1
|
Luo Z, Wang Q, Fan X, Koh XQ, Loh XJ, Wu C, Li Z, Wu YL. ROS-Driven Nanoventilator for MRSA-Induced Acute Lung Injury Treatment via In Situ Oxygen Supply, Anti-Inflammation and Immunomodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2406060. [PMID: 40106334 DOI: 10.1002/advs.202406060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/06/2024] [Indexed: 03/22/2025]
Abstract
Hypoxia, inflammatory response and pathogen (bacterial or viral) infection are the three main factors that lead to death in patients with acute lung injury (ALI). Among them, hypoxia activates the expression of HIF-1α, further exacerbating the production of ROS and inflammatory response. Currently, anti-inflammatory and pathogen elimination treatment strategies have effectively alleviated infectious pneumonia, but improving lung hypoxia still faces challenges. Here, a vancomycin-loaded nanoventilator (SCVN) containing superoxide dismutase (SOD) and catalase (CAT) is developed, which is prepared by encapsulating SOD, CAT and vancomycin into a nanocapsule by in situ polymerization. This nanocapsule can effectively improve the stability and loading rate of enzymes, and enhance their enzyme cascade efficiency, thereby efficiently consuming •O2 - and H2O2 to generate O2 in situ and reducing ROS level. More interestingly, in situ O2 supply can effectively relieve lung hypoxia to reduce HIF-1α expression and balance the number of M1/M2 macrophages to reduce the levels of TNF-α, IL-1β and IL-6, thereby alleviating the inflammatory response. Meanwhile, vancomycin can target and kill MRSA, fundamentally solving the cause of pneumonia. This nanoventilator with antibacterial, anti-inflammatory, ROS scavenging and in situ O2 supply functions will provide a universal clinical treatment strategy for ALI caused by pathogens.
Collapse
Affiliation(s)
- Zheng Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Qi Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiaotong Fan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Xue Qi Koh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Caisheng Wu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Republic of Singapore
| | - Yun-Long Wu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
2
|
Manji A, Wang L, Pape CM, McCaig LA, Troitskaya A, Batnyam O, McDonald LJ, Appleton CT, Veldhuizen RA, Gill SE. Effect of aging on pulmonary cellular responses during mechanical ventilation. JCI Insight 2025; 10:e185834. [PMID: 39946196 PMCID: PMC11949020 DOI: 10.1172/jci.insight.185834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) results in substantial morbidity and mortality, especially in elderly people. Mechanical ventilation, a common supportive treatment for ARDS, is necessary for maintaining gas exchange but can also propagate injury. We hypothesized that aging leads to alterations in surfactant function, inflammatory signaling, and microvascular permeability within the lung during mechanical ventilation. Young and aged male mice were mechanically ventilated, and surfactant function, inflammation, and vascular permeability were assessed. Additionally, single-cell RNA-Seq was used to delineate cell-specific transcriptional changes. The results showed that, in aged mice, surfactant dysfunction and vascular permeability were significantly augmented, while inflammation was less pronounced. Differential gene expression and pathway analyses revealed that alveolar macrophages in aged mice showed a blunted inflammatory response, while aged endothelial cells exhibited altered cell-cell junction formation. In vitro functional analysis revealed that aged endothelial cells had an impaired ability to form a barrier. These results highlight the complex interplay between aging and mechanical ventilation, including an age-related predisposition to endothelial barrier dysfunction, due to altered cell-cell junction formation, and decreased inflammation, potentially due to immune exhaustion. It is concluded that age-related vascular changes may underlie the increased susceptibility to injury during mechanical ventilation in elderly patients.
Collapse
Affiliation(s)
- Aminmohamed Manji
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
| | - Lefeng Wang
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Medicine, and
| | - Cynthia M. Pape
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Medicine, and
| | - Lynda A. McCaig
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Medicine, and
| | - Alexandra Troitskaya
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
| | - Onon Batnyam
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
| | - Leah J.J. McDonald
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Ruud A.W. Veldhuizen
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
- Department of Medicine, and
| | - Sean E. Gill
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
- Department of Medicine, and
| |
Collapse
|
3
|
Xie R, Tan D, Liu B, Xiao G, Gong F, Zhang Q, Qi L, Zheng S, Yuan Y, Yang Z, Chen Y, Fei J, Xu D. Acute respiratory distress syndrome (ARDS): from mechanistic insights to therapeutic strategies. MedComm (Beijing) 2025; 6:e70074. [PMID: 39866839 PMCID: PMC11769712 DOI: 10.1002/mco2.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a clinical syndrome of acute hypoxic respiratory failure caused by diffuse lung inflammation and edema. ARDS can be precipitated by intrapulmonary factors or extrapulmonary factors, which can lead to severe hypoxemia. Patients suffering from ARDS have high mortality rates, including a 28-day mortality rate of 34.8% and an overall in-hospital mortality rate of 40.0%. The pathophysiology of ARDS is complex and involves the activation and dysregulation of multiple overlapping and interacting pathways of systemic inflammation and coagulation, including the respiratory system, circulatory system, and immune system. In general, the treatment of inflammatory injuries is a coordinated process that involves the downregulation of proinflammatory pathways and the upregulation of anti-inflammatory pathways. Given the complexity of the underlying disease, treatment needs to be tailored to the problem. Hence, we discuss the pathogenesis and treatment methods of affected organs, including 2019 coronavirus disease (COVID-19)-related pneumonia, drowning, trauma, blood transfusion, severe acute pancreatitis, and sepsis. This review is intended to provide a new perspective concerning ARDS and offer novel insight into future therapeutic interventions.
Collapse
Affiliation(s)
- Rongli Xie
- Department of General SurgeryRuijin Hospital Lu Wan Branch, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Dan Tan
- Department of General SurgeryRuijin Hospital Lu Wan Branch, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Boke Liu
- Department of UrologyRuijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Guohui Xiao
- Department of General Surgery, Pancreatic Disease CenterRuijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Fangchen Gong
- Department of EmergencyRuijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Qiyao Zhang
- Department of RadiologySödersjukhuset (Southern Hospital)StockholmSweden
| | - Lei Qi
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Sisi Zheng
- Department of RadiologyThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yuanyang Yuan
- Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhitao Yang
- Department of EmergencyRuijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Ying Chen
- Department of EmergencyRuijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Jian Fei
- Department of General Surgery, Pancreatic Disease CenterRuijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Dan Xu
- Department of EmergencyRuijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Deng Y, Wen G, Yin Y, Chen D, Li D, Chen R. Pharmacological inhibition of P300 with C646 ameliorates LPS-induced acute lung injury by modulating CXCL1 in M1 alveolar macrophages. Int Immunopharmacol 2025; 144:113674. [PMID: 39591828 DOI: 10.1016/j.intimp.2024.113674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVES Acute lung injury (ALI) is an excessive inflammatory condition with the involvement of M1 alveolar macrophage (AM) polarization. Given the high mortality rate of ALI, elucidating its underlying mechanisms is crucial for identifying therapeutic targets. Inhibition of P300, a lysine acetyltransferase, has illustrated the potential to alleviate inflammatory diseases through the regulation of immune cell activation. However, little is known whether P300 inhibition could ameliorate ALI through regulating the polarization of M1 AMs. METHODS We established an LPS-induced ALI model and evaluated the effects of the P300 inhibitor C646 on pulmonary pathology, inflammation and M1 AM polarization via H&E staining, ELISA and flow cytometry. Additionally, the specific inflammatory mediators regulated by P300 in M1 AMs affecting ALI were analyzed by RNA sequencing and validated by intratracheal instillation experiment. RESULTS Intratracheal instillation of LPS resulted in neutrophil accumulation within the pulmonary alveoli and interstitial areas, along with increased levels of total inflammatory cells and IL-1β in the lung. However, administration of C646 ameliorated these pulmonary pathology and inflammation, accompanied by a diminished proportion and quantity of M1 AMs in BALF. Furthermore, by taking the intersection of P300-targeted genes in macrophages from the Cistrome, genes upregulated after M1 polarization of AMs, and genes downregulated following C646 treatment in M1 AMs, we identified 'Cxcl1' among the intersecting genes. Also, intratracheal instillation of CXCL1 aggravated pulmonary pathology and inflammation in C646 treated-ALI models. CONCLUSION Our study suggested that pharmacological inhibition of P300 with C646 ameliorated LPS-induced ALI by modulating CXCL1 in M1 AMs.
Collapse
Affiliation(s)
- Yao Deng
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guanxi Wen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yongtao Yin
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dandan Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Difei Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guang Zhou 510150, China.
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
King EM, Zhao Y, Moore CM, Steinhart B, Anderson KC, Vestal B, Moore PK, McManus SA, Evans CM, Mould KJ, Redente EF, McCubbrey AL, Janssen WJ. Gpnmb and Spp1 mark a conserved macrophage injury response masking fibrosis-specific programming in the lung. JCI Insight 2024; 9:e182700. [PMID: 39509324 PMCID: PMC11665561 DOI: 10.1172/jci.insight.182700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Macrophages are required for healthy repair of the lungs following injury, but they are also implicated in driving dysregulated repair with fibrosis. How these 2 distinct outcomes of lung injury are mediated by different macrophage subsets is unknown. To assess this, single-cell RNA-Seq was performed on lung macrophages isolated from mice treated with LPS or bleomycin. Macrophages were categorized based on anatomic location (airspace versus interstitium), developmental origin (embryonic versus recruited monocyte derived), time after inflammatory challenge, and injury model. Analysis of the integrated dataset revealed that macrophage subset clustering was driven by macrophage origin and tissue compartment rather than injury model. Gpnmb-expressing recruited macrophages that were enriched for genes typically associated with fibrosis were present in both injury models. Analogous GPNMB-expressing macrophages were identified in datasets from both fibrotic and nonfibrotic lung disease in humans. We conclude that this subset represents a conserved response to tissue injury and is not sufficient to drive fibrosis. Beyond this conserved response, we identified that recruited macrophages failed to gain resident-like programming during fibrotic repair. Overall, fibrotic versus nonfibrotic tissue repair is dictated by dynamic shifts in macrophage subset programming and persistence of recruited macrophages.
Collapse
Affiliation(s)
- Emily M. King
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Yifan Zhao
- Center for Genes, Environment, and Health, and
| | | | | | | | | | - Peter K. Moore
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Christopher M. Evans
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kara J. Mould
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Alexandra L. McCubbrey
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - William J. Janssen
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
6
|
Gao S, Li W, Huang Z, Deiuliis JA, Braunstein Z, Liu X, Li X, Kosari M, Chen J, Min X, Yang H, Gong Q, Liu Z, Wei Y, Zhang Z, Dong L, Zhong J. Deciphering the therapeutic potential of Myeloid-Specific JAK2 inhibition in acute respiratory distress syndrome. Mucosal Immunol 2024; 17:1273-1284. [PMID: 39173745 DOI: 10.1016/j.mucimm.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterized by severe inflammation and pulmonary dysfunction. Despite advancements in critical care, effective pharmacological interventions for ARDS remain elusive. While Janus kinase 2 (JAK2) inhibitors have emerged as an innovative treatment for numerous autoinflammatory diseases, their therapeutic potential in ARDS remains unexplored. In this study, we investigated the contribution of JAK2 and its underlying mechanisms in ARDS utilizing myeloid-specific JAK2 knockout murine models alongside a pharmacological JAK2 inhibitor. Notably, myeloid-specific JAK2 knockout led to a notable attenuation of ARDS induced by intratracheal administration of LPS, accompanied by reduced levels of neutrophils and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and lung tissue. Intriguingly, the ameliorative effects were abolished upon the depletion of monocyte-derived alveolar macrophages (Mo-AMs) rather than tissue-resident alveolar macrophages (TR-AMs). JAK2 deficiency markedly reversed LPS-induced activation of STAT5 in macrophages. Remarkably, pharmacological JAK2 inhibition using baricitinib failed to substantially alleviate neutrophils infiltration, implying that specific inhibition of JAK2 in Mo-AMs is imperative for ARDS amelioration. Collectively, our data suggest that JAK2 may mitigate ARDS progression through the JAK2 pathway in Mo-AMs, underscoring JAK2 in alveolar macrophages, particularly Mo-AMs, as a promising therapeutic target for ARDS treatment.
