1
|
Chen Y, Xu Y, Zhang Y, Yang D, Sun Y. Functions of the fusogenic and non-fusogenic activities of Syncytin-1 in human physiological and pathological processes. Biochem Biophys Res Commun 2025; 761:151746. [PMID: 40188598 DOI: 10.1016/j.bbrc.2025.151746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/22/2025] [Accepted: 04/01/2025] [Indexed: 04/08/2025]
Abstract
Human endogenous retroviruses (HERVs), which represent the genetic remnants of ancient viral infections, constitute approximately 8 % of the human genome. Among the proteins encoded by these viruses, Syncytin-1, encoded by the env gene of the HERV-W family, functions as a vital fusion protein in placental development, in which it plays a pivotal role in facilitating the fusion of trophoblast cells to form the syncytiotrophoblast that is essential for maintaining the structural integrity and functional viability of the placenta. Recent studies have shown that in addition to its expression in the placenta, Syncytin-1 also plays key roles in a range of different tissues and cell types, influencing biological processes such as cell proliferation, apoptosis, and immune regulation. Abnormal expression of Syncytin-1 has been closely linked to the onset, progression, and metastasis of tumors, potentially promoting tumor invasion via mechanisms involving cell fusion and modulation of the immune microenvironment. Moreover, associations have been established between Syncytin-1 and neurological disorders, including multiple sclerosis and schizophrenia, in which it modulates neuroinflammation. In this review, we systematically examine the molecular structure and functional attributes of Syncytin-1, emphasizing its roles in cell fusion, tumor progression, and immune regulation, and discuss its potential applications as a therapeutic target and diagnostic biomarker.
Collapse
Affiliation(s)
- Yuling Chen
- Medical School, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| | - Ya Xu
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| | - Yu Zhang
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| | - Danni Yang
- Medical School, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| | - Yi Sun
- Institute of Basic and Clinical Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Bastawecy IM, Abdelmonem M, Afify AF, Saad N, Shirosaki Y, Abdullah CAC, El Naggar RF, Rohaim MA, Munir M. Viral contamination in cell culture: analyzing the impact of Epstein Barr virus and Ovine Herpesvirus 2. Front Microbiol 2025; 16:1442321. [PMID: 40071201 PMCID: PMC11893573 DOI: 10.3389/fmicb.2025.1442321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Cell culture techniques are increasingly favored over animal models due to rising costs, time constraints, and ethical concerns regarding animal use. These techniques serve critical roles in disease modeling, drug screening, drug discovery, and toxicity analysis. Notably, cell cultures facilitate primary virus isolation, infectivity assays, biochemical studies, and vaccine production. However, viral contamination in cell cultures poses significant challenges, particularly due to the necessity for complex and sophisticated detection methods. Among the prevalent viruses, Epstein Barr virus (EBV) is ubiquitous across human populations, infecting approximately 98% of individuals. Despite its prevalence, the detection of EBV is often not considered a safety priority, as its detection methods are well-established, including PCR assays that can identify both active and latent forms of the virus. Conversely, ovine herpesvirus 2 (OvHV-2), a relative of EBV, presents a critical concern due to its ability to infect a wide range of organs and species, including over 33 animal species and nearly all domestic sheep. This makes the detection of OvHV-2 crucial for the safety of cell cultures across various species. The literature reveals a gap in the comprehensive understanding of both EBV and OvHv-2 detection in cell culture systems, highlighting an urgent need for developing robust detection methodologies specific to EBV and OvHv-2 to ensure bioprocess safety.
Collapse
Affiliation(s)
- Iman M. Bastawecy
- Department of Virology, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Mohamed Abdelmonem
- Department of Physics, Faculty of Science, Universiti Putra Malaysia (UPM), Selangor Darul Ehsan, Malaysia
| | - Ahmed F. Afify
- Department of Virology, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Norazalina Saad
- Laboratory of Cancer Research UPM-MAKNA (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | - Yuki Shirosaki
- Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
- Research Center of Synthetic Biology, Kyushu Institute of Technology, Kitakyushu, Japan
- Collaborative Research Centre for Green Materials on Environmental Technology, Kyushu Institute of Technology, Kitakyushu, Japan
| | | | - Rania F. El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohammed A. Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
3
|
M’Angale PG, Lemieux A, Liu Y, Wang S, Zinter M, Alegre G, Simkin A, Budnik V, Kelch BA, Thomson T. Capsid transfer of the retrotransposon Copia controls structural synaptic plasticity in Drosophila. PLoS Biol 2025; 23:e3002983. [PMID: 39964983 PMCID: PMC11835246 DOI: 10.1371/journal.pbio.3002983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/11/2024] [Indexed: 02/20/2025] Open
Abstract
Transposons are parasitic genome elements that can also serve as raw material for the evolution of new cellular functions. However, how retrotransposons are selected and domesticated by host organisms to modulate synaptic plasticity remains largely unknown. Here, we show that the Ty1 retrotransposon Copia forms virus-like capsids in vivo and transfers between cells. Copia is enriched at the Drosophila neuromuscular junction (NMJ) and transported across synapses, and disrupting its expression promotes both synapse development and structural synaptic plasticity. We show that proper synaptic plasticity is maintained in Drosophila by the balance of Copia and the Arc1 (activity-regulated cytoskeleton-associated protein) homolog. High-resolution cryogenic-electron microscopy imaging shows that the structure of the Copia capsid has a large capacity and pores like retroviruses but is distinct from domesticated capsids such as dArc1. Our results suggest a fully functional transposon mediates synaptic plasticity, possibly representing an early stage of domestication of a retrotransposon.
Collapse
Affiliation(s)
- P. Githure M’Angale
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Adrienne Lemieux
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Yumeng Liu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Shuhao Wang
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Max Zinter
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Gimena Alegre
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Alfred Simkin
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Vivian Budnik
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Brian A. Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Travis Thomson
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
4
|
Kleijwegt C, Déjardin J. [Heterochromatin and epigenetic control of repeat sequences]. Med Sci (Paris) 2024; 40:904-913. [PMID: 39705561 DOI: 10.1051/medsci/2024176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
L’hétérochromatine est une structure décrite comme restrictive et répressive. On la retrouve notamment au niveau des séquences répétées qui représentent près de la moitié du génome humain. Ces séquences, dont l’origine reste incertaine, peuvent jouer un rôle structural, protecteur ou régulateur. Cependant, leur homologie de séquence ou leur capacité à transposer pour certaines, peuvent compromettre la stabilité du génome, et la formation d’hétérochromatine au niveau de ces régions permet de les réguler. Souvent imaginée comme une structure dont la composition est stable, l’hétérochromatine est en réalité bien plus hétérogène, en fonction du locus et du type cellulaire où elle est établie.
Collapse
Affiliation(s)
- Constance Kleijwegt
- Institut de génétique humaine, CNRS, Université de Montpellier, UMR 9002, Montpellier, France
| | - Jérôme Déjardin
- Institut de génétique humaine, CNRS, Université de Montpellier, UMR 9002, Montpellier, France
| |
Collapse
|
5
|
Song Y, Wen H, Zhai X, Jia L, Li L. Functional Bidirectionality of ERV-Derived Long Non-Coding RNAs in Humans. Int J Mol Sci 2024; 25:10481. [PMID: 39408810 PMCID: PMC11476766 DOI: 10.3390/ijms251910481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are widely recognized as the result of exogenous retroviruses infecting the ancestral germline, stabilizing integration and vertical transmission during human genetic evolution. To date, endogenous retroviruses (ERVs) appear to have been selected for human physiological functions with the loss of retrotransposable capabilities. ERV elements were previously regarded as junk DNA for a long time. Since then, the aberrant activation and expression of ERVs have been observed in the development of many kinds of human diseases, and their role has been explored in a variety of human disorders such as cancer. The results show that specific ERV elements play respective crucial roles. Among them, long non-coding RNAs (lncRNAs) transcribed from specific long-terminal repeat regions of ERVs are often key factors. lncRNAs are over 200 nucleotides in size and typically bind to DNA, RNA, and proteins to perform biological functions. Dysregulated lncRNAs have been implicated in a variety of diseases. In particular, studies have shown that the aberrant expression of some ERV-derived lncRNAs has a tumor-suppressive or oncogenic effect, displaying significant functional bidirectionality. Therefore, theses lncRNAs have a promising future as novel biomarkers and therapeutic targets to explore the concise relationship between ERVs and cancers. In this review, we first summarize the role of ERV-derived lncRNAs in physiological regulation, mainly including immunomodulation, the maintenance of pluripotency, and erythropoiesis. In addition, pathological regulation examples of their aberrant activation and expression leading to carcinogenesis are highlighted, and specific mechanisms of occurrence are discussed.
Collapse
Affiliation(s)
- Yanmei Song
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
| | - Xiuli Zhai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| |
Collapse
|
6
|
Wallace AD, Blue NR, Morgan T, Workalemahu T, Silver RM, Quinlan AR. Placental somatic mutation in human stillbirth and live birth: A pilot case-control study of paired placental, fetal, and maternal whole genomes. Placenta 2024; 154:137-144. [PMID: 38972082 PMCID: PMC11368634 DOI: 10.1016/j.placenta.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION A high frequency of single nucleotide somatic mutations in the placenta has been recently described, but its relationship to placental dysfunction is unknown. METHODS We performed a pilot case-control study using paired fetal, maternal, and placental samples collected from healthy live birth controls (n = 10), live births with fetal growth restriction (FGR) due to placental insufficiency (n = 7), and stillbirths with FGR and placental insufficiency (n = 11). We quantified single nucleotide and structural somatic variants using bulk whole genome sequencing (30-60X coverage) in four biopsies from each placenta. We also assessed their association with clinical and histological evidence of placental dysfunction. RESULTS Seventeen pregnancies had sufficiently high-quality placental, fetal, and maternal DNA for analysis. Each placenta had a median of 473 variants (range 111-870), with 95 % arising in just one biopsy within each placenta. In controls, live births with FGR, and stillbirths, the median variant counts per placenta were 514 (IQR 381-779), 582 (450-735), and 338 (245-441), respectively. After adjusting for depth of sequencing coverage and gestational age at birth, the somatic mutation burden was similar between groups (FGR live births vs. controls, adjusted diff. 59, 95 % CI -218 to +336; stillbirths vs controls, adjusted diff. -34, -351 to +419), and with no association with placental dysfunction (p = 0.7). DISCUSSION We confirmed the high prevalence of somatic mutation in the human placenta and conclude that the placenta is highly clonal. We were not able to identify any relationship between somatic mutation burden and clinical or histologic placental insufficiency.
