1
|
Dyrma S, Pei TT, Liang X, Dong T. Not just passengers: effectors contribute to the assembly of the type VI secretion system as structural building blocks. J Bacteriol 2025; 207:e0045524. [PMID: 39902958 PMCID: PMC11925235 DOI: 10.1128/jb.00455-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Protein secretion systems are critical macromolecular machines employed by bacteria to interact with diverse environments and hosts during their life cycle. Cytosolically produced protein effectors are translocated across at least one membrane to the outside of the cells or directly into target cells. In most secretion systems, these effectors are mere passengers in unfolded or folded states. However, the type VI secretion system (T6SS) stands out as a powerful contractile device that requires some of its effectors as structural components. This review aims to provide an updated view of the diverse functions of effectors, especially focusing on their roles in T6SS assembly, the implications for T6SS engineering, and the potential of recently developed T6SS models to study effector-T6SS association.
Collapse
Affiliation(s)
- Sherina Dyrma
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tong-Tong Pei
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoye Liang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Pan TL, Cha JL, Wang H, Zhang JS, Xiao JL, Shen J, Zhou M, Li Y, Ma JZ, Zhao KY, Zhang YK, Xiao P, Gao H. The CRISPR/Cas9-Mediated Knockout of VgrG2 in Wild Pathogenic E. coli to Alleviate the Effects on Cell Damage and Autophagy. Vet Sci 2025; 12:249. [PMID: 40266908 PMCID: PMC11945575 DOI: 10.3390/vetsci12030249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 04/25/2025] Open
Abstract
CRISPR/Cas9, as a well-established gene editing technology, has been applied in numerous model organisms, but its application in wild-type E. coli remains limited. Pathogenic wild-type E. coli, a major cause of foodborne illnesses and intestinal inflammation in humans and animals, poses a significant global public health threat. The valine-glycine repeat protein G (VgrG) is a key virulence factor that enhances E. coli pathogenicity. In this study, PCR was used to identify 50 strains carrying the virulence gene VgrG2 out of 83 wild pathogenic E. coli strains, with only one strain sensitive to kanamycin and spectinomycin. A homologous repair template for VgrG2 was constructed using overlap PCR. A dual-plasmid CRISPR/Cas9 system, combining pTarget (spectinomycin resistance) and pCas (kanamycin resistance) with Red homologous recombination, was then used to induce genomic cleavage and knock out VgrG2. PCR and sequencing confirmed the deletion of a 1708 bp fragment of the VgrG2 gene in wild-type E. coli. IPEC-J2 cells were infected with E. coli-WT and E. coli ∆VgrG2, and treated with the mTOR inhibitor rapamycin to study the effects of VgrG2 on the mTOR signaling pathway. The qPCR results showed that VgrG2 activated the mTOR pathway, suppressed mTOR and p62 mRNA levels, and upregulated the autophagy-related genes and LC3-II protein expression. In conclusion, we utilized CRISPR/Cas9 technology to achieve large-fragment deletions in wild-type E. coli, revealing that VgrG2 activates the mTOR signaling pathway and upregulates autophagy markers. These findings offer new insights into E. coli genome editing and clarifies the pathogenic mechanisms through which VgrG2 induces cellular damage.
Collapse
Affiliation(s)
- Tian-Ling Pan
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (T.-L.P.); (J.-L.C.); (J.-S.Z.); (J.-L.X.); (J.S.); (Y.L.); (J.-Z.M.); (K.-Y.Z.); (Y.-K.Z.)
| | - Jin-Long Cha
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (T.-L.P.); (J.-L.C.); (J.-S.Z.); (J.-L.X.); (J.S.); (Y.L.); (J.-Z.M.); (K.-Y.Z.); (Y.-K.Z.)
| | - Hao Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (H.W.); (M.Z.)
| | - Jing-Song Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (T.-L.P.); (J.-L.C.); (J.-S.Z.); (J.-L.X.); (J.S.); (Y.L.); (J.-Z.M.); (K.-Y.Z.); (Y.-K.Z.)
| | - Jin-Long Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (T.-L.P.); (J.-L.C.); (J.-S.Z.); (J.-L.X.); (J.S.); (Y.L.); (J.-Z.M.); (K.-Y.Z.); (Y.-K.Z.)
| | - Jue Shen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (T.-L.P.); (J.-L.C.); (J.-S.Z.); (J.-L.X.); (J.S.); (Y.L.); (J.-Z.M.); (K.-Y.Z.); (Y.-K.Z.)
| | - Meng Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (H.W.); (M.Z.)
| | - Yue Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (T.-L.P.); (J.-L.C.); (J.-S.Z.); (J.-L.X.); (J.S.); (Y.L.); (J.-Z.M.); (K.-Y.Z.); (Y.-K.Z.)
| | - Jin-Zhi Ma
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (T.-L.P.); (J.-L.C.); (J.-S.Z.); (J.-L.X.); (J.S.); (Y.L.); (J.-Z.M.); (K.-Y.Z.); (Y.-K.Z.)
| | - Kai-Yuan Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (T.-L.P.); (J.-L.C.); (J.-S.Z.); (J.-L.X.); (J.S.); (Y.L.); (J.-Z.M.); (K.-Y.Z.); (Y.-K.Z.)
| | - Yong-Kang Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (T.-L.P.); (J.-L.C.); (J.-S.Z.); (J.-L.X.); (J.S.); (Y.L.); (J.-Z.M.); (K.-Y.Z.); (Y.-K.Z.)
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (T.-L.P.); (J.-L.C.); (J.-S.Z.); (J.-L.X.); (J.S.); (Y.L.); (J.-Z.M.); (K.-Y.Z.); (Y.-K.Z.)
| | - Hong Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (T.-L.P.); (J.-L.C.); (J.-S.Z.); (J.-L.X.); (J.S.); (Y.L.); (J.-Z.M.); (K.-Y.Z.); (Y.-K.Z.)
| |
Collapse
|
3
|
Fridman CM, Keppel K, Rudenko V, Altuna-Alvarez J, Albesa-Jové D, Bosis E, Salomon D. A new class of type VI secretion system effectors can carry two toxic domains and are recognized through the WHIX motif for export. PLoS Biol 2025; 23:e3003053. [PMID: 40096082 DOI: 10.1371/journal.pbio.3003053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/28/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Gram-negative bacteria employ the type VI secretion system (T6SS) to deliver toxic effectors into neighboring cells and outcompete rivals. Although many effectors have been identified, their secretion mechanism often remains unknown. Here, we describe WHIX, a domain sufficient to mediate the secretion of effectors via the T6SS. Remarkably, we find WHIX in T6SS effectors that contain a single toxic domain, as well as in effectors that contain two distinct toxic domains fused to either side of WHIX. We demonstrate that the latter, which we name double-blade effectors, require two cognate immunity proteins to antagonize their toxicity. Furthermore, we show that WHIX can be used as a chassis for T6SS-mediated secretion of multiple domains. Our findings reveal a new class of polymorphic T6SS cargo effectors with a unique secretion domain that can deploy two toxic domains in one shot, possibly reducing recipients' ability to defend themselves.
Collapse
Affiliation(s)
- Chaya Mushka Fridman
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kinga Keppel
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vladislav Rudenko
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jon Altuna-Alvarez
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Leioa, Spain
| | - David Albesa-Jové
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Leioa, Spain
- Departamento de Bioquímica y Biología Molecular, University of the Basque Country, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Lin L, Shen D, Shao X, Yang Y, Li L, Zhong C, Jiang J, Wang M, Qian G. Soil microbiome bacteria protect plants against filamentous fungal infections via intercellular contacts. Proc Natl Acad Sci U S A 2025; 122:e2418766122. [PMID: 39813250 PMCID: PMC11762177 DOI: 10.1073/pnas.2418766122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025] Open
Abstract
Bacterial-fungal interaction (BFI) has significant implications for the health of host plants. While the diffusible antibiotic metabolite-mediated competition in BFI has been extensively characterized, the impact of intercellular contact remains largely elusive. Here, we demonstrate that the intercellular contact is a prevalent mode of interaction between beneficial soil bacteria and pathogenic filamentous fungi. By generating antibiotics-deficient mutants in two common soil bacteria, Lysobacter enzymogenes and Pseudomonas fluorescens, we show that antibiotics-independent BFI effectively inhibits pathogenic fungi. Furthermore, transcriptional and genetic evidence revealed that this antibiotics-independent BFI relies on intercellular contact mediated by the type VI secretion system (T6SS), which may facilitate the translocation of bacterial toxic effectors into fungal cells. Finally, by using a "conidia enrichment" platform, we found that T6SS-mediated fungal inhibition resulting from intercellular contact naturally occurs within the soil microbiome, particularly represented by Pseudomonas fulva. Overall, these results demonstrate that bacteria from the soil microbiome can protect host plants from fungal infection through antibiotics-independent intercellular contacts, thus revealing a naturally occurring and ecologically important mode of BFI in agricultural contexts.
Collapse
Affiliation(s)
- Long Lin
- Department of Plant Pathology, Key Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Danyu Shen
- Department of Plant Pathology, Key Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Xiaolong Shao
- Department of Plant Pathology, Key Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Yicheng Yang
- Department of Plant Pathology, Key Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Li Li
- Engineering Laboratory for Kiwifruit Industrial Technology, Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Caihong Zhong
- Engineering Laboratory for Kiwifruit Industrial Technology, Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, College of Life Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Mengcen Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou310058, China
- Department of Plant Protection, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Guoliang Qian
- Department of Plant Pathology, Key Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
5
|
Smith WPJ, Armstrong-Bond E, Coyte KZ, Knight CG, Basler M, Brockhurst MA. Multiplicity of type 6 secretion system toxins limits the evolution of resistance. Proc Natl Acad Sci U S A 2025; 122:e2416700122. [PMID: 39786933 PMCID: PMC11745330 DOI: 10.1073/pnas.2416700122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
The bacterial type 6 secretion system (T6SS) is a toxin-injecting nanoweapon that mediates competition in plant- and animal-associated microbial communities. Bacteria can evolve de novo resistance against T6SS attacks, but resistance is far from universal in natural communities, suggesting key features of T6SS weaponry may act to limit its evolution. Here, we combine ecoevolutionary modeling and experimental evolution to examine how toxin type and multiplicity in Acinetobacter baylyi attackers shape resistance evolution in susceptible Escherichia coli competitors. In both our models and experiments, we find that combinations of multiple distinct toxins limit resistance evolution by creating genetic bottlenecks, driving resistant lineages extinct before they can reach high frequency. We also show that, paradoxically, single-toxin attackers can drive the evolution of cross-resistance, protecting bacteria against unfamiliar toxin combinations, even though such evolutionary pathways were inaccessible against multitoxin attackers. Our findings indicate that, comparable to antimicrobial and anticancer combination therapies, multitoxin T6SS arsenals function to limit resistance evolution in competing microbes. This helps us to understand why T6SSs remain widespread and effective weapons in microbial communities, and why many T6SS-armed bacteria encode functionally diverse anticompetitor toxins.
