1
|
Sassano ML, Tyurina YY, Diometzidou A, Vervoort E, Tyurin VA, More S, La Rovere R, Giordano F, Bultynck G, Pavie B, Swinnen JV, Bayir H, Kagan VE, Scorrano L, Agostinis P. Endoplasmic reticulum-mitochondria contacts are prime hotspots of phospholipid peroxidation driving ferroptosis. Nat Cell Biol 2025:10.1038/s41556-025-01668-z. [PMID: 40514428 DOI: 10.1038/s41556-025-01668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/03/2025] [Indexed: 06/16/2025]
Abstract
The peroxidation of membrane phospholipids (PLs) is a hallmark of ferroptosis. The endoplasmic reticulum and mitochondria have been implicated in ferroptosis, but whether intracellular PL peroxidation ensues at their contact sites (endoplasmic reticulum-mitochondria contact sites, EMCSs) is unknown. Using super-resolution live imaging, we charted the spatiotemporal events triggered by ferroptosis at the interorganelle level. Here we show that EMCSs expand minutes after localized PL peroxides are formed and secondarily spread to mitochondria, promoting mitochondrial reactive oxygen species and fission. Oxidative lipidomics unravels that EMCSs host distinct proferroptotic polyunsaturated-PLs, including doubly proferroptotic polyunsaturated-acylated PLs, demonstrating their high propensity to undergo PL peroxidation. Endoplasmic reticulum-mitochondria untethering blunts PL peroxidation and ferroptosis, while EMCS stabilization enhances them. Consistently, distancing EMCSs protects the ferroptosis-susceptible triple-negative breast cancer subtype, harbouring high EMCS-related gene expression and basal PL peroxide levels. Conversely, in insensitive triple-negative breast cancer subtypes, bolstering EMCSs sensitizes them to ferroptosis. Our data unveil endoplasmic reticulum-mitochondria appositions as initial hubs of PL peroxide formation and posit that empowering EMCSs endorses ferroptosis in cancer cells.
Collapse
Affiliation(s)
- Maria Livia Sassano
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA
| | - Antigoni Diometzidou
- Department of Biology, University of Padua, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Ellen Vervoort
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA
| | - Sanket More
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Rita La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | | | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | | | - Johan V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Hülya Bayir
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Luca Scorrano
- Department of Biology, University of Padua, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, Leuven, Belgium.
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Keskinoz EN, Celik M, Toklucu ES, Birisik K, Erisir A, Oz-Arslan D. Mitochondrial Alterations in Alzheimer's Disease: Insight from the 5xFAD Mouse Model. Mol Neurobiol 2025; 62:7075-7092. [PMID: 39658775 PMCID: PMC12078374 DOI: 10.1007/s12035-024-04632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
Mitochondrial dysfunction is increasingly recognized as a key factor in Alzheimer's disease (AD) pathogenesis, but the precise relationship between mitochondrial dynamics and proteinopathies in AD remains unclear. This study investigates the role of mitochondrial dynamics and function in the hippocampal tissue and peripheral blood mononuclear cells (PBMCs) of 5xFAD transgenic mice, as a model of AD. The levels of mitochondrial fusion proteins OPA1 and MFN2 and fission proteins DRP1 and phospho-DRP1 (S616) at 3, 6, and 9 months of age were assessed. Western blot analysis revealed significantly lower levels of OPA1 and MFN2 in the hippocampus of 6- and 9-month-old transgenic (TG) 5xFAD mice compared to controls (CTR), while DRP1 and pDRP1 levels were increased in 9-month-old TG mice. Additionally, MFN2 were decreased in the PBMCs of 9-month-old TG mice, indicating systemic mitochondrial alterations. Ultrastructural analysis of hippocampal tissues showed substantial alterations in mitochondrial morphology, including abnormalities in size and shape, a preponderance of teardrop-shaped mitochondria, and alterations in the somatic mitochondria-ER complex. Notably, mitochondria-associated ER contact sites were more distant in TG mice, suggesting functional impairments. Flow cytometric measurements demonstrated decreased mitochondrial membrane potential and mass, along with increased superoxide production, in the PBMCs of TG mice, particularly at 9 months, highlighting compromised mitochondrial function. Levels of key mitochondrial proteins including VDAC, TOM2O, and mitophagy-related protein PINK1 levels altered in both central and peripheral tissue of TG mice. These findings suggest that mitochondrial dysfunction and altered dynamics are early events in AD development in 5xFAD mice, manifesting in both central and peripheral tissues, and support the notion that mitochondrial abnormalities are an integral component of AD pathology. These insights might lead to the development of targeted therapies that modulate mitochondrial dynamics and function to mitigate AD progression.
Collapse
Affiliation(s)
- Elif Nedret Keskinoz
- Department of Anatomy, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No. 32, Atasehir, Istanbul, Turkey
- Institute of Health Science, Department of Anatomy, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No. 32, Atasehir, Istanbul, Turkey
| | - Musa Celik
- Institute of Health Science, Department of Biophysics, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No. 32, Atasehir, Istanbul, Turkey
| | - Ezgi Sila Toklucu
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No. 32, Atasehir, Istanbul, Turkey
- Department of Psychology, University of Virginia, P.O. Box 400400, Charlottesville, VA, 22904, USA
| | - Kerem Birisik
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No. 32, Atasehir, Istanbul, Turkey
- Department of Psychology, University of Virginia, P.O. Box 400400, Charlottesville, VA, 22904, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, P.O. Box 400400, Charlottesville, VA, 22904, USA
| | - Devrim Oz-Arslan
- Institute of Health Science, Department of Biophysics, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No. 32, Atasehir, Istanbul, Turkey.
- Department of Biophysics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No. 32, Atasehir, Istanbul, Turkey.
| |
Collapse
|
3
|
Diokmetzidou A, Scorrano L. Mitochondria-membranous organelle contacts at a glance. J Cell Sci 2025; 138:jcs263895. [PMID: 40357586 DOI: 10.1242/jcs.263895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Mitochondrial contact sites are specialized interfaces where mitochondria physically interact with other organelles. Stabilized by molecular tethers and defined by unique proteomic and lipidomic profiles, these sites enable direct interorganellar communication and functional coordination, playing crucial roles in cellular physiology and homeostasis. Recent advances have expanded our knowledge of contact site-resident proteins, illuminated the dynamic and adaptive nature of these interfaces, and clarified their contribution to pathophysiology. In this Cell Science at a Glance article and the accompanying poster, we summarize the mitochondrial contacts that have been characterized in mammals, the molecular mechanisms underlying their formation, and their principal functions.
Collapse
Affiliation(s)
- Antigoni Diokmetzidou
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| |
Collapse
|
4
|
Li JJ, Xin N, Yang C, Kim BG, Tavizon LA, Hong R, Park J, Moore TI, Tharyan RG, Antebi A, Kim HE. Unveiling the intercompartmental signaling axis: Mitochondrial to ER Stress Response (MERSR) and its impact on proteostasis. PLoS Genet 2025; 21:e1011700. [PMID: 40338975 PMCID: PMC12088515 DOI: 10.1371/journal.pgen.1011700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 05/19/2025] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
Maintaining protein homeostasis is essential for cellular health. Our previous research uncovered a cross-compartmental Mitochondrial to Cytosolic Stress Response, activated by the perturbation of mitochondrial proteostasis, which ultimately results in the improvement of proteostasis in the cytosol. Here, we found that this signaling axis also influences the unfolded protein response of the endoplasmic reticulum (UPRER), suggesting the presence of a Mitochondria to ER Stress Response (MERSR). During MERSR, the IRE1 branch of UPRER is inhibited, introducing a previously unknown regulatory component of MCSR. Moreover, proteostasis is enhanced through the upregulation of the PERK-eIF2α signaling pathway, increasing phosphorylation of eIF2α and improving the ER's ability to handle proteostasis. MERSR activation in both polyglutamine and amyloid-beta peptide-expressing C. elegans disease models also led to improvement in both aggregate burden and overall disease outcome. These findings shed light on the coordination between the mitochondria and the ER in maintaining cellular proteostasis and provide further evidence for the importance of intercompartmental signaling.
