1
|
Biber J, Gandor C, Becirovic E, Michalakis S. Retina-directed gene therapy: Achievements and remaining challenges. Pharmacol Ther 2025:108862. [PMID: 40268248 DOI: 10.1016/j.pharmthera.2025.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/07/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Gene therapy is an innovative medical approach that offers new treatment options for congenital and acquired diseases by transferring, correcting, inactivating or regulating genes to supplement, replace or modify a gene function. The approval of voretigene neparvovec (Luxturna), a gene therapy for RPE65-associated retinopathy, has marked a milestone for the field of retinal gene therapy, but has also helped to accelerate the development of gene therapies for genetic diseases affecting other organs. Voretigene neparvovec is a vector based on adeno-associated virus (AAV) that delivers a functional copy of RPE65 to supplement the missing function of this gene. The AAV-based gene delivery has proven to be versatile and safe for the transfer of genetic material to retinal cells. However, challenges remain in treating additional inherited as well as acquired retinopathies with this technology. Despite the high level of activity in this field, no other AAV gene therapy for retinal diseases has been approved since voretigene neparvovec. Ongoing research focuses on overcoming the current restraints through innovative strategies like AAV capsid engineering, dual-AAV vector systems, or CRISPR/Cas-mediated genome editing. Additionally, AAV gene therapy is being explored for the treatment of complex acquired diseases like age-related macular degeneration (AMD) and diabetic retinopathy (DR) by targeting molecules involved in the pathobiology of the degenerative processes. This review outlines the current state of retinal gene therapy, highlighting ongoing challenges and future directions.
Collapse
Affiliation(s)
- Josef Biber
- Department of Ophthalmology, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Catharina Gandor
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren 8952, Switzerland
| | - Elvir Becirovic
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren 8952, Switzerland
| | - Stylianos Michalakis
- Department of Ophthalmology, LMU University Hospital, LMU Munich, 80336 Munich, Germany.
| |
Collapse
|
2
|
Liu Z, Zhang H, Jia H, Wang H, Huang Z, Tang Y, Wang Z, Hu J, Zhao X, Li T, Sun X. The clinical safety landscape for ocular AAV gene therapies: A systematic review and meta-analysis. iScience 2025; 28:112265. [PMID: 40248125 PMCID: PMC12005934 DOI: 10.1016/j.isci.2025.112265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Adeno-associated virus (AAV) gene therapy is a promising approach for treating ocular monogenic or acquired diseases, though immunogenicity and safety remain critical considerations. We conducted a systematic review of 120 trials and 32 publications to assess immune responses across different delivery routes. Intravitreal administration was associated with higher rates of anterior uveitis (43.06% vs. 10.22%) and intermediate/posterior uveitis (40.36% vs. 6.18%) compared to subretinal delivery. Engineered AAV capsids, used exclusively in intravitreal studies, showed no significant difference in either type of uveitis incidence compared to natural serotypes. Prophylactic immunosuppression (PI) did not affect ocular or systemic immune responses in subretinal delivery, but significantly reduced systemic immune responses in intravitreal administration. These findings underscore the potential of PI to mitigate systemic immune responses in intravitreal AAV therapy. This review should help guide the choice of routes of administration and immunosuppression strategies, and highlights current trends in ocular AAV gene therapy.
Collapse
Affiliation(s)
- Zishi Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Haoliang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Huixun Jia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Gene Therapy Center, Shanghai, China
| | - Hong Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Zhonghe Huang
- Qingdao University School of Mathematics and Statistics, Qingdao, China
| | - Yuhao Tang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Zilin Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Jing Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Xiaohuan Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Tong Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Gene Therapy Center, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Gene Therapy Center, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| |
Collapse
|
3
|
Lin Y, Zhang X, Sun D, Wang Q, Dou S, Zhou Q. Decoding the corneal immune microenvironment in healthy and diabetic mice during corneal wound healing. Ocul Surf 2025; 37:68-79. [PMID: 40023495 DOI: 10.1016/j.jtos.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Diabetic keratopathy (DK) is an underdiagnosed ocular complication of diabetes mellitus. The changes of ocular immune microenvironment contribute to the pathogenesis of DK, while precise mechanisms remain inadequately understood. Here, we employed single-cell RNA sequencing (scRNA-seq) to elucidate the transcriptional alterations of immune cells from diabetic and healthy control mouse corneas during homeostasis and wound healing. Unbiased clustering analysis unveiled 3 major cell subsets and 11 subdivided cell clusters, including T cells, monocyte lineages, and neutrophil subpopulations. The further sub-clustering analysis demonstrated that T cells exhibited cytotoxicity characteristics in both homeostasis and wound healing of diabetic cornea. Moreover, dendritic cells preferred the migratory and maturation phenotype and may recruit and maintain cytotoxic T cells. Macrophages in diabetic cornea preferred the pro-inflammatory M1 phenotype. Under injury conditions, diabetic corneal neutrophils exhibited a more mature and functional possession of neutrophil extracellular traps (NETs). Furthermore, cell-cell communication revealed that the immune cells exhibited hyperactivation and pro-inflammatory responses, while the monocyte lineages exhibited the activating effect on T cells in diabetic cornea. This study represents the inaugural effort to establish a comprehensive scRNA-Seq transcriptomic profile of corneal immune cells during wound healing in healthy and diabetic mice, which offers a valuable reference for subsequent investigations into the pathological roles of immune cells in DK.