Collapse
Affiliation(s)
- William P. J. Smith
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Ewan Armstrong-Bond
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Katharine Z. Coyte
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Marek Basler
- Biozentrum Center for Molecular Life Sciences, University of Basel, BaselCH-4056, Switzerland
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| |
Collapse
|
6
|
Amaya FA, Blondel CJ, Reyes-Méndez F, Rivera D, Moreno-Switt A, Toro M, Badilla C, Santiviago CA, Pezoa D. Genomic analysis of Salmonella isolated from surface water and animal sources in Chile reveals new T6SS effector protein candidates. Front Microbiol 2024; 15:1496223. [PMID: 39723139 PMCID: PMC11669294 DOI: 10.3389/fmicb.2024.1496223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
Type VI Secretion Systems (T6SS), widely distributed in Gram-negative bacteria, contribute to interbacterial competition and pathogenesis through the translocation of effector proteins to target cells. Salmonella harbor 5 pathogenicity islands encoding T6SS (SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22), in which a limited number of effector proteins have been identified. Previous analyses by our group focused on the identification of candidate T6SS effectors and cognate immunity proteins in Salmonella genomes deposited in public databases. In this study, the analysis was centered on Salmonella isolates obtained from environmental sources in Chile. To this end, bioinformatics and comparative genomics analyses were performed using 695 genomes of Salmonella isolates representing 44 serotypes obtained from surface water and animal sources in Chile to identify new T6SS effector proteins. First, T6SS gene clusters were identified using the SecreT6 server. This analysis revealed that most isolates carry the SPI-6 T6SS gene cluster, whereas the SPI-19 and SPI-21 T6SS gene clusters were detected in isolates from a limited number of serotypes. In contrast, the SPI-20 and SPI-22 T6SS gene clusters were not detected. Subsequently, each ORF in the T6SS gene clusters identified was analyzed using bioinformatics tools for effector prediction, identification of immunity proteins and functional biochemical prediction. This analysis detected 20 of the 37 T6SS effector proteins previously reported in Salmonella. In addition, 4 new effector proteins with potential antibacterial activity were identified in SPI-6: 2 Rhs effectors with potential DNase activity (PAAR-RhsA-NucA_B and PAAR-RhsA-GH-E) and 2 effectors with potential RNase activity (PAAR-RhsA-CdiA and RhsA-CdiA). Interestingly, the repertoire of SPI-6 T6SS effectors varies among isolates of the same serotype. In SPI-19, no new effector protein was detected. Of note, some Rhs effectors of SPI-19 and SPI-6 present C-terminal ends with unknown function. The presence of cognate immunity proteins carrying domains present in bona fide immunity proteins suggests that these effectors have antibacterial activity. Finally, two new effectors were identified in SPI-21: one with potential peptidoglycan hydrolase activity and another with potential membrane pore-forming activity. Altogether, our work broadens the repertoire of Salmonella T6SS effector proteins and provides evidence that SPI-6, SPI-19 and SPI-21 T6SS gene clusters harbor a vast array of antibacterial effectors.
Collapse
Affiliation(s)
- Fernando A. Amaya
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos J. Blondel
- Facultad de Medicina y Facultad de Ciencias de la Vida, Instituto de Ciencias Biomédicas, Universidad Andrés Bello, Santiago, Chile
| | - Felipe Reyes-Méndez
- Núcleo de Investigación en One Health, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magaly Toro
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD, United States
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Consuelo Badilla
- Núcleo de Investigación en One Health, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Carlos A. Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - David Pezoa
- Núcleo de Investigación en One Health, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
7
|
Lucidi M, Visaggio D, Migliaccio A, Capecchi G, Visca P, Imperi F, Zarrilli R. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024; 15:2289769. [PMID: 38054753 PMCID: PMC10732645 DOI: 10.1080/21505594.2023.2289769] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of healthcare-associated infections and hospital outbreaks, particularly in intensive care units. Much of the success of A. baumannii relies on its genomic plasticity, which allows rapid adaptation to adversity and stress. The capacity to acquire novel antibiotic resistance determinants and the tolerance to stresses encountered in the hospital environment promote A. baumannii spread among patients and long-term contamination of the healthcare setting. This review explores virulence factors and physiological traits contributing to A. baumannii infection and adaptation to the hospital environment. Several cell-associated and secreted virulence factors involved in A. baumannii biofilm formation, cell adhesion, invasion, and persistence in the host, as well as resistance to xeric stress imposed by the healthcare settings, are illustrated to give reasons for the success of A. baumannii as a hospital pathogen.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Chen Z, Mao Y, Song Y, Dou M, Shang K, Yu Z, Ding K, Chen S. Refined egoist: The toxin-antitoxin immune system of T6SS. Microb Pathog 2024; 196:106991. [PMID: 39369755 DOI: 10.1016/j.micpath.2024.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
The Type VI secretory system (T6SS) is a key regulatory network in the bacterial system, which plays an important role in host-pathogen interactions and maintains cell homeostasis by regulating the release of effector proteins in specific competition. T6SS causes cell lysis or competitive inhibition by delivering effector molecules, such as toxic proteins and nucleic acids, directly from donor bacterial cells to eukaryotic or prokaryotic targets. Additionally, it orchestrates synthesis of immune effectors that counteract toxins thus preventing self-intoxication or antagonistic actions by competing microbes. Even so, the mechanism of toxin-antitoxin regulation in bacteria remains unclear. In response, this review discusses the bacterial T6SS's structure and function and the mechanism behind toxin-antitoxin secretion and the T6SS's expression in order to guide the further exploration of the pathogenic mechanism of the T6SS and the development of novel preparations for reducing and replacing toxins and antitoxins.
Collapse
Affiliation(s)
- Ziduo Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yikai Mao
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yinzhou Song
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengxuan Dou
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ke Shang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Songbiao Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
9
|
Motta EVS, Lariviere PJ, Jones KR, Song Y, Moran NA. Type VI secretion systems promote intraspecific competition and host interactions in a bee gut symbiont. Proc Natl Acad Sci U S A 2024; 121:e2414882121. [PMID: 39441627 PMCID: PMC11536156 DOI: 10.1073/pnas.2414882121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The Type VI Secretion System (T6SS) is a sophisticated mechanism utilized by gram-negative bacteria to deliver toxic effector proteins into target cells, influencing microbial community dynamics and host interactions. In this study, we investigated the role of T6SSs in Snodgrassella alvi wkB2, a core bacterial symbiont of the honey bee gut microbiota. We generated single- and double-knockout mutants targeting essential genes (tssD and tssE) in both T6SS-1 and T6SS-2 and assessed their colonization and competition capabilities in vivo. Our results indicate that T6SSs are nonessential for colonization of the bee gut, although T6SS-2 mutant strains exhibited significantly lower colonization levels compared to the wild-type (WT) strain. Further, a defined community experiment showed that S. alvi wkB2 T6SSs do not significantly impact interspecific competition among core gut bacteria. However, cocolonization experiments with closely related S. alvi strains demonstrated that T6SS-1 plays a role in mediating intraspecific competition. Transcriptomic analysis of bee guts monocolonized by WT or T6SS mutants revealed differential expression of host immunity-related genes relative to microbiota-deprived bees, such as upregulation of the antimicrobial peptide apidaecin in the presence of WT S. alvi and the antimicrobial peptide defensin in the presence of T6SS-2 mutant S. alvi, suggesting that T6SSs contribute to shaping host immune responses. These findings provide insight into the ecological roles of T6SSs in the honey bee gut microbiota, emphasizing their importance in maintaining competitive dynamics and influencing host-bacterial interactions.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Molecular Biosciences, The University of Texas at Austin, TX78712
| | - Korin R. Jones
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Yulin Song
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| |
Collapse
|
10
|
Huang X, Li C, Zhang K, Li K, Xie J, Peng Y, Quan M, Sun Y, Hu Y, Xia L, Hu S. Function and Global Regulation of Type III Secretion System and Flagella in Entomopathogenic Nematode Symbiotic Bacteria. Int J Mol Sci 2024; 25:7579. [PMID: 39062822 PMCID: PMC11277461 DOI: 10.3390/ijms25147579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, it is widely accepted that the type III secretion system (T3SS) serves as the transport platform for bacterial virulence factors, while flagella act as propulsion motors. However, there remains a noticeable dearth of comparative studies elucidating the functional disparities between these two mechanisms. Entomopathogenic nematode symbiotic bacteria (ENS), including Xenorhabdus and Photorhabdus, are Gram-negative bacteria transported into insect hosts by Steinernema or Heterorhabdus. Flagella are conserved in ENS, but the T3SS is only encoded in Photorhabdus. There are few reports on the function of flagella and the T3SS in ENS, and it is not known what role they play in the infection of ENS. Here, we clarified the function of the T3SS and flagella in ENS infection based on flagellar inactivation in X. stockiae (flhDC deletion), T3SS inactivation in P. luminescens (sctV deletion), and the heterologous synthesis of the T3SS of P. luminescens in X. stockiae. Consistent with the previous results, the swarming movement of the ENS and the formation of biofilms are dominated by the flagella. Both the T3SS and flagella facilitate ENS invasion and colonization within host cells, with minimal impact on secondary metabolite formation and secretion. Unexpectedly, a proteomic analysis reveals a negative feedback loop between the flagella/T3SS assembly and the type VI secretion system (T6SS). RT-PCR testing demonstrates the T3SS's inhibition of flagellar assembly, while flagellin expression promotes T3SS assembly. Furthermore, T3SS expression stimulates ribosome-associated protein expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China; (X.H.); (K.L.); (L.X.)
| |
Collapse
|
11
|
Virgo M, Mostowy S, Ho BT. Use of zebrafish to identify host responses specific to type VI secretion system mediated interbacterial antagonism. PLoS Pathog 2024; 20:e1012384. [PMID: 39024393 PMCID: PMC11288455 DOI: 10.1371/journal.ppat.1012384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/30/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Interbacterial competition is known to shape the microbial communities found in the host, however the interplay between this competition and host defense are less clear. Here, we use the zebrafish hindbrain ventricle (HBV) as an in vivo platform to investigate host responses to defined bacterial communities with distinct forms of interbacterial competition. We found that antibacterial activity of the type VI secretion system (T6SS) from both Vibrio cholerae and Acinetobacter baylyi can induce host inflammation and sensitize the host to infection independent of any individual effector. Chemical suppression of inflammation could resolve T6SS-dependent differences in host survival, but the mechanism by which this occurred differed between the two bacterial species. By contrast, colicin-mediated antagonism elicited by an avirulent strain of Shigella sonnei induced a negligible host response despite being a more potent bacterial killer, resulting in no impact on A. baylyi or V. cholerae virulence. Altogether, these results provide insight into how different modes of interbacterial competition in vivo affect the host in distinct ways.
Collapse
Affiliation(s)
- Mollie Virgo
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Brian T. Ho
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
12
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
13
|
Geller AM, Shalom M, Zlotkin D, Blum N, Levy A. Identification of type VI secretion system effector-immunity pairs using structural bioinformatics. Mol Syst Biol 2024; 20:702-718. [PMID: 38658795 PMCID: PMC11148199 DOI: 10.1038/s44320-024-00035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The type VI secretion system (T6SS) is an important mediator of microbe-microbe and microbe-host interactions. Gram-negative bacteria use the T6SS to inject T6SS effectors (T6Es), which are usually proteins with toxic activity, into neighboring cells. Antibacterial effectors have cognate immunity proteins that neutralize self-intoxication. Here, we applied novel structural bioinformatic tools to perform systematic discovery and functional annotation of T6Es and their cognate immunity proteins from a dataset of 17,920 T6SS-encoding bacterial genomes. Using structural clustering, we identified 517 putative T6E families, outperforming sequence-based clustering. We developed a logistic regression model to reliably quantify protein-protein interaction of new T6E-immunity pairs, yielding candidate immunity proteins for 231 out of the 517 T6E families. We used sensitive structure-based annotation which yielded functional annotations for 51% of the T6E families, again outperforming sequence-based annotation. Next, we validated four novel T6E-immunity pairs using basic experiments in E. coli. In particular, we showed that the Pfam domain DUF3289 is a homolog of Colicin M and that DUF943 acts as its cognate immunity protein. Furthermore, we discovered a novel T6E that is a structural homolog of SleB, a lytic transglycosylase, and identified a specific glutamate that acts as its putative catalytic residue. Overall, this study applies novel structural bioinformatic tools to T6E-immunity pair discovery, and provides an extensive database of annotated T6E-immunity pairs.
