herbal plants have unique advantages in regulating the relationship between osteoporosis and the immune system, acupuncture therapy has significant therapeutic effects in combination with medicine for osteoporosis. The target cells and specific molecular mechanisms of TCM in preventing and treating osteoporosis have not been fully elucidated. At present, there is a lack of comprehensive understanding of the pathological mechanism of the disease. Therefore, a better understanding of the pathological signaling pathways and key molecules involved in the pathogenesis of osteoporosis is crucial for the design of therapeutic targets and drug development. In this paper, we review the development and current status of anti-osteoporosis drugs currently in clinical application and under development to provide relevant basis and reference for drug prevention and treatment of osteoporosis, with the aim of promoting pharmacological research and new drug development.
Collapse
Affiliation(s)
- Ya-jing Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Li-hua Jia
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, China
| | - Jun-ping Xiao
- Jiangxi Prozin Pharmaceutical Co., Ltd., Jiangxi, China
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
14
|
Qian D, Zhang Q, He CX, Guo J, Huang XT, Zhao J, Zhang H, Xu C, Peng W. Hai-Honghua medicinal liquor is a reliable remedy for fracture by promotion of osteogenic differentiation via activation of PI3K/Akt pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118234. [PMID: 38670404 DOI: 10.1016/j.jep.2024.118234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/19/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hai-Honghua medicinal liquor (HHML), an external Chinese herbal formula preparation, is often applied to treat freshly closed tibia/fibular fractures, ankle fractures, and other bone-related disorders, but the related molecular mechanism is unclear. AIM OF THE STUDY To evaluate the therapeutic effect of HHML in patients with tibial/fibular and ankle fractures, and to explore its related possible mechanism. METHODS AND MATERIALS A total of 182 patients with tibia/fibular fractures and 183 patients with ankle fractures were enrolled in this study. A randomized, controlled, unblinded clinical trial was designed to evaluate the therapeutic effect of HHML on tibial/fibular and ankle fractures. The chemical compositions of HHML were analyzed by the HPLC-Q-Extractive MS/MS. Furthermore, a rat tibial fracture model was established to evaluate the therapeutic effects of HHML in promoting fracture healing, and the mouse embryonic osteoblasts cell line of MC3T3-E1 was further carried out to explore the mechanisms of HHML on osteoblast differentiation. RESULTS In the clinical evaluation, HHML treatment significantly shortened the time for pain and swelling in patients with tibial/fibular fractures (P < 0.01) and ankle fractures (P < 0.01), and the incidence of complications was significantly reduced as well. Subsequently, 116 constituents were identified from HHML via HPLC-Q-TOF-MS/MS analysis. In vivo, no obvious changes in weight were observed in HHML-treated rats. Moreover, the levels of bone formation markers (including osteocalcin (OCN), N-terminal propeptide of type I procollagen (PINP), alkaline phosphatase (ALP), calcium (Ca) and substance P) in rat serum were significantly increased in HHML-treated rats compared with model rats (P < 0.05). Micro-CT analysis showed bone mineral density (BMD), bone volume fraction (BV/TV), trabecular thickness (Tb.Th) of the HHML-treated rats were significantly increased (P < 0.05, vs. Model) while trabecular separation (Tb.Sp) and structure model index (SMI) values were significantly reduced (P < 0.05, vs. Model). Histological analysis showed that HHML treatment promoted the healing of fractures and cartilage repair, and increased the osteoblasts and collagen fibers. Furthermore, our results also revealed HHML could promote MC3T3-E1 cells proliferation and osteoblast differentiation via regulation of the runt-related transcription factor 2 (RUNX2), bone alkaline phosphatase (BALP), and OCN by activating phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which confirmed by adding PI3K chemical inhibitor of LY294002. CONCLUSION HHML treatment is a reliable remedy for fractures in tibial and ankle by promotion of osteogenic differentiation via activation of PI3K/Akt pathway.
Collapse
Affiliation(s)
- Die Qian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng-Xun He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juan Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Ting Huang
- Department of Orthopedics, Longquan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610017, China
| | - Jun Zhao
- Department of Orthopedics, Longquan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610017, China
| | - Hong Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chi Xu
- Department of Orthopedics, Longquan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610017, China.
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
15
|
Yi Q, Sun M, Jiang G, Liang P, Chang Q, Yang R. Echinacoside promotes osteogenesis and angiogenesis and inhibits osteoclast formation. Eur J Clin Invest 2024; 54:e14198. [PMID: 38501711 DOI: 10.1111/eci.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE The purpose of this research is to demonstrate echinacoside promotes osteogenesis and angiogenesis and inhibits osteoclast formation. METHODS We conducted a cell experiment in vitro to study how echinacoside affects angiogenesis, osteogenesis and osteoclast formation. We used polymerase chain reaction and Western blotting to detect the expression levels of proteins and genes related to angiogenesis, osteogenesis and osteoclast formation. We established a bone fracture model with rats to test angiogenesis, osteogenesis and osteoclast formation of echinacoside. We labelled osteogenic markers, blood vessels and osteoclastic markers in fracture sections of rats. RESULTS The in vitro cell experiments showed echinacoside improved the osteogenic activity of mouse embryo osteoblast precursor cells and promoted the migration and tube formation of human umbilical vein endothelial cells. In addition, it inhibited differentiation of mouse leukaemia cells of monocyte macrophage. Echinacoside increased the expression of related proteins and genes and improved angiogenesis and osteogenesis while inhibiting osteoclast formation by repressing the expression of related proteins and genes. From in vivo experiments, the results of IHC and HE experiments demonstrated echinacoside significantly decreased the content of MMP-9 and improved the content of VEGF and OCN. The fluorescence immunoassay showed echinacoside promoted the activities of RUNX2 and VEGF and inhibited CTSK. Echinacoside reduced the content of TNF-α, IL-1β and IL-6, thus demonstrating its anti-inflammatory activity. CONCLUSION Echinacoside improved angiogenesis and osteogenesis and inhibited osteoclast formation to promote fracture healing.
Collapse
Affiliation(s)
- Qingqing Yi
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Miaomiao Sun
- Luoxi (Shanghai) Medical Technology Co LTD, Shanghai, China
| | - Guowei Jiang
- Pharmacy Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Pengchen Liang
- School of Microelectronics, Shanghai University, Shanghai, China
| | - Qing Chang
- Institute of Digestive Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Yang
- Pathology Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
16
|
Wang X, Tang P, Yang K, Guo S, Tang Y, Zhang H, Wang Q. Regulation of bone homeostasis by traditional Chinese medicine active scaffolds and enhancement for the osteoporosis bone regeneration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118141. [PMID: 38570149 DOI: 10.1016/j.jep.2024.118141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The active ingredients of traditional Chinese medicine (TCM), such as naringin (NG), Eucommiol, isopsoralen, icariin, Astragalus polysaccharides, and chondroitin sulfate, contained in Drynariae Rhizoma, Eucommiae Cortex, Psoralea corylifolia, Herba Epimedii, Astragalus radix and deer antler, are considered promising candidates for enhancing the healing of osteoporotic defects due to their outstanding bone homeostasis regulating properties. They are commonly used to activate bone repair scaffolds. AIM OF THE REVIEW Bone repair scaffolds are inadequate to meet the demands of osteoporotic defect healing due to the lack of regulation of bone homeostasis. Therefore, selecting bone scaffolds activated with TCM to improve the therapeutic effect of repairing osteoporotic bone defects. MATERIALS AND METHODS To gather information on bone scaffold activated by traditional Chinese medicine, we conducted a thorough search of several scientific databases, including Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed, and China National Knowledge Infrastructure (CNKI). RESULTS This review discusses the mechanism of TCM active ingredients in regulating bone homeostasis, including stimulating bone formation and inhibiting bone resorption process and the healing mechanism of traditional bone repair scaffolds activated by them for osteoporotic defect healing. CONCLUSION In general, the introduction of TCM active ingredients provides a novel therapeutic approach for modulating bone homeostasis and facilitating osteoporotic defect healing, and also offers a new strategy for design of other unconventional bone defect healing materials.
Collapse
Affiliation(s)
- Xi Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Pengfei Tang
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China
| | - Kun Yang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Shuangquan Guo
- Chengdu Holy (Group) Industry Co. Ltd., Chengdu, 610041, China
| | - Youhong Tang
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China; Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
17
|
Li H, Guan Z, Wei L, Lu J, Tan Y, Wei Q. In situ co-deposition synthesis for collagen-Astragalus polysaccharide composite with intrafibrillar mineralization as potential biomimetic-bone repair materials. Regen Biomater 2024; 11:rbae070. [PMID: 39022124 PMCID: PMC11254354 DOI: 10.1093/rb/rbae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 07/20/2024] Open
Abstract
A hybrid material possessing both componential and structural imitation of bone tissue is the preferable composites for bone defect repair. Inspired by the microarchitecture of native bone, this work synthesized in vitro a functional mineralized collagen fibril (MCF) material by utilizing the method of in situ co-precipitation, which was designed to proceed in the presence of Astragalus polysaccharide (APS), thus achieving APS load within the biomineralized collagen-Astragalus polysaccharide (MCAPS) fibrils. Transmission electron microscope (TEM), selected area electron diffraction (SAED) and scanning electronic microscopy (SEM) identified the details of the intrafibrillar mineralization of the MCAPS fibrils, almost mimicking the secondary level of bone tissue microstructure. A relatively uniform and continuous mineral layer formed on and within all collagen fibrils and the mineral phase was identified as typical weak-crystalline hydroxyapatite (HA) with a Ca/P ratio of about 1.53. The proliferation of bone marrow-derived mesenchymal stem cells (BMSC) and mouse embryo osteoblast precursor cells (MC3T3-E1) obtained a significant promotion by MCAPS. As for the osteogenic properties of MCAPS, a distinct increase in the alkaline phosphatase (ALP) activity and the number of calcium nodules (CN) in BMSC and MC3T3-E1 was detected. The up-regulation of three osteogenic-related genes of RUNX-2, BMP-2 and OCN were confirmed via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to further verify the osteogenic performance promotion of MCAPS. A period of 14 days of culture demonstrated that MCAPS-L exhibited a preferable efficacy in enhancing ALP activity and CN quantity, as well as in promoting the expression of osteogenic-related genes over MCAPS-M and MCAPS-H, indicating that a lower dose of APS within the material of MCAPS is more appropriate for its osteogenesis promotion properties.
