1
|
Song Z, Clemens RA, Zhang Y, Chen J, Wang Y, Dinauer MC, Meng S. Investigating pulmonary neutrophil responses to inflammation in mice via flow cytometry. J Leukoc Biol 2025; 117:qiae189. [PMID: 39212489 DOI: 10.1093/jleuko/qiae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Neutrophils play a crucial role in maintaining lung health by defending against infections and participating in inflammation processes. Here we describe a detailed protocol for evaluating pulmonary neutrophil phenotype using a murine model of sterile inflammation induced by the fungal cell wall particle zymosan. We provide step-by-step instructions for the isolation of single cells from both lung tissues and airspaces, followed by comprehensive staining techniques for both cell surface markers and intracellular components. This protocol facilitates the sorting and detailed characterization of lung neutrophils via flow cytometry, making it suitable for downstream applications such as mRNA extraction, single-cell sequencing, and analysis of neutrophil heterogeneity. We also identify and discuss essential considerations for conducting successful neutrophil flow cytometry experiments. This work is aimed at researchers exploring the intricate functions of neutrophils in the lung under physiological and pathological conditions with the aid of flow cytometry.
Collapse
Affiliation(s)
- Zhimin Song
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, No. 195, Dongfeng West Road, Guangzhou, Guangdong 510180, China
- Department of Basic Science Research, Guangzhou National Laboratory, No. 9, Xing Dao Huan Bei Road, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong 510005, China
| | - Regina A Clemens
- Departments of Pediatrics, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, PO Box 8208, St. Louis, MO 63110, United States
| | - Yun Zhang
- Department of Basic Science Research, Guangzhou National Laboratory, No. 9, Xing Dao Huan Bei Road, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong 510005, China
| | - Jingjing Chen
- Department of Basic Science Research, Guangzhou National Laboratory, No. 9, Xing Dao Huan Bei Road, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong 510005, China
| | - Yaofeng Wang
- Department of Basic Science Research, Guangzhou National Laboratory, No. 9, Xing Dao Huan Bei Road, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong 510005, China
| | - Mary C Dinauer
- Departments of Pediatrics, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, PO Box 8208, St. Louis, MO 63110, United States
- Departments of Pathology and Immunology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, PO Box 8208, St. Louis, MO 63110, United States
| | - Shu Meng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, No. 195, Dongfeng West Road, Guangzhou, Guangdong 510180, China
- Department of Basic Science Research, Guangzhou National Laboratory, No. 9, Xing Dao Huan Bei Road, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong 510005, China
| |
Collapse
|
2
|
Teo JMN, Chen W, Ling GS. Neutrophil plasticity in liver diseases. J Leukoc Biol 2025; 117:qiae222. [PMID: 39383213 DOI: 10.1093/jleuko/qiae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024] Open
Abstract
The liver has critical digestive, metabolic, and immunosurveillance roles, which get disrupted during liver diseases such as viral hepatitis, fatty liver disease, and hepatocellular carcinoma. While previous research on the pathological development of these diseases has focused on liver-resident immune populations, such as Kupffer cells, infiltrating immune cells responding to pathogens and disease also play crucial roles. Neutrophils are one such key population contributing to hepatic inflammation and disease progression. Belonging to the initial waves of immune response to threats, neutrophils suppress bacterial and viral spread during acute infections and have homeostasis-restoring functions, whereas during chronic insults, they display their plastic nature by responding to the inflammatory environment and develop new phenotypes alongside longer life spans. This review summarizes the diversity in neutrophil function and subpopulations present at steady state, during liver disease, and during liver cancer.
Collapse
Affiliation(s)
- Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Weixin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Faculty Administration Wing, 21 Sassoon Road, Pokfulam, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, HK Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
3
|
Koenderman L, Vrisekoop N. Neutrophils in cancer: from biology to therapy. Cell Mol Immunol 2025; 22:4-23. [PMID: 39653768 PMCID: PMC11686117 DOI: 10.1038/s41423-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
The view of neutrophils has shifted from simple phagocytic cells, whose main function is to kill pathogens, to very complex cells that are also involved in immune regulation and tissue repair. These cells are essential for maintaining and regaining tissue homeostasis. Neutrophils can be viewed as double-edged swords in a range of situations. The potent killing machinery necessary for immune responses to pathogens can easily lead to collateral damage to host tissues when inappropriately controlled. Furthermore, some subtypes of neutrophils are potent pathogen killers, whereas others are immunosuppressive or can aid in tissue healing. Finally, in tumor immunology, many examples of both protumorigenic and antitumorigenic properties of neutrophils have been described. This has important consequences for cancer therapy, as targeting neutrophils can lead to either suppressed or stimulated antitumor responses. This review will discuss the current knowledge regarding the pro- and antitumorigenic roles of neutrophils, leading to the concept of a confused state of neutrophil-driven pro-/antitumor responses.
Collapse
Affiliation(s)
- Leo Koenderman
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nienke Vrisekoop
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Herro R, Grimes HL. The diverse roles of neutrophils from protection to pathogenesis. Nat Immunol 2024; 25:2209-2219. [PMID: 39567761 DOI: 10.1038/s41590-024-02006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Neutrophil granulocytes are the most abundant leukocytes in the blood and constitute a critical arm of innate immunity. They are generated in the bone marrow, and under homeostatic conditions enter the bloodstream to patrol tissues and scout for potential pathogens that they quickly destroy through phagocytosis, intracellular degradation, release of granules and formation of extracellular traps. Thus, neutrophils are important effector cells involved in antibacterial defense. However, neutrophils can also be pathogenic. Emerging data suggest they have critical functions related to tissue repair and fibrosis. Moreover, similarly to other innate immune cells, neutrophil cell states are affected by their microenvironment. Notably, this includes tumors that co-opt neutrophils. Neutrophils can undergo transcriptional and epigenetic reprogramming, thus causing or modulating inflammation and injury. It is also possible that distinct neutrophil subsets are generated with designated functions in the bone marrow. Understanding neutrophil plasticity and alternative cell states will help resolve their contradictive roles. This Review summarizes the most recent key findings surrounding protective versus pathogenic functions of neutrophils; elaborating on phenotype-specific subsets of neutrophils and their involvement in homeostasis and disease.
Collapse
Affiliation(s)
- Rana Herro
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Sounbuli K, Alekseeva LA, Sen’kova AV, Savin IA, Zenkova MA, Mironova NL. Tbp and Hprt1 Are Appropriate Reference Genes for Splenic Neutrophils Isolated from Healthy or Tumor-Bearing Mice. Biomedicines 2024; 12:2571. [PMID: 39595137 PMCID: PMC11592060 DOI: 10.3390/biomedicines12112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Neutrophils have recently gained significant attention due to their heterogeneity in tumor settings. The gene expression profiles of neutrophils from different tumor types are of great interest. Murine splenic neutrophils reflect the immune status of the organism and could be a source of tumor-associated neutrophils in tumor-bearing mice. However, information about appropriate reference genes for RT-qPCR analysis of murine neutrophils in the literature is lacking. The aim of this study was to identify stably expressed reference genes in murine splenic neutrophils. Methods: Bone marrow- and spleen-derived neutrophils were isolated from healthy C57Bl/6 and CBA/LacSto mice. Spleen-derived neutrophils were isolated from mice with Lewis lung carcinoma (LLC) and drug-resistant lymphosarcoma (RLS40). RNA was isolated and used for RT-qPCR analysis of 10 selected reference genes. Analysis of reference gene stability was performed using four different algorithms (BestKeeper, NormFinder, geNorm, ΔCt method), and comprehensive ranking was constructed using RefFinder. Results: The Ct values for the reference genes were in the range of 16.73-30.83 with the highest expression levels observed for B2m and the lowest for Sdha. Differences in the stability ranking performed by different algorithms were observed; however, the overall ranking of the studied reference genes was as follows, from most to least stably expressed: Tbp, Hprt1, Ywhaz, B2m, Gapdh, Actb, Sdha, Eef2, Rack1, and Rpl13a. Using Tbp or Rpl13a for RT-qPCR data normalization significantly affected the interpretation of target gene expression. Conclusions: Tbp and Hprt1 are recommended reference genes for murine splenic neutrophils regardless of their activation status.