Collapse
Affiliation(s)
- Amelia D Wallace
- University of Utah Health, Department of Human Genetics, 15 N 2030 E, Eccles Institute of Human Genetics Rm 7160B, Salt Lake City, UT, 84112, USA; Utah Center for Genetic Discovery, 15 N 2030 E, #2100, Salt Lake City, UT, 4112, USA
| | - Nathan R Blue
- University of Utah Health, Department of Obstetrics and Gynecology, 30 N Mario Capecchi Dr, Level 5 South, Salt Lake City, UT, 84132, USA
| | - Terry Morgan
- Oregon Health & Science University, Departments of Pathology and Obstetrics and Gynecology, 3181 SW Sam Jackson Park Rd, L-113, Portland, OR, 97239, USA
| | - Tsegaselassie Workalemahu
- University of Utah Health, Department of Obstetrics and Gynecology, 30 N Mario Capecchi Dr, Level 5 South, Salt Lake City, UT, 84132, USA
| | - Robert M Silver
- University of Utah Health, Department of Obstetrics and Gynecology, 30 N Mario Capecchi Dr, Level 5 South, Salt Lake City, UT, 84132, USA.
| | - Aaron R Quinlan
- University of Utah Health, Department of Human Genetics, 15 N 2030 E, Eccles Institute of Human Genetics Rm 7160B, Salt Lake City, UT, 84112, USA; Utah Center for Genetic Discovery, 15 N 2030 E, #2100, Salt Lake City, UT, 4112, USA.
| |
Collapse
|
7
|
Jarosz AS, Halo JV. Transcription of Endogenous Retroviruses: Broad and Precise Mechanisms of Control. Viruses 2024; 16:1312. [PMID: 39205286 PMCID: PMC11359688 DOI: 10.3390/v16081312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Endogenous retroviruses (ERVs) are the remnants of retroviral germline infections and are highly abundant in the genomes of vertebrates. At one time considered to be nothing more than inert 'junk' within genomes, ERVs have been tolerated within host genomes over vast timescales, and their study continues to reveal complex co-evolutionary histories within their respective host species. For example, multiple instances have been characterized of ERVs having been 'borrowed' for normal physiology, from single copies to ones involved in various regulatory networks such as innate immunity and during early development. Within the cell, the accessibility of ERVs is normally tightly controlled by epigenetic mechanisms such as DNA methylation or histone modifications. However, these silencing mechanisms of ERVs are reversible, and epigenetic alterations to the chromatin landscape can thus lead to their aberrant expression, as is observed in abnormal cellular environments such as in tumors. In this review, we focus on ERV transcriptional control and draw parallels and distinctions concerning the loss of regulation in disease, as well as their precise regulation in early development.
Collapse
Affiliation(s)
- Abigail S. Jarosz
- Science and Mathematics Division, Lorrain County Community College, Lorrain, OH 44035, USA;
| | - Julia V. Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
8
|
Solovyeva AI, Afanasev RV, Popova MA, Enukashvily NI. Dysregulation of Transposon Transcription Profiles in Cancer Cells Resembles That of Embryonic Stem Cells. Curr Issues Mol Biol 2024; 46:8576-8599. [PMID: 39194722 DOI: 10.3390/cimb46080505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Transposable elements (TEs) comprise a substantial portion of the mammalian genome, with potential implications for both embryonic development and cancer. This study aimed to characterize the expression profiles of TEs in embryonic stem cells (ESCs), cancer cell lines, tumor tissues, and the tumor microenvironment (TME). We observed similarities in TE expression profiles between cancer cells and ESCs, suggesting potential parallels in regulatory mechanisms. Notably, four TE RNAs (HERVH, LTR7, HERV-Fc1, HERV-Fc2) exhibited significant downregulation across cancer cell lines and tumor tissues compared to ESCs, highlighting potential roles in pluripotency regulation. The strong up-regulation of the latter two TEs (HERV-Fc1, HERV-Fc2) in ESCs has not been previously demonstrated and may be a first indication of their role in the regulation of pluripotency. Conversely, tandemly repeated sequences (MSR1, CER, ALR) showed up-regulation in cancer contexts. Moreover, a difference in TE expression was observed between the TME and the tumor bulk transcriptome, with distinct dysregulated TE profiles. Some TME-specific TEs were absent in normal tissues, predominantly belonging to LTR and L1 retrotransposon families. These findings not only shed light on the regulatory roles of TEs in both embryonic development and cancer but also suggest novel targets for anti-cancer therapy. Understanding the interplay between cancer cells and the TME at the TE level may pave the way for further research into therapeutic interventions.
Collapse
Affiliation(s)
- Anna I Solovyeva
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
- Zoological Institute of Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Roman V Afanasev
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Marina A Popova
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, 191002 St. Petersburg, Russia
| | - Natella I Enukashvily
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
- Department of Cytology and Histology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
9
|
Zhang Y, Wang G, Zhu Y, Cao X, Liu F, Li H, Liu S. Exploring the role of endogenous retroviruses in seasonal reproductive cycles: a case study of the ERV-V envelope gene in mink. Front Cell Infect Microbiol 2024; 14:1404431. [PMID: 39081866 PMCID: PMC11287128 DOI: 10.3389/fcimb.2024.1404431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Endogenous retroviruses (ERVs), which originated from exogenous retroviral infections of germline cells millions of years ago and were inherited by subsequent generations as per Mendelian inheritance patterns, predominantly comprise non-protein-coding sequences due to the accumulation of mutations, insertions, deletions, and truncations. Nevertheless, recent studies have revealed that ERVs play a crucial role in diverse biological processes by encoding various proteins. Methods In this study, we successfully identified an ERV envelope (env) gene in a mink species. A phylogenetic tree of mink ERV-V env and reference sequences was constructed using Bayesian methods and maximum-likelihood inference. Results Phylogenetic analyses indicated a significant degree of sequence conservation and positive selection within the env-surface open reading frame. Additionally, qRT-PCR revealed diverse patterns of mink ERV-V env expression in various tissues. The expression of mink ERV-V env gene in testicular tissue strongly correlated with the seasonal reproductive cycles of minks. Discussion Our study suggests that the ERV-V env gene in mink may have been repurposed for host functions.
Collapse
Affiliation(s)
- Yufei Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Gaofeng Wang
- Ulanqab Center for Animal Disease Control and Prevention, Ulanqab, China
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaodong Cao
- School of pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Fang Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Huiping Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shuying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- College of Veterinary Medicine, Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, China
| |
Collapse
|
10
|
Perron H. A tale of a hidden family of genetic immigrants. Microbes Infect 2024:105387. [PMID: 38944111 DOI: 10.1016/j.micinf.2024.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Though not usual for the editors of a scientific journal to ask that a story be told to its readers, this special issue is offering an opportunity to pay tribute to all those who have made it possible for a long scientific journey to open up many research avenues, to access the discoveries of what was not known and to the understanding of what was unveiled in the field of human endogenous retroviruses. In particular, and beyond a simple fortuitous association, to show their pathogenic involvement in certain diseases whose causality has been the subject of numerous and variable hypotheses.
Collapse
Affiliation(s)
- Hervé Perron
- GeNeuro, 3 chemin du Pré-Fleuri, 1228 Plan-les-ouates, Geneva, Switzerland; Geneuro-Innovation, 60A, Avenue Rockefeller, 69008 Lyon, France.
| |
Collapse
|
11
|
Chen G, Yu D, Yang Y, Li X, Wang X, Sun D, Lu Y, Ke R, Zhang G, Cui J, Feng S. Adaptive expansion of ERVK solo-LTRs is associated with Passeriformes speciation events. Nat Commun 2024; 15:3151. [PMID: 38605055 PMCID: PMC11009239 DOI: 10.1038/s41467-024-47501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Endogenous retroviruses (ERVs) are ancient retroviral remnants integrated in host genomes, and commonly deleted through unequal homologous recombination, leaving solitary long terminal repeats (solo-LTRs). This study, analysing the genomes of 362 bird species and their reptilian and mammalian outgroups, reveals an unusually higher level of solo-LTRs formation in birds, indicating evolutionary forces might have purged ERVs during evolution. Strikingly in the order Passeriformes, and especially the parvorder Passerida, endogenous retrovirus K (ERVK) solo-LTRs showed bursts of formation and recurrent accumulations coinciding with speciation events over past 22 million years. Moreover, our results indicate that the ongoing expansion of ERVK solo-LTRs in these bird species, marked by high transcriptional activity of ERVK retroviral genes in reproductive organs, caused variation of solo-LTRs between individual zebra finches. We experimentally demonstrated that cis-regulatory activity of recently evolved ERVK solo-LTRs may significantly increase the expression level of ITGA2 in the brain of zebra finches compared to chickens. These findings suggest that ERVK solo-LTRs expansion may introduce novel genomic sequences acting as cis-regulatory elements and contribute to adaptive evolution. Overall, our results underscore that the residual sequences of ancient retroviruses could influence the adaptive diversification of species by regulating host gene expression.
Collapse
Affiliation(s)
- Guangji Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- BGI Research, Wuhan, China
| | - Dan Yu
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Yang
- School of Medicine, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Xiang Li
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Danyang Sun
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yanlin Lu
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Jie Cui
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Institute of Infection and Health Research, Fudan University, Shanghai, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, 200052, China.
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China.
| | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China.
- Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Pushchina EV, Kapustyanov IA, Kluka GG. Adult Neurogenesis of Teleost Fish Determines High Neuronal Plasticity and Regeneration. Int J Mol Sci 2024; 25:3658. [PMID: 38612470 PMCID: PMC11012045 DOI: 10.3390/ijms25073658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/14/2024] Open
Abstract
Studying the properties of neural stem progenitor cells (NSPCs) in a fish model will provide new information about the organization of neurogenic niches containing embryonic and adult neural stem cells, reflecting their development, origin cell lines and proliferative dynamics. Currently, the molecular signatures of these populations in homeostasis and repair in the vertebrate forebrain are being intensively studied. Outside the telencephalon, the regenerative plasticity of NSPCs and their biological significance have not yet been practically studied. The impressive capacity of juvenile salmon to regenerate brain suggests that most NSPCs are likely multipotent, as they are capable of replacing virtually all cell lineages lost during injury, including neuroepithelial cells, radial glia, oligodendrocytes, and neurons. However, the unique regenerative profile of individual cell phenotypes in the diverse niches of brain stem cells remains unclear. Various types of neuronal precursors, as previously shown, are contained in sufficient numbers in different parts of the brain in juvenile Pacific salmon. This review article aims to provide an update on NSPCs in the brain of common models of zebrafish and other fish species, including Pacific salmon, and the involvement of these cells in homeostatic brain growth as well as reparative processes during the postraumatic period. Additionally, new data are presented on the participation of astrocytic glia in the functioning of neural circuits and animal behavior. Thus, from a molecular aspect, zebrafish radial glia cells are seen to be similar to mammalian astrocytes, and can therefore also be referred to as astroglia. However, a question exists as to if zebrafish astroglia cells interact functionally with neurons, in a similar way to their mammalian counterparts. Future studies of this fish will complement those on rodents and provide important information about the cellular and physiological processes underlying astroglial function that modulate neural activity and behavior in animals.