Collapse
Affiliation(s)
- Han Li
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Ziying Guan
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Liren Wei
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jian Lu
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yanfei Tan
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Qingrong Wei
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
18
|
Wang L, Huang X, Qin J, Qi B, Sun C, Guo X, Liu Q, Liu Y, Ma Y, Wei X, Zhang Y. The Role of Traditional Chinese Medicines in the Treatment of Osteoporosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:949-986. [PMID: 38879748 DOI: 10.1142/s0192415x24500393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Osteoporosis (OP) represents a substantial public health issue and is associated with increasing rates of morbidity and mortality. It is characterized by reduced bone mineral density, deterioration of bone tissue quality, disruption of the microarchitecture of bones, and compromised bone strength. These changes may be attributed to the following factors: intercellular communication between osteoblasts and osteoclasts; imbalanced bone remodeling; imbalances between osteogenesis and adipogenesis; imbalances in hormonal regulation; angiogenesis; chronic inflammation; oxidative stress; and intestinal microbiota imbalances. Treating a single aspect of the disease is insufficient to address its multifaceted nature. In recent decades, traditional Chinese medicine (TCM) has shown great potential in the treatment of OP, and the therapeutic effects of Chinese patent drugs and Chinese medicinal herbs have been scientifically proven. TCMs, which contain multiple components, can target the diverse pathogeneses of OP through a multitargeted approach. Herbs such as XLGB, JTG, GSB, Yinyanghuo, Gusuibu, Buguzhi, and Nvzhenzi are among the TCMs that can be used to treat OP and have demonstrated promising effects in this context. They exert their therapeutic effects by targeting various pathways involved in bone metabolism. These TCMs balance the activity of osteoblasts (bone-forming cells) and osteoclasts (bone-resorbing cells), and they exhibit anti-inflammatory, immunomodulatory, anti-oxidative, and estrogen-like functions. These multifaceted mechanisms underlie the efficacy of these herbs in the management and treatment of OP. Herein, we examine the efficacy of various Chinese herbs and Chinese patent drugs in treating OP by reviewing previous clinical trials and basic experiments, and we examine the potential mechanism of these therapies to provide evidence regarding the use of TCM for treating OP.
Collapse
Affiliation(s)
- Liang Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xinyi Huang
- School of Public Health, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jinran Qin
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P. R. China
| | - Chuanrui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P. R. China
| | - Xiangyun Guo
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Qingqing Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yichen Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yong Ma
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, P. R. China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P. R. China
- Institute of Orthopaedics of Beijing Integrative Medicine, Beijing 100061, P. R. China
| | - Yili Zhang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
19
|
Sun H, Qi Q, Pan X, Zhou J, Wang J, Li L, Li D, Wang L. Bu-Shen-Ning-Xin decoction inhibits macrophage activation to ameliorate premature ovarian insufficiency-related osteoimmune disorder via FSH/FSHR pathway. Drug Discov Ther 2024; 18:106-116. [PMID: 38631868 DOI: 10.5582/ddt.2024.01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Limited studies are associated with premature ovarian insufficiency (POI)-related osteoimmune disorder currently. Bu-Shen-Ning-Xin decoction (BSNXD) displayed a favorable role in treating postmenopausal osteoporosis. However, its impact on the POI-related osteoimmune disorder remains unclear. The study primarily utilized animal experiments and network pharmacology to investigate the effects and underlying mechanisms of BSNXD on the POI-related osteoimmune disorder. First, a 4-vinylcyclohexene dioxide (VCD)-induced POI murine model was conducted to explore the therapeutical action of BSNXD. Second, we analyzed the active compounds of BSNXD and predicted their potential mechanisms for POI-related osteoimmune disorder via network pharmacology, further confirmed by molecular biology experiments. The results demonstrated that VCD exposure led to elevated follicle-stimulating hormone (FSH) levels, a 50% reduction in the primordial follicles, bone microstructure changes, and macrophage activation, indicating an osteoimmune disorder. BSNXD inhibited macrophage activation and osteoclast differentiation but did not affect serum FSH and estradiol levels in the VCD-induced POI model. Network pharmacology predicted the potential mechanisms of BSNXD against the POI-related osteoimmune disorder involving tumor necrosis factor α and MAPK signaling pathways, highlighting BSNXD regulated inflammation, hormone, and osteoclast differentiation. Further experiments identified BSNXD treatment suppressed macrophage activation via downregulating FSH receptor (FSHR) expression and inhibiting the phosphorylation of ERK and CCAAT enhancer binding proteins β. In conclusion, BSNXD regulated POI-related osteoimmune disorder by suppressing the FSH/FSHR pathway to reduce macrophage activation and further inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
- Hongmei Sun
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
- Hexi University, Zhangye, Gansu, China
| | - Qing Qi
- Wuhan Business University, Wuhan, Hubei, China
| | - Xinyao Pan
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Dajing Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
20
|
Liu YC, Chung CH, Lin CJ, Su SC, Kuo FC, Liu JS, Li PF, Huang CL, Ho LJ, Chang CY, Lin MS, Lin CP, Cheng AC, Lee CH, Hsieh CH, Hung YJ, Liu HY, Lu CH, Chien WC. The role of traditional Chinese medicine on fracture surgery, hospitalization, and total mortality risks in diabetic patients with osteoporosis. PLoS One 2024; 19:e0289455. [PMID: 38696479 PMCID: PMC11065294 DOI: 10.1371/journal.pone.0289455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Studies have confirmed that osteoporosis has been considered as one of the complications of diabetes, and the health hazards to patients are more obvious. This study is mainly based on the Taiwan National Health Insurance Database (TNHID). Through the analysis of TNHID, it is shown that the combined treatment of traditional Chinese medicine (TCM) medicine in patients of diabetes with osteoporosis (T2DOP) with lower related risks. METHODS According to the study design, 3131 patients selected from TNHID who received TCM treatment were matched by 1-fold propensity score according to gender, age, and inclusion date as the control group. Cox proportional hazards analyzes were performed to compare fracture surgery, hospitalization, and all-cause mortality during a mean follow-up from 2000 to 2015. RESULTS A total of 1055/1469/715 subjects (16.85%/23.46%/11.42%) had fracture surgery/inpatient/all-cause mortality of which 433/624/318 (13.83%/19.93%/10.16%) were in the TCM group) and 622/845/397 (19.87%/26.99%/12.68%) in the control group. Cox proportional hazards regression analysis showed that subjects in the TCM group had lower rates of fracture surgery, inpatient and all-cause mortality (adjusted HR = 0.467; 95% CI = 0.225-0.680, P<0.001; adjusted HR = 0.556; 95% CI = 0.330-0.751, P<0.001; adjusted HR = 0.704; 95% CI = 0.476-0.923, P = 0.012). Kaplan-Meier analysis showed that the cumulative risk of fracture surgery, inpatient and all-cause mortality was significantly different between the case and control groups (all log-rank p<0.001). CONCLUSION This study provides longitudinal evidence through a cohort study of the value of integrated TCM for T2DOP. More research is needed to fully understand the clinical significance of these results.
Collapse
Affiliation(s)
- Yi-Chen Liu
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan, ROC
| | - Chien-Jung Lin
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Sheng-Chiang Su
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Feng-Chih Kuo
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Jhih-Syuan Liu
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Peng-Fei Li
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chia-Luen Huang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Li-Ju Ho
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chun-Yung Chang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, ROC
| | - Ming-Shiun Lin
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chih-Ping Lin
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - An-Che Cheng
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chien-Hsing Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chang-Hsun Hsieh
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Jen Hung
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsin-Ya Liu
- BeYoung Research Institute, Taipei, Taiwan, ROC
| | - Chieh-Hua Lu
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan, ROC
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
21
|
Li Y, Chen Q, Sun HJ, Zhang JH, Liu X. The Active Ingredient Catalpol in Rehmannia glutinosa Reduces Blood Glucose in Diabetic Rats via the AMPK Pathway. Diabetes Metab Syndr Obes 2024; 17:1761-1767. [PMID: 38645660 PMCID: PMC11032140 DOI: 10.2147/dmso.s446318] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) poses a huge threat to population health globally, and more drugs need to be explored for treatment. In this study, we investigated the mechanism of active ingredient catalpol in Rehmannia glutinosa on reduces blood glucose in diabetic. Methods The T2DM model was constructed by intraperitoneal injection of streptozotocin into Sprague-Dawley (SD) rats, which were randomly grouped into diabetes model group, pioglitazone group, Rehmannia glutinosa group, catalpol high-dose group, catalpol low-dose group and normal control group.The intervention was continued for 28 d, and changes in body weight, fasting blood glucose, insulin and lipid levels were observed. Results Of all the drugs, pioglitazone had the most pronounced hypoglycemic effect, which began to decline after 2 weeks of treatment in the low-dose catalpol group and had no hypoglycemic effect in the high-dose catalpol group. Among them, Rehmannia glutinosa was able to increase serum triglyceride level, and pioglitazone effectively reduced total cholesterol level in rats. The low dose of catalpol decreased the concentration of low-density lipoprotein cholesterol (LDL), while the high dose of catalpol increased the concentration of LDL. Conclusion As an active ingredient in Rehmannia glutinosa, catalpol has the potential to lower blood glucose and improve blood lipids in diabetes treatment, and its action may be achieved by regulating the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, which provides a new idea for the development of new diabetes therapeutic approaches.