Collapse
Affiliation(s)
- Khetam Sounbuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia; (K.S.); (L.A.A.); (A.V.S.); (I.A.S.); (M.A.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 1, Novosibirsk 630090, Russia
| | - Ludmila A. Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia; (K.S.); (L.A.A.); (A.V.S.); (I.A.S.); (M.A.Z.)
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia; (K.S.); (L.A.A.); (A.V.S.); (I.A.S.); (M.A.Z.)
| | - Innokenty A. Savin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia; (K.S.); (L.A.A.); (A.V.S.); (I.A.S.); (M.A.Z.)
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia; (K.S.); (L.A.A.); (A.V.S.); (I.A.S.); (M.A.Z.)
| | - Nadezhda L. Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia; (K.S.); (L.A.A.); (A.V.S.); (I.A.S.); (M.A.Z.)
| |
Collapse
|
6
|
Nayak TK, Parasania D, Tilley DG. Adrenergic orchestration of immune cell dynamics in response to cardiac stress. J Mol Cell Cardiol 2024; 196:115-124. [PMID: 39303854 DOI: 10.1016/j.yjmcc.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Immune cells contribute approximately 5-10 % of the heart's total cell population, including several myeloid cell and lymphocyte cell subsets, which, despite their relatively small percentages, play important roles in cardiac homeostasis and remodeling responses to various forms of injury and long-term stress. Pathological cardiac stress activates the sympathetic nervous system (SNS), resulting in the release of the catecholamines epinephrine and norepinephrine either systemically or from sympathetic nerve terminals within various lymphoid organs. Acting at α- or β-adrenergic receptors (αAR, βAR), catecholamines regulate immune cell hematopoiesis, egress and migration in response to stress. Classically, αAR stimulation tends to promote inflammatory responses while βAR stimulation has typically been shown to be immunosuppressive, though the effects can be nuanced depending on the immune cells subtype, the site of regulation and pathophysiological context. Herein, we will discuss several facets of SNS-mediated regulation of immune cells and their response to cardiac stress, including: catecholamine response to cardiovascular stress and action at their receptors, adrenergic regulation of hematopoiesis, immune cell retention and release from the bone marrow, adrenergic regulation of splenic immune cells and their retention, as well as adrenergic regulation of immune cell recruitment to the injured heart, including neutrophils, monocytes and macrophages. A particular focus will be given to βAR-mediated effects on myeloid cells in response to acute or chronic cardiac stress.
Collapse
Affiliation(s)
- Tapas K Nayak
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dev Parasania
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
7
|
Narmada BC, Khakpoor A, Shirgaonkar N, Narayanan S, Aw PPK, Singh M, Ong KH, Owino CO, Ng JWT, Yew HC, Binte Mohamed Nasir NS, Au VB, Sng R, Kaliaperumal N, Khine HHTW, di Tocco FC, Masayuki O, Naikar S, Ng HX, Chia SL, Seah CXY, Alnawaz MH, Wai CLY, Tay AYL, Mangat KS, Chew V, Yu W, Connolly JE, Periyasamy G, Plissonnier ML, Levrero M, Lim SG, DasGupta R. Single-cell landscape of functionally cured chronic hepatitis B patients reveals activation of innate and altered CD4-CTL-driven adaptive immunity. J Hepatol 2024; 81:42-61. [PMID: 38423478 DOI: 10.1016/j.jhep.2024.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND & AIMS Hepatitis B surface antigen (HBsAg) loss or functional cure (FC) is considered the optimal therapeutic outcome for patients with chronic hepatitis B (CHB). However, the immune-pathological biomarkers and underlying mechanisms of FC remain unclear. In this study we comprehensively interrogate disease-associated cell states identified within intrahepatic tissue and matched PBMCs (peripheral blood mononuclear cells) from patients with CHB or after FC, at the resolution of single cells, to provide novel insights into putative mechanisms underlying FC. METHODS We combined single-cell transcriptomics (single-cell RNA sequencing) with multiparametric flow cytometry-based immune phenotyping, and multiplexed immunofluorescence to elucidate the immunopathological cell states associated with CHB vs. FC. RESULTS We found that the intrahepatic environment in CHB and FC displays specific cell identities and molecular signatures that are distinct from those found in matched PBMCs. FC is associated with the emergence of an altered adaptive immune response marked by CD4 cytotoxic T lymphocytes, and an activated innate response represented by liver-resident natural killer cells, specific Kupffer cell subtypes and marginated neutrophils. Surprisingly, we found MHC class II-expressing hepatocytes in patients achieving FC, as well as low but persistent levels of covalently closed circular DNA and pregenomic RNA, which may play an important role in FC. CONCLUSIONS Our study provides conceptually novel insights into the immuno-pathological control of HBV cure, and opens exciting new avenues for clinical management, biomarker discovery and therapeutic development. We believe that the discoveries from this study, as it relates to the activation of an innate and altered immune response that may facilitate sustained, low-grade inflammation, may have broader implications in the resolution of chronic viral hepatitis. IMPACT AND IMPLICATIONS This study dissects the immuno-pathological cell states associated with functionally cured chronic hepatitis B (defined by the loss of HBV surface antigen or HBsAg). We identified the sustained presence of very low viral load, accessory antigen-presenting hepatocytes, adaptive-memory-like natural killer cells, and the emergence of helper CD4 T cells with cytotoxic or effector-like signatures associated with functional cure, suggesting previously unsuspected alterations in the adaptive immune response, as well as a key role for the innate immune response in achieving or maintaining functional cure. Overall, the insights generated from this study may provide new avenues for the development of alternative therapies as well as patient surveillance for better clinical management of chronic hepatitis B.
Collapse
Affiliation(s)
- Balakrishnan Chakrapani Narmada
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672; Experimental Drug Development Centre, A∗STAR, 10 Biopolis Way, Chromos, Singapore 138670, Singapore
| | - Atefeh Khakpoor
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Niranjan Shirgaonkar
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672
| | - Sriram Narayanan
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Pauline Poh Kim Aw
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672
| | - Malay Singh
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - Kok Haur Ong
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - Collins Oduor Owino
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jane Wei Ting Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hui Chuing Yew
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Veonice Bijin Au
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Reina Sng
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Nivashini Kaliaperumal
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Htet Htet Toe Wai Khine
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Otsuka Masayuki
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore 169856, Singapore
| | - Shamita Naikar
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore 169856, Singapore
| | - Hui Xin Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Su Li Chia
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Myra Hj Alnawaz
- Department of Medicine, National University Hospital, Singapore
| | - Chris Lee Yoon Wai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Amy Yuh Ling Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kamarjit Singh Mangat
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore 169856, Singapore
| | - Weimiao Yu
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - John Edward Connolly
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Biomedical Studies, Baylor University, Waco, TX, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Giridharan Periyasamy
- Experimental Drug Development Centre, A∗STAR, 10 Biopolis Way, Chromos, Singapore 138670, Singapore
| | | | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR5286, Lyon, France; Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France; University of Lyon Claude Bernard 1 (UCLB1), Lyon, France; Department of Medicine SCIAC and the Italian Institute of Technology (IIT) Center for Life Nanosciences (CLNS), University of Rome La Sapienza, Rome, Italy
| | - Seng Gee Lim
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; Department of Medicine, National University Hospital, Singapore; Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore.
| | - Ramanuj DasGupta
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672.
| |
Collapse
|
8
|
Almeida L, Dhillon-LaBrooy A, Sparwasser T. The evolutionary tug-of-war of macrophage metabolism during bacterial infection. Trends Endocrinol Metab 2024; 35:235-248. [PMID: 38040578 DOI: 10.1016/j.tem.2023.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
The function and phenotype of macrophages are intimately linked with pathogen detection. On sensing pathogen-derived signals and molecules, macrophages undergo a carefully orchestrated process of polarization to acquire pathogen-clearing properties. This phenotypic change must be adequately supported by metabolic reprogramming that is now known to support the acquisition of effector function, but also generates secondary metabolites with direct microbicidal activity. At the same time, bacteria themselves have adapted to both manipulate and take advantage of macrophage-specific metabolic adaptations. Here, we summarize the current knowledge on macrophage metabolism during infection, with a particular focus on understanding the 'arms race' between host immune cells and bacteria during immune responses.
Collapse
Affiliation(s)
- Luís Almeida
- Institute of Medical Microbiology and Hygiene, University Medical Center of Johannes Gutenberg University, Mainz 55131, Germany.
| | - Ayesha Dhillon-LaBrooy
- Institute of Medical Microbiology and Hygiene, University Medical Center of Johannes Gutenberg University, Mainz 55131, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of Johannes Gutenberg University, Mainz 55131, Germany.
| |
Collapse
|
9
|
Sounbuli K, Alekseeva LA, Markov OV, Mironova NL. A Comparative Study of Different Protocols for Isolation of Murine Neutrophils from Bone Marrow and Spleen. Int J Mol Sci 2023; 24:17273. [PMID: 38139101 PMCID: PMC10743699 DOI: 10.3390/ijms242417273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophils are considered as the main player in innate immunity. In the last few years, it has been shown that they are involved in different physiological conditions and diseases. However, progress in the field of neutrophil biology is relatively slow due to existing difficulties in neutrophil isolation and maintenance in culture. Here we compare four protocols based on density-gradient and immunomagnetic methods for isolation of murine neutrophils from bone marrow and spleen. Neutrophil isolation was performed using Ficoll 1.077/1.119 g/mL density gradient, Ficoll 1.083/1.090/1.110 g/mL density gradient and immunomagnetic method of negative and positive selection. The different protocols were compared with respect to sample purity, cell viability, yield, and cost. The functionality of isolated neutrophils was checked by NETosis analysis and neutrophil oxidative burst test. Obtained data revealed that given purity/yield/viability/cost ratio the protocol based on cell centrifugation on Ficoll 1.077/1.119 g/mL density gradient is recommended for isolation of neutrophils from bone marrow, whereas immunomagnetic method of positive selection using Dynabeads is recommended for isolation of splenic neutrophils.
Collapse
Affiliation(s)
- Khetam Sounbuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (K.S.); (L.A.A.); (O.V.M.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ludmila A. Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (K.S.); (L.A.A.); (O.V.M.)
| | - Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (K.S.); (L.A.A.); (O.V.M.)
| | - Nadezhda L. Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (K.S.); (L.A.A.); (O.V.M.)
| |
Collapse
|
10
|
Bousso P, Grandjean CL. Immunomodulation under the lens of real-time in vivo imaging. Eur J Immunol 2023; 53:e2249921. [PMID: 37051691 DOI: 10.1002/eji.202249921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/16/2022] [Accepted: 04/11/2023] [Indexed: 04/14/2023]
Abstract
Modulation of cells and molecules of the immune system not only represents a major opportunity to treat a variety of diseases including infections, cancer, autoimmune, and inflammatory disorders but could also help understand the intricacies of immune responses. A detailed mechanistic understanding of how a specific immune intervention may provide clinical benefit is essential for the rational design of efficient immunomodulators. Visualizing the impact of immunomodulation in real-time and in vivo has emerged as an important approach to achieve this goal. In this review, we aim to illustrate how multiphoton intravital imaging has helped clarify the mode of action of immunomodulatory strategies such as antibodies or cell therapies. We also discuss how optogenetics combined with imaging will further help manipulate and precisely understand immunomodulatory pathways. Combined with other single-cell technologies, in vivo dynamic imaging has therefore a major potential for guiding preclinical development of immunomodulatory drugs.
Collapse
Affiliation(s)
- Philippe Bousso
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, Université de Paris Cité, Paris, France
| | - Capucine L Grandjean
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, Université de Paris Cité, Paris, France
| |
Collapse
|
11
|
Li W, Gurdziel K, Pitchaikannu A, Gupta N, Hazlett LD, Xu S. The miR-183/96/182 cluster is a checkpoint for resident immune cells and shapes the cellular landscape of the cornea. Ocul Surf 2023; 30:17-41. [PMID: 37536656 PMCID: PMC10834862 DOI: 10.1016/j.jtos.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE The conserved miR-183/96/182 cluster (miR-183C) regulates both corneal sensory innervation and corneal resident immune cells (CRICs). This study is to uncover its role in CRICs and in shaping the corneal cellular landscape at a single-cell (sc) level. METHODS Corneas of naïve, young adult [2 and 6 months old (mo)], female miR-183C knockout (KO) mice and wild-type (WT) littermates were harvested and dissociated into single cells. Dead cells were removed using a Dead Cell Removal kit. CD45+ CRICs were enriched by Magnetic Activated Cell Sorting (MACS). scRNA libraries were constructed and sequenced followed by comprehensive bioinformatic analyses. RESULTS The composition of major cell types of the cornea stays relatively stable in WT mice from 2 to 6 mo, however the compositions of subtypes of corneal cells shift with age. Inactivation of miR-183C disrupts the stability of the major cell-type composition and age-related transcriptomic shifts of subtypes of corneal cells. The diversity of CRICs is enhanced with age. Naïve mouse cornea contains previously-unrecognized resident fibrocytes and neutrophils. Resident macrophages (ResMφ) adopt cornea-specific function by expressing abundant extracellular matrix (ECM) and ECM organization-related genes. Naïve cornea is endowed with partially-differentiated proliferative ResMφ and contains microglia-like Mφ. Resident lymphocytes, including innate lymphoid cells (ILCs), NKT and γδT cells, are the major source of innate IL-17a. miR-183C limits the diversity and polarity of ResMφ. CONCLUSION miR-183C serves as a checkpoint for CRICs and imposes a global regulation of the cellular landscape of the cornea.
Collapse
Affiliation(s)
- Weifeng Li
- Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Department of Genetic Medicine, USA; Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | | | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
12
|
Belliveau NM, Footer MJ, Akdoǧan E, van Loon AP, Collins SR, Theriot JA. Whole-genome screens reveal regulators of differentiation state and context-dependent migration in human neutrophils. Nat Commun 2023; 14:5770. [PMID: 37723145 PMCID: PMC10507112 DOI: 10.1038/s41467-023-41452-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in humans and provide a critical early line of defense as part of our innate immune system. We perform a comprehensive, genome-wide assessment of the molecular factors critical to proliferation, differentiation, and cell migration in a neutrophil-like cell line. Through the development of multiple migration screen strategies, we specifically probe directed (chemotaxis), undirected (chemokinesis), and 3D amoeboid cell migration in these fast-moving cells. We identify a role for mTORC1 signaling in cell differentiation, which influences neutrophil abundance, survival, and migratory behavior. Across our individual migration screens, we identify genes involved in adhesion-dependent and adhesion-independent cell migration, protein trafficking, and regulation of the actomyosin cytoskeleton. This genome-wide screening strategy, therefore, provides an invaluable approach to the study of neutrophils and provides a resource that will inform future studies of cell migration in these and other rapidly migrating cells.