Collapse
Affiliation(s)
- Evgeniya Vladislavovna Pushchina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (I.A.K.); (G.G.K.)
| | | | | |
Collapse
|
13
|
Liang B, Yan T, Wei H, Zhang D, Li L, Liu Z, Li W, Zhang Y, Jiang N, Meng Q, Jiang G, Hu Y, Leng J. HERVK-mediated regulation of neighboring genes: implications for breast cancer prognosis. Retrovirology 2024; 21:4. [PMID: 38388382 PMCID: PMC10885364 DOI: 10.1186/s12977-024-00636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/18/2024] [Indexed: 02/24/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are the remnants of ancient retroviral infections integrated into the human genome. Although most HERVs are silenced or rendered inactive by various regulatory mechanisms, they retain the potential to influence the nearby genes. We analyzed the regulatory map of 91 HERV-Ks on neighboring genes in human breast cancer and investigated the impact of HERV-Ks on the tumor microenvironment (TME) and prognosis of breast cancer. Nine RNA-seq datasets were obtained from GEO and NCBI SRA. Differentially expressed genes and HERV-Ks were analyzed using DESeq2. Validation of high-risk prognostic candidate genes using TCGA data. These included Overall survival (multivariate Cox regression model), immune infiltration analysis (TIMER), tumor mutation burden (maftools), and drug sensitivity analysis (GSCA). A total of 88 candidate genes related to breast cancer prognosis were screened, of which CD48, SLAMF7, SLAMF1, IGLL1, IGHA1, and LRRC8A were key genes. Functionally, these six key genes were significantly enriched in some immune function-related pathways, which may be associated with poor prognosis for breast cancer (p = 0.00016), and the expression levels of these genes were significantly correlated with the sensitivity of breast cancer treatment-related drugs. Mechanistically, they may influence breast cancer development by modulating the infiltration of various immune cells into the TME. We further experimentally validated these genes to confirm the results obtained from bioinformatics analysis. This study represents the first report on the regulatory potential of HERV-K in the neighboring breast cancer genome. We identified three key HERV-Ks and five neighboring genes that hold promise as novel targets for future interventions and treatments for breast cancer.
Collapse
Affiliation(s)
- Boying Liang
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China
| | - Tengyue Yan
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Huilin Wei
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China
| | - Die Zhang
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Lanxiang Li
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zengjing Liu
- Genomic Experimental Center, Guangxi Medical University, Nanning, China
| | - Wen Li
- Genomic Experimental Center, Guangxi Medical University, Nanning, China
| | - Yuluan Zhang
- Genomic Experimental Center, Guangxi Medical University, Nanning, China
| | - Nili Jiang
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China
| | - Qiuxia Meng
- Genomic Experimental Center, Guangxi Medical University, Nanning, China
| | - Guiyang Jiang
- Genomic Experimental Center, Guangxi Medical University, Nanning, China
| | - Yanling Hu
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China.
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China.
- Genomic Experimental Center, Guangxi Medical University, Nanning, China.
| | - Jing Leng
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China.
| |
Collapse
|
14
|
Dittmar T, Sieler M, Hass R. Why do certain cancer cells alter functionality and fuse? Biol Chem 2023; 404:951-960. [PMID: 37246410 DOI: 10.1515/hsz-2023-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/30/2023]
Abstract
Cancer cell fusion represents a rare event. However, the surviving cancer hybrid cells after a post-hybrid selection process (PHSP) can overgrow other cancer cells by exhibiting a proliferation advantage and/or expression of cancer stem-like properties. Addition of new tumor properties during hetero-fusion of cancer cells e.g. with mesenchymal stroma-/stem-like cells (MSC) contribute to enhanced tumor plasticity via acquisition of new/altered functionalities. This provides new avenues for tumor development and metastatic behavior. Consequently, the present review article will also address the question as to whether cancer cell fusion represents a general and possibly evolutionary-conserved program or rather a random process?
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, D-58448 Witten, Germany
| | - Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, D-58448 Witten, Germany
| | - Ralf Hass
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
15
|
Gholami Barzoki M, Shatizadeh Malekshahi S, Heydarifard Z, Mahmodi MJ, Soltanghoraee H. The important biological roles of Syncytin-1 of human endogenous retrovirus W (HERV-W) and Syncytin-2 of HERV-FRD in the human placenta development. Mol Biol Rep 2023; 50:7901-7907. [PMID: 37421503 DOI: 10.1007/s11033-023-08658-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) entered the germ line by retroviral infection from a distant ancestor over 30 million years ago and constitute 8% of the human genome. The majorities of HERVs are non-protein coding and lack function because of the accumulation of mutations, insertions, deletions, and/or truncations. However, a small number of HERV genes carried ORFs with beneficial functions for the host. METHODS & RESULTS In this review, we summarize the structural and important biological roles of two HERV gene products termed Syncytin-1 and Syncytin-2 in human placenta development. Indeed, two retroviral gene products that have important roles in mammalian development, Syncytin-1 (HERV-W) and Syncytin-2 (HERV-FRD), are prime examples encoded by env genes and expressed in the placental trophoblasts. Several pivotal studies revealed that Syncytins are fundamental genes implicated in regulating trophoblast fusion and placenta morphogenesis. CONCLUSION Interestingly, it has been suggested that syncytins may also be implicated in non-fusogenic activities leading to apoptosis, proliferation, and immunosuppressive activities.
Collapse
Affiliation(s)
- Mehdi Gholami Barzoki
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Zahra Heydarifard
- Hepatitis Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohamad Javad Mahmodi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Haleh Soltanghoraee
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
16
|
Vassilieff H, Geering ADW, Choisne N, Teycheney PY, Maumus F. Endogenous Caulimovirids: Fossils, Zombies, and Living in Plant Genomes. Biomolecules 2023; 13:1069. [PMID: 37509105 PMCID: PMC10377300 DOI: 10.3390/biom13071069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The Caulimoviridae is a family of double-stranded DNA viruses that infect plants. The genomes of most vascular plants contain endogenous caulimovirids (ECVs), a class of repetitive DNA elements that is abundant in some plant genomes, resulting from the integration of viral DNA in the chromosomes of germline cells during episodes of infection that have sometimes occurred millions of years ago. In this review, we reflect on 25 years of research on ECVs that has shown that members of the Caulimoviridae have occupied an unprecedented range of ecological niches over time and shed light on their diversity and macroevolution. We highlight gaps in knowledge and prospects of future research fueled by increased access to plant genome sequence data and new tools for genome annotation for addressing the extent, impact, and role of ECVs on plant biology and the origin and evolutionary trajectories of the Caulimoviridae.
Collapse
Affiliation(s)
| | - Andrew D W Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Pierre-Yves Teycheney
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre de La Réunion, France
- UMR PVBMT, Université de la Réunion, F-97410 Saint-Pierre de La Réunion, France
| | - Florian Maumus
- INRAE, URGI, Université Paris-Saclay, 78026 Versailles, France
| |
Collapse
|
17
|
Hamann MV, Adiba M, Lange UC. Confounding factors in profiling of locus-specific human endogenous retrovirus (HERV) transcript signatures in primary T cells using multi-study-derived datasets. BMC Med Genomics 2023; 16:68. [PMID: 37013607 PMCID: PMC10068191 DOI: 10.1186/s12920-023-01486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERV) are repetitive sequence elements and a substantial part of the human genome. Their role in development has been well documented and there is now mounting evidence that dysregulated HERV expression also contributes to various human diseases. While research on HERV elements has in the past been hampered by their high sequence similarity, advanced sequencing technology and analytical tools have empowered the field. For the first time, we are now able to undertake locus-specific HERV analysis, deciphering expression patterns, regulatory networks and biological functions of these elements. To do so, we inevitable rely on omics datasets available through the public domain. However, technical parameters inevitably differ, making inter-study analysis challenging. We here address the issue of confounding factors for profiling locus-specific HERV transcriptomes using datasets from multiple sources. METHODS We collected RNAseq datasets of CD4 and CD8 primary T cells and extracted HERV expression profiles for 3220 elements, resembling most intact, near full-length proviruses. Looking at sequencing parameters and batch effects, we compared HERV signatures across datasets and determined permissive features for HERV expression analysis from multiple-source data. RESULTS We could demonstrate that considering sequencing parameters, sequencing-depth is most influential on HERV signature outcome. Sequencing samples deeper broadens the spectrum of expressed HERV elements. Sequencing mode and read length are secondary parameters. Nevertheless, we find that HERV signatures from smaller RNAseq datasets do reliably reveal most abundantly expressed HERV elements. Overall, HERV signatures between samples and studies overlap substantially, indicating a robust HERV transcript signature in CD4 and CD8 T cells. Moreover, we find that measures of batch effect reduction are critical to uncover genic and HERV expression differences between cell types. After doing so, differences in the HERV transcriptome between ontologically closely related CD4 and CD8 T cells became apparent. CONCLUSION In our systematic approach to determine sequencing and analysis parameters for detection of locus-specific HERV expression, we provide evidence that analysis of RNAseq datasets from multiple studies can aid confidence of biological findings. When generating de novo HERV expression datasets we recommend increased sequence depth ( > = 100 mio reads) compared to standard genic transcriptome pipelines. Finally, batch effect reduction measures need to be implemented to allow for differential expression analysis.
Collapse
Affiliation(s)
| | - Maisha Adiba
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Ulrike C Lange
- Leibniz Institute of Virology (LIV), Hamburg, Germany.
- Institute for Infection Research and Vaccine Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
18
|
Vargas LN, Silveira MM, Franco MM. Epigenetic Reprogramming and Somatic Cell Nuclear Transfer. Methods Mol Biol 2023; 2647:37-58. [PMID: 37041328 DOI: 10.1007/978-1-0716-3064-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Epigenetics is an area of genetics that studies the heritable modifications in gene expression and phenotype that are not controlled by the primary sequence of DNA. The main epigenetic mechanisms are DNA methylation, post-translational covalent modifications in histone tails, and non-coding RNAs. During mammalian development, there are two global waves of epigenetic reprogramming. The first one occurs during gametogenesis and the second one begins immediately after fertilization. Environmental factors such as exposure to pollutants, unbalanced nutrition, behavioral factors, stress, in vitro culture conditions can negatively affect epigenetic reprogramming events. In this review, we describe the main epigenetic mechanisms found during mammalian preimplantation development (e.g., genomic imprinting, X chromosome inactivation). Moreover, we discuss the detrimental effects of cloning by somatic cell nuclear transfer on the reprogramming of epigenetic patterns and some molecular alternatives to minimize these negative impacts.