Collapse
Affiliation(s)
- Yang Li
- Pharmaceutical Preparation Section, the Fourth Central Hospital of Tianjin, Tianjin, People’s Republic of China
| | - Qiang Chen
- Pharmaceutical Preparation Section, the Fourth Central Hospital of Tianjin, Tianjin, People’s Republic of China
| | - Hong-Juan Sun
- Pharmaceutical Preparation Section, the Fourth Central Hospital of Tianjin, Tianjin, People’s Republic of China
| | - Jian-Hong Zhang
- Pharmaceutical Preparation Section, the Fourth Central Hospital of Tianjin, Tianjin, People’s Republic of China
| | - Xuan Liu
- Pharmaceutical Preparation Section, the Fourth Central Hospital of Tianjin, Tianjin, People’s Republic of China
| |
Collapse
|
22
|
Cao G, Hu S, Ning Y, Dou X, Ding C, Wang L, Wang Z, Sang X, Yang Q, Shi J, Hao M, Han X. Traditional Chinese medicine in osteoporosis: from pathogenesis to potential activity. Front Pharmacol 2024; 15:1370900. [PMID: 38628648 PMCID: PMC11019011 DOI: 10.3389/fphar.2024.1370900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Osteoporosis characterized by decreased bone density and mass, is a systemic bone disease with the destruction of microstructure and increase in fragility. Osteoporosis is attributed to multiple causes, including aging, inflammation, diabetes mellitus, and other factors induced by the adverse effects of medications. Without treatment, osteoporosis will further progress and bring great trouble to human life. Due to the various causes, the treatment of osteoporosis is mainly aimed at improving bone metabolism, inhibiting bone resorption, and promoting bone formation. Although the currently approved drugs can reduce the risk of fragility fractures in individuals, a single drug has limitations in terms of safety and effectiveness. By contrast, traditional Chinese medicine (TCM), a characteristic discipline in China, including syndrome differentiation, Chinese medicine prescription, and active ingredients, shows unique advantages in the treatment of osteoporosis and has received attention all over the world. Therefore, this review summarized the pathogenic factors, pathogenesis, therapy limitations, and advantages of TCM, aiming at providing new ideas for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Gang Cao
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - ShaoQi Hu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiangnan Shi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
23
|
Xie L, Song X, Lei L, Chen C, Zhao H, Hu J, Yu Y, Bai X, Wu X, Li X, Yang X, Yuan B, Li D, Zhu X, Zhang X. Exploring the potential mechanism of Heng-Gu-Gu-Shang-Yu-He-Ji therapy for osteoporosis based on network pharmacology and transcriptomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117480. [PMID: 37995823 DOI: 10.1016/j.jep.2023.117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Heng-Gu-Gu-Shang-Yu-He-Ji (Osteoking, OK) is a well-known formula for fracture therapy. In clinic, OK is effective in treating fractures while alleviating osteoporosis (OP) symptoms. However, active components of OK and the associated molecular mechanisms remain not fully elucidated. AIM OF THE STUDY This study aims to systematically evaluate the anti-osteoporosis efficacy of OK and for the first time combine network pharmacology with high-throughput whole gene transcriptome sequencing to study its underlying mechanism. MATERIALS AND METHODS In this study, the osteoporosis model was established by the castration of both ovaries. The level of serum bone turnover factor was detected by enzyme-linked immunosorbent assay. Micro-CT and HE staining were used to observe the changes of bone histopathology, and nano-indentation technique was used to detect the biomechanical properties of rat bone. The main active Chemical components of OK were identified using UPLC-DAD. Efficacy verification and mechanism exploration were conducted by network pharmacology, molecular docking, whole gene transcriptomics and in vivo experiments. RESULTS In our study, OK significantly improved bone microarchitecture and bone biomechanical parameters in OVX rats, reduced osteoclast indexes such as C-telopeptide of type I collage (CTX-I) and increased Osteoprotegerin (OPG)/Receptor activator of NF-κB ligand (RANKL) levels. Mechanistically, PI3K/AKT pathway was a common pathway for genome enrichment analysis (KEGG) of both network pharmacology and RNA-seq studies. G protein-β-like protein (GβL), Ribosomal-protein S6 kinase homolog 2 (S6K2), and Phosphoinositide 3-kinase (PI3K) appeared differentially expression in the PI3K-AKT signaling pathway. These results were also confirmed by qRT-PCR and immunohistochemistry. CONCLUSIONS OK may be used to treat osteoporosis, at least partly by activating PI3K/AKT/mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Linbi Xie
- Chengdu University of Traditional Chinese Medicine (TCM) School of Pharmacy, Chengdu, 610041, China; Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Xu Song
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610041, China
| | - Ling Lei
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Huan Zhao
- Chengdu University of Traditional Chinese Medicine (TCM) School of Pharmacy, Chengdu, 610041, China
| | - Jingyi Hu
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yue Yu
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Xiaolu Bai
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Xia Wu
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials & School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials & School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Bo Yuan
- National Engineering Research Center for Biomaterials & School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Dongxiao Li
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials & School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials & School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
24
|
Yang S, Zhang X, Liao X, Ding Y, Gan J. Icariin regulates RANKL-induced osteoclast differentiation via the ER α/ c-Src/RANK signaling. Biomed Mater 2024; 19:025049. [PMID: 38415738 DOI: 10.1088/1748-605x/ad2554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Osteoporosis (OP) is a common metabolic bone disease. Excessive osteoclastic activity significantly contributes to the development of OP. Icariin (ICA) is a flavonol glycoside derived from herbal plants and possesses curative effects on postmenopausal OP and bone fracture. This study aimed to investigate the effects of ICA on osteoclast differentiation induced by receptor activator of nuclear factor kappa B (RANK) ligand (RANKL) and the involvement of estrogen receptorα(ERα) and RANK signaling cascade in this process. RANKL was used to induce the differentiation of RAW264.7 cells to into osteoclasts. Small interfering RNA technique was used to knockdown ERαin cells. Cell counting kit-8 assay was performed to determine the cytotoxicity of ICA. The number of tartrate-resistant acid phosphatase (TRAP)-positive cells was quantified by TRAP staining. RANKL induced the differentiation of RAW264.7 cells into osteoclasts, while ICA abolished the pro-osteoporotic effect of RANKL. Moreover, ERαknockdown abolished the effects of ICA on RANKL-induced osteoclastogenesis. Further exploration revealed that ICA inhibited the phosphorylation ofc-Src in osteoclasts via regulating ERα, while inactivation ofc-Src reversed ERαknockdown-promoted osteoclastogenesis. Lastly, ICA inhibited the activation of the mitogen-activated protein kinase signaling pathway and downregulated the expressions of target osteoclastogenic proteins in RANKL-treated RAW 264.7 cells, while ERαknockdown almost completely diminished the effects of ICA. ICA inhibited RANKL-induced osteoclast differentiation via regulating the ERα/c-Src/RANK signaling. These findings elucidated a novel mechanism by which ICA exerts an anti-osteoporotic effect.
Collapse
Affiliation(s)
- Shaolin Yang
- Department of Pharmacy, Jiujiang University Affiliated Hospital, Jiujiang 332000, People's Republic of China
| | - Xiaocui Zhang
- Department of Otolaryngology-Head and Neck Surgery, Jiujiang University Affiliated Hospital, Jiujiang 332000, People's Republic of China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People's Hospital, Ganzhou 341000, People's Republic of China
| | - Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou 341000, People's Republic of China
| | - Juwen Gan
- Department of Pulmonary and Critical Care Medicine, Ganzhou People's Hospital Ganzhou People's Hospital, Ganzhou 341000, People's Republic of China
| |
Collapse
|
25
|
Li P, Wang Y, Yan Q, Yang Y, Zhu R, Ma J, Chen Y, Liu H, Zhang Z. Fructus Ligustri Lucidi inhibits ferroptosis in ovariectomy‑induced osteoporosis in rats via the Nrf2/HO‑1 signaling pathway. Biomed Rep 2024; 20:27. [PMID: 38259585 PMCID: PMC10801352 DOI: 10.3892/br.2023.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 01/24/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) has increased in prevalence in recent years, thus researchers have evaluated alternative medicine therapies. Fructus Ligustri Lucidi (FLL) can inhibit bone loss, and ferroptosis serves an important role in osteoporosis. Therefore, the present study assessed the presence of ferroptosis in PMOP and whether FLL could inhibit ferroptosis to improve bone microstructure in ovariectomized rats. Ovariectomized rats were treated with FLL (1.56 g/kg/day) for 12 weeks. Micro-CT was performed to evaluate the bone microstructure and bone mineral density. Western blotting and reverse transcription-quantitative PCR were performed to assess the relative expression levels of proteins and mRNA. Subsequently, malondialdehyde (MDA) and Fe2+ assay kits were used to quantify the MDA and Fe2+ content, respectively. The results demonstrated that ovariectomy (OVX) resulted in iron overload and the accumulation of lipid peroxide. Furthermore, the expression of key factors that inhibited ferroptosis, glutathione peroxidase 4 and solute carrier family 7 member 11 was significantly downregulated in ovariectomized rats, which was significantly reversed by FLL treatment. Furthermore, bone formation was assessed using the expression of osteogenesis-related genes, runt-related transcription factor 2 and osterix, which revealed significantly higher levels in FLL-treated rats compared with ovariectomized rats. The levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were also significantly recovered following FLL treatment. In the present study, OVX of postmenopausal osteoporotic rats was found to induce ferroptosis by enhancing lipid peroxidation and Fe2+ levels. FLL significantly suppressed ferroptosis, protected the osteogenic ability of ovariectomized rats and promoted the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Pei Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yuhan Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Ying Yang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Ruyuan Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Jiayi Ma
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yanjing Chen
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Haixia Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Zhiguo Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| |
Collapse
|
26
|
REN P, WANG Q, BAI W, SUN M, LIU Z, GAO M, WANG L, PENG B, XU L. Identifying the effective combination of acupuncture and traditional Chinese medicinal herbs for postmenopausal osteoporosis therapy through studies of their molecular regulation of bone homeostasis. J TRADIT CHIN MED 2024; 44:212-219. [PMID: 38213257 PMCID: PMC10774716 DOI: 10.19852/j.cnki.jtcm.20230904.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/08/2023] [Indexed: 01/13/2024]
Abstract
Worldwide, as the population age, osteoporosis is becoming increasingly common, and osteoporotic fractures have a significant economic burden. Postmenopausal women are the most susceptible to developing osteoporosis and the most critical time to prevent it is during the perimenopausal and early menopausal years. In this regard, we hypothesize rational combination of acupuncture and Traditional Chinese Medicine (TCM) in the form of herbal extract could prevent osteoporosis in women. Estrogen deficiency during menopause causes low-level inflammation that stimulates the formation of osteoclasts, the bone-resorbing cells, and simultaneously inhibits the viability and function of osteoblasts, the bone-forming cells. The most potent inflammatory cytokine in skeletal homeostasis is the receptor activator of nuclear factor kappa B ligand (RANKL) that stimulates osteoclast function. Conversely, the canonical Wnt pathway is essential for osteoblastogenesis and bone formation, and estrogen deficiency leads to diminished functioning of this pathway. TCM and acupuncture could target the RANKL and the Wnt pathway in favorable ways to prevent the accelerated bone loss experienced during the early menopausal stage and promote the gain in bone mass in postmenopausal women. In this review, we propose a rational combination of specific TCM and acupuncture targeting those signaling molecules/pathways by the drugs that are in clinical use for the treatment of postmenopausal osteoporosis. Our rational approach revealed that Danshen (Radix Salviae Miltiorrhizae) could exert a synergistic effect with acupuncture. We then propose a translational path for developing the putative combination in women with postmenopausal osteoporosis to curtail the risk of osteoporotic fractures.