Collapse
Affiliation(s)
- Alexander M Geller
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maor Shalom
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David Zlotkin
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Blum
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
14
|
Upton C, Healey J, Rothnie AJ, Goddard AD. Insights into membrane interactions and their therapeutic potential. Arch Biochem Biophys 2024; 755:109939. [PMID: 38387829 DOI: 10.1016/j.abb.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Recent research into membrane interactions has uncovered a diverse range of therapeutic opportunities through the bioengineering of human and non-human macromolecules. Although the majority of this research is focussed on fundamental developments, emerging studies are showcasing promising new technologies to combat conditions such as cancer, Alzheimer's and inflammatory and immune-based disease, utilising the alteration of bacteriophage, adenovirus, bacterial toxins, type 6 secretion systems, annexins, mitochondrial antiviral signalling proteins and bacterial nano-syringes. To advance the field further, each of these opportunities need to be better understood, and the therapeutic models need to be further optimised. Here, we summarise the knowledge and insights into several membrane interactions and detail their current and potential uses therapeutically.
Collapse
Affiliation(s)
- Calum Upton
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Joseph Healey
- Nanosyrinx, The Venture Centre, University of Warwick Science Park, Coventry, CV4 7EZ, UK
| | - Alice J Rothnie
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Alan D Goddard
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
15
|
Du X, Kang M, Yang C, Yao X, Zheng L, Wu Y, Zhang P, Zhang H, Zhou Y, Sun Y. Construction and analysis of the immune effect of two different vaccine types based on Vibrio harveyi VgrG. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109494. [PMID: 38499217 DOI: 10.1016/j.fsi.2024.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Vibrio harveyi poses a significant threat to fish and invertebrates in mariculture, resulting in substantial financial repercussions for the aquaculture sector. Valine-glycine repeat protein G (VgrG) is essential for the type VI secretion system's (T6SS) assembly and secretion. VgrG from V. harveyi QT520 was cloned and analyzed in this study. The localization of VgrG was determined by Western blot, which revealed that it was located in the cytoplasm, secreted extracellularly, and attached to the membrane. The effectiveness of two vaccinations against V. harveyi infection-a subunit vaccine (rVgrG) and a DNA vaccine (pCNVgrG) prepared with VgrG was evaluated. The findings indicated that both vaccines provided a degree of protection against V. harveyi challenge. At 4 weeks post-vaccination (p.v.), the rVgrG and pCNVgrG exhibited relative percent survival rates (RPS) of 71.43% and 76.19%, respectively. At 8 weeks p.v., the RPS for rVgrG and pCNVgrG were 68.21% and 72.71%, respectively. While both rVgrG and pCNVgrG elicited serum antibody production, the subunit vaccinated fish demonstrated significantly higher levels of serum anti-VgrG specific antibodies than the DNA vaccine group. The result of qRT-PCR demonstrated that the expression of major histocompatibility complex (MHC) class Iα, tumor necrosis factor-alpha (TNF-α), interferon γ (IFNγ), and cluster of differentiation 4 (CD4) were up-regulated by both rVgrG and pCNVgrG. Fish vaccinated with rVgrG and pCNVgrG exhibited increased activity of acid phosphatase, alkaline phosphatase, superoxide dismutase, and lysozyme. These findings suggest that VgrG from V. harveyi holds potential for application in vaccination.
Collapse
Affiliation(s)
- Xiangyu Du
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Minjie Kang
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Chunhuan Yang
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Xinping Yao
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Lvliang Zheng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China
| | - Ying Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Panpan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Han Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yongcan Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yun Sun
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China.
| |
Collapse
|
16
|
Lu L, Qi Z, Chen Z, Wang H, Wei X, Zhao B, Wang Z, Shao Y, Tu J, Song X. Avian pathogenic Escherichia coli T6SS effector protein Hcp2a causes mitochondrial dysfunction through interaction with LETM1 protein in DF-1 cells. Poult Sci 2024; 103:103514. [PMID: 38367471 PMCID: PMC10879833 DOI: 10.1016/j.psj.2024.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024] Open
Abstract
The type VI secretion system (T6SS) of avian pathogenic Escherichia coli (APEC) can affect the functions of eukaryotic cells by secreting or injecting effectors. Hemolysin co-regulatory protein (Hcp), one of the markers of the T6SS, is both a structural protein and an effector protein of the T6SS. According to previous studies, mitochondria in eukaryotic cells are targeted by pathogenic bacteria. However, little is known about the regulation of mitochondria in eukaryotic host cells by the T6SS effector protein Hcp of APEC. In our study, DF-1 cells co-incubated with Hcp2a protein for 6 h showed decreased mitochondrial membrane potential, increased Ca2+ concentration, and increased cellular reactive oxygen species (ROS) levels. We therefore conclude that Hcp2a protein causes dysfunction to mitochondria in DF-1 cells. To explain the mechanism that causes mitochondrial dysfunction, we reanalyzed the Hcp2a interaction protein dataset in DF-1 cells, and the Leucine zipper EF-hand-containing transmembrane protein 1 (LETM1), which is associated with mitochondria, was screened. The protein and molecular docking results showed that Hcp2a protein and LETM1 protein have better binding. Finally, subcellular localization results showed that Hcp2a was localized to mitochondria. In summary, Hcp2a effector proteins caused dysfunction to DF-1 cellular mitochondria, and we hypothesize that the interaction of Hcp2a protein with LETM1 protein induces mitochondrial dysfunction and promotes mitochondrial localization of Hcp2a in DF-1 cells.
Collapse
Affiliation(s)
- Liting Lu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhao Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhe Chen
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Haiyang Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Xiyang Wei
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Bingyu Zhao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhenyu Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, PR China
| | - Xiangjun Song
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, PR China.
| |
Collapse
|
17
|
Li W, Huang X, Li D, Liu X, Jiang X, Bian X, Li X, Zhang J. A combination of genomics and transcriptomics provides insights into the distribution and differential mRNA expression of type VI secretion system in clinical Klebsiella pneumoniae. mSphere 2024; 9:e0082223. [PMID: 38436228 PMCID: PMC10964426 DOI: 10.1128/msphere.00822-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
The type VI secretion system (T6SS) serves as a crucial molecular weapon in interbacterial competition and significantly influences the adaptability of bacteria in their ecological niche. However, the distribution and function of T6SS in clinical Klebsiella pneumoniae, a common opportunistic nosocomial pathogen, have not been fully elucidated. Here, we conducted a genomic analysis of 65 clinical K. pneumoniae isolates obtained from patients with varying infections. Genes encoding a T6SS cluster present in all analyzed strains of K. pneumoniae, and strains with identical sequence type carried structurally and numerically identical T6SS. Our study also highlights the importance of selecting conserved regions within essential T6SS genes for PCR-based identification of T6SS in bacteria. Afterward, we utilized the predominant sequence type 11 (ST11) K. pneumoniae HS11286 to investigate the effect of knocking out T6SS marker genes hcp or vgrG. Transcriptome analysis identified a total of 1,298 co-upregulated and 1,752 co-downregulated differentially expressed genes in both mutants. Pathway analysis showed that only Δhcp mutant exhibited alterations in transport, establishment of localization, localization, and cell processes. The absence of hcp or vgrG gene suppressed the expression of other T6SS-related genes within the locus I cluster. Additionally, interbacterial competition experiments showed that hcp and vgrG are essential for competitive ability of ST11 K. pneumoniae HS11286. This study furthers our understanding of the genomic characteristics of T6SS in clinical K. pneumoniae and suggests the involvement of multiple genes in T6SS of strain HS11286. IMPORTANCE Gram-negative bacteria use type VI secretion system (T6SS) to deliver effectors that interact with neighboring cells for niche advantage. Klebsiella pneumoniae is an opportunistic nosocomial pathogen that often carries multiple T6SS loci, the function of which has not yet been elucidated. We performed a genomic analysis of 65 clinical K. pneumoniae strains isolated from various sources, confirming that all strains contained T6SS. We then used transcriptomics to further study changes in gene expression and its effect on interbacterial competition following the knockout of key T6SS genes in sequence type 11 (ST11) K. pneumoniae HS11286. Our findings revealed the distribution and genomic characteristics of T6SS in clinical K. pneumoniae. This study also described the overall transcriptional changes in the predominant Chinese ST11 strain HS11286 upon deletion of crucial T6SS genes. Additionally, this work provides a reference for future research on the identification of T6SS in bacteria.
Collapse
Affiliation(s)
- Wanzhen Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaolan Huang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoying Jiang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
| | - Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Clinical Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Clinical Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Leung PB, Matanza XM, Roche B, Ha KP, Cheung HC, Appleyard S, Collins T, Flanagan O, Marteyn BS, Clements A. Shigella sonnei utilises colicins during inter-bacterial competition. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001434. [PMID: 38376387 PMCID: PMC10924462 DOI: 10.1099/mic.0.001434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
The mammalian colon is one of the most densely populated habitats currently recognised, with 1011-1013 commensal bacteria per gram of colonic contents. Enteric pathogens must compete with the resident intestinal microbiota to cause infection. Among these enteric pathogens are Shigella species which cause approximately 125 million infections annually, of which over 90 % are caused by Shigella flexneri and Shigella sonnei. Shigella sonnei was previously reported to use a Type VI Secretion System (T6SS) to outcompete E. coli and S. flexneri in in vitro and in vivo experiments. S. sonnei strains have also been reported to harbour colicinogenic plasmids, which are an alternative anti-bacterial mechanism that could provide a competitive advantage against the intestinal microbiota. We sought to determine the contribution of both T6SS and colicins to the anti-bacterial killing activity of S. sonnei. We reveal that whilst the T6SS operon is present in S. sonnei, there is evidence of functional degradation of the system through SNPs, indels and IS within key components of the system. We created strains with synthetically inducible T6SS operons but were still unable to demonstrate anti-bacterial activity of the T6SS. We demonstrate that the anti-bacterial activity observed in our in vitro assays was due to colicin activity. We show that S. sonnei no longer displayed anti-bacterial activity against bacteria that were resistant to colicins, and removal of the colicin plasmid from S. sonnei abrogated anti-bacterial activity of S. sonnei. We propose that the anti-bacterial activity demonstrated by colicins may be sufficient for niche competition by S. sonnei within the gastrointestinal environment.
Collapse
Affiliation(s)
- P. B. Leung
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - X. M. Matanza
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - B. Roche
- Universite de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9002, F-67000 Strasbourg, France
| | - K. P. Ha
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - H. C. Cheung
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - S. Appleyard
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - T. Collins
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - O. Flanagan
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - B. S. Marteyn
- Universite de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9002, F-67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), F-67000 Strasbourg, France
- Institut Pasteur, Université de Paris, Inserm U1225, Unité de Pathogenèse des Infections Vasculaires, F-75015 Paris, France
| | - A. Clements
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| |
Collapse
|
19
|
Maphosa S, Moleleki LN. A computational and secretome analysis approach reveals exclusive and shared candidate type six secretion system substrates in Pectobacterium brasiliense 1692. Microbiol Res 2024; 278:127501. [PMID: 37976736 DOI: 10.1016/j.micres.2023.127501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 11/19/2023]
Abstract
The type 6 secretion system (T6SS) of Gram-negative bacteria (GNB) has implications for bacterial competition, virulence, and survival. For the broad host range pathogen, Pectobacterium brasiliense 1692, T6SS-mediated competition occurs in a tissue-specific manner. However, no other roles have been investigated. The aim of this study was to identify T6SS-associated proteins under virulence inducing conditions. We used Bastion tools to predict 1479 Pbr1692 secreted proteins. Sixteen percent of these overlap between type 1-4 secretion systems (T1SS-T4SS) and T6SS. Using label-free quantitative mass spectrometry of Pbr1692 T6SS active and T6SS inactive strains' secretomes cultured in minimal media supplemented with host extract, 49 T6SS-associated proteins with varied gene ontology predicted functions were identified. We report 19 and 30 T6SS primary substrates and differentially secreted proteins, respectively, in T6SS mutants versus wild type strains. Of the total 49 T6SS-associated proteins presented in this study, 25 were also predicted using the BastionX platform as T6SS exclusive and shared substrates with T1SS-T4SS. This work provides a list of Pbr1692 T6SS secreted effector candidates. These include a potential antibacterial toxin HNH endonuclease and several predicted virulence proteins, including plant cell wall degrading enzymes. A preliminary basis for potential crosstalk between GNB secretion systems is also highlighted.
Collapse
Affiliation(s)
- S Maphosa
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa.
| | - L N Moleleki
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
20
|
Alcoforado Diniz J, Earl C, Hernandez RE, Hollmann B, Coulthurst SJ. Quantitative Determination of Antibacterial Activity During Bacterial Coculture. Methods Mol Biol 2024; 2715:593-600. [PMID: 37930554 DOI: 10.1007/978-1-0716-3445-5_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Antibacterial activity assays are an important tool in the assessment of the ability of one bacterium to kill or inhibit the growth of another, for example, during the study of the Type VI secretion system (T6SS) and the antibacterial toxins it secretes. The method we describe here can detect the ability of a bacterial strain to kill or inhibit other bacterial cells in a contact-dependent manner when cocultured on an agar surface. It is particularly useful since it enumerates the recovery of viable target cells and thus enables quantification of the antibacterial activity. We provide a detailed description of how to measure the T6SS-dependent antibacterial activity of a bacterium such as Serratia marcescens against a competitor prokaryotic organism, Escherichia coli, and describe possible variations in the method to allow adaptation to other attacker and target organisms.
Collapse
Affiliation(s)
| | - Christopher Earl
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ruth E Hernandez
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Birte Hollmann
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Sarah J Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
21
|
Crisan CV, Van Tyne D, Goldberg JB. The type VI secretion system of the emerging pathogen Stenotrophomonas maltophilia complex has antibacterial properties. mSphere 2023; 8:e0058423. [PMID: 37975665 PMCID: PMC10732056 DOI: 10.1128/msphere.00584-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Infections with the opportunistic pathogen Stenotrophomonas maltophilia complex can be fatal for immunocompromised patients. The mechanisms used by the bacterium to compete against other prokaryotes are not well understood. We found that the type VI secretion system (T6SS) allows S. maltophilia complex to eliminate other bacteria and contributes to the competitive fitness against a co-infecting isolate. The presence of T6SS genes in isolates across the globe highlights the importance of this apparatus as a weapon in the antibacterial arsenal of S. maltophilia complex. The T6SS may confer survival advantages to S. maltophilia complex isolates in polymicrobial communities in both environmental settings and during infections.
Collapse
Affiliation(s)
- Cristian V. Crisan
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joanna B. Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Zhang Y, Guan J, Li C, Wang Z, Deng Z, Gasser RB, Song J, Ou HY. DeepSecE: A Deep-Learning-Based Framework for Multiclass Prediction of Secreted Proteins in Gram-Negative Bacteria. RESEARCH (WASHINGTON, D.C.) 2023; 6:0258. [PMID: 37886621 PMCID: PMC10599158 DOI: 10.34133/research.0258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
Proteins secreted by Gram-negative bacteria are tightly linked to the virulence and adaptability of these microbes to environmental changes. Accurate identification of such secreted proteins can facilitate the investigations of infections and diseases caused by these bacterial pathogens. However, current bioinformatic methods for predicting bacterial secreted substrate proteins have limited computational efficiency and application scope on a genome-wide scale. Here, we propose a novel deep-learning-based framework-DeepSecE-for the simultaneous inference of multiple distinct groups of secreted proteins produced by Gram-negative bacteria. DeepSecE remarkably improves their classification from nonsecreted proteins using a pretrained protein language model and transformer, achieving a macro-average accuracy of 0.883 on 5-fold cross-validation. Performance benchmarking suggests that DeepSecE achieves competitive performance with the state-of-the-art binary predictors specialized for individual types of secreted substrates. The attention mechanism corroborates salient patterns and motifs at the N or C termini of the protein sequences. Using this pipeline, we further investigate the genome-wide prediction of novel secreted proteins and their taxonomic distribution across ~1,000 Gram-negative bacterial genomes. The present analysis demonstrates that DeepSecE has major potential for the discovery of disease-associated secreted proteins in a diverse range of Gram-negative bacteria. An online web server of DeepSecE is also publicly available to predict and explore various secreted substrate proteins via the input of bacterial genome sequences.
Collapse
Affiliation(s)
- Yumeng Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Guan
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology,
Monash University, Melbourne, VIC 3800, Australia
| | - Zhikang Wang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology,
Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute,
Monash University, Melbourne, VIC 3800, Australia
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Robin B. Gasser
- Melbourne Veterinary School, Faculty of Science,
The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology,
Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute,
Monash University, Melbourne, VIC 3800, Australia
- Melbourne Veterinary School, Faculty of Science,
The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Dupont CA, Bourigault Y, Osmond T, Nier M, Barbey C, Latour X, Konto-Ghiorghi Y, Verdon J, Merieau A. Pseudomonas fluorescens MFE01 uses 1-undecene as aerial communication molecule. Front Microbiol 2023; 14:1264801. [PMID: 37908545 PMCID: PMC10614000 DOI: 10.3389/fmicb.2023.1264801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Bacterial communication is a fundamental process used to synchronize gene expression and collective behavior among the bacterial population. The most studied bacterial communication system is quorum sensing, a cell density system, in which the concentration of inductors increases to a threshold level allowing detection by specific receptors. As a result, bacteria can change their behavior in a coordinated way. While in Pseudomonas quorum sensing based on the synthesis of N-acyl homoserine lactone molecules is well studied, volatile organic compounds, although considered to be communication signals in the rhizosphere, are understudied. The Pseudomonas fluorescens MFE01 strain has a very active type six secretion system that can kill some competitive bacteria. Furthermore, MFE01 emits numerous volatile organic compounds, including 1-undecene, which contributes to the aerial inhibition of Legionella pneumophila growth. Finally, MFE01 appears to be deprived of N-acyl homoserine lactone synthase. The main objective of this study was to explore the role of 1-undecene in the communication of MFE01. We constructed a mutant affected in undA gene encoding the enzyme responsible for 1-undecene synthesis to provide further insight into the role of 1-undecene in MFE01. First, we studied the impacts of this mutation both on volatile organic compounds emission, using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry and on L. pneumophila long-range inhibition. Then, we analyzed influence of 1-undecene on MFE01 coordinated phenotypes, including type six secretion system activity and biofilm formation. Next, to test the ability of MFE01 to synthesize N-acyl homoserine lactones in our conditions, we investigated in silico the presence of corresponding genes across the MFE01 genome and we exposed its biofilms to an N-acyl homoserine lactone-degrading enzyme. Finally, we examined the effects of 1-undecene emission on MFE01 biofilm maturation and aerial communication using an original experimental set-up. This study demonstrated that the ΔundA mutant is impaired in biofilm maturation. An exposure of the ΔundA mutant to the volatile compounds emitted by MFE01 during the biofilm development restored the biofilm maturation process. These findings indicate that P. fluorescens MFE01 uses 1-undecene emission for aerial communication, reporting for the first time this volatile organic compound as bacterial intraspecific communication signal.
Collapse
Affiliation(s)
- Charly A. Dupont
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Yvann Bourigault
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Théo Osmond
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Maëva Nier
- Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Corinne Barbey
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Xavier Latour
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Yoan Konto-Ghiorghi
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Annabelle Merieau
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale and Entente Franco-Québécoise NOR-SEVE, NORVEGE, Rouen, France
| |
Collapse
|
24
|
Smith JA, Holmes DE, Woodard TL, Li Y, Liu X, Wang LY, Meier D, Schwarz IA, Lovley DR. Detrimental impact of the Geobacter metallireducens type VI secretion system on direct interspecies electron transfer. Microbiol Spectr 2023; 11:e0094123. [PMID: 37650614 PMCID: PMC10580878 DOI: 10.1128/spectrum.00941-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/02/2023] [Indexed: 09/01/2023] Open
Abstract
Direct interspecies electron transfer (DIET) is important in anaerobic communities of environmental and practical significance. Other than the need for close physical contact for electrical connections, the interactions of DIET partners are poorly understood. Type VI secretion systems (T6SSs) typically kill competitive microbes. Surprisingly, Geobacter metallireducens highly expressed T6SS genes when DIET-based co-cultures were initiated with Geobacter sulfurreducens. T6SS gene expression was lower when the electron shuttle anthraquinone-2,6-disulfonate was added to alleviate the need for interspecies contact. Disruption of hcp, the G. metallireducens gene for the main T6SS needle-tube protein subunit, and the most highly upregulated gene in DIET-grown cells eliminated the long lag periods required for the initiation of DIET. The mutation did not aid DIET in the presence of granular-activated carbon (GAC), consistent with the fact that DIET partners do not make physical contact when electrically connected through conductive materials. The hcp-deficient mutant also established DIET quicker with Methanosarcina barkeri. However, the mutant also reduced Fe(III) oxide faster than the wild-type strain, a phenotype not expected from the loss of the T6SS. Quantitative PCR revealed greater gene transcript abundance for key components of extracellular electron transfer in the hcp-deficient mutant versus the wild-type strain, potentially accounting for the faster Fe(III) oxide reduction and impact on DIET. The results highlight that interspecies interactions beyond electrical connections may influence DIET effectiveness. The unexpected increase in the expression of genes for extracellular electron transport components when hcp was deleted emphasizes the complexities in evaluating the electromicrobiology of highly adaptable Geobacter species. IMPORTANCE Direct interspecies electron transfer is an alternative to the much more intensively studied process of interspecies H2 transfer as a mechanism for microbes to share electrons during the cooperative metabolism of energy sources. DIET is an important process in anaerobic soils and sediments generating methane, a significant greenhouse gas. Facilitating DIET can accelerate and stabilize the conversion of organic wastes to methane biofuel in anaerobic digesters. Therefore, a better understanding of the factors controlling how fast DIET partnerships are established is expected to lead to new strategies for promoting this bioenergy process. The finding that when co-cultured with G. sulfurreducens, G. metallireducens initially expressed a type VI secretion system, a behavior not conducive to interspecies cooperation, illustrates the complexity of establishing syntrophic relationships.
Collapse
Affiliation(s)
- Jessica A. Smith
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, Connecticut, USA
| | - Dawn E. Holmes
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Trevor L. Woodard
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
| | - Yang Li
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning, China
| | - Xinying Liu
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Li-Ying Wang
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
| | - David Meier
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
| | - Ingrid A. Schwarz
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, Connecticut, USA
| | - Derek R. Lovley
- Department of Microbiology, University of Massachusetts Amherst, Morrill IV N Science Center, Amherst, Massachusetts, USA
| |
Collapse
|
25
|
Cohen H, Fridman CM, Gerlic M, Salomon D. A Vibrio T6SS-Mediated Lethality in an Aquatic Animal Model. Microbiol Spectr 2023; 11:e0109323. [PMID: 37310285 PMCID: PMC10433976 DOI: 10.1128/spectrum.01093-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Bacteria belonging to the genus Vibrio include many known and emerging pathogens. Horizontal gene transfer of pathogenicity islands is a major contributor to the emergence of new pathogenic Vibrio strains. Here, we use the brine shrimp Artemia salina as a model and show that the marine bacterium Vibrio proteolyticus uses a horizontally shared type VI secretion system, T6SS3, to intoxicate a eukaryotic host. Two T6SS3 effectors, which were previously shown to induce inflammasome-mediated pyroptotic cell death in mammalian phagocytic cells, contribute to this toxicity. Furthermore, we find a novel T6SS3 effector that also contributes to the lethality mediated by this system against Artemia salina. Therefore, our results reveal a T6SS that is shared among diverse vibrios and mediates host lethality, indicating that it can lead to the emergence of new pathogenic strains. IMPORTANCE The rise in sea surface temperature has been linked to the spread of bacteria belonging to the genus Vibrio and the human illnesses associated with them. Since vibrios often share virulence traits horizontally, a better understanding of their virulence potential and determinants can prepare us for new emerging pathogens. In this work, we showed that a toxin delivery system found in various vibrios mediates lethality in an aquatic animal. Taken together with previous reports showing that the same system induces inflammasome-mediated cell death in mammalian phagocytic cells, our findings suggest that this delivery system and its associated toxins may contribute to the emergence of pathogenic strains.
Collapse
Affiliation(s)
- Hadar Cohen
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chaya M. Fridman
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Kanarek K, Fridman CM, Bosis E, Salomon D. The RIX domain defines a class of polymorphic T6SS effectors and secreted adaptors. Nat Commun 2023; 14:4983. [PMID: 37591831 PMCID: PMC10435454 DOI: 10.1038/s41467-023-40659-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Bacteria use the type VI secretion system (T6SS) to deliver toxic effectors into bacterial or eukaryotic cells during interbacterial competition, host colonization, or when resisting predation. Identifying effectors is a challenging task, as they lack canonical secretion signals or universally conserved domains. Here, we identify a protein domain, RIX, that defines a class of polymorphic T6SS cargo effectors. RIX is widespread in the Vibrionaceae family and is located at N-termini of proteins containing diverse antibacterial and anti-eukaryotic toxic domains. We demonstrate that RIX-containing proteins are delivered via T6SS into neighboring cells and that RIX is necessary and sufficient for T6SS-mediated secretion. In addition, RIX-containing proteins can enable the T6SS-mediated delivery of other cargo effectors by a previously undescribed mechanism. The identification of RIX-containing proteins significantly enlarges the repertoire of known T6SS effectors, especially those with anti-eukaryotic activities. Furthermore, our findings also suggest that T6SSs may play an underappreciated role in the interactions between vibrios and eukaryotes.
Collapse
Affiliation(s)
- Katarzyna Kanarek
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chaya Mushka Fridman
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel.
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
Blondel CJ, Amaya FA, Bustamante P, Santiviago CA, Pezoa D. Identification and distribution of new candidate T6SS effectors encoded in Salmonella Pathogenicity Island 6. Front Microbiol 2023; 14:1252344. [PMID: 37664116 PMCID: PMC10469887 DOI: 10.3389/fmicb.2023.1252344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
The type VI secretion system (T6SS) is a contact-dependent contractile multiprotein apparatus widely distributed in Gram-negative bacteria. These systems can deliver different effector proteins into target bacterial and/or eukaryotic cells, contributing to the environmental fitness and virulence of many bacterial pathogens. Salmonella harbors five different T6SSs encoded in different genomic islands. The T6SS encoded in Salmonella Pathogenicity Island 6 (SPI-6) contributes to Salmonella competition with the host microbiota and its interaction with infected host cells. Despite its relevance, information regarding the total number of effector proteins encoded within SPI-6 and its distribution among different Salmonella enterica serotypes is limited. In this work, we performed bioinformatic and comparative genomics analyses of the SPI-6 T6SS gene cluster to expand our knowledge regarding the T6SS effector repertoire and the global distribution of these effectors in Salmonella. The analysis of a curated dataset of 60 Salmonella enterica genomes from the Secret6 database revealed the presence of 23 new putative T6SS effector/immunity protein (E/I) modules. These effectors were concentrated in the variable regions 1 to 3 (VR1-3) of the SPI-6 T6SS gene cluster. VR1-2 were enriched in candidate effectors with predicted peptidoglycan hydrolase activity, while VR3 was enriched in candidate effectors of the Rhs family with C-terminal extensions with predicted DNase, RNase, deaminase, or ADP-ribosyltransferase activity. A global analysis of known and candidate effector proteins in Salmonella enterica genomes from the NCBI database revealed that T6SS effector proteins are differentially distributed among Salmonella serotypes. While some effectors are present in over 200 serotypes, others are found in less than a dozen. A hierarchical clustering analysis identified Salmonella serotypes with distinct profiles of T6SS effectors and candidate effectors, highlighting the diversity of T6SS effector repertoires in Salmonella enterica. The existence of different repertoires of effector proteins suggests that different effector protein combinations may have a differential impact on the environmental fitness and pathogenic potential of these strains.
Collapse
Affiliation(s)
- Carlos J. Blondel
- Facultad de Medicina y Facultad de Ciencias de la Vida, Instituto de Ciencias Biomédicas, Universidad Andrés Bello, Santiago, Chile
| | - Fernando A. Amaya
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Paloma Bustamante
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Carlos A. Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - David Pezoa
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
28
|
Hespanhol JT, Nóbrega-Silva L, Bayer-Santos E. Regulation of type VI secretion systems at the transcriptional, posttranscriptional and posttranslational level. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001376. [PMID: 37552221 PMCID: PMC10482370 DOI: 10.1099/mic.0.001376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Bacteria live in complex polymicrobial communities and are constantly competing for resources. The type VI secretion system (T6SS) is a widespread antagonistic mechanism used by Gram-negative bacteria to gain an advantage over competitors. T6SSs translocate toxic effector proteins inside target prokaryotic cells in a contact-dependent manner. In addition, some T6SS effectors can be secreted extracellularly and contribute to the scavenging scarce metal ions. Bacteria deploy their T6SSs in different situations, categorizing these systems into offensive, defensive and exploitative. The great variety of bacterial species and environments occupied by such species reflect the complexity of regulatory signals and networks that control the expression and activation of the T6SSs. Such regulation is tightly controlled at the transcriptional, posttranscriptional and posttranslational level by abiotic (e.g. pH, iron) or biotic (e.g. quorum-sensing) cues. In this review, we provide an update on the current knowledge about the regulatory networks that modulate the expression and activity of T6SSs across several species, focusing on systems used for interbacterial competition.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Luize Nóbrega-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Ethel Bayer-Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| |
Collapse
|
29
|
Allsopp LP, Bernal P. Killing in the name of: T6SS structure and effector diversity. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001367. [PMID: 37490402 PMCID: PMC10433429 DOI: 10.1099/mic.0.001367] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
The life of bacteria is challenging, to endure bacteria employ a range of mechanisms to optimize their environment, including deploying the type VI secretion system (T6SS). Acting as a bacterial crossbow, this system delivers effectors responsible for subverting host cells, killing competitors and facilitating general secretion to access common goods. Due to its importance, this lethal machine has been evolutionarily maintained, disseminated and specialized to fulfil these vital functions. In fact, T6SS structural clusters are present in over 25 % of Gram-negative bacteria, varying in number from one to six different genetic clusters per organism. Since its discovery in 2006, research on the T6SS has rapidly progressed, yielding remarkable breakthroughs. The identification and characterization of novel components of the T6SS, combined with biochemical and structural studies, have revealed fascinating mechanisms governing its assembly, loading, firing and disassembly processes. Recent findings have also demonstrated the efficacy of this system against fungal and Gram-positive cells, expanding its scope. Ongoing research continues to uncover an extensive and expanding repertoire of T6SS effectors, the genuine mediators of T6SS function. These studies are shedding light on new aspects of the biology of prokaryotic and eukaryotic organisms. This review provides a comprehensive overview of the T6SS, highlighting recent discoveries of its structure and the diversity of its effectors. Additionally, it injects a personal perspective on avenues for future research, aiming to deepen our understanding of this combative system.
Collapse
Affiliation(s)
- Luke P. Allsopp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Patricia Bernal
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| |
Collapse
|
30
|
Prince A, Wong Fok Lung T. Immunometabolic control by Klebsiella pneumoniae. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00028. [PMID: 37492184 PMCID: PMC10364963 DOI: 10.1097/in9.0000000000000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Klebsiella pneumoniae is a common Gram-negative pathogen associated with community-acquired and healthcare-associated infections. Its ability to acquire genetic elements resulted in its rapid development of resistance to virtually all antimicrobial agents. Once infection is established, K. pneumoniae is able to evade the host immune response and perhaps more importantly, undergo metabolic rewiring to optimize its ability to maintain infection. K. pneumoniae lipopolysaccharide and capsular polysaccharide are central factors in the induction and evasion of immune clearance. Less well understood is the importance of immunometabolism, the intersection between cellular metabolism and immune function, in the host response to K. pneumoniae infection. Bacterial metabolism itself is perceived as a metabolic stress to the host, altering the microenvironment at the site of infection. In this review, we will discuss the metabolic responses induced by K. pneumoniae, particularly in response to stimulation with the metabolically active bacteria versus pathogen-associated molecular patterns alone, and their implications in shaping the nature of the immune response and the infection outcome. A better understanding of the immunometabolic response to K. pneumoniae may help identify new targets for therapeutic intervention in the treatment of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Alice Prince
- Department of Pediatrics, Columbia University, New York, NY, USA
| | | |
Collapse
|
31
|
Crisan CV, Van Tyne D, Goldberg JB. The Type VI Secretion System of the Emerging Pathogen Stenotrophomonas maltophilia has Antibacterial Properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542968. [PMID: 37398041 PMCID: PMC10312562 DOI: 10.1101/2023.05.30.542968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Antagonistic behaviors between bacterial cells can have profound effects on microbial populations and disease outcomes. Polymicrobial interactions may be mediated by contact-dependent proteins with antibacterial properties. The Type VI Secretion System (T6SS) is a macromolecular weapon used by Gram-negative bacteria to translocate proteins into adjacent cells. The T6SS is used by pathogens to escape immune cells, eliminate commensal bacteria, and facilitate infection. Stenotrophomonas maltophilia is a Gram-negative opportunistic pathogen that causes a wide range of infections in immunocompromised patients and infects the lungs of patients with cystic fibrosis. Infections with the bacterium can be deadly and are challenging to treat because many isolates are multidrug-resistant. We found that globally dispersed S. maltophilia clinical and environmental strains possess T6SS genes. We demonstrate that the T6SS of an S. maltophilia patient isolate is active and can eliminate other bacteria. Furthermore, we provide evidence that the T6SS contributes to the competitive fitness of S. maltophilia against a co-infecting Pseudomonas aeruginosa isolate, and that the T6SS alters the cellular organization of S. maltophilia and P. aeruginosa co-cultures. This study expands our knowledge of the mechanisms employed by S. maltophilia to secrete antibacterial proteins and compete against other bacteria. IMPORTANCE Infections with the opportunistic pathogen Stenotrophomonas maltophilia can be fatal for immunocompromised patients. The mechanisms used by the bacterium to compete against other prokaryotes are not well understood. We found that the T6SS allows S. maltophilia to eliminate other bacteria and contributes to the competitive fitness against a co-infecting isolate. The presence of T6SS genes in isolates across the globe highlights the importance of this apparatus as a weapon in the antibacterial arsenal of S. maltophilia . The T6SS may confer survival advantages to S. maltophilia isolates in polymicrobial communities in both environmental settings and during infections.
Collapse
|
32
|
Pothula R, Lee MW, Patricia Stock S. Type 6 Secretion System components hcp and vgrG support mutualistic partnership between Xenorhabdus bovienii symbiont and Steinernema jollieti host. J Invertebr Pathol 2023; 198:107925. [PMID: 37087093 DOI: 10.1016/j.jip.2023.107925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Xenorhabdus, like other Gram-negative bacteria, possesses a Type 6 Secretion System (T6SS) which acts as a contact-dependent molecular syringe, delivering diverse proteins (effectors) directly into other cells. The number of T6SS loci encoded in Xenorhabdus genomes are variable both at the inter and intraspecific level. Some environmental isolates of Xenorhabdus bovienii, encode at least one T6SS locus while others possess two loci. Previous work conducted by our team demonstrated that X. bovienii [Jollieti strain SS-2004], which has two T6SSs (T6SS-1 and T6SS-2), hcp genes are required for biofilm formation. Additionally, while T6SS-1 hcp gene plays a role in the antibacterial competition, T6SS-2 hcp does not. In this study, we tested the hypothesis that vgrG genes are also involved in mutualistic and pathogenic interactions. For this purpose, targeted mutagenesis together with wet lab experiments including colonization, competition, biofilm, and virulence experiments, were carried out to assess the role of vgrG in the mutualistic and antagonistic interactions in the life cycle of XBJ. Our results revealed that vgrG genes are not required for biofilm formation but play a role in outcompeting other Xenorhabdus bacteria. Additionally, both vgrG and hcp genes are required to fully colonize the nematode host. We also demonstrated that hcp and vgrG genes in both T6SS clusters are needed to support the reproductive fitness of the nematodes. Overall, results from this study revealed that in X. bovieni jollieti strain, the twoT6SS clusters play an important role in the fitness of the nematodes in relation to colonization and reproduction. These results lay a foundation for further investigations on the functional significance of T6SSs in the mutualistic and pathogenic lifecycle of Xenorhabdus spp.
