1
|
Ge W, Mu Z, Yang S, Zeng Y, Deng Y, Lin Y, Xie P, Li G. Biosensor-based methods for exosome detection with applications to disease diagnosis. Biosens Bioelectron 2025; 279:117362. [PMID: 40157151 DOI: 10.1016/j.bios.2025.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/09/2025] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Exosomes are nanoscale extracellular vesicles (EVs) secreted by most eukaryotic cells and can be found in nearly all human body fluids. Increasing evidence has revealed their pivotal roles in intercellular communication, and their active participation in myriad physiological and pathological activities. Exosomes' functions rely on their contents that are closely correlated with the biological characteristics of parental cells, which may provide a rich resource of molecular information for accurate and detailed diagnosis of a diverse array of diseases, such as differential diagnosis of Alzheimer's disease, early detection and subtyping of various tumors. As a category of sensitive detection devices, biosensors can fully reveal the molecular information and convert them into actionable clinical information. In this review, recent advances in biosensor-based methods for the detection of exosomes are summarized. We have described the fabrication of various biosensors based on the analysis of exosomal proteins, RNAs or glycans for accurate diagnosis, with respect to their elaborate recognition designs, signal amplification strategies, sensing properties, as well as their application potential. The challenges along with corresponding technologies in the future development and clinical translation of these biosensors are also discussed.
Collapse
Affiliation(s)
- Weikang Ge
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zheying Mu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Shiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yujing Zeng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ying Deng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yifan Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China.
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China.
| |
Collapse
|
2
|
Bebesi T, Pálmai M, Szigyártó IC, Gaál A, Wacha A, Bóta A, Varga Z, Mihály J. Surface-enhanced infrared spectroscopic study of extracellular vesicles using plasmonic gold nanoparticles. Colloids Surf B Biointerfaces 2025; 246:114366. [PMID: 39531836 DOI: 10.1016/j.colsurfb.2024.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs), sub-micrometer lipid-bound particles released by most cells, are considered a novel area in both biology and medicine. Among characterization methods, infrared (IR) spectroscopy, especially attenuated total reflection (ATR), is a rapidly emerging label-free tool for molecular characterization of EVs. The relatively low number of vesicles in biological fluids (∼1010 particle/mL), however, and the complex content of the EVs' milieu (protein aggregates, lipoproteins, buffer molecules) might result in poor signal-to-noise ratio in the IR analysis of EVs. Exploiting the increment of the electromagnetic field at the surface of plasmonic nanomaterials, surface-enhanced infrared spectroscopy (SEIRS) provides an amplification of characteristic IR signals of EV samples. Negatively charged citrate-capped and positively charged cysteamine-capped gold nanoparticles with around 10 nm diameter were synthesized and tested with blood-derived EVs. Both types of gold nanoparticles contributed to an enhancement of the EVs' IR spectroscopic signature. Joint evaluation of UV-Vis and IR spectroscopic results, supported by FF-TEM images, revealed that proper interaction of gold nanoparticles with EVs is crucial, and an aggregation or clustering of gold nanoparticles is necessary to obtain the SEIRS effect. Positively charged gold nanoparticles resulted in higher enhancement, probably due to electrostatic interaction with EVs, commonly negatively charged.
Collapse
Affiliation(s)
- Tímea Bebesi
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary; Hevesy György PhD School of Chemistry, Eötvös Lóránd University, Pázmány Péter sétány 1/A, Budapest 1117, Hungary
| | - Marcell Pálmai
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Imola Csilla Szigyártó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Anikó Gaál
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - András Wacha
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Attila Bóta
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary; Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary; Department of Chemistry, Eszterházy Károly Catholic University, Leányka u. 6, Eger 3300, Hungary.
| |
Collapse
|
3
|
Walker SN, Lucas K, Dewey MJ, Badylak SF, Hussey GS, Flax J, McGrath JL. Rapid Assessment of Biomarkers on Single Extracellular Vesicles Using "Catch and Display" on Ultrathin Nanoporous Silicon Nitride Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405505. [PMID: 39358943 PMCID: PMC11961765 DOI: 10.1002/smll.202405505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Extracellular vesicles (EVs) are particles released from cells that facilitate intercellular communication and have tremendous diagnostic and therapeutic potential. Bulk assays lack the sensitivity to detect rare EV subsets relevant to disease, and while single EV analysis techniques remedy this, they are often undermined by complicated detection schemes and prohibitive instrumentation. To address these issues, a microfluidic technique for EV characterization called "catch and display for liquid biopsy (CAD-LB)" is proposed. In this method, minimally processed samples are pipette-injected and fluorescently labeled EVs are captured in the nanopores of an ultrathin membrane. This enables the rapid assessment of EV number and biomarker colocalization by light microscopy. Here, nanoparticles are used to define the accuracy and dynamic range for counting and colocalization. The same assessments are then made for purified EVs and for unpurified EVs in plasma. Biomarker detection is validated using CD9 and Western blot analysis to confirm that CAD-LB accurately reports relative protein expression levels. Using unprocessed conditioned media, CAD-LB captures the known increase in EV-associated ICAM-1 following endothelial cell cytokine stimulation. Finally, to demonstrate CAD-LB's clinical potential, EV biomarkers indicative of immunotherapy responsiveness are successfully detected in the plasma of bladder cancer patients treated with immune checkpoint blockade.
Collapse
Affiliation(s)
- Samuel N. Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Kilean Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Marley J. Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Jonathan Flax
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States, Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| |
Collapse
|
4
|
Kazemzadeh M, Martinez-Calderon M, Otupiri R, Artuyants A, Lowe M, Ning X, Reategui E, Schultz ZD, Xu W, Blenkiron C, Chamley LW, Broderick NGR, Hisey CL. Deep autoencoder as an interpretable tool for Raman spectroscopy investigation of chemical and extracellular vesicle mixtures. BIOMEDICAL OPTICS EXPRESS 2024; 15:4220-4236. [PMID: 39022543 PMCID: PMC11249694 DOI: 10.1364/boe.522376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 07/20/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful tool that provides valuable insight into the molecular contents of chemical and biological samples. However, interpreting Raman spectra from complex or dynamic datasets remains challenging, particularly for highly heterogeneous biological samples like extracellular vesicles (EVs). To overcome this, we developed a tunable and interpretable deep autoencoder for the analysis of several challenging Raman spectroscopy applications, including synthetic datasets, chemical mixtures, a chemical milling reaction, and mixtures of EVs. We compared the results with classical methods (PCA and UMAP) to demonstrate the superior performance of the proposed technique. Our method can handle small datasets, provide a high degree of generalization such that it can fill unknown gaps within spectral datasets, and even quantify relative ratios of cell line-derived EVs to fetal bovine serum-derived EVs within mixtures. This simple yet robust approach will greatly improve the analysis capabilities for many other Raman spectroscopy applications.
Collapse
Affiliation(s)
- Mohammadrahim Kazemzadeh
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland 1010, New Zealand
- Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9016, New Zealand
| | | | - Robert Otupiri
- Photon Factory, University of Auckland, Auckland 1010, New Zealand
| | - Anastasiia Artuyants
- Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland 1023, New Zealand
| | - MoiMoi Lowe
- Photon Factory, University of Auckland, Auckland 1010, New Zealand
| | - Xia Ning
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Eduardo Reategui
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Weiliang Xu
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland 1010, New Zealand
- Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9016, New Zealand
| | - Cherie Blenkiron
- Auckland Cancer Society Research Centre, Auckland 1023, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland 1023, New Zealand
- Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland 1023, New Zealand
| | - Neil G R Broderick
- Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9016, New Zealand
- Photon Factory, University of Auckland, Auckland 1010, New Zealand
| | - Colin L Hisey
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland 1023, New Zealand
- Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland 1023, New Zealand
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Neettiyath A, Chung K, Liu W, Lee LP. Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles. NANO CONVERGENCE 2024; 11:23. [PMID: 38918255 PMCID: PMC11199476 DOI: 10.1186/s40580-024-00431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Extracellular vesicles (EVs) are promising tools for the early diagnosis of diseases, and bacterial membrane vesicles (MVs) are especially important in health and environment monitoring. However, detecting EVs or bacterial MVs presents significant challenges for the clinical translation of EV-based diagnostics. In this Review, we provide a comprehensive discussion on the basics of nanoplasmonic sensing and emphasize recent developments in nanoplasmonics-based optical sensors to effectively identify EVs or bacterial MVs. We explore various nanoplasmonic sensors tailored for EV or bacterial MV detection, emphasizing the application of localized surface plasmon resonance through gold nanoparticles and their multimers. Additionally, we highlight advanced EV detection techniques based on surface plasmon polaritons using plasmonic thin film and nanopatterned structures. Furthermore, we evaluate the improved detection capability of surface-enhanced Raman spectroscopy in identifying and classifying these vesicles, aided by plasmonic nanostructures. Nanoplasmonic sensing techniques have remarkable precision and sensitivity, making them a potential tool for accurate EV detection in clinical applications, facilitating point-of-care molecular diagnostics. Finally, we summarize the challenges associated with nanoplasmonic EV or bacterial MV sensors and offer insights into potential future directions for this evolving field.
Collapse
Affiliation(s)
- Aparna Neettiyath
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Kyungwha Chung
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Wenpeng Liu
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea.
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
6
|
Walker SN, Lucas K, Dewey MJ, Badylak S, Hussey G, Flax J, McGrath JL. Rapid Assessment of Biomarkers on Single Extracellular Vesicles Using 'Catch and Display' on Ultrathin Nanoporous Silicon Nitride Membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.589900. [PMID: 38746341 PMCID: PMC11092443 DOI: 10.1101/2024.04.29.589900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Extracellular vesicles (EVs) are particles secreted by all cells that carry bioactive cargo and facilitate intercellular communication with roles in normal physiology and disease pathogenesis. EVs have tremendous diagnostic and therapeutic potential and accordingly, the EV field has grown exponentially in recent years. Bulk assays lack the sensitivity to detect rare EV subsets relevant to disease, and while single EV analysis techniques remedy this, they are undermined by complicated detection schemes often coupled with prohibitive instrumentation. To address these issues, we propose a microfluidic technique for EV characterization called 'catch and display for liquid biopsy (CAD-LB)'. CAD-LB rapidly captures fluorescently labeled EVs in the similarly-sized pores of an ultrathin silicon nitride membrane. Minimally processed sample is introduced via pipette injection into a simple microfluidic device which is directly imaged using fluorescence microscopy for a rapid assessment of EV number and biomarker colocalization. In this work, nanoparticles were first used to define the accuracy and dynamic range for counting and colocalization by CAD-LB. Following this, the same assessments were made for purified EVs and for unpurified EVs in plasma. Biomarker detection was validated using CD9 in which Western blot analysis confirmed that CAD-LB faithfully recapitulated differing expression levels among samples. We further verified that CAD-LB captured the known increase in EV-associated ICAM-1 following the cytokine stimulation of endothelial cells. Finally, to demonstrate CAD-LB's clinical potential, we show that EV biomarkers indicative of immunotherapy responsiveness are successfully detected in the plasma of bladder cancer patients undergoing immune checkpoint blockade.