Collapse
Affiliation(s)
- Shupei Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenjuan Li
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhiwen Huang
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jeffrey A Deiuliis
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zachary Braunstein
- Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xinxin Liu
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinlu Li
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mohammadreza Kosari
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, Hubei 442008, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, Hubei 442008, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, Hubei 442008, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei 434023, China
| | - Zheng Liu
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziyang Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, Hubei 430030, China.
| |
Collapse
|
7
|
Li D, Kortekaas RK, Douglas KBI, Douwenga W, Eisel ULM, Melgert BN, Gosens R, Schmidt M. TNF signaling mediates lipopolysaccharide-induced lung epithelial progenitor cell responses in mouse lung organoids. Biomed Pharmacother 2024; 181:117704. [PMID: 39581145 DOI: 10.1016/j.biopha.2024.117704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
Bacterial respiratory infections are a major global health concern, often leading to lung injury and triggering lung repair mechanisms. Endogenous epithelial progenitor cells are crucial in this repair, yet the mechanisms remain poorly understood. This study investigates the response of lung epithelial progenitor cells to injury induced by lipopolysaccharide (LPS), a component of gram-negative bacteria, focusing on their regulation during lung repair. Lung epithelial cells (CD31-CD45-Epcam+) from wild-type and tumor necrosis factor (TNF) receptor 1/2 knock-out mice were co-cultured with wild-type fibroblasts. Organoid numbers and size were measured after 14 days of exposure to 100 ng/mL LPS. Immunofluorescence was used to assess differentiation (after 14 days), RNA sequencing analyzed gene expression changes (after 72 hours), and MTS assay assessed proliferative effects of LPS on individual cell types (after 24 hours). LPS treatment increased the number and size of wild-type lung organoids and promoted alveolar differentiation, indicated by more SPC+ organoids. RNA sequencing revealed upregulation of inflammatory and fibrosis-related markers, including Cxcl3, Cxcl5, Ccl20, Mmp13, and Il33, and enrichment of TNF-α signaling and epithelial-mesenchymal transition pathways. TNF receptor 1 deficiency inhibited LPS-induced progenitor cell activation and organoid growth. In conclusion, LPS enhances lung epithelial progenitor cell proliferation and differentiation via TNF receptor 1 signaling, highlighting potential therapeutic targets for bacterial lung injury.
Collapse
MESH Headings
- Animals
- Lipopolysaccharides/pharmacology
- Organoids/drug effects
- Organoids/metabolism
- Lung/pathology
- Lung/drug effects
- Lung/metabolism
- Mice
- Stem Cells/drug effects
- Stem Cells/metabolism
- Signal Transduction/drug effects
- Mice, Knockout
- Tumor Necrosis Factor-alpha/metabolism
- Mice, Inbred C57BL
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Cell Differentiation/drug effects
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Epithelial-Mesenchymal Transition/drug effects
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Cell Proliferation/drug effects
Collapse
Affiliation(s)
- Dan Li
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rosa K Kortekaas
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kelly B I Douglas
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Wanda Douwenga
- Department of Molecular Neurobiology and Neuroimmunology, Groningen Institute of Evolutionary Life Science, University of Groningen, Groningen, Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology and Neuroimmunology, Groningen Institute of Evolutionary Life Science, University of Groningen, Groningen, Netherlands
| | - Barbro N Melgert
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
8
|
Tong W, Song C, Jin D, Li M, Cheng Z, Lu G, Yang B, Deng F. QSOX1 exerts anti-inflammatory effects in sepsis-induced acute lung injury: Regulation involving EGFR phosphorylation mediated M1 polarization of macrophages. Int J Biochem Cell Biol 2024; 176:106651. [PMID: 39251039 DOI: 10.1016/j.biocel.2024.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Sepsis is a systemic inflammatory response caused by an infection, which can easily lead to acute lung injury. Quiescin Q6 sulfhydryl oxidase 1 (QSOX1) is a sulfhydryl oxidase involved in oxidative stress and the inflammatory response. However, there are few reports on the role of QSOX1 in sepsis-induced acute lung injury (SALI). In this study, mice model of SALI was constructed by intraperitoneal injection with lipopolysaccharide (LPS). The increased inflammatory response and lactate dehydrogenase activity in bronchoalveolar lavage fluid (BALF) indicated successful modeling. Increased QSOX1 expression was both observed in lung tissues and lung macrophages of sepsis mice accompanied by increased polarization of M1-type macrophages. To explore the role of QSOX1 in the SALI, lentivirus containing QSOX1-specific overexpression or knockdown vectors were used to change QSOX1 expression in LPS-treated RAW264.7 cells. QSOX1 suppressed LPS-induced M1 polarization and further inhibited inflammatory response in RAW264.7 cells. Interestingly, the phosphorylation of epidermal growth factor receptor (EGFR), the promoter of M1 polarization in macrophages, was found to be downregulated upon QSOX1 overexpression in RAW264.7 cells. Mechanically, the binding of QSOX1 to EGFR protein promoted EGFR ubiquitination and degradation, thereby down-regulating EGFR phosphorylation. Moreover, inhibiting EGFR expression or its phosphorylation restored the impact of QSOX1 silencing on M1 polarization and inflammation in the LPS-treated RAW264.7 cells. In summary, QSOX1 may exert anti-inflammatory effects in SALI by inhibiting EGFR phosphorylation-mediated M1 macrophage polarization. This presented a potential target for the treatment and prevention of SALI.
Collapse
Affiliation(s)
- Wenjia Tong
- Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, Anhui, China.; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Conglei Song
- Department of Pediatric Neurology, Children's Hospital of Anhui Medical University, Hefei, Anhui, China.; Department of Pediatric Neurology, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Danqun Jin
- Department of Pediatric Intensive Care Unit, Children's Hospital of Anhui Medical University, Hefei, Anhui, China.; Department of Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Min Li
- Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, Anhui, China.; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Zimei Cheng
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guoping Lu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bin Yang
- Department of Pediatric Neurology, Children's Hospital of Anhui Medical University, Hefei, Anhui, China.; Department of Pediatric Neurology, Anhui Provincial Children's Hospital, Hefei, Anhui, China..
| | - Fang Deng
- Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, Anhui, China.; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, Anhui, China..
| |
Collapse
|
9
|
Siyang W, Xia H, Pinhu L. Potential diagnostic biomarkers and Mapk14 protein expression: Autophagy-related genes linking immune infiltration in acute respiratory distress syndrome. Int J Biol Macromol 2024; 279:135077. [PMID: 39191344 DOI: 10.1016/j.ijbiomac.2024.135077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/11/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
The pathogenesis of this condition is intricate, characterized by the aberrant activation of numerous cytokines and signaling pathways. This study aimed to delve into the association between the expression of the MAPK14 protein and immune cell infiltration in patients suffering from Acute Respiratory Distress Syndrome (ARDS). Additionally, it sought to assess the viability of autophagy-related genes as potential diagnostic biomarkers. To achieve this, the researchers employed various techniques such as immunohistochemistry, real-time quantitative PCR, and western blotting to measure the MAPK14 protein levels in the lung tissues of ARDS patients. These measurements were then correlated with clinical data to provide a comprehensive analysis.In this study, the researchers conducted a gene expression profile analysis to identify genes associated with autophagy. The relationship between these genes, MAPK14 expression, and immune cell infiltration was thoroughly evaluated. The findings revealed a marked increase in the expression of MAPK14 protein in the lung tissues of ARDS patients. This increased expression was found to be positively correlated with the extent of immune cell infiltration. The study's further analysis highlighted that several genes associated with autophagy exhibited expression levels that were correlated with both MAPK14 expression and the degree of immune infiltration. This suggests a complex interplay between MAPK14 protein levels, autophagy-related genes, and immune responses in the pathogenesis of ARDS. The results underscore the potential of these molecular markers in understanding the disease mechanisms and possibly aiding in the diagnosis and treatment of ARDS.
Collapse
Affiliation(s)
- Wu Siyang
- The First Clinical Medical College of Jinan University, No.601, West Huangpu Avenue, Guangzhou, Guangdong 530632, China; Respiratory Intensive Care Unit, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Life Science and Clinical Medicine Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Huang Xia
- Respiratory Intensive Care Unit, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Liao Pinhu
- The First Clinical Medical College of Jinan University, No.601, West Huangpu Avenue, Guangzhou, Guangdong 530632, China.
| |
Collapse
|
10
|
Wang J, Peng X, Yuan N, Wang B, Chen S, Wang B, Xie L. Interplay between pulmonary epithelial stem cells and innate immune cells contribute to the repair and regeneration of ALI/ARDS. Transl Res 2024; 272:111-125. [PMID: 38897427 DOI: 10.1016/j.trsl.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Mammalian lung is the important organ for ventilation and exchange of air and blood. Fresh air and venous blood are constantly delivered through the airway and vascular tree to the alveolus. Based on this, the airways and alveolis are persistently exposed to the external environment and are easily suffered from toxins, irritants and pathogens. For example, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common cause of respiratory failure in critical patients, whose typical pathological characters are diffuse epithelial and endothelial damage resulting in excessive accumulation of inflammatory fluid in the alveolar cavity. The supportive treatment is the main current treatment for ALI/ARDS with the lack of targeted effective treatment strategies. However, ALI/ARDS needs more targeted treatment measures. Therefore, it is extremely urgent to understand the cellular and molecular mechanisms that maintain alveolar epithelial barrier and airway integrity. Previous researches have shown that the lung epithelial cells with tissue stem cell function have the ability to repair and regenerate after injury. Also, it is able to regulate the phenotype and function of innate immune cells involving in regeneration of tissue repair. Meanwhile, we emphasize that interaction between the lung epithelial cells and innate immune cells is more supportive to repair and regenerate in the lung epithelium following acute lung injury. We reviewed the recent advances in injury and repair of lung epithelial stem cells and innate immune cells in ALI/ARDS, concentrating on alveolar type 2 cells and alveolar macrophages and their contribution to post-injury repair behavior of ALI/ARDS through the latest potential molecular communication mechanisms. This will help to develop new research strategies and therapeutic targets for ALI/ARDS.
Collapse
Affiliation(s)
- Jiang Wang
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Xinyue Peng
- Fu Xing Hospital, Capital Medical University, Beijing 100038, China
| | - Na Yuan
- Department of Pulmonary & Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Bin Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Siyu Chen
- Department of Thoracic Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Bo Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
11
|
Liggieri F, Chiodaroli E, Pellegrini M, Puuvuori E, Sigfridsson J, Velikyan I, Chiumello D, Ball L, Pelosi P, Stramaglia S, Antoni G, Eriksson O, Perchiazzi G. Regional distribution of mechanical strain and macrophage-associated lung inflammation after ventilator-induced lung injury: an experimental study. Intensive Care Med Exp 2024; 12:77. [PMID: 39225817 PMCID: PMC11371987 DOI: 10.1186/s40635-024-00663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Alveolar macrophages activation to the pro-inflammatory phenotype M1 is pivotal in the pathophysiology of Ventilator-Induced Lung Injury (VILI). Increased lung strain is a known determinant of VILI, but a direct correspondence between regional lung strain and macrophagic activation remains unestablished. [68Ga]Ga-DOTA-TATE is a Positron Emission Tomography (PET) radiopharmaceutical with a high affinity for somatostatin receptor subtype 2 (SSTR2), which is overexpressed by pro-inflammatory-activated macrophages. Aim of the study was to determine, in a porcine model of VILI, whether mechanical strain correlates topographically with distribution of activated macrophages detected by [68Ga]Ga-DOTA-TATE uptake. METHODS Seven anesthetized pigs underwent VILI, while three served as control. Lung CT scans were acquired at incremental tidal volumes, simultaneously recording lung mechanics. [68Ga]Ga-DOTA-TATE was administered, followed by dynamic PET scans. Custom MatLab scripts generated voxel-by-voxel gas volume and strain maps from CT slices at para-diaphragmatic (Para-D) and mid-thoracic (Mid-T) levels. Analysis of regional Voxel-associated Normal Strain (VoStrain) and [68Ga]Ga-DOTA-TATE uptake was performed and a measure of the statistical correlation between these two variables was quantified using the linear mutual information (LMI) method. RESULTS Compared to controls, the VILI group exhibited statistically significant higher VoStrain and Standardized Uptake Value Ratios (SUVR) both at Para-D and Mid-T levels. Both VoStrain and SUVR increased along the gravitational axis with an increment described by statistically different regression lines between VILI and healthy controls and reaching the peak in the dependent regions of the lung (for strain in VILI vs. control was at Para-D: 760 ± 210 vs. 449 ± 106; at Mid-T level 497 ± 373 vs. 193 ± 160; for SUVR, in VILI vs. control was at Para-D: 2.2 ± 1.3 vs. 1.3 ± 0.1; at Mid-T level 1.3 ± 1.0 vs. 0.6 ± 0.03). LMI in both Para-D and Mid-T was statistically significantly higher in VILI than in controls. CONCLUSIONS In this porcine model of VILI, we found a topographical correlation between lung strain and [68Ga]Ga-DOTA-TATE uptake at voxel level, suggesting that mechanical alteration and specific activation of inflammatory cells are strongly linked in VILI. This study represents the first voxel-by-voxel examination of this relationship in a multi-modal imaging analysis.
Collapse
Affiliation(s)
- Francesco Liggieri
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università di Genova, Genoa, Italy
| | - Elena Chiodaroli
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | - Mariangela Pellegrini
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden
- Department of Anesthesia and Intensive Care Medicine, Uppsala University Hospital, Uppsala, Sweden
| | - Emmi Puuvuori
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Jonathan Sigfridsson
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Irina Velikyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Davide Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
- Coordinated Research Center on Respiratory Failure, University of Milan, Milan, Italy
| | - Lorenzo Ball
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università di Genova, Genoa, Italy
| | - Paolo Pelosi
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università di Genova, Genoa, Italy
| | - Sebastiano Stramaglia
- Department of Physics, National Institute for Nuclear Physics, University of Bari Aldo Moro, Bari, Italy
| | - Gunnar Antoni
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Gaetano Perchiazzi
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden.