Collapse
Affiliation(s)
- Jeson J. Li
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Nan Xin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Chunxia Yang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Bo G. Kim
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Larissa A. Tavizon
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Ruth Hong
- George R. Brown School of Engineering, Rice University, Houston, Texas, United States of America
| | - Jina Park
- Wiess School of Natural Sciences, Rice University, Houston, Texas, United States of America
| | - Travis I. Moore
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | | | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hyun-Eui Kim
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| |
Collapse
|
5
|
Neuman SD, Thakur RS, Gratz SJ, O'Connor-Giles KM, Bashirullah A. Neurodegenerative and Neurodevelopmental Roles for Bulk Lipid Transporters VPS13A and BLTP2. Mov Disord 2025. [PMID: 40152532 DOI: 10.1002/mds.30178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Bridge-like lipid transfer proteins (BLTPs) mediate bulk lipid transport at membrane contact sites. Mutations in BLTPs are linked to both early-onset neurodevelopmental and later-onset neurodegenerative diseases, including movement disorders. The tissue specificity and temporal requirements of BLTPs in disease pathogenesis remain poorly understood. OBJECTIVE The objective of this study was to determine tissue-specific and aging-dependent roles for VPS13A and BLTP2 using Drosophila models. METHODS We generated tissue-specific knockdowns of the VPS13A ortholog (Vps13) and the BLTP2 ortholog (hobbit) in neurons and muscles of Drosophila. We analyzed age-dependent locomotor behavior, neurodegeneration, and synapse development and function. RESULTS Neuron-specific loss of the VPS13A ortholog caused neurodegeneration followed by aging-dependent movement deficits and reduced lifespan, whereas muscle-specific loss affected only lifespan. In contrast, neuronal loss of the BLTP2 ortholog resulted in severe early-onset locomotor defects without neurodegeneration, whereas muscle loss impaired synaptogenesis and neurotransmission at the neuromuscular junction. CONCLUSIONS VPS13A maintains neuronal survival, whereas BLTP2 orchestrates synaptic development. The phenotypic specificity of BLTP function provides mechanistic insights into distinct disease trajectories for BLTP-associated disorders. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sarah D Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rajan S Thakur
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Scott J Gratz
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Kate M O'Connor-Giles
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Pesini A, Barriocanal-Casado E, Compagnoni GM, Hidalgo-Gutierrez A, Yanez G, Bakkali M, Chhonker YS, Kleiner G, Larrea D, Tadesse S, Lopez LC, Murry DJ, Di Fonzo A, Area-Gomez E, Quinzii CM. Coenzyme Q 10 deficiency disrupts lipid metabolism by altering cholesterol homeostasis in neurons. Free Radic Biol Med 2025; 229:441-457. [PMID: 39788391 DOI: 10.1016/j.freeradbiomed.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Coenzyme Q10 (CoQ10) is a critical component of the mitochondrial respiratory chain. CoQ10 deficiencies cause a variety of clinical syndromes, often involving encephalopathies. The heterogeneity of clinical manifestations implies different pathomechanisms, reflecting CoQ10 involvement in several biological processes. One such process is cholesterol homeostasis, since CoQ10 is synthesized through the mevalonate pathway, which also produces cholesterol. To elucidate the role of lipid dysfunction in the pathogenesis of CoQ10 deficiency, we investigated lipid metabolism in human CoQ10 deficient iPSCs-derived neurons, and in SH-SY5Y neurons after pharmacological manipulation of the mevalonate pathway. We show that CoQ10 deficiency causes alterations in cholesterol homeostasis, fatty acids oxidation, phospholipids and sphingolipids synthesis in neurons. These alterations depend on the molecular defect, and on the residual CoQ10 levels. Our results imply that CoQ10 deficiencies can induce pathology by altering lipid homeostasis and the composition of cellular membranes. These findings provide further understanding of the mechanisms underlying CoQ10 deficiency and point to potential novel therapeutic targets.
Collapse
Affiliation(s)
- Alba Pesini
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | | | | | | | - Giussepe Yanez
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Mohammed Bakkali
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Fuentenueva S/N, 18002, Granada, Spain
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Saba Tadesse
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Luis Carlos Lopez
- Institute of Biotechnology, Biomedical Research Center (CIBM), Health Science Technological Park (PTS), University of Granada, Armilla, Granada, 18100, Spain
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Estela Area-Gomez
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Borbolis F, Ploumi C, Palikaras K. Calcium-mediated regulation of mitophagy: implications in neurodegenerative diseases. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:4. [PMID: 39911695 PMCID: PMC11790495 DOI: 10.1038/s44324-025-00049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Calcium signaling plays a pivotal role in diverse cellular processes through precise spatiotemporal regulation and interaction with effector proteins across distinct subcellular compartments. Mitochondria, in particular, act as central hubs for calcium buffering, orchestrating energy production, redox balance and apoptotic signaling, among others. While controlled mitochondrial calcium uptake supports ATP synthesis and metabolic regulation, excessive accumulation can trigger oxidative stress, mitochondrial membrane permeabilization, and cell death. Emerging findings underscore the intricate interplay between calcium homeostasis and mitophagy, a selective type of autophagy for mitochondria elimination. Although the literature is still emerging, this review delves into the bidirectional relationship between calcium signaling and mitophagy pathways, providing compelling mechanistic insights. Furthermore, we discuss how disruptions in calcium homeostasis impair mitophagy, contributing to mitochondrial dysfunction and the pathogenesis of common neurodegenerative diseases.
Collapse
Affiliation(s)
- Fivos Borbolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Ploumi
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Terglane J, Mertes N, Weischer S, Zobel T, Johnsson K, Gerke V. Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies. PLoS One 2025; 20:e0316854. [PMID: 39869616 PMCID: PMC11771901 DOI: 10.1371/journal.pone.0316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER. ER, Golgi and WPB themselves provide a unique milieu for the maturation of VWF, which at the level of the Golgi consists of a low pH and elevated Ca2+ concentrations. WPB are also characterized by low luminal pH, but their Ca2+ content has not been addressed so far. Here, we employed a chemigenetic approach to circumvent the problems of Ca2+ imaging in an acidic environment and show that WPB indeed also harbor elevated Ca2+ concentrations. We also show that depletion of the Golgi resident Ca2+ pump ATP2C1 resulted in only a minor decrease of luminal Ca2+ in WPB suggesting additional mechanisms for Ca2+ uptake into the organelle.
Collapse
Affiliation(s)
- Julian Terglane
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| | - Nicole Mertes
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Sarah Weischer
- Münster Imaging Network, Cells in Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Thomas Zobel
- Münster Imaging Network, Cells in Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| |
Collapse
|
9
|
Szabo M, Cs. Szabo B, Kurtan K, Varga Z, Panyi G, Nagy P, Zakany F, Kovacs T. Look Beyond Plasma Membrane Biophysics: Revealing Considerable Variability of the Dipole Potential Between Plasma and Organelle Membranes of Living Cells. Int J Mol Sci 2025; 26:889. [PMID: 39940660 PMCID: PMC11816637 DOI: 10.3390/ijms26030889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Due to the lack of measurement techniques suitable for examining compartments of intact, living cells, membrane biophysics is almost exclusively investigated in the plasma membrane despite the fact that its alterations in intracellular organelles may also contribute to disease pathogenesis. Here, we employ a novel, easy-to-use, confocal microscopy-based approach utilizing F66, an environment-sensitive fluorophore in combination with fluorescent organelle markers and quantitative image analysis to determine the magnitude of the molecular order-related dipole potential in the plasma membrane and intracellular organelles of various tumor and neural cell lines. Our comparative analysis demonstrates considerable intracellular variations of the dipole potential that may be large enough to modulate protein functions, with an inward decreasing gradient on the route of the secretory/endocytic pathway (plasma membrane >> lysosome > Golgi > endoplasmic reticulum), whereas mitochondrial membranes are characterized by a dipole potential slightly larger than that of lysosomes. Our approach is suitable and sensitive enough to quantify membrane biophysical properties selectively in intracellular compartments and their comparative analysis in intact, living cells, and, therefore, to identify the affected organelles and potential therapeutic targets in diseases associated with alterations in membrane lipid composition and thus biophysics such as tumors, metabolic, neurodegenerative, or lysosomal storage disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.S.); (B.C.S.); (K.K.); (Z.V.); (G.P.); (P.N.)
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.S.); (B.C.S.); (K.K.); (Z.V.); (G.P.); (P.N.)
| |
Collapse
|
10
|
Ravi R, Routray D, Mahalakshmi R. Mitochondrial Sorting and Assembly Machinery: Chaperoning a Moonlighting Role? Biochemistry 2025; 64:312-328. [PMID: 39754567 DOI: 10.1021/acs.biochem.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The mitochondrial outer membrane (OMM) β-barrel proteins link the mitochondrion with the cytosol, endoplasmic reticulum, and other cellular membranes, establishing cellular homeostasis. Their active insertion and assembly in the outer mitochondrial membrane is achieved in an energy-independent yet highly effective manner by the Sorting and Assembly Machinery (SAM) of the OMM. The core SAM constituent is the 16-stranded transmembrane β-barrel Sam50. For over two decades, the primary role of Sam50 has been linked to its function as a chaperone in the OMM, wherein it assembles all β-barrels through a lateral gating and β-barrel switching mechanism. Interestingly, recent studies have demonstrated that despite its low copy number, Sam50 performs various diverse functions beyond assembling β-barrels. This includes maintaining cristae morphology, bidirectional lipid shuttling between the ER and mitochondrial inner membrane, import of select proteins, regulation of PINK1-Parkin function, and timed trigger of cell death. Given these multifaceted critical regulatory functions of SAM across all eukaryotes, we now reason that SAM merely moonlights as the hub for β-barrel biogenesis and has indeed evolved a diverse array of primary roles in maintaining mitochondrial function and cellular homeostasis.