Collapse
Affiliation(s)
- Nathan M Belliveau
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Matthew J Footer
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Emel Akdoǧan
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA
| | - Aaron P van Loon
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
13
|
Peng H, Zhou Q, Liu J, Wang Y, Mu K, Zhang L. Endoplasmic reticulum stress: a vital process and potential therapeutic target in chronic obstructive pulmonary disease. Inflamm Res 2023; 72:1761-1772. [PMID: 37695356 DOI: 10.1007/s00011-023-01786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD), a chronic and progressive disease characterized by persistent respiratory symptoms and progressive airflow obstruction, has attracted extensive attention due to its high morbidity and mortality. Although the understanding of the pathogenesis of COPD has gradually increased because of increasing evidence, many questions regarding the mechanisms involved in COPD progression and its deleterious effects remain unanswered. Recent advances have shown the potential functions of endoplasmic reticulum (ER) stress in causing airway inflammation, emphasizing the vital role of unfolded protein response (UPR) pathways in the development of COPD. METHODS A comprehensive search of major databases including PubMed, Scopus, and Web of Science was conducted to retrieve original research articles and reviews related to ER stress, UPR, and COPD. RESULTS The common causes of COPD, namely cigarette smoke (CS) and air pollutants, induce ER stress through the generation of reactive oxygen species (ROS). UPR promotes mucus secretion and further plays a dual role in the cell apoptosis-autophagy axis in the development of COPD. Existing drug research has indicated the potential of UPR as a therapeutic target for COPD. CONCLUSIONS ER stress and UPR activation play significant roles in the etiology, pathogenesis, and treatment of COPD and discuss whether related genes can be used as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hao Peng
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jing Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ketao Mu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Avenue 1095, Wuhan, 430030, China.
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
14
|
Jakovija A, Chtanova T. Skin immunity in wound healing and cancer. Front Immunol 2023; 14:1060258. [PMID: 37398649 PMCID: PMC10312005 DOI: 10.3389/fimmu.2023.1060258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
The skin is the body's largest organ. It serves as a barrier to pathogen entry and the first site of immune defense. In the event of a skin injury, a cascade of events including inflammation, new tissue formation and tissue remodeling contributes to wound repair. Skin-resident and recruited immune cells work together with non-immune cells to clear invading pathogens and debris, and guide the regeneration of damaged host tissues. Disruption to the wound repair process can lead to chronic inflammation and non-healing wounds. This, in turn, can promote skin tumorigenesis. Tumors appropriate the wound healing response as a way of enhancing their survival and growth. Here we review the role of resident and skin-infiltrating immune cells in wound repair and discuss their functions in regulating both inflammation and development of skin cancers.
Collapse
Affiliation(s)
- Arnolda Jakovija
- Immunity Theme, Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Tatyana Chtanova
- Immunity Theme, Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
Dutta A, Bhagat S, Paul S, Katz JP, Sengupta D, Bhargava D. Neutrophils in Cancer and Potential Therapeutic Strategies Using Neutrophil-Derived Exosomes. Vaccines (Basel) 2023; 11:1028. [PMID: 37376417 PMCID: PMC10301170 DOI: 10.3390/vaccines11061028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Neutrophils are the most abundant immune cells and make up about 70% of white blood cells in human blood and play a critical role as the first line of defense in the innate immune response. They also help regulate the inflammatory environment to promote tissue repair. However, in cancer, neutrophils can be manipulated by tumors to either promote or hinder tumor growth depending on the cytokine pool. Studies have shown that tumor-bearing mice have increased levels of neutrophils in peripheral circulation and that neutrophil-derived exosomes can deliver various cargos, including lncRNA and miRNA, which contribute to tumor growth and degradation of extracellular matrix. Exosomes derived from immune cells generally possess anti-tumor activities and induce tumor-cell apoptosis by delivering cytotoxic proteins, ROS generation, H2O2 or activation of Fas-mediated apoptosis in target cells. Engineered exosome-like nanovesicles have been developed to deliver chemotherapeutic drugs precisely to tumor cells. However, tumor-derived exosomes can aggravate cancer-associated thrombosis through the formation of neutrophil extracellular traps. Despite the advancements in neutrophil-related research, a detailed understanding of tumor-neutrophil crosstalk is still lacking and remains a major barrier in developing neutrophil-based or targeted therapy. This review will focus on the communication pathways between tumors and neutrophils, and the role of neutrophil-derived exosomes (NDEs) in tumor growth. Additionally, potential strategies to manipulate NDEs for therapeutic purposes will be discussed.
Collapse
Affiliation(s)
- Abhishek Dutta
- Exsure, Kalinga Institute of Industrial Technology, KIIT Rd, Patia, Bhubaneswar 751024, Odisha, India
| | - Shrikrishna Bhagat
- Exsure, Kalinga Institute of Industrial Technology, KIIT Rd, Patia, Bhubaneswar 751024, Odisha, India
| | - Swastika Paul
- Exsure, Kalinga Institute of Industrial Technology, KIIT Rd, Patia, Bhubaneswar 751024, Odisha, India
| | - Jonathan P. Katz
- Department of Gastroenterology, 928 BRB II/III, 421 Curie Blvd, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Debomita Sengupta
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute (under Ministry of Health and Family Welfare, Government of India Regional Cancer Centre), 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Dharmendra Bhargava
- Department of Gastroenterology, 928 BRB II/III, 421 Curie Blvd, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Stephens R, Grainger JR, Smith CJ, Allan SM. Systemic innate myeloid responses to acute ischaemic and haemorrhagic stroke. Semin Immunopathol 2023; 45:281-294. [PMID: 36346451 PMCID: PMC9641697 DOI: 10.1007/s00281-022-00968-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022]
Abstract
Acute ischaemic and haemorrhagic stroke account for significant disability and morbidity burdens worldwide. The myeloid arm of the peripheral innate immune system is critical in the immunological response to acute ischaemic and haemorrhagic stroke. Neutrophils, monocytes, and dendritic cells (DC) contribute to the evolution of pathogenic local and systemic inflammation, whilst maintaining a critical role in ongoing immunity protecting against secondary infections. This review aims to summarise the key alterations to myeloid immunity in acute ischaemic stroke, intracerebral haemorrhage (ICH), and subarachnoid haemorrhage (SAH). By integrating clinical and preclinical research, we discover how myeloid immunity is affected across multiple organ systems including the brain, blood, bone marrow, spleen, and lung, and evaluate how these perturbations associate with real-world outcomes including infection. These findings are placed in the context of the rapidly developing field of human immunology, which offers a wealth of opportunity for further research.
Collapse
Affiliation(s)
- Ruth Stephens
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - John R Grainger
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Craig J Smith
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
17
|
Puuvuori E, Chiodaroli E, Estrada S, Cheung P, Lubenow N, Sigfridsson J, Romelin H, Ingvast S, Elgland M, Liggieri F, Korsgren O, Perchiazzi G, Eriksson O, Antoni G. PET Imaging of Neutrophil Elastase with 11C-GW457427 in Acute Respiratory Distress Syndrome in Pigs. J Nucl Med 2023; 64:423-429. [PMID: 36109184 PMCID: PMC10071803 DOI: 10.2967/jnumed.122.264306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Today, there is a lack of clinically available imaging techniques to detect and quantify specific immune cell populations. Neutrophils are one of the first immune cells at the site of inflammation, and they secrete the serine protease neutrophil elastase (NE), which is crucial in the fight against pathogens. However, the prolonged lifespan of neutrophils increases the risk that patients will develop severe complications, such as acute respiratory distress syndrome (ARDS). Here, we evaluated the novel radiolabeled NE inhibitor 11C-GW457427 in a pig model of ARDS, for detection and quantification of neutrophil activity in the lungs. Methods: ARDS was induced by intravenous administration of oleic acid to 5 farm pigs, and 4 were considered healthy controls. The severity of ARDS was monitored by clinical parameters of lung function and plasma biomarkers. Each pig was studied with 11C-GW457427 and PET/CT, before and after pretreatment with the NE inhibitor GW311616 to determine in vivo binding specificity. PET image data were analyzed as SUVs and correlated with immunohistochemical staining for NE in biopsies. Results: The binding of 11C-GW457427 was increased in pig lungs with induced ARDS (median SUVmean, 1.91; interquartile range [IQR], 1.67-2.55) compared with healthy control pigs (P < 0.05 and P = 0.03, respectively; median SUVmean, 1.04; IQR, 0.66-1.47). The binding was especially strong in lung regions with high levels of NE and ongoing inflammation, as verified by immunohistochemistry. The binding was successfully blocked by pretreatment of an NE inhibitor drug, which demonstrated the in vivo specificity of 11C-GW457427 (P < 0.05 and P = 0.04, respectively; median SUVmean, 0.60; IQR, 0.58-0.77). The binding in neutrophil-rich tissues such as bone marrow (P < 0.05 and P = 0.04, respectively; baseline median SUVmean, 5.01; IQR, 4.48-5.49; block median SUVmean, 1.57; IQR, 0.95-1.85) and spleen (median SUVmean, 2.14; IQR, 1.19-2.36) was also high in all pigs. Conclusion: 11C-GW457427 binds to NE in a porcine model of oleic acid-induced lung inflammation in vivo, with a specific increase in regional lung, bone marrow, and spleen SUV. 11C-GW457427 is a promising tool for localizing, tracking, and quantifying neutrophil-facilitated inflammation in clinical diagnostics and drug development.