Collapse
Affiliation(s)
- Samuel N. Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Kilean Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Marley J. Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Stephen Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - George Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Jonathan Flax
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| |
Collapse
|
7
|
Omrani M, Beyrampour-Basmenj H, Jahanban-Esfahlan R, Talebi M, Raeisi M, Serej ZA, Akbar-Gharalari N, Khodakarimi S, Wu J, Ebrahimi-Kalan A. Global trend in exosome isolation and application: an update concept in management of diseases. Mol Cell Biochem 2024; 479:679-691. [PMID: 37166542 PMCID: PMC10173230 DOI: 10.1007/s11010-023-04756-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Extracellular vesicles (EVs) secreted by various cells offer great potential for use in the diagnosis and treatment of disease. EVs are heterogeneous membranous vesicles. Exosomes are a subtype of EVs, 40-150 nm spherical vesicles with a lipid layer derived from endosomes. Exosomes, which are involved in signal transduction and maintain homeostasis, are released from almost all cells, tissues, and body fluids. Although several methods exist to isolate and characterize EVs and exosomes, each technique has significant drawbacks and limitations that prevent progress in the field. New approaches in the biology of EVs show great potential for isolating and characterizing EVs, which will help us better understand their biological function. The strengths and limitations of conventional strategies and novel methods (microfluidic) for EV isolation are outlined in this review. We also present various exosome isolation techniques and kits that are commercially available and assess the global market demand for exosome assays.
Collapse
Affiliation(s)
- Mohammadhassan Omrani
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Beyrampour-Basmenj
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Aliyari Serej
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naeimeh Akbar-Gharalari
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Khodakarimi
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jiaqian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Mukerjee N, Maitra S, Ghosh A, Sengupta T, Alexiou A, Subramaniyan V, Anand K. Synergizing Proteolysis-Targeting Chimeras and Nanoscale Exosome-Based Delivery Mechanisms for HIV and Antiviral Therapeutics. ACS APPLIED NANO MATERIALS 2024; 7:3499-3514. [DOI: 10.1021/acsanm.3c04537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Affiliation(s)
- Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, West Bengal, Kolkata 700126, India
| | - Swastika Maitra
- Department of Microbiology, Adamas University, West Bengal, Kolkata 700126, India
| | - Arabinda Ghosh
- Department of Computational Biology and Biotechnology, Mahapurasha Srimanta Sankaradeva Viswavidyalaya, Guwahati, Assam 781032, India
| | - Tapti Sengupta
- Department of Microbiology, West Bengal State University, West Bengal, Kolkata 700126, India
| | - Athanasios Alexiou
- Department of Health Sciences, Novel Global Community and Educational Foundation, Hebersham, New South Wales 2070, Australia
- AFNP Med, Wien 1030, Austria
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
9
|
Ramalhete L, Araújo R, Ferreira A, Calado CRC. Exosomes and microvesicles in kidney transplantation: the long road from trash to gold. Pathology 2024; 56:1-10. [PMID: 38071158 DOI: 10.1016/j.pathol.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 01/24/2024]
Abstract
Kidney transplantation significantly enhances the survival rate and quality of life of patients with end-stage kidney disease. The ability to predict post-transplantation rejection events in their early phases can reduce subsequent allograft loss. Therefore, it is critical to identify biomarkers of rejection processes that can be acquired on routine analysis of samples collected by non-invasive or minimally invasive procedures. It is also important to develop new therapeutic strategies that facilitate optimisation of the dose of immunotherapeutic drugs and the induction of allograft immunotolerance. This review explores the challenges and opportunities offered by extracellular vesicles (EVs) present in biofluids in the discovery of biomarkers of rejection processes, as drug carriers and in the induction of immunotolerance. Since EVs are highly complex structures and their composition is affected by the parent cell's metabolic status, the importance of defining standardised methods for isolating and characterising EVs is also discussed. Understanding the major bottlenecks associated with all these areas will promote the further investigation of EVs and their translation into a clinical setting.
Collapse
Affiliation(s)
- Luis Ramalhete
- Blood and Transplantation Center of Lisbon, Instituto Português do Sangue e da Transplantação, Alameda das Linhas de Torres, Lisbon, Portugal; NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; iNOVA4Health - Advancing Precision Medicine, RG11: Reno-Vascular Diseases Group, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
| | - Ruben Araújo
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Aníbal Ferreira
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Centro Hospitalar Universitário Lisboa Central, Hospital Curry Cabral, Serviço de Nefrologia, NOVA Medical School, Lisbon, Portugal
| | - Cecília R C Calado
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, Lisbon, Portugal; CIMOSM - Centro de Investigação em Modelação e Otimização de Sistemas Multifuncionais, Lisbon, Portugal
| |
Collapse
|
10
|
Srivastava S, Terai Y, Liu J, Capellini G, Xie YH. Controlling the Nucleation and Growth of Salt from Bodily Fluid for Enhanced Biosensing Applications. BIOSENSORS 2023; 13:1016. [PMID: 38131777 PMCID: PMC10741434 DOI: 10.3390/bios13121016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) represents a transformative tool in medical diagnostics, particularly for the early detection of key biomarkers such as small extracellular vesicles (sEVs). Its unparalleled sensitivity and compatibility with intricate biological samples make it an ideal candidate for revolutionizing noninvasive diagnostic methods. However, a significant challenge that mars its efficacy is the throughput limitation, primarily anchored in the prerequisite of hotspot and sEV colocalization within a minuscule range. This paper delves deep into this issue, introducing a never-attempted-before approach which harnesses the principles of crystallization-nucleation and growth. By synergistically coupling lasers with plasmonic resonances, we navigate the challenges associated with the analyte droplet drying method and the notorious coffee ring effect. Our method, rooted in a profound understanding of crystallization's materials science, exhibits the potential to significantly increase the areal density of accessible plasmonic hotspots and efficiently guide exosomes to defined regions. In doing so, we not only overcome the throughput challenge but also promise a paradigm shift in the arena of minimally invasive biosensing, ushering in advanced diagnostic capabilities for life-threatening diseases.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - Yusuke Terai
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Jun Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - Giovanni Capellini
- IHP—Leibniz Institute for High Performance Microelectronics, 15236 Frankfurt (Oder), Germany;
- Department of Science, Università Degli Studi Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Ya-Hong Xie
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Leggio L, Paternò G, Vivarelli S, Bonasera A, Pignataro B, Iraci N, Arrabito G. Label-free approaches for extracellular vesicle detection. iScience 2023; 26:108105. [PMID: 37867957 PMCID: PMC10589885 DOI: 10.1016/j.isci.2023.108105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Extracellular vesicles (EVs) represent pivotal mediators in cell-to-cell communication. They are lipid-membranous carriers of several biomolecules, which can be produced by almost all cells. In the current Era of precision medicine, EVs gained growing attention thanks to their potential in both biomarker discovery and nanotherapeutics applications. However, current technical limitations in isolating and/or detecting EVs restrain their standard use in clinics. This review explores all the state-of-the-art analytical technologies which are currently overcoming these issues. On one end, several innovative optical-, electrical-, and spectroscopy-based detection methods represent advantageous label-free methodologies for faster EV detection. On the other end, microfluidics-based lab-on-a-chip tools support EV purification from low-concentrated samples. Altogether, these technologies will strengthen the routine application of EVs in clinics.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina, Italy
| | - Aurelio Bonasera
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, building 17, 90128 Palermo, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, building 17, 90128 Palermo, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Arrabito
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, building 17, 90128 Palermo, Italy
| |
Collapse
|
12
|
Kim DY, Sharma SK, Rasool K, Koduru JR, Syed A, Ghodake G. Development of Novel Peptide-Modified Silver Nanoparticle-Based Rapid Biosensors for Detecting Aminoglycoside Antibiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12883-12898. [PMID: 37603424 DOI: 10.1021/acs.jafc.3c03565] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The detection and monitoring of aminoglycoside antibiotics (AGAs) have become of utmost importance due to their widespread use in human and animal therapy, as well as the associated risks of exposure, toxicity, and the emergence of antimicrobial resistance. In this study, we successfully synthesized casein hydrolysate peptides-functionalized silver nanoparticles (CHPs@AgNPs) and employed them as a novel colorimetric analytical platform to demonstrate remarkable specificity and sensitivity toward AGAs. The colorimetric and spectral response of the CHPs@AgNPs was observed at 405 and 520 nm, showing a linear correlation with the concentration of streptomycin, a representative AGA. The color changes from yellow to orange provided a visual indication of the analyte concentration, enabling quantitative determination for real-world samples. The AgNP assay exhibited excellent sensitivity with dynamic ranges of approximately 200-650 and 100-700 nM for streptomycin-spiked tap water and dairy whey with limits of detection found to be ∼98 and 56 nM, respectively. The mechanism behind the selective aggregation of CHPs@AgNPs in the presence of AGAs involves the amine groups of the target analytes acting as molecular bridges for electrostatic coupling with hydroxyl or carboxyl functionalities of adjacent NPs, driving the formation of stable NP aggregates. The developed assay offers several advantages, making it suitable for various practical applications. It is characterized by its simplicity, rapidity, specificity, sensitivity, and cost-effectiveness. These unique features make the method a promising tool for monitoring water quality, ensuring food safety, and dealing with emergent issues of antibiotic resistance.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University - Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Sanjeev K Sharma
- Biomaterials and Sensors Laboratory, Department of Physics, CCS University, Meerut Campus, Meerut 250004, Uttar Pradesh, India
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, Dongguk University - Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| |
Collapse
|
13
|
Khaksari S, Abnous K, Hadizadeh F, Ramezani M, Taghdisi SM, Mousavi Shaegh SA. Signal amplification strategies in biosensing of extracellular vesicles (EVs). Talanta 2023; 256:124244. [PMID: 36640707 DOI: 10.1016/j.talanta.2022.124244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Extracellular vesicles (EVs) are membrane-enclosed vesicles secreted from mammalian cells. EVs act as multicomponent delivery vehicles to carry a wide variety of biological molecular information and participate in intercellular communications. Since elevated levels of EVs are associated with some pathological states such as inflammatory diseases and cancers, probing circulating EVs holds a great potential for early diagnostics. To this end, several detection methods have been developed in which biosensors have attracted great attentions in identification of EVs due to their simple instrumentation, versatile design and portability for point-of-care applications. The concentrations of EVs in bodily fluids are extremely low (i.e. 1-100 per μl) at early stages of a disease, which necessitates the use of signal amplification strategies for EVs detection. In this way, this review presents and discusses various amplification strategies for EVs biosensors based on detection modalities including surface plasmon resonance (SPR), calorimetry, fluorescence, electrochemical and electrochemiluminescence (ECL). In addition, microfluidic systems employed for signal amplification are reviewed and discussed in terms of their design and integration with the detection methods.