Collapse
Affiliation(s)
- Roshika Ravi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Deepsikha Routray
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
11
|
Casler JC, Neto MV, Burgoyne T, Lackner LL. Mitochondria-Plasma Membrane Contact Sites: Emerging Regulators of Mitochondrial Form and Function. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2025; 8:25152564251332141. [PMID: 40291948 PMCID: PMC12033498 DOI: 10.1177/25152564251332141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025]
Abstract
Sites of close apposition between organelles, known as membrane contact sites (MCSs), are critical regulators of organelle function. Mitochondria form elaborate reticular networks that perform essential metabolic and signaling functions. Many mitochondrial functions are regulated by MCSs formed between mitochondria and other organelles. In this review, we aim to bring attention to an understudied, but physiologically important, MCS between mitochondria and the plasma membrane (PM). We first describe the molecular mechanism of mitochondria-PM tethering in budding yeast and discuss its role in regulating multiple biological processes, including mitochondrial dynamics and lipid metabolism. Next, we discuss the evidence for mitochondria-PM tethering in higher eukaryotes, with a specific emphasis on mitochondria-PM contacts in retinal cells, and speculate on their functions. Finally, we discuss unanswered questions to guide future research into the function of mitochondria-PM contact sites.
Collapse
Affiliation(s)
- Jason C Casler
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Matilde V Neto
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
12
|
Larrañaga-SanMiguel A, Bengoa-Vergniory N, Flores-Romero H. Crosstalk between mitochondria-ER contact sites and the apoptotic machinery as a novel health meter. Trends Cell Biol 2025; 35:33-45. [PMID: 39379268 DOI: 10.1016/j.tcb.2024.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) function as transient signaling platforms that regulate essential cellular functions. MERCS are enriched in specific proteins and lipids that connect mitochondria and the ER together and modulate their activities. Dysregulation of MERCS is associated with several human pathologies including Alzheimer's disease (AD), Parkinson's disease (PD), and cancer. BCL-2 family proteins can locate at MERCS and control essential cellular functions such as calcium signaling and autophagy in addition to their role in mitochondrial apoptosis. Moreover, the BCL-2-mediated apoptotic machinery was recently found to trigger cGAS-STING pathway activation and a proinflammatory response, a recognized hallmark of these diseases that requires mitochondria-ER interplay. This review underscores the pivotal role of MERCS in regulating essential cellular functions, focusing on their crosstalk with BCL-2 family proteins, and discusses how their dysregulation is linked to disease.
Collapse
Affiliation(s)
| | - Nora Bengoa-Vergniory
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hector Flores-Romero
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
13
|
Yu F, Machaca K. Remodeling of ER Membrane Contact Sites During Cell Division. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2025; 8:25152564241309207. [PMID: 39881950 PMCID: PMC11775993 DOI: 10.1177/25152564241309207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025]
Abstract
Membrane contact sites (MCS) provide specialized conduits for inter-organelle communications to maintain cellular homeostasis. Most organelles are interconnected, which supports their coordination and function. M-phase (mitosis or meiosis) is associated with dramatic cellular remodeling to support cell division, including the equal distribution of organelles to the two daughter cells. However, the fate of MCS in M-phase is poorly understood. Here we review recent advances arguing for differential remodeling of endoplasmic reticulum (ER) MCS with the plasma membrane (PM, ERPMCS) and the mitochondria (MERCS) during cell division.
Collapse
Affiliation(s)
- Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
14
|
Rizzollo F, Agostinis P. Mitochondria-Lysosome Contact Sites: Emerging Players in Cellular Homeostasis and Disease. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2025; 8:25152564251329250. [PMID: 40109887 PMCID: PMC11920999 DOI: 10.1177/25152564251329250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Mitochondria and lysosomes regulate a multitude of biological processes that are essential for the maintenance of nutrient and metabolic homeostasis and overall cell viability. Recent evidence reveals that these pivotal organelles, similarly to others previously studied, communicate through specialized membrane contact sites (MCSs), hereafter referred to as mitochondria-lysosome contacts (or MLCs), which promote their dynamic interaction without involving membrane fusion. Signal integration through MLCs is implicated in key processes, including mitochondrial fission and dynamics, and the exchange of calcium, cholesterol, and amino acids. Impairments in the formation and function of MLCs are increasingly associated with age-related diseases, specifically neurodegenerative disorders and lysosomal storage diseases. However, MLCs may play roles in other pathological contexts where lysosomes and mitochondria are crucial. In this review, we introduce the methodologies used to study MLCs and discuss known molecular players and key factors involved in their regulation in mammalian cells. We also argue other potential regulatory mechanisms depending on the acidic lysosomal pH and their impact on MLC's function. Finally, we explore the emerging implications of dysfunctional mitochondria-lysosome interactions in disease, highlighting their potential as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Francesca Rizzollo
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Tonelli E, Malecka J, Barberis E, Romano C, Pessolano E, Talmon M, Genazzani AA, Casali C, Biggiogera M, Manfredi M, Tapella L, Lim D, Dematteis G. Remodelling of Cellular Protein Homeostasis by Enhanced ER-Mitochondrial Tethering. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2025; 8:25152564251329704. [PMID: 40177215 PMCID: PMC11963730 DOI: 10.1177/25152564251329704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/26/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Alterations of endoplasmic reticulum (ER)-mitochondrial interaction have been associated with different pathological conditions, including neurodegenerative diseases, characterized by dysregulation of protein homeostasis. However, little is known about how enhanced ER-mitochondrial tethering affects cellular proteostatic machinery. Here, we transiently overexpressed synthetic ER-mitochondrial linkers (EMLs), stabilizing the ER-mitochondrial distance at ≤5 nm (denominated as 5 nm-EML) and ∼10 nm (10 nm-EML), in HeLa cells. No alterations were found in cell growth, although metabolic activity and total ATP were significantly reduced. In EML-expressing cells, global protein synthesis was significantly reduced, accompanied by a reduction of total PERK and eIF2α protein levels, but increased p-eIF2α. Unfolded protein response (UPR) markers ATF4 and ATF6 were upregulated, suggesting that enhanced ER-mitochondrial tethering deranges protein synthesis and induces a low-grade ER stress/UPR. To further investigate ER-mitochondrial tethering-induced protein dyshomeostasis, we performed shotgun mass spectrometry proteomics followed by bioinformatic analysis. Analysis of highly changed proteins and the most significantly overrepresented gene ontology (GO) terms revealed that ≤5 nm tethering preferentially affected the expression of proteins involved in RNA processing and splicing and proteasomal protein degradation, while ∼10 nm tethering preferentially affected protein translation. Both EMLs affected expression of proteins involved in mitochondrial bioenergetics and metabolism, defense against oxidative stress, ER protein homeostasis, signaling and secretion. Finally, lipidomic analysis suggests that 5 nm-EML and 10 nm-EML differentially affect lipid homeostasis. Altogether, our results suggest that enhanced ER-mitochondrial tethering leads to a profound remodeling of cellular protein homeostasis, which may play a key role in pathogenesis of Alzheimer's and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Tonelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Justyna Malecka
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Elettra Barberis
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Camilla Romano
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Emanuela Pessolano
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Maria Talmon
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | | | - Marcello Manfredi
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
16
|
Neuman SD, Thakur RS, Gratz SJ, O'Connor-Giles KM, Bashirullah A. Neurodegenerative and neurodevelopmental roles for bulk lipid transporters VPS13A and BLTP2 in movement disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630795. [PMID: 39803515 PMCID: PMC11722402 DOI: 10.1101/2024.12.30.630795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Background Bridge-like lipid transfer proteins (BLTPs) mediate bulk lipid transport at membrane contact sites. Mutations in BLTPs are linked to both early-onset neurodevelopmental and later-onset neurodegenerative diseases, including movement disorders. The tissue specificity and temporal requirements of BLTPs in disease pathogenesis remain poorly understood. Objectives To determine the age-of-onset and tissue-specific roles of VPS13A and BLTP2 in movement disorder pathogenesis using Drosophila models. Methods We generated tissue-specific knockdowns of the VPS13A ortholog ( Vps13 ) and the BLTP2 ortholog ( hobbit ) in neurons and muscles of Drosophila . We analyzed age-dependent locomotor behavior, neurodegeneration, and synapse development and function. Results Neuron-specific loss of the VPS13A ortholog caused neurodegeneration followed by age- onset movement deficits and reduced lifespan, while muscle-specific loss affected only lifespan, revealing neurodegeneration and myopathy as independent comorbidities in VPS13A disease. In contrast, neuronal loss of the BLTP2 ortholog resulted in severe early-onset locomotor defects without neurodegeneration, while muscle loss impaired synaptogenesis and neurotransmission at the neuromuscular junction (NMJ). Conclusions VPS13A maintains neuronal survival, while BLTP2 orchestrates synaptic development. VPS13A function in muscle does not play a role in movement defects. The phenotypic specificity of BLTP function provides mechanistic insights into distinct disease trajectories for BLTP-associated movement disorders.