Collapse
Affiliation(s)
- Luna N Vargas
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Márcia M Silveira
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Maurício M Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil.
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
19
|
Dittmar T, Hass R. Extracellular Events Involved in Cancer Cell-Cell Fusion. Int J Mol Sci 2022; 23:16071. [PMID: 36555709 PMCID: PMC9784959 DOI: 10.3390/ijms232416071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Fusion among different cell populations represents a rare process that is mediated by both intrinsic and extracellular events. Cellular hybrid formation is relayed by orchestrating tightly regulated signaling pathways that can involve both normal and neoplastic cells. Certain important cell merger processes are often required during distinct organismal and tissue development, including placenta and skeletal muscle. In a neoplastic environment, however, cancer cell fusion can generate new cancer hybrid cells. Following survival during a subsequent post-hybrid selection process (PHSP), the new cancer hybrid cells express different tumorigenic properties. These can include elevated proliferative capacity, increased metastatic potential, resistance to certain therapeutic compounds, and formation of cancer stem-like cells, all of which characterize significantly enhanced tumor plasticity. However, many parts within this multi-step cascade are still poorly understood. Aside from intrinsic factors, cell fusion is particularly affected by extracellular conditions, including an inflammatory microenvironment, viruses, pH and ionic stress, hypoxia, and exosome signaling. Accordingly, the present review article will primarily highlight the influence of extracellular events that contribute to cell fusion in normal and tumorigenic tissues.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
20
|
Modulation of HERV Expression by Four Different Encephalitic Arboviruses during Infection of Human Primary Astrocytes. Viruses 2022; 14:v14112505. [PMID: 36423114 PMCID: PMC9694637 DOI: 10.3390/v14112505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Human retroelements (HERVs) are retroviral origin sequences fixed in the human genome. HERVs induction is associated with neurogenesis, cellular development, immune activation, and neurological disorders. Arboviruses are often associated with the development of encephalitis. The interplay between these viruses and HERVs has not been fully elucidated. In this work, we analyzed RNAseq data derived from infected human primary astrocytes by Zika (ZikV), Mayaro (MayV), Oropouche (OroV) and Chikungunya (ChikV) viruses, and evaluated the modulation of HERVs and their nearby genes. Our data show common HERVs expression modulation by both alphaviruses, suggesting conserved evolutionary routes of transcription regulation. A total of 15 HERVs were co-modulated by the four arboviruses, including the highly upregulated HERV4_4q22. Data on the upregulation of genes nearby to these elements in ChikV, MayV and OroV infections were also obtained, and interaction networks were built. The upregulation of 14 genes common among all viruses was observed in the networks, and 93 genes between MayV and ChikV. These genes are related to cellular processes such as cellular replication, cytoskeleton, cell vesicle traffic and antiviral response. Together, our results support the role of HERVs induction in the transcription regulation process of genes during arboviral infections.
Collapse
|
21
|
Saadeldin IM, Tanga BM, Bang S, Seo C, Koo O, Yun SH, Kim SI, Lee S, Cho J. ROCK Inhibitor (Y-27632) Abolishes the Negative Impacts of miR-155 in the Endometrium-Derived Extracellular Vesicles and Supports Embryo Attachment. Cells 2022; 11:cells11193178. [PMID: 36231141 PMCID: PMC9564368 DOI: 10.3390/cells11193178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized vesicles that act as snapshots of cellular components and mediate cellular communications, but they may contain cargo contents with undesired effects. We developed a model to improve the effects of endometrium-derived EVs (Endo-EVs) on the porcine embryo attachment in feeder-free culture conditions. Endo-EVs cargo contents were analyzed using conventional and real-time PCR for micro-RNAs, messenger RNAs, and proteomics. Porcine embryos were generated by parthenogenetic electric activation in feeder-free culture conditions supplemented with or without Endo-EVs. The cellular uptake of Endo-EVs was confirmed using the lipophilic dye PKH26. Endo-EVs cargo contained miR-100, miR-132, and miR-155, together with the mRNAs of porcine endogenous retrovirus (PERV) and β-catenin. Targeting PERV with CRISPR/Cas9 resulted in reduced expression of PERV mRNA transcripts and increased miR-155 in the Endo-EVs, and supplementing these in embryos reduced embryo attachment. Supplementing the medium containing Endo-EVs with miR-155 inhibitor significantly improved the embryo attachment with a few outgrowths, while supplementing with Rho-kinase inhibitor (RI, Y-27632) dramatically improved both embryo attachment and outgrowths. Moreover, the expression of miR-100, miR-132, and the mRNA transcripts of BCL2, zinc finger E-box-binding homeobox 1, β-catenin, interferon-γ, protein tyrosine phosphatase non-receptor type 1, PERV, and cyclin-dependent kinase 2 were all increased in embryos supplemented with Endo-EVs + RI compared to those in the control group. Endo-EVs + RI reduced apoptosis and increased the expression of OCT4 and CDX2 and the cell number of embryonic outgrowths. We examined the individual and combined effects of RI compared to those of the miR-155 mimic and found that RI can alleviate the negative effects of the miR-155 mimic on embryo attachment and outgrowths. EVs can improve embryo attachment and the unwanted effects of the de trop cargo contents (miR-155) can be alleviated through anti-apoptotic molecules such as the ROCK inhibitor.
Collapse
Affiliation(s)
- Islam M. Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Chaerim Seo
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | | | - Sung Ho Yun
- Korea Basic Science Institute (KBSI), Ochang 28119, Korea
| | - Seung Il Kim
- Korea Basic Science Institute (KBSI), Ochang 28119, Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-821-6788
| |
Collapse
|
22
|
Beyond fusion: A novel role for ERVW-1 in trophoblast proliferation and type I interferon receptor expression. Placenta 2022; 126:150-159. [PMID: 35816776 DOI: 10.1016/j.placenta.2022.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/23/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Throughout human pregnancy there is a delicate balance between the maintenance of a proliferative, trophoblast stem cell pool (TSC) and the differentiation from TSC to placental cell sub-lineages like the syncytiotrophoblast (STB). The STB is comprised of multinucleated cells that come into direct contact with maternal blood and provides the first line of defense to protect the fetus from maternal infections. The differentiation of TSC towards STB is primarily driven by human endogenous retroviruses (HERV), specifically Syncytin-1 (ERVW-1) and Syncytin-2 (ERVFRD-1). Beyond cell fusion, there is also evidence to suggest they can regulate cell proliferation and an antiviral response in other cell types. Therefore, we hypothesized that HERV can regulate cell proliferation as well as an antiviral response in TSCs. METHOD shRNA was used to knockdown ERVW-1 in TSCs and revealed reduction in cell proliferation, differentiation, and cell fusion. RT-qPCR and flow cytometry was used to measure other HERV and the presence of Type I and Type II interferon receptors. RESULTS ERVW-1 knockdown (KD) TSCs had a significantly longer cell doubling time and reduced expression of the proliferation marker Ki67. ERVW-1 KD cells also demonstrated a marked deficiency in the ability to differentiate. Interestingly, ERVFRD-1 was upregulated in both ERVW-1 KD TSC and STB cells compared to controls. Finally, we found that the Type I interferon receptors, IFNAR1 and IFNAR2 were significantly increased in ERVW-1 KD STB cells. DISCUSSION These findings uncover critical HERV functions in the trophoblasts and a novel role for ERVW-1 during early human placental development.
Collapse
|
23
|
Dittmar T, Weiler J, Luo T, Hass R. Cell-Cell Fusion Mediated by Viruses and HERV-Derived Fusogens in Cancer Initiation and Progression. Cancers (Basel) 2021; 13:5363. [PMID: 34771528 PMCID: PMC8582398 DOI: 10.3390/cancers13215363] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cell fusion is a well-known, but still scarcely understood biological phenomenon, which might play a role in cancer initiation, progression and formation of metastases. Although the merging of two (cancer) cells appears simple, the entire process is highly complex, energy-dependent and tightly regulated. Among cell fusion-inducing and -regulating factors, so-called fusogens have been identified as a specific type of proteins that are indispensable for overcoming fusion-associated energetic barriers and final merging of plasma membranes. About 8% of the human genome is of retroviral origin and some well-known fusogens, such as syncytin-1, are expressed by human (cancer) cells. Likewise, enveloped viruses can enable and facilitate cell fusion due to evolutionarily optimized fusogens, and are also capable to induce bi- and multinucleation underlining their fusion capacity. Moreover, multinucleated giant cancer cells have been found in tumors derived from oncogenic viruses. Accordingly, a potential correlation between viruses and fusogens of human endogenous retroviral origin in cancer cell fusion will be summarized in this review.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Julian Weiler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Tianjiao Luo
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
24
|
Sohraby F, Aryapour H. Comparative analysis of the unbinding pathways of antiviral drug Indinavir from HIV and HTLV1 proteases by supervised molecular dynamics simulation. PLoS One 2021; 16:e0257916. [PMID: 34570822 PMCID: PMC8476009 DOI: 10.1371/journal.pone.0257916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Determining the unbinding pathways of potential small molecule compounds from their target proteins is of great significance for designing efficacious treatment solutions. One of these potential compounds is the approved HIV-1 protease inhibitor, Indinavir, which has a weak effect on the HTLV-1 protease. In this work, by employing the SuMD method, we reconstructed the unbinding pathways of Indinavir from HIV and HTLV-1 proteases to compare and understand the mechanism of the unbinding and to discover the reasons for the lack of inhibitory activity of Indinavir against the HTLV-1 protease. We achieved multiple unbinding events from both HIV and HTLV-1 proteases in which the RMSD values of Indinavir reached over 40 Å. Also, we found that the mobility and fluctuations of the flap region are higher in the HTLV-1 protease, making the drug less stable. We realized that critically positioned aromatic residues such as Trp98/Trp98' and Phe67/Phe67' in the HTLV-1 protease could make strong π-Stacking interactions with Indinavir in the unbinding pathway, which are unfavorable for the stability of Indinavir in the active site. The details found in this study can make a reasonable explanation for the lack of inhibitory activity of this drug against HTLV-1 protease. We believe the details discovered in this work can help design more effective and selective inhibitors for the HTLV-1 protease.
Collapse
Affiliation(s)
- Farzin Sohraby
- Faculty of Science, Department of Biology, Golestan University, Gorgan, Iran
| | - Hassan Aryapour
- Faculty of Science, Department of Biology, Golestan University, Gorgan, Iran
- * E-mail:
| |
Collapse
|
25
|
Yedavalli VRK, Patil A, Parrish J, Kozak CA. A novel class III endogenous retrovirus with a class I envelope gene in African frogs with an intact genome and developmentally regulated transcripts in Xenopus tropicalis. Retrovirology 2021; 18:20. [PMID: 34261506 PMCID: PMC8278194 DOI: 10.1186/s12977-021-00564-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Retroviruses exist as exogenous infectious agents and as endogenous retroviruses (ERVs) integrated into host chromosomes. Such endogenous retroviruses (ERVs) are grouped into three classes roughly corresponding to the seven genera of infectious retroviruses: class I (gamma-, epsilonretroviruses), class II (alpha-, beta-, delta-, lentiretroviruses) and class III (spumaretroviruses). Some ERVs have counterparts among the known infectious retroviruses, while others represent paleovirological relics of extinct or undiscovered retroviruses. RESULTS Here we identify an intact ERV in the Anuran amphibian, Xenopus tropicalis. XtERV-S has open reading frames (ORFs) for gag, pol (polymerase) and env (envelope) genes, with a small additional ORF in pol and a serine tRNA primer binding site. It has unusual features and domain relationships to known retroviruses. Analyses based on phylogeny and functional motifs establish that XtERV-S gag and pol genes are related to the ancient env-less class III ERV-L family but the surface subunit of env is unrelated to known retroviruses while its transmembrane subunit is class I-like. LTR constructs show transcriptional activity, and XtERV-S transcripts are detected in embryos after the maternal to zygotic mid-blastula transition and before the late tailbud stage. Tagged Gag protein shows typical subcellular localization. The presence of ORFs in all three protein-coding regions along with identical 5' and 3' LTRs (long terminal repeats) indicate this is a very recent germline acquisition. There are older, full-length, nonorthologous, defective copies in Xenopus laevis and the distantly related African bullfrog, Pyxicephalus adspersus. Additional older, internally deleted copies in X. tropicalis carry a 300 bp LTR substitution. CONCLUSIONS XtERV-S represents a genera-spanning member of the largely env-less class III ERV that has ancient and modern copies in Anurans. This provirus has an env ORF with a surface subunit unrelated to known retroviruses and a transmembrane subunit related to class I gammaretroviruses in sequence and organization, and is expressed in early embryogenesis. Additional XtERV-S-related but defective copies are present in X. tropicalis and other African frog taxa. XtERV-S is an unusual class III ERV variant, and it may represent an important transitional retroviral form that has been spreading in African frogs for tens of millions of years.
Collapse
Affiliation(s)
- Venkat R K Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Akash Patil
- Department of Biomedical Engineering, John Hopkins University, Baltimore, MD, 21205, USA
| | - Janay Parrish
- Internal Medicine, Northwell Health, Lenox Hill Hospital, New York, NY, 10075, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
Liu J. Giant cells: Linking McClintock's heredity to early embryogenesis and tumor origin throughout millennia of evolution on Earth. Semin Cancer Biol 2021; 81:176-192. [PMID: 34116161 DOI: 10.1016/j.semcancer.2021.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 02/08/2023]
Abstract
The "life code" theory postulates that egg cells, which are giant, are the first cells in reproduction and that damaged or aged giant somatic cells are the first cells in tumorigenesis. However, the hereditary basis for giant cells remains undefined. Here I propose that stress-induced genomic reorganization proposed by Nobel Laureate Barbara McClintock may represent the underlying heredity for giant cells, referred to as McClintock's heredity. Increase in cell size may serve as a response to environmental stress via switching proliferative mitosis to intranuclear replication for reproduction. Intranuclear replication activates McClintock's heredity to reset the genome following fertilization for reproduction or restructures the somatic genome for neoplastic transformation via formation of polyploid giant cancer cells (PGCCs). The genome-based McClintock heredity functions together with gene-based Mendel's heredity to regulate the genomic stability at two different stages of life cycle or tumorigenesis. Thus, giant cells link McClintock's heredity to both early embryogenesis and tumor origin. Cycling change in cell size together with ploidy number switch may represent the most fundamental mechanism on how both germ and soma for coping with environmental stresses for the survival across the tree of life which evolved over millions of years on Earth.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Anatomical Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, United States.
| |
Collapse
|
27
|
Declerck K, Novo CP, Grielens L, Van Camp G, Suter A, Vanden Berghe W. Echinacea purpurea (L.) Moench treatment of monocytes promotes tonic interferon signaling, increased innate immunity gene expression and DNA repeat hypermethylated silencing of endogenous retroviral sequences. BMC Complement Med Ther 2021; 21:141. [PMID: 33980308 PMCID: PMC8114977 DOI: 10.1186/s12906-021-03310-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Herbal remedies of Echinacea purpurea tinctures are widely used today to reduce common cold respiratory tract infections. Methods Transcriptome, epigenome and kinome profiling allowed a systems biology level characterisation of genomewide immunomodulatory effects of a standardized Echinacea purpurea (L.) Moench extract in THP1 monocytes. Results Gene expression and DNA methylation analysis revealed that Echinaforce® treatment triggers antiviral innate immunity pathways, involving tonic IFN signaling, activation of pattern recognition receptors, chemotaxis and immunometabolism. Furthermore, phosphopeptide based kinome activity profiling and pharmacological inhibitor experiments with filgotinib confirm a key role for Janus Kinase (JAK)-1 dependent gene expression changes in innate immune signaling. Finally, Echinaforce® treatment induces DNA hypermethylation at intergenic CpG, long/short interspersed nuclear DNA repeat elements (LINE, SINE) or long termininal DNA repeats (LTR). This changes transcription of flanking endogenous retroviral sequences (HERVs), involved in an evolutionary conserved (epi) genomic protective response against viral infections. Conclusions Altogether, our results suggest that Echinaforce® phytochemicals strengthen antiviral innate immunity through tonic IFN regulation of pattern recognition and chemokine gene expression and DNA repeat hypermethylated silencing of HERVs in monocytes. These results suggest that immunomodulation by Echinaforce® treatment holds promise to reduce symptoms and duration of infection episodes of common cold corona viruses (CoV), Severe Acute Respiratory Syndrome (SARS)-CoV, and new occurring strains such as SARS-CoV-2, with strongly impaired interferon (IFN) response and weak innate antiviral defense. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03310-5.
Collapse
Affiliation(s)
- Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Claudina Perez Novo
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Lisa Grielens
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, Department of Biomedical Sciences, University of Antwerp (UA) and University Hospital Antwerp (UZA), Antwerp, Belgium
| | | | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium.
| |
Collapse
|
28
|
An EAV-HP insertion in the promoter region of SLCO1B3 has pleiotropic effects on chicken liver metabolism based on the transcriptome and proteome analysis. Sci Rep 2021; 11:7571. [PMID: 33828143 PMCID: PMC8026973 DOI: 10.1038/s41598-021-87054-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/23/2021] [Indexed: 02/01/2023] Open
Abstract
Solute carrier organic anion transporter 1B3 (SLCO1B3) is an important liver primarily highly expressed gene, its encoded protein (OATP1B3) involved in the transport of multi-specific endogenous and exogenous substances. We previously reported that an EAV-HP inserted mutation (IM+) in the 5' flanking region of SLCO1B3 was the causative mutation of chicken blue eggs, and a further research showed that IM+ significantly reduced the expression of SLCO1B3 in liver. Herein, we confirmed a cholate response element (IR-1) played an important role in activating SLCO1B3 and in vitro experiments showed that the activation of IR-1 can be significantly reduced by the EAV-HP IM+ . We performed transcriptome and proteomic analysis using the same set of IM+ and IM- liver tissues from Yimeng hens (a Chinese indigenous breed) to study the effect of SLCO1B3 and OATP1B3 expression reduction on chicken liver function. The results showed that common differential expression pathways were screened out from both transcriptome and proteome, in which fatty acid metabolism and drug metabolism-cytochrome P450 were significantly enriched in the KEGG analysis. The lipid-related metabolism was weakened in IM+ group, which was validated by serum biochemical assay. We unexpectedly found that EAV-HP fragment was highly expressed in the liver of the IM+ chickens. We cloned the EAV-HP full-length transcript and obtained the complete open reading frame. It is worth noting that there was some immune related differential expressed genes, such as NFKBIZ, NFKBIA, and IL1RL1, which were higher expressed in the IM+ group, which may due to the high expression of EAV-HP. Our study showed that EAV-HP IM+ reduced the expression of SLCO1B3 in liver, resulting in the decrease of fatty metabolism and exogenous substance transport capacity. The mutation itself also expressed in the liver and may be involved in the immune process. The mechanism needs further study.
Collapse
|
29
|
Collens AB, Katz LA. Opinion: Genetic Conflict With Mobile Elements Drives Eukaryotic Genome Evolution, and Perhaps Also Eukaryogenesis. J Hered 2021; 112:140-144. [PMID: 33538295 PMCID: PMC7953837 DOI: 10.1093/jhered/esaa060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Through analyses of diverse microeukaryotes, we have previously argued that eukaryotic genomes are dynamic systems that rely on epigenetic mechanisms to distinguish germline (i.e., DNA to be inherited) from soma (i.e., DNA that undergoes polyploidization, genome rearrangement, etc.), even in the context of a single nucleus. Here, we extend these arguments by including two well-documented observations: (1) eukaryotic genomes interact frequently with mobile genetic elements (MGEs) like viruses and transposable elements (TEs), creating genetic conflict, and (2) epigenetic mechanisms regulate MGEs. Synthesis of these ideas leads to the hypothesis that genetic conflict with MGEs contributed to the evolution of a dynamic eukaryotic genome in the last eukaryotic common ancestor (LECA), and may have contributed to eukaryogenesis (i.e., may have been a driver in the evolution of FECA, the first eukaryotic common ancestor). Sex (i.e., meiosis) may have evolved within the context of the development of germline-soma distinctions in LECA, as this process resets the germline genome by regulating/eliminating somatic (i.e., polyploid, rearranged) genetic material. Our synthesis of these ideas expands on hypotheses of the origin of eukaryotes by integrating the roles of MGEs and epigenetics.
Collapse
Affiliation(s)
- Adena B Collens
- Department of Biological Sciences, Smith College, Northampton, MA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA
| |
Collapse
|
30
|
Molecular and immunological developments in placentas. Hum Immunol 2021; 82:317-324. [PMID: 33581928 DOI: 10.1016/j.humimm.2021.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Cytotrophoblasts differentiate in two directions during early placentation: syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). STBs face maternal immune cells in placentas, and EVTs, which invade the decidua and uterine myometrium, face the cells in the uterus. This situation, in which trophoblasts come into contact with maternal immune cells, is known as the maternal-fetal interface. Despite fetuses and fetus-derived trophoblast cells being of the semi-allogeneic conceptus, fetuses and placentas are not rejected by the maternal immune system because of maternal-fetal tolerance. The acquired tolerance develops during normal placentation, resulting in normal fetal development in humans. In this review, we introduce placental development from the viewpoint of molecular biology. In addition, we discuss how the disruption of placental development could lead to complications in pregnancy, such as hypertensive disorder of pregnancy, fetal growth restriction, or miscarriage.
Collapse
|
31
|
Hintze M, Griesing S, Michels M, Blanck B, Wischhof L, Hartmann D, Bano D, Franz T. Alopecia in Harlequin mutant mice is associated with reduced AIF protein levels and expression of retroviral elements. Mamm Genome 2021; 32:12-29. [PMID: 33367954 PMCID: PMC7878237 DOI: 10.1007/s00335-020-09854-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022]
Abstract
We investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities developed during hair follicle (HF) morphogenesis in Harlequin (Hq) mutant mice. Fragility of the hair cortex was associated with decreased expression of genes encoding structural hair proteins, though key transcriptional regulators of HF development were expressed at normal levels. Notably, Aifm1 (R200 del) knockin males and Aifm1(R200 del)/Hq females showed minor hair defects, despite substantially reduced AIF levels. Furthermore, we cloned the integrated ecotropic provirus of the Aifm1Hq allele. We found that its overexpression in wild-type keratinocyte cell lines led to down-regulation of HF-specific Krt84 and Krtap3-3 genes without altering Aifm1 or epidermal Krt5 expression. Together, our findings imply that pelage paucity in Hq mutant mice is mechanistically linked to severe AIF deficiency and is associated with the expression of retroviral elements that might potentially influence the transcriptional regulation of structural hair proteins.
Collapse
Affiliation(s)
- Maik Hintze
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany.
- Medical Department, MSH Medical School Hamburg, Hamburg, Germany.
| | - Sebastian Griesing
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
- Dept. of Oncology, National Taiwan University Hospital, Taipei City, 100, Taiwan, ROC
| | - Marion Michels
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Birgit Blanck
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dieter Hartmann
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Franz
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| |
Collapse
|
32
|
Grabski DF, Ratan A, Gray LR, Bekiranov S, Rekosh D, Hammarskjold ML, Rasmussen SK. Upregulation of human endogenous retrovirus-K (HML-2) mRNAs in hepatoblastoma: Identification of potential new immunotherapeutic targets and biomarkers. J Pediatr Surg 2021; 56:286-292. [PMID: 32682541 DOI: 10.1016/j.jpedsurg.2020.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 05/18/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Hepatoblastoma is the most common liver malignancy in children. In order to advance therapy against hepatoblastoma, novel immunologic targets and biomarkers are needed. Our purpose in this investigation is to examine hepatoblastoma transcriptomes for the expression of a class of genomic elements known as Human Endogenous Retrovirus (HERVs). HERVs are abundant in the human genome and are biologically active elements that have been associated with multiple malignancies and proposed as immunologic targets in a subset of tumors. A sub-family of HERVs, HERV-K(HML-2) (HERV-K), have been shown to be tightly regulated in fetal development, making investigation of these elements in pediatric tumors paramount. METHODS We first created a HERVK-FASTA file utilizing 91 previously described HML-2 proviruses. We then concatenated the file onto the GRCh38.95 cDNA library from Ensembl. We used this reference database to evaluate existing RNA-seq data from 10 hepatoblastoma tumors and 3 normal liver controls (GEO accession ID: GSE8977575). Quantification and differential proviral expression analysis between hepatoblastoma and normal liver controls was performed using the pseudo-alignment program Salmon and DESeq2, respectively. RESULTS HERV-K mRNA was expressed in hepatoblastoma from multiple proviral loci. All expressed HERV-K proviral loci were upregulated in hepatoblastoma compared to normal liver controls. Five HERV-K proviruses (1q21.3, 3q27.2, 7q22.2, 12q24.33 and 17p13.1) were significantly differentially expressed (p-adjusted value <0.05, |log2 fold change| > 1.5) across conditions. The provirus at 17p13.1 had an approximately 300-fold increased expression in hepatoblastoma as compared to normal liver. This was in part due to the near absence of HERV-K mRNA at the 17p13.1 locus in fully differentiated liver samples. CONCLUSIONS Our investigation demonstrates that HERV-K is expressed from multiple loci in hepatoblastoma and that the expression is increased for several proviruses compared to normal liver controls. Our results suggest that HERV-K mRNA expression may be useful as a biomarker in hepatoblastoma, given the large differential expression profiles in hepatoblastoma, with very low mRNA levels in liver control samples.
Collapse
Affiliation(s)
- David F Grabski
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia; Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia
| | - Aakrosh Ratan
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Laurie R Gray
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sara K Rasmussen
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia; Seattle Children's Hospital, Division of Transplantation, University of Washington Department of Surgery, 4800 Sand Point Way, Seattle, WA 98105.
| |
Collapse
|
33
|
Serfraz S, Sharma V, Maumus F, Aubriot X, Geering ADW, Teycheney PY. Insertion of Badnaviral DNA in the Late Blight Resistance Gene (R1a) of Brinjal Eggplant ( Solanum melongena). FRONTIERS IN PLANT SCIENCE 2021; 12:683681. [PMID: 34367211 PMCID: PMC8346255 DOI: 10.3389/fpls.2021.683681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/30/2021] [Indexed: 05/20/2023]
Abstract
Endogenous viral elements (EVEs) are widespread in plant genomes. They result from the random integration of viral sequences into host plant genomes by horizontal DNA transfer and have the potential to alter host gene expression. We performed a large-scale search for co-transcripts including caulimovirid and plant sequences in 1,678 plant and 230 algal species and characterized 50 co-transcripts in 45 distinct plant species belonging to lycophytes, ferns, gymnosperms and angiosperms. We found that insertion of badnavirus EVEs along with Ty-1 copia mobile elements occurred into a late blight resistance gene (R1) of brinjal eggplant (Solanum melongena) and wild relatives in genus Solanum and disrupted R1 orthologs. EVEs of two previously unreported badnaviruses were identified in the genome of S. melongena, whereas EVEs from an additional novel badnavirus were identified in the genome of S. aethiopicum, the cultivated scarlet eggplant. Insertion of these viruses in the ancestral lineages of the direct wild relatives of the eggplant would have occurred during the last 3 Myr, further supporting the distinctiveness of the group of the eggplant within the giant genus Solanum.
Collapse
Affiliation(s)
- Saad Serfraz
- CIRAD, UMR AGAP Institut, F-97130, Capesterre-Belle-Eau, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Capesterre-Belle-Eau, France
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Vikas Sharma
- URGI, INRAE, Université Paris-Saclay, Versailles, France
| | - Florian Maumus
- URGI, INRAE, Université Paris-Saclay, Versailles, France
| | - Xavier Aubriot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Andrew D. W. Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Pierre-Yves Teycheney
- CIRAD, UMR AGAP Institut, F-97130, Capesterre-Belle-Eau, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Capesterre-Belle-Eau, France
- *Correspondence: Pierre-Yves Teycheney,
| |
Collapse
|
34
|
Mulholland CB, Nishiyama A, Ryan J, Nakamura R, Yiğit M, Glück IM, Trummer C, Qin W, Bartoschek MD, Traube FR, Parsa E, Ugur E, Modic M, Acharya A, Stolz P, Ziegenhain C, Wierer M, Enard W, Carell T, Lamb DC, Takeda H, Nakanishi M, Bultmann S, Leonhardt H. Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals. Nat Commun 2020; 11:5972. [PMID: 33235224 PMCID: PMC7686362 DOI: 10.1038/s41467-020-19603-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-wide DNA demethylation is a unique feature of mammalian development and naïve pluripotent stem cells. Here, we describe a recently evolved pathway in which global hypomethylation is achieved by the coupling of active and passive demethylation. TET activity is required, albeit indirectly, for global demethylation, which mostly occurs at sites devoid of TET binding. Instead, TET-mediated active demethylation is locus-specific and necessary for activating a subset of genes, including the naïve pluripotency and germline marker Dppa3 (Stella, Pgc7). DPPA3 in turn drives large-scale passive demethylation by directly binding and displacing UHRF1 from chromatin, thereby inhibiting maintenance DNA methylation. Although unique to mammals, we show that DPPA3 alone is capable of inducing global DNA demethylation in non-mammalian species (Xenopus and medaka) despite their evolutionary divergence from mammals more than 300 million years ago. Our findings suggest that the evolution of Dppa3 facilitated the emergence of global DNA demethylation in mammals.
Collapse
Affiliation(s)
- Christopher B Mulholland
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Joel Ryan
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Merve Yiğit
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ivo M Glück
- Physical Chemistry, Department of Chemistry, Center for Nanoscience, Nanosystems Initiative Munich and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Carina Trummer
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Weihua Qin
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Michael D Bartoschek
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Franziska R Traube
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Edris Parsa
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Enes Ugur
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Miha Modic
- The Francis Crick Institute and UCL Queen Square Institute of Neurology, London, UK
| | - Aishwarya Acharya
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Paul Stolz
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Christoph Ziegenhain
- Department of Biology II, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Wolfgang Enard
- Department of Biology II, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thomas Carell
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience, Nanosystems Initiative Munich and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Sebastian Bultmann
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
35
|
Endogenous retroviruses drive species-specific germline transcriptomes in mammals. Nat Struct Mol Biol 2020; 27:967-977. [PMID: 32895553 PMCID: PMC8246630 DOI: 10.1038/s41594-020-0487-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2020] [Indexed: 01/14/2023]
Abstract
Gene regulation in the germline ensures the production of high-quality gametes, long-term maintenance of the species, and speciation. Male germline transcriptomes undergo dynamic changes after the mitosis-to-meiosis transition and have been subject to evolutionary divergence among mammals. However, the mechanisms underlying germline regulatory divergence remain undetermined. Here, we show that endogenous retroviruses (ERVs) influence species-specific germline transcriptomes. After the mitosis-to-meiosis transition in male mice, specific ERVs function as active enhancers to drive germline genes, including a mouse-specific gene set, and bear binding motifs for critical regulators of spermatogenesis such as A-MYB. This raises the possibility that a genome-wide transposition of ERVs rewired germline gene expression in a species-specific manner. Of note, independently evolved ERVs are associated with the expression of human-specific germline genes, demonstrating the prevalence of ERV-driven mechanisms in mammals. Together, we propose that ERVs fine-tune species-specific transcriptomes in the mammalian germline.
Collapse
|
36
|
Human Endogenous Retrovirus Expression Is Associated with Head and Neck Cancer and Differential Survival. Viruses 2020; 12:v12090956. [PMID: 32872377 PMCID: PMC7552064 DOI: 10.3390/v12090956] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERVs) have been implicated in a variety of human diseases including cancers. However, technical challenges in analyzing HERV sequence data have limited locus-specific characterization of HERV expression. Here, we use the software Telescope (developed to identify expressed transposable elements from metatranscriptomic data) on 43 paired tumor and adjacent normal tissue samples from The Cancer Genome Atlas Program to produce the first locus-specific retrotranscriptome of head and neck cancer. Telescope identified over 3000 expressed HERVs in tumor and adjacent normal tissue, and 1078 HERVs were differentially expressed between the two tissue types. The majority of differentially expressed HERVs were expressed at a higher level in tumor tissue. Differentially expressed HERVs were enriched in members of the HERVH family. Hierarchical clustering based on HERV expression in tumor-adjacent normal tissue resulted in two distinct clusters with significantly different survival probability. Together, these results highlight the importance of future work on the role of HERVs across a range of cancers.
Collapse
|
37
|
Geis FK, Goff SP. Silencing and Transcriptional Regulation of Endogenous Retroviruses: An Overview. Viruses 2020; 12:v12080884. [PMID: 32823517 PMCID: PMC7472088 DOI: 10.3390/v12080884] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Almost half of the human genome is made up of transposable elements (TEs), and about 8% consists of endogenous retroviruses (ERVs). ERVs are remnants of ancient exogenous retrovirus infections of the germ line. Most TEs are inactive and not detrimental to the host. They are tightly regulated to ensure genomic stability of the host and avoid deregulation of nearby gene loci. Histone-based posttranslational modifications such as H3K9 trimethylation are one of the main silencing mechanisms. Trim28 is one of the identified master regulators of silencing, which recruits most prominently the H3K9 methyltransferase Setdb1, among other factors. Sumoylation and ATP-dependent chromatin remodeling factors seem to contribute to proper localization of Trim28 to ERV sequences and promote Trim28 interaction with Setdb1. Additionally, DNA methylation as well as RNA-mediated targeting of TEs such as piRNA-based silencing play important roles in ERV regulation. Despite the involvement of ERV overexpression in several cancer types, autoimmune diseases, and viral pathologies, ERVs are now also appreciated for their potential positive role in evolution. ERVs can provide new regulatory gene elements or novel binding sites for transcription factors, and ERV gene products can even be repurposed for the benefit of the host.
Collapse
Affiliation(s)
- Franziska K. Geis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA;
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen P. Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA;
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
- Correspondence: ; Tel.: +1-212-305-3794
| |
Collapse
|
38
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
39
|
Silveira MM, Vargas LN, Bayão HXS, Schumann NAB, Caetano AR, Rumpf R, Franco MM. DNA methylation of the endogenous retrovirus Fematrin-1 in fetal placenta is associated with survival rate of cloned calves. Placenta 2019; 88:52-60. [PMID: 31671312 DOI: 10.1016/j.placenta.2019.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The expression of retroviral envelope proteins in the placenta facilitates generation of the multinuclear syncytiotrophoblast as an outer cellular layer of the placenta by fusion of the trophoblastic cells. This process is essential for placenta development in eutherians and for successful pregnancy. METHODS We tested the hypothesis that alterations in DNA methylation and gene expression profiles of the endogenous retroviruses (ERVs) and genes related to epigenetic reprogramming in placenta of cloned calves result in abnormal offspring phenotypes. The fetal cotyledons in 13 somatic cell nuclear transfer (SCNT) pregnancies were collected. DNA methylation level of Fematrin-1 was analyzed using bisulfite PCR and mRNA levels of Fematrin-1, Syncytin-Rum1, DNMT1, DNMT3A, DNMT3B, TET1, TET2 and TET3 measured by RT-qPCR. RESULTS Methylation of Fematrin-1 in placenta of control animals produced by artificial insemination (AI) was similar to live SCNT-produced calves, but hypermethylated than dead SCNT-produced calves. The levels of mRNA differed between SCNT-produced calves and AI animals for all genes, except TET3. However, no differences were observed between the live and dead cloned calves for all genes. Moreover, no differences were found between mRNA levels of Fematrin-1 and Syncytin-Rum1. DISCUSSION Our results suggest that this altered DNA methylation, deregulation in the expression of ERVs and in the genes of epigenetic machinery in fetal cotyledons of cloned calves may be associated with abnormal placentogenesis found in SCNT-produced animals. Further studies characterizing other mechanisms involved in the regulation of ERVs are important to support the development of new strategies to improve the efficiency of cloning.
Collapse
Affiliation(s)
- Márcia Marques Silveira
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | - Luna Nascimento Vargas
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | | | - Naiara Araújo Borges Schumann
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | | | - Rodolfo Rumpf
- GENEAL Genetics and Animal Biotechnology, Uberaba, Minas Gerais, Brazil.
| | - Maurício Machaim Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil; Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
40
|
Sadowski I, Hashemi FB. Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs. Cell Mol Life Sci 2019; 76:3583-3600. [PMID: 31129856 PMCID: PMC6697715 DOI: 10.1007/s00018-019-03156-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
35 years since identification of HIV as the causative agent of AIDS, and 35 million deaths associated with this disease, significant effort is now directed towards the development of potential cures. Current anti-retroviral (ART) therapies for HIV/AIDS can suppress virus replication to undetectable levels, and infected individuals can live symptom free so long as treatment is maintained. However, removal of therapy allows rapid re-emergence of virus from a highly stable reservoir of latently infected cells that exist as a barrier to elimination of the infection with current ART. Prospects of a cure for HIV infection are significantly encouraged by two serendipitous cases where individuals have entered remission following stem cell transplantation from compatible HIV-resistant donors. However, development of a routine cure that could become available to millions of infected individuals will require a means of specifically purging cells harboring latent HIV, preventing replication of latent provirus, or destruction of provirus genomes by gene editing. Elimination of latently infected cells will require a means of exposing this population, which may involve identification of a natural specific biomarker or therapeutic intervention to force their exposure by reactivation of virus expression. Accordingly, the proposed "Shock and Kill" strategy involves treatment with latency-reversing agents (LRA) to induce HIV provirus expression thus exposing these cells to killing by cellular immunity or apoptosis. Current efforts to enable this strategy are directed at developing improved combinations of LRA to produce broad and robust induction of HIV provirus and enhancing the elimination of cells where replication has been reactivated by targeted immune modulation. Alternative strategies may involve preventing re-emergence virus from latently infected cells by "Lock and Block" intervention, where transcription of provirus is inhibited to prevent virus spread or disruption of the HIV provirus genome by genome editing.
Collapse
Affiliation(s)
- Ivan Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Gruchot J, Kremer D, Küry P. Neural Cell Responses Upon Exposure to Human Endogenous Retroviruses. Front Genet 2019; 10:655. [PMID: 31354794 PMCID: PMC6637040 DOI: 10.3389/fgene.2019.00655] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are ancient retroviral elements, which invaded the human germ line several million years ago. Subsequent retrotransposition events amplified these sequences, resulting in approximately 8% of the human genome being composed of HERV sequences today. These genetic elements, normally dormant within human genomes, can be (re)-activated by environmental factors such as infections with other viruses, leading to the expression of viral proteins and, in some instances, even to viral particle production. Several studies have shown that the expression of these retroviral elements correlates with the onset and progression of neurological diseases such as multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Further studies provided evidence on additional roles for HERVs in schizophrenia (SCZ). Since these diseases are still not well understood, HERVs might constitute a new category of pathogenic components that could significantly change our understanding of these pathologies. Moreover, knowledge about their mode of action might also help to develop novel and more powerful approaches for the treatment of these complex diseases. Therefore, the main scope of this review is a description of the current knowledge on the involvement of HERV-W and HERV-K in neurological disease specifically focusing on the effects they exert on neural cells of the central nervous system.
Collapse
Affiliation(s)
- Joel Gruchot
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
42
|
Twarock R, Stockley PG. RNA-Mediated Virus Assembly: Mechanisms and Consequences for Viral Evolution and Therapy. Annu Rev Biophys 2019; 48:495-514. [PMID: 30951648 PMCID: PMC7612295 DOI: 10.1146/annurev-biophys-052118-115611] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses, entities composed of nucleic acids, proteins, and in some cases lipids lack the ability to replicate outside their target cells. Their components self-assemble at the nanoscale with exquisite precision-a key to their biological success in infection. Recent advances in structure determination and the development of biophysical tools such as single-molecule spectroscopy and noncovalent mass spectrometry allow unprecedented access to the detailed assembly mechanisms of simple virions. Coupling these techniques with mathematical modeling and bioinformatics has uncovered a previously unsuspected role for genomic RNA in regulating formation of viral capsids, revealing multiple, dispersed RNA sequence/structure motifs [packaging signals (PSs)] that bind cognate coat proteins cooperatively. The PS ensemble controls assembly efficiency and accounts for the packaging specificity seen in vivo. The precise modes of action of the PSs vary between viral families, but this common principle applies across many viral families, including major human pathogens. These insights open up the opportunity to block or repurpose PS function in assembly for both novel antiviral therapy and gene/drug/vaccine applications.
Collapse
Affiliation(s)
- Reidun Twarock
- Departments of Mathematics and Biology, and York Cross-disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, United Kingdom;
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom;
| |
Collapse
|
43
|
Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N, Betapudi V. Gene Therapy Leaves a Vicious Cycle. Front Oncol 2019; 9:297. [PMID: 31069169 PMCID: PMC6491712 DOI: 10.3389/fonc.2019.00297] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The human genetic code encrypted in thousands of genes holds the secret for synthesis of proteins that drive all biological processes necessary for normal life and death. Though the genetic ciphering remains unchanged through generations, some genes get disrupted, deleted and or mutated, manifesting diseases, and or disorders. Current treatment options—chemotherapy, protein therapy, radiotherapy, and surgery available for no more than 500 diseases—neither cure nor prevent genetic errors but often cause many side effects. However, gene therapy, colloquially called “living drug,” provides a one-time treatment option by rewriting or fixing errors in the natural genetic ciphering. Since gene therapy is predominantly a viral vector-based medicine, it has met with a fair bit of skepticism from both the science fraternity and patients. Now, thanks to advancements in gene editing and recombinant viral vector development, the interest of clinicians and pharmaceutical industries has been rekindled. With the advent of more than 12 different gene therapy drugs for curing cancer, blindness, immune, and neuronal disorders, this emerging experimental medicine has yet again come in the limelight. The present review article delves into the popular viral vectors used in gene therapy, advances, challenges, and perspectives.
Collapse
Affiliation(s)
- Reena Goswami
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Liliya Silayeva
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Isabelle Newkirk
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Deborah Doctor
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Karan Chawla
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Dhyan Chandra
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nageswararao Chilukuri
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Venkaiah Betapudi
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
44
|
Bodea GO, McKelvey EGZ, Faulkner GJ. Retrotransposon-induced mosaicism in the neural genome. Open Biol 2019; 8:rsob.180074. [PMID: 30021882 PMCID: PMC6070720 DOI: 10.1098/rsob.180074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, major discoveries in retrotransposon biology have depicted the neural genome as a dynamic structure during life. In particular, the retrotransposon LINE-1 (L1) has been shown to be transcribed and mobilized in the brain. Retrotransposition in the developing brain, as well as during adult neurogenesis, provides a milieu in which neural diversity can arise. Dysregulation of retrotransposon activity may also contribute to neurological disease. Here, we review recent reports of retrotransposon activity in the brain, and discuss the temporal nature of retrotransposition and its regulation in neural cells in response to stimuli. We also put forward hypotheses regarding the significance of retrotransposons for brain development and neurological function, and consider the potential implications of this phenomenon for neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabriela O Bodea
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Eleanor G Z McKelvey
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
45
|
Waldvogel-Abramowski S, Taleb S, Alessandrini M, Preynat-Seauve O. Viral Metagenomics of Blood Donors and Blood-Derived Products Using Next-Generation Sequencing. Transfus Med Hemother 2019; 46:87-93. [PMID: 31191194 DOI: 10.1159/000499088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Transfusion-transmitted infections remain a permanent threat in medicine. It keeps the burden of the past, marked by serious infections transmitted by transfusion, and is constantly threatened by emerging viruses. The global rise of immunosuppression among patients undergoing frequent transfusions exacerbates this problem. Over the past decade, criteria for donor selection have become increasingly more stringent. Although routine nucleic acid testing (NAT) for virus-specific detection has become more sensitive, these safety measures are only valuable for a limited number of select viruses. The scientific approach to this is however changing, with the goal of trying to identify infectious agents in donor units as early as possible to mitigate the risk of a clinically relevant infection. To this end, and in addition to an epidemiological surveillance of the general population, researchers are adopting new methods to discover emerging infectious agents, while simultaneously screening for an extended number of viruses in donors. Next-generation sequencing (NGS) offers the opportunity to explore the entire viral landscape in blood donors, the so-called metagenomics, to investigate severe transfusion reactions of unknown etiology. In the not too distant future, one could imagine this platform being used for routine testing of donated blood products.
Collapse
Affiliation(s)
- Sophie Waldvogel-Abramowski
- Laboratory of Immunohematology, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.,Blood Transfusion Center, Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland
| | - Sofiane Taleb
- Laboratory of Clinical Biology, Foch University Hospitals, Suresnes, France
| | - Marco Alessandrini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olivier Preynat-Seauve
- Laboratory of Therapy and Stem Cells, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.,Department of Medical Specialties of internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
46
|
Villarreal LP, Witzany G. That is life: communicating RNA networks from viruses and cells in continuous interaction. Ann N Y Acad Sci 2019; 1447:5-20. [PMID: 30865312 DOI: 10.1111/nyas.14040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
All the conserved detailed results of evolution stored in DNA must be read, transcribed, and translated via an RNA-mediated process. This is required for the development and growth of each individual cell. Thus, all known living organisms fundamentally depend on these RNA-mediated processes. In most cases, they are interconnected with other RNAs and their associated protein complexes and function in a strictly coordinated hierarchy of temporal and spatial steps (i.e., an RNA network). Clearly, all cellular life as we know it could not function without these key agents of DNA replication, namely rRNA, tRNA, and mRNA. Thus, any definition of life that lacks RNA functions and their networks misses an essential requirement for RNA agents that inherently regulate and coordinate (communicate to) cells, tissues, organs, and organisms. The precellular evolution of RNAs occurred at the core of the emergence of cellular life and the question remained of how both precellular and cellular levels are interconnected historically and functionally. RNA networks and RNA communication can interconnect these levels. With the reemergence of virology in evolution, it became clear that communicating viruses and subviral infectious genetic parasites are bridging these two levels by invading, integrating, coadapting, exapting, and recombining constituent parts in host genomes for cellular requirements in gene regulation and coordination aims. Therefore, a 21st century understanding of life is of an inherently social process based on communicating RNA networks, in which viruses and cells continuously interact.
Collapse
Affiliation(s)
- Luis P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | | |
Collapse
|
47
|
Abstract
Life starts with a zygote, which is formed by the fusion of a haploid sperm and egg. The formation of a blastomere by cleavage division (nuclear division without an increase in cell size) is the first step in embryogenesis, after the formation of the zygote. Blastomeres are responsible for reprogramming the parental genome as a new embryonic genome for generation of the pluripotent stem cells which then differentiate by Waddington's epigenetic landscape to create a new life. Multiple authors over the past 150 years have proposed that tumors arises from development gone awry at a point within Waddington's landscape. Recent discoveries showing that differentiated somatic cells can be reprogrammed into induced pluripotent stem cells, and that somatic cell nuclear transfer can be used to successfully clone animals, have fundamentally reshaped our understanding of tumor development and origin. Differentiated somatic cells are plastic and can be induced to dedifferentiate into pluripotent stem cells. Here, I review the evidence that suggests somatic cells may have a previously overlooked endogenous embryonic program that can be activated to dedifferentiate somatic cells into stem cells of various potencies for tumor initiation. Polyploid giant cancer cells (PGCCs) have long been observed in cancer and were thought originally to be nondividing. Contrary to this belief, recent findings show that stress-induced PGCCs divide by endoreplication, which may recapitulate the pattern of cleavage-like division in blastomeres and lead to dedifferentiation of somatic cells by a programmed process known as "the giant cell cycle", which comprise four distinct but overlapping phases: initiation, self-renewal, termination and stability. Depending on the intensity and type of stress, different levels of dedifferentiation result in the formation of tumors of different grades of malignancy. Based on these results, I propose a unified dualistic model to demonstrate the origin of human tumors. The tenet of this model includes four points, as follows. 1. Tumors originate from a stem cell at a specific developmental hierarchy, which can be achieved by dualistic origin: dedifferentiation of the zygote formed by two haploid gametes (sexual reproduction) via the blastomere during normal development, or transformation from damaged or aged mature somatic cells via a blastomere-like embryonic program (asexual reproduction). 2. Initiation of the tumor begins with a stem cell that has uncoupled the differentiation from the proliferation program which results in stem cell maturation arrest. 3. The developmental hierarchy at which stem cells arrest determines the degree of malignancy: the more primitive the level at which stem cells arrest, the greater the likelihood of the tumor being malignant. 4. Environmental factors and intrinsic genetic or epigenetic alterations represent the risk factors or stressors that facilitate stem cell arrest and somatic cell dedifferentiation. However, they, per se, are not the driving force of tumorigenesis. Thus, the birth of a tumor can be viewed as a triad that originates from a stem cell via dedifferentiation through a blastomere or blastomere-like program, which then differentiates along Waddington's landscape, and arrests at a developmental hierarchy. Blocking the PGCC-mediated dedifferentiation process and inducing their differentiation may represent a novel alternative approach to eliminate the tumor occurrence and therapeutic resistance.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4095, United States.
| |
Collapse
|
48
|
Abstract
Infectious disease represent the most significant threat to human health. Significant geologic cataclysmic events have caused the extinction of countless species, but these “Wrath of God” events predate the emergence of Homo sapiens. Pandemic infections have accompanied the rise of human civilization frequently re-occurring leaving a lasting imprint on human history punctuated by profound loss of life. Emerging infections become endemic and are here to stay marking their presence with an annual death toll. Each decade brings a new onslaught of emerging infectious agents. We are surprised again and again but are never prepared. The long-term consequences often remain unrecognized and are always inconvenient including cancer, cardiovascular disease and immune associated diseases that threaten our health. Reliance on clusters of clinical symptoms in the face of diverse and non-descriptive viral infection symptoms is a foolhardy form of crisis management. Viral success is based on rapid replication resulting in large numbers. Single-stranded RNA viruses with their high replication error rate represent a paradigm for resilience.
Collapse
|
49
|
Abstract
Epidemiological studies in humans and animal models (including ruminants and horses) have highlighted the critical role of nutrition on developmental programming. Indeed, it has been demonstrated that the nutritional environment during the periconceptional period and foetal development can altered the postnatal performance of the resultant offspring. This nutritional programming can be exerted by maternal and paternal lineages and can affect offspring beyond the F1 generation. Alterations in epigenetic mechanisms have been proposed as the causative link behind the programming trajectories observed in the offspring. Although a clear cause-effect relationship between epigenetic modifications during early development and later offspring phenotype has not been demonstrated in livestock species, strong associations have been reported for some epigenetic marks (e.g. messenger RNA) that are worth exploring as possible predictors of future offspring phenotype. In this review, we shortly describe the main epigenetic mechanisms studied so far in mammals (i.e. mainly in the mouse) thought to be associated with developmental programming, and discuss the few studies available in mammalian herbivores (e.g. cattle) showing the effect of nutrition on epigenetic marks and the associated phenotype. Clearly, there is a need to develop research on nutritional strategies capable of modulating the epigenetic machinery with positive influence on the phenotype of livestock herbivores. This type of research is needed to alleviate the challenges currently faced by the livestock industry (e.g. impaired fertility of high-yielding dairy cows). This in turn will have a positive influence on animal welfare and productivity of livestock enterprises.
Collapse
|
50
|
Balestrieri E, Argaw-Denboba A, Gambacurta A, Cipriani C, Bei R, Serafino A, Sinibaldi-Vallebona P, Matteucci C. Human Endogenous Retrovirus K in the Crosstalk Between Cancer Cells Microenvironment and Plasticity: A New Perspective for Combination Therapy. Front Microbiol 2018; 9:1448. [PMID: 30013542 PMCID: PMC6036167 DOI: 10.3389/fmicb.2018.01448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/11/2018] [Indexed: 12/24/2022] Open
Abstract
Abnormal activation of human endogenous retroviruses (HERVs) has been associated with several diseases such as cancer, autoimmunity, and neurological disorders. In particular, in cancer HERV activity and expression have been specifically associated with tumor aggressiveness and patient outcomes. Cancer cell aggressiveness is intimately linked to the acquisition of peculiar plasticity and heterogeneity based on cell stemness features, as well as on the crosstalk between cancer cells and the microenvironment. The latter is a driving factor in the acquisition of aggressive phenotypes, associated with metastasis and resistance to conventional cancer therapies. Remarkably, in different cell types and stages of development, HERV expression is mainly regulated by epigenetic mechanisms and is subjected to a very precise temporal and spatial regulation according to the surrounding microenvironment. Focusing on our research experience with HERV-K involvement in the aggressiveness and plasticity of melanoma cells, this perspective aims to highlight the role of HERV-K in the crosstalk between cancer cells and the tumor microenvironment. The implications for a combination therapy targeted at HERVs with standard approaches are discussed.
Collapse
Affiliation(s)
- Emanuela Balestrieri
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Ayele Argaw-Denboba
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Alessandra Gambacurta
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|