- Department of Anesthesia and Intensive Care Medicine, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
12
|
Woodrow JS, Hopster K, Palmisano M, Payette F, Kulp J, Stefanovski D, Nolen‐Walston R. Time to resolution of airway inflammation caused by bronchoalveolar lavage in healthy horses. J Vet Intern Med 2024; 38:2776-2782. [PMID: 39198933 PMCID: PMC11423487 DOI: 10.1111/jvim.17169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Bronchoalveolar lavage (BAL) is a common procedure for evaluation of the equine lower airways. Time to resolution of post-BAL inflammation has not been clearly defined. HYPOTHESIS Residual inflammation, evident by changes in immune cell populations and inflammatory cytokines, will resolve by 72 hours after BAL. ANIMALS Six adult, healthy, institution-owned horses. METHODS Randomized, complete cross-over design. Each horse underwent 3 paired BALs, including a baseline and then 48, 72, and 96 hours later, with a 7-day washout between paired BALs. Each sample underwent cytological evaluation and cytokine concentrations were determined by a commercially available multiplex bead immunoassay. Statistical analysis was performed by multilevel mixed-effects Poisson regression analysis. Data are reported as marginal means and 95% confidence interval (CI). RESULTS Neutrophil, eosinophil and mast cell percentages were not significantly different at any time points. Macrophage percentages were higher at 72 hours (45.0 [95% CI, 41.6-48.4]%) and 96 hours (45.3 [95% CI, 42.9-47.7]%) vs baseline (37.4 [95% CI, 33.5-41.4]%; P < .001 and P = .01, respectively), and at 72 hours and 96 hours vs 48 hours (31.9 [95% CI, 28.1-35.6]%; P < .001). Neutrophil percentage was not significantly increased at 48 hours (P = .11). Interleukin (IL)-6 concentration was increased at 72 hours (5.22 [95% CI, 3.44-6.99] pg/mL) vs 48 hours (4.38 [95% CI, 2.99-5.78] pg/mL; P < .001). CONCLUSIONS AND CLINICAL IMPORTANCE Significant lung inflammation was not detected at 72 and 96 hours, suggesting that repeating BAL at 72 hours or more can be done without concern of residual inflammation.
Collapse
Affiliation(s)
- Jane S. Woodrow
- Department of Clinical Sciences‐New Bolton Center, College of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Klaus Hopster
- Department of Clinical Sciences‐New Bolton Center, College of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Megan Palmisano
- Department of Clinical Sciences‐New Bolton Center, College of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Flavie Payette
- Department of Clinical Sciences‐New Bolton Center, College of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Jeaneen Kulp
- Department of Clinical Sciences‐New Bolton Center, College of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Darko Stefanovski
- Department of Clinical Sciences‐New Bolton Center, College of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Rose Nolen‐Walston
- Department of Clinical Sciences‐New Bolton Center, College of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| |
Collapse
|
13
|
Hong WF, Zhang F, Wang N, Bi JM, Zhang DW, Wei LS, Song ZT, Mills GB, Chen MM, Li XX, Du SS, Yu M. Dynamic immunoediting by macrophages in homologous recombination deficiency-stratified pancreatic ductal adenocarcinoma. Drug Resist Updat 2024; 76:101115. [PMID: 39002266 DOI: 10.1016/j.drup.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, notably resistant to existing therapies. Current research indicates that PDAC patients deficient in homologous recombination (HR) benefit from platinum-based treatments and poly-ADP-ribose polymerase inhibitors (PARPi). However, the effectiveness of PARPi in HR-deficient (HRD) PDAC is suboptimal, and significant challenges remain in fully understanding the distinct characteristics and implications of HRD-associated PDAC. We analyzed 16 PDAC patient-derived tissues, categorized by their homologous recombination deficiency (HRD) scores, and performed high-plex immunofluorescence analysis to define 20 cell phenotypes, thereby generating an in-situ PDAC tumor-immune landscape. Spatial phenotypic-transcriptomic profiling guided by regions-of-interest (ROIs) identified a crucial regulatory mechanism through localized tumor-adjacent macrophages, potentially in an HRD-dependent manner. Cellular neighborhood (CN) analysis further demonstrated the existence of macrophage-associated high-ordered cellular functional units in spatial contexts. Using our multi-omics spatial profiling strategy, we uncovered a dynamic macrophage-mediated regulatory axis linking HRD status with SIGLEC10 and CD52. These findings demonstrate the potential of targeting CD52 in combination with PARPi as a therapeutic intervention for PDAC.
Collapse
Affiliation(s)
- Wei-Feng Hong
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310005, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310005, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310005, China
| | - Feng Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Wang
- Cosmos Wisdom Biotech, co. ltd, Building 10, No. 617 Jiner Road, Hangzhou, Zhejiang, China
| | - Jun-Ming Bi
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ding-Wen Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Lu-Sheng Wei
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhen-Tao Song
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd. Jinan, Shandong, China
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Min-Min Chen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xue-Xin Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna 17165, Sweden.
| | - Shi-Suo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Zhang W, Li P. The suppression of nuclear factor kappa B/microRNA 222 axis alleviates lipopolysaccharide-induced acute lung injury through increasing the alkylglyceronephosphate synthase expression. J Infect Chemother 2024:S1341-321X(24)00232-0. [PMID: 39209261 DOI: 10.1016/j.jiac.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a serious and rapidly progressing pulmonary disorder with a high mortality rate. In this study, we aimed to investigate the relationship between miR-222 and NF-κB (p65) activation in ALI. METHODS ALI was induced in mice using lipopolysaccharide (LPS). Lung tissues and bronchoalveolar lavage fluid were collected for analysis. MH-S cell lines were used as an ALI model. Various techniques including histopathology, molecular analysis, and cell culture assays were employed. RESULTS Increased miR-222 levels were observed in the LPS-induced ALI mouse model. ALI mice exhibited severe lung pathology, inflammatory cell infiltration, edema, elevated W/D ratio, MPO activity, and increased TNFα, IL1, and IL6 levels, which were reversed by miR-222 antagomir, confirming miR-222's exacerbation of LPS-induced ALI. miR-222 directly targeted the 3'-UTR of alkylglyceronephosphate synthase (AGPS) mRNA, reducing its expression. AGPS is crucial for plasmalogen synthesis, which protects against oxidative stress. NF-κB (p-p65) levels were increased in ALI models, and LPS promoted the enrichment of the miR-222 promoter region, suggesting NF-κB (p65) involvement in miR-222 transcriptional regulation. The NF-κB/miR-222/AGPS axis played a significant role in ALI progression. CONCLUSIONS The present study indicates that NF-κB (p65) activates miR-222 transcription by enriching its promoter region, leading to increased miR-222 expression. Elevated miR-222 levels downregulate AGPS, thereby accelerating the progression of ALI. Targeting the NF-κB/miR-222/AGPS axis may hold promise as a therapeutic approach for ALI, although further research is needed to fully understand its significance.
Collapse
Affiliation(s)
- Wei Zhang
- Intensive care unit, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, China.
| | - Pibao Li
- Intensive care unit, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, China.
| |
Collapse
|
15
|
Liu Y, Liu X, Dorizas CA, Hao Z, Lee RK. Macrophages Modulate Optic Nerve Crush Injury Scar Formation and Retinal Ganglion Cell Function. Invest Ophthalmol Vis Sci 2024; 65:22. [PMID: 39140963 PMCID: PMC11328886 DOI: 10.1167/iovs.65.10.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Purpose Optic nerve (ON) injuries can result in vision loss via structural damage and cellular injury responses. Understanding the immune response, particularly the role of macrophages, in the cellular response to ON injury is crucial for developing therapeutic approaches which affect ON injury repair. The present study investigates the role of macrophages in ON injury response, fibrotic scar formation, and retinal ganglion cell (RGC) function. Methods The study utilizes macrophage Fas-induced apoptosis (MaFIA) mice to selectively deplete hematogenous macrophages and explores the impact macrophages have on ON injury responses. Histological and immunofluorescence analyses were used to evaluate macrophage expression levels and fibrotic scar formation. Pattern electroretinogram (PERG) recordings were used to assess RGC function as result of ON injury. Results Successful macrophage depletion was induced in MaFIA mice, which led to reduced fibrotic scar formation in the ON post-injury. Despite an increase in activated macrophages in the retina, RGC function was preserved, as demonstrated by normal PERG waveforms for up to 2 months post-injury. The study suggests a neuroprotective role for macrophage depletion in ON damage repair and highlights the complex immune response to ON injury. Conclusions To our knowledge, this study is the first to use MaFIA mice to demonstrate that targeted depletion of hematogenous macrophages leads to a significant reduction in scar size and the preservation of RGC functionality after ON injury. These findings highlight the key role of hematogenous macrophages in the response to ON injury and opens new avenues for therapeutic interventions in ON injuries. Future research should focus on investigating the distinct roles of macrophage subtypes in ON injury and potential macrophage-associated molecular targets to improve ON regeneration and repair.
Collapse
Affiliation(s)
- Yuan Liu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Xiangxiang Liu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Christopher A Dorizas
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Zixuan Hao
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Richard K Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
16
|
Huang W, Fu G, Wang Y, Chen C, Luo Y, Yan Q, Liu Y, Mao C. Immunometabolic reprogramming of macrophages with inhalable CRISPR/Cas9 nanotherapeutics for acute lung injury intervention. Acta Biomater 2024; 181:308-316. [PMID: 38570107 DOI: 10.1016/j.actbio.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Acute lung injury (ALI) represents a critical respiratory condition typified by rapid-onset lung inflammation, contributing to elevated morbidity and mortality rates. Central to ALI pathogenesis lies macrophage dysfunction, characterized by an overabundance of pro-inflammatory cytokines and a shift in metabolic activity towards glycolysis. This study emphasizes the crucial function of glucose metabolism in immune cell function under inflammatory conditions and identifies hexokinase 2 (HK2) as a key regulator of macrophage metabolism and inflammation. Given the limitations of HK2 inhibitors, we propose the CRISPR/Cas9 system for precise HK2 downregulation. We developed an aerosolized core-shell liposomal nanoplatform (CSNs) complexed with CaP for efficient drug loading, targeting lung macrophages. Various CSNs were synthesized to encapsulate an mRNA based CRISPR/Cas9 system (mCas9/gHK2), and their gene editing efficiency and HK2 knockout were examined at both gene and protein levels in vitro and in vivo. The CSN-mCas9/gHK2 treatment demonstrated a significant reduction in glycolysis and inflammation in macrophages. In an LPS-induced ALI mouse model, inhaled CSN-mCas9/gHK2 mitigated the proinflammatory tumor microenvironment and reprogrammed glucose metabolism in the lung, suggesting a promising strategy for ALI prevention and treatment. This study highlights the potential of combining CRISPR/Cas9 gene editing with inhalation delivery systems for effective, localized pulmonary disease treatment, underscoring the importance of targeted gene modulation and metabolic reprogramming in managing ALI. STATEMENT OF SIGNIFICANCE: This study investigates an inhalable CRISPR/Cas9 gene editing system targeting pulmonary macrophages, with the aim of modulating glucose metabolism to alleviate Acute Lung Injury (ALI). The research highlights the role of immune cell metabolism in inflammation, as evidenced by changes in macrophage glucose metabolism and a notable reduction in pulmonary edema and inflammation. Additionally, observed alterations in macrophage polarization and cytokine levels in bronchoalveolar lavage fluid suggest potential therapeutic implications. These findings not only offer insights into possible ALI treatments but also contribute to the understanding of immune cell metabolism in inflammatory diseases, which could be relevant for various inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Wanling Huang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, PR China
| | - Gaohong Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Yangeng Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Cheng Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Yilan Luo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Qiaoqiao Yan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Yang Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Chengqiong Mao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, PR China.