Collapse
|
17
|
Ng LLH, Chow J, Lau KF. The AICD interactome: implications in neurodevelopment and neurodegeneration. Biochem Soc Trans 2024; 52:2539-2556. [PMID: 39670668 PMCID: PMC11668293 DOI: 10.1042/bst20241510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
The pathophysiological mechanism involving the proteolytic processing of amyloid precursor protein (APP) and the generation of amyloid plaques is of significant interest in research on Alzheimer's disease (AD). The increasing significance of the downstream AD-related pathophysiological mechanisms has sparked research interest in other products of the APP processing cascades, including the APP intracellular domain (AICD). The potential importance of AICD in various cellular processes in the central nervous system has been established through the identification of its interactors. The interaction between AICD and its physiological binding partners is implicated in cellular events including regulation of transcriptional activity, cytoskeletal dynamics, neuronal growth, APP processing and cellular apoptosis. On the contrary, AICD is also implicated in neurodegeneration, which is a potential outcome of the functional fluctuation of AICD-mediated neuronal processes within the neuronal network. In this review, we summarize the neuronal functions and pathological manifestations of the dynamic AICD interaction network.
Collapse
Affiliation(s)
- Laura Lok-Haang Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Chen C, Rafael KA, Cho G, Lim Y. Split-Luciferase Reassembly Assay to Measure Endoplasmic Reticulum-Mitochondria Contacts in Live Cells. J Vis Exp 2024:10.3791/66862. [PMID: 39465944 PMCID: PMC12077608 DOI: 10.3791/66862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Endoplasmic reticulum (ER)-mitochondria contact sites play a critical role in cell health and homeostasis, such as the regulation of Ca2+ and lipid homeostasis, mitochondrial dynamics, autophagosome and mitophagosome biogenesis, and apoptosis. Failure to maintain normal ER-mitochondrial coupling is implicated in many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and hereditary spastic paraplegia. It is of considerable significance to explore how the dysregulation of ER-mitochondrial contacts could lead to cell death and whether repairing these contacts to the normal level could ameliorate neurodegenerative conditions. Thus, improved assays that measure the level of these contacts could help to illuminate the pathogenic mechanisms of these diseases. Ultimately, establishing simple and reliable assays will facilitate the development of new therapeutic strategies. Here we describe a split-luciferase assay to quantitatively measure the level of ER-mitochondria contacts in live cells. This assay can be used to study the pathophysiological role of these contacts as well as to identify their modulators in high-throughput screening.
Collapse
Affiliation(s)
- Connie Chen
- Department of Pathology, Cedars-Sinai Medical Center
| | | | - Ginam Cho
- Department of Pathology, Cedars-Sinai Medical Center
| | - Youngshin Lim
- Department of Pathology, Cedars-Sinai Medical Center; Department of Biomedical Science Education, College of Medicine, Charles R. Drew University of Medicine and Science;
| |
Collapse
|
19
|
Huber T, Horioka-Duplix M, Chen Y, Saca VR, Ceraudo E, Chen Y, Sakmar TP. The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte proliferation and senescence. Sci Signal 2024; 17:eadp3967. [PMID: 39288219 PMCID: PMC11920964 DOI: 10.1126/scisignal.adp3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
In contrast with sun exposure-induced melanoma, rarer melanocytic tumors and neoplasms with low mutational burden present opportunities to study isolated signaling mechanisms. These include uveal melanoma and blue nevi, which are often driven by mutations within the G protein-coupled signaling cascade downstream of cysteinyl leukotriene receptor 2. Here, we review how the same mutations within this pathway drive the growth of melanocytes in one tissue but can inhibit the growth of those in another, exemplifying the role of the tissue environment in the delicate balance between uncontrolled cell growth and senescence.
Collapse
Affiliation(s)
- Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Mizuho Horioka-Duplix
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Victoria R Saca
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
20
|
Li JJ, Xin N, Yang C, Tavizon LA, Hong R, Park J, Moore TI, Tharyan RG, Antebi A, Kim HE. Unveiling the Intercompartmental Signaling Axis: Mitochondrial to ER Stress Response (MERSR) and its Impact on Proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556674. [PMID: 38187690 PMCID: PMC10769184 DOI: 10.1101/2023.09.07.556674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Maintaining protein homeostasis is essential for cellular health. Our previous research uncovered a cross-compartmental Mitochondrial to Cytosolic Stress Response, activated by the perturbation of mitochondrial proteostasis, which ultimately results in the improvement of proteostasis in the cytosol. Here, we found that this signaling axis also influences the unfolded protein response of the endoplasmic reticulum (UPR ER ), suggesting the presence of a Mitochondria to ER Stress Response (MERSR). During MERSR, the IRE1 branch of UPR ER is inhibited, introducing a previously unknown regulatory component of MCSR. Moreover, proteostasis is enhanced through the upregulation of the PERK-eIF2α signaling pathway, increasing phosphorylation of eIF2α and improving the ER's ability to handle proteostasis. MERSR activation in both polyglutamine and amyloid-beta peptide-expressing C. elegans disease models also led to improvement in both aggregate burden and overall disease outcome. These findings shed light on the coordination between the mitochondria and the ER in maintaining cellular proteostasis and provide further evidence for the importance of intercompartmental signaling.
Collapse
|
21
|
Pilic J, Gottschalk B, Bourgeois B, Habisch H, Koshenov Z, Oflaz FE, Erdogan YC, Miri SM, Yiğit EN, Aydın MŞ, Öztürk G, Eroglu E, Shoshan-Barmatz V, Madl T, Graier WF, Malli R. Hexokinase 1 forms rings that regulate mitochondrial fission during energy stress. Mol Cell 2024; 84:2732-2746.e5. [PMID: 38981483 DOI: 10.1016/j.molcel.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Metabolic enzymes can adapt during energy stress, but the consequences of these adaptations remain understudied. Here, we discovered that hexokinase 1 (HK1), a key glycolytic enzyme, forms rings around mitochondria during energy stress. These HK1-rings constrict mitochondria at contact sites with the endoplasmic reticulum (ER) and mitochondrial dynamics protein (MiD51). HK1-rings prevent mitochondrial fission by displacing the dynamin-related protein 1 (Drp1) from mitochondrial fission factor (Mff) and mitochondrial fission 1 protein (Fis1). The disassembly of HK1-rings during energy restoration correlated with mitochondrial fission. Mechanistically, we identified that the lack of ATP and glucose-6-phosphate (G6P) promotes the formation of HK1-rings. Mutations that affect the formation of HK1-rings showed that HK1-rings rewire cellular metabolism toward increased TCA cycle activity. Our findings highlight that HK1 is an energy stress sensor that regulates the shape, connectivity, and metabolic activity of mitochondria. Thus, the formation of HK1-rings may affect mitochondrial function in energy-stress-related pathologies.
Collapse
Affiliation(s)
- Johannes Pilic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010 Graz, Austria
| | - Benjamin Bourgeois
- BioTechMed Graz, Mozartgasse 12/2, 8010 Graz, Austria; Otto Loewi Research Center, Medical Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Hansjörg Habisch
- Otto Loewi Research Center, Medical Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Zhanat Koshenov
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010 Graz, Austria
| | - Furkan E Oflaz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010 Graz, Austria
| | - Yusuf C Erdogan
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010 Graz, Austria
| | - Seyed M Miri
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Türkiye; Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Türkiye
| | - Esra N Yiğit
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Türkiye; Department of Physiology, International School of Medicine, Istanbul Medipol University, 34810 Istanbul, Türkiye
| | - Mehmet Ş Aydın
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Türkiye
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Türkiye
| | - Emrah Eroglu
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Türkiye; Department of Physiology, International School of Medicine, Istanbul Medipol University, 34810 Istanbul, Türkiye
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Tobias Madl
- BioTechMed Graz, Mozartgasse 12/2, 8010 Graz, Austria; Otto Loewi Research Center, Medical Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010 Graz, Austria; BioTechMed Graz, Mozartgasse 12/2, 8010 Graz, Austria
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010 Graz, Austria; BioTechMed Graz, Mozartgasse 12/2, 8010 Graz, Austria; Center for Medical Research, CF Bioimaging, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| |
Collapse
|
22
|
Preminger N, Schuldiner M. Beyond fission and fusion-Diving into the mysteries of mitochondrial shape. PLoS Biol 2024; 22:e3002671. [PMID: 38949997 PMCID: PMC11216622 DOI: 10.1371/journal.pbio.3002671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
Mitochondrial shape and network formation have been primarily associated with the well-established processes of fission and fusion. However, recent research has unveiled an intricate and multifaceted landscape of mitochondrial morphology that extends far beyond the conventional fission-fusion paradigm. These less-explored dimensions harbor numerous unresolved mysteries. This review navigates through diverse processes influencing mitochondrial shape and network formation, highlighting the intriguing complexities and gaps in our understanding of mitochondrial architecture. The exploration encompasses various scales, from biophysical principles governing membrane dynamics to molecular machineries shaping mitochondria, presenting a roadmap for future research in this evolving field.