Collapse
Affiliation(s)
- Yujing Lin
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Xiaowen Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Di Sun
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
4
|
Zhang Q, He J, Zhu D, Chen Y, Fu M, Lu S, Qiu Y, Zhou G, Yang G, Jiang Z. Genetically modified organoids for tissue engineering and regenerative medicine. Adv Colloid Interface Sci 2025; 335:103337. [PMID: 39547125 DOI: 10.1016/j.cis.2024.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
To date, genetically modified organoids are emerging as a promising 3D modeling tool aimed at solving genetically relevant clinical and biomedical problems for regenerative medicine and tissue engineering. As an optimal vehicle for gene delivery, genetically modified organoids can enhance or reduce the expression of target genes through virus and non-virus-based gene transfection methods to achieve tissue regeneration. Animal experiments and preclinical studies have demonstrated the beneficial role of genetically modified organoids in various aspects of organ regeneration, including thymus, lacrimal glands, brain, lung, kidney, photoreceptors, etc. Furthermore, the technology offers a potential treatment option for various diseases, such as Fabry disease, non-alcoholic steatohepatitis, and Lynch syndrome. Nevertheless, the uncertain safety of genetic modification, the risk of organoid application, and bionics of current genetically modified organoids are still challenging. This review summarizes the researches on genetically modified organoids in recent years, and describes the transfection methods and functions of genetically modified organoids, then introduced their applications at length. Also, the limitations and future development directions of genetically modified organoids are included.
Collapse
Affiliation(s)
- Qinmeng Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yunxuan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Shifan Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yuesheng Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guodong Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
5
|
Banou L, Sarrafpour S, Teng CC, Liu J. Ocular Gene Therapy: An Overview of Viral Vectors, Immune Responses, and Future Directions. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:491-503. [PMID: 39703610 PMCID: PMC11650918 DOI: 10.59249/hwid7537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Ocular gene therapy has rapidly advanced from proof-of-concept studies to clinical trials by exploiting the unique advantages of the eye, including its easy accessibility, relative immune privilege, and the ability to use the contralateral eye as a control. An important step forward was achieved with the Food and Drug Administration (FDA) approval of voretigene neparvovec (Luxturna) for the treatment of biallelic RPE65-mutation-associated retinal dystrophies in 2017. Gene therapy is a promising field aimed at treating various inherited and acquired eye diseases. Viral vectors such as adeno-associated virus (AAV) are mainly used to efficiently deliver genes. Despite the immune-privileged status of the eye, viral vector-based therapies can induce immune responses, potentially leading to gene therapy-associated uveitis. Future directions include developing strategies to reduce immune responses while maintaining therapeutic efficacy, optimizing vector selection, and improving delivery techniques. Continued advances in the field of viral vectors, particularly AAV, are expanding the potential applications of gene therapy to treat a variety of ocular diseases. To fully realize the potential of ocular gene therapy, more research and clinical trials are needed to improve these methods, ensure safe and efficient treatments, and ultimately overcome existing obstacles.
Collapse
Affiliation(s)
- Lamprini Banou
- Department of Ophthalmology, University of Thessaly,
Larissa, Greece
| | - Soshian Sarrafpour
- Department of Ophthalmology and Visual Science, Yale
School of Medicine, New Haven, CT, USA
| | - Christopher C. Teng
- Department of Ophthalmology and Visual Science, Yale
School of Medicine, New Haven, CT, USA
| | - Ji Liu
- Department of Ophthalmology and Visual Science, Yale
School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Kobal N, Marzidovšek M, Schollmayer P, Maličev E, Hawlina M, Marzidovšek ZL. Molecular and Cellular Mechanisms of the Therapeutic Effect of Mesenchymal Stem Cells and Extracellular Vesicles in Corneal Regeneration. Int J Mol Sci 2024; 25:11121. [PMID: 39456906 PMCID: PMC11507649 DOI: 10.3390/ijms252011121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The cornea is a vital component of the visual system, and its integrity is crucial for optimal vision. Damage to the cornea resulting from trauma, infection, or disease can lead to blindness. Corneal regeneration using mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) offers a promising alternative to corneal transplantation. MSCs are multipotent stromal cells that can differentiate into various cell types, including corneal cells. They can also secrete a variety of anti-inflammatory cytokines and several growth factors, promoting wound healing and tissue reconstruction. This review summarizes the current understanding of the molecular and cellular mechanisms by which MSCs and MSC-EVs contribute to corneal regeneration. It discusses the potential of MSCs and MSC-EV for treating various corneal diseases, including corneal epithelial defects, dry eye disease, and keratoconus. The review also highlights finalized human clinical trials investigating the safety and efficacy of MSC-based therapy in corneal regeneration. The therapeutic potential of MSCs and MSC-EVs for corneal regeneration is promising; however, further research is needed to optimize their clinical application.
Collapse
Affiliation(s)
- Nina Kobal
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (N.K.)
| | - Miha Marzidovšek
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (N.K.)
| | - Petra Schollmayer
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (N.K.)
| | - Elvira Maličev
- Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (N.K.)
- Medical Faculty, Department of Ophthalmology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Zala Lužnik Marzidovšek
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (N.K.)
- Medical Faculty, Department of Ophthalmology, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Olejkowska N, Gorczyca I, Rękas M, Garley M. Immunopathology of Corneal Allograft Rejection and Donor-Specific Antibodies (DSAs) as Immunological Predictors of Corneal Transplant Failure. Cells 2024; 13:1532. [PMID: 39329716 PMCID: PMC11430735 DOI: 10.3390/cells13181532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Despite tremendous developments in the field of laboratory testing in transplantation, the rules of eligibility for corneal transplantation still do not include typing of human leukocyte antigens (HLAs) in the donor and recipient or detection of donor-specific antibodies (DSAs) in the patient. The standard use of diagnostic algorithms is due to the cornea belonging to immunologically privileged tissues, which usually determines the success of transplantation of this tissue. A medical problem is posed by patients at high risk of transplant rejection, in whom the immune privilege of the eye is abolished and the risk of transplant failure increases. Critical to the success of transplantation in patients at high risk of corneal rejection may be the selection of an HLA-matched donor and recipient, and the detection of existing and/or de novo emerging DSAs in the patient. Incorporating the assessment of these parameters into routine diagnostics may contribute to establishing immune risk stratification for transplant rejection and effective personalized therapy for patients.
Collapse
Affiliation(s)
| | - Iwona Gorczyca
- Department of Ophthalmology, Military Institute of Medicine-National Research Institute, Szaserów 128, 04-141 Warsaw, Poland
| | - Marek Rękas
- Department of Ophthalmology, Military Institute of Medicine-National Research Institute, Szaserów 128, 04-141 Warsaw, Poland
| | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
8
|
Chi H, Wei C, Ma L, Yu Y, Zhang T, Shi W. The ocular immunological alterations in the process of high-risk corneal transplantation rejection. Exp Eye Res 2024; 245:109971. [PMID: 38871165 DOI: 10.1016/j.exer.2024.109971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE This study aims to reveal the immunopathogenesis of the high-risk corneal transplantation using a comparative proteomic approach. METHODS The immunological properties of ocular tissues (including corneal grafts, aqueous humour, and iris-ciliary body) were analysed using a high-risk rabbit corneal transplantation model employing a comparative proteomic approach. RESULTS The corneal grafts revealed a dramatic increase in the immune response both at the early (postoperative day 7) and rejection stages, along with the appearance of transplantation stress-induced cellular senescence in the early stage. The aqueous humour (AH) displayed persistent pathological alterations, indicated by the significant enrichment of complement and coagulation cascades pathway in the early stage and interleukin (IL)-17 signalling pathway in the rejection stage. More surprisingly, the pronounced elevation of immune response was also observed in the iris-ciliary body (I-CB) tissues at the early and rejection stages. The enriched immune-related pathways were associated with antigen processing and presentation, complement and coagulation cascades, and IL-17 signalling pathway. Furthermore, proteomic analysis revealed that the implantation of Cyclosporine A drug delivery system (CsA-DDS) into the anterior chamber obviously mitigated corneal transplantation rejection by inhibiting immunoreaction both in the corneal grafts and I-CB tissues. CONCLUSION The results highlighted the involvement of intraocular immunity both in the grafts and I-CB tissues during corneal transplantