1
|
Solaymani-Mohammadi S. The IL-21/IL-21R signaling axis regulates CD4+ T-cell responsiveness to IL-12 to promote bacterial-induced colitis. J Leukoc Biol 2024; 116:726-737. [PMID: 38498592 PMCID: PMC11408709 DOI: 10.1093/jleuko/qiae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
IL-21/IL-21R signaling dysregulation is linked to multiple chronic intestinal inflammatory disorders in humans and animal models of human diseases. In addition to its critical requirement for the generation and development of germinal center B cells, IL-21/IL-21R signaling can also regulate the effector functions of a variety of T-cell subsets. The antibody-mediated abrogation of IL-21/IL-21R signaling led to the impaired expression of IFN-γ by mucosal CD4+ T cells from human subjects with colitis, suggesting an IL-21/IL-21R-triggered positive feedback loop of the TH1 immune response in the colon. Despite recent advances in our understanding of the mechanisms underpinning the regulation of proinflammatory immune responses by the IL-21/IL-21R signaling axis, it remains unclear how this pathway or its downstream molecules contribute to inflammation during bacterial-induced colitis. This study found that IL-21 enhances the surface expression of IL-12Rβ2, but not IL-12Rβ1, in CD4+ T cells, leading to TH1 differentiation and stability. Consistently, these findings also point to an indispensable role of the IL-12Rβ2 signaling axis in promoting proinflammatory immune responses during Citrobacter rodentium-induced colitis. Genetic deletion of the IL-12Rβ2 signaling pathway led to the attenuation of C. rodentium-induced colitis in vivo. The genetic deletion of the IL-12Rβ2 signaling pathway did not alter the host's ability to respond adequately to C. rodentium infection or the ability of Il12rb2-/- mice to express antigen-specific cytokines (IFN-γ, IL-17A). IL-21 is a pleiotropic cytokine exerting a wide range of immunomodulatory functions in multiple tissues, and its direct targeting may result in undesirable off-target consequences. These findings highlight the possibility for targeted manipulations of signaling cascades downstream of main regulators of proinflammatory responses to control invading pathogens while preserving the integrity of host immune responses. A better understanding of the novel mechanisms by which IL-21/IL-21R signaling regulates bacterial-induced colitis will provide insights into the development of new therapeutic and preventive strategies to harness IL-21/IL-21R signaling or its downstream molecules to treat infectious colitis.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 North Columbia Road, Suite W315, Stop 9037, Grand Forks, ND, United States
| |
Collapse
|
2
|
Zhou F, Guo YX, Gao R, Ji XY, Tang YX, Wang LB, Zhang Y, Li X. Quercetin regulates dendritic cell activation by targeting STAT4 in the treatment of experimental autoimmune encephalomyelitis. Toxicol Appl Pharmacol 2024; 488:116980. [PMID: 38823456 DOI: 10.1016/j.taap.2024.116980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Multiple sclerosis (MS) is a class of autoimmune diseases mainly caused by the immune system attacking the myelin sheath of the axons in the nervous system. Although the pathogenesis of MS is complex, studies have shown that dendritic cells (DCs) play a vital role in the pathogenesis of MS. Quercetin (QU) has a unique advantage in clinical application, especially for treating autoimmune diseases. However, the mechanism of QU in the treatment of experimental autoimmune encephalomyelitis (EAE) remains unclear. In this study, we explore the potential role of QU in EAE. Finally, we find that QU has anti-inflammatory activities and neural protective effects in EAE. The experimental results suggest that the cellular basis for QU's function is to inhibit the activation of DCs while modulating the Th17 cell differentiation in the co-culture system. Further, QU may target STAT4 to inhibit its activation in DCs. This work will be of great significance for the future development and utilization of QU.
Collapse
Affiliation(s)
- Fang Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu-Xin Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rui Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiao-Yu Ji
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu-Xuan Tang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Li-Bin Wang
- Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
3
|
Li X, Wu M, Lu J, Yu J, Chen D. Interleukin-21 as an adjuvant in cancer immunotherapy: Current advances and future directions. Biochim Biophys Acta Rev Cancer 2024; 1879:189084. [PMID: 38354828 DOI: 10.1016/j.bbcan.2024.189084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Immunotherapy has revolutionized cancer treatment. However, it's well-recognized that a considerable proportion of patients fail to benefit from immunotherapy, and to improve immunotherapy response is clinically urgent. Insufficient immune infiltration and immunosuppressive tumor microenvironments (TME) are main contributors to immunotherapy resistance. Thus sustaining functional self-renewal capacity for immune cells and subverting immune-suppressive signals are potential strategies for boosting the efficacy of immunotherapy. Interleukin-21 (IL-21), a crucial cytokine, which could enhance cytotoxic function of immune cells and reduces immunosuppressive cells enrichment in TME, shows promising orientations as an immunoadjuvant in tumor immunotherapy. This review focuses on IL-21 in cancer treatment, including function and mechanisms of IL-21, preclinical and clinical studies, and future directions for IL-21-assisted therapies.
Collapse
Affiliation(s)
- Xinyang Li
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Lu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
4
|
Nambala P, Mulindwa J, Noyes H, Alibu VP, Nerima B, Namulondo J, Nyangiri O, Matovu E, MacLeod A, Musaya J. Differences in gene expression profiles in early and late stage rhodesiense HAT individuals in Malawi. PLoS Negl Trop Dis 2023; 17:e0011803. [PMID: 38055777 PMCID: PMC10727365 DOI: 10.1371/journal.pntd.0011803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/18/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
T. b. rhodesiense is the causative agent of Rhodesian human African trypanosomiasis (r-HAT) in Malawi. Clinical presentation of r-HAT in Malawi varies between foci and differs from East African HAT clinical phenotypes. The purpose of this study was to gain more insights into the transcriptomic profiles of patients with early stage 1 and late stage 2 HAT disease in Malawi. Whole blood from individuals infected with T. b. rhodesiense was used for RNA-Seq. Control samples were from healthy trypanosome negative individuals matched on sex, age range, and disease foci. Illumina sequence FASTQ reads were aligned to the GRCh38 release 84 human genome sequence using HiSat2 and differential analysis was done in R Studio using the DESeq2 package. XGR, ExpressAnalyst and InnateDB algorithms were used for functional annotation and gene enrichment analysis of significant differentially expressed genes. RNA-seq was done on 23 r-HAT case samples and 28 healthy controls with 7 controls excluded for downstream analysis as outliers. A total of 4519 genes were significant differentially expressed (p adjusted <0.05) in individuals with early stage 1 r-HAT disease (n = 12) and 1824 genes in individuals with late stage 2 r-HAT disease (n = 11) compared to controls. Enrichment of innate immune response genes through neutrophil activation was identified in individuals with both early and late stages of the disease. Additionally, lipid metabolism genes were enriched in late stage 2 disease. We further identified uniquely upregulated genes (log2 Fold Change 1.4-2.0) in stage 1 (ZNF354C) and stage 2 (TCN1 and MAGI3) blood. Our data add to the current understanding of the human transcriptome profiles during T. b. rhodesiense infection. We further identified biological pathways and transcripts enriched than were enriched during stage 1 and stage 2 r-HAT. Lastly, we have identified transcripts which should be explored in future research whether they have potential of being used in combination with other markers for staging or r-HAT.
Collapse
Affiliation(s)
- Peter Nambala
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
- Kamuzu University of Health Sciences, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Julius Mulindwa
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Vincent Pius Alibu
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Barbara Nerima
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Joyce Namulondo
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Oscar Nyangiri
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Enock Matovu
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Janelisa Musaya
- Kamuzu University of Health Sciences, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | |
Collapse
|
5
|
Chen XD, Xie J, Wei Y, Yu JF, Cao Y, Xiao L, Wu XJ, Mao CJ, Kang RM, Ye YG. Immune modulation of Th1/Th2/Treg/Th17/Th9/Th21 cells in rabbits infected with Eimeria stiedai. Front Cell Infect Microbiol 2023; 13:1230689. [PMID: 37593762 PMCID: PMC10431940 DOI: 10.3389/fcimb.2023.1230689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Despite long-term integrated control programs for Eimeria stiedai infection in China, hepatic coccidiosis in rabbits persists. Th1, Th2, Th17, Treg, Th9, and Th21 cells are involved in immune responses during pathogen infection. It is unclear whether Th cell subsets are also involved in E. stiedai infection. Their roles in the immunopathology of this infection remain unknown. Therefore, monitoring these T-cell subsets' immune responses during primary infection of E. stiedai at both transcriptional (mRNA) and protein (cytokines) levels is essential. Methods In experimentally infected New Zealand white rabbits, mRNA expression levels of their transcript-TBX2 (Th1), GATA3 (Th2), RORC (Th17), Foxp3 (Treg), SPI1 (Th9), and BCL6 (Th21)-were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR), whereas Th1 (IFN-g and TNF-a), Th2 (IL4), Th17 (IL17A and IL6), Treg (IL10 and TGF-b1), Th9 (IL9), and Th21 (IL21) cytokines were measured using enzyme-linked immunosorbent assays (ELISAs). Results We found that levels of TBX2, GATA3, RORC, SPI1, and BCL6 in the livers of infected rabbits were elevated on days 5 and 15 post-infection (PI). The concentrations of their distinctive cytokines IFN-g and TNF-a for Th1, IL4 for Th2, IL17A for Th17, IL9 for Th9, IL21 for Th21, and IL10 for Treg IL10 were also significantly increased on days 5 and 15 PI, respectively (p < 0.05). On day 23 PI, GATA3 with its cytokine IL4, RORC with IL17A, Foxp3 with IL10 and TGF-b1, and SPI1 with IL9 were significantly decreased, but TBX2 with IFN-g and IL6 remained elevated. Discussion Our findings are the first evidence of Th1/Th2/Treg/Th17/Th9/Th21 changes in E. stiedai-infected rabbits and provide insights into immune regulation mechanisms and possible vaccine development.
Collapse
Affiliation(s)
- Xiao-Di Chen
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jing Xie
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yong Wei
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Ji-Feng Yu
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Ye Cao
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Lu Xiao
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xue-Jing Wu
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Cong-Jian Mao
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Run-Min Kang
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yong-Gang Ye
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| |
Collapse
|
6
|
Chen CS, Zhang YG, Wang HJ, Fan HN. Effect and mechanism of reactive oxygen species-mediated NOD-like receptor family pyrin domain-containing 3 inflammasome activation in hepatic alveolar echinococcosis. World J Gastroenterol 2023; 29:2153-2171. [PMID: 37122606 PMCID: PMC10130966 DOI: 10.3748/wjg.v29.i14.2153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a significant component of the innate immune system that plays a vital role in the development of various parasitic diseases. However, its role in hepatic alveolar echinococcosis (HAE) remains unclear.
AIM To investigate the NLRP3 inflammasome and its mechanism of activation in HAE.
METHODS We assessed the expression of NLRP3, caspase-1, interleukin (IL)-1β, and IL-18 in the marginal zone and corresponding normal liver of 60 patients with HAE. A rat model of HAE was employed to investigate the role of the NLRP3 inflammasome in the marginal zone of HAE. Transwell experiments were conducted to investigate the effect of Echinococcus multilocularis (E. multilocularis) in stimulating Kupffer cells and hepatocytes. Furthermore, immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assay were used to evaluate NLRP3, caspase-1, IL-1β, and IL-18 expression; flow cytometry was used to detect apoptosis and reactive oxygen species (ROS).
RESULTS NLRP3 inflammasome activation was significantly associated with ROS. Inhibition of ROS production decreased NLRP3-caspase-1-IL-1β pathway activation and mitigated hepatocyte damage and inflammation.
CONCLUSION E. multilocularis induces hepatocyte damage and inflammation by activating the ROS-mediated NLRP3-caspase-1-IL-1β pathway in Kupffer cells, indicating that ROS may serve as a potential target for the treatment of HAE.