| |
Collapse
|
17
|
Zhao G, Gentile ME, Xue L, Cosgriff CV, Weiner AI, Adams-Tzivelekidis S, Wong J, Li X, Kass-Gergi S, Holcomb NP, Basal MC, Stewart KM, Planer JD, Cantu E, Christie JD, Crespo MM, Mitchell MJ, Meyer NJ, Vaughan AE. Vascular endothelial-derived SPARCL1 exacerbates viral pneumonia through pro-inflammatory macrophage activation. Nat Commun 2024; 15:4235. [PMID: 38762489 PMCID: PMC11102455 DOI: 10.1038/s41467-024-48589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Inflammation induced by lung infection is a double-edged sword, moderating both anti-viral and immune pathogenesis effects; the mechanism of the latter is not fully understood. Previous studies suggest the vasculature is involved in tissue injury. Here, we report that expression of Sparcl1, a secreted matricellular protein, is upregulated in pulmonary capillary endothelial cells (EC) during influenza-induced lung injury. Endothelial overexpression of SPARCL1 promotes detrimental lung inflammation, with SPARCL1 inducing 'M1-like' macrophages and related pro-inflammatory cytokines, while SPARCL1 deletion alleviates these effects. Mechanistically, SPARCL1 functions through TLR4 on macrophages in vitro, while TLR4 inhibition in vivo ameliorates excessive inflammation caused by endothelial Sparcl1 overexpression. Finally, SPARCL1 expression is increased in lung ECs from COVID-19 patients when compared with healthy donors, while fatal COVID-19 correlates with higher circulating SPARCL1 protein levels in the plasma. Our results thus implicate SPARCL1 as a potential prognosis biomarker for deadly COVID-19 pneumonia and as a therapeutic target for taming hyperinflammation in pneumonia.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Maria E Gentile
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher V Cosgriff
- Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Aaron I Weiner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephanie Adams-Tzivelekidis
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joanna Wong
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xinyuan Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sara Kass-Gergi
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicolas P Holcomb
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria C Basal
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathleen M Stewart
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph D Planer
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward Cantu
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason D Christie
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria M Crespo
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nuala J Meyer
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Li D, Deng Y, Wen G, Wang L, Shi X, Chen S, Chen R. Targeting BRD4 with PROTAC degrader ameliorates LPS-induced acute lung injury by inhibiting M1 alveolar macrophage polarization. Int Immunopharmacol 2024; 132:111991. [PMID: 38581996 DOI: 10.1016/j.intimp.2024.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
OBJECTIVES Acute lung injury (ALI) is a highly inflammatory condition with the involvement of M1 alveolar macrophages (AMs) polarization, eventually leading to the development of non-cardiogenic edema in alveolar and interstitial regions, accompanied by persistent hypoxemia. Given the significant mortality rate associated with ALI, it is imperative to investigate the underlying mechanisms of this condition so as to identify potential therapeutic targets. The therapeutic effects of the inhibition of bromodomain containing protein 4 (BRD4), an epigenetic reader, has been proven with high efficacy in ameliorating various inflammatory diseases through mediating immune cell activation. However, little is known about the therapeutic potential of BRD4 degradation in acute lung injury. METHODS This study aimed to assess the protective efficacy of ARV-825, a novel BRD4-targeted proteolysis targeting chimera (PROTAC), against ALI through histopathological examination in lung tissues and biochemical analysis in bronchoalveolar lavage fluid (BALF). Additionally, the underlying mechanism by which BRD4 regulated M1 AMs was elucidated by using CUT & Tag assay. RESULTS In this study, we found the upregulation of BRD4 in a lipopolysaccharide (LPS)-induced ALI model. Furthermore, we observed that intraperitoneal administration of ARV-825, significantly alleviated LPS-induced pulmonary pathological changes and inflammatory responses. These effects were accompanied by the suppression of M1 AMs. In addition, our findings revealed that the administration of ARV-825 effectively suppressed M1 AMs by inhibiting the expression of IRF7, a crucial transcriptional factor involved in M1 macrophages. CONCLUSION Our study suggested that targeting BRD4 using ARV-825 is a potential therapeutic approach for ALI.
Collapse
Affiliation(s)
- Difei Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yao Deng
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guanxi Wen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing Shi
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shanze Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
19
|
Pervizaj-Oruqaj L, Ferrero MR, Matt U, Herold S. The guardians of pulmonary harmony: alveolar macrophages orchestrating the symphony of lung inflammation and tissue homeostasis. Eur Respir Rev 2024; 33:230263. [PMID: 38811033 PMCID: PMC11134199 DOI: 10.1183/16000617.0263-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/20/2024] [Indexed: 05/31/2024] Open
Abstract
Recent breakthroughs in single-cell sequencing, advancements in cellular and tissue imaging techniques, innovations in cell lineage tracing, and insights into the epigenome collectively illuminate the enigmatic landscape of alveolar macrophages in the lung under homeostasis and disease conditions. Our current knowledge reveals the cellular and functional diversity of alveolar macrophages within the respiratory system, emphasising their remarkable adaptability. By synthesising insights from classical cell and developmental biology studies, we provide a comprehensive perspective on alveolar macrophage functional plasticity. This includes an examination of their ontology-related features, their role in maintaining tissue homeostasis under steady-state conditions and the distinct contribution of bone marrow-derived macrophages (BMDMs) in promoting tissue regeneration and restoring respiratory system homeostasis in response to injuries. Elucidating the signalling pathways within inflammatory conditions, the impact of various triggers on tissue-resident alveolar macrophages (TR-AMs), as well as the recruitment and polarisation of macrophages originating from the bone marrow, presents an opportunity to propose innovative therapeutic approaches aimed at modulating the equilibrium between phenotypes to induce programmes associated with a pro-regenerative or homeostasis phenotype of BMDMs or TR-AMs. This, in turn, can lead to the amelioration of disease outcomes and the attenuation of detrimental inflammation. This review comprehensively addresses the pivotal role of macrophages in the orchestration of inflammation and resolution phases after lung injury, as well as ageing-related shifts and the influence of clonal haematopoiesis of indeterminate potential mutations on alveolar macrophages, exploring altered signalling pathways and transcriptional profiles, with implications for respiratory homeostasis.
Collapse
Affiliation(s)
- Learta Pervizaj-Oruqaj
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Maximiliano Ruben Ferrero
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Buenos Aires, Argentina
| | - Ulrich Matt
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
20
|
Oza D, Ivich F, Pace J, Yu M, Niedre M, Amiji M. Lipid nanoparticle encapsulated large peritoneal macrophages migrate to the lungs via the systemic circulation in a model of clodronate-mediated lung-resident macrophage depletion. Theranostics 2024; 14:2526-2543. [PMID: 38646640 PMCID: PMC11024852 DOI: 10.7150/thno.91062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/20/2024] [Indexed: 04/23/2024] Open
Abstract
Rationale: A mature tissue resident macrophage (TRM) population residing in the peritoneal cavity has been known for its unique ability to migrate to peritoneally located injured tissues and impart wound healing properties. Here, we sought to expand on this unique ability of large peritoneal macrophages (LPMs) by investigating whether these GATA6+ LPMs could also intravasate into systemic circulation and migrate to extra-peritoneally located lungs upon ablating lung-resident alveolar macrophages (AMs) by intranasally administered clodronate liposomes in mice. Methods: C12-200 cationic lipidoid-based nanoparticles were employed to selectively deliver a small interfering RNA (siRNA)-targeting CD-45 labeled with a cyanine 5.5 (Cy5.5) dye to LPMs in vivo via intraperitoneal injection. We utilized a non-invasive optical technique called Diffuse In Vivo Flow Cytometry (DiFC) to then systemically track these LPMs in real time and paired it with more conventional techniques like flow cytometry and immunocytochemistry to initially confirm uptake of C12-200 encapsulated siRNA-Cy5.5 (siRNA-Cy5.5 (C12-200)) into LPMs, and further track them from the peritoneal cavity to the lungs in a mouse model of AM depletion incited by intranasally administered clodronate liposomes. Also, we stained for LPM-specific marker zinc-finger transcription factor GATA6 in harvested cells from biofluids like broncho-alveolar lavage as well as whole blood to probe for Cy5.5-labeled LPMs in the lungs as well as in systemic circulation. Results: siRNA-Cy5.5 (C12-200) was robustly taken up by LPMs. Upon depletion of lung-resident AMs, these siRNA-Cy5.5 (C12-200) labeled LPMs rapidly migrated to the lungs via systemic circulation within 12-24 h. DiFC results showed that these LPMs intravasated from the peritoneal cavity and utilized a systemic route of migration. Moreover, immunocytochemical staining of zinc-finger transcription factor GATA6 further confirmed results from DiFC and flow cytometry, confirming the presence of siRNA-Cy5.5 (C12-200)-labeled LPMs in the peritoneum, whole blood and BALF only upon clodronate-administration. Conclusion: Our results indicate for the very first time that selective tropism, migration, and infiltration of LPMs into extra-peritoneally located lungs was dependent on clodronate-mediated AM depletion. These results further open the possibility of therapeutically utilizing LPMs as delivery vehicles to carry nanoparticle-encapsulated oligonucleotide modalities to potentially address inflammatory diseases, infectious diseases and even cancer.
Collapse
Affiliation(s)
- Dhaval Oza
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, 360 Huntington Avenue, Northeastern University, Boston, MA 02115
- Alnylam Pharmaceuticals, 675W Kendall St, Cambridge, MA, USA 02142
| | - Fernando Ivich
- Department of Bioengineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Joshua Pace
- Department of Bioengineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Mikyung Yu
- Alnylam Pharmaceuticals, 675W Kendall St, Cambridge, MA, USA 02142
| | - Mark Niedre
- Department of Bioengineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, 360 Huntington Avenue, Northeastern University, Boston, MA 02115
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| |
Collapse
|
21
|
Li C, Deng C, Wang S, Dong X, Dai B, Guo W, Guo Q, Feng Y, Xu H, Song X, Cao L. A novel role for the ROS-ATM-Chk2 axis mediated metabolic and cell cycle reprogramming in the M1 macrophage polarization. Redox Biol 2024; 70:103059. [PMID: 38316066 PMCID: PMC10862067 DOI: 10.1016/j.redox.2024.103059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Reactive oxygen species (ROS) play a pivotal role in macrophage-mediated acute inflammation. However, the precise molecular mechanism by which ROS regulate macrophage polarization remains unclear. Here, we show that ROS function as signaling molecules that regulate M1 macrophage polarization through ataxia-telangiectasia mutated (ATM) and cell cycle checkpoint kinase 2 (Chk2), vital effector kinases in the DNA damage response (DDR) signaling pathway. We further demonstrate that Chk2 phosphorylates PKM2 at the T95 and T195 sites, promoting glycolysis and facilitating macrophage M1 polarization. In addition, Chk2 activation increases the Chk2-dependent expression of p21, inducing cell cycle arrest for subsequent macrophage M1 polarization. Finally, Chk2-deficient mice infected with lipopolysaccharides (LPS) display a significant decrease in lung inflammation and M1 macrophage counts. Taken together, these results suggest that inhibiting the ROS-Chk2 axis can prevent the excessive inflammatory activation of macrophages, and this pathway can be targeted to develop a novel therapy for inflammation-associated diseases and expand our understanding of the pathophysiological functions of DDR in innate immunity.
Collapse
Affiliation(s)
- Chunlu Li
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Chengsi Deng
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Siwei Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Xiang Dong
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Bing Dai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wendong Guo
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Qiqiang Guo
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Yanling Feng
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Hongde Xu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China; Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
22
|
Osorio-Valencia S, Zhou B. Roles of Macrophages and Endothelial Cells and Their Crosstalk in Acute Lung Injury. Biomedicines 2024; 12:632. [PMID: 38540245 PMCID: PMC10968255 DOI: 10.3390/biomedicines12030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 11/11/2024] Open
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), present life-threatening conditions characterized by inflammation and endothelial injury, leading to increased vascular permeability and lung edema. Key players in the pathogenesis and resolution of ALI are macrophages (Mφs) and endothelial cells (ECs). The crosstalk between these two cell types has emerged as a significant focus for potential therapeutic interventions in ALI. This review provides a brief overview of the roles of Mφs and ECs and their interplay in ALI/ARDS. Moreover, it highlights the significance of investigating perivascular macrophages (PVMs) and immunomodulatory endothelial cells (IMECs) as crucial participants in the Mφ-EC crosstalk. This sheds light on the pathogenesis of ALI and paves the way for innovative treatment approaches.
Collapse
Affiliation(s)
| | - Bisheng Zhou
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| |
Collapse
|
23
|
Teixeira Alves LG, Baumgardt M, Langner C, Fischer M, Maria Adler J, Bushe J, Firsching TC, Mastrobuoni G, Grobe J, Hoenzke K, Kempa S, Gruber AD, Hocke AC, Trimpert J, Wyler E, Landthaler M. Protective role of the HSP90 inhibitor, STA-9090, in lungs of SARS-CoV-2-infected Syrian golden hamsters. BMJ Open Respir Res 2024; 11:e001762. [PMID: 38423952 PMCID: PMC10910676 DOI: 10.1136/bmjresp-2023-001762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION The emergence of new SARS-CoV-2 variants, capable of escaping the humoral immunity acquired by the available vaccines, together with waning immunity and vaccine hesitancy, challenges the efficacy of the vaccination strategy in fighting COVID-19. Improved therapeutic strategies are urgently needed to better intervene particularly in severe cases of the disease. They should aim at controlling the hyperinflammatory state generated on infection, reducing lung tissue pathology and inhibiting viral replication. Previous research has pointed to a possible role for the chaperone HSP90 in SARS-CoV-2 replication and COVID-19 pathogenesis. Pharmacological intervention through HSP90 inhibitors was shown to be beneficial in the treatment of inflammatory diseases, infections and reducing replication of diverse viruses. METHODS In this study, we investigated the effects of the potent HSP90 inhibitor Ganetespib (STA-9090) in vitro on alveolar epithelial cells and alveolar macrophages to characterise its effects on cell activation and viral replication. Additionally, the Syrian hamster animal model was used to evaluate its efficacy in controlling systemic inflammation and viral burden after infection. RESULTS In vitro, STA-9090 reduced viral replication on alveolar epithelial cells in a dose-dependent manner and lowered significantly the expression of proinflammatory genes, in both alveolar epithelial cells and alveolar macrophages. In vivo, although no reduction in viral load was observed, administration of STA-9090 led to an overall improvement of the clinical condition of infected animals, with reduced oedema formation and lung tissue pathology. CONCLUSION Altogether, we show that HSP90 inhibition could serve as a potential treatment option for moderate and severe cases of COVID-19.