Collapse
Affiliation(s)
- Ping REN
- 1 Department of Health Management, the Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130117, China
| | - Quanwu WANG
- 2 Department of Dirty Tuina, the affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China
| | - Wei BAI
- 3 Department of Acupuncture, the affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China
| | - Miao SUN
- 4 Department of Rehabilitation Medicine, the 924th Hospital of the PLA Joint Logistic Support Force, Foshan 528226, China
| | - Zheling LIU
- 5 Department of College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ming GAO
- 5 Department of College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Liang WANG
- 5 Department of College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Bo PENG
- 5 Department of College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Liguang XU
- 3 Department of Acupuncture, the affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
27
|
Zhang L, Li J, Xie R, Zeng L, Chen W, Li H. Osteoporosis guidelines on TCM drug therapies: a systematic quality evaluation and content analysis. Front Endocrinol (Lausanne) 2024; 14:1276631. [PMID: 38317713 PMCID: PMC10839061 DOI: 10.3389/fendo.2023.1276631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE The aims of this study were to evaluate the quality of osteoporosis guidelines on traditional Chinese medicine (TCM) drug therapies and to analyze the specific recommendations of these guidelines. METHODS We systematically collected guidelines, evaluated the quality of the guidelines using the Appraisal of Guidelines Research and Evaluation (AGREE) II tool, and summarized the recommendations of TCM drug therapies using the Patient-Intervention-Comparator-Outcome (PICO) model as the analysis framework. RESULTS AND CONCLUSIONS A total of 20 guidelines were included. Overall quality evaluation results revealed that four guidelines were at level A, four at level B, and 12 at level C, whose quality needed to be improved in the domains of "stakeholder involvement", "rigor of development", "applicability" and "editorial independence". Stratified analysis suggested that the post-2020 guidelines were significantly better than those published before 2020 in the domains of "scope and purpose", "stakeholder involvement" and "editorial independence". Guidelines with evidence systems were significantly better than those without evidence systems in terms of "stakeholder involvement", "rigor of development", "clarity of presentation" and "applicability". The guidelines recommended TCM drug therapies for patients with osteopenia, osteoporosis and osteoporotic fracture. Recommended TCM drugs were mainly Chinese patent medicine alone or combined with Western medicine, with the outcome mainly focused on improving bone mineral density (BMD).
Collapse
Affiliation(s)
- Luan Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Runsheng Xie
- Research Team of Chinese Medicine Standardization, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Team of Chinese Medicine Standardization, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lingfeng Zeng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjia Chen
- Research Team of Chinese Medicine Standardization, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Team of Chinese Medicine Standardization, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hui Li
- Research Team of Chinese Medicine Standardization, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Team of Chinese Medicine Standardization, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
28
|
Zhang S, Liu Y, Ma Z, Gao S, Chen L, Zhong H, Zhang C, Li T, Chen W, Zhang Y, Lin N. Osteoking promotes bone formation and bone defect repair through ZBP1-STAT1-PKR-MLKL-mediated necroptosis. Chin Med 2024; 19:13. [PMID: 38238785 PMCID: PMC10797925 DOI: 10.1186/s13020-024-00883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Osteoking has been used for fracture therapy with a satisfying clinical efficacy. However, its therapeutic properties and the underlying mechanisms remain elusive. METHOD A bone defect rat model was established to evaluate the pharmacological effects of Osteoking by the dynamic observation of X-ray, micro-CT and histopathologic examination. Transcriptome profiling was performed to identify bone defect-related genes and Osteoking effective targets. Then, a "disease-related gene-drug target" interaction network was constructed and a list of key network targets were screened, which were experimentally verified. RESULTS Osteoking effectively promoted bone defect repair in rats by accelerating the repair of cortical bone and the growth of trabeculae. Histopathologically, the bone defect rats displayed lower histopathologic scores in cortical bone, cancellous bone and bone connection than normal controls. In contrast, Osteoking exerted a favorable effect with a dose-dependent manner. The abnormal serum levels of bone turnover markers, bone growth factors and bone metabolism-related biochemical indexes in bone defect rats were also reversed by Osteoking treatment. Following the transcriptome-based network investigation, we hypothesized that osteoking might attenuate the levels of ZBP1-STAT1-PKR-MLKL-mediated necroptosis involved into bone defect. Experimentally, the expression levels of ZBP1, STAT1, PKR and the hallmark inflammatory cytokines for the end of necroptosis were distinctly elevated in bone defect rats, but were all effectively reversed by Osteoking treatment, which were also suppressed the activities of RIPK1, RIPK3 and MLKL in bone tissue supernatants. CONCLUSIONS Osteoking may promote bone formation and bone defect repair by regulating ZBP1-STAT1-PKR axis, leading to inhibit RIPK1/RIPK3/MLKL activation-mediated necroptosis.
Collapse
Affiliation(s)
- Suya Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Yudong Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Zhaochen Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Shuangrong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Lin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Honggang Zhong
- BioMechanics Lab, Wang Jing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100010, China
| | - Chu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Tao Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Weiheng Chen
- Third Affiliated Hospital of Beijing University of Chinese Medicine, No. 51 Anwai Xiaoguanjie, Chaoyang District, Beijing, 100029, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Na Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405, China.
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
29
|
Zhang W, Yang F, Yan Q, Li J, Zhang X, Jiang Y, Dai J. Hypoxia inducible factor-1α related mechanism and TCM intervention in process of early fracture healing. CHINESE HERBAL MEDICINES 2024; 16:56-69. [PMID: 38375046 PMCID: PMC10874770 DOI: 10.1016/j.chmed.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 02/21/2024] Open
Abstract
As a common clinical disease, fracture is often accompanied by pain, swelling, bleeding as well as other symptoms and has a high disability rate, even threatening life, seriously endangering patients' physical and psychological health and quality of life. Medical practitioners take many strategies for the treatment of fracture healing, including Traditional Chinese Medicine (TCM). In the early stage of fracture healing, the local fracture is often in a state of hypoxia, accompanied by the expression of hypoxia inducible factor-1α (HIF-1α), which is beneficial to wound healing. Through literature mining, we thought that hypoxia, HIF-1α and downstream factors affected the mechanism of fracture healing, as well as dominated this process. Therefore, we reviewed the local characteristics and related signaling pathways involved in the fracture healing process and summarized the intervention of TCM on these mechanisms, in order to inspirit the new strategy for fracture healing, as well as elaborate on the possible principles of TCM in treating fractures based on the HIF molecular mechanism.
Collapse
Affiliation(s)
- Wenxian Zhang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Fusen Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qikai Yan
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Jiahui Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaogang Zhang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Yiwei Jiang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
30
|
Li C, Lin X, Lin Q, Lin Y, Lin H. Jiangu granules ameliorate postmenopausal osteoporosis via rectifying bone homeostasis imbalance: A network pharmacology analysis based on multi-omics validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155137. [PMID: 37856991 DOI: 10.1016/j.phymed.2023.155137] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a series of reactions to bone homeostasis dysregulation mediated by estrogen deficiency in elderly women. Jiangu granules, a traditional Chinese medicine formula, has been proven as an effective treatment approach for PMOP, which still needs more research iin its complex regulatory mechanisms. PURPOSE Our study aimed to identify the putative targets and regulatory mechanisms of Jiangu granules in PMOP treating. METHODS We utilized the NHANES database to compare the clinical information of normal population and PMOP patients. Associated with transcriptomics and proteomic data, we identified the PMOP-related genes, and further studied them with bioinformatic methods including and prognosis model. Network pharmacology was applied for confirming the action targets of Jiangu granules in PMOP. We verified the safety and effectiveness in PMOP treatments of Jiangu granules, and also demonstrated our hypothesis in rats. RESULTS We discovered that the PMOP patients had higher monocytes than the normal women. Moreover, the transcriptomics and proteomic analysis suggested that the dysregulation of PMOP-related genes expression was associated with monocytes, and the Notch pathway were the critical targets representing bone homeostasis imbalance highly involved in the occurrence of PMOP. We also ascertained network pharmacology results further revealing that Jiangu granules might treat PMOP via recovering the bone homeostasis imbalance identified above. In vivo experiments, we confirmed the high efficacy which mainly resulted from function in mitigating the imbalance in bone homeostasis by recovering the normal expression of PMOP-related genes associated with monocytes, Notch, and steroid pathway in the rat models. CONCLUSION Our finding underscored the clinical potential of Jiangu granules in treating PMOP, and enriched the comprehension of the related pathogenic and therapeutic mechanisms.