Collapse
Affiliation(s)
- Noga Preminger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
23
|
Neto MV, De Rossi G, Berkowitz BA, Seabra MC, Luthert PJ, Futter CE, Burgoyne T. Daily Light Onset and Plasma Membrane Tethers Regulate Mitochondria Redistribution within the Retinal Pigment Epithelium. Cells 2024; 13:1100. [PMID: 38994953 PMCID: PMC11240580 DOI: 10.3390/cells13131100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
The retinal pigment epithelium (RPE) is an essential component of the retina that plays multiple roles required to support visual function. These include light onset- and circadian rhythm-dependent tasks, such as daily phagocytosis of photoreceptor outer segments. Mitochondria provide energy to the highly specialized and energy-dependent RPE. In this study, we examined the positioning of mitochondria and how this is influenced by the onset of light. We identified a population of mitochondria that are tethered to the basal plasma membrane pre- and post-light onset. Following light onset, mitochondria redistributed apically and interacted with melanosomes and phagosomes. In a choroideremia mouse model that has regions of the RPE with disrupted or lost infolding of the plasma membrane, the positionings of only the non-tethered mitochondria were affected. This provides evidence that the tethering of mitochondria to the plasma membrane plays an important role that is maintained under these disease conditions. Our work shows that there are subpopulations of RPE mitochondria based on their positioning after light onset. It is likely they play distinct roles in the RPE that are needed to fulfil the changing cellular demands throughout the day.
Collapse
Affiliation(s)
- Matilde V. Neto
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Giulia De Rossi
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Miguel C. Seabra
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Philip J. Luthert
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Clare E. Futter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
24
|
Dadsena S, Cuevas Arenas R, Vieira G, Brodesser S, Melo MN, García-Sáez AJ. Lipid unsaturation promotes BAX and BAK pore activity during apoptosis. Nat Commun 2024; 15:4700. [PMID: 38830851 PMCID: PMC11148036 DOI: 10.1038/s41467-024-49067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
BAX and BAK are proapoptotic members of the BCL2 family that directly mediate mitochondrial outer membrane permeabilition (MOMP), a central step in apoptosis execution. However, the molecular architecture of the mitochondrial apoptotic pore remains a key open question and especially little is known about the contribution of lipids to MOMP. By performing a comparative lipidomics analysis of the proximal membrane environment of BAK isolated in lipid nanodiscs, we find a significant enrichment of unsaturated species nearby BAK and BAX in apoptotic conditions. We then demonstrate that unsaturated lipids promote BAX pore activity in model membranes, isolated mitochondria and cellular systems, which is further supported by molecular dynamics simulations. Accordingly, the fatty acid desaturase FADS2 not only enhances apoptosis sensitivity, but also the activation of the cGAS/STING pathway downstream mtDNA release. The correlation of FADS2 levels with the sensitization to apoptosis of different lung and kidney cancer cell lines by co-treatment with unsaturated fatty acids supports the relevance of our findings. Altogether, our work provides an insight on how local lipid environment affects BAX and BAK function during apoptosis.
Collapse
Affiliation(s)
- Shashank Dadsena
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Rodrigo Cuevas Arenas
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584CG, Utrecht, The Netherlands
| | - Gonçalo Vieira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susanne Brodesser
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany.
- Department of Membrane Dynamics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Saukko-Paavola AJ, Klemm RW. Remodelling of mitochondrial function by import of specific lipids at multiple membrane-contact sites. FEBS Lett 2024; 598:1274-1291. [PMID: 38311340 DOI: 10.1002/1873-3468.14813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Organelles form physical and functional contact between each other to exchange information, metabolic intermediates, and signaling molecules. Tethering factors and contact site complexes bring partnering organelles into close spatial proximity to establish membrane contact sites (MCSs), which specialize in unique functions like lipid transport or Ca2+ signaling. Here, we discuss how MCSs form dynamic platforms that are important for lipid metabolism. We provide a perspective on how import of specific lipids from the ER and other organelles may contribute to remodeling of mitochondria during nutrient starvation. We speculate that mitochondrial adaptation is achieved by connecting several compartments into a highly dynamic organelle network. The lipid droplet appears to be a central hub in coordinating the function of these organelle neighborhoods.
Collapse
Affiliation(s)
| | - Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| |
Collapse
|
26
|
Monteiro-Cardoso VF, Giordano F. Emerging functions of the mitochondria-ER-lipid droplet three-way junction in coordinating lipid transfer, metabolism, and storage in cells. FEBS Lett 2024; 598:1252-1273. [PMID: 38774950 DOI: 10.1002/1873-3468.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Over the past two decades, we have witnessed a growing appreciation for the importance of membrane contact sites (CS) in facilitating direct communication between organelles. CS are tiny regions where the membranes of two organelles meet but do not fuse and allow the transfer of metabolites between organelles, playing crucial roles in the coordination of cellular metabolic activities. The significant advancements in imaging techniques and molecular and cell biology research have revealed that CS are more complex than what originally thought, and as they are extremely dynamic, they can remodel their shape, composition, and functions in accordance with metabolic and environmental changes and can occur between more than two organelles. Here, we describe how recent studies led to the identification of a three-way mitochondria-ER-lipid droplet CS and discuss the emerging functions of these contacts in maintaining lipid storage, homeostasis, and balance. We also summarize the properties and functions of key protein components localized at the mitochondria-ER-lipid droplet interface, with a special focus on lipid transfer proteins. Understanding tripartite CS is essential for unraveling the complexities of inter-organelle communication and cooperation within cells.
Collapse
Affiliation(s)
- Vera Filipa Monteiro-Cardoso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| |
Collapse
|
27
|
Yu F, Courjaret R, Assaf L, Elmi A, Hammad A, Fisher M, Terasaki M, Machaca K. Mitochondria-ER contact sites expand during mitosis. iScience 2024; 27:109379. [PMID: 38510124 PMCID: PMC10951641 DOI: 10.1016/j.isci.2024.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Mitochondria-ER contact sites (MERCS) are involved in energy homeostasis, redox and Ca2+ signaling, and inflammation. MERCS are heavily studied; however, little is known about their regulation during mitosis. Here, we show that MERCS expand during mitosis in three cell types using various approaches, including transmission electron microscopy, serial EM coupled to 3D reconstruction, and a split GFP MERCS marker. We further show enhanced Ca2+ transfer between the ER and mitochondria using either direct Ca2+ measurements or by quantifying the activity of Ca2+-dependent mitochondrial dehydrogenases. Collectively, our results support a lengthening of MERCS in mitosis that is associated with improved Ca2+ coupling between the two organelles. This augmented Ca2+ coupling could be important to support the increased energy needs of the cell during mitosis.
Collapse
Affiliation(s)
- Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Raphael Courjaret
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Asha Elmi
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Ayat Hammad
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Melanie Fisher
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Mark Terasaki
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
28
|
Li H, Cui Y, Wang J, Zhang W, Chen Y, Zhao J. Identification and validation of biomarkers related to lipid metabolism in osteoarthritis based on machine learning algorithms. Lipids Health Dis 2024; 23:111. [PMID: 38637751 PMCID: PMC11025229 DOI: 10.1186/s12944-024-02073-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Osteoarthritis and lipid metabolism are strongly associated, although the precise targets and regulatory mechanisms are unknown. METHODS Osteoarthritis gene expression profiles were acquired from the GEO database, while lipid metabolism-related genes (LMRGs) were sourced from the MigSB database. An intersection was conducted between these datasets to extract gene expression for subsequent differential analysis. Following this, functional analyses were performed on the differentially expressed genes (DEGs). Subsequently, machine learning was applied to identify hub genes associated with lipid metabolism in osteoarthritis. Immune-infiltration analysis was performed using CIBERSORT, and external datasets were employed to validate the expression of these hub genes. RESULTS Nine DEGs associated with lipid metabolism in osteoarthritis were identified. UGCG and ESYT1, which are hub genes involved in lipid metabolism in osteoarthritis, were identified through the utilization of three machine learning algorithms. Analysis of the validation dataset revealed downregulation of UGCG in the experimental group compared to the normal group and upregulation of ESYT1 in the experimental group compared to the normal group. CONCLUSIONS UGCG and ESYT1 were considered as hub LMRGs in the development of osteoarthritis, which were regarded as candidate diagnostic markers. The effects are worth expected in the early diagnosis and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Hang Li
- Wuxi Medical Center, Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu, 214023, China
| | - Yubao Cui
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Jian Wang
- Wuxi Medical Center, Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu, 214023, China
| | - Wei Zhang
- Wuxi Medical Center, Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu, 214023, China
| | - Yuhao Chen
- Wuxi Medical Center, Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu, 214023, China
| | - Jijun Zhao
- Department of Orthopedic, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, Jiangsu, 214023, China.