Collapse
Affiliation(s)
- Emmi Puuvuori
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Elena Chiodaroli
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala Sweden
| | - Sergio Estrada
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Norbert Lubenow
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden; and
| | - Jonathan Sigfridsson
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Hampus Romelin
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Sofie Ingvast
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden; and
| | - Mathias Elgland
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Francesco Liggieri
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden; and
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden;
| | - Gunnar Antoni
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden;
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
18
|
Li J, Yao Z, Liu X, Duan R, Yi X, Ayoub A, Sanders JO, Mesfin A, Xing L, Boyce BF. TGFβ1 +CCR5 + neutrophil subset increases in bone marrow and causes age-related osteoporosis in male mice. Nat Commun 2023; 14:159. [PMID: 36631487 PMCID: PMC9834218 DOI: 10.1038/s41467-023-35801-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
TGFβ1 induces age-related bone loss by promoting degradation of TNF receptor-associated factor 3 (TRAF3), levels of which decrease in murine and human bone during aging. We report that a subset of neutrophils (TGFβ1+CCR5+) is the major source of TGFβ1 in murine bone. Their numbers are increased in bone marrow (BM) of aged wild-type mice and adult mice with TRAF3 conditionally deleted in mesenchymal progenitor cells (MPCs), associated with increased expression in BM of the chemokine, CCL5, suggesting that TRAF3 in MPCs limits TGFβ1+CCR5+ neutrophil numbers in BM of young mice. During aging, TGFβ1-induced TRAF3 degradation in MPCs promotes NF-κB-mediated expression of CCL5 by MPCs, associated with higher TGFβ1+CCR5+ neutrophil numbers in BM where they induce bone loss. TGFβ1+CCR5+ neutrophils decreased bone mass in male mice. The FDA-approved CCR5 antagonist, maraviroc, reduced TGFβ1+CCR5+ neutrophil numbers in BM and increased bone mass in aged mice. 15-mon-old mice with TGFβRII specifically deleted in MPCs had lower numbers of TGFβ1+CCR5+ neutrophils in BM and higher bone volume than wild-type littermates. We propose that pharmacologic reduction of TGFβ1+CCR5+ neutrophil numbers in BM could treat or prevent age-related osteoporosis.
Collapse
Affiliation(s)
- Jinbo Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Institute of Health and Medical Research, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Xin Liu
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Rong Duan
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Xiangjiao Yi
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Akram Ayoub
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Leica Biosystems, Deer Park, IL, 60010, USA
| | - James O Sanders
- Department of Orthopaedics and Rehabilitation Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Addisu Mesfin
- Department of Orthopaedics and Rehabilitation Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Department of Orthopaedics and Rehabilitation Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
19
|
Farhan A, Hassan G, Ali SHL, Yousaf Z, Shafique K, Faisal A, Younis BB, Mirza S. Spontaneous NETosis in diabetes: A role of hyperglycemia mediated ROS and autophagy. Front Med (Lausanne) 2023; 10:1076690. [PMID: 36895726 PMCID: PMC9988915 DOI: 10.3389/fmed.2023.1076690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Type 2-diabetes, particularly poorly controlled diabetes, is a risk factor for several infections such as lower respiratory tract and skin infections. Hyperglycemia, a characteristic downstream effect of poorly controlled diabetes, has been shown to impair the function of immune cells, in particular neutrophils. Several studies have demonstrated that hyperglycemia-mediated priming of NADPH oxidase results in subsequent elevated levels of reactive oxygen species (ROS). In healthy neutrophils, ROS plays an important role in pathogen killing by phagocytosis and by induction of Neutrophil Extracellular Traps (NETs). Given the key role of ROS in autophagy, phagocytosis and NETosis, the relationship between these pathways and the role of diabetes in the modulation of these pathways has not been explored previously. Therefore, our study aimed to understand the relationship between autophagy, phagocytosis and NETosis in diabetes. We hypothesized that hyperglycemia-associated oxidative stress alters the balance between phagocytosis and NETosis by modulating autophagy. Using whole blood samples from individuals with and without type 2-diabetes (in the presence and absence of hyperglycemia), we demonstrated that (i) hyperglycemia results in elevated levels of ROS in neutrophils from those with diabetes, (ii) elevated levels of ROS increase LCIII (a marker for autophagy) and downstream NETosis. (iii) Diabetes was also found to be associated with low levels of phagocytosis and phagocytic killing of S. pneumoniae. (iv) Blocking either NADPH oxidase or cellular pathways upstream of autophagy led to a significant reduction in NETosis. This study is the first to demonstrate the role of ROS in altering NETosis and phagocytosis by modulating autophagy in type 2-diabetes. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Anam Farhan
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ghulam Hassan
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Sheikha Hina Liaqat Ali
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zainab Yousaf
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Kandeel Shafique
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Amir Faisal
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Bilal Bin Younis
- Sakina Institute of Diabetes and Endocrinology Research (SiDER), Shalamar Hospital, Lahore, Pakistan
| | - Shaper Mirza
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
20
|
Ortega-Gomez A, Lopez S, Varela LM, Jaramillo S, Muriana FJ, Abia R. New evidence for dietary fatty acids in the neutrophil traffic between the bone marrow and the peripheral blood. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100133. [PMID: 36111060 PMCID: PMC9467871 DOI: 10.1016/j.fochms.2022.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/11/2022]
Abstract
Chronic administration of a high-fat diet in mice has been established to influence the generation and trafficking of immune cells such as neutrophils in the bone marrow, the dysregulation of which may contribute to a wide range of diseases. However, no studies have tested the hypothesis that a short-term, high-fat diet could early modulate the neutrophil release from bone marrow at fasting and at postprandial in response to a high-fat meal challenge, and that the predominant type of fatty acids in dietary fats could play a role in both context conditions. Based on these premises, we aimed to establish the effects of different fats [butter, enriched in saturated fatty acids (SFAs), olive oil, enriched in monounsaturated fatty acids (MUFAs), and olive oil supplemented with eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] on neutrophil navigation from bone marrow to blood in mice. The analysis of cellular models for mechanistic understanding and of postprandial blood samples from healthy volunteers for translational purposes was assessed. The results revealed a powerful effect of dietary SFAs in promotion the neutrophil traffic from bone marrow to blood via the CXCL2-CXCR2 axis. Dietary SFAs, but not MUFAs or EPA and DHA, were also associated with increased neutrophil apoptosis and bone marrow inflammation. Similar dietary fatty-acid-induced postprandial neutrophilia was observed in otherwise healthy humans. Therefore, dietary MUFAs might preserve bone marrow health and proper migration of bone marrow neutrophils early in the course of high-fat diets even after the intake of high-fat meals.
Collapse
Key Words
- BMSF, bone marrow supernatant fluid
- Bone marrow inflammation
- Butter
- Ct, threshold cycle
- DHA, docosahexaenoic acid
- Dietary fatty acids
- EPA, eicosapentaenoic acid
- FACS, fluorescence-activated cell sorting
- FSC, forward scatter
- HBSS, Hank’s balance salt solution
- HFDs, high-fat diets
- HSCs, hematopoietic stem cells
- High-fat diets
- LFD, low-fat diet
- MFI, mean fluorescence intensity
- MMP9, matrix metalloproteinase 9
- MUFAs, monounsaturated fatty acids
- Neutrophil mobilisation
- OCM, oral control meal
- OFLs, oral fat loads
- OFMs, oral fat meals
- OSL, oral saline load
- Olive oil
- PI, propidium iodide
- PUFAs, polyunsaturated fatty acids
- SFAs, saturated fatty acids
- SSC, side scatter
- TRLs, triglyceride-rich lipoproteins
- qRT-PCR, quantitative real-time reverse transcription polymerase chain reaction
Collapse
Affiliation(s)
- Almudena Ortega-Gomez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), 41013 Seville, Spain
- Department of Cellular and Molecular Endocrinology, Instituto de Investigacion Biomedica de Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Malaga, Spain
| | - Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), 41013 Seville, Spain
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain
| | - Lourdes M. Varela
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), 41013 Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Sara Jaramillo
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), 41013 Seville, Spain
| | - Francisco J.G. Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), 41013 Seville, Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), 41013 Seville, Spain
| |
Collapse
|
21
|
Moggio A, Schunkert H, Kessler T, Sager HB. Quo Vadis? Immunodynamics of Myeloid Cells after Myocardial Infarction. Int J Mol Sci 2022; 23:15814. [PMID: 36555456 PMCID: PMC9779515 DOI: 10.3390/ijms232415814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI), a major contributor to worldwide morbidity and mortality, is caused by a lack of blood flow to the heart. Affected heart tissue becomes ischemic due to deficiency of blood perfusion and oxygen delivery. In case sufficient blood flow cannot be timely restored, cardiac injury with necrosis occurs. The ischemic/necrotic area induces a systemic inflammatory response and hundreds of thousands of leukocytes are recruited from the blood to the injured heart. The blood pool of leukocytes is rapidly depleted and urgent re-supply of these cells is needed. Myeloid cells are generated in the bone marrow (BM) and spleen, released into the blood, travel to sites of need, extravasate and accumulate inside tissues to accomplish various functions. In this review we focus on the "leukocyte supply chain" and will separately evaluate different myeloid cell compartments (BM, spleen, blood, heart) in steady state and after MI. Moreover, we highlight the local and systemic kinetics of extracellular factors, chemokines and danger signals involved in the regulation of production/generation, release, transportation, uptake, and activation of myeloid cells during the inflammatory phase of MI.
Collapse
Affiliation(s)
- Aldo Moggio
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
22
|
Özcan A, Boyman O. Mechanisms regulating neutrophil responses in immunity, allergy, and autoimmunity. Allergy 2022; 77:3567-3583. [PMID: 36067034 PMCID: PMC10087481 DOI: 10.1111/all.15505] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Accepted: 09/03/2022] [Indexed: 01/28/2023]
Abstract
Neutrophil granulocytes, or neutrophils, are the most abundant circulating leukocytes in humans and indispensable for antimicrobial immunity, as exemplified in patients with inborn and acquired defects of neutrophils. Neutrophils were long regarded as the foot soldiers of the immune system, solely destined to execute a set of effector functions against invading pathogens before undergoing apoptosis, the latter of which was ascribed to their short life span. This simplistic understanding of neutrophils has now been revised on the basis of insights gained from the use of mouse models and single-cell high-throughput techniques, revealing tissue- and context-specific roles of neutrophils in guiding immune responses. These studies also demonstrated that neutrophil responses were controlled by sophisticated feedback mechanisms, including directed chemotaxis of neutrophils to tissue-draining lymph nodes resulting in modulation of antimicrobial immunity and inflammation. Moreover, findings in mice and humans showed that neutrophil responses adapted to different deterministic cytokine signals, which controlled their migration and effector function as well as, notably, their biologic clock by affecting the kinetics of their aging. These mechanistic insights have important implications for health and disease in humans, particularly, in allergic diseases, such as atopic dermatitis and allergic asthma bronchiale, as well as in autoinflammatory and autoimmune diseases. Hence, our improved understanding of neutrophils sheds light on novel therapeutic avenues, focusing on molecularly defined biologic agents.
Collapse
Affiliation(s)
- Alaz Özcan
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Vega JL, Komisaruk BR, Stewart M. Hiding in plain sight? A review of post-convulsive leukocyte elevations. Front Neurol 2022; 13:1021042. [PMID: 36408527 PMCID: PMC9666487 DOI: 10.3389/fneur.2022.1021042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
During physiological stress responses such as vigorous exercise, emotional states of fear and rage, and asphyxia, the nervous system induces a massive release of systemic catecholamines that prepares the body for survival by increasing cardiac output and redirecting blood flow from non-essential organs into the cardiopulmonary circulation. A curious byproduct of this vital response is a sudden, transient, and redistributive leukocytosis provoked mostly by the resultant shear forces exerted by rapid blood flow on marginated leukocytes. Generalized convulsive seizures, too, result in catecholamine surges accompanied by similar leukocytoses, the magnitude of which appears to be rooted in semiological factors such as convulsive duration and intensity. This manuscript reviews the history, kinetics, physiology, and clinical significance of post-convulsive leukocyte elevations and discusses their clinical utility, including a proposed role in the scientific investigation of sudden unexpected death in epilepsy (SUDEP).
Collapse
Affiliation(s)
- Jose L. Vega
- Department of Psychology, Rutgers University-Newark, Newark, NJ, United States,TeleNeurologia SAS, Medellin, Colombia,*Correspondence: Jose L. Vega
| | - Barry R. Komisaruk
- Department of Psychology, Rutgers University-Newark, Newark, NJ, United States
| | - Mark Stewart
- Department of Neurology, State University of New York Health Sciences University, Brooklyn, NY, United States,Department of Physiology and Pharmacology, State University of New York Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
24
|
Fodor M, Salcher S, Gottschling H, Mair A, Blumer M, Sopper S, Ebner S, Pircher A, Oberhuber R, Wolf D, Schneeberger S, Hautz T. The liver-resident immune cell repertoire - A boon or a bane during machine perfusion? Front Immunol 2022; 13:982018. [PMID: 36311746 PMCID: PMC9609784 DOI: 10.3389/fimmu.2022.982018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
The liver has been proposed as an important “immune organ” of the body, as it is critically involved in a variety of specific and unique immune tasks. It contains a huge resident immune cell repertoire, which determines the balance between tolerance and inflammation in the hepatic microenvironment. Liver-resident immune cells, populating the sinusoids and the space of Disse, include professional antigen-presenting cells, myeloid cells, as well as innate and adaptive lymphoid cell populations. Machine perfusion (MP) has emerged as an innovative technology to preserve organs ex vivo while testing for organ quality and function prior to transplantation. As for the liver, hypothermic and normothermic MP techniques have successfully been implemented in clinically routine, especially for the use of marginal donor livers. Although there is evidence that ischemia reperfusion injury-associated inflammation is reduced in machine-perfused livers, little is known whether MP impacts the quantity, activation state and function of the hepatic immune-cell repertoire, and how this affects the inflammatory milieu during MP. At this point, it remains even speculative if liver-resident immune cells primarily exert a pro-inflammatory and hence destructive effect on machine-perfused organs, or in part may be essential to induce liver regeneration and counteract liver damage. This review discusses the role of hepatic immune cell subtypes during inflammatory conditions and ischemia reperfusion injury in the context of liver transplantation. We further highlight the possible impact of MP on the modification of the immune cell repertoire and its potential for future applications and immune modulation of the liver.