Collapse
Affiliation(s)
- Sedighe Khaksari
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Laboratory of Microfluidics and Medical Microsystems, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran; Laboratory of Microfluidics and Medical Microsystems, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Kazemzadeh M, Martinez-Calderon M, Otupiri R, Artuyants A, Lowe MM, Ning X, Reategui E, Schultz ZD, Xu W, Blenkiron C, Chamley LW, Broderick NGR, Hisey CL. Manifold Learning Enables Interpretable Analysis of Raman Spectra from Extracellular Vesicle and Other Mixtures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533481. [PMID: 36993759 PMCID: PMC10055277 DOI: 10.1101/2023.03.20.533481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Extracellular vesicles (EVs) have emerged as promising diagnostic and therapeutic candidates in many biomedical applications. However, EV research continues to rely heavily on in vitro cell cultures for EV production, where the exogenous EVs present in fetal bovine (FBS) or other required serum supplementation can be difficult to remove entirely. Despite this and other potential applications involving EV mixtures, there are currently no rapid, robust, inexpensive, and label-free methods for determining the relative concentrations of different EV subpopulations within a sample. In this study, we demonstrate that surface-enhanced Raman spectroscopy (SERS) can biochemically fingerprint fetal bovine serum-derived and bioreactor-produced EVs, and after applying a novel manifold learning technique to the acquired spectra, enables the quantitative detection of the relative amounts of different EV populations within an unknown sample. We first developed this method using known ratios of Rhodamine B to Rhodamine 6G, then using known ratios of FBS EVs to breast cancer EVs from a bioreactor culture. In addition to quantifying EV mixtures, the proposed deep learning architecture provides some knowledge discovery capabilities which we demonstrate by applying it to dynamic Raman spectra of a chemical milling process. This label-free characterization and analytical approach should translate well to other EV SERS applications, such as monitoring the integrity of semipermeable membranes within EV bioreactors, ensuring the quality or potency of diagnostic or therapeutic EVs, determining relative amounts of EVs produced in complex co-culture systems, as well as many Raman spectroscopy applications.
Collapse
|
15
|
Koltsova EM, Martyanov AA, Podoplelova NA. Procoagulant Properties of Extracellular Vesicles in Normal and Pathological Pregnancy. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2023. [DOI: 10.1134/s1990747822060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
16
|
Subhan BS, Ki M, Verzella A, Shankar S, Rabbani PS. Behind the Scenes of Extracellular Vesicle Therapy for Skin Injuries and Disorders. Adv Wound Care (New Rochelle) 2022; 11:575-597. [PMID: 34806432 PMCID: PMC9419953 DOI: 10.1089/wound.2021.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/10/2021] [Indexed: 01/29/2023] Open
Abstract
Significance: Skin wounds and disorders compromise the protective functions of skin and patient quality of life. Although accessible on the surface, they are challenging to address due to paucity of effective therapies. Exogenous extracellular vesicles (EVs) and cell-free derivatives of adult multipotent stromal cells (MSCs) are developing as a treatment modality. Knowledge of origin MSCs, EV processing, and mode of action is necessary for directed use of EVs in preclinical studies and methodical translation. Recent Advances: Nanoscale to microscale EVs, although from nonskin cells, induce functional responses in cutaneous wound cellular milieu. EVs allow a shift from cell-based to cell-free/derived modalities by carrying the MSC beneficial factors but eliminating risks associated with MSC transplantation. EVs have demonstrated striking efficacy in resolution of preclinical wound models, specifically within the complexity of skin structure and wound pathology. Critical Issues: To facilitate comparison across studies, tissue sources and processing of MSCs, culture conditions, isolation and preparations of EVs, and vesicle sizes require standardization as these criteria influence EV types and contents, and potentially determine the induced biological responses. Procedural parameters for all steps preceding the actual therapeutic administration may be the key to generating EVs that demonstrate consistent efficacy through known mechanisms. We provide a comprehensive review of such parameters and the subsequent tissue, cellular and molecular impact of the derived EVs in different skin wounds/disorders. Future Directions: We will gain more complete knowledge of EV-induced effects in skin, and specificity for different wounds/conditions. The safety and efficacy of current preclinical xenogenic applications will favor translation into allogenic clinical applications of EVs as a biologic.
Collapse
Affiliation(s)
- Bibi S. Subhan
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Michelle Ki
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Alexandra Verzella
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Shruthi Shankar
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Piul S. Rabbani
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
17
|
Tang Q, Xiao X, Li R, He H, Li S, Ma C. Recent Advances in Detection for Breast-Cancer-Derived Exosomes. Molecules 2022; 27:molecules27196673. [PMID: 36235208 PMCID: PMC9571663 DOI: 10.3390/molecules27196673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer is the most common malignant tumor in women, its incidence is secret, and more than half of the patients are diagnosed in the middle and advanced stages, so it is necessary to develop simple and efficient detection methods for breast cancer diagnosis to improve the survival rate and quality of life of breast cancer patients. Exosomes are extracellular vesicles secreted by all kinds of living cells, and play an important role in the occurrence and development of breast cancer and the formation of the tumor microenvironment. Exosomes, as biomarkers, are an important part of breast cancer fluid biopsy and have become ideal targets for the early diagnosis, curative effect evaluation, and clinical treatment of breast cancer. In this paper, several traditional exosome detection methods, including differential centrifugation and immunoaffinity capture, were summarized, focusing on the latest research progress in breast cancer exosome detection. It was summarized from the aspects of optics, electrochemistry, electrochemiluminescence and other aspects. This review is expected to provide valuable guidance for exosome detection of clinical breast cancer and the establishment of more reliable, efficient, simple and innovative methods for exosome detection of breast cancer in the future.
Collapse
Affiliation(s)
- Qin Tang
- School of Life Sciences, Central South University, Changsha 410013, China
- Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Xinying Xiao
- School of Life Sciences, Central South University, Changsha 410013, China
- Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ranhao Li
- School of Life Sciences, Central South University, Changsha 410013, China
- Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Shanni Li
- School of Life Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.L.); (C.M.)
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.L.); (C.M.)
| |
Collapse
|
18
|
Hallal S, Tűzesi Á, Grau GE, Buckland ME, Alexander KL. Understanding the extracellular vesicle surface for clinical molecular biology. J Extracell Vesicles 2022; 11:e12260. [PMID: 36239734 PMCID: PMC9563386 DOI: 10.1002/jev2.12260] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid-membrane enclosed nanoparticles that play significant roles in health and disease. EVs are abundant in body fluids and carry an array of molecules (proteins, lipids, nucleic acids and glycans) that reflect the identity and activity of their cell-of-origin. While the advent of high throughput omics technologies has allowed in-depth characterisation of EV compositions, how these molecular species are spatially distributed within EV structures is not well appreciated. This is particularly true of the EV surface where a plethora of molecules are reported to be both integral and peripherally associated to the EV membrane. This coronal layer or 'atmosphere' that surrounds the EV membrane contributes to a large, highly interactive and dynamic surface area that is responsible for facilitating EV interactions with the extracellular environment. The EV coronal layer harbours surface molecules that reflect the identity of parent cells, which is likely a highly valuable property in the context of diagnostic liquid biopsies. In this review, we describe the current understanding of the mechanical, electrostatic and molecular properties of the EV surface that offer significant biomarker potential and contribute to a highly dynamic interactome.
Collapse
Affiliation(s)
- Susannah Hallal
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia
| | - Ágota Tűzesi
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Georges E. Grau
- School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Michael E. Buckland
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Kimberley L. Alexander
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
19
|
Kazemzadeh M, Martinez-Calderon M, Xu W, Chamley LW, Hisey CL, Broderick NGR. Cascaded Deep Convolutional Neural Networks as Improved Methods of Preprocessing Raman Spectroscopy Data. Anal Chem 2022; 94:12907-12918. [PMID: 36067379 DOI: 10.1021/acs.analchem.2c03082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Machine learning has had a significant impact on the value of spectroscopic characterization tools, particularly in biomedical applications, due to its ability to detect latent patterns within complex spectral data. However, it often requires extensive data preprocessing, including baseline correction and denoising, which can lead to an unintentional bias during classification. To address this, we developed two deep learning methods capable of fully preprocessing raw Raman spectroscopy data without any human input. First, cascaded deep convolutional neural networks (CNN) based on either ResNet or U-Net architectures were trained on randomly generated spectra with augmented defects. Then, they were tested using simulated Raman spectra, surface-enhanced Raman spectroscopy (SERS) imaging of chemical species, low resolution Raman spectra of human bladder cancer tissue, and finally, classification of SERS spectra from human placental extracellular vesicles (EVs). Both approaches resulted in faster training and complete spectral preprocessing in a single step, with more speed, defect tolerance, and classification accuracy compared to conventional methods. These findings indicate that cascaded CNN preprocessing is ideal for biomedical Raman spectroscopy applications in which large numbers of heterogeneous spectra with diverse defects need to be automatically, rapidly, and reproducibly preprocessed.
Collapse
Affiliation(s)
- Mohammadrahim Kazemzadeh
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland1010, New Zealand.,Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin9054, New Zealand
| | | | - Weiliang Xu
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland1010, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland1023, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland1023, New Zealand
| | - Colin L Hisey
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland1023, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland1023, New Zealand.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio43210, United States
| | - Neil G R Broderick
- Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin9054, New Zealand.,Department of Physics, University of Auckland, Auckland1061, New Zealand
| |
Collapse
|
20
|
Kazemzadeh M, Martinez-Calderon M, Paek SY, Lowe M, Aguergaray C, Xu W, Chamley LW, Broderick NGR, Hisey CL. Classification of Preeclamptic Placental Extracellular Vesicles Using Femtosecond Laser Fabricated Nanoplasmonic Sensors. ACS Sens 2022; 7:1698-1711. [PMID: 35658424 DOI: 10.1021/acssensors.2c00378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Placental extracellular vesicles (EVs) play an essential role in pregnancy by protecting and transporting diverse biomolecules that aid in fetomaternal communication. However, in preeclampsia, they have also been implicated in contributing to disease progression. Despite their potential clinical value, current technologies cannot provide a rapid and effective means of differentiating between healthy and diseased placental EVs. To address this, a fabrication process called laser-induced nanostructuring of SERS-active thin films (LINST) was developed to produce scalable nanoplasmonic substrates that provide exceptional Raman signal enhancement and allow the biochemical fingerprinting of EVs. After validating the performance of LINST substrates with chemical standards, placental EVs from tissue explant cultures were characterized, demonstrating that preeclamptic and normotensive placental EVs have classifiably distinct Raman spectra following the application of advanced machine learning algorithms. Given the abundance of placental EVs in maternal circulation, these findings encourage immediate exploration of surface-enhanced Raman spectroscopy (SERS) of EVs as a promising method for preeclampsia liquid biopsies, while this novel fabrication process will provide a versatile and scalable substrate for many other SERS applications.