Collapse
Affiliation(s)
- Ratnasri Pothula
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Min-Woo Lee
- Corn, Soybean, and Wheat Quality Research Lab, USDA-ARS Wooster, OH, United States
| | - S Patricia Stock
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States; College of Agriculture, California State University, Chico, CA, United States.
| |
Collapse
|
33
|
Singh RP, Kumari K. Bacterial type VI secretion system (T6SS): an evolved molecular weapon with diverse functionality. Biotechnol Lett 2023; 45:309-331. [PMID: 36683130 DOI: 10.1007/s10529-023-03354-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
Bacterial secretion systems are nanomolecular complexes that release a diverse set of virulence factors/or proteins into its surrounding or translocate to their target host cells. Among these systems, type VI secretion system 'T6SS' is a recently discovered molecular secretion system which is widely distributed in Gram-negative (-ve) bacteria, and shares structural similarity with the puncturing device of bacteriophages. The presence of T6SS is an advantage to many bacteria as it delivers toxins to its neighbour pathogens for competitive survival, and also translocates protein effectors to the host cells, leading to disruption of lipid membranes, cell walls, and cytoskeletons etc. Recent studies have characterized both anti-prokaryotic and anti-eukaryotic effectors, where T6SS is involved in diverse cellular functions including favouring colonization, enhancing the survival, adhesive modifications, internalization, and evasion of the immune system. With the evolution of advanced genomics and proteomics tools, there has been an increase in the number of characterized T6SS effector arsenals and also more clear information about the adaptive significance of this complex system. The functions of T6SS are generally regulated at the transcription, post-transcription and post-translational levels through diverse mechanisms. In the present review, we aimed to provide information about the distribution of T6SS in diverse bacteria, any structural similarity/or dissimilarity, effectors proteins, functional significance, and regulatory mechanisms. We also tried to provide information about the diverse roles played by T6SS in its natural environments and hosts, and further any changes in the microbiome.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
34
|
Reglinski M, Monlezun L, Coulthurst SJ. The accessory protein TagV is required for full Type VI secretion system activity in Serratia marcescens. Mol Microbiol 2023; 119:326-339. [PMID: 36627840 PMCID: PMC7614798 DOI: 10.1111/mmi.15027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
The bacterial Type VI secretion system (T6SS) is a dynamic macromolecular structure that promotes inter- and intra-species competition through the delivery of toxic effector proteins into neighbouring cells. The T6SS contains 14 well-characterised core proteins necessary for effector delivery (TssA-M, PAAR). In this study, we have identified a novel accessory component required for optimal T6SS activity in the opportunistic pathogen Serratia marcescens, which we name TagV. Deletion of tagV, which encodes an outer membrane lipoprotein, caused a reduction in the T6SS-dependent antibacterial activity of S. marcescens Db10. Mutants of S. marcescens lacking the core component TssJ, a distinct outer membrane lipoprotein previously considered essential for T6SS firing, retained a modest T6SS activity that could be abolished through deletion of tagV. TagV did not interact with the T6SS membrane complex proteins TssL or TssM, but is proposed to bind to peptidoglycan, indicating that the mechanism by which TagV promotes T6SS firing differs from that of TssJ. Homologues of tagV were identified in several other bacterial genera, suggesting that the accessory function of TagV is not restricted to S. marcescens. Together, our findings support the existence of a second, TssJ-independent mechanism for T6SS firing that is dependent upon the activity of TagV proteins.
Collapse
Affiliation(s)
- Mark Reglinski
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Laura Monlezun
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Sarah J Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
35
|
A trans-kingdom T6SS effector induces the fragmentation of the mitochondrial network and activates innate immune receptor NLRX1 to promote infection. Nat Commun 2023; 14:871. [PMID: 36797302 PMCID: PMC9935632 DOI: 10.1038/s41467-023-36629-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Bacteria can inhibit the growth of other bacteria by injecting effectors using a type VI secretion system (T6SS). T6SS effectors can also be injected into eukaryotic cells to facilitate bacterial survival, often by targeting the cytoskeleton. Here, we show that the trans-kingdom antimicrobial T6SS effector VgrG4 from Klebsiella pneumoniae triggers the fragmentation of the mitochondrial network. VgrG4 colocalizes with the endoplasmic reticulum (ER) protein mitofusin 2. VgrG4 induces the transfer of Ca2+ from the ER to the mitochondria, activating Drp1 (a regulator of mitochondrial fission) thus leading to mitochondrial network fragmentation. Ca2+ elevation also induces the activation of the innate immunity receptor NLRX1 to produce reactive oxygen species (ROS). NLRX1-induced ROS limits NF-κB activation by modulating the degradation of the NF-κB inhibitor IκBα. The degradation of IκBα is triggered by the ubiquitin ligase SCFβ-TrCP, which requires the modification of the cullin-1 subunit by NEDD8. VgrG4 abrogates the NEDDylation of cullin-1 by inactivation of Ubc12, the NEDD8-conjugating enzyme. Our work provides an example of T6SS manipulation of eukaryotic cells via alteration of the mitochondria.
Collapse
|
36
|
Type VI Secretion Systems: Environmental and Intra-host Competition of Vibrio cholerae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:41-63. [PMID: 36792870 DOI: 10.1007/978-3-031-22997-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The Vibrio Type VI Secretion System (T6SS) is a harpoon-like nanomachine that serves as a defense system and is encoded by approximately 25% of all gram-negative bacteria. In this chapter, we describe the structure of the T6SS in different Vibrio species and outline how the use of different T6SS effector and immunity proteins control kin selection. We summarize the genetic loci that encode the structural elements that make up the Vibrio T6SSs and how these gene clusters are regulated. Finally, we provide insights into T6SS-based competitive dynamics, the role of T6SS genetic exchange in those competitive dynamics, and roles for the Vibrio T6SS in virulence.
Collapse
|
37
|
Murga-Garrido SM, Ulloa-Pérez EJ, Díaz-Benítez CE, Orbe-Orihuela YC, Cornejo-Granados F, Ochoa-Leyva A, Sanchez-Flores A, Cruz M, Castañeda-Márquez AC, Plett-Torres T, Burguete García AI, Lagunas-Martínez A. Virulence Factors of the Gut Microbiome Are Associated with BMI and Metabolic Blood Parameters in Children with Obesity. Microbiol Spectr 2023; 11:e0338222. [PMID: 36786619 PMCID: PMC10101034 DOI: 10.1128/spectrum.03382-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/29/2023] [Indexed: 02/15/2023] Open
Abstract
The development of metabolic diseases is linked to the gut microbiota. A cross-sectional study involving 45 children (6 to 12 years old) was conducted to investigate the relationship between gut microbiota and childhood obesity. Anthropometric and metabolic measurements, food-frequency questionnaires (FFQs), and feces samples were obtained. Using the body mass index (BMI) z-score, we categorized each participant as normal weight (NW), or overweight and obese (OWOB). We determined 2 dietary profiles: one with complex carbohydrates and proteins (pattern 1), and the other with saturated fat and simple carbohydrates (pattern 2). The microbial taxonomic diversity and metabolic capacity were determined using shotgun metagenomics. We found differences between both BMI groups diversity. Taxa contributing to this difference, included Eubacterium sp., Faecalibacterium prausnitzii, Dialister, Monoglobus pectinilyticus, Bifidobacterium pseudocatenulatum, Intestinibacter bartlettii, Bacteroides intestinalis, Bacteroides uniformis, and Methanobrevibacter smithii. Metabolic capacity differences found between NW and OWOB, included the amino acid biosynthesis pathway, the cofactor, carrier, and vitamin biosynthesis pathway, the nucleoside and nucleotide biosynthesis and degradation pathways, the carbohydrate-sugar degradation pathway, and the amine and polyamine biosynthesis pathway. We found significant associations between taxa such as Ruminococcus, Mitsuokella multacida, Klebsiella variicola, and Citrobacter spp., metabolic pathways with the anthropometric, metabolic, and dietary data. We also found the microbiome's lipooligosaccharide (LOS) category as differentially abundant between BMI groups. Metabolic variations emerge during childhood as a result of complex nutritional and microbial interactions, which should be explained in order to prevent metabolic illnesses in adolescence and maturity. IMPORTANCE The alteration of gut microbiome composition has been commonly observed in diseases involving inflammation, such as obesity and metabolic impairment. Inflammatory host response in the gut can be a consequence of dietary driven dysbiosis. This response is conducive to blooms of particular bacterial species, adequate to survive in an inflammatory environment by means of genetical capability of utilizing alternative nutrients. Understanding the genomic and metabolic contribution of microbiota to inflammation, including virulence factor prevalence and functional potential, will contribute to identifying modifiable early life exposures and preventive strategies associated with obesity risk in childhood.
Collapse
Affiliation(s)
- S. M. Murga-Garrido
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
- PECEM (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - E. J. Ulloa-Pérez
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - C. E. Díaz-Benítez
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Y. C. Orbe-Orihuela
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - F. Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - A. Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - A. Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - M. Cruz
- Unidad de Investigación Médica en Bioquímica, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - A. C. Castañeda-Márquez
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - T. Plett-Torres
- PECEM (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - A. I. Burguete García
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - A. Lagunas-Martínez
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| |
Collapse
|
38
|
Hulin MT, Hill L, Jones JDG, Ma W. Pangenomic analysis reveals plant NAD + manipulation as an important virulence activity of bacterial pathogen effectors. Proc Natl Acad Sci U S A 2023; 120:e2217114120. [PMID: 36753463 PMCID: PMC9963460 DOI: 10.1073/pnas.2217114120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/30/2022] [Indexed: 02/09/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) has emerged as a key component in prokaryotic and eukaryotic immune systems. The recent discovery that Toll/interleukin-1 receptor (TIR) proteins function as NAD+ hydrolases (NADase) links NAD+-derived small molecules with immune signaling. We investigated pathogen manipulation of host NAD+ metabolism as a virulence strategy. Using the pangenome of the model bacterial pathogen Pseudomonas syringae, we conducted a structure-based similarity search from 35,000 orthogroups for type III effectors (T3Es) with potential NADase activity. Thirteen T3Es, including five newly identified candidates, were identified that possess domain(s) characteristic of seven NAD+-hydrolyzing enzyme families. Most Pseudomonas syringae strains that depend on the type III secretion system to cause disease, encode at least one NAD+-manipulating T3E, and many have several. We experimentally confirmed the type III-dependent secretion of a novel T3E, named HopBY, which shows structural similarity to both TIR and adenosine diphosphate ribose (ADPR) cyclase. Homologs of HopBY were predicted to be type VI effectors in diverse bacterial species, indicating potential recruitment of this activity by microbial proteins secreted during various interspecies interactions. HopBY efficiently hydrolyzes NAD+ and specifically produces 2'cADPR, which can also be produced by TIR immune receptors of plants and by other bacteria. Intriguingly, this effector promoted bacterial virulence, indicating that 2'cADPR may not be the signaling molecule that directly initiates immunity. This study highlights a host-pathogen battleground centered around NAD+ metabolism and provides insight into the NAD+-derived molecules involved in plant immunity.