Collapse
Affiliation(s)
- Luiz Gustavo Teixeira Alves
- RNA Biology and Posttranscriptional Regulation, Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Morris Baumgardt
- Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Mara Fischer
- Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Judith Bushe
- Research Unit Analytical Pathology, Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, Neuherberg, Germany
| | | | - Guido Mastrobuoni
- Proteomics and Metabolomics, Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jenny Grobe
- Proteomics and Metabolomics, Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katja Hoenzke
- Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Kempa
- Proteomics and Metabolomics, Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Achim Dieter Gruber
- Department of Veterinary Pathology, Free University of Berlin, Berlin, Germany
| | - Andreas Christian Hocke
- Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institute of Virology, Free University of Berlin, Berlin, Germany
| | - Emanuel Wyler
- RNA Biology and Posttranscriptional Regulation, Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Landthaler
- RNA Biology and Posttranscriptional Regulation, Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Biology, Humboldt-Universitat zu Berlin, Berlin, Germany
| |
Collapse
|
24
|
Zhao G, Xue L, Geisler HC, Xu J, Li X, Mitchell MJ, Vaughan AE. Precision treatment of viral pneumonia through macrophage-targeted lipid nanoparticle delivery. Proc Natl Acad Sci U S A 2024; 121:e2314747121. [PMID: 38315853 PMCID: PMC10873611 DOI: 10.1073/pnas.2314747121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Macrophages are integral components of the innate immune system, playing a dual role in host defense during infection and pathophysiological states. Macrophages contribute to immune responses and aid in combatting various infections, yet their production of abundant proinflammatory cytokines can lead to uncontrolled inflammation and worsened tissue damage. Therefore, reducing macrophage-derived proinflammatory cytokine release represents a promising approach for treating various acute and chronic inflammatory disorders. However, limited macrophage-specific delivery vehicles have hindered the development of macrophage-targeted therapies. In this study, we screened a pool of 112 lipid nanoparticles (LNPs) to identify an optimal LNP formulation for efficient siRNA delivery. Subsequently, by conjugating the macrophage-specific antibody F4/80 to the LNP surface, we constructed MacLNP, an enhanced LNP formulation designed for targeted macrophage delivery. In both in vitro and in vivo experiments, MacLNP demonstrated a significant enhancement in targeting macrophages. Specifically, delivery of siRNA targeting TAK1, a critical kinase upstream of multiple inflammatory pathways, effectively suppressed the phosphorylation/activation of NF-kB. LNP-mediated inhibition of NF-kB, a key upstream regulator in the classic inflammatory signaling pathway, in the murine macrophage cell line RAW264.7 significantly reduced the release of proinflammatory cytokines after stimulation with the viral RNA mimic Poly(I:C). Finally, intranasal administration of MacLNP-encapsulated TAK1 siRNA markedly ameliorated lung injury induced by influenza infection. In conclusion, our findings validate the potential of targeted macrophage interventions in attenuating inflammatory responses, reinforcing the potential of LNP-mediated macrophage targeting to treat pulmonary inflammatory disorders.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Hannah C. Geisler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Junchao Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Xinyuan Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Michael J. Mitchell
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19014
| | - Andrew E. Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
25
|
Ran Y, Yin S, Xie P, Liu Y, Wang Y, Yin Z. ICAM-1 targeted and ROS-responsive nanoparticles for the treatment of acute lung injury. NANOSCALE 2024; 16:1983-1998. [PMID: 38189459 DOI: 10.1039/d3nr04401g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Acute lung injury (ALI) is an inflammatory disease caused by multiple factors such as infection, trauma, and chemicals. Without effective intervention during the early stages, it usually quickly progresses to acute respiratory distress syndrome (ARDS). Since ordinary pharmaceutical preparations cannot precisely target the lungs, their clinical application is limited. In response, we constructed a γ3 peptide-decorated and ROS-responsive nanoparticle system encapsulating therapeutic dexamethasone (Dex/PSB-γ3 NPs). In vitro, Dex/PSB-γ3 NPs had rapid H2O2 responsiveness, low cytotoxicity, and strong intracellular ROS removal capacity. In a mouse model of ALI, Dex/PSB-γ3 NPs accumulated at the injured lung rapidly, alleviating pulmonary edema and cytokine levels significantly. The modification of NPs by γ3 peptide achieved highly specific positioning of NPs in the inflammatory area. The ROS-responsive release mechanism ensured the rapid release of therapeutic dexamethasone at the inflammatory site. This combined approach improves treatment accuracy, and drug bioavailability, and effectively inhibits inflammation progression. Our study could effectively reduce the risk of ALI progressing to ARDS and hold potential for the early treatment of ALI.
Collapse
Affiliation(s)
- Yu Ran
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Shanmei Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Pei Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712038, China
| | - Yaxue Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
26
|
Wang B, Zheng H, Dong X, Zhang W, Wu J, Chen H, Zhang J, Zhou A. The Identification Distinct Antiviral Factors Regulated Influenza Pandemic H1N1 Infection. Int J Microbiol 2024; 2024:6631882. [PMID: 38229736 PMCID: PMC10791480 DOI: 10.1155/2024/6631882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
Influenza pandemic with H1N1 (H1N1pdms) causes severe lung damage and "cytokine storm," leading to higher mortality and global health emergencies in humans and animals. Explaining host antiviral molecular mechanisms in response to H1N1pdms is important for the development of novel therapies. In this study, we organised and analysed multimicroarray data for mouse lungs infected with different H1N1pdm and nonpandemic H1N1 strains. We found that H1N1pdms infection resulted in a large proportion of differentially expressed genes (DEGs) in the infected lungs compared with normal lungs, and the number of DEGs increased markedly with the time of infection. In addition, we found that different H1N1pdm strains induced similarly innate immune responses and the identified DEGs during H1N1pdms infection were functionally concentrated in defence response to virus, cytokine-mediated signalling pathway, regulation of innate immune response, and response to interferon. Moreover, comparing with nonpandemic H1N1, we identified ten distinct DEGs (AREG, CXCL13, GATM, GPR171, IFI35, IFI47, IFIT3, ORM1, RETNLA, and UBD), which were enriched in immune response and cell surface receptor signalling pathway as well as interacted with immune response-related dysregulated genes during H1N1pdms. Our discoveries will provide comprehensive insights into host responding to pandemic with influenza H1N1 and find broad-spectrum effective treatment.
Collapse
Affiliation(s)
- Baoxin Wang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Hao Zheng
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Xia Dong
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Wenhua Zhang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Hongbo Chen
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Jing Zhang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Ao Zhou
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| |
Collapse
|
27
|
Pervizaj-Oruqaj L, Selvakumar B, Ferrero MR, Heiner M, Malainou C, Glaser RD, Wilhelm J, Bartkuhn M, Weiss A, Alexopoulos I, Witte B, Gattenlöhner S, Vadász I, Morty RE, Seeger W, Schermuly RT, Vazquez-Armendariz AI, Herold S. Alveolar macrophage-expressed Plet1 is a driver of lung epithelial repair after viral pneumonia. Nat Commun 2024; 15:87. [PMID: 38167746 PMCID: PMC10761876 DOI: 10.1038/s41467-023-44421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Influenza A virus (IAV) infection mobilizes bone marrow-derived macrophages (BMDM) that gradually undergo transition to tissue-resident alveolar macrophages (TR-AM) in the inflamed lung. Combining high-dimensional single-cell transcriptomics with complex lung organoid modeling, in vivo adoptive cell transfer, and BMDM-specific gene targeting, we found that transitioning ("regenerative") BMDM and TR-AM highly express Placenta-expressed transcript 1 (Plet1). We reveal that Plet1 is released from alveolar macrophages, and acts as important mediator of macrophage-epithelial cross-talk during lung repair by inducing proliferation of alveolar epithelial cells and re-sealing of the epithelial barrier. Intratracheal administration of recombinant Plet1 early in the disease course attenuated viral lung injury and rescued mice from otherwise fatal disease, highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Learta Pervizaj-Oruqaj
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Balachandar Selvakumar
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Buenos Aires, Argentina
| | - Maximiliano Ruben Ferrero
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Buenos Aires, Argentina
| | - Monika Heiner
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Christina Malainou
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Rolf David Glaser
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus Liebig University, Giessen, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Marek Bartkuhn
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus Liebig University, Giessen, Germany
| | - Astrid Weiss
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Biruta Witte
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | | | - István Vadász
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory Edward Morty
- Department of Translational Pulmonology and the Translational Lung Research Center, University Hospital Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Werner Seeger
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Buenos Aires, Argentina
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph Theo Schermuly
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
| | - Susanne Herold
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
28
|
Hsu CY, Faisal Mutee A, Porras S, Pineda I, Ahmed Mustafa M, J Saadh M, Adil M, H A Z. Amphiregulin in infectious diseases: Role, mechanism, and potential therapeutic targets. Microb Pathog 2024; 186:106463. [PMID: 38036111 DOI: 10.1016/j.micpath.2023.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Amphiregulin (AREG) serves as a ligand for the epidermal growth factor receptor (EGFR) and is involved in vital biological functions, including inflammatory responses, tissue regeneration, and immune system function. Upon interaction with the EGFR, AREG initiates a series of signaling cascades necessary for several physiological activities, such as metabolism, cell cycle regulation, and cellular proliferation. Recent findings have provided evidence for the substantial role of AREG in maintaining the equilibrium of homeostasis in damaged tissues and preserving epithelial cell structure in the context of viral infections affecting the lungs. The development of resistance to influenza virus infection depends on the presence of type 1 cytokine responses. Following the eradication of the pathogen, the lungs are subsequently colonized by several cell types that are linked with type 2 immune responses. These cells contribute to the process of repairing and resolving the tissue injury and inflammation caused by infections. Following influenza infection, the activation of AREG promotes the regeneration of bronchial epithelial cells, enhancing the tissue's structural integrity and increasing the survival rate of infected mice. In the same manner, mice afflicted with influenza experience rapid mortality due to a subsequent bacterial infection in the pulmonary region when both bacterial and viral infections manifest concurrently inside the same host. The involvement of AREG in bacterial infections has been demonstrated. The gene AREG experiences increased transcriptional activity inside host cells in response to bacterial infections caused by pathogens such as Escherichia coli and Neisseria gonorrhea. In addition, AREG has been extensively studied as a mitogenic stimulus in epithelial cell layers. Consequently, it is regarded as a prospective contender that might potentially contribute to the observed epithelial cell reactions in helminth infection. Consistent with this finding, mice that lack the AREG gene exhibit a delay in the eradication of the intestinal parasite Trichuris muris. The observed delay is associated with a reduction in the proliferation rate of colonic epithelial cells compared to the infected animals in the control group. The aforementioned findings indicate that AREG plays a pivotal role in facilitating the activation of defensive mechanisms inside the epithelial cells of the intestinal tissue. The precise cellular sources of AREG in this specific context have not yet been determined. However, it is evident that the increased proliferation of the epithelial cell layer in infected mice is reliant on CD4+ T cells. The significance of this finding lies in its demonstration of the crucial role played by the interaction between immunological and epithelial cells in regulating the AREG-EGFR pathway. Additional research is necessary to delve into the cellular origins and signaling mechanisms that govern the synthesis of AREG and its tissue-protective properties, independent of infection.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Sandra Porras
- Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Indira Pineda
- Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Iraq; Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Iraq.
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Zainab H A
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| |
Collapse
|
29
|
Jannini-Sá YAP, Creyns B, Hogaboam CM, Parks WC, Hohmann MS. Macrophages in Lung Repair and Fibrosis. Results Probl Cell Differ 2024; 74:257-290. [PMID: 39406909 DOI: 10.1007/978-3-031-65944-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Macrophages are key regulators of tissue repair and fibrosis. Following injury, macrophages undergo marked phenotypic and functional changes to play crucial roles throughout the phases of tissue repair. Idiopathic Pulmonary Fibrosis, which is the most common fibrosing lung disease, has been described as an aberrant reparative response to repetitive alveolar epithelial injury in a genetically susceptible aging individual. The marked destruction of the lung architecture results from the excessive secretion of extracellular matrix by activated fibroblasts and myofibroblasts. Accumulating evidence suggests that macrophages have a pivotal regulatory role in pulmonary fibrosis. The origins and characteristics of macrophages in the lung and their role in regulating lung homeostasis, repair, and fibrosis are reviewed herein. We discuss recent studies that have employed single-cell RNA-sequencing to improve the identification and characterization of macrophage populations in the context of homeostatic and fibrotic conditions. We also discuss the current understanding of the macrophage-mediated mechanisms underlying the initiation and progression of pulmonary fibrosis, with a focus on the phenotypic and functional changes that aging macrophages acquire and how these changes ultimately contribute to age-related chronic lung diseases.