Collapse
Affiliation(s)
- Mohammadrahim Kazemzadeh
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland 1010, New Zealand.,Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand
| | | | - Song Y Paek
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland 1023, New Zealand
| | - MoiMoi Lowe
- Department of Physics, University of Auckland, Auckland 1061, New Zealand
| | - Claude Aguergaray
- Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand.,Department of Physics, University of Auckland, Auckland 1061, New Zealand
| | - Weiliang Xu
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland 1010, New Zealand.,Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland 1023, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland 1023, New Zealand
| | - Neil G R Broderick
- Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand.,Department of Physics, University of Auckland, Auckland 1061, New Zealand
| | - Colin L Hisey
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland 1023, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland 1023, New Zealand.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Imanbekova M, Suarasan S, Lu Y, Jurchuk S, Wachsmann-Hogiu S. Recent advances in optical label-free characterization of extracellular vesicles. NANOPHOTONICS 2022; 11:2827-2863. [PMID: 35880114 PMCID: PMC9128385 DOI: 10.1515/nanoph-2022-0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) are complex biological nanoparticles endogenously secreted by all eukaryotic cells. EVs carry a specific molecular cargo of proteins, lipids, and nucleic acids derived from cells of origin and play a significant role in the physiology and pathology of cells, organs, and organisms. Upon release, they may be found in different body fluids that can be easily accessed via noninvasive methodologies. Due to the unique information encoded in their molecular cargo, they may reflect the state of the parent cell and therefore EVs are recognized as a rich source of biomarkers for early diagnostics involving liquid biopsy. However, body fluids contain a mixture of EVs released by different types of healthy and diseased cells, making the detection of the EVs of interest very challenging. Recent research efforts have been focused on the detection and characterization of diagnostically relevant subpopulations of EVs, with emphasis on label-free methods that simplify sample preparation and are free of interfering signals. Therefore, in this paper, we review the recent progress of the label-free optical methods employed for the detection, counting, and morphological and chemical characterization of EVs. We will first briefly discuss the biology and functions of EVs, and then introduce different optical label-free techniques for rapid, precise, and nondestructive characterization of EVs such as nanoparticle tracking analysis, dynamic light scattering, atomic force microscopy, surface plasmon resonance spectroscopy, Raman spectroscopy, and SERS spectroscopy. In the end, we will discuss their applications in the detection of neurodegenerative diseases and cancer and provide an outlook on the future impact and challenges of these technologies to the field of liquid biopsy via EVs.
Collapse
Affiliation(s)
- Meruyert Imanbekova
- Bioengineering, McGill University Faculty of Engineering, Montreal, QC, Canada
| | - Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania
| | - Yao Lu
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, 1006, Montreal, QC, H3C6W1, Canada
| | - Sarah Jurchuk
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, Rm#350, Montreal, QC, H3A 0E9, Canada
| | - Sebastian Wachsmann-Hogiu
- Bioengineering, McGill University Faculty of Engineering, 3480 University St., MC362, Montreal, H3A 0E9l, Canada
| |
Collapse
|
22
|
Bragina VA, Khomyakova E, Orlov AV, Znoyko SL, Mochalova EN, Paniushkina L, Shender VO, Erbes T, Evtushenko EG, Bagrov DV, Lavrenova VN, Nazarenko I, Nikitin PI. Highly Sensitive Nanomagnetic Quantification of Extracellular Vesicles by Immunochromatographic Strips: A Tool for Liquid Biopsy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1579. [PMID: 35564289 PMCID: PMC9101557 DOI: 10.3390/nano12091579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles (EVs) are promising agents for liquid biopsy-a non-invasive approach for the diagnosis of cancer and evaluation of therapy response. However, EV potential is limited by the lack of sufficiently sensitive, time-, and cost-efficient methods for their registration. This research aimed at developing a highly sensitive and easy-to-use immunochromatographic tool based on magnetic nanoparticles for EV quantification. The tool is demonstrated by detection of EVs isolated from cell culture supernatants and various body fluids using characteristic biomarkers, CD9 and CD81, and a tumor-associated marker-epithelial cell adhesion molecules. The detection limit of 3.7 × 105 EV/µL is one to two orders better than the most sensitive traditional lateral flow system and commercial ELISA kits. The detection specificity is ensured by an isotype control line on the test strip. The tool's advantages are due to the spatial quantification of EV-bound magnetic nanolabels within the strip volume by an original electronic technique. The inexpensive tool, promising for liquid biopsy in daily clinical routines, can be extended to other relevant biomarkers.
Collapse
Affiliation(s)
- Vera A. Bragina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
| | - Elena Khomyakova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
| | - Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
- Moscow Institute of Physics and Technology, 9 Institutskii per., 141700 Dolgoprudny, Russia
| | - Sergey L. Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
| | - Elizaveta N. Mochalova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
- Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Liliia Paniushkina
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (L.P.); (I.N.)
| | - Victoria O. Shender
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, 1a Malaya Pirogovskaya St., 119992 Moscow, Russia; (V.O.S.); (V.N.L.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Evgeniy G. Evtushenko
- Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia; (E.G.E.); (D.V.B.)
| | - Dmitry V. Bagrov
- Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia; (E.G.E.); (D.V.B.)
| | - Victoria N. Lavrenova
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, 1a Malaya Pirogovskaya St., 119992 Moscow, Russia; (V.O.S.); (V.N.L.)
- Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia; (E.G.E.); (D.V.B.)
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (L.P.); (I.N.)
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| |
Collapse
|
23
|
Microfluidic Platforms for the Isolation and Detection of Exosomes: A Brief Review. MICROMACHINES 2022; 13:mi13050730. [PMID: 35630197 PMCID: PMC9147043 DOI: 10.3390/mi13050730] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are a group of communication organelles enclosed by a phospholipid bilayer, secreted by all types of cells. The size of these vesicles ranges from 30 to 1000 nm, and they contain a myriad of compounds such as RNA, DNA, proteins, and lipids from their origin cells, offering a good source of biomarkers. Exosomes (30 to 100 nm) are a subset of EVs, and their importance in future medicine is beyond any doubt. However, the lack of efficient isolation and detection techniques hinders their practical applications as biomarkers. Versatile and cutting-edge platforms are required to detect and isolate exosomes selectively for further clinical analysis. This review paper focuses on lab-on-chip devices for capturing, detecting, and isolating extracellular vesicles. The first part of the paper discusses the main characteristics of different cell-derived vesicles, EV functions, and their clinical applications. In the second part, various microfluidic platforms suitable for the isolation and detection of exosomes are described, and their performance in terms of yield, sensitivity, and time of analysis is discussed.
Collapse
|
24
|
Newman LA, Muller K, Rowland A. Circulating cell-specific extracellular vesicles as biomarkers for the diagnosis and monitoring of chronic liver diseases. Cell Mol Life Sci 2022; 79:232. [PMID: 35397694 PMCID: PMC8995281 DOI: 10.1007/s00018-022-04256-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
AbstractChronic liver diseases represent a burgeoning health problem affecting billions of people worldwide. The insufficient performance of current minimally invasive tools is recognised as a significant barrier to the clinical management of these conditions. Extracellular vesicles (EVs) have emerged as a rich source of circulating biomarkers closely linked to pathological processes in originating tissues. Here, we summarise the contribution of EVs to normal liver function and to chronic liver pathologies; and explore the use of circulating EV biomarkers, with a particular focus on techniques to isolate and analyse cell- or tissue-specific EVs. Such approaches present a novel strategy to inform disease status and monitor changes in response to treatment in a minimally invasive manner. Emerging technologies that support the selective isolation and analysis of circulating EVs derived only from hepatic cells, have driven recent advancements in EV-based biomarker platforms for chronic liver diseases and show promise to bring these techniques to clinical settings.
Collapse
Affiliation(s)
- Lauren A Newman
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Kate Muller
- Department of Gastroenterology and Hepatology, College of Medicine and Public Health, Flinders Medical Centre, Adelaide, SA, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
25
|
Uthamacumaran A, Elouatik S, Abdouh M, Berteau-Rainville M, Gao ZH, Arena G. Machine learning characterization of cancer patients-derived extracellular vesicles using vibrational spectroscopies: results from a pilot study. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03203-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Suthar J, Prieto-Simon B, Williams GR, Guldin S. Dual-Mode and Label-Free Detection of Exosomes from Plasma Using an Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring. Anal Chem 2022. [PMID: 35072456 DOI: 10.1021/acs.analchem.1c04282/suppl_file/ac1c04282_si_001.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The biomolecular contents of extracellular vesicles, such as exosomes, have been shown to be crucial in intercellular communication and disease propagation. As a result, there has been a recent surge in the exploration of novel biosensing platforms that can sensitively and specifically detect exosomal content such as proteins and nucleic acids, with a view toward application in diagnostic assays. Here, we demonstrate dual-mode and label-free detection of plasma exosomes using an electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D). The platform adopts a direct immunosensing approach to effectively capture exosomes via their surface protein expression of CD63. By combining QCM-D with a tandem in situ electrochemical impedance spectroscopy measurement, we are able to demonstrate relationships between mass, viscoelasticity and impedance inducing properties of each functional layer and analyte. In addition to lowering the limit of detection (by a factor of 2-4) to 6.71 × 107 exosome-sized particles (ESP) per mL in 25% v/v serum, the synergy between dissipation and impedance response introduces improved sensing specificity by offering further distinction between soft and rigid analytes, thereby promoting EQCM-D as an important technique for exosome analysis.
Collapse
Affiliation(s)
- Jugal Suthar
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Beatriz Prieto-Simon
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
27
|
Amina M, Al Musayeib NM, Alarfaj NA, El-Tohamy MF, Al-Hamoud GA, Alqenaei MKM. The Fluorescence Detection of Phenolic Compounds in Plicosepalus curviflorus Extract Using Biosynthesized ZnO Nanoparticles and Their Biomedical Potential. PLANTS (BASEL, SWITZERLAND) 2022; 11:361. [PMID: 35161341 PMCID: PMC8839429 DOI: 10.3390/plants11030361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 05/27/2023]
Abstract
A facile, eco-friendly fluorescence approach based on the biogenic formation of zinc oxide nanoparticles using the biomass of Plicosepalus curviflorus shoots was developed. The suggested approach was employed to analyze three phenolic compounds (catechin, curviflorside, and curviflorin) isolated from the shoots of P. curviflorus. The surface morphology of the prepared ZnONPs was characterized by carrying out different microscopic and spectroscopic investigations. A significant UV-Vis absorption peak of ZnONPs was recognized at 345 nm and the FT-IR spectra of the isolated catechin, curviflorside, and curviflorin in the presence of sodium dodecyl sulfate (SDS) and ZnONPs were recorded at λem 470, 490, and 484 nm after excitation at λex 380, 420, and 410 nm. The suggested fluorescence method displayed linear concentration ranges of 10-120, 5-100, and 10-150 μg mL-1 for the three isolated compounds, respectively. The shoot extract, isolated compounds, and ZnONPs were screened for antibacterial and anticancer effects against four different types of bacterial strains and HeLa cells, respectively. The ZnONPs exhibited the highest zone of inhibition against Escherichia coli and Staphylococcus aureus strains when compared with pure, isolated compounds and shoot extract. The anticancer potential of ZnONPs (64%) was stronger as compared to the 160 µg mL-1 of shoot extract (49%), catechin (52%), curviflorside (54%), and curviflorin (58%) at 160 µg mL-1. Moreover, all the samples were investigated for hemolysis activity and showed a potent anti-hemolytic effect. The developed analytical method showed excellent sensitivity and reliability for the concurrent analysis of the isolated bioactive markers.
Collapse
Affiliation(s)
- Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Nawal M. Al Musayeib
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Nawal A. Alarfaj
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.A.); (M.F.E.-T.)
| | - Maha F. El-Tohamy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.A.); (M.F.E.-T.)
| | - Gadah A. Al-Hamoud
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Muneerah K. M. Alqenaei
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
28
|
Suthar J, Prieto-Simon B, Williams GR, Guldin S. Dual-Mode and Label-Free Detection of Exosomes from Plasma Using an Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring. Anal Chem 2022; 94:2465-2475. [PMID: 35072456 PMCID: PMC9096790 DOI: 10.1021/acs.analchem.1c04282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The
biomolecular contents of extracellular vesicles, such as exosomes,
have been shown to be crucial in intercellular communication and disease
propagation. As a result, there has been a recent surge in the exploration
of novel biosensing platforms that can sensitively and specifically
detect exosomal content such as proteins and nucleic acids, with a
view toward application in diagnostic assays. Here, we demonstrate
dual-mode and label-free detection of plasma exosomes using an electrochemical
quartz crystal microbalance with dissipation monitoring (EQCM-D).
The platform adopts a direct immunosensing approach to effectively
capture exosomes via their surface protein expression of CD63. By
combining QCM-D with a tandem in situ electrochemical impedance spectroscopy
measurement, we are able to demonstrate relationships between mass,
viscoelasticity and impedance inducing properties of each functional
layer and analyte. In addition to lowering the limit of detection
(by a factor of 2–4) to 6.71 × 107 exosome-sized
particles (ESP) per mL in 25% v/v serum, the synergy between dissipation
and impedance response introduces improved sensing specificity by
offering further distinction between soft and rigid analytes, thereby
promoting EQCM-D as an important technique for exosome analysis.
Collapse
Affiliation(s)
- Jugal Suthar
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Beatriz Prieto-Simon
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
29
|
Seyyedmasoumian S, Attariabad A, Farmani A. FEM analysis of a λ 3/125 high sensitivity graphene plasmonic biosensor for low hemoglobin concentration detection. APPLIED OPTICS 2022; 61:120-125. [PMID: 35200803 DOI: 10.1364/ao.443822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
A highly sensitive plasmonic refractive index biosensor for hemoglobin protein detection in blood is presented in the near-infrared region. The proposed Au split-ring resonator structure with an extra arm is used to increase electric field enhancement intensity in the vicinity of the nanostructure, which excites localized surface plasmon resonances in the metal-dielectric interface and leads to unity absorption. The footprint of the proposed structure is λ3/125 (λ denoting center wavelength). Through the results from the finite element method (FEM), by variation of the spacer material, and inserting a graphene layer between the spacer and the gold nanostructure, maximum sensitivities of 1804.1 nm/RIU and 2448.45 nm/RIU are achieved, respectively.
Collapse
|
30
|
Advances in the Field of Micro- and Nanotechnologies Applied to Extracellular Vesicle Research: Take-Home Message from ISEV2021. MICROMACHINES 2021; 12:mi12121563. [PMID: 34945413 PMCID: PMC8707249 DOI: 10.3390/mi12121563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Extracellular Vesicles (EVs) are naturally secreted nanoparticles with a plethora of functions in the human body and remarkable potential as diagnostic and therapeutic tools. Starting from their discovery, EV nanoscale dimensions have hampered and slowed new discoveries in the field, sometimes generating confusion and controversies among experts. Microtechnological and especially nanotechnological advances have sped up biomedical research dealing with EVs, but efforts are needed to further clarify doubts and knowledge gaps. In the present review, we summarize some of the most interesting data presented in the Annual Meeting of the International Society for Extracellular Vesicles (ISEV), ISEV2021, to stimulate discussion and to share knowledge with experts from all fields of research. Indeed, EV research requires a multidisciplinary knowledge exchange and effort. EVs have demonstrated their importance and significant biological role; still, further technological achievements are crucial to avoid artifacts and misleading conclusions in order to enable outstanding discoveries.
Collapse
|
31
|
Ćulum NM, Cooper TT, Lajoie GA, Dayarathna T, Pasternak SH, Liu J, Fu Y, Postovit LM, Lagugné-Labarthet F. Characterization of ovarian cancer-derived extracellular vesicles by surface-enhanced Raman spectroscopy. Analyst 2021; 146:7194-7206. [PMID: 34714898 DOI: 10.1039/d1an01586a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy, owing to the fact that most cases are diagnosed at a late stage. To improve prognosis and reduce mortality, we must develop methods for the early diagnosis of ovarian cancer. A step towards early and non-invasive cancer diagnosis is through the utilization of extracellular vesicles (EVs), which are nanoscale, membrane-bound vesicles that contain proteins and genetic material reflective of their parent cell. Thus, EVs secreted by cancer cells can be thought of as cancer biomarkers. In this paper, we present gold nanohole arrays for the capture of ovarian cancer (OvCa)-derived EVs and their characterization by surface-enhanced Raman spectroscopy (SERS). For the first time, we have characterized EVs isolated from two established OvCa cell lines (OV-90, OVCAR3), two primary OvCa cell lines (EOC6, EOC18), and one human immortalized ovarian surface epithelial cell line (hIOSE) by SERS. We subsequently determined their main compositional differences by principal component analysis and were able to discriminate the groups by a logistic regression-based machine learning method with ∼99% accuracy, sensitivity, and specificity. The results presented here are a great step towards quick, facile, and non-invasive cancer diagnosis.
Collapse
Affiliation(s)
- Nina M Ćulum
- University of Western Ontario (Western University), Department of Chemistry, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.
| | - Tyler T Cooper
- University of Western Ontario (Western University), Department of Biochemistry, 1151 Richmond St., London, Ontario, N6A 5B7, Canada
| | - Gilles A Lajoie
- University of Western Ontario (Western University), Department of Biochemistry, 1151 Richmond St., London, Ontario, N6A 5B7, Canada
| | - Thamara Dayarathna
- University of Western Ontario (Western University), Robarts Research Institute, 1151 Richmond St., London, Ontario, N6A 5B7, Canada
| | - Stephen H Pasternak
- University of Western Ontario (Western University), Robarts Research Institute, 1151 Richmond St., London, Ontario, N6A 5B7, Canada
| | - Jiahui Liu
- University of Alberta, Department of Oncology, 116 St. & 85 Ave., Edmonton, Alberta, T6G 2R3, Canada
| | - Yangxin Fu
- University of Alberta, Department of Oncology, 116 St. & 85 Ave., Edmonton, Alberta, T6G 2R3, Canada
| | - Lynne-Marie Postovit
- University of Alberta, Department of Oncology, 116 St. & 85 Ave., Edmonton, Alberta, T6G 2R3, Canada.,Queen's University, Department of Biomedical & Molecular Sciences, 99 University Ave., Kingston, Ontario, K2L 3N6, Canada
| | - François Lagugné-Labarthet
- University of Western Ontario (Western University), Department of Chemistry, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
32
|
A simple and reliable approach for the fabrication of nanoporous silver patterns for surface-enhanced Raman spectroscopy applications. Sci Rep 2021; 11:22295. [PMID: 34785690 PMCID: PMC8595463 DOI: 10.1038/s41598-021-01727-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022] Open
Abstract
The fabrication of plasmonic nanostructures with a reliable, low cost and easy approach has become a crucial and urgent challenge in many fields, including surface-enhanced Raman spectroscopy (SERS) based applications. In this frame, nanoporous metal films are quite attractive, due to their intrinsic large surface area and high density of metal nanogaps, acting as hot-spots for Raman signal enhancement. In this paper, we report a detailed study on the fabrication of nanoporous silver-based SERS substrates, obtained by the application of two successive treatments with an Inductively Coupled Plasma (ICP) system, using synthetic air and Ar as feeding gases. The obtained substrates exhibit a quite broad plasmonic response, covering the Vis–NIR range, and an enhancement factor reaching 6.5 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times\, 10^7$$\end{document}×107, estimated by using 4-mercaptobenzoic acid (4-MBA) as probe molecule at 532 nm. Moreover, the substrates exhibit a quite good spatial reproducibility on a centimeter scale, which assures a good signal stability for analytical measurements. Globally, the developed protocol is easy and cost effective, potentially usable also for mass production thanks to the remarkable inter-batches reproducibility. As such, it holds promise for its use in SERS-based sensing platforms for sensitive detection of targets molecules.