Collapse
Affiliation(s)
- M. Fodor
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S. Salcher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - H. Gottschling
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Mair
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - M. Blumer
- Department of Anatomy and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - S. Sopper
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - S. Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Pircher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - R. Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - D. Wolf
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - S. Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - T. Hautz
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: T. Hautz,
| |
Collapse
|
25
|
Coulibaly AP. Neutrophil modulation of behavior and cognition in health and disease: The unexplored role of an innate immune cell. Immunol Rev 2022; 311:177-186. [PMID: 35924463 PMCID: PMC9804154 DOI: 10.1111/imr.13123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Behavior and cognition are multifaceted processes influenced by genetics, synaptic plasticity, and neuronal connectivity. Recent reports have demonstrated that peripheral inflammation and peripheral immune cells play important roles in the preservation and deterioration of behavior/cognition under various conditions. Indeed, several studies show that the activity of peripheral immune cells can be critical for normal cognitive function. Neutrophils are the most abundant immune cells in the mammalian system. Their activation is critical to the initiation of the inflammatory process and critical for wound healing. Neutrophils are the first cells to be activated and recruited to the central nervous system in both injury and disease. However, our understanding of the role these cells play in behavior and cognition is limited. The present review will summarize what is currently known about the effect the activation of these cells has on various behaviors and cognitive processes.
Collapse
Affiliation(s)
- Aminata P. Coulibaly
- Department of NeuroscienceRockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| |
Collapse
|
26
|
Myllymäki H, Yu PP, Feng Y. Opportunities presented by zebrafish larval models to study neutrophil function in tissues. Int J Biochem Cell Biol 2022; 148:106234. [PMID: 35667555 DOI: 10.1016/j.biocel.2022.106234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
Appropriate neutrophil function is essential for innate immune defence and to avoid inflammatory pathology. Neutrophils can adapt their responses according to their environment and recently, the existence of multiple distinct neutrophil populations has been confirmed in both health and disease. However, the study of neutrophil functions in their tissue environment has remained challenging, and for instance, the relationship between neutrophil maturity and function is not fully understood. Many neutrophil morphological and functional features are highly conserved between mammals and non-mammalian vertebrates. This enables the use of the transparent and genetically tractable zebrafish larvae to study neutrophil biology. We review data on the development and function of zebrafish larval neutrophils and advances zebrafish have brought to studies of neutrophil biology. In addition, we discuss opportunities and aspects to be considered when using the larval zebrafish model to further enhance our understanding of neutrophil function in health and disease.
Collapse
Affiliation(s)
- Henna Myllymäki
- UoE Centre for Inflammation Research, Queen's Medical Research Institute, Institute for Regeneration and Repair, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom
| | - Peiyi Pearl Yu
- UoE Centre for Inflammation Research, Queen's Medical Research Institute, Institute for Regeneration and Repair, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom
| | - Yi Feng
- UoE Centre for Inflammation Research, Queen's Medical Research Institute, Institute for Regeneration and Repair, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom.
| |
Collapse
|
27
|
Wang Y, Wang J. Intravital Imaging of Inflammatory Response in Liver Disease. Front Cell Dev Biol 2022; 10:922041. [PMID: 35837329 PMCID: PMC9274191 DOI: 10.3389/fcell.2022.922041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The healthy liver requires a strictly controlled crosstalk between immune and nonimmune cells to maintain its function and homeostasis. A well-conditioned immune system can effectively recognize and clear noxious stimuli by a self-limited, small-scale inflammatory response. This regulated inflammatory process enables the liver to cope with daily microbial exposure and metabolic stress, which is beneficial for hepatic self-renewal and tissue remodeling. However, the failure to clear noxious stimuli or dysregulation of immune response can lead to uncontrolled liver inflammation, liver dysfunction, and severe liver disease. Numerous highly dynamic circulating immune cells and sessile resident immune and parenchymal cells interact and communicate with each other in an incredibly complex way to regulate the inflammatory response in both healthy and diseased liver. Intravital imaging is a powerful tool to visualize individual cells in vivo and has been widely used for dissecting the behavior and interactions between various cell types in the complex architecture of the liver. Here, we summarize some new findings obtained with the use of intravital imaging, which enhances our understanding of the complexity of immune cell behavior, cell–cell interaction, and spatial organization during the physiological and pathological liver inflammatory response.
Collapse
|
28
|
DeSouza-Vieira T. The metamorphosis of neutrophil transcriptional program during Leishmania infection. Parasite Immunol 2022; 44:e12922. [PMID: 35437801 DOI: 10.1111/pim.12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
The role of neutrophils in the course of Leishmania infection remains controversial, displaying tremendous variability depending on the species of parasite, stage of infection, host genetic background, and methodological discrepancies among studies. Although neutrophils have long been categorized as short-lived cells with limited capacity to express proteins de novo, recent advances have revealed significant plasticity in neutrophil transcriptional programs and intrapopulation heterogeneity, which can be regulated by both intrinsic and extrinsic factors that together determine the profile of neutrophil effector response. In this review, we focus on the current understanding of neutrophil transcriptional plasticity, neutrotime, evidence of Leishmania-mediated alterations in neutrophil transcriptome leading to the rise of subpopulations, and finally, functional implications of those findings to the course of Leishmania infection.
Collapse
Affiliation(s)
- Thiago DeSouza-Vieira
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Persistent Cutaneous Leishmania major Infection Promotes Infection-Adapted Myelopoiesis. Microorganisms 2022; 10:microorganisms10030535. [PMID: 35336108 PMCID: PMC8954948 DOI: 10.3390/microorganisms10030535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/26/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem/progenitor cells (HSPC) are responsible for the generation of most immune cells throughout the lifespan of the organism. Inflammation can activate bone marrow HSPCs, leading to enhanced myelopoiesis to replace cells, such as neutrophils, which are attracted to inflamed tissues. We have previously shown that HSPC activation promotes parasite persistence and expansion in experimental visceral leishmaniasis through the increased production of permissive monocytes. However, it is not clear if the presence of the parasite in the bone marrow was required for infection-adapted myelopoiesis. We therefore hypothesized that persistent forms of Leishmania major (cutaneous leishmaniasis) could also activate HSPCs and myeloid precursors in the C57Bl/6 mouse model of intradermal infection in the ear. The accrued influx of myeloid cells to the lesion site corresponded to an increase in myeloid-biased HSPCs in the bone marrow and spleen in mice infected with a persistent strain of L. major, together with an increase in monocytes and monocyte-derived myeloid cells in the spleen. Analysis of the bone marrow cytokine and chemokine environment revealed an attenuated type I and type II interferon response in the mice infected with the persistent strain compared to the self-healing strain, while both strains induced a rapid upregulation of myelopoietic cytokines, such as IL-1β and GM-CSF. These results demonstrate that an active infection in the bone marrow is not necessary for the induction of infection-adapted myelopoiesis, and underline the importance of considering alterations to the bone marrow output when analyzing in vivo host-pathogen interactions.
Collapse
|
30
|
Marković D, Maslovarić I, Djikić D, Čokić VP. Neutrophil Death in Myeloproliferative Neoplasms: Shedding More Light on Neutrophils as a Pathogenic Link to Chronic Inflammation. Int J Mol Sci 2022; 23:1490. [PMID: 35163413 PMCID: PMC8836089 DOI: 10.3390/ijms23031490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are an essential component of the innate immune response, but their prolonged activation can lead to chronic inflammation. Consequently, neutrophil homeostasis is tightly regulated through balance between granulopoiesis and clearance of dying cells. The bone marrow is both a site of neutrophil production and the place they return to and die. Myeloproliferative neoplasms (MPN) are clonal hematopoietic disorders characterized by the mutations in three types of molecular markers, with emphasis on Janus kinase 2 gene mutation (JAK2V617F). The MPN bone marrow stem cell niche is a site of chronic inflammation, with commonly increased cells of myeloid lineage, including neutrophils. The MPN neutrophils are characterized by the upregulation of JAK target genes. Additionally, MPN neutrophils display malignant nature, they are in a state of activation, and with deregulated apoptotic machinery. In other words, neutrophils deserve to be placed in the midst of major events in MPN. Our crucial interest in this review is better understanding of how neutrophils die in MPN mirrored by defects in apoptosis and to what possible extent they can contribute to MPN pathophysiology. We tend to expect that reduced neutrophil apoptosis will establish a pathogenic link to chronic inflammation in MPN.