Collapse
Affiliation(s)
| | - Lionel Hill
- John Innes Centre, Norwich Research ParkNR4 7UH, Norwich, UK
| | | | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research ParkNR4 7UH, Norwich, UK
| |
Collapse
|
39
|
Ren A, Jia M, Liu J, Zhou T, Wu L, Dong T, Cai Z, Qu J, Liu Y, Yang L, Zhang Y. Acquisition of T6SS Effector TseL Contributes to the Emerging of Novel Epidemic Strains of Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0330822. [PMID: 36546869 PMCID: PMC9927574 DOI: 10.1128/spectrum.03308-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with multiple strategies to interact with other microbes and host cells, gaining fitness in complicated infection sites. The contact-dependent type VI secretion system (T6SS) is one critical secretion apparatus involved in both interbacterial competition and pathogenesis. To date, only limited numbers of T6SS-effectors have been clearly characterized in P. aeruginosa laboratory strains, and the importance of T6SS diversity in the evolution of clinical P. aeruginosa remains unclear. Recently, we characterized a P. aeruginosa clinical strain LYSZa7 from a COVID-19 patient, which adopted complex genetic adaptations toward chronic infections. Bioinformatic analysis has revealed a putative type VI secretion system (T6SS) dependent lipase effector in LYSZa7, which is a homologue of TseL in Vibrio cholerae and is widely distributed in pathogens. We experimentally validated that this TseL homologue belongs to the Tle2, a subfamily of T6SS-lipase effectors; thereby, we name this effector TseL (TseLPA in this work). Further, we showed the lipase-dependent bacterial toxicity of TseLPA, which primarily targets bacterial periplasm. The toxicity of TseLPA can be neutralized by two immunity proteins, TsiP1 and TsiP2, which are encoded upstream of tseL. In addition, we proved this TseLPA contributes to bacterial pathogenesis by promoting bacterial internalization into host cells. Our study suggests that clinical bacterial strains employ a diversified group of T6SS effectors for interbacterial competition and might contribute to emerging of new epidemic clonal lineages. IMPORTANCE Pseudomonas aeruginosa is one predominant pathogen that causes hospital-acquired infections and is one of the commonest coinfecting bacteria in immunocompromised patients and chronic wounds. This bacterium harbors a diverse accessory genome with a high frequency of gene recombination, rendering its population highly heterogeneous. Numerous Pa lineages coexist in the biofilm, where successful epidemic clonal lineage or strain-specific type commonly acquires genes to increase its fitness over the other organisms. Current studies of Pa genomic diversity commonly focused on antibiotic resistant genes and novel phages, overlooking the contribution of type VI secretion system (T6SS). We characterized a Pa clinical strain LYSZa7 from a COVID-19 patient, which adopted complex genetic adaptations toward chronic infections. We report, in this study, a novel T6SS-lipase effector that is broadly distributed in Pa clinical isolates and other predominant pathogens. The study suggests that hospital transmission may raise the emergence of new epidemic clonal lineages with specified T6SS effectors.
Collapse
Affiliation(s)
- Anmin Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Minlu Jia
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Jihong Liu
- Medical Research Center, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Tian Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Liwen Wu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Tao Dong
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Jiuxin Qu
- Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Yang Liu
- Medical Research Center, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
- Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Shenzhen, Guangdong, People’s Republic of China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Yingdan Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
40
|
Li P, Zhang S, Wang J, Al-Shamiri MM, Han B, Chen Y, Han S, Han L. Uncovering the Secretion Systems of Acinetobacter baumannii: Structures and Functions in Pathogenicity and Antibiotic Resistance. Antibiotics (Basel) 2023; 12:antibiotics12020195. [PMID: 36830106 PMCID: PMC9952577 DOI: 10.3390/antibiotics12020195] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Infections led by Acinetobacter baumannii strains are of great concern in healthcare environments due to the strong ability of the bacteria to spread through different apparatuses and develop drug resistance. Severe diseases can be caused by A. baumannii in critically ill patients, but its biological process and mechanism are not well understood. Secretion systems have recently been demonstrated to be involved in the pathogenic process, and five types of secretion systems out of the currently known six from Gram-negative bacteria have been found in A. baumannii. They can promote the fitness and pathogenesis of the bacteria by releasing a variety of effectors. Additionally, antibiotic resistance is found to be related to some types of secretion systems. In this review, we describe the genetic and structural compositions of the five secretion systems that exist in Acinetobacter. In addition, the function and molecular mechanism of each secretion system are summarized to explain how they enable these critical pathogens to overcome eukaryotic hosts and prokaryotic competitors to cause diseases.
Collapse
Affiliation(s)
- Pu Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Sirui Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jingdan Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Mona Mohamed Al-Shamiri
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Bei Han
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yanjiong Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Lei Han
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Correspondence:
| |
Collapse
|
41
|
Zuo Y, Li C, Yu D, Wang K, Liu Y, Wei Z, Yang Y, Wang Y, Shen X, Zhu L. A Fur-regulated type VI secretion system contributes to oxidative stress resistance and virulence in Yersinia pseudotuberculosis. STRESS BIOLOGY 2023; 3:2. [PMID: 37676351 PMCID: PMC10441874 DOI: 10.1007/s44154-022-00081-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/26/2022] [Indexed: 09/08/2023]
Abstract
The type VI secretion system (T6SS) is a widespread protein secretion apparatus deployed by many Gram-negative bacterial species to interact with competitor bacteria, host organisms, and the environment. Yersinia pseudotuberculosis T6SS4 was recently reported to be involved in manganese acquisition; however, the underlying regulatory mechanism still remains unclear. In this study, we discovered that T6SS4 is regulated by ferric uptake regulator (Fur) in response to manganese ions (Mn2+), and this negative regulation of Fur was proceeded by specifically recognizing the promoter region of T6SS4 in Y. pseudotuberculosis. Furthermore, T6SS4 is induced by low Mn2+ and oxidative stress conditions via Fur, acting as a Mn2+-responsive transcriptional regulator to maintain intracellular manganese homeostasis, which plays important role in the transport of Mn2+ for survival under oxidative stress. Our results provide evidence that T6SS4 can enhance the oxidative stress resistance and virulence for Y. pseudotuberculosis. This study provides new insights into the regulation of T6SS4 via the Mn2+-dependent transcriptional regulator Fur, and expands our knowledge of the regulatory mechanisms and functions of T6SS from Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Yuxin Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Danyang Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kenan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
42
|
Robinson LA, Collins ACZ, Murphy RA, Davies JC, Allsopp LP. Diversity and prevalence of type VI secretion system effectors in clinical Pseudomonas aeruginosa isolates. Front Microbiol 2023; 13:1042505. [PMID: 36687572 PMCID: PMC9846239 DOI: 10.3389/fmicb.2022.1042505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and a major driver of morbidity and mortality in people with Cystic Fibrosis (CF). The Type VI secretion system (T6SS) is a molecular nanomachine that translocates effectors across the bacterial membrane into target cells or the extracellular environment enabling intermicrobial interaction. P. aeruginosa encodes three T6SS clusters, the H1-, H2- and H3-T6SS, and numerous orphan islands. Genetic diversity of T6SS-associated effectors in P. aeruginosa has been noted in reference strains but has yet to be explored in clinical isolates. Here, we perform a comprehensive bioinformatic analysis of the pangenome and T6SS effector genes in 52 high-quality clinical P. aeruginosa genomes isolated from CF patients and housed in the Personalised Approach to P. aeruginosa strain repository. We confirm that the clinical CF isolate pangenome is open and principally made up of accessory and unique genes that may provide strain-specific advantages. We observed genetic variability in some effector/immunity encoding genes and show that several well-characterised vgrG and PAAR islands are absent from numerous isolates. Our analysis shows clear evidence of disruption to T6SS genomic loci through transposon, prophage, and mobile genetic element insertions. We identified an orphan vgrG island in P. aeruginosa strain PAK and five clinical isolates using in silico analysis which we denote vgrG7, predicting a gene within this cluster to encode a Tle2 lipase family effector. Close comparison of T6SS loci in clinical isolates compared to reference P. aeruginosa strain PAO1 revealed the presence of genes encoding eight new T6SS effectors with the following putative functions: cytidine deaminase, lipase, metallopeptidase, NADase, and pyocin. Finally, the prevalence of characterised and putative T6SS effectors were assessed in 532 publicly available P. aeruginosa genomes, which suggests the existence of accessory effectors. Our in silico study of the P. aeruginosa T6SS exposes a level of genetic diversity at T6SS genomic loci not seen to date within P. aeruginosa, particularly in CF isolates. As understanding the effector repertoire is key to identifying the targets of T6SSs and its efficacy, this comprehensive analysis provides a path for future experimental characterisation of these mediators of intermicrobial competition and host manipulation.
Collapse
Affiliation(s)
- Luca A. Robinson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alice C. Z. Collins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ronan A. Murphy
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jane C. Davies
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Luke P. Allsopp
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
43
|
Wang Y, Zeng M, Xia L, Valerie Olovo C, Su Z, Zhang Y. Bacterial strategies for immune systems - Role of the type VI secretion system. Int Immunopharmacol 2023; 114:109550. [PMID: 36525796 DOI: 10.1016/j.intimp.2022.109550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/09/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
The process of host infection by bacteria is complicated. Bacterial infections strongly induce the host immune system, which necessitates a robust clearance of the infection. However, bacteria have over time developed strategies that enable their evasion of attacks by the host immune system. One such strategy is the type VI secretion system (T6SS), a special needle-like secretion system that is widespread in Gram-negative bacteria and is responsible for delivering effector proteins into the external bacterial environment or directly into the host cell cytosol. Bacterial T6SS and its secreted effector proteins play an important role in the interaction between bacteria and host immune system. They also serve as antigens that are employed in the development of vaccines for clinical trials as well as future vaccine candidates. This review focuses mainly on aspects of T6SS effectors that impact the strength of the host immune system, including inflammation, autophagy, and apoptosis (silent programmed cell death). The T6SS-based vaccines are also described.
Collapse
Affiliation(s)
- Yurou Wang
- Institute for Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Minmin Zeng
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Chinasa Valerie Olovo
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Zhaoliang Su
- Institute for Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhang
- Institute for Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
44
|
Pankov G, Mol Avelar G, Buchanan G, Coulthurst SJ, Hunter WN. The structure of a tautomerase superfamily member linked to the type VI secretion system of Acinetobacter baumannii. Acta Crystallogr F Struct Biol Commun 2023; 79:8-16. [PMID: 36598351 PMCID: PMC9813972 DOI: 10.1107/s2053230x22011414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Bacteria exploit specialized secretion systems to assist in competition for resources, in collaboration and in communication. Here, a protocol for the recombinant production, purification and crystallization of a protein linked to the Acinetobacter baumannii type VI secretion system is provided. A high-resolution structure of this trimeric protein is reported, revealing the characteristic dual β-α-β subunit fold typical of longer subunit members of the tautomerase superfamily. The protein does not appear to be toxic to bacteria or yeast under the conditions tested. The possible biological role of this protein is discussed.
Collapse
Affiliation(s)
- Genady Pankov
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Gabriela Mol Avelar
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Grant Buchanan
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Sarah J. Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom,Correspondence e-mail:
| |
Collapse
|
45
|
Guzmán-Herrador DL, Fernández-Gómez A, Llosa M. Recruitment of heterologous substrates by bacterial secretion systems for transkingdom translocation. Front Cell Infect Microbiol 2023; 13:1146000. [PMID: 36949816 PMCID: PMC10025392 DOI: 10.3389/fcimb.2023.1146000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Bacterial secretion systems mediate the selective exchange of macromolecules between bacteria and their environment, playing a pivotal role in processes such as horizontal gene transfer or virulence. Among the different families of secretion systems, Type III, IV and VI (T3SS, T4SS and T6SS) share the ability to inject their substrates into human cells, opening up the possibility of using them as customized injectors. For this to happen, it is necessary to understand how substrates are recruited and to be able to engineer secretion signals, so that the transmembrane machineries can recognize and translocate the desired substrates in place of their own. Other factors, such as recruiting proteins, chaperones, and the degree of unfolding required to cross through the secretion channel, may also affect transport. Advances in the knowledge of the secretion mechanism have allowed heterologous substrate engineering to accomplish translocation by T3SS, and to a lesser extent, T4SS and T6SS into human cells. In the case of T4SS, transport of nucleoprotein complexes adds a bonus to its biotechnological potential. Here, we review the current knowledge on substrate recognition by these secretion systems, the many examples of heterologous substrate translocation by engineering of secretion signals, and the current and future biotechnological and biomedical applications derived from this approach.
Collapse
|
46
|
Song L, Wu J, Weng K, Yao F, Vongsangnak W, Zhu G, Chen G, Zhang Y, Xu Q. The salmonella effector Hcp modulates infection response, and affects salmonella adhesion and egg contamination incidences in ducks. Front Cell Infect Microbiol 2022; 12:948237. [PMID: 36262184 PMCID: PMC9575552 DOI: 10.3389/fcimb.2022.948237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Salmonella Entertidis (SE) often causes persistent infections and egg contamination in laying ducks. Hcp, the core structural and effector proteins of the Type VI Secretion System (T6SS) in SE, contributes to bacterial invasion, adhesion and virulence. However, little is known about the effect of Hcp on the host’s infection responses and egg contamination incidences in duck. Herein, we generated an hcp deletion mutant SE MY1△hcp and detected its ability to invade duck granulosa cells (dGCs) and contaminate eggs. In comparison with MY1-infected group, the SE adhesion decreased by 15.96% in MY1△hcp-infected dGCs, and the apoptosis in MY1△hcp-infected dGCs decreased by 26.58% and 30.99% at 3 and 6 hours postinfection, respectively. However, the expression levels of immunogenic genes TLR4, NOD1, TNFα, IL-1β and proinflammatory cytokines IL-6, IL-1β, TNF-α release were markedly lower in the dGCs inoculated with MY1△hcp than that of the wild type. Besides, the laying ducks were challenged with MY1 or MY1△hcp in vivo, respectively. The lower egg production and higher egg contamination were observed in MY1-infected ducks in comparison with MY1△hcp-infected birds. Furthermore, the host’s infection response of differentially abundant proteins (DAPs) to Salmonella effector Hcp was identified using quantitative proteomics. A total of 164 DAPs were identified between the MY1- and MY1△hcp-infected cells, which were mainly engaged in the immune, hormone synthesis, cell proliferation and cell apoptotic process. Among them, STAT3, AKT1, MAPK9, MAPK14, and CREBBP were the center of the regulatory network, which might serve as key host response regulators to bacterial Hcp. In conclusion, we demonstrated that effector Hcp contributed to not only SE invasion, induction of dGCs apoptosis, and trigger of immune responses, but also enhanced contamination incidences. Also, the STAT3, AKT1, MAPK9, MAPK14, and CREBBP were identified as host’s infection response regulators of bacterial Hcp in duck. Overall, these results not only offered a novel evidence of SE ovarian transmission but also identified some promising candidate regulators during SE infection.
Collapse
Affiliation(s)
- Lina Song
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jia Wu
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiqi Weng
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fenghua Yao
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yu Zhang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Yu Zhang,
| | - Qi Xu
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Carobbi A, Di Nepi S, Fridman CM, Dar Y, Ben‐Yaakov R, Barash I, Salomon D, Sessa G. An antibacterial T6SS in Pantoea agglomerans pv. betae delivers a lysozyme-like effector to antagonize competitors. Environ Microbiol 2022; 24:4787-4802. [PMID: 35706135 PMCID: PMC9796082 DOI: 10.1111/1462-2920.16100] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/10/2022] [Indexed: 12/30/2022]
Abstract
The type VI secretion system (T6SS) is deployed by numerous Gram-negative bacteria to deliver toxic effectors into neighbouring cells. The genome of Pantoea agglomerans pv. betae (Pab) phytopathogenic bacteria contains a gene cluster (T6SS1) predicted to encode a complete T6SS. Using secretion and competition assays, we found that T6SS1 in Pab is a functional antibacterial system that allows this pathogen to outcompete rival plant-associated bacteria found in its natural environment. Computational analysis of the T6SS1 gene cluster revealed that antibacterial effector and immunity proteins are encoded within three genomic islands that also harbour arrays of orphan immunity genes or toxin and immunity cassettes. Functional analyses indicated that VgrG, a specialized antibacterial effector, contains a C-terminal catalytically active glucosaminidase domain that is used to degrade prey peptidoglycan. Moreover, we confirmed that a bicistronic unit at the end of the T6SS1 cluster encodes a novel antibacterial T6SS effector and immunity pair. Together, these results demonstrate that Pab T6SS1 is an antibacterial system delivering a lysozyme-like effector to eliminate competitors, and indicate that this bacterium contains additional novel T6SS effectors.
Collapse
Affiliation(s)
- Andrea Carobbi
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv
| | - Simone Di Nepi
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv
| | - Chaya M. Fridman
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv
| | - Yasmin Dar
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv
| | - Rotem Ben‐Yaakov
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv
| | - Isaac Barash
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv
| | - Guido Sessa
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv
| |
Collapse
|
48
|
Tighilt L, Boulila F, De Sousa BFS, Giraud E, Ruiz-Argüeso T, Palacios JM, Imperial J, Rey L. The Bradyrhizobium Sp. LmicA16 Type VI Secretion System Is Required for Efficient Nodulation of Lupinus Spp. MICROBIAL ECOLOGY 2022; 84:844-855. [PMID: 34697646 DOI: 10.1007/s00248-021-01892-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/30/2021] [Indexed: 05/06/2023]
Abstract
Many bacteria of the genus Bradyrhizobium are capable of inducing nodules in legumes. In this work, the importance of a type VI secretion system (T6SS) in a symbiotic strain of the genus Bradyrhizobium is described. T6SS of Bradyrhizobium sp. LmicA16 (A16) is necessary for efficient nodulation with Lupinus micranthus and Lupinus angustifolius. A mutant in the gene vgrG, coding for a component of the T6SS nanostructure, induced less nodules and smaller plants than the wild-type (wt) strain and was less competitive when co-inoculated with the wt strain. A16 T6SS genes are organized in a 26-kb DNA region in two divergent gene clusters of nine genes each. One of these genes codes for a protein (Tsb1) of unknown function but containing a methyltransferase domain. A tsb1 mutant showed an intermediate symbiotic phenotype regarding vgrG mutant and higher mucoidity than the wt strain in free-living conditions. T6SS promoter fusions to the lacZ reporter indicate expression in nodules but not in free-living cells grown in different media and conditions. The analysis of nodule structure revealed that the level of nodule colonization was significantly reduced in the mutants with respect to the wt strain.
Collapse
Affiliation(s)
- L Tighilt
- Laboratoire d'Ecologie Microbienne, Faculté Des Sciences de La Nature Et de La Vie, Université de Bejaia, 06000, Bejaia, Algeria
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación Y Tecnología Agraria Y Alimentaria (INIA), Campus de Montegancedo, 28223, Madrid, Spain
| | - F Boulila
- Laboratoire d'Ecologie Microbienne, Faculté Des Sciences de La Nature Et de La Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - B F S De Sousa
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación Y Tecnología Agraria Y Alimentaria (INIA), Campus de Montegancedo, 28223, Madrid, Spain
- Departamento de Biotecnología Y Biología Vegetal, ETSI Agronómica, Alimentaria Y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - E Giraud
- IRD, Laboratoire Des Symbioses Tropicales Et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/Université de Montpellier/CIRAD, TA-A82/J-Campus International de Baillarguet, 34398Cedex 5, Montpellier, France
| | - T Ruiz-Argüeso
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación Y Tecnología Agraria Y Alimentaria (INIA), Campus de Montegancedo, 28223, Madrid, Spain
- Departamento de Biotecnología Y Biología Vegetal, ETSI Agronómica, Alimentaria Y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - J M Palacios
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación Y Tecnología Agraria Y Alimentaria (INIA), Campus de Montegancedo, 28223, Madrid, Spain
- Departamento de Biotecnología Y Biología Vegetal, ETSI Agronómica, Alimentaria Y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - J Imperial
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación Y Tecnología Agraria Y Alimentaria (INIA), Campus de Montegancedo, 28223, Madrid, Spain
- Instituto de Ciencias Agrarias, CSIC, 28006, Madrid, Spain
| | - L Rey
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación Y Tecnología Agraria Y Alimentaria (INIA), Campus de Montegancedo, 28223, Madrid, Spain.
- Departamento de Biotecnología Y Biología Vegetal, ETSI Agronómica, Alimentaria Y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
49
|
Lorente Cobo N, Sibinelli-Sousa S, Biboy J, Vollmer W, Bayer-Santos E, Prehna G. Molecular characterization of the type VI secretion system effector Tlde1a reveals a structurally altered LD-transpeptidase fold. J Biol Chem 2022; 298:102556. [PMID: 36183829 PMCID: PMC9638812 DOI: 10.1016/j.jbc.2022.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022] Open
Abstract
The type VI secretion system (T6SS) is a molecular machine that Gram-negative bacteria have adapted for multiple functions, including interbacterial competition. Bacteria use the T6SS to deliver protein effectors into adjacent cells to kill rivals and establish niche dominance. Central to T6SS-mediated bacterial competition is an arms race to acquire diverse effectors to attack and neutralize target cells. The peptidoglycan has a central role in bacterial cell physiology, and effectors that biochemically modify peptidoglycan structure effectively induce cell death. One such T6SS effector is Tlde1a from Salmonella Typhimurium. Tlde1a functions as an LD-carboxypeptidase to cleave tetrapeptide stems and as an LD-transpeptidase to exchange the terminal D-alanine of a tetrapeptide stem with a noncanonical D-amino acid. To understand how Tlde1a exhibits toxicity at the molecular level, we determined the X-ray crystal structure of Tlde1a alone and in complex with D-amino acids. Our structural data revealed that Tlde1a possesses a unique LD-transpeptidase fold consisting of a dual pocket active site with a capping subdomain. This includes an exchange pocket to bind a D-amino acid for exchange and a catalytic pocket to position the D-alanine of a tetrapeptide stem for cleavage. Our toxicity assays in Escherichia coli and in vitro peptidoglycan biochemical assays with Tlde1a variants correlate Tlde1a molecular features directly to its biochemical functions. We observe that the LD-carboxypeptidase and LD-transpeptidase activities of Tlde1a are both structurally and functionally linked. Overall, our data highlight how an LD-transpeptidase fold has been structurally altered to create a toxic effector in the T6SS arms race.
Collapse
Affiliation(s)
- Neil Lorente Cobo
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Stephanie Sibinelli-Sousa
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ethel Bayer-Santos
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
50
|
Song W, Zhuang X, Tan Y, Qi Q, Lu X. The type IX secretion system: Insights into its function and connection to glycosylation in Cytophaga hutchinsonii. ENGINEERING MICROBIOLOGY 2022; 2:100038. [PMID: 39629027 PMCID: PMC11611037 DOI: 10.1016/j.engmic.2022.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/06/2024]
Abstract
The recently discovered type IX secretion system (T9SS) is limited to the Bacteroidetes phylum. Cytophaga hutchinsonii, a member of the Bacteroidetes phylum widely spread in soil, has complete orthologs of T9SS components and many T9SS substrates. C. hutchinsonii can efficiently degrade crystalline cellulose using a novel strategy, in which bacterial cells must be in direct contact with cellulose. It can rapidly glide over surfaces via unclear mechanisms. Studies have shown that T9SS plays an important role in cellulose degradation, gliding motility, and ion assimilation in C. hutchinsonii. As reported recently, T9SS substrates are N- or O-glycosylated at their C-terminal domains (CTDs), with N-glycosylation being related to the translocation and outer membrane anchoring of these proteins. These findings have deepened our understanding of T9SS in C. hutchinsonii. In this review, we focused on the research progress on diverse substrates and functions of T9SS in C. hutchinsonii and the glycosylation of its substrates. A model of T9SS functions and the glycosylation of its substrates was proposed.
Collapse
Affiliation(s)
- Wenxia Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xueke Zhuang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yahong Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|