Collapse
Affiliation(s)
- Chaoxiong Li
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China; Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma(2020Y2014), Fuzhou, China; The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xiangquan Lin
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China; Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma(2020Y2014), Fuzhou, China; The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Qin Lin
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China; Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma(2020Y2014), Fuzhou, China; The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yanping Lin
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haiming Lin
- College of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, 1st Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, Fujian, China.
| |
Collapse
|
31
|
Li H, Lin D, Lin H, Liu M, Lu G. Efficacy of Danshen injection combined with Calcitriol and Calcium/Vitamin-D for the treatment of osteoporotic fractures: A retrospective case-control study. Pak J Med Sci 2024; 40:291-296. [PMID: 38356835 PMCID: PMC10862428 DOI: 10.12669/pjms.40.3.8513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/01/2023] [Accepted: 10/15/2023] [Indexed: 02/16/2024] Open
Abstract
Objective To explore the efficacy of Danshen injection combined with calcitriol and calcium/Vitamin-D in the treatment of osteoporotic fractures. Methods This was a case-control study. We retrospectively reviewed clinical data of 91 patients with osteoporotic fractures who received treatment in Rui'an People's Hospital from February 2021 to July 2022. The data were divided into a control group with 44 records of patients who received treatment with calcitriol and calcium/Vitamin-D, and a study group with 47 patients who received Danshen injection combined with calcitriol and calcium/Vitamin-D. The control group individuals were coordinated with the patients in terms of their age and gender. Treatment effects, inflammatory response levels, and bone metabolic status levels were comparable between the two groups before and after the treatment. Results The total efficacy of the treatment in the study group was better than that in the control group (P<0.05). After the treatment, levels of serum inflammatory factors in both groups decreased compared to those before the treatment, and the study group displayed lower levels than the control group (P<0.05). After the treatment, the bone metabolism status of both groups improved, and the improvement effect of the study group was better (P<0.05). The incidences of adverse reactions were similar in both groups (P>0.05). Conclusions Danshen injection combined with calcitriol and calcium/Vitamin-D for the treatment of osteoporotic fractures can effectively reduce inflammation, regulate bone metabolism, and improve fracture treatment efficacy with a favorable safety profile.
Collapse
Affiliation(s)
- Huihui Li
- Huihui Li, Department of Orthopedics and Traumatology of TCM, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325200, P.R. China
| | - Dinghua Lin
- Dinghua Lin Department of Orthopedics and Traumatology of TCM, Rui An Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang Province 325200, P.R. China
| | - Hongxin Lin
- Hongxin Lin, Department of Orthopedics and Traumatology of TCM The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325200, P.R. China
| | - Min Liu
- Min Liu, Department of Joint surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325200, P.R. China
| | - Guangqian Lu
- Guangqian Lu, Department of Orthopedics and Traumatology of TCM, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325200, P.R. China
| |
Collapse
|
32
|
Chen Q, Wang Y, Shi C, Tong M, Sun H, Dong M, Liu S, Wang L. Molecular Mechanism of the Asarum-Angelica Drug Pair in the Treatment of Periodontitis Based on Network Pharmacology and Experimental Verification. Int J Mol Sci 2023; 24:17389. [PMID: 38139216 PMCID: PMC10744231 DOI: 10.3390/ijms242417389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
(1) To examine the potential mechanism of the Asarum-Angelica drug pair against periodontitis and provide an experimental basis for the treatment of periodontitis with herbal medicine. (2) The core components and core targets of the Asarum-Angelica drug pair in the treatment of periodontitis were detected according to network pharmacology methods. Finally, the effect of the Asarum-Angelica drug pair on osteogenic differentiation was observed in mouse embryonic osteoblast precursor cells. (3) According to the results of network pharmacology, there are 10 potential active ingredients in the Asarum-Angelica drug pair, and 44 potential targets were obtained by mapping the targets with periodontitis treatment. Ten potential active ingredients, such as kaempferol and β-sitosterol, may play a role in treating periodontitis. Cell experiments showed that the Asarum-Angelica drug pair can effectively promote the expression of osteoblast markers alkaline phosphatase (ALP), Runt-related Transcription Factor 2 (RUNX2), and BCL2 mRNA and protein in an inflammatory environment (p < 0.05). (4) Network pharmacology effectively analyzed the molecular mechanism of Asarum-Angelica in the treatment of periodontitis, and the Asarum-Angelica drug pair can promote the differentiation of osteoblasts.
Collapse
Affiliation(s)
- Qianyang Chen
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian 116044, China
| | - Yuhan Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
| | - Chun Shi
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian 116044, China
| | - Meichen Tong
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian 116044, China
| | - Haibo Sun
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian 116044, China
| | - Ming Dong
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian 116044, China
| | - Shuo Liu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian 116044, China
| | - Lina Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
33
|
Lu YH, Chung CH, Lin CJ, Tsai LJ, Shih KC, Lu CH, Chien WC. Effects of combined traditional Chinese medicine therapy in patients of lower limbs injuries with osteoporosis: A retrospective paired cohort study. Medicine (Baltimore) 2023; 102:e36489. [PMID: 38065844 PMCID: PMC10713129 DOI: 10.1097/md.0000000000036489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Studies have confirmed that the health hazards of patients with lower limb injuries combined with osteoporosis are more obvious. This study is mainly based on the Taiwan National Health Insurance Database, and through big data analysis, it shows that the combined treatment of traditional Chinese medicine (TCM) is helpful to the health of patients with lower limb injuries combined with osteoporosis. A total of 9989 combined TCM-treated patients and 19,978 2:1 sex-, age-, and index-year-matched controls who did not receive TCM treatment were selected from the Taiwan National Health Insurance Database. Cox proportional hazards analyzes were performed to compare fracture surgery, inpatient, and all-cause mortality during a mean follow-up period of 17 years. A total of 5406/8601/2564 enrolled-subjects (14.11%/25.46%/5.53%) had fracture surgery/inpatient/all-cause mortality, including 1409/2543/552 in the combined TCM group (14.11%/25.46%/5.53%) and 3997/6058/2012 in the control group (20.01%/30.32%/10.07%). Cox proportional hazard regression analysis showed a lower rate of fracture surgery, inpatient and all-cause mortality for subjects in the combined TCM group (adjusted hazard ratios [HR] = 0.723; 95% confidence intervals [CI] = 0.604-0.810, P < .001; adjusted hazard ratios [HR] = 0.803; 95% CI = 0.712-0.950, P = .001; adjusted HR = 0.842; 95% CI = 0.731-0.953, P = .007, respectively). After 10 years of follow-up, the cumulative incidence of fracture surgery in patients combining TCM treatment seems to be half of that without combining TCM treatment those are shown in Kaplan-Meier analysis with statistically significant (log rank, P < .001, P < .001, and P = .010, respectively). This study hopes to provide clinicians with the option of combined TCM treatment for patients of lower limbs injuries combined with osteoporosis, so that such patients will be associate with a lower risk of fracture surgery, inpatient or all-cause mortality.
Collapse
Affiliation(s)
- Yu-Hua Lu
- Department of Athletic, National Taiwan University, Taipei, Taiwan, ROC
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan, ROC
| | - Chien-Jung Lin
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Li-Jen Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Chieh-Hua Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
34
|
Chen Y, Wei Z, Shi H, Wen X, Wang Y, Wei R. BushenHuoxue formula promotes osteogenic differentiation via affecting Hedgehog signaling pathway in bone marrow stem cells to improve osteoporosis symptoms. PLoS One 2023; 18:e0289912. [PMID: 38019761 PMCID: PMC10686470 DOI: 10.1371/journal.pone.0289912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/28/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The BushenHuoxue formula (BSHX) has been previously demonstrated to ameliorate osteoporosis, but the mechanisms underlying this phenomenon are currently unclear. The present study aims at investigating the mechanisms that BSHX induces osteogenesis. METHODS We established an osteoporosis model in rats by bilateral ovariectomy and then treated the rats with an osteogenic inducer (dexamethasone, β-sodium glycerophosphate and Vitamin C) and BSHX. After that, bone marrow density and histopathological bone examination were evaluated by using HE staining and immunohistochemistry, respectively. We also assessed the differentiation of bone marrow mesenchymal stem cells (BMSCs) into osteoblasts by using immunofluorescence staining. ALP, BMP, and COL1A1 levels were determined by ELISA. We identified genes involved in pathogenesis of osteoporosis through Gene Expression Omnibus (GEO) database and subsequently selected Hedgehog signaling-related genes Shh, Ihh, Gli2, and Runx2 for assessment via qRT-PCR and ELISA, Western blotting. Network pharmacology analysis was performed to identify bioactive metabolites of BSHX. RESULTS BSHX treatment in osteoporosis model rats promoted tightening of the morphological structure of the trabecular bone and increased the bone mineral density (BMD). BSHX also increased levels of osteoblast makers ALP, BMP, and COL1A1. Additionally, bioinformatics analysis of the GEO dataset showed that Hedgehog signaling pathway was involved in pathogenesis of osteoporosis, especially related genes Shh, Ihh, Gli2, and Runx2. Remarkably, BHSX upregulated these genes indispensably involved in the osteogenesis-related Hedgehog signaling pathway in both bone tissue and BMSCs. Importantly, we identified that quercetin was the active compounds that involved in the mechanism of BSHX-improved OP via affecting Hedgehog-related genes. CONCLUSION Our results indicate that BSHX promotes osteogenesis by improving BMSC differentiation into osteoblasts via increased expression of Hedgehog signaling-related genes Shh, Ihh, Gli2, and Runx2, and quercetin was the bioactive compound of BSHX.
Collapse
Affiliation(s)
- Yuqi Chen
- Department of the People’s Hospital of Suzhou New District, Suzhou, China
| | - ZhiYong Wei
- Kuitun Hospital of Xinjiang Production and Construction Corps, Xinjiang Uygur Autonomous Region, China
| | - HongXia Shi
- The Fourth Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Xin Wen
- Urumqi Friendship Hospital, Urumqi, PR China
| | - YiRan Wang
- Department of the People’s Hospital of Suzhou New District, Suzhou, China
| | - Rong Wei
- Department of the People’s Hospital of Suzhou New District, Suzhou, China
- The Fourth Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
35
|
Li W, Ye B, Huang Z, Zhou H, Feng J, Chen Q, Huang H, Meng S, Qie F, Shi X. Effects of kidney tonic herbs for primary osteoporosis: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e35061. [PMID: 37904381 PMCID: PMC10615445 DOI: 10.1097/md.0000000000035061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Primary osteoporosis (POP) is one of the most common orthopedic conditions with a high risk of fractures. Effective treatment of POP is crucial for reducing disability rates and improving quality of life. Kidney tonic therapy is a classical traditional Chinese medicine approach for treating POP. This study aims to provide a comprehensive and reliable assessment of the clinical evidence of kidney tonic herbs (KTH) in treating POP patients. METHODS An extensive literature search was conducted in 8 electronic databases from their inception through September 30, 2022, to evaluate the efficacy and safety of KTH for POP. We included 43 randomized controlled trials with 4349 participants. The qualified studies will be chosen and evaluated separately by 2 researchers. The primary outcome measure was bone mineral density (BMD) of lumbar. RevMan 5.3 and Stata 16 were used to carry out the meta-analyses. RESULTS Our meta-analysis showed 29 studies with significantly increased lumbar BMD (mean difference [MD] = 0.06; 95% confidence interval [CI]; I2 = 98%, P = .003), 18 studies with noticeably higher femoral neck BMD (MD = 0.08; 95% CI; I2 = 98%, P = .0005), 6 studies with significantly increased femoral trochanter BMD (MD = 0.10; 95% CI; I2 = 97%, P = .002), 4 studies with noticeably higher ward's triangle BMD (MD = 0.13; 95% CI; I2 = 100%, P = .04), and 3 studies with noticeably higher distal radius BMD (MD = 0.06; 95% CI; I2 = 86%, P = .009). One study showed 12 falls and 8 fallers in the intervention group, 28 falls and 17 fallers in the control group at 36 months. 3 studies showed a significant difference in fracture incidence between the intervention group and the control group (95% CI: 0.15-0.81; I2 = 0%, P = .01). Additionally, the meta-analysis demonstrated that KTH offered superior pain relief (8 trials, n = 980; 95% CI: -1.05 to -0.74; I2 = 94%, P < .00001). Besides, KTH found no serious harmful effects. DISCUSSION KTH may increase BMD and decrease the likelihood of fractures in POP patients. However, further research is necessary to investigate the effectiveness of KTH in reducing falls and fractures.
Collapse
Affiliation(s)
- Wei Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Baisheng Ye
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Huang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hang Zhou
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Feng
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hai Huang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Shilong Meng
- Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Xiaolin Shi
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
36
|
Wang X, Li H, Long L, Song C, Chen R, Pan H, Qiu J, Liu B, Liu Z. Mechanism of Liuwei Dihuang Pills in treating osteoporosis based on network pharmacology. Medicine (Baltimore) 2023; 102:e34773. [PMID: 37861542 PMCID: PMC10589576 DOI: 10.1097/md.0000000000034773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/25/2023] [Indexed: 10/21/2023] Open
Abstract
Osteoporosis is a prevalent age-related disease that poses a significant public health concern as the population continues to age. While current treatments have shown some therapeutic benefits, their long-term clinical efficacy is limited by a lack of stable curative effects and significant adverse effects. Traditional Chinese Medicine has gained attention due to its positive curative effects and fewer side effects. Liuwei Dihuang Pill has been found to enhance bone mineral density in patients with osteoporosis and rats, but the underlying mechanism is not yet clear. To shed more light on this problem, this study aims to explore the pharmacological mechanism of Liuwei Dihuang Pill in treating osteoporosis using network pharmacology and molecular docking. The findings indicate that Liuwei Dihuang Pills treat osteoporosis through various targets and channels. Specifically, it mainly involves TNF, IL17, and HIF-1 signaling pathways and helps regulate biological processes such as angiogenesis, apoptosis, hypoxia, and gene expression. Furthermore, molecular docking demonstrates excellent binding properties between the drug components and key targets. Therefore, this study offers a theoretical foundation for understanding the pharmacological mechanism and clinical application of Liuwei Dihuang Pills in treating osteoporosis more comprehensively.
Collapse
Affiliation(s)
- Xiqoqiang Wang
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Hongtao Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Longhai Long
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Rui Chen
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Hongyu Pan
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Junjie Qiu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Bing Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
- Luzhou Longmatan District People’s Hospital, Luzhou, China
| |
Collapse
|
37
|
Sun K, Wang Y, Du J, Wang Y, Liu B, Li X, Zhang X, Xu X. Exploring the mechanism of traditional Chinese medicine in regulating gut-derived 5-HT for osteoporosis treatment. Front Endocrinol (Lausanne) 2023; 14:1234683. [PMID: 37916145 PMCID: PMC10616894 DOI: 10.3389/fendo.2023.1234683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Osteoporosis is a systemic bone disease characterized by an imbalance in the relationship between osteoblasts, osteocytes, and osteoclasts. This imbalance in bone metabolism results in the destruction of the bone's microstructure and an increase in bone brittleness, thereby increasing the risk of fractures. Osteoporosis has complex causes, one of which is related to the dysregulation of 5-hydroxytryptamine, a neurotransmitter closely associated with bone tissue metabolism. Dysregulation of 5-HT directly or indirectly promotes the occurrence and development of osteoporosis. This paper aims to discuss the regulation of 5-HT by Traditional Chinese Medicine and its impact on bone metabolism, as well as the underlying mechanism of action. The results of this study demonstrate that Traditional Chinese Medicine has the ability to regulate 5-HT, thereby modulating bone metabolism and improving bone loss. These findings provide valuable insights for future osteoporosis treatment.
Collapse
Affiliation(s)
- Kai Sun
- The First Department of Orthopedics and Traumatology, The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yincang Wang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiazhe Du
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yujie Wang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Bo Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaodong Li
- The First Department of Orthopedics and Traumatology, The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaofeng Zhang
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xilin Xu
- The First Department of Orthopedics and Traumatology, The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
38
|
Li T, Li W, Guo X, Tan T, Xiang C, Ouyang Z. Unraveling the potential mechanisms of the anti-osteoporotic effects of the Achyranthes bidentata-Dipsacus asper herb pair: a network pharmacology and experimental study. Front Pharmacol 2023; 14:1242194. [PMID: 37849727 PMCID: PMC10577322 DOI: 10.3389/fphar.2023.1242194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023] Open
Abstract
Background: Osteoporosis is a prevalent bone metabolism disease characterized by a reduction in bone density, leading to several complications that significantly affect patients' quality of life. The Achyranthes bidentata-Dipsacus asper (AB-DA) herb pair is commonly used in Traditional Chinese Medicine (TCM) to treat osteoporosis. This study aimed to investigate the therapeutic compounds and potential mechanisms of AB-DA using network pharmacology, molecular docking, molecular dynamics simulation, and experimental verification. Methods: Identified compounds of AB-DA were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicine Information Database (TCM-ID), TCM@Taiwan Database, BATMAN-TCM, and relevant literature. The main bioactive ingredients were screened based on the criteria of "OB (oral bioavailability) ≥ 30, DL (drug-likeness) ≥ 0.18." Potential targets were predicted using the PharmMapper and SwissTargetPrediction websites, while disease (osteoporosis)-related targets were obtained from the GeneCards, DisGeNET, and OMIM databases. The PPI network and KEGG/GO enrichment analysis were utilized for core targets and pathway screening in the STRING and Metascape databases, respectively. A drug-compound-target-pathway-disease network was constructed using Cytoscape software to display core regulatory mechanisms. Molecular docking and dynamics simulation techniques explored the binding reliability and stability between core compounds and targets. In vitro and in vivo validation experiments were utilized to explore the anti-osteoporosis efficiency and mechanism of sitogluside. Results: A total of 31 compounds with 83 potential targets for AB-DA against osteoporosis were obtained. The PPI analysis revealed several hub targets, including AKT1, CASP3, EGFR, IGF1, MAPK1, MAPK8, and MAPK14. GO/KEGG analysis indicated that the MAPK cascade (ERK/JNK/p38) is the main pathway involved in treating osteoporosis. The D-C-T-P-T network demonstrated therapeutic compounds that mainly consisted of iridoids, steroids, and flavonoids, such as sitogluside, loganic acid, and β-ecdysterone. Molecular docking and dynamics simulation analyses confirmed strong binding affinity and stability between core compounds and targets. Additionally, the validation experiments showed preliminary evidence of antiosteoporosis effects. Conclusion: This study identified iridoids, steroids, and flavonoids as the main therapeutic compounds of AB-DA in treating osteoporosis. The underlying mechanisms may involve targeting core MAPK cascade (ERK/JNK/p38) targets, such as MAPK1, MAPK8, and MAPK14. In vivo experiments preliminarily validated the anti-osteoporosis effect of sitogluside. Further in-depth experimental studies are required to validate the therapeutic value of AB-DA for treating osteoporosis in clinical practice.