Collapse
Affiliation(s)
- Dragana Marković
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia;
| | - Irina Maslovarić
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia;
| | - Dragoslava Djikić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia; (D.D.); (V.P.Č.)
| | - Vladan P. Čokić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia; (D.D.); (V.P.Č.)
| |
Collapse
|
31
|
Pizzagalli DU, Pulfer A, Thelen M, Krause R, Gonzalez SF. In Vivo Motility Patterns Displayed by Immune Cells Under Inflammatory Conditions. Front Immunol 2022; 12:804159. [PMID: 35046959 PMCID: PMC8762290 DOI: 10.3389/fimmu.2021.804159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The migration of immune cells plays a key role in inflammation. This is evident in the fact that inflammatory stimuli elicit a broad range of migration patterns in immune cells. Since these patterns are pivotal for initiating the immune response, their dysregulation is associated with life-threatening conditions including organ failure, chronic inflammation, autoimmunity, and cancer, amongst others. Over the last two decades, thanks to advancements in the intravital microscopy technology, it has become possible to visualize cell migration in living organisms with unprecedented resolution, helping to deconstruct hitherto unexplored aspects of the immune response associated with the dynamism of cells. However, a comprehensive classification of the main motility patterns of immune cells observed in vivo, along with their relevance to the inflammatory process, is still lacking. In this review we defined cell actions as motility patterns displayed by immune cells, which are associated with a specific role during the immune response. In this regard, we summarize the main actions performed by immune cells during intravital microscopy studies. For each of these actions, we provide a consensus name, a definition based on morphodynamic properties, and the biological contexts in which it was reported. Moreover, we provide an overview of the computational methods that were employed for the quantification, fostering an interdisciplinary approach to study the immune system from imaging data.
Collapse
Affiliation(s)
- Diego Ulisse Pizzagalli
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Alain Pulfer
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology Zurich (ETHZ) Zürich, Zürich, Switzerland
| | - Marcus Thelen
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rolf Krause
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Santiago F. Gonzalez
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
32
|
Medina-Quero K, Barreto-Rodriguez O, Mendez-Rodriguez V, Sanchez-Moncivais A, Buendia-Roldan I, Chavez-Galan L. SARS-CoV-2 infection: Understanding the immune system abnormalities to get an adequate diagnosis. Bosn J Basic Med Sci 2021; 21:503-514. [PMID: 33596401 PMCID: PMC8381208 DOI: 10.17305/bjbms.2020.5400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/12/2021] [Indexed: 12/02/2022] Open
Abstract
COVID-19 is the current pandemic caused by the novel coronavirus, SARS-CoV-2, that emerged from China at the end of December 2019. The scientific community is making extraordinary efforts to understand the virus structure and the pathophysiology and immunological processes activated in the host, in order to identify biomarkers, diagnostic tools, treatments, and vaccines to decrease COVID-19 incidence and mortality. Various abnormalities have been noted during SARS-CoV-2 infection both in lymphoid and myeloid cells. Such abnormalities may disturb the immune system function and cause a massive inflammatory response that impairs tissue function. This review discusses the close relationship between the immune system abnormalities and the broad spectrum of clinical manifestations, including fibrosis, in the context of COVID-19 disease. Moreover, we described the current strategies for COVID-19 diagnosis, and we provide a summary of the most useful clinical laboratory parameters to identify severe COVID-19 patients.
Collapse
Affiliation(s)
- Karen Medina-Quero
- Laboratory of Immunology, Escuela Militar de Graduados de Sanidad, Mexico City, Mexico
| | - Omar Barreto-Rodriguez
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | | | | | - Ivette Buendia-Roldan
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| |
Collapse
|
33
|
The twilight zone: plasticity and mixed ontogeny of neutrophil and eosinophil granulocyte subsets. Semin Immunopathol 2021; 43:337-346. [PMID: 34009400 PMCID: PMC8132041 DOI: 10.1007/s00281-021-00862-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
It is now becoming clear that neutrophils and eosinophils are heterogeneous cells with potentially multiple subsets in health and disease. With greater marker coverage by multi-color flow cytometry and single-cell level sequencing of granulocyte populations, novel phenotypes of these cells began to emerge. Intriguingly, many newly described subsets blend distinctions between classical myeloid lineage phenotypes, which are especially true for tissue resident or recruited cells in contexts of inflammation and disease. This includes reports of neutrophils with features of eosinophils, monocytes and dendritic cells, and eosinophil subsets expressing neutrophil markers. Moreover, novel studies show the ability of immature neutrophils to transdifferentiate into mature cells belonging to other myeloid lineages (eosinophils, monocytes/macrophages). In this review, we summarize novel findings in this exciting research frontier and shed light on potential processes driving the plasticity and heterogeneity of granulocyte subsets. Specifically, we discuss the hematopoietic flexibility of granulocyte precursors in bone marrow and the adaptation of myeloid cells to local tissue microenvironments. The understanding of such intermediate and developmental phenotypes is very important, as it can teach us about origins of functionally distinct myeloid cells during inflammation, and explain reasons for successes and failures of biologics targeting terminally differentiated granulocytes.
Collapse
|
34
|
Juzenaite G, Secklehner J, Vuononvirta J, Helbawi Y, Mackey JBG, Dean C, Harker JA, Carlin LM, Rankin S, De Filippo K. Lung Marginated and Splenic Murine Resident Neutrophils Constitute Pioneers in Tissue-Defense During Systemic E. coli Challenge. Front Immunol 2021; 12:597595. [PMID: 33953706 PMCID: PMC8089477 DOI: 10.3389/fimmu.2021.597595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/29/2021] [Indexed: 11/15/2022] Open
Abstract
The rapid response of neutrophils throughout the body to a systemic challenge is a critical first step in resolution of bacterial infection such as Escherichia coli (E. coli). Here we delineated the dynamics of this response, revealing novel insights into the molecular mechanisms using lung and spleen intravital microscopy and 3D ex vivo culture of living precision cut splenic slices in combination with fluorescent labelling of endogenous leukocytes. Within seconds after challenge, intravascular marginated neutrophils and lung endothelial cells (ECs) work cooperatively to capture pathogens. Neutrophils retained on lung ECs slow their velocity and aggregate in clusters that enlarge as circulating neutrophils carrying E. coli stop within the microvasculature. The absolute number of splenic neutrophils does not change following challenge; however, neutrophils increase their velocity, migrate to the marginal zone (MZ) and form clusters. Irrespective of their location all neutrophils capturing heat-inactivated E. coli take on an activated phenotype showing increasing surface CD11b. At a molecular level we show that neutralization of ICAM-1 results in splenic neutrophil redistribution to the MZ under homeostasis. Following challenge, splenic levels of CXCL12 and ICAM-1 are reduced allowing neutrophils to migrate to the MZ in a CD29-integrin dependent manner, where the enlargement of splenic neutrophil clusters is CXCR2-CXCL2 dependent. We show directly molecular mechanisms that allow tissue resident neutrophils to provide the first lines of antimicrobial defense by capturing circulating E. coli and forming clusters both in the microvessels of the lung and in the parenchyma of the spleen.
Collapse
Affiliation(s)
- Goda Juzenaite
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Judith Secklehner
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Juho Vuononvirta
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- William Harvey Heart Centre, Barts & the London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Yoseph Helbawi
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - John B. G. Mackey
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Charlotte Dean
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - James A. Harker
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- Asthma UK Centre for Allergic Mechanisms of Asthma, London, United Kingdom
| | - Leo M. Carlin
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sara Rankin
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Katia De Filippo
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| |
Collapse
|