Collapse
Affiliation(s)
- Cai-Song Chen
- Research Center for High Altitude Medicine of Qinghai University, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Yao-Gang Zhang
- Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Hai-Jiu Wang
- Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Hai-Ning Fan
- Department of Hepatobiliary and Pancreatic Surgery, Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| |
Collapse
|
7
|
Zhang Y, Su J. Interleukin-2 family cytokines: An overview of genes, expression, signaling and functional roles in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104645. [PMID: 36696924 DOI: 10.1016/j.dci.2023.104645] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The interleukin-2 (IL-2) family cytokines include IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, which share γ chain (γc) subunit in receptors. The IL-2 family cytokines have unique biological effects that regulate differentiation, survival and activation of multiple lymphocyte lineages. Deficiency of IL-2 family signaling pathway in mammals prevents CD4+ T cells from developing effector functions and CD8+ T cells from developing immunological memory. In the present review, we addressed available information from teleost IL-2 family cytokines and discussed implications in teleost immunity. Also, we described and discussed their expression profiles, receptors, signaling transductions and functions. In teleost, IL-2 family has 5 members (IL-2, IL-4/13, IL-7, IL-15, IL-21) without IL-9, and their receptors share a common γc subunit and include other 6 subunits (IL-2Rβ1/2, IL-4Rα1/2, IL-13Rα1/2, IL-7Rα, IL-15Rα, and IL-21Rα1/2). Some paralogues have changes in domain structure and show differential expression, modulation, functions. IL-2 family cytokines constitutively express in many immune associated tissues and are largely induced after pathogenic microbial stimulation. In general, there are relatively conserved functions in the IL-2 family throughout vertebrates, and many of the key IL-2 family members are important in lymphocyte proliferation and differentiation, development, inflammation from fishes to mammals. This review will give an update on the effective information of teleost IL-2 family cytokines. Thus, it will provide a source of reference for other researchers/readers and inspire further interest.
Collapse
Affiliation(s)
- Yanqi Zhang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianguo Su
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
8
|
Denaro N, Solinas C, Garrone O, Cauchi C, Ruatta F, Wekking D, Abbona A, Paccagnella M, Merlano MC, Lo Nigro C. The Role of Cytokinome in the HNSCC Tumor Microenvironment: A Narrative Review and Our Experience. Diagnostics (Basel) 2022; 12:2880. [PMID: 36428939 PMCID: PMC9689412 DOI: 10.3390/diagnostics12112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer. In locally advanced (LA) HNSCC, a multidisciplinary approach consisting of surgery followed by chemoradiation (CRT) or definitive CRT is the mainstay of treatment. In recurrent metastatic (R/M), HNSCC immune checkpoint inhibitors (ICIs) with or without chemotherapy represent the new first-line option. However, cancer will recur in about two out of five patients with LA HNSCC. If progression occurs within six months from platin-radiotherapy treatment, anti-programmed cell death-1 (PD-1) may be prescribed. Otherwise, immunotherapy with or without chemotherapy might be considered if PD-L1 is expressed. Despite several improvements in the outcome of patients with R/M HNSCC, overall survival (OS) remains dismal, equaling a median of 14 months. In-depth knowledge of the tumor microenvironment (TME) would be required to change the course of this complex disease. In recent years, many predictive and prognostic biomarkers have been studied in the HNSCC TME, but none of them alone can select the best candidates for response to ICIs or targeted therapy (e.g., Cetuximab). The presence of cytokines indicates an immune response that might occur, among other things, after tumor antigen recognition, viral and bacterial infection, and physic damage. An immune response against HNSCC results in the production of some cytokines that induce a pro-inflammatory response and attract cells, such as neutrophils, macrophages, and T cell effectors, to enhance the innate and adaptive anti-tumor response. We revised the role of a group of cytokines as biomarkers for treatment response in HNSCC.
Collapse
Affiliation(s)
- Nerina Denaro
- Oncology Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Cinzia Solinas
- Medical Oncology, AOU Cagliari, Policlinico di Monserrato (CA), 09042 Monserrato, Italy
| | - Ornella Garrone
- Oncology Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Carolina Cauchi
- Oncology Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Fiorella Ruatta
- Oncology Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Demi Wekking
- Amsterdam UMC, Location Academic Medical Centre, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Abbona
- Translational Oncology Fondazione Arco Cuneo, 12100 Cuneo, Italy
| | | | - Marco Carlo Merlano
- Candiolo Cancer Institute, FPO-IRCCS Candiolo (Turin), 10060 Candiolo, Italy
| | | |
Collapse
|
9
|
Shater H, Fawzy M, Farid A, El-Amir A, Fouad S, Madbouly N. B-cell activating factor and A proliferation-inducing ligand in relation to intima-media thickness as biomarkers of premature atherosclerosis in systemic lupus erythematosus patients. Am J Med Sci 2022; 364:646-654. [PMID: 35580639 DOI: 10.1016/j.amjms.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/10/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The aim of this study was to assess the correlation of the serum B-cell activating factor (BAFF), A proliferation-inducing ligand (APRIL) and interleukin (IL)-21 with carotid intima-media thickness (cIMT) to evaluate their efficacy as non-invasive biomarkers for the risk of premature development of atherosclerosis. METHODS ELISA test was used to quantify serum BAFF, APRIL and IL-21 in 40 patients with systemic lupus erythematosus (SLE) and 20 healthy controls (HCs). The obtained results were correlated with disease duration, anti-double stranded DNA, complement proteins levels, lipid profile, cIMT and the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). RESULTS Serum BAFF, APRIL and IL-21 were significantly increased in SLE compared to HCs. Positive correlation was recorded between BAFF (r = 0.51) and APRIL (r = 0.52) with the cIMT. IL-21 correlated positively with SLEDAI (r = 0.33) and negatively with BAFF (r = -0.37) and APRIL (r = -0.44). According to the multiple logistic regression analysis, we found that low-density lipoprotein, serum BAFF and APRIL values were independent factors for cIMT in SLE. To discriminate premature atherosclerosis in patients with SLE, BAFF ≥455 pg/ml yielded 88.9% sensitivity with 100% specificity while APRIL ≥600 pg/ml yielded 95% sensitivity with 100% specificity. IL-21 ≥240 pg/ml yielded 66.7% sensitivity and 100% specificity. CONCLUSIONS Circulating BAFF and APRIL in patients with SLE were correlated to disease activity and cIMT, suggesting that they could be used as a peripheral blood biomarker for the occurrence of premature atherosclerosis in SLE.
Collapse
Affiliation(s)
- Hend Shater
- Immunology Division, Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Mary Fawzy
- Rheumatology and Immunology unit, Department of Internal Medicine, Cairo University, Cairo, Egypt
| | - Alyaa Farid
- Immunology Division, Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Azza El-Amir
- Immunology Division, Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Salwa Fouad
- Immunology Division, Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Neveen Madbouly
- Immunology Division, Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Gao S, Han C, Ye H, Chen Q, Huang J. Transcriptome analysis of the spleen provides insight into the immunoregulation of Scortum barcoo under Streptococcus agalactiae infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114095. [PMID: 36116237 DOI: 10.1016/j.ecoenv.2022.114095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Jade perch (Scortum barcoo) is a freshwater fish with substantial economic value, which has been widely cultivated all over the world. However, with the intensification and expansion of farming, several bacterial and viral diseases have occurred in jade perch. To understand the immune response of jade perch against Streptococcus agalactiae (Group B Streptococcus, GBS), we performed a histopathological examination and transcriptome sequencing of jade perch spleen after artificial bacterial infection. GBS infection can cause structural changes and even necrosis of the jade perch spleen, which may affect the survival of infected individuals. A total of 144,458 unigenes were obtained through de novo assembly of spleen transcriptome. Among them, 1821 unigenes were identified as DEGs, including 1415 up-regulated and 406 down-regulated unigenes in the infection group. Moreover, the analysis of GO and KEGG revealed that many GO terms and pathways were involved in the host immune response, such as Toll-like receptor signaling pathway, Cytokine-cytokine receptor interaction, and TNF signaling pathway. In addition, according to transcriptome data and qRT-PCR analysis, the expression levels of many cytokines that participate in the inflammatory response changed a lot after GBS infection. Overall, this transcriptomic analysis provided valuable information for studying the immune response of jade perch against bacterial infection.
Collapse
Affiliation(s)
- Songze Gao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou 51006, PR China.
| | - Hangyu Ye
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Qinghua Chen
- South China Institute of Environmental Science, MEE, Guangzhou 510610, PR China
| | - Jianrong Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
11
|
Scorza BM, Mahachi KG, Cox AD, Toepp AJ, Pessoa-Pereira D, Tyrrell P, Buch J, Foltz JA, Lee D, Petersen CA. Role of NK-Like CD8 + T Cells during Asymptomatic Borrelia burgdorferi Infection. Infect Immun 2022; 90:e0055521. [PMID: 35416707 PMCID: PMC9119074 DOI: 10.1128/iai.00555-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Lyme disease (LD) due to Borrelia burgdorferi is the most prevalent vector-borne disease in the United States. There is a poor understanding of how immunity contributes to bacterial control, pathology, or both during LD. Dogs in an area of endemicity were screened for B. burgdorferi and Anaplasma exposure and stratified according to seropositivity, presence of LD symptoms, and doxycycline treatment. Significantly elevated serum interleukin-21 (IL-21) and increased circulating CD3+ CD94+ lymphocytes with an NK-like CD8+ T cell phenotype were predominant in asymptomatic dogs exposed to B. burgdorferi. Both CD94+ T cells and CD3- CD94+ lymphocytes, corresponding to NK cells, from symptomatic dogs expressed gamma interferon (IFN-γ) at a 3-fold-higher frequency upon stimulation with B. burgdorferi than the same subset among endemic controls. Surface expression of activating receptor NKp46 was reduced on CD94+ T cells from LD, compared to cells after doxycycline treatment. A higher frequency of NKp46-expressing CD94+ T cells correlated with significantly increased peripheral blood mononuclear cell (PBMC) cytotoxic activity via calcein release assay. PBMCs from dogs with symptomatic LD showed significantly reduced killing ability compared with endemic control PBMCs. An elevated NK-like CD8+ T cell response was associated with protection against development of clinical LD, while excess IFN-γ was associated with clinical disease.
Collapse
Affiliation(s)
- Breanna M. Scorza
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, USA
| | - Kurayi G. Mahachi
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, USA
| | - Arin D. Cox
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, USA
| | - Angela J. Toepp
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, USA
| | | | | | - Jesse Buch
- IDEXX Laboratories, Inc., Westbrook, Maine, USA
| | - Jennifer A. Foltz
- Division of Hematology and Oncology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Dean Lee
- Division of Hematology and Oncology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | | |
Collapse
|
12
|
Sottoriva K, Paik NY, White Z, Bandara T, Shao L, Sano T, Pajcini KV. A Notch/IL-21 signaling axis primes bone marrow T cell progenitor expansion. JCI Insight 2022; 7:e157015. [PMID: 35349492 PMCID: PMC9090257 DOI: 10.1172/jci.insight.157015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term impairment in T cell-mediated adaptive immunity is a major clinical obstacle following treatment of blood disorders with hematopoietic stem cell transplantation. Although T cell development in the thymus has been extensively characterized, there are significant gaps in our understanding of prethymic processes that influence early T cell potential. We have uncovered a Notch/IL-21 signaling axis in bone marrow common lymphoid progenitor (CLP) cells. IL-21 receptor expression was driven by Notch activation in CLPs, and in vivo treatment with IL-21 induced Notch-dependent CLP proliferation. Taking advantage of this potentially novel signaling axis, we generated T cell progenitors ex vivo, which improved repopulation of the thymus and peripheral lymphoid organs of mice in an allogeneic transplant model. Importantly, Notch and IL-21 activation were equally effective in the priming and expansion of human cord blood cells toward the T cell fate, confirming the translational potential of the combined treatment.
Collapse
Affiliation(s)
| | - Na Yoon Paik
- Department of Pharmacology and Regenerative Medicine and
| | - Zachary White
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | | - Lijian Shao
- Department of Pharmacology and Regenerative Medicine and
| | - Teruyuki Sano
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
13
|
Ianiro G, Iorio A, Porcari S, Masucci L, Sanguinetti M, Perno CF, Gasbarrini A, Putignani L, Cammarota G. How the gut parasitome affects human health. Therap Adv Gastroenterol 2022; 15:17562848221091524. [PMID: 35509426 PMCID: PMC9058362 DOI: 10.1177/17562848221091524] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
The human gut microbiome (GM) is a complex ecosystem that includes numerous prokaryotic and eukaryotic inhabitants. The composition of GM can influence an array of host physiological functions including immune development. Accumulating evidence suggest that several members of non-bacterial microbiota, including protozoa and helminths, that were earlier considered as pathogens, could have a commensal or beneficial relationship with the host. Here we examine the most recent data from omics studies on prokaryota-meiofauna-host interaction as well as the impact of gut parasitome on gut bacterial ecology and its role as 'immunological driver' in health and disease to glimpse new therapeutic perspectives.
Collapse
Affiliation(s)
| | - Andrea Iorio
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Serena Porcari
- Gastroenterology Unit, Fondazione Policlinico Gemelli IRCCS, Roma, Italy
| | - Luca Masucci
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Federico Perno
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, and Multimodal Laboratory Medicine Research Area, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Antonio Gasbarrini
- Gastroenterology Unit, Fondazione Policlinico Gemelli IRCCS, Roma, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Gastroenterology Unit, Fondazione Policlinico Gemelli IRCCS, Roma, Italy
| |
Collapse
|
14
|
Kochayoo P, Thawornpan P, Wangriatisak K, Changrob S, Leepiyasakulchai C, Khowawisetsut L, Adams JH, Chootong P. Interferon-γ signal drives differentiation of T-bet hi atypical memory B cells into plasma cells following Plasmodium vivax infection. Sci Rep 2022; 12:4842. [PMID: 35318412 PMCID: PMC8941117 DOI: 10.1038/s41598-022-08976-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
For development of a long-lasting protective malaria vaccine, it is crucial to understand whether Plasmodium-induced memory B cells (MBCs) or plasma cells develop and stably contribute to protective immunity, or on the contrary the parasite suppresses antibody responses by inducing MBC dysfunction. The expansion of T-bethi atypical MBCs is described in chronic Plasmodium falciparum-exposed individuals. However, it remains unclear whether accumulation of T-bethi atypical MBCs is indicative of a protective role or rather an impaired function of the immune system in malaria. Here, the phenotypic and functional features of T-bethi atypical MBCs were studied in P. vivax patients living in an area of low malaria transmission. During P. vivax infection, the patients produced a twofold higher frequency of T-bethi atypical MBCs compared to malaria non-exposed individuals. This distinct atypical MBC subset had a switched IgG phenotype with overexpression of activation markers and FcRL5, and decreased Syk phosphorylation upon BCR stimulation. Post-infection, expansion of T-bethi IgG+ atypical MBCs was maintained for at least 3 months. Further studies of the contribution of T-bethi atypical MBC function to humoral immunity showed that synergizing IFN-γ with TLR7/8 and IL-21 signals was required for their differentiation into plasma cells and antibody secretion.
Collapse
Affiliation(s)
- Piyawan Kochayoo
- grid.10223.320000 0004 1937 0490Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Pongsakorn Thawornpan
- grid.10223.320000 0004 1937 0490Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Kittikorn Wangriatisak
- grid.10223.320000 0004 1937 0490Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Siriruk Changrob
- grid.10223.320000 0004 1937 0490Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Chaniya Leepiyasakulchai
- grid.10223.320000 0004 1937 0490Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Ladawan Khowawisetsut
- grid.10223.320000 0004 1937 0490Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand
| | - John H. Adams
- grid.170693.a0000 0001 2353 285XDepartment of Global Health, University of South Florida, Tampa, FL 33612 USA
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
15
|
Mertowska P, Mertowski S, Smarz-Widelska I, Grywalska E. Biological Role, Mechanism of Action and the Importance of Interleukins in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23020647. [PMID: 35054831 PMCID: PMC8775480 DOI: 10.3390/ijms23020647] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Each year, the number of patients who are diagnosed with kidney disease too late is increasing, which leads to permanent renal failure. This growing problem affects people of every age, sex and origin, and its full etiopathogenesis is not fully understood, although the involvement of genetic susceptibility, infections, immune disorders or high blood pressure is suggested. Difficulties in making a correct and quick diagnosis are caused by the lack of research on early molecular markers, as well as educational and preventive activities among the public, which leads to the late detection of kidney diseases. An important role in the homeostasis and disease progression, including kidney diseases, is attributed to interleukins, which perform several biological functions and interact with other cells and tissues of the body. The aim of this article was to systematize the knowledge about the biological functions performed by interleukins in humans and their involvement in kidney diseases development. In our work, we took into account the role of interleukins in acute and chronic kidney disease and kidney transplantation.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
- Correspondence:
| | - Iwona Smarz-Widelska
- Department of Nephrology, Cardinal Stefan Wyszynski Provincial Hospital in Lublin, Al. Kraśnicka Street, 20-718 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| |
Collapse
|
16
|
Damous LL, Shiroma ME, Carvalho AETSD, Soares-Jr JM, Krieger JE, Baracat EC. Gene expression profile in experimental frozen-thawed ovarian grafts treated with scaffold-base delivery of adipose tissue-derived stem cells. Clinics (Sao Paulo) 2022; 77:100066. [PMID: 35777300 PMCID: PMC9253596 DOI: 10.1016/j.clinsp.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Gelfoam scaffold is a feasible and safe non-invasive technique for Adipose tissue-derived Stem Cell (ASC)-delivery in the treatment of frozen-thawed ovarian autografts. This study seeks to analyze the genes expression profile of rat frozen-thawed ovarian autografts treated with scaffold-based delivery of adipose tissue-derived stem cells. METHODS Eighteen adult Wistar rats were distributed into three groups: Control (frozen-thawed only); Group 1 (G1) and Group 2 (G2) (frozen-thawed ovaries treated with culture medium or ASC, respectively). Both treatments were performed immediately after autologous retroperitoneal transplant with scaffold-based delivery. The ovarian grafts were retrieved 30 days after transplantation. Quantitative gene expression (qPCR) for apoptosis, angiogenesis, and inflammatory cytokines (84 genes in each pathway) were evaluated by RT-PCR. Graft morphology (HE), apoptosis (cleaved-caspase-3), neoangiogenesis (VEGF), and cellular proliferation (Ki-67) were assessed. RESULTS In grafts treated with ASC, the apoptosis pathway showed the highest number of genes over-regulated - 49 genes - compared to inflammation cytokines and angiogenesis pathway - 36 and 23 genes respectively, compared to grafts treated with culture medium. Serpinb5 family was highlighted in the angiogenesis pathway and Cxcl6 in the inflammation cytokines pathway. In the apoptosis pathway, the most over-regulated gene was Capsase14. ASC treatment promoted the reduction of cleaved caspase-3 in the theca internal layer and increased cell proliferation by Ki-67 in the granulosa layer without altering VEGF. A mild inflammatory infiltrate was observed in both groups. CONCLUSION ASC therapy in rat frozen-thawed ovarian autografts promoted an abundance of genes involved with apoptosis and inflammatory cytokines without compromising the ovary graft morphology and viability for short time. Further studies are necessary to evaluate the repercussion of apoptosis and inflammation on the graft in the long term.
Collapse
Affiliation(s)
- Luciana Lamarão Damous
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Marcos Eiji Shiroma
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana Elisa Teófilo Saturi de Carvalho
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (Incor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Maria Soares-Jr
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Eduardo Krieger
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (Incor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Edmund C Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
17
|
Kanjanapruthipong T, Sukphopetch P, Reamtong O, Isarangkul D, Muangkaew W, Thiangtrongjit T, Sansurin N, Fongsodsri K, Ampawong S. Cytoskeletal Alteration Is an Early Cellular Response in Pulmonary Epithelium Infected with Aspergillus fumigatus Rather than Scedosporium apiospermum. MICROBIAL ECOLOGY 2022; 83:216-235. [PMID: 33890146 DOI: 10.1007/s00248-021-01750-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Invasive aspergillosis and scedosporiosis are life-threatening fungal infections with similar clinical manifestations in immunocompromised patients. Contrarily, Scedosporium apiospermum is susceptible to some azole derivative but often resistant to amphotericin B. Histopathological examination alone cannot diagnose these two fungal species. Pathogenesis studies could contribute to explore candidate protein markers for new diagnosis and treatment methods leading to a decrease in mortality. In the present study, proteomics was conducted to identify significantly altered proteins in A549 cells infected with or without Aspergillus fumigatus and S. apiospermum as measured at initial invasion. Protein validation was performed with immunogold labelling alongside immunohistochemical techniques in infected A549 cells and lungs from murine models. Further, cytokine production was measured, using the Bio-Plex-Multiplex immunoassay. The cytoskeletal proteins HSPA9, PA2G4, VAT1, PSMA2, PEX1, PTGES3, KRT1, KRT9, CLIP1 and CLEC20A were mainly changed during A. fumigatus infection, while the immunologically activated proteins WNT7A, GAPDH and ANXA2 were principally altered during S. apiospermum infection. These proteins are involved in fungal internalisation and structural destruction leading to pulmonary disorders. Interleukin (IL)-21, IL-1α, IL-22, IL-2, IL-8, IL-12, IL-17A, interferon-γ and tumour necrosis factor-α were upregulated in both aspergillosis and scedosporiosis, although more predominately in the latter, in accordance with chitin synthase-1 and matrix metalloproteinase levels. Our results demonstrated that during invasion, A. fumigatus primarily altered host cellular integrity, whereas S. apiospermum chiefly induced and extensively modulated host immune responses.
Collapse
Affiliation(s)
- Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Duangnate Isarangkul
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Nichapa Sansurin
- Northeast Laboratory Animal Center, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
18
|
Immunosuppression in Malaria: Do Plasmodium falciparum Parasites Hijack the Host? Pathogens 2021; 10:pathogens10101277. [PMID: 34684226 PMCID: PMC8536967 DOI: 10.3390/pathogens10101277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Malaria reflects not only a state of immune activation, but also a state of general immune defect or immunosuppression, of complex etiology that can last longer than the actual episode. Inhabitants of malaria-endemic regions with lifelong exposure to the parasite show an exhausted or immune regulatory profile compared to non- or minimally exposed subjects. Several studies and experiments to identify and characterize the cause of this malaria-related immunosuppression have shown that malaria suppresses humoral and cellular responses to both homologous (Plasmodium) and heterologous antigens (e.g., vaccines). However, neither the underlying mechanisms nor the relative involvement of different types of immune cells in immunosuppression during malaria is well understood. Moreover, the implication of the parasite during the different stages of the modulation of immunity has not been addressed in detail. There is growing evidence of a role of immune regulators and cellular components in malaria that may lead to immunosuppression that needs further research. In this review, we summarize the current evidence on how malaria parasites may directly and indirectly induce immunosuppression and investigate the potential role of specific cell types, effector molecules and other immunoregulatory factors.
Collapse
|
19
|
A T-Cell Epitope-Based Multi-Epitope Vaccine Designed Using Human HLA Specific T Cell Epitopes Induces a Near-Sterile Immunity against Experimental Visceral Leishmaniasis in Hamsters. Vaccines (Basel) 2021; 9:vaccines9101058. [PMID: 34696166 PMCID: PMC8537199 DOI: 10.3390/vaccines9101058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Visceral leishmaniasis is a neglected tropical disease affecting 12 million people annually. Even in the second decade of the 21st century, it has remained without an effective vaccine for human use. In the current study, we designed three multiepitope vaccine candidates by the selection of multiple IFN-γ inducing MHC-I and MHC-II binder T-cell specific epitopes from three previously identified antigen genes of Leishmania donovani from our lab by an immuno-informatic approach using IFNepitope, the Immune Epitope Database (IEDB) T cell epitope identification tools, NET-MHC-1, and NET MHC-2 webservers. We tested the protective potential of these three multiepitope proteins as a vaccine in a hamster model of visceral leishmaniasis. The immunization data revealed that the vaccine candidates induced a very high level of Th1 biased protective immune response in-vivo in a hamster model of experimental visceral leishmaniasis, with one of the candidates inducing a near-sterile immunity. The vaccinated animals displayed highly activated monocyte macrophages with the capability of clearing intracellular parasites due to increased respiratory burst. Additionally, these proteins induced activation of polyfunctional T cells secreting INF-γ, TNF-α, and IL-2 in an ex-vivo stimulation of human peripheral blood mononuclear cells, further supporting the protective nature of the designed candidates.
Collapse
|
20
|
Foyle KL, Sharkey DJ, Moldenhauer LM, Green ES, Wilson JJ, Roccisano CJ, Hull ML, Tremellen KP, Robertson SA. Effect of Intralipid infusion on peripheral blood T cells and plasma cytokines in women undergoing assisted reproduction treatment. Clin Transl Immunology 2021; 10:e1328. [PMID: 34408876 PMCID: PMC8358997 DOI: 10.1002/cti2.1328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives Intravenous infusion of Intralipid is an adjunct therapy in assisted reproduction treatment (ART) when immune‐associated infertility is suspected. Here, we evaluated the effect of Intralipid infusion on regulatory T cells (Treg cells), effector T cells and plasma cytokines in peripheral blood of women undertaking IVF. Methods This prospective, observational pilot study assessed Intralipid infusion in 14 women exhibiting recurrent implantation failure, a clinical sign of immune‐associated infertility. Peripheral blood was collected immediately prior to and 7 days after intravenous administration of Intralipid. Plasma cytokines were measured by Luminex, and T‐cell subsets were analysed by flow cytometry. Results A small increase in conventional CD8+ T cells occurred after Intralipid infusion, but no change was seen in CD4+ Treg cells, or naïve, memory or effector memory T cells. Proliferation marker Ki67, transcription factors Tbet and RORγt, and markers of suppressive capacity CTLA4 and HLA‐DR were unchanged. Dimensionality‐reduction analysis using the tSNE algorithm confirmed no phenotype shift within Treg cells or other T cells. Intralipid infusion increased plasma CCL2, CCL3, CXCL8, GM‐CSF, G‐CSF, IL‐6, IL‐21, TNF and VEGF. Conclusion Intralipid infusion elicited elevated pro‐inflammatory cytokines, and a minor increase in CD8+ T cells, but no change in pro‐tolerogenic Treg cells. Notwithstanding the limitation of no placebo control, the results do not support Intralipid as a candidate intervention to attenuate the Treg cell response in women undergoing ART. Future placebo‐controlled studies are needed to confirm the potential efficacy and clinical significance of Intralipid in attenuating cytokine induction and circulating CD8+ T cells.
Collapse
Affiliation(s)
- Kerrie L Foyle
- Robinson Research Institute Adelaide Medical School University of Adelaide Adelaide SA Australia
| | - David J Sharkey
- Robinson Research Institute Adelaide Medical School University of Adelaide Adelaide SA Australia
| | - Lachlan M Moldenhauer
- Robinson Research Institute Adelaide Medical School University of Adelaide Adelaide SA Australia
| | - Ella S Green
- Robinson Research Institute Adelaide Medical School University of Adelaide Adelaide SA Australia
| | - Jasmine J Wilson
- Robinson Research Institute Adelaide Medical School University of Adelaide Adelaide SA Australia
| | - Cassandra J Roccisano
- School of Pharmacy and Medical Sciences University of South Australia Adelaide SA Australia
| | - M Louise Hull
- Robinson Research Institute Adelaide Medical School University of Adelaide Adelaide SA Australia
| | - Kelton P Tremellen
- School of Medicine Flinders University Adelaide SA Australia.,Repromed Pty Ltd Dulwich SA Australia
| | - Sarah A Robertson
- Robinson Research Institute Adelaide Medical School University of Adelaide Adelaide SA Australia
| |
Collapse
|
21
|
Niu W, Xu Y, Zha X, Zeng J, Qiao S, Yang S, Zhang H, Tan L, Sun L, Pang G, Liu T, Zhao H, Zheng N, Zhang Y, Bai H. IL-21/IL-21R Signaling Aggravated Respiratory Inflammation Induced by Intracellular Bacteria through Regulation of CD4 + T Cell Subset Responses. THE JOURNAL OF IMMUNOLOGY 2021; 206:1586-1596. [PMID: 33608454 DOI: 10.4049/jimmunol.2001107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
The IL-21/IL-21R interaction plays an important role in a variety of immune diseases; however, the roles and mechanisms in intracellular bacterial infection are not fully understood. In this study, we explored the effect of IL-21/IL-21R on chlamydial respiratory tract infection using a chlamydial respiratory infection model. The results showed that the mRNA expression of IL-21 and IL-21R was increased in Chlamydia muridarum-infected mice, which suggested that IL-21 and IL-21R were involved in host defense against C. muridarum lung infection. IL-21R-/- mice exhibited less body weight loss, a lower bacterial burden, and milder pathological changes in the lungs than wild-type (WT) mice during C. muridarum lung infection. The absolute number and activity of CD4+ T cells and the strength of Th1/Th17 responses in IL-21R-/- mice were significantly higher than those in WT mice after C. muridarum lung infection, but the Th2 response was weaker. Consistently, IL-21R-/- mice showed higher mRNA expression of Th1 transcription factors (T-bet/STAT4), IL-12p40, a Th17 transcription factor (STAT3), and IL-23. The mRNA expression of Th2 transcription factors (GATA3/STAT6), IL-4, IL-10, and TGF-β in IL-21R-/- mice was significantly lower than that in WT mice. Furthermore, the administration of recombinant mouse IL-21 aggravated chlamydial lung infection in C57BL/6 mice and reduced Th1 and Th17 responses following C. muridarum lung infection. These findings demonstrate that IL-21/IL-21R may aggravate chlamydial lung infection by inhibiting Th1 and Th17 responses.
Collapse
Affiliation(s)
- Wenhao Niu
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yueyue Xu
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Xiaoyu Zha
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Jiajia Zeng
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Sai Qiao
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Shuaini Yang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Hong Zhang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Lu Tan
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Lida Sun
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Gaoju Pang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Tengli Liu
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Huili Zhao
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Ningbo Zheng
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yongci Zhang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| |
Collapse
|
22
|
Abstract
ABSTRACT Redirection of T cell cytotoxicity by the chimeric antigen receptor (CAR) structure may not be sufficient for optimal antitumor function in the patient tumor microenvironment. Comodifying CAR T cells to secrete different classes of proteins can be used to optimize CAR T cell function, overcome suppressive signals, and/or alter the tumor microenvironment milieu. These modifications aim to improve initial responses to therapy and enhance the durability of response. Furthermore, CAR T cells can deliver these molecules locally to the tumor microenvironment, avoiding systemic distribution. This approach has been tested in preclinical models using a variety of different classes of agonistic and antagonistic proteins, and clinical trials are currently underway to assess efficacy in patients.
Collapse
|
23
|
Castillo-Rodal AI, Furuzawa-Carballeda J, Peláez-Luna M, Castro-Gómez J, López-Vidal Y, Uscanga L. More fuel to the fire: some patients with non-celiac self-reported wheat sensitivity exhibit adaptive immunological responses in duodenal mucosa. BMC Gastroenterol 2020; 20:414. [PMID: 33297984 PMCID: PMC7726874 DOI: 10.1186/s12876-020-01564-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In contrast to the well-characterized Celiac Disease (CD), the clinical scenarios encompassed by the non-celiac self-reported wheat sensitivity (NCSRWS) might be related to different antigens that trigger distinct immune-inflammatory reactions. Although an increased number of intestinal intraepithelial lymphocytes is observed at the inception of both diseases, the subsequent immunopathogenic pathways seem to be different. We aimed to describe the cytokine profile observed in the duodenal mucosa of patients with NCSRWS. METHODS In a blind, cross-sectional study, we included duodenal biopsies from 15 consecutive untreated patients with active CD, 9 individuals with NCSRWS and 10 subjects with dyspepsia without CD and food intolerances. Immunohistochemistry and flow-cytometry were used to determine the presence of pro-inflammatory cytokine expressing monocytes and monocyte-derived dendritic cells involved in innate immune activation, cytokine-driven polarization and maintenance of Th1 and Th17/Th 22, and anti-inflammatory/profibrogenic cytokines. RESULTS The percentage of cells expressing all tested cytokines in the lamina propria and the epithelium was higher in CD patients than in the control group. Cytokines that induce and maintain Th1 and Th17 polarization were higher in CD than in NCSRWS and controls, also were higher in NCSRWS compared to controls. Similar differences were detected in the expression of IL-4 and TGF-1, while IL-10-expressing cells were lower in NCSRWS patients than in controls and CD subjects. CONCLUSIONS NCSRWS patients exhibit components of both, innate and adaptive immune mechanisms but to a lesser extent compared to CD.
Collapse
Affiliation(s)
- Antonia Isabel Castillo-Rodal
- Department of Microbiology and Parasitology, Facultad de Medicina, Universidad Nacional Autónoma de México, Alcaldía de Coyoacán, Mexico City, Mexico
| | - Janette Furuzawa-Carballeda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Alcaldía de Tlalpan, 14000, Mexico City, Mexico
| | - Mario Peláez-Luna
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Alcaldía de Tlalpan, 14000, Mexico City, Mexico
| | - José Castro-Gómez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Alcaldía de Tlalpan, 14000, Mexico City, Mexico
| | - Yolanda López-Vidal
- Department of Microbiology and Parasitology, Facultad de Medicina, Universidad Nacional Autónoma de México, Alcaldía de Coyoacán, Mexico City, Mexico
| | - Luis Uscanga
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Alcaldía de Tlalpan, 14000, Mexico City, Mexico.
| |
Collapse
|
24
|
Wachs AS, Bohne J. Two sides of the same medal: Noncoding mutations reveal new pathological mechanisms and insights into the regulation of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1616. [PMID: 32633083 DOI: 10.1002/wrna.1616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
Noncoding sequences constitute the major part of the human genome and also of pre-mRNAs. Single nucleotide variants in these regions are often overlooked, but may be responsible for much of the variation of phenotypes observed. Mutations in the noncoding part of pre-mRNAs often reveal new and meaningful insights into the regulation of cellular gene expression. Thus, the mechanistic analysis of the pathological mechanism of such mutations will both foster a deeper understanding of the disease and the underlying cellular pathways. Even synonymous mutations can cause diseases, since the primary mRNA sequence not only encodes amino acids, but also encrypts information on RNA-binding proteins and secondary structure. In fact, the RNA sequence directs assembly of a specific mRNP complex, which in turn dictates the fate of the mRNA or regulates its biogenesis. The accumulation of genomic sequence information is increasing at a rapid pace. However, much of the diversity uncovered may not explain the phenotype of a certain syndrome or disease. For this reason, we also emphasize the value of mechanistic studies on pathological mechanisms being complementary to genome-wide studies and bioinformatic approaches. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Amelie S Wachs
- Institute of Virology, Hannover Medical School, Hanover, Germany
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, Hanover, Germany
| |
Collapse
|