| |
Collapse
|
29
|
Hinton A, Katti P, Mungai M, Hall DD, Koval O, Shao J, Vue Z, Lopez EG, Rostami R, Neikirk K, Ponce J, Streeter J, Schickling B, Bacevac S, Grueter C, Marshall A, Beasley HK, Do Koo Y, Bodine SC, Nava NGR, Quintana AM, Song LS, Grumbach I, Pereira RO, Glancy B, Abel ED. ATF4-dependent increase in mitochondrial-endoplasmic reticulum tethering following OPA1 deletion in skeletal muscle. J Cell Physiol 2024; 239:e31204. [PMID: 38419397 PMCID: PMC11144302 DOI: 10.1002/jcp.31204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are protein- and lipid-enriched hubs that mediate interorganellar communication by contributing to the dynamic transfer of Ca2+, lipid, and other metabolites between these organelles. Defective MERCs are associated with cellular oxidative stress, neurodegenerative disease, and cardiac and skeletal muscle pathology via mechanisms that are poorly understood. We previously demonstrated that skeletal muscle-specific knockdown (KD) of the mitochondrial fusion mediator optic atrophy 1 (OPA1) induced ER stress and correlated with an induction of Mitofusin-2, a known MERC protein. In the present study, we tested the hypothesis that Opa1 downregulation in skeletal muscle cells alters MERC formation by evaluating multiple myocyte systems, including from mice and Drosophila, and in primary myotubes. Our results revealed that OPA1 deficiency induced tighter and more frequent MERCs in concert with a greater abundance of MERC proteins involved in calcium exchange. Additionally, loss of OPA1 increased the expression of activating transcription factor 4 (ATF4), an integrated stress response (ISR) pathway effector. Reducing Atf4 expression prevented the OPA1-loss-induced tightening of MERC structures. OPA1 reduction was associated with decreased mitochondrial and sarcoplasmic reticulum, a specialized form of ER, calcium, which was reversed following ATF4 repression. These data suggest that mitochondrial stress, induced by OPA1 deficiency, regulates skeletal muscle MERC formation in an ATF4-dependent manner.
Collapse
Affiliation(s)
- Antentor Hinton
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Prasanna Katti
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Duane D. Hall
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
| | - Olha Koval
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Jianqiang Shao
- Central Microscopy Research Facility, Iowa City, IA USA 52242
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Edgar Garza Lopez
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
| | - Rahmati Rostami
- Department of Genetic Medicine, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA, 10065
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Jessica Ponce
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Jennifer Streeter
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Brandon Schickling
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Department of Medicine, Duke University, Durham, NC, USA 27708
| | - Serif Bacevac
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Chad Grueter
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Andrea Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Sue C. Bodine
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA 73104
| | - Nayeli G. Reyes Nava
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA 79968
| | - Anita M. Quintana
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA 79968
| | - Long-Sheng Song
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Isabella Grumbach
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Renata O. Pereira
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA, 20892
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - E. Dale Abel
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
- Department of Medicine, UCLA School of Medicine, Los Angeles, CA, USA 90095
| |
Collapse
|
30
|
Michalak M. Calreticulin: Endoplasmic reticulum Ca 2+ gatekeeper. J Cell Mol Med 2024; 28:e17839. [PMID: 37424156 PMCID: PMC10902585 DOI: 10.1111/jcmm.17839] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Endoplasmic reticulum (ER) luminal Ca2+ is vital for the function of the ER and regulates many cellular processes. Calreticulin is a highly conserved, ER-resident Ca2+ binding protein and lectin-like chaperone. Over four decades of studying calreticulin demonstrate that this protein plays a crucial role in maintaining Ca2+ supply under different physiological conditions, in managing access to Ca2+ and how Ca2+ is used depending on the environmental events and in making sure that Ca2+ is not misused. Calreticulin plays a role of ER luminal Ca2+ sensor to manage Ca2+-dependent ER luminal events including maintaining interaction with its partners, Ca2+ handling molecules, substrates and stress sensors. The protein is strategically positioned in the lumen of the ER from where the protein manages access to and distribution of Ca2+ for many cellular Ca2+-signalling events. The importance of calreticulin Ca2+ pool extends beyond the ER and includes influence of cellular processes involved in many aspects of cellular pathophysiology. Abnormal handling of the ER Ca2+ contributes to many pathologies from heart failure to neurodegeneration and metabolic diseases.
Collapse
Affiliation(s)
- Marek Michalak
- Department of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
31
|
Qiu B, Zandkarimi F, Bezjian CT, Reznik E, Soni RK, Gu W, Jiang X, Stockwell BR. Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell 2024; 187:1177-1190.e18. [PMID: 38366593 PMCID: PMC10940216 DOI: 10.1016/j.cell.2024.01.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.
Collapse
Affiliation(s)
- Baiyu Qiu
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Fereshteh Zandkarimi
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Mass Spectrometry Core Facility, Columbia University, New York, NY 10027, USA
| | - Carla T Bezjian
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Eduard Reznik
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
32
|
Zhang M, Luo X, Zhang B, Luo D, Huang L, Long Q. Unveiling OSCP as the potential therapeutic target for mitochondrial dysfunction-related diseases. Life Sci 2024; 336:122293. [PMID: 38030056 DOI: 10.1016/j.lfs.2023.122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Mitochondria are important organelles in cells responsible for energy production and regulation. Mitochondrial dysfunction has been implicated in the pathogenesis of many diseases. Oligomycin sensitivity-conferring protein (OSCP), a component of the inner mitochondrial membrane, has been studied for a long time. OSCP is a component of the F1Fo-ATP synthase in mitochondria and is closely related to the regulation of the mitochondrial permeability transition pore (mPTP). Studies have shown that OSCP plays an important role in cardiovascular disease, neurological disorders, and tumor development. This review summarizes the localization, structure, function, and regulatory mechanisms of OSCP and outlines its role in cardiovascular disease, neurological disease, and tumor development. In addition, this article reviews the research on the interaction between OSCP and mPTP. Finally, the article suggests future research directions, including further exploration of the mechanism of action of OSCP, the interaction between OSCP and other proteins and signaling pathways, and the development of new treatment strategies for mitochondrial dysfunction. In conclusion, in-depth research on OSCP will help to elucidate its importance in cell function and disease and provide new ideas for the treatment and prevention of related diseases.
Collapse
Affiliation(s)
- Mingyue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Binzhi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
33
|
Wang X, Qian J, Yang Z, Song Y, Pan W, Ye Y, Qin X, Yan X, Huang X, Wang X, Gao M, Zhang Y. Photodynamic Modulation of Endoplasmic Reticulum and Mitochondria Network Boosted Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310964. [PMID: 37985146 DOI: 10.1002/adma.202310964] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Immunogenic cell death (ICD) represents a promising approach for enhancing tumor therapy efficacy by inducing antitumor immune response. However, current ICD inducers often have insufficient endoplasmic reticulum (ER) enrichment and ineffectiveness in tumor immune escape caused by ER-mitochondria interaction. In this study, a kind of photoactivatable probe, THTTPy-PTSA, which enables sequential targeting of the ER and mitochondria is developed. THTTPy-PTSA incorporates p-Toluenesulfonamide (PTSA) for ER targeting, and upon light irradiation, the tetrahydropyridine group undergoes a photo oxidative dehydrogenation reaction, transforming into a pyridinium group that acts as a mitochondria-targeting moiety. The results demonstrate that THTTPy-PTSA exhibits exceptional subcellular translocation from the ER to mitochondria upon light irradiation treatment, subsequently triggers a stronger ER stress response through a cascade-amplification effect. Importantly, the augmented ER stress leads to substantial therapeutic efficacy in a 4T1 tumor model by eliciting the release of numerous damage-associated molecular patterns, thereby inducing evident and widespread ICD, consequently enhancing the antitumor immune efficacy. Collectively, the findings emphasize the pivotal role of photodynamic modulation of the ER-mitochondria network, facilitated by THTTPy-PTSA with precise spatial and temporal regulation, in effectively bolstering the antitumor immune response. This innovative approach presents a promising alternative for addressing the challenges associated with cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoli Wang
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Jieying Qian
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Zhenyu Yang
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Yang Song
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Wenping Pan
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yayi Ye
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Xiaohua Qin
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Xianwu Yan
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Xiaowan Huang
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Xingwu Wang
- Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Meng Gao
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yunjiao Zhang
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
34
|
Srivastav S, van der Graaf K, Singh P, Utama AB, Meyer MD, McNew JA, Stern M. Atl (atlastin) regulates mTor signaling and autophagy in Drosophila muscle through alteration of the lysosomal network. Autophagy 2024; 20:131-150. [PMID: 37649246 PMCID: PMC10761077 DOI: 10.1080/15548627.2023.2249794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
ABBREVIATIONS atl atlastin; ALR autophagic lysosome reformation; ER endoplasmic reticulum; GFP green fluorescent protein; HSP hereditary spastic paraplegia; Lamp1 lysosomal associated membrane protein 1 PolyUB polyubiquitin; RFP red fluorescent protein; spin spinster; mTor mechanistic Target of rapamycin; VCP valosin containing protein.
Collapse
Affiliation(s)
| | | | - Pratibha Singh
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Matthew D. Meyer
- Shared Equipment Authority, Rice University, Houston, Texas, USA
| | - James A. McNew
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Michael Stern
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
35
|
Janer A, Morris JL, Krols M, Antonicka H, Aaltonen MJ, Lin ZY, Anand H, Gingras AC, Prudent J, Shoubridge EA. ESYT1 tethers the ER to mitochondria and is required for mitochondrial lipid and calcium homeostasis. Life Sci Alliance 2024; 7:e202302335. [PMID: 37931956 PMCID: PMC10627786 DOI: 10.26508/lsa.202302335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Mitochondria interact with the ER at structurally and functionally specialized membrane contact sites known as mitochondria-ER contact sites (MERCs). Combining proximity labelling (BioID), co-immunoprecipitation, confocal microscopy and subcellular fractionation, we found that the ER resident SMP-domain protein ESYT1 was enriched at MERCs, where it forms a complex with the outer mitochondrial membrane protein SYNJ2BP. BioID analyses using ER-targeted, outer mitochondrial membrane-targeted, and MERC-targeted baits, confirmed the presence of this complex at MERCs and the specificity of the interaction. Deletion of ESYT1 or SYNJ2BP reduced the number and length of MERCs. Loss of the ESYT1-SYNJ2BP complex impaired ER to mitochondria calcium flux and provoked a significant alteration of the mitochondrial lipidome, most prominently a reduction of cardiolipins and phosphatidylethanolamines. Both phenotypes were rescued by reexpression of WT ESYT1 and an artificial mitochondria-ER tether. Together, these results reveal a novel function for ESYT1 in mitochondrial and cellular homeostasis through its role in the regulation of MERCs.
Collapse
Affiliation(s)
- Alexandre Janer
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jordan L Morris
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michiel Krols
- Montreal Neurological Institute, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Hana Antonicka
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mari J Aaltonen
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hanish Anand
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Eric A Shoubridge
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
36
|
Sun H, Zhang J, Ye Q, Jiang T, Liu X, Zhang X, Zeng F, Li J, Zheng Y, Han X, Su C, Shi Y. LPGAT1 controls MEGDEL syndrome by coupling phosphatidylglycerol remodeling with mitochondrial transport. Cell Rep 2023; 42:113214. [PMID: 37917582 PMCID: PMC10729602 DOI: 10.1016/j.celrep.2023.113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
Phosphatidylglycerol (PG) is a mitochondrial phospholipid required for mitochondrial cristae structure and cardiolipin synthesis. PG must be remodeled to its mature form at the endoplasmic reticulum (ER) after mitochondrial biosynthesis to achieve its biological functions. Defective PG remodeling causes MEGDEL (non-alcohol fatty liver disease and 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like) syndrome through poorly defined mechanisms. Here, we identify LPGAT1, an acyltransferase that catalyzes PG remodeling, as a candidate gene for MEGDEL syndrome. We show that PG remodeling by LPGAT1 at the ER is closely coordinated with mitochondrial transport through interaction with the prohibitin/TIMM14 mitochondrial import motor. Accordingly, ablation of LPGAT1 or TIMM14 not only causes aberrant fatty acyl compositions but also ER retention of newly remodeled PG, leading to profound loss in mitochondrial crista structure and respiration. Consequently, genetic deletion of the LPGAT1 in mice leads to cardinal features of MEGDEL syndrome, including 3-methylglutaconic aciduria, deafness, dilated cardiomyopathy, and premature death, which are highly reminiscent of those caused by TIMM14 mutations in humans.
Collapse
Affiliation(s)
- Haoran Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Qianqian Ye
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Ting Jiang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xueling Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xiaoyang Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Fanyu Zeng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Jie Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yue Zheng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Chuan Su
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
37
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
38
|
Zheng Y, Liu Q, Goronzy JJ, Weyand CM. Immune aging - A mechanism in autoimmune disease. Semin Immunol 2023; 69:101814. [PMID: 37542986 PMCID: PMC10663095 DOI: 10.1016/j.smim.2023.101814] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Evidence is emerging that the process of immune aging is a mechanism leading to autoimmunity. Over lifetime, the immune system adapts to profound changes in hematopoiesis and lymphogenesis, and progressively restructures in face of an ever-expanding exposome. Older adults fail to generate adequate immune responses against microbial infections and tumors, but accumulate aged T cells, B cells and myeloid cells. Age-associated B cells are highly efficient in autoantibody production. T-cell aging promotes the accrual of end-differentiated effector T cells with potent cytotoxic and pro-inflammatory abilities and myeloid cell aging supports a low grade, sterile and chronic inflammatory state (inflammaging). In pre-disposed individuals, immune aging can lead to frank autoimmune disease, manifesting with chronic inflammation and irreversible tissue damage. Emerging data support the concept that autoimmunity results from aging-induced failure of fundamental cellular processes in immune effector cells: genomic instability, loss of mitochondrial fitness, failing proteostasis, dwindling lysosomal degradation and inefficient autophagy. Here, we have reviewed the evidence that malfunctional mitochondria, disabled lysosomes and stressed endoplasmic reticula induce pathogenic T cells and macrophages that drive two autoimmune diseases, rheumatoid arthritis (RA) and giant cell arteritis (GCA). Recognizing immune aging as a risk factor for autoimmunity will open new avenues of immunomodulatory therapy, including the repair of malfunctioning mitochondria and lysosomes.
Collapse
Affiliation(s)
- Yanyan Zheng
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Qingxiang Liu
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Jorg J Goronzy
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Woo TT, Williams JM, Tsai B. How host ER membrane chaperones and morphogenic proteins support virus infection. J Cell Sci 2023; 136:jcs261121. [PMID: 37401530 PMCID: PMC10357032 DOI: 10.1242/jcs.261121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023] Open
Abstract
The multi-functional endoplasmic reticulum (ER) is exploited by viruses to cause infection. Morphologically, this organelle is a highly interconnected membranous network consisting of sheets and tubules whose levels are dynamic, changing in response to cellular conditions. Functionally, the ER is responsible for protein synthesis, folding, secretion and degradation, as well as Ca2+ homeostasis and lipid biosynthesis, with each event catalyzed by defined ER factors. Strikingly, these ER host factors are hijacked by viruses to support different infection steps, including entry, translation, replication, assembly and egress. Although the full repertoire of these ER factors that are hijacked is unknown, recent studies have uncovered several ER membrane machineries that are exploited by viruses - ranging from polyomavirus to flavivirus and coronavirus - to facilitate different steps of their life cycle. These discoveries should provide better understanding of virus infection mechanisms, potentially leading to the development of more effective anti-viral therapies.
Collapse
Affiliation(s)
- Tai-Ting Woo
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109,USA
| | - Jeffrey M. Williams
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109,USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109,USA
| |
Collapse
|
40
|
Groenendyk J, Michalak M. Interplay between calcium and endoplasmic reticulum stress. Cell Calcium 2023; 113:102753. [PMID: 37209448 DOI: 10.1016/j.ceca.2023.102753] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Cellular homeostasis is crucial for the healthy functioning of the organism. Disruption of cellular homeostasis activates endoplasmic reticulum (ER) stress coping responses including the unfolded protein response (UPR). There are three ER resident stress sensors responsible for UPR activation - IRE1α, PERK and ATF6. Ca2+ signaling plays an important role in stress responses including the UPR and the ER is the main Ca2+ storage organelle and a source of Ca2+ for cell signaling. The ER contains many proteins involved in Ca2+ import/export/ storage, Ca2+ movement between different cellular organelles and ER Ca2+ stores refilling. Here we focus on selected aspects of ER Ca2+ homeostasis and its role in activation of the ER stress coping responses.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
41
|
de Ridder I, Kerkhofs M, Lemos FO, Loncke J, Bultynck G, Parys JB. The ER-mitochondria interface, where Ca 2+ and cell death meet. Cell Calcium 2023; 112:102743. [PMID: 37126911 DOI: 10.1016/j.ceca.2023.102743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria contact sites are crucial to allow Ca2+ flux between them and a plethora of proteins participate in tethering both organelles together. Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a pivotal role at such contact sites, participating in both ER-mitochondria tethering and as Ca2+-transport system that delivers Ca2+ from the ER towards mitochondria. At the ER-mitochondria contact sites, the IP3Rs function as a multi-protein complex linked to the voltage-dependent anion channel 1 (VDAC1) in the outer mitochondrial membrane, via the chaperone glucose-regulated protein 75 (GRP75). This IP3R-GRP75-VDAC1 complex supports the efficient transfer of Ca2+ from the ER into the mitochondrial intermembrane space, from which the Ca2+ ions can reach the mitochondrial matrix through the mitochondrial calcium uniporter. Under physiological conditions, basal Ca2+ oscillations deliver Ca2+ to the mitochondrial matrix, thereby stimulating mitochondrial oxidative metabolism. However, when mitochondrial Ca2+ overload occurs, the increase in [Ca2+] will induce the opening of the mitochondrial permeability transition pore, thereby provoking cell death. The IP3R-GRP75-VDAC1 complex forms a hub for several other proteins that stabilize the complex and/or regulate the complex's ability to channel Ca2+ into the mitochondria. These proteins and their mechanisms of action are discussed in the present review with special attention for their role in pathological conditions and potential implication for therapeutic strategies.