Collapse
|
33
|
Samoylenko A, Kögler M, Zhyvolozhnyi A, Makieieva O, Bart G, Andoh SS, Roussey M, Vainio SJ, Hiltunen J. Time-gated Raman spectroscopy and proteomics analyses of hypoxic and normoxic renal carcinoma extracellular vesicles. Sci Rep 2021; 11:19594. [PMID: 34599227 PMCID: PMC8486794 DOI: 10.1038/s41598-021-99004-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles involved in cell-cell communication, but the technologies to characterize EVs are still limited. Hypoxia is a typical condition in solid tumors, and cancer-derived EVs support tumor growth and invasion of tissues by tumor cells. We found that exposure of renal adenocarcinoma cells to hypoxia induced EV secretion and led to notable changes in the EV protein cargo in comparison to normoxia. Proteomics analysis showed overrepresentation of proteins involved in adhesion, such as integrins, in hypoxic EV samples. We further assessed the efficacy of time-gated Raman spectroscopy (TG-RS) and surface-enhanced time-gated Raman spectroscopy (TG-SERS) to characterize EVs. While the conventional continuous wave excitation Raman spectroscopy did not provide a notable signal, prominent signals were obtained with the TG-RS that were further enhanced in the TG-SERS. The Raman signal showed characteristic changes in the amide regions due to alteration in the chemical bonds of the EV proteins. The results illustrate that the TG-RS and the TG-SERS are promising label free technologies to study cellular impact of external stimuli, such as oxygen deficiency, on EV production, as well as differences arising from distinct EV purification protocols.
Collapse
Affiliation(s)
- Anatoliy Samoylenko
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu and Kvantum Institute, 90014, Oulu, Finland.
| | - Martin Kögler
- VTT Technical Research Centre of Finland, 90570, Oulu, Finland
| | - Artem Zhyvolozhnyi
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu and Kvantum Institute, 90014, Oulu, Finland
| | - Olha Makieieva
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu and Kvantum Institute, 90014, Oulu, Finland
| | - Geneviève Bart
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu and Kvantum Institute, 90014, Oulu, Finland
| | - Sampson S Andoh
- Institute of Photonics, University of Eastern Finland, 80101, Joensuu, Finland
| | - Matthieu Roussey
- Institute of Photonics, University of Eastern Finland, 80101, Joensuu, Finland
| | - Seppo J Vainio
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu and Kvantum Institute, 90014, Oulu, Finland
| | - Jussi Hiltunen
- VTT Technical Research Centre of Finland, 90570, Oulu, Finland
| |
Collapse
|
34
|
El Kazzy M, Weerakkody JS, Hurot C, Mathey R, Buhot A, Scaramozzino N, Hou Y. An Overview of Artificial Olfaction Systems with a Focus on Surface Plasmon Resonance for the Analysis of Volatile Organic Compounds. BIOSENSORS-BASEL 2021; 11:bios11080244. [PMID: 34436046 PMCID: PMC8393613 DOI: 10.3390/bios11080244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022]
Abstract
The last three decades have witnessed an increasing demand for novel analytical tools for the analysis of gases including odorants and volatile organic compounds (VOCs) in various domains. Traditional techniques such as gas chromatography coupled with mass spectrometry, although very efficient, present several drawbacks. Such a context has incited the research and industrial communities to work on the development of alternative technologies such as artificial olfaction systems, including gas sensors, olfactory biosensors and electronic noses (eNs). A wide variety of these systems have been designed using chemiresistive, electrochemical, acoustic or optical transducers. Among optical transduction systems, surface plasmon resonance (SPR) has been extensively studied thanks to its attractive features (high sensitivity, label free, real-time measurements). In this paper, we present an overview of the advances in the development of artificial olfaction systems with a focus on their development based on propagating SPR with different coupling configurations, including prism coupler, wave guide, and grating.
Collapse
Affiliation(s)
- Marielle El Kazzy
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France; (M.E.K.); (J.S.W.); (C.H.); (R.M.); (A.B.)
| | - Jonathan S. Weerakkody
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France; (M.E.K.); (J.S.W.); (C.H.); (R.M.); (A.B.)
| | - Charlotte Hurot
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France; (M.E.K.); (J.S.W.); (C.H.); (R.M.); (A.B.)
| | - Raphaël Mathey
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France; (M.E.K.); (J.S.W.); (C.H.); (R.M.); (A.B.)
| | - Arnaud Buhot
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France; (M.E.K.); (J.S.W.); (C.H.); (R.M.); (A.B.)
| | | | - Yanxia Hou
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France; (M.E.K.); (J.S.W.); (C.H.); (R.M.); (A.B.)
- Correspondence: ; Tel.: +33-43-878-9478
| |
Collapse
|
35
|
Imanbekova M, Suarasan S, Rojalin T, Mizenko RR, Hilt S, Mathur M, Lepine P, Nicouleau M, Mohamed NV, Durcan TM, Carney RP, Voss JC, Wachsmann-Hogiu S. Identification of amyloid beta in small extracellular vesicles via Raman spectroscopy. NANOSCALE ADVANCES 2021; 3:4119-4132. [PMID: 34355118 PMCID: PMC8276787 DOI: 10.1039/d1na00330e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 05/20/2023]
Abstract
One of the hallmarks of Alzheimer's disease (AD) pathogenesis is believed to be the production and deposition of amyloid-beta (Aβ) peptide into extracellular plaques. Existing research indicates that extracellular vesicles (EVs) can carry Aβ associated with AD. However, characterization of the EVs-associated Aβ and its conformational variants has yet to be realized. Raman spectroscopy is a label-free and non-destructive method that is able to assess the biochemical composition of EVs. This study reports for the first time the Raman spectroscopic fingerprint of the Aβ present in the molecular cargo of small extracellular vesicles (sEVs). Raman spectra were measured from sEVs isolated from Alzheimer's disease cell culture model, where secretion of Aβ is regulated by tetracycline promoter, and from midbrain organoids. The averaged spectra of each sEV group showed considerable variation as a reflection of the biochemical content of sEVs. Spectral analysis identified more intense Raman peaks at 1650 cm-1 and 2930 cm-1 attributable to the Aβ peptide incorporated in sEVs produced by the Alzheimer's cell culture model. Subsequent analysis of the spectra by principal component analysis differentiated the sEVs of the Alzheimer's disease cell culture model from the control groups of sEVs. Moreover, the results indicate that Aβ associated with secreted sEVs has a α-helical secondary structure and the size of a monomer or small oligomer. Furthermore, by analyzing the lipid content of sEVs we identified altered fatty acid chain lengths in sEVs that carry Aβ that may affect the fluidity of the EV membrane. Overall, our findings provide evidence supporting the use of Raman spectroscopy for the identification and characterization of sEVs associated with potential biomarkers of neurological disorders such as toxic proteins.
Collapse
Affiliation(s)
| | - Sorina Suarasan
- Department of Bioengineering, McGill University Montreal QC H3A 0E9 Canada
| | - Tatu Rojalin
- Department of Biomedical Engineering, University of California Davis CA 95616 USA
| | - Rachel R Mizenko
- Department of Biomedical Engineering, University of California Davis CA 95616 USA
| | - Silvia Hilt
- Department of Biochemistry & Molecular Medicine, University of California Davis CA 95616 USA
| | - Meghna Mathur
- The Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University Montreal QC H3A 2B4 Canada
| | - Paula Lepine
- The Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University Montreal QC H3A 2B4 Canada
| | - Michael Nicouleau
- The Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University Montreal QC H3A 2B4 Canada
| | - Nguyen-Vi Mohamed
- The Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University Montreal QC H3A 2B4 Canada
| | - Thomas M Durcan
- The Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University Montreal QC H3A 2B4 Canada
| | - Randy P Carney
- Department of Biomedical Engineering, University of California Davis CA 95616 USA
| | - John C Voss
- Department of Biochemistry & Molecular Medicine, University of California Davis CA 95616 USA
| | | |
Collapse
|
36
|
Ćulum NM, Cooper TT, Bell GI, Hess DA, Lagugné-Labarthet F. Characterization of extracellular vesicles derived from mesenchymal stromal cells by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 2021; 413:5013-5024. [PMID: 34137912 DOI: 10.1007/s00216-021-03464-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are secreted by all cells into bodily fluids and play an important role in intercellular communication through the transfer of proteins and RNA. There is evidence that EVs specifically released from mesenchymal stromal cells (MSCs) are potent cell-free regenerative agents. However, for MSC EVs to be used in therapeutic practices, there must be a standardized and reproducible method for their characterization. The detection and characterization of EVs are a challenge due to their nanoscale size as well as their molecular heterogeneity. To address this challenge, we have fabricated gold nanohole arrays of varying sizes and shapes by electron beam lithography. These platforms have the dual purpose of trapping single EVs and enhancing their vibrational signature in surface-enhanced Raman spectroscopy (SERS). In this paper, we report SERS spectra for MSC EVs derived from pancreatic tissue (Panc-MSC) and bone marrow (BM-MSC). Using principal component analysis (PCA), we determined that the main compositional differences between these two groups are found at 1236, 761, and 1528 cm-1, corresponding to amide III, tryptophan, and an in-plane -C=C- vibration, respectively. We additionally explored several machine learning approaches to distinguish between BM- and Panc-MSC EVs and achieved 89 % accuracy, 89 % sensitivity, and 88 % specificity using logistic regression.
Collapse
Affiliation(s)
- Nina M Ćulum
- Department of Chemistry, Centre for Advanced Materials and Biomaterials Research (CAMBR), University of Western Ontario (Western University), 1151 Richmond St, London, Ontario, N6A 5B7, Canada
| | - Tyler T Cooper
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of medicine and Dentistry, University of Western Ontario (Western University), 1151 Richmond St, London, Ontario, N6A 5B7, Canada
| | - Gillian I Bell
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of medicine and Dentistry, University of Western Ontario (Western University), 1151 Richmond St, London, Ontario, N6A 5B7, Canada
| | - David A Hess
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of medicine and Dentistry, University of Western Ontario (Western University), 1151 Richmond St, London, Ontario, N6A 5B7, Canada
| | - François Lagugné-Labarthet
- Department of Chemistry, Centre for Advanced Materials and Biomaterials Research (CAMBR), University of Western Ontario (Western University), 1151 Richmond St, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
37
|
Bordanaba-Florit G, Royo F, Kruglik SG, Falcón-Pérez JM. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc 2021; 16:3163-3185. [PMID: 34135505 DOI: 10.1038/s41596-021-00551-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers with a complex molecular cargo comprising several populations with unique roles in biological processes. These vesicles are closely associated with specific physiological features, which makes them invaluable in the detection and monitoring of various diseases. EVs play a key role in pathophysiological processes by actively triggering genetic or metabolic responses. However, the heterogeneity of their structure and composition hinders their application in medical diagnosis and therapies. This diversity makes it difficult to establish their exact physiological roles, and the functions and composition of different EV (sub)populations. Ensemble averaging approaches currently employed for EV characterization, such as western blotting or 'omics' technologies, tend to obscure rather than reveal these heterogeneities. Recent developments in single-vesicle analysis have made it possible to overcome these limitations and have facilitated the development of practical clinical applications. In this review, we discuss the benefits and challenges inherent to the current methods for the analysis of single vesicles and review the contribution of these approaches to the understanding of EV biology. We describe the contributions of these recent technological advances to the characterization and phenotyping of EVs, examination of the role of EVs in cell-to-cell communication pathways and the identification and validation of EVs as disease biomarkers. Finally, we discuss the potential of innovative single-vesicle imaging and analysis methodologies using microfluidic devices, which promise to deliver rapid and effective basic and practical applications for minimally invasive prognosis systems.