Collapse
Affiliation(s)
- Tao Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenzhao Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoning Guo
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Tan
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Cheng Xiang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Yang S, Zhang B, Wang YG, Liu ZW, Qiao B, Xu J, Zhao LS. Zuo Gui Wan Promotes Osteogenesis via PI3K/AKT Signaling Pathway: Network Pharmacology Analysis and Experimental Validation. Curr Med Sci 2023; 43:1051-1060. [PMID: 37806993 DOI: 10.1007/s11596-023-2782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/07/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE Osteogenesis is vitally important for bone defect repair, and Zuo Gui Wan (ZGW) is a classic prescription in traditional Chinese medicine (TCM) for strengthening bones. However, the specific mechanism by which ZGW regulates osteogenesis is still unclear. The current study is based on a network pharmacology analysis to explore the potential mechanism of ZGW in promoting osteogenesis. METHODS A network pharmacology analysis followed by experimental validation was applied to explore the potential mechanisms of ZGW in promoting the osteogenesis of bone marrow mesenchymal stem cells (BMSCs). RESULTS In total, 487 no-repeat targets corresponding to the bioactive components of ZGW were screened, and 175 target genes in the intersection of ZGW and osteogenesis were obtained. And 28 core target genes were then obtained from a PPI network analysis. A GO functional enrichment analysis showed that the relevant biological processes mainly involve the cellular response to chemical stress, metal ions, and lipopolysaccharide. Additionally, KEGG pathway enrichment analysis revealed that multiple signaling pathways, including the phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway, were associated with ZGW-promoted osteogensis. Further experimental validation showed that ZGW could increase alkaline phosphatase (ALP) activity as well as the mRNA and protein levels of ALP, osteocalcin (OCN), and runt related transcription factor 2 (Runx 2). What's more, Western blot analysis results showed that ZGW significantly increased the protein levels of p-PI3K and p-AKT, and the increases of these protein levels significantly receded after the addition of the PI3K inhibitor LY294002. Finally, the upregulated osteogenic-related indicators were also suppressed by the addition of LY294002. CONCLUSION ZGW promotes the osteogenesis of BMSCs via PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bin Zhang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu-Guo Wang
- Department of Traditional Chinese Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zi-Wei Liu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bo Qiao
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Juan Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Li-Sheng Zhao
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
40
|
Wu F, Wu Z, Ye Z, Niu G, Ma Z, Zhang P. PLGA/BGP/Nef porous composite restrains osteoclasts by inhibiting the NF-κB pathway, enhances IGF-1-mediated osteogenic differentiation and promotes bone regeneration. J Biol Eng 2023; 17:45. [PMID: 37461106 DOI: 10.1186/s13036-023-00354-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/15/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Novel bone substitutes are urgently needed in experimental research and clinical orthopaedic applications. There are many traditional Chinese medicines that have effects on bone repair. However, application of natural medicines in traditional Chinese medicine to bone tissue engineering and its mechanism were rarely reported. RESULTS In this study, the osteogenic ability of bioactive glass particles (BGPs) and the osteogenic and osteoclastic ability of neferine (Nef) were fused into PLGA-based bone tissue engineering materials for bone regeneration. BGPs were prepared by spray drying and calcination. Particles and Nef were then mixed with PLGA solution to prepare porous composites by the phase conversion method. Here we showed that Nef inhibited proliferation and enhanced ALP activity of MC3T3-E1 cells in a dose- and time-dependent manner. And the composites containing Nef could also inhibit RANKL-induced osteoclast formation (p < 0.05). Mechanistically, the PLGA/BGP/Nef composite downregulated the expression of NFATC1 by inhibiting the NF-κB pathway to restrain osteoclasts. In the other hands, PLGA/BGP/Nef composite was first demonstrated to effectively activate the IGF-1R/PI3K/AKT/mTOR pathway to enhance IGF-1-mediated osteogenic differentiation. The results of animal experiments show that the material can effectively promote the formation and maturation of new bone in the skull defect site. CONCLUSIONS The PLGA/BGP/Nef porous composite can restrain osteoclasts by inhibiting the NF-κB pathway, enhance IGF-1-mediated osteogenic differentiation and promotes bone regeneration, and has the potential for clinical application.
Collapse
Affiliation(s)
- Feng Wu
- Foshan Hospital of Traditional Chinese Medicine/Foshan Hospital of TCM, Foshan, China.
| | - Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhijun Ye
- Foshan Hospital of Traditional Chinese Medicine/Foshan Hospital of TCM, Foshan, China
| | - Guoqing Niu
- Foshan Hospital of Traditional Chinese Medicine/Foshan Hospital of TCM, Foshan, China
| | - Zhiliang Ma
- Foshan Hospital of Traditional Chinese Medicine/Foshan Hospital of TCM, Foshan, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
| |
Collapse
|
41
|
Li Q, Tian C, Liu X, Li D, Liu H. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis. Front Pharmacol 2023; 14:1203767. [PMID: 37441527 PMCID: PMC10335577 DOI: 10.3389/fphar.2023.1203767] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
A metabolic bone disorder called osteoporosis is characterized by decreased bone mass and compromised microarchitecture. This condition can deteriorate bones and raise the risk of fractures. The two main causes of osteoporosis are an increase in osteoclast activity or quantity and a decrease in osteoblast viability. Numerous mechanisms, including estrogen shortage, aging, chemical agents, and decreased mechanical loads, have been linked to osteoporosis. Inflammation and oxidative stress have recently been linked to osteoporosis, according to an increasing number of studies. The two primary medications used to treat osteoporosis at the moment are bisphosphonates and selective estrogen receptor modulators (SERMs). These medications work well for osteoporosis brought on by aging and estrogen deprivation, however, they do not target inflammation and oxidative stress-induced osteoporosis. In addition, these drugs have some limitations that are attributed to various side effects that have not been overcome. Traditional Chinese medicine (TCM) has been applied in osteoporosis for many years and has a high safety profile. Therefore, in this review, literature related to botanical drugs that have an effect on inflammation and oxidative stress-induced osteoporosis was searched for. Moreover, the pharmacologically active ingredients of these herbs and the pathways were discussed and may contribute to the discovery of more safe and effective drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Ciqiu Tian
- Hubei University of Chinese Medicine, City Wuhan, Hubei Province, China
| | - Xiangjie Liu
- Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Geriatric Department, City Wuhan, Hubei Province, China
| | - Dinglin Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Hao Liu
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| |
Collapse
|
42
|
Wu Z, Hu L, Ru K, Zhang W, Xu X, Liu S, Liu H, Jia Y, Liang S, Chen Z, Qian A. Ellagic acid inhibits CDK12 to increase osteoblast differentiation and alleviate osteoporosis in hindlimb-unloaded and ovariectomized mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154745. [PMID: 36931096 DOI: 10.1016/j.phymed.2023.154745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/13/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Osteoporosis is a highly prevalent bone disease occurred commonly in astronauts and postmenopausal women due to mechanical unloading and estrogen deficiency, respectively. At present, there are some traditional Chinese medicine compounds for preventing and treating osteoporosis induced by simulated microgravity, but the detailed components of the traditional Chinese medicines still need to be confirmed and osteoporosis is still untreatable due to a lack of effective small-molecule natural medicine. PURPOSE To explore the role of cyclin-dependent kinase 12 (CDK12) in osteoporosis induced by simulated microgravity and the therapeutic effect of CDK12-targeted Ellagic Acid (EA) on osteoporosis. METHODS Our previous study has suggested that CDK12 as a potential target for treating and preventing osteoporosis. In this study, the role of CDK12 in osteoblasts and mice bone tissues was further studied under simulated microgravity. And by targeting CDK12, natural small-molecule product EA was screened out based on a large scale through the weighted set similarity (WES) method and the therapeutic effects of EA on osteoporosis was investigated in hindlimb-unloaded (HU) mouse model and ovariectomized (OVX) model. RESULTS The results demonstrated that simulated microgravity inhibited bone formation and up-regulated the expression of CDK12. Furthermore, CDK12-siRNA or THZ531 (an inhibitor of CDK 12) promoted osteoblast differentiation, while the overexpression of CDK12 inhibited osteoblasts differentiation. And we further proved that CDK12-targeted EA showed a rescue effect on osteoblast differentiation inhibition caused by simulated microgravity. EA (50 mg·kg-1·day-1) daily intragastric administration alleviated the symptoms of osteoporosis and accompanied with the improvement of trabecular bone and cortical bone parameters with significantly overexpression of CDK12. CONCLUSION EA efficiently improves osteoporosis by targeting CDK12, which is a suppresser of osteoblast differentiation and a novel therapeutic target for treating osteoporosis.
Collapse
Affiliation(s)
- Zixiang Wu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lifang Hu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Kang Ru
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenjuan Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xia Xu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuyu Liu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hua Liu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yunxia Jia
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shujing Liang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
43
|
Ren L, Li Q, Zhang L, Wang R, Qin F, Zhao L, Wei X, Xiong Z. Integrated serum pharmacochemistry, network pharmacology and pharmacokinetics to explore bioactive components of Gushudan in the treatment of osteoporosis. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1225:123762. [PMID: 37247535 DOI: 10.1016/j.jchromb.2023.123762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Gushudan (GSD), a compound prescription on the basis of traditional Chinese medicine (TCM) theory and clinical practice, has been used in the treatment of osteoporosis (OP) for many years. Although studies have shown that GSD can treat OP, there is a lack of systematic screening method to explore the bioactive components, which are still unclear. Therefore, this study was aimed to establish an integrated method to screen and determine bioactive ingredients of GSD in the treatment of OP by serum pharmacochemistry, network pharmacology and pharmacokinetics. Firstly, 112 components of the GSD extract and 90 serum migrating constituents were identified by the ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS), most of which were derived from flavonoids, tanshinones, coumarins and organic acids. Secondly, based on the network pharmacological analysis of the serum migrating constituents, 37 core targets and 20 main pathways related to both GSD and OP were obtained. More importantly, 7 bioactive ingredients were further screened as the PK markers by the network topology parameters including icariin, icariside II, isopimpinellin, bergapten, imperatorin, osthole and tanshinone IIA. Finally, a sensitive and accurate quantitative method based on ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was established and validated for simultaneous determination of the 7 bioactive ingredients in the rat plasma after oral administration of GSD extract, which was then applied to pharmacokinetic study. Besides, the overall pharmacokinetic characteristics were further calculated: Cmax was 180.52 ± 31.18 ng/mL, Tmax was 0.46 ± 0.20 h, t1/2 was 4.09 ± 0.39 h, AUC0-∞ was 567.24 ± 65.29 ng·h/mL, which displayed quick absorption and medium elimination in rats after oral administration of GSD extract. This study provided a new and holistic insight for exploring bioactive constituents and main targets to decode the therapeutic material basis of GSD against OP.