Collapse
Affiliation(s)
- Ian de Ridder
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Martijn Kerkhofs
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Fernanda O Lemos
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Jens Loncke
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium.
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium.
| |
Collapse
|
42
|
Chaiwijit P, Uppakara K, Asavapanumas N, Saengsawang W. The Effects of PP2A Disruption on ER-Mitochondria Contact and Mitochondrial Functions in Neuronal-like Cells. Biomedicines 2023; 11:biomedicines11041011. [PMID: 37189629 DOI: 10.3390/biomedicines11041011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Mitochondria-associated membranes (MAMs) regulate several cellular processes, including calcium homeostasis and mitochondrial function, and dynamics. While MAMs are upregulated in Alzheimer’s disease (AD), the mechanisms underlying this increase remain unknown. A possible mechanism may include dysregulation of protein phosphatase 2A (PP2A), which is reduced in the AD brain. Furthermore, PP2A has been previously reported to modulate MAM formation in hepatocytes. However, it is unknown whether PP2A and MAMs are linked in neuronal cells. Here, to test the correlation between PP2A and MAMs, we inhibited the activity of PP2A to mimic its low levels in AD brains and observed MAM formation, function, and dynamics. MAMs were significantly increased after PP2A inhibition, which correlated with elevated mitochondrial Ca2+ influx and disrupted mitochondrial membrane potential and mitochondrial fission. This study highlights the essential role PP2A plays in regulating MAM formation and mitochondrial function and dynamics for the first time in neuronal-like cells.
Collapse
|
43
|
New discoveries in ER-mitochondria communication. Biochem Soc Trans 2023; 51:571-577. [PMID: 36892405 DOI: 10.1042/bst20221305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
The study of endoplasmic reticulum (ER)-mitochondria communication is a vast and expanding field with many novel developments in the past few years. In this mini-review, we focus on several recent publications that identify novel functions of tether complexes, in particular autophagy regulation and lipid droplet biogenesis. We review novel findings that shed light on the role of triple contacts between ER and mitochondria with peroxisomes or lipid droplets as the third player. We also summarize recent findings on the role of ER-mitochondria contacts in human neurodegenerative diseases, which implicate either enhanced or reduced ER-mitochondria contacts in neurodegeneration. Taken together, the discussed studies highlight the need for further research into the role of triple organelle contacts, as well as into the exact mechanisms of increased and decreased ER-mitochondria contacts in neurodegeneration.
Collapse
|
44
|
Cai W, Li P, Gu M, Xu H. Lysosomal Ion Channels and Lysosome-Organelle Interactions. Handb Exp Pharmacol 2023; 278:93-108. [PMID: 36882602 DOI: 10.1007/164_2023_640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Intracellular organelles exchange their luminal contents with each other via both vesicular and non-vesicular mechanisms. By forming membrane contact sites (MCSs) with ER and mitochondria, lysosomes mediate bidirectional transport of metabolites and ions between lysosomes and organelles that regulate lysosomal physiology, movement, membrane remodeling, and membrane repair. In this chapter, we will first summarize the current knowledge of lysosomal ion channels and then discuss the molecular and physiological mechanisms that regulate lysosome-organelle MCS formation and dynamics. We will also discuss the roles of lysosome-ER and lysosome-mitochondria MCSs in signal transduction, lipid transport, Ca 2+ transfer, membrane trafficking, and membrane repair, as well as their roles in lysosome-related pathologies.
Collapse
Affiliation(s)
- Weijie Cai
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Ping Li
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Mingxue Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dun Neurological Research Institute, Houston, TX, USA
| | - Haoxing Xu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dun Neurological Research Institute, Houston, TX, USA. .,Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
45
|
Leterme S, Michaud M. Mitochondrial membrane biogenesis: A new pathway for lipid transport mediated by PERK/E-Syt1 complex. J Cell Biol 2023; 222:e202301132. [PMID: 36821089 PMCID: PMC9998955 DOI: 10.1083/jcb.202301132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Despite decades of extensive research, mitochondrial lipid transport is a process far from fully understood. In this issue, Sassano et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202206008) identified a new complex, composed of E-Syt1 and PERK, which mediates lipid transport at ER-mitochondria contact sites and regulates mitochondrial functions in human cells.
Collapse
Affiliation(s)
- Sébastien Leterme
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Université Grenoble Alpes, INRAE, CEA, IRIG, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Université Grenoble Alpes, INRAE, CEA, IRIG, Grenoble, France
| |
Collapse
|
46
|
Pollard LW, Coscia SM, Rebowski G, Palmer NJ, Holzbaur ELF, Dominguez R, Ostap EM. Ensembles of human myosin-19 bound to calmodulin and regulatory light chain RLC12B drive multimicron transport. J Biol Chem 2023; 299:102906. [PMID: 36642185 PMCID: PMC9929473 DOI: 10.1016/j.jbc.2023.102906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Myosin-19 (Myo19) controls the size, morphology, and distribution of mitochondria, but the underlying role of Myo19 motor activity is unknown. Complicating mechanistic in vitro studies, the identity of the light chains (LCs) of Myo19 remains unsettled. Here, we show by coimmunoprecipitation, reconstitution, and proteomics that the three IQ motifs of human Myo19 expressed in Expi293 human cells bind regulatory light chain (RLC12B) and calmodulin (CaM). We demonstrate that overexpression of Myo19 in HeLa cells enhances the recruitment of both Myo19 and RLC12B to mitochondria, suggesting cellular association of RLC12B with the motor. Further experiments revealed that RLC12B binds IQ2 and is flanked by two CaM molecules. In vitro, we observed that the maximal speed (∼350 nm/s) occurs when Myo19 is supplemented with CaM, but not RLC12B, suggesting maximal motility requires binding of CaM to IQ-1 and IQ-3. The addition of calcium slowed actin gliding (∼200 nm/s) without an apparent effect on CaM affinity. Furthermore, we show that small ensembles of Myo19 motors attached to quantum dots can undergo processive runs over several microns, and that calcium reduces the attachment frequency and run length of Myo19. Together, our data are consistent with a model where a few single-headed Myo19 molecules attached to a mitochondrion can sustain prolonged motile associations with actin in a CaM- and calcium-dependent manner. Based on these properties, we propose that Myo19 can function in mitochondria transport along actin filaments, tension generation on multiple randomly oriented filaments, and/or pushing against branched actin networks assembled near the membrane surface.
Collapse
Affiliation(s)
- Luther W Pollard
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stephen M Coscia
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Grzegorz Rebowski
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas J Palmer
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Roberto Dominguez
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| | - E Michael Ostap
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
47
|
Atakpa-Adaji P, Ivanova A. IP 3R at ER-Mitochondrial Contact Sites: Beyond the IP 3R-GRP75-VDAC1 Ca 2+ Funnel. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231181020. [PMID: 37426575 PMCID: PMC10328019 DOI: 10.1177/25152564231181020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Membrane contact sites (MCS) circumvent the topological constraints of functional coupling between different membrane-bound organelles by providing a means of communication and exchange of materials. One of the most characterised contact sites in the cell is that between the endoplasmic reticulum and the mitochondrial (ERMCS) whose function is to couple cellular Ca2+ homeostasis and mitochondrial function. Inositol 1,4,5-trisphosphate receptors (IP3Rs) on the ER, glucose-regulated protein 75 (GRP 75) and voltage-dependent anion channel 1 (VDAC1) on the outer mitochondrial membrane are the canonical component of the Ca2+ transfer unit at ERMCS. These are often reported to form a Ca2+ funnel that fuels the mitochondrial low-affinity Ca2+ uptake system. We assess the available evidence on the IP3R subtype selectivity at the ERMCS and consider if IP3Rs have other roles at the ERMCS beyond providing Ca2+. Growing evidence suggests that all three IP3R subtypes can localise and regulate Ca2+ signalling at ERMCS. Furthermore, IP3Rs may be structurally important for assembly of the ERMCS in addition to their role in providing Ca2+ at these sites. Evidence that various binding partners regulate the assembly and Ca2+ transfer at ERMCS populated by IP3R-GRP75-VDAC1, suggesting that cells have evolved mechanisms that stabilise these junctions forming a Ca2+ microdomain that is required to fuel mitochondrial Ca2+ uptake.
Collapse
Affiliation(s)
- Peace Atakpa-Adaji
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Adelina Ivanova
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|