Collapse
Affiliation(s)
- Guillermo Bordanaba-Florit
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Félix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain
| | - Sergei G Kruglik
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
38
|
Salva ML, Rocca M, Niemeyer CM, Delamarche E. Methods for immobilizing receptors in microfluidic devices: A review. MICRO AND NANO ENGINEERING 2021. [DOI: 10.1016/j.mne.2021.100085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Osei EB, Paniushkina L, Wilhelm K, Popp J, Nazarenko I, Krafft C. Surface-Enhanced Raman Spectroscopy to Characterize Different Fractions of Extracellular Vesicles from Control and Prostate Cancer Patients. Biomedicines 2021; 9:biomedicines9050580. [PMID: 34065470 PMCID: PMC8161280 DOI: 10.3390/biomedicines9050580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed structures ranging in size from about 60 to 800 nm that are released by the cells into the extracellular space; they have attracted interest as easily available biomarkers for cancer diagnostics. In this study, EVs from plasma of control and prostate cancer patients were fractionated by differential centrifugation at 5000× g, 12,000× g and 120,000× g. The remaining supernatants were purified by ultrafiltration to produce EV-depleted free-circulating (fc) fractions. Spontaneous Raman and surface-enhanced Raman spectroscopy (SERS) at 785 nm excitation using silver nanoparticles (AgNPs) were employed as label-free techniques to collect fingerprint spectra and identify the fractions that best discriminate between control and cancer patients. SERS spectra from 10 µL droplets showed an enhanced Raman signature of EV-enriched fractions that were much more intense for cancer patients than controls. The Raman spectra of dehydrated pellets of EV-enriched fractions without AgNPs were dominated by spectral contributions of proteins and showed variations in S-S stretch, tryptophan and protein secondary structure bands between control and cancer fractions. We conclude that the AgNPs-mediated SERS effect strongly enhances Raman bands in EV-enriched fractions, and the fractions, EV12 and EV120 provide the best separation of cancer and control patients by Raman and SERS spectra.
Collapse
Affiliation(s)
- Eric Boateng Osei
- Leibniz Institute of Photonic Technology, Member of Research Alliance “Health Technologies“, Albert-Einstein-Straße 9, 07745 Jena, Germany; (E.B.O.); (J.P.)
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Liliia Paniushkina
- Medical Center University Freiburg, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (L.P.); (I.N.)
| | - Konrad Wilhelm
- Center for Surgery, Medical Center, Department of Urology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany;
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Research Alliance “Health Technologies“, Albert-Einstein-Straße 9, 07745 Jena, Germany; (E.B.O.); (J.P.)
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Irina Nazarenko
- Medical Center University Freiburg, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (L.P.); (I.N.)
- German Cancer Consortium, Partner Site Freiburg and German Cancer Research Center (DKFZ), Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Member of Research Alliance “Health Technologies“, Albert-Einstein-Straße 9, 07745 Jena, Germany; (E.B.O.); (J.P.)
- Correspondence: ; Tel.: +49-3641-206306
| |
Collapse
|
40
|
Sun Z, Yang J, Li H, Wang C, Fletcher C, Li J, Zhan Y, Du L, Wang F, Jiang Y. Progress in the research of nanomaterial-based exosome bioanalysis and exosome-based nanomaterials tumor therapy. Biomaterials 2021; 274:120873. [PMID: 33989972 DOI: 10.1016/j.biomaterials.2021.120873] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 04/13/2021] [Accepted: 05/02/2021] [Indexed: 12/18/2022]
Abstract
Exosomes and their internal components have been proven to play critical roles in cell-cell interactions and intrinsic cellular regulations, showing promising prospects in both biomedical and clinical fields. Although conventional methods have so far been utilized to great effect, accurate bioanalysis remains a major challenge. In recent years, the fast-paced development of nanomaterials with unique physiochemical properties has led to a boom in the potential bioapplications of such materials. In particular, the application of nanomaterials in exosome bioanalysis provides a great opportunity to overcome the current challenges and limitations of conventional methods. A timely review of the research progress in this field is thus of great significance to the continued development of new methods. This review outlines the properties and potential uses of exosomes, and discusses the conventional methods currently used for their analysis. We then focus on exploring the current state of the art regarding the use of nanomaterials for the isolation, detection and even the subsequent profiling of exosomes. The main methods are based on principles including fluorescence, surface-enhanced Raman spectroscopy, colorimetry, electrochemistry, and surface plasmon resonance. Additionally, research on exosome-based nanomaterials tumor therapy is also promising from a clinical perspective, so the research progress in this branch is also summarized. Finally, we look at ways in which the field might develop in the future.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Jingjing Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Cameron Fletcher
- School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Yao Zhan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China.
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China.
| |
Collapse
|
41
|
Wang J, Ma P, Kim DH, Liu BF, Demirci U. Towards Microfluidic-Based Exosome Isolation and Detection for Tumor Therapy. NANO TODAY 2021; 37:101066. [PMID: 33777166 PMCID: PMC7990116 DOI: 10.1016/j.nantod.2020.101066] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Exosomes are a class of cell-secreted, nano-sized extracellular vesicles with a bilayer membrane structure of 30-150 nm in diameter. Their discovery and application have brought breakthroughs in numerous areas, such as liquid biopsies, cancer biology, drug delivery, immunotherapy, tissue repair, and cardiovascular diseases. Isolation of exosomes is the first step in exosome-related research and its applications. Standard benchtop exosome separation and sensing techniques are tedious and challenging, as they require large sample volumes, multi-step operations that are complex and time-consuming, requiring cumbersome and expensive instruments. In contrast, microfluidic platforms have the potential to overcome some of these limitations, owing to their high-precision processing, ability to handle liquids at a microscale, and integrability with various functional units, such as mixers, actuators, reactors, separators, and sensors. These platforms can optimize the detection process on a single device, representing a robust and versatile technique for exosome separation and sensing to attain high purity and high recovery rates with a short processing time. Herein, we overview microfluidic strategies for exosome isolation based on their hydrodynamic properties, size filtration, acoustic fields, immunoaffinity, and dielectrophoretic properties. We focus especially on advances in label-free isolation of exosomes with active biological properties and intact morphological structures. Further, we introduce microfluidic techniques for the detection of exosomal proteins and RNAs with high sensitivity, high specificity, and low detection limits. We summarize the biomedical applications of exosome-mediated therapeutic delivery targeting cancer cells. To highlight the advantages of microfluidic platforms, conventional techniques are included for comparison. Future challenges and prospects of microfluidics towards exosome isolation applications are also discussed. Although the use of exosomes in clinical applications still faces biological, technical, regulatory, and market challenges, in the foreseeable future, recent developments in microfluidic technologies are expected to pave the way for tailoring exosome-related applications in precision medicine.
Collapse
Affiliation(s)
- Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Peng Ma
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, USA
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Daniel H Kim
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| |
Collapse
|
42
|
Wang X, Yuan X, Fu K, Liu C, Bai L, Wang X, Tan X, Zhang Y. Colorimetric analysis of extracellular vesicle surface proteins based on controlled growth of Au aptasensors. Analyst 2021; 146:2019-2028. [PMID: 33528468 DOI: 10.1039/d0an02080j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein profiling of extracellular vesicles (EVs) provides important information in both clinical cancer diagnosis and relevant biological research studies. Although a variety of bioanalytical techniques have been investigated for EV characterization, limitations such as time-consuming operations, the requirement of large sample volume and demand for specialized instruments hinder their practical applications. Here, we report a simple and wash-free homogeneous colorimetric assay for sensitive detection of surface proteins on EVs. Au nanoparticles were modified with thiolated aptamers to fabricate aptasensors and incubated with EVs. Upon addition of a Au growth reagent, the solution color changed from light red to blue in the presence of target proteins and became deep red when the targets were absent. Expression of CD63, epithelial cell adhesion molecules (EpCAM), and mucin1 in EVs derived from two breast cancer cell lines (MCF-7 and MDA-MB-231) were compared, showing results consistent with western blotting results. The colorimetric assay achieves a limit of detection (LOD) down to 0.7 ng μL-1 against MCF-7 EVs based on the assessment of EpCAM expression, suggesting its potential to be applied in clinical breast cancer diagnosis.
Collapse
Affiliation(s)
- Xiaojie Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Chain CY, Daza Millone MA, Cisneros JS, Ramirez EA, Vela ME. Surface Plasmon Resonance as a Characterization Tool for Lipid Nanoparticles Used in Drug Delivery. Front Chem 2021; 8:605307. [PMID: 33490037 PMCID: PMC7817952 DOI: 10.3389/fchem.2020.605307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
The development of drug carriers based in lipid nanoparticles (LNPs) aims toward the synthesis of non-toxic multifunctional nanovehicles that can bypass the immune system and allow specific site targeting, controlled release and complete degradation of the carrier components. Among label free techniques, Surface Plasmon Resonance (SPR) biosensing is a versatile tool to study LNPs in the field of nanotherapeutics research. SPR, widely used for the analysis of molecular interactions, is based on the immobilization of one of the interacting partners to the sensor surface, which can be easily achieved in the case of LNPs by hydrophobic attachment onto commercial lipid- capture sensor chips. In the last years SPR technology has emerged as an interesting strategy for studying molecular aspects of drug delivery that determines the efficacy of the nanotherapeutical such as LNPs' interactions with biological targets, with serum proteins and with tumor extracelullar matrix. Moreover, SPR has contributed to the obtention and characterization of LNPs, gathering information about the interplay between components of the formulations, their response to organic molecules and, more recently, the quantification and molecular characterization of exosomes. By the combination of available sensor platforms, assay quickness and straight forward platform adaptation for new carrier systems, SPR is becoming a high throughput technique for LNPs' characterization and analysis.