Collapse
Affiliation(s)
- Yago A P Jannini-Sá
- Women's Guild Lung Institute, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brecht Creyns
- Women's Guild Lung Institute, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cory M Hogaboam
- Women's Guild Lung Institute, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - William C Parks
- Women's Guild Lung Institute, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Miriam S Hohmann
- Women's Guild Lung Institute, Division of Pulmonary & Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Oliveira FMS, Kraemer L, Vieira-Santos F, Leal-Silva T, Gazzinelli-Guimarães AC, Lopes CA, Amorim CCO, Pinheiro GRG, Moura MS, Matias PHP, Barbosa FS, Caliari MV, Weatherhead JE, Bueno LL, Russo RC, Fujiwara RT. The long-lasting Ascaris suum antigens in the lungs shapes the tissue adaptation modifying the pulmonary architecture and immune response after infection in mice. Microb Pathog 2024; 186:106483. [PMID: 38092133 DOI: 10.1016/j.micpath.2023.106483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/09/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
Ascariasis is the most prevalent helminth affecting approximately 819 million people worldwide. The acute phase of Ascariasis is characterized by larval migration of Ascaris spp., through the intestinal wall, carried to the liver and lungs of the host by the circulatory system. Most of the larvae subsequently transverse the lung parenchyma leading to tissue injury, reaching the airways and pharynx, where they can be expectorated and swallowed back to the gastrointestinal tract, where they develop into adult worms. However, some larvae are trapped in the lung parenchyma inciting an inflammatory response that causes persistent pulmonary tissue damage long after the resolution of infection, which returns to tissue homeostasis. However, the mechanism by which chronic lung disease develops and resolves remains unknown. Here, using immunohistochemistry, we demonstrate that small fragments and larval antigens of Ascaris suum are deposited and retained chronically in the lung parenchyma of mice following a single Ascaris infection. Our results reveal that the prolonged presence of Ascaris larval antigens in the lung parenchyma contributes to the persistent immune stimulation inducing histopathological changes observed chronically following infection, and clearly demonstrate that larval antigens are related to all phases of tissue adaptation after infection: lung injury, chronic inflammation, resolution, and tissue remodeling, in parallel to increased specific humoral immunity and the recovery of lung function in mice. Additional insight is needed into the mechanisms of Ascaris antigen to induce chronic immune responses and resolution in the host lungs following larval migration.
Collapse
Affiliation(s)
- Fabrício M S Oliveira
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Cellular and Molecular Immunology Group, René Rachou Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Augusto de Lima, 1.715, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Kraemer
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flaviane Vieira-Santos
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaís Leal-Silva
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana C Gazzinelli-Guimarães
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila A Lopes
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Chiara C O Amorim
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme R G Pinheiro
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Matheus S Moura
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo H P Matias
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Marcelo V Caliari
- Laboratory of Protozooses, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jill E Weatherhead
- Department of Medicine, Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Lilian L Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo T Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
31
|
Roy RM, Allawzi A, Burns N, Sul C, Rubio V, Graham J, Stenmark K, Nozik ES, Tuder RM, Vohwinkel CU. Lactate produced by alveolar type II cells suppresses inflammatory alveolar macrophages in acute lung injury. FASEB J 2023; 37:e23316. [PMID: 37983890 PMCID: PMC10914122 DOI: 10.1096/fj.202301722r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Alveolar inflammation is a hallmark of acute lung injury (ALI), and its clinical correlate is acute respiratory distress syndrome-and it is as a result of interactions between alveolar type II cells (ATII) and alveolar macrophages (AM). In the setting of acute injury, the microenvironment of the intra-alveolar space is determined in part by metabolites and cytokines and is known to shape the AM phenotype. In response to ALI, increased glycolysis is observed in AT II cells, mediated by the transcription factor hypoxia-inducible factor (HIF) 1α, which has been shown to decrease inflammation. We hypothesized that in acute lung injury, lactate, the end product of glycolysis, produced by ATII cells shifts AMs toward an anti-inflammatory phenotype, thus mitigating ALI. We found that local intratracheal delivery of lactate improved ALI in two different mouse models. Lactate shifted cytokine expression of murine AMs toward increased IL-10, while decreasing IL-1 and IL-6 expression. Mice with ATII-specific deletion of Hif1a and mice treated with an inhibitor of lactate dehydrogenase displayed exacerbated ALI and increased inflammation with decreased levels of lactate in the bronchoalveolar lavage fluid; however, all those parameters improved with intratracheal lactate. When exposed to LPS (to recapitulate an inflammatory stimulus as it occurs in ALI), human primary AMs co-cultured with alveolar epithelial cells had reduced inflammatory responses. Taken together, these studies reveal an innate protective pathway, in which lactate produced by ATII cells shifts AMs toward an anti-inflammatory phenotype and dampens excessive inflammation in ALI.
Collapse
Affiliation(s)
- René M. Roy
- Children’s Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ayed Allawzi
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nana Burns
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christina Sul
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Victoria Rubio
- Children’s Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jessica Graham
- Children’s Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kurt Stenmark
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eva S. Nozik
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rubin M. Tuder
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Program in Translational Lung Research, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christine U. Vohwinkel
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
32
|
Jia D, Huan Z, Han J, Xu C, Sui L, Ge X. HSF1 enhances the attenuation of exosomes from mesenchymal stem cells to hemorrhagic shock induced lung injury by altering the protein profile of exosomes. Int Immunopharmacol 2023; 123:110693. [PMID: 37506505 DOI: 10.1016/j.intimp.2023.110693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Severe hemorrhagic shock (HS) leads to lung injury, resulting in respiratory insufficiency. Mesenchymal stem cell (MSC)-derived exosomes have therapeutic effects on the organ injury. HSF1 has been reported to protect the lung against injury. In this study, the role of exosomes from HSF1-overexpressed MSCs (HSF1-EVs) in HS-induced lung injury was investigated. We constructed a mouse model of lung injury by induction with HS and pre-treated it with HSF1-EVs. It was clarified that HSF1-EVs manifested better protective effects on HS-induced lung injury compared with the exosomes derived from control MSCs. Inhalation of HSF1-EVs declined the ratio of wet to dry and total protein concentration in bronchoalveolar lavage fluids. Besides, HSF1-EVs greatly inhibited the production of inflammatory cytokines (IL-1β, IL-6, MCP-1 and HMGB1), and constrained the pulmonary neutrophilic infiltration induced by HS. A reduction of oxidative stress was observed in HSF1-EV-treated mice. HSF1-EVs suppressed the HS-induced apoptosis of lung cell and downregulated Bcl-2 expression, while promoting Bax expression. The key proteins of pulmonary epithelial barrier, E-cadherin, ZO-1 and Occludin, were all upregulated in HS-treated mice after HSF1-EV inhalation, suggesting that HSF1-EVs played a protective role in the epithelial barrier of lung. Additionally, the results of proteomics showed that HSF1 overexpression altered the protein profile of MSC-derived exosomes, which might explain the more significant relief effect of HSF1-EVs on lung injury compared with that of Plasmid-EVs. These new findings demonstrated that the exosomes secreted by HSF1-overexpressed MSCs can be an effective precautionary measure for lung injury induced by HS.
Collapse
Affiliation(s)
- Di Jia
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Zhirong Huan
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Jiahui Han
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Ce Xu
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Lijun Sui
- Department of Cardiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China.
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China; Orthopedic Institution of Wuxi City, Wuxi, Jiangsu 214000, People's Republic of China.
| |
Collapse
|
33
|
Vafaeipour Z, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effect of saffron, black seed, and their main constituents on inflammatory cytokine response (mainly TNF-α) and oxidative stress status: an aspect on pharmacological insights. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2241-2259. [PMID: 37103518 DOI: 10.1007/s00210-023-02501-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Tumor necrosis factor-α (TNF-α), an inflammatory cytokine, is produced by monocytes and macrophages. It is known as a 'double-edged sword' because it is responsible for advantageous and disadvantageous events in the body system. The unfavorable incident includes inflammation, which induces some diseases such as rheumatoid arthritis, obesity, cancer, and diabetes. Many medicinal plants have been found to prevent inflammation, such as saffron (Crocus sativus L.) and black seed (Nigella sativa). Therefore, the purpose of this review was to assess the pharmacological effects of saffron and black seed on TNF-α and diseases related to its imbalance. Different databases without time limitations were investigated up to 2022, including PubMed, Scopus, Medline, and Web of Science. All the original articles (in vitro, in vivo, and clinical studies) were collected on the effects of black seed and saffron on TNF-α. Black seed and saffron have therapeutic effects against many disorders, such as hepatotoxicity, cancer, ischemia, and non-alcoholic fatty liver, by decreasing TNF-α levels based on their anti-inflammatory, anticancer, and antioxidant properties. Saffron and black seed can treat a variety of diseases by suppressing TNF-α and exhibiting a variety of activities such as neuroprotective, gastroprotective, immunomodulatory, antimicrobial, analgesic, antitussive, bronchodilator, antidiabetic activity, anticancer, and antioxidant effects. To uncover the beneficial underlying mechanisms of black seed and saffron, more clinical trials and phytochemical research are required. Also, these two plants affect other inflammatory cytokines, hormones, and enzymes, implying that they could be used to treat a variety of diseases.
Collapse
Affiliation(s)
- Zeinab Vafaeipour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Chang CY, Armstrong D, Corry DB, Kheradmand F. Alveolar macrophages in lung cancer: opportunities challenges. Front Immunol 2023; 14:1268939. [PMID: 37822933 PMCID: PMC10562548 DOI: 10.3389/fimmu.2023.1268939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Alveolar macrophages (AMs) are critical components of the innate defense mechanism in the lung. Nestled tightly within the alveoli, AMs, derived from the yolk-sac or bone marrow, can phagocytose foreign particles, defend the host against pathogens, recycle surfactant, and promptly respond to inhaled noxious stimuli. The behavior of AMs is tightly dependent on the environmental cues whereby infection, chronic inflammation, and associated metabolic changes can repolarize their effector functions in the lungs. Several factors within the tumor microenvironment can re-educate AMs, resulting in tumor growth, and reducing immune checkpoint inhibitors (ICIs) efficacy in patients treated for non-small cell lung cancer (NSCLC). The plasticity of AMs and their critical function in altering tumor responses to ICIs make them a desirable target in lung cancer treatment. New strategies have been developed to target AMs in solid tumors reprograming their suppressive function and boosting the efficacy of ICIs. Here, we review the phenotypic and functional changes in AMs in response to sterile inflammation and in NSCLC that could be critical in tumor growth and metastasis. Opportunities in altering AMs' function include harnessing their potential function in trained immunity, a concept borrowed from memory response to infections, which could be explored therapeutically in managing lung cancer treatment.
Collapse
Affiliation(s)
- Cheng-Yen Chang
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Dominique Armstrong
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - David B. Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, United States
| | - Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, United States
| |
Collapse
|
35
|
Jakovija A, Chtanova T. Skin immunity in wound healing and cancer. Front Immunol 2023; 14:1060258. [PMID: 37398649 PMCID: PMC10312005 DOI: 10.3389/fimmu.2023.1060258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
The skin is the body's largest organ. It serves as a barrier to pathogen entry and the first site of immune defense. In the event of a skin injury, a cascade of events including inflammation, new tissue formation and tissue remodeling contributes to wound repair. Skin-resident and recruited immune cells work together with non-immune cells to clear invading pathogens and debris, and guide the regeneration of damaged host tissues. Disruption to the wound repair process can lead to chronic inflammation and non-healing wounds. This, in turn, can promote skin tumorigenesis. Tumors appropriate the wound healing response as a way of enhancing their survival and growth. Here we review the role of resident and skin-infiltrating immune cells in wound repair and discuss their functions in regulating both inflammation and development of skin cancers.
Collapse
Affiliation(s)
- Arnolda Jakovija
- Immunity Theme, Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Tatyana Chtanova
- Immunity Theme, Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
36
|
Hou F, Wang H, Zheng K, Yang W, Xiao K, Rong Z, Xiao J, Li J, Cheng B, Tang L, Xie L. Distinct Transcriptional and Functional Differences of Lung Resident and Monocyte-Derived Alveolar Macrophages During the Recovery Period of Acute Lung Injury. Immune Netw 2023; 23:e24. [PMID: 37416929 PMCID: PMC10320419 DOI: 10.4110/in.2023.23.e24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 07/08/2023] Open
Abstract
In acute lung injury, two subsets of lung macrophages exist in the alveoli: tissue-resident alveolar macrophages (AMs) and monocyte-derived alveolar macrophages (MDMs). However, it is unclear whether these 2 subsets of macrophages have different functions and characteristics during the recovery phase. RNA-sequencing of AMs and MDMs from the recovery period of LPS-induced lung injury mice revealed their differences in proliferation, cell death, phagocytosis, inflammation and tissue repair. Using flow cytometry, we found that AMs showed a higher ability to proliferate, whereas MDMs expressed a larger amount of cell death. We also compared the ability of phagocytosing apoptotic cells and activating adaptive immunity and found that AMs have a stronger ability to phagocytose, while MDMs are the cells that activate lymphocytes during the resolving phase. By testing surface markers, we found that MDMs were more prone to the M1 phenotype, but expressed a higher level of pro-repairing genes. Finally, analysis of a publicly available set of single-cell RNA-sequencing data on bronchoalveolar lavage cells from patients with SARS-CoV-2 infection validated the double-sided role of MDMs. Blockade of inflammatory MDM recruitment using CCR2-/- mice effectively attenuates lung injury. Therefore, AMs and MDMs exhibited large differences during recovery. AMs are long-lived M2-like tissue-resident macrophages that have a strong ability to proliferate and phagocytose. MDMs are a paradoxical group of macrophages that promote the repair of tissue damage despite being strongly pro-inflammatory early in infection, and they may undergo cell death as inflammation fades. Preventing the massive recruitment of inflammatory MDMs or promoting their transition to pro-repairing phenotype may be a new direction for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Fei Hou
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Huan Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Kun Zheng
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Wenting Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Kun Xiao
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zihan Rong
- College of Life Sciences, Hebei University, Baoding, China
| | - Junjie Xiao
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Jing Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Baihe Cheng
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Li Tang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
37
|
Gbotosho OT, Li W, Joiner CH, Brown LAS, Hyacinth HI. The inflammatory profiles of pulmonary alveolar macrophages and alveolar type 2 cells in SCD. Exp Biol Med (Maywood) 2023; 248:1013-1023. [PMID: 37012678 PMCID: PMC10581160 DOI: 10.1177/15353702231157940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/15/2023] [Indexed: 04/05/2023] Open
Abstract
The lung microenvironment plays a crucial role in maintaining lung homeostasis as well as the initiation and resolution of both acute and chronic lung injury. Acute chest syndrome (ACS) is a complication of sickle cell disease (SCD) like acute lung injury. Both the endothelial cells and peripheral blood mononuclear cells are known to secrete proinflammatory cytokines elevated during ACS episodes. However, in SCD, the lung microenvironment that may favor excessive production of proinflammatory cytokines and the contribution of other lung resident cells, such as alveolar macrophages and alveolar type 2 epithelial (AT-2) cells, to ACS pathogenesis is not completely understood. Here, we sought to understand the pulmonary microenvironment and the proinflammatory profile of lung alveolar macrophages (LAMs) and AT-2 cells at steady state in Townes sickle cell (SS) mice compared to control mice (AA). In addition, we examined lung function and micromechanics molecules essential for pulmonary epithelial barrier function in these mice. Our results showed that bronchoalveolar lavage (BAL) fluid in SS mice had elevated protein levels of pro-inflammatory cytokines interleukin (IL)-1β and IL-12 (p ⩽ 0.05) compared to AA controls. We showed for the first time, significantly increased protein levels of inflammatory mediators (Human antigen R (HuR), Toll-like receptor 4 (TLR4), MyD88, and PU.1) in AT-2 cells (1.4 to 2.2-fold) and LAM (17-21%) isolated from SS mice compared to AA control mice at steady state. There were also low levels of anti-inflammatory transcription factors (Nrf2 and PPARy) in SS mice compared to AA controls (p ⩽ 0.05). Finally, we found impaired lung function and a dysregulated composition of surfactant proteins (B and C). Our results demonstrate that SS mice at steady state had a compromised lung microenvironment with elevated expression of proinflammatory cytokines by AT-2 cells and LAM, as well as dysregulated expression of surfactant proteins necessary for maintaining the alveolar barrier integrity and lung function.
Collapse
Affiliation(s)
- Oluwabukola T Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wei Li
- Aflac Cancer & Blood Disorders Center of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Clinton H Joiner
- Aflac Cancer & Blood Disorders Center of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lou Ann S Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hyacinth I Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
38
|
Zhao G, Gentile ME, Xue L, Cosgriff CV, Weiner AI, Adams-Tzivelekidis S, Wong J, Li X, Kass-Gergi S, Holcomb NP, Basal MC, Stewart KM, Planer JD, Cantu E, Christie JD, Crespo MM, Mitchell MJ, Meyer NJ, Vaughan AE. Vascular Endothelial-derived SPARCL1 Exacerbates Viral Pneumonia Through Pro-Inflammatory Macrophage Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.541966. [PMID: 37292817 PMCID: PMC10245987 DOI: 10.1101/2023.05.25.541966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inflammation upon infectious lung injury is a double-edged sword: while tissue-infiltrating immune cells and cytokines are necessary to control infection, these same factors often aggravate injury. Full appreciation of both the sources and targets of inflammatory mediators is required to facilitate strategies to maintain antimicrobial effects while minimizing off-target epithelial and endothelial damage. Recognizing that the vasculature is centrally involved in tissue responses to injury and infection, we observed that pulmonary capillary endothelial cells (ECs) exhibit dramatic transcriptomic changes upon influenza injury punctuated by profound upregulation of Sparcl1 . Endothelial deletion and overexpression of SPARCL1 implicated this secreted matricellular protein in driving key pathophysiologic symptoms of pneumonia, which we demonstrate result from its effects on macrophage polarization. SPARCL1 induces a shift to a pro-inflammatory "M1-like" phenotype (CD86 + CD206 - ), thereby increasing associated cytokine levels. Mechanistically, SPARCL1 acts directly on macrophages in vitro to induce the pro-inflammatory phenotype via activation of TLR4, and TLR4 inhibition in vivo ameliorates inflammatory exacerbations caused by endothelial Sparcl1 overexpression. Finally, we confirmed significant elevation of SPARCL1 in COVID-19 lung ECs in comparison with those from healthy donors. Survival analysis demonstrated that patients with fatal COVID-19 had higher levels of circulating SPARCL1 protein compared to those who recovered, indicating the potential of SPARCL1 as a biomarker for prognosis of pneumonia and suggesting that personalized medicine approaches might be harnessed to block SPARCL1 and improve outcomes in high-expressing patients.
Collapse
|
39
|
Bossen J, Kühle JP, Roeder T. The tracheal immune system of insects - A blueprint for understanding epithelial immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103960. [PMID: 37235953 DOI: 10.1016/j.ibmb.2023.103960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The unique design of respiratory organs in multicellular organisms makes them prone to infection by pathogens. To cope with this vulnerability, highly effective local immune systems evolved that are also operative in the tracheal system of insects. Many pathogens and parasites (including viruses, bacteria, fungi, and metazoan parasites) colonize the trachea or invade the host via this route. Currently, only two modules of the tracheal immune system have been characterized in depth: 1) Immune deficiency pathway-mediated activation of antimicrobial peptide gene expression and 2) local melanization processes that protect the structure from wounding. There is an urgent need to increase our understanding of the architecture of tracheal immune systems, especially regarding those mechanisms that enable the maintenance of immune homeostasis. This need for new studies is particularly exigent for species other than Drosophila.
Collapse
Affiliation(s)
- Judith Bossen
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Jan-Philip Kühle
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany
| | - Thomas Roeder
- Kiel University, Zoology, Dept, Molecular Physiology, Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
40
|
zhao T, Wang L, Zhang Y, Ye W, Liu J, Wu H, Wang F, Tang T, Li Z. Qi-Dong-Huo-Xue-Yin balances the immune microenvironment to protect against LPS induced acute lung injury. Front Pharmacol 2023; 14:1200058. [PMID: 37292149 PMCID: PMC10244563 DOI: 10.3389/fphar.2023.1200058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
COVID-19 induces acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and leads to severe immunological changes that threatens the lives of COVID-19 victims. Studies have shown that both the regulatory T cells and macrophages were deranged in COVID-19-induced ALI. Herbal drugs have long been utilized to adjust the immune microenvironment in ALI. However, the underlying mechanisms of herbal drug mediated ALI protection are largely unknown. This study aims to understand the cellular mechanism of a traditional Chinese medicine, Qi-Dong-Huo-Xue-Yin (QD), in protecting against LPS induced acute lung injury in mouse models. Our data showed that QD intrinsically promotes Foxp3 transcription via promoting acetylation of the Foxp3 promoter in CD4+ T cells and consequently facilitates CD4+CD25+Foxp3+ Tregs development. Extrinsically, QD stabilized β-catenin in macrophages to expedite CD4+CD25+Foxp3+ Tregs development and modulated peripheral blood cytokines. Taken together, our results illustrate that QD promotes CD4+CD25+Foxp3+ Tregs development via intrinsic and extrinsic pathways and balanced cytokines within the lungs to protect against LPS induced ALI. This study suggests a potential application of QD in ALI related diseases.
Collapse
Affiliation(s)
- Tian zhao
- Department of Respiratory Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Le Wang
- The Second Clinical Medical College Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Yongjun Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Wu Ye
- Department of Respiratory Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Juan Liu
- Department of Respiratory Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Haiyan Wu
- Department of Respiratory Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Fei Wang
- Department of Respiratory Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Tingyu Tang
- Department of Respiratory Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Zhijun Li
- Department of Respiratory Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Wang Y, Jin X, Li M, Gao J, Zhao X, Ma J, Shi C, He B, Hu L, Shi J, Liu G, Qu G, Zheng Y, Jiang G. PM 2.5 Increases Systemic Inflammatory Cells and Associated Disease Risks by Inducing NRF2-Dependent Myeloid-Biased Hematopoiesis in Adult Male Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7924-7937. [PMID: 37184982 DOI: 10.1021/acs.est.2c09024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Although PM2.5 (fine particles with aerodynamic diameter <2.5 μm) exposure shows the potential to impact normal hematopoiesis, the detailed alterations in systemic hematopoiesis and the underlying mechanisms remain unclear. For hematopoiesis under steady-state or stress conditions, nuclear factor erythroid 2-related factor 2 (NRF2) is essential for regulating hematopoietic processes to maintain blood homeostasis. Herein, we characterized changes in the populations of hematopoietic stem progenitor cells and committed hematopoietic progenitors in the lungs and bone marrow (BM) of wild-type and Nrf2-/- C57BL/6J male mice. PM2.5-induced NRF2-dependent biased hematopoiesis toward myeloid lineage in the lungs and BM generates excessive numbers of various inflammatory immune cells, including neutrophils, monocytes, and platelets. The increased population of these immune cells in the lungs, BM, and peripheral blood has been associated with observed pulmonary fibrosis and high disease risks in an NRF2-dependent manner. Therefore, although NRF2 is a protective factor against stressors, upon PM2.5 exposure, NRF2 is involved in stress myelopoiesis and enhanced PM2.5 toxicity in pulmonary injury, even leading to systemic inflammation.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Min Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guoliang Liu
- Department of Pulmonary and Critical Care Medicine, National Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- Institute of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
42
|
Pergolizzi JV, LeQuang JA, Varrassi M, Breve F, Magnusson P, Varrassi G. What Do We Need to Know About Rising Rates of Idiopathic Pulmonary Fibrosis? A Narrative Review and Update. Adv Ther 2023; 40:1334-1346. [PMID: 36692679 PMCID: PMC9872080 DOI: 10.1007/s12325-022-02395-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/30/2022] [Indexed: 01/25/2023]
Abstract
The most common type of idiopathic interstitial pneumonia is idiopathic pulmonary fibrosis (IPF), an irreversible, progressive disorder that has lately come into question for possible associations with COVID-19. With few geographical exceptions, IPF is a rare disease but its prevalence has been increasing markedly since before the pandemic. Environmental exposures are frequently implicated in IPF although genetic factors play a role as well. In IPF, healthy lung tissue is progressively replaced with an abnormal extracellular matrix that impedes normal alveolar function while, at the same time, natural repair mechanisms become dysregulated. While chronic viral infections are known risk factors for IPF, acute infections are not and the link to COVID-19 has not been established. Macrophagy may be a frontline defense against any number of inflammatory pulmonary diseases, and the inflammatory cascade that may occur in patients with COVID-19 may disrupt the activity of monocytes and macrophages in clearing up fibrosis and remodeling lung tissue. It is unclear if COVID-19 infection is a risk factor for IPF, but the two can occur in the same patient with complicating effects. In light of its increasing prevalence, further study of IPF and its diagnosis and treatment is warranted.