Collapse
Affiliation(s)
- Li Ren
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Qiuyu Li
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Liwei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Ruoyao Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Feng Qin
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Xiuyan Wei
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China.
| |
Collapse
|
44
|
Zhang Q, Chu F, Xu Y, Wu X, Yu J, Cong B, Wu Y. Osteogenesis promotion by injectable methacryloylated gelatin containing psoralen and its bacteriostatic properties. IET Nanobiotechnol 2023. [PMID: 37191270 DOI: 10.1049/nbt2.12136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
The treatment of periodontitis focuses on controlling the progression of inflammation, reducing plaque accumulation, and promoting bone tissue reconstruction. Among them, the reconstruction of irregular bone resorption caused by periodontitis is a long-standing challenge. At present, the local drug treatment of periodontitis is mainly anti-inflammatory and antibacterial drugs. In this study, psoralen (Pso), a Chinese herbal medicine with anti-inflammatory, antibacterial, and osteogenic effects, was selected for the local treatment of periodontitis. Meanwhile, an injectable methacrylate gelatin (GelMA) platform loading with Pso was constructed. Pso-GelMA had the properties of fluidity, light cohesion, self-healing, and slow release, which could be better used in the deep and narrow structure of the periodontal pocket, and greatly increased the effectiveness of local drug delivery. The pore size of Gelma hydrogel did not change after loading Pso by SEM. In vitro, Pso-GelMA effectively upregulated the expression of osteogenic genes and proteins, increased alkaline phosphatase activity, promoted the mineralisation of rat bone marrow mesenchymal stem cells (BMSCs) extracellular matrix, and had significant antibacterial effects on Staphylococcus aureus and Fusobacterium nucleatum. Therefore, Pso-GelMA has immense promise in the adjuvant treatment of periodontitis.
Collapse
Affiliation(s)
- Qi Zhang
- School of Stomatology, Qingdao University, Qingdao, China
| | - Fuhang Chu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yingjie Xu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaonan Wu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Jie Yu
- School of Stomatology, Qingdao University, Qingdao, China
| | - Beibei Cong
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yingtao Wu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| |
Collapse
|
45
|
Zeng LF. Editorial: The potential effects and mechanisms of Chinese traditional medicine on bone homeostasis and remodeling, volume II. Front Endocrinol (Lausanne) 2023; 14:1158042. [PMID: 37082117 PMCID: PMC10111254 DOI: 10.3389/fendo.2023.1158042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Affiliation(s)
- Ling-Feng Zeng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
46
|
Baek DC, Hwang SJ, Lee JS, Wang JH, Son CG, Lee EJ. A Mixture of Cervus elaphus sibiricus and Glycine max (L.) Merrill Inhibits Ovariectomy-Induced Bone Loss Via Regulation of Osteogenic Molecules in a Mouse Model. Int J Mol Sci 2023; 24:4876. [PMID: 36902303 PMCID: PMC10003697 DOI: 10.3390/ijms24054876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Osteoporosis is a metabolic skeletal disease characterized by lowered bone mineral density and quality, which lead to an increased risk of fracture. The aim of this study was to evaluate the anti-osteoporosis effects of a mixture (called BPX) of Cervus elaphus sibiricus and Glycine max (L.) Merrill and its underlying mechanisms using an ovariectomized (OVX) mouse model. BALB/c female mice (7 weeks old) were ovariectomized. From 12 weeks of ovariectomy, mice were administered BPX (600 mg/kg) mixed in a chow diet for 20 weeks. Changes in bone mineral density (BMD) and bone volume (BV), histological findings, osteogenic markers in serum, and bone formation-related molecules were analyzed. Ovariectomy notably decreased the BMD and BV scores, while these were significantly attenuated by BPX treatment in the whole body, femur, and tibia. These anti-osteoporosis effects of BPX were supported by the histological findings for bone microstructure from H&E staining, increased activity of alkaline phosphatase (ALP), but a lowered activity of tartrate-resistant acid phosphatase (TRAP) in the femur, along with other parameters in the serum, including TRAP, calcium (Ca), osteocalcin (OC), and ALP. These pharmacological actions of BPX were explained by the regulation of key molecules in the bone morphogenetic protein (BMP) and mitogen-activated protein kinase (MAPK) pathways. The present results provide experimental evidence for the clinical relevance and pharmaceutical potential of BPX as a candidate for anti-osteoporosis treatment, especially under postmenopausal conditions.
Collapse
Affiliation(s)
- Dong-Cheol Baek
- Institute of Bioscience & Integrative Medicine, Daejeon Korean Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Daejeon 35235, Republic of Korea
| | - Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon Korean Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Daejeon 35235, Republic of Korea
| | - Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Daejeon Korean Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Daejeon 35235, Republic of Korea
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon Korean Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Daejeon 35235, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon Korean Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Daejeon 35235, Republic of Korea
| | - Eun-Jung Lee
- Department of Korean Rehabilitation Medicine, Daejeon Korean Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Daejeon 35235, Republic of Korea
| |
Collapse
|
47
|
Ma Y, Hu J, Song C, Li P, Cheng Y, Wang Y, Liu H, Chen Y, Zhang Z. Er-Xian decoction attenuates ovariectomy-induced osteoporosis by modulating fatty acid metabolism and IGF1/PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115835. [PMID: 36252878 DOI: 10.1016/j.jep.2022.115835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Er-Xian decoction (EXD) is a traditional Chinese medicine (TCM) formula used to treat osteoporosis (OP). However, the anti-OP mechanism of EXD has not yet been fully elucidated. AIM OF THE STUDY The study aimed to verify the anti-OP effect of EXD and to explore its underlying mechanism. METHODS The anti-OP targets and mechanisms of EXD were predicted by network pharmacological analysis. Then, an ovariectomized (OVX) rat model was established to validate the key anti-OP mechanism of EXD. Firstly, the therapeutic effect of EXD on OP was confirmed using micro-CT bone analysis, pathological observation, and ELISA detection. Secondly, serum metabolites related to key biological processes were detected using an automatic biochemical analyzer and GC-MS. Finally, ELISA, qRT-PCR, and western blot were utilized to further explore the potential key anti-OP pathway of EXD. RESULTS A total of 159 anti-OP targets of EXD were identified. Functional annotation revealed that OP treatment using EXD was associated with lipid metabolism, fatty acid (FA) metabolism, and PI3K/AKT signaling pathway. Experimental studies confirmed that EXD ameliorated ovariectomy-induced bone loss and bone microstructure deterioration. EXD treatment also upregulated the level of serum estrogen and downregulated the level of OC, PⅠNP, CTX-1, TC, and LDL-C. Besides, principal component analysis (PCA) and heat map of serum FAs distinguished OVX rats from the SHAM and EXD groups. Serum concentrations of important n-3 FAs, including C20:3N3, C20:5N3, and C22:5N3, were significantly increased in the EXD group. The increased stearoyl-CoA desaturase 1 (SCD1) index 1 and index 2 in the OVX group were reversed by EXD administration. Additionally, EXD reversed the decreased serum IGF1 level and tibia IGF1R, PI3K, and AKT expression in OVX rats. CONCLUSION EXD ameliorated ovariectomy-induced bone loss by modulating lipid metabolism, FA metabolism, and IGF1/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yujie Ma
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Hu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Changheng Song
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pei Li
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yin Cheng
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuhan Wang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haixia Liu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yanjing Chen
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
48
|
Zhao J, Xiao X, Zhou G, Xu N, Liu J. Effectiveness of Yushen Hezhi therapy for postmenopausal osteoporosis: An overview of systematic reviews of randomized controlled trials. Front Endocrinol (Lausanne) 2022; 13:1015483. [PMID: 36225202 PMCID: PMC9548895 DOI: 10.3389/fendo.2022.1015483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To review systematic reviews (SRs) and meta-analyses (MAs) of Yushen Hezhi therapy (YSHZT) for postmenopausal osteoporosis (PMOP) to provide an evidence-based recommendation for researchers and decision makers. METHODS We searched the PubMed, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), China Biology Medicine (CBM) and Wanfang databases for published SRs and MAs on YSHZT for the treatment of PMOP. The retrieval time was limited to July 2022. The Assessing the Methodological Quality of Systematic Reviews (AMSTAR)-2 tool and Grades of Recommendations, Assessment, Development, and Evaluation (GRADE) classification system were used to evaluate the methodological quality and the evidence quality of the SRs and MAs, respectively. RESULTS A total of 14 SRs and MAs involving 14720 cases of PMOP were included. The results of the methodological quality evaluation indicated that there were no studies with medium- or high-quality methodology included in the study and that there were 9 and 5 low- and very low-quality studies, respectively. The GRADE evaluation results show that while there was no high-level evidence based on 86 evaluation indicators, there was 1 study with moderate-level evidence (1%), 44 studies with low-level evidence (51%) and 41 with very low-level evidence (48%) based on other indicators. YSHZT can significantly improve the bone mineral density (BMD) of Ward's triangle, with a mean difference range of 0.03 to 0.12. Different conclusions were reported regarding the BMD of the lumbar spine, femoral trochanter, femoral neck, and hip, as well as bone turnover markers, adverse reactions and other outcome indicators in different SRs and thus still need further study. CONCLUSIONS The methodological quality and the evidence quality of the outcome indicators for YSHZT in the treatment of PMOP are poor, and the efficacy and safety of YSHZT in the treatment of PMOP still need to be further verified by more high-quality studies.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiao Xiao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghui Zhou
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nanjun Xu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Liu
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Enginering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
- *Correspondence: Jun Liu,
| |
Collapse
|