Collapse
Affiliation(s)
- Cecilia Yamil Chain
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - María Antonieta Daza Millone
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - José Sebastián Cisneros
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - Eduardo Alejandro Ramirez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| |
Collapse
|
44
|
An Immunocapture-Based Assay for Detecting Multiple Antigens in Melanoma-Derived Extracellular Vesicles. Methods Mol Biol 2021; 2265:323-344. [PMID: 33704725 DOI: 10.1007/978-1-0716-1205-7_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most human cells release extracellular vesicles (EVs) of different sizes and composition, containing biomolecules characteristic from the originating tissue. In consequence, when EVs derive from a cancer cell, they also contain tumor antigens. Therefore, isolating and characterizing tumor-derived EVs has attracted great interest as an invaluable source of biomarkers, both for diagnosis and stratification of cancer. In this chapter, we describe a method for flow cytometry assessment of melanoma-derived EVs which are firstly captured onto antibody-coated beads recognizing either a common EV marker, namely, a tetraspanin, or a tumor antigen like the stress-related molecules MICA or PDL1. Then, after staining with a fluorophore-conjugated antibody directed against a different protein present on the EV surface, the EV-bead complex can be visualized in a conventional flow cytometer. The technique allows detection of proteins present on EVs isolated from tissue culture supernatants of melanoma cell lines and, more importantly, directly from plasma.
Collapse
|
45
|
Improved photothermal therapy of brain cancer cells and photogeneration of reactive oxygen species by biotin conjugated gold photoactive nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 215:112102. [PMID: 33388605 DOI: 10.1016/j.jphotobiol.2020.112102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/15/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
Herein, we report on the design and development of functionalized acrylic polymeric nanoparticles with Spiropyrans (SPs) and imidazole moieties via superficial polymerizations. Then, Au3+ ions were immobilized and reduced on their surface to obtain photoresponsive gold-decorated polymer nanoparticles(Au-NPs). The synthesized Au-NPs were surface adapted with biotin as specific targeting tumor penetration cells and enhance the intercellular uptake through the endocytosis. FT-IR (Fourier-transform Infrared Spectroscopy), UV-Vis (Ultra Violet-Visible Spectrophotometer), EDS (Energy Dispersive X-Ray Spectroscopy), SEM (Scanning Electron Microscope) and HR-TEM (High-resolution transmission electron microscopy) descriptions were engaged to illustrate their spectral analysis and morphological examinations of Bt@Au-NPs. Fluorescence microscopy images of cellular uptake descriptions and ICP-MS (Inductively coupled plasma mass spectrometry) investigation established the cell lines labeling ability and enhanced targetting efficacy of biotin-conjugated Au-NPs (Bt@Au-NPs) toward C6 glioma cells (brain cancer cells) with 72.5% cellular uptake relative to 30.2% for non-conjugated lone. These were further established through intracellular ROS examinations and in vitro cytotoxicity investigation on the C6 glioma cell line. The solid surface plasmon absorptions of the Au-NPs and Bt@Au-NPs providing raised photothermal therapy under UV irradiation. The synthesized multifunctional Bt@Au-NPs with an inclusive combination of potential resources presented encouraging nanoprobe with targeting capability, improved photodynamic and photothermal cancer therapy.
Collapse
|
46
|
Shin H, Seo D, Choi Y. Extracellular Vesicle Identification Using Label-Free Surface-Enhanced Raman Spectroscopy: Detection and Signal Analysis Strategies. Molecules 2020; 25:E5209. [PMID: 33182340 PMCID: PMC7664897 DOI: 10.3390/molecules25215209] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) have been widely investigated as promising biomarkers for the liquid biopsy of diseases, owing to their countless roles in biological systems. Furthermore, with the notable progress of exosome research, the use of label-free surface-enhanced Raman spectroscopy (SERS) to identify and distinguish disease-related EVs has emerged. Even in the absence of specific markers for disease-related EVs, label-free SERS enables the identification of unique patterns of disease-related EVs through their molecular fingerprints. In this review, we describe label-free SERS approaches for disease-related EV pattern identification in terms of substrate design and signal analysis strategies. We first describe the general characteristics of EVs and their SERS signals. We then present recent works on applied plasmonic nanostructures to sensitively detect EVs and notable methods to interpret complex spectral data. This review also discusses current challenges and future prospects of label-free SERS-based disease-related EV pattern identification.
Collapse
Affiliation(s)
- Hyunku Shin
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Korea; (H.S.); (D.S.)
| | - Dongkwon Seo
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Korea; (H.S.); (D.S.)
| | - Yeonho Choi
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Korea; (H.S.); (D.S.)
- School of Biomedical Engineering, Korea University, Seoul 02841, Korea
| |
Collapse
|
47
|
Label-free characterization and real-time monitoring of cell uptake of extracellular vesicles. Biosens Bioelectron 2020; 168:112510. [DOI: 10.1016/j.bios.2020.112510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/07/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
|
48
|
Menon R, Shahin H. Extracellular vesicles in spontaneous preterm birth. Am J Reprod Immunol 2020; 85:e13353. [PMID: 32975858 DOI: 10.1111/aji.13353] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Feto-maternal communication helps to maintain pregnancy and contributes to parturition at term and preterm. Endocrine and immune factor are well-reported communication mediators. Recent advances in extracellular vesicle (EV) biology have introduced them as major communication channels between the mother and fetus. EVs are round structures with a lipid bilayer membrane. EVs are generally categorized based on their size and mode of biogenesis. The most commonly reported EVs are exosomes with a size range of 30-160 nm that are formed inside the intraluminal vesicles of multivesicular body. Microvesicles (MVs) are larger than > 200 nm and formed by outward budding of plasma membrane. Vesicles are released from all cells and carry various factors that reflect the physiologic state of cell at the time of their release. Analysis of vesicle provides a snapshot of origin cell. Recent studies in perinatal medicine have shown that exosomes are key communicators between feto-maternal units, and they can cross placenta. Fetal-derived exosomes released under term labor-associated conditions can cause parturition-associated changes in maternal uterine tissues. Exosomes carrying inflammatory cargo can cause preterm birth in animal models suggesting their functional role in parturition. A few reports have profiled differences between exosome cargos from term and preterm pregnancies and indicated their biomarker potential to predict high-risk pregnancy status. There are hardly any reports on MVs and their functional roles in reproduction. Herein, we review of EVs and MVs, their characteristics, function, and usefulness predicting adverse pregnancy complications such as preterm birth.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Hend Shahin
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
49
|
Rojalin T, Koster HJ, Liu J, Mizenko RR, Tran D, Wachsmann-Hogiu S, Carney RP. Hybrid Nanoplasmonic Porous Biomaterial Scaffold for Liquid Biopsy Diagnostics Using Extracellular Vesicles. ACS Sens 2020; 5:2820-2833. [PMID: 32935542 PMCID: PMC7522966 DOI: 10.1021/acssensors.0c00953] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
For
more effective early-stage cancer diagnostics, there is a need
to develop sensitive and specific, non- or minimally invasive, and
cost-effective methods for identifying circulating nanoscale extracellular
vesicles (EVs). Here, we report the utilization of a simple plasmonic
scaffold composed of a microscale biosilicate substrate embedded with
silver nanoparticles for surface-enhanced Raman scattering (SERS)
analysis of ovarian and endometrial cancer EVs. These substrates are
rapidly and inexpensively produced without any complex equipment or
lithography. We extensively characterize the substrates with electron
microscopy and outline a reproducible methodology for their use in
analyzing EVs from in vitro and in vivo biofluids. We report effective
chemical treatments for (i) decoration of metal surfaces with cysteamine
to nonspecifically pull down EVs to SERS hotspots and (ii) enzymatic
cleavage of extraluminal moieties at the surface of EVs that prevent
localization of complementary chemical features (lipids/proteins)
to the vicinity of the metal-enhanced fields. We observe a major loss
of sensitivity for ovarian and endometrial cancer following enzymatic
cleavage of EVs’ extraluminal domain, suggesting its critical
significance for diagnostic platforms. We demonstrate that the SERS
technique represents an ideal tool to assess and measure the high
heterogeneity of EVs isolated from clinical samples in an inexpensive,
rapid, and label-free assay.
Collapse
Affiliation(s)
- Tatu Rojalin
- Department of Biomedical Engineering, University of California, Davis 95616, United States
| | - Hanna J. Koster
- Department of Biomedical Engineering, University of California, Davis 95616, United States
| | - Juanjuan Liu
- Department of Bioengineering, McGill University, Montreal H3A 0G4, Canada
| | - Rachel R. Mizenko
- Department of Biomedical Engineering, University of California, Davis 95616, United States
| | - Di Tran
- Department of Biomedical Engineering, University of California, Davis 95616, United States
| | | | - Randy P. Carney
- Department of Biomedical Engineering, University of California, Davis 95616, United States
| |
Collapse
|
50
|
Picciolini S, Gualerzi A, Carlomagno C, Cabinio M, Sorrentino S, Baglio F, Bedoni M. An SPRi-based biosensor pilot study: Analysis of multiple circulating extracellular vesicles and hippocampal volume in Alzheimer's disease. J Pharm Biomed Anal 2020; 192:113649. [PMID: 33038641 DOI: 10.1016/j.jpba.2020.113649] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 01/16/2023]
Abstract
One of the main hurdles in the study of Alzheimer's Disease (AD) is the lack of easily accessible and sensitive biomarkers for the diagnosis, the prediction of the disease progression rate and the evaluation of rehabilitative and pharmacological treatments. Extracellular Vesicles (EVs) are nanoscale particles released by body cells, studied as promising biomarkers of AD as they are involved in the onset and progression of the disease. In the strive for a reliable and sensitive method to analyze EVs, we applied our recently developed biosensor based on Surface Plasmon Resonance imaging (SPRi) technology for the identification and profiling of neural EVs populations circulating in the plasma of 10 AD patients and 10 healthy subjects. The SPRi-array was designed to separate simultaneously EVs released by neurons, astrocytes, microglia and oligodendrocytes, and to evaluate the presence and the relative amount of specific surface molecules related to pathological processes including translocator protein (TSPO), β-Amyloid and ganglioside M1. As results, significant variations in the relative amount and cargoes of specific brain-derived populations of EVs were observed comparing EVs coming from AD patients and healthy subjects, finding the main differences in the activation phenotype of microglia EVs, in the lipid moieties on generic EVs and in the β-Amyloid expression on surfaces of neuronal EVs. Besides, the demonstrated correlation of SPRi data with Magnetic Resonance Imaging analysis, provided support for using the SPRi-based biosensor for the evaluation of neurodegeneration detecting and characterizing circulating EVs as peripheral biomarkers for the diagnosis and monitoring of progression and rehabilitation treatments in AD patients.
Collapse
Affiliation(s)
- Silvia Picciolini
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, Milan, Italy
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, Milan, Italy
| | | | - Monia Cabinio
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, Milan, Italy
| | | | - Francesca Baglio
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, Milan, Italy
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, Milan, Italy.
| |
Collapse
|