Collapse
Affiliation(s)
| | | | - Marco Varrassi
- Department of Radiology, University of L'Aquila, L'Aquila, Italy
| | | | - Peter Magnusson
- Institution of Medical Sciences, Orebro University, Orebro, Sweden
- Institute of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
43
|
Hezam K, Wang C, Fu E, Zhou M, Liu Y, Wang H, Zhu L, Han Z, Han ZC, Chang Y, Li Z. Superior protective effects of PGE2 priming mesenchymal stem cells against LPS-induced acute lung injury (ALI) through macrophage immunomodulation. Stem Cell Res Ther 2023; 14:48. [PMID: 36949464 PMCID: PMC10032272 DOI: 10.1186/s13287-023-03277-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have demonstrated remarkable therapeutic promise for acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS). MSC secretomes contain various immunoregulatory mediators that modulate both innate and adaptive immune responses. Priming MSCs has been widely considered to boost their therapeutic efficacy for a variety of diseases. Prostaglandin E2 (PGE2) plays a vital role in physiological processes that mediate the regeneration of injured organs. METHODS This work utilized PGE2 to prime MSCs and investigated their therapeutic potential in ALI models. MSCs were obtained from human placental tissue. MSCs were transduced with firefly luciferase (Fluc)/eGFP fusion protein for real-time monitoring of MSC migration. Comprehensive genomic analyses explored the therapeutic effects and molecular mechanisms of PGE2-primed MSCs in LPS-induced ALI models. RESULTS Our results demonstrated that PGE2-MSCs effectively ameliorated lung injury and decreased total cell numbers, neutrophils, macrophages, and protein levels in bronchoalveolar lavage fluid (BALF). Meanwhile, treating ALI mice with PGE2-MSCs dramatically reduced histopathological changes and proinflammatory cytokines while increasing anti-inflammatory cytokines. Furthermore, our findings supported that PGE2 priming improved the therapeutic efficacy of MSCs through M2 macrophage polarization. CONCLUSION PGE2-MSC therapy significantly reduced the severity of LPS-induced ALI in mice by modulating macrophage polarization and cytokine production. This strategy boosts the therapeutic efficacy of MSCs in cell-based ALI therapy.
Collapse
Affiliation(s)
- Kamal Hezam
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China
| | - Chen Wang
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China
| | - Enze Fu
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Manqian Zhou
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300120, China
| | - Yue Liu
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Hui Wang
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300120, China
| | - Lihong Zhu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, Jiangxi, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, 300457, China
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., 100176, Beijing, China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, Jiangxi, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, 300457, China
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., 100176, Beijing, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China.
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, 300071, China.
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China.
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
44
|
Yang Z, Nicholson SE, Cancio TS, Cancio LC, Li Y. Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target. Front Immunol 2023; 14:1100461. [PMID: 37006238 PMCID: PMC10064147 DOI: 10.3389/fimmu.2023.1100461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
The hallmark of acute respiratory distress syndrome (ARDS) pathobiology is unchecked inflammation-driven diffuse alveolar damage and alveolar-capillary barrier dysfunction. Currently, therapeutic interventions for ARDS remain largely limited to pulmonary-supportive strategies, and there is an unmet demand for pharmacologic therapies targeting the underlying pathology of ARDS in patients suffering from the illness. The complement cascade (ComC) plays an integral role in the regulation of both innate and adaptive immune responses. ComC activation can prime an overzealous cytokine storm and tissue/organ damage. The ARDS and acute lung injury (ALI) have an established relationship with early maladaptive ComC activation. In this review, we have collected evidence from the current studies linking ALI/ARDS with ComC dysregulation, focusing on elucidating the new emerging roles of the extracellular (canonical) and intracellular (non-canonical or complosome), ComC (complementome) in ALI/ARDS pathobiology, and highlighting complementome as a vital nexus of the pathobiological connectome for ALI/ARDS via its crosstalking with other systems of the immunome, DAMPome, PAMPome, coagulome, metabolome, and microbiome. We have also discussed the diagnostic/therapeutic potential and future direction of ALI/ARDS care with the ultimate goal of better defining mechanistic subtypes (endotypes and theratypes) through new methodologies in order to facilitate a more precise and effective complement-targeted therapy for treating these comorbidities. This information leads to support for a therapeutic anti-inflammatory strategy by targeting the ComC, where the arsenal of clinical-stage complement-specific drugs is available, especially for patients with ALI/ARDS due to COVID-19.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Susannah E. Nicholson
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tomas S. Cancio
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Leopoldo C. Cancio
- United States (US) Army Burn Center, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Yansong Li
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- The Geneva Foundation, Immunological Damage Control Resuscitation Program, Tacoma, WA, United States
- *Correspondence: Yansong Li,
| |
Collapse
|
45
|
Deng L, Jian Z, Xu T, Li F, Deng H, Zhou Y, Lai S, Xu Z, Zhu L. Macrophage Polarization: An Important Candidate Regulator for Lung Diseases. Molecules 2023; 28:molecules28052379. [PMID: 36903624 PMCID: PMC10005642 DOI: 10.3390/molecules28052379] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Macrophages are crucial components of the immune system and play a critical role in the initial defense against pathogens. They are highly heterogeneous and plastic and can be polarized into classically activated macrophages (M1) or selectively activated macrophages (M2) in response to local microenvironments. Macrophage polarization involves the regulation of multiple signaling pathways and transcription factors. Here, we focused on the origin of macrophages, the phenotype and polarization of macrophages, as well as the signaling pathways associated with macrophage polarization. We also highlighted the role of macrophage polarization in lung diseases. We intend to enhance the understanding of the functions and immunomodulatory features of macrophages. Based on our review, we believe that targeting macrophage phenotypes is a viable and promising strategy for treating lung diseases.
Collapse
Affiliation(s)
- Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Fengqin Li
- College of Animal Science, Xichang University, Xichang 615000, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 625014, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 625014, China
- Correspondence: (Z.X.); (L.Z.); Tel.: +86-139-8160-4765 (L.Z.)
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 625014, China
- Correspondence: (Z.X.); (L.Z.); Tel.: +86-139-8160-4765 (L.Z.)
| |
Collapse
|
46
|
Guo H, Guan J, Wu X, Wei Y, Zhao J, Zhou Y, Li F, Pang HB. Peptide-guided delivery improves the therapeutic efficacy and safety of glucocorticoid drugs for treating acute lung injury. Mol Ther 2023; 31:875-889. [PMID: 36609145 PMCID: PMC10014283 DOI: 10.1016/j.ymthe.2023.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/08/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening conditions with excessive inflammation in the lung. Glucocorticoids had been widely used for ALI/ARDS, but their clinical benefit remains unclear. Here, we tackled the problem by conjugating prednisolone (PSL) with a targeting peptide termed CRV. Systemically administered CRV selectively homes to the inflamed lung of a murine ALI model, but not healthy organs or the lung of healthy mice. The expression of the CRV receptor, retinoid X receptor β, was elevated in the lung of ALI mice and patients with interstitial lung diseases, which may be the basis of CRV targeting. We then covalently conjugated PSL and CRV with a reactive oxygen species (ROS)-responsive linker in the middle. While being intact in blood, the ROS linker was cleaved intracellularly to release PSL for action. In vitro, CRV-PSL showed an anti-inflammatory effect similar to that of PSL. In vivo, CRV conjugation increased the amount of PSL in the inflamed lung but reduced its accumulation in healthy organs. Accordingly, CRV-PSL significantly reduced lung injury and immune-related side effects elsewhere. Taken together, our peptide-based strategy for targeted delivery of glucocorticoids for ALI may have great potential for clinical translation.
Collapse
Affiliation(s)
- Hong Guo
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jibin Guan
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xian Wu
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yushuang Wei
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiaqi Zhao
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yan Zhou
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Faqian Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hong-Bo Pang
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
47
|
Ryu S, Ni K, Wang C, Sivanantham A, Carnino JM, Ji HL, Jin Y. Bacterial Outer Membrane Vesicles Promote Lung Inflammatory Responses and Macrophage Activation via Multi-Signaling Pathways. Biomedicines 2023; 11:568. [PMID: 36831104 PMCID: PMC9953134 DOI: 10.3390/biomedicines11020568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Emerging evidence suggests that Gram-negative bacteria release bacterial outer membrane vesicles (OMVs) and that these play an important role in the pathogenesis of bacterial infection-mediated inflammatory responses and organ damage. Despite the fact that scattered reports have shown that OMVs released from Gram-negative bacteria may function via the TLR2/4-signaling pathway or induce pyroptosis in macrophages, our study reveals a more complex role of OMVs in the development of inflammatory lung responses and macrophage pro-inflammatory activation. We first confirmed that various types of Gram-negative bacteria release similar OMVs which prompt pro-inflammatory activation in both bone marrow-derived macrophages and lung alveolar macrophages. We further demonstrated that mice treated with OMVs via intratracheal instillation developed significant inflammatory lung responses. Using mouse inflammation and autoimmune arrays, we identified multiple altered cytokine/chemokines in both bone marrow-derived macrophages and alveolar macrophages, suggesting that OMVs have a broader spectrum of function compared to LPS. Using TLR4 knock-out cells, we found that OMVs exert more robust effects on activating macrophages compared to LPS. We next examined multiple signaling pathways, including not only cell surface antigens, but also intracellular receptors. Our results confirmed that bacterial OMVs trigger both surface protein-mediated signaling and intracellular signaling pathways, such as the S100-A8 protein-mediated pathway. In summary, our studies confirm that bacterial OMVs strongly induced macrophage pro-inflammatory activation and inflammatory lung responses via multi-signaling pathways. Bacterial OMVs should be viewed as a repertoire of pathogen-associated molecular patterns (PAMPs), exerting more robust effects than Gram-negative bacteria-derived LPS.
Collapse
Affiliation(s)
- Sunhyo Ryu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Kareemah Ni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Chenghao Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Ayyanar Sivanantham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Jonathan M. Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, 11937 US Hwy 271, BMR, Lab D-11, Tyler, TX 75708, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
48
|
Tao H, Xu Y, Zhang S. The Role of Macrophages and Alveolar Epithelial Cells in the Development of ARDS. Inflammation 2023; 46:47-55. [PMID: 36048270 PMCID: PMC9435414 DOI: 10.1007/s10753-022-01726-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
Acute lung injury (ALI) usually causes acute respiratory distress syndrome (ARDS), or even death in critical ill patients. Immune cell infiltration in inflamed lungs is an important hallmark of ARDS. Macrophages are a type of immune cell that participate in the entire pathogenic trajectory of ARDS and most prominently via their interactions with lung alveolar epithelial cells (AECs). In the early stage of ARDS, classically activated macrophages secrete pro-inflammatory cytokines to clearance of the pathogens which may damage alveolar AECs cell structure and result in cell death. Paradoxically, in late stage of ARDS, anti-inflammatory cytokines secreted by alternatively activated macrophages dampen the inflammation response and promote epithelial regeneration and alveolar structure remodeling. In this review, we discuss the important role of macrophages and AECs in the progression of ARDS.
Collapse
Affiliation(s)
- Huan Tao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China
| | - Younian Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China.
| | - Shihai Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China.
| |
Collapse
|
49
|
Xu H, Pan G, Wang J. Repairing Mechanisms for Distal Airway Injuries and Related Targeted Therapeutics for Chronic Lung Diseases. Cell Transplant 2023; 32:9636897231196489. [PMID: 37698245 PMCID: PMC10498699 DOI: 10.1177/09636897231196489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), involve progressive and irreversible destruction and pathogenic remodeling of airways and have become the leading health care burden worldwide. Pulmonary tissue has extensive capacities to launch injury-responsive repairing programs (IRRPs) to replace the damaged or dead cells upon acute lung injuries. However, the IRRPs are frequently compromised in chronic lung diseases. In this review, we aim to provide an overview of somatic stem cell subpopulations within distal airway epithelium and the underlying mechanisms mediating their self-renewal and trans-differentiation under both physiological and pathological circumstances. We also compared the differences between humans and mice on distal airway structure and stem cell composition. At last, we reviewed the current status and future directions for the development of targeted therapeutics on defective distal airway regeneration and repairment in chronic lung diseases.
Collapse
Affiliation(s)
- Huahua Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Guihong Pan
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jun Wang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Jiang L, Guo P, Ju J, Zhu X, Wu S, Dai J. Inhalation of L-arginine-modified liposomes targeting M1 macrophages to enhance curcumin therapeutic efficacy in ALI. Eur J Pharm Biopharm 2023; 182:21-31. [PMID: 36442537 DOI: 10.1016/j.ejpb.2022.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), characterized by uncontrolled lung inflammation, is one of the most devastating diseases with high morbidity and mortality. As the first line of defense system, macrophages play a crucial role in the pathogenesis of ALI/ARDS. Therefore, it has great potential to selectively target M1 macrophages to improve the therapeutic effect of anti-inflammatory drugs. l-arginine plays a key role in regulating the immune function of macrophages. The receptors mediating l-arginine uptake are highly expressed on the surface of M1-type macrophages. In this study, we designed an l-arginine-modified liposome for aerosol inhalation to target M1 macrophages in the lung, and the anti-inflammatory drug curcumin was encapsulated in liposomes as model drug. Compared with unmodified curcumin liposome (Cur-Lip), l-arginine functionalized Cur-Lip (Arg-Cur-Lip) exhibited higher uptake by M1 macrophages in vitro and higher accumulation in inflamed lungs in vivo. Furthermore, Arg-Cur-Lip showed more potent therapeutic effects in LPS-induced RAW 264.7 cells and the rat model of ALI. Overall, these findings indicate that l-arginine-modified liposomes have great potential to enhance curcumin treatment of ALI/ARDS by targeting M1 macrophages, which may provide an option for the treatment of acute lung inflammatory diseases such as coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome and middle east respiratory syndrome.
Collapse
Affiliation(s)
- Linxia Jiang
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Pengchuan Guo
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Jiarui Ju
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Xiaoyan Zhu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Shiyue Wu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Jundong Dai
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China.
| |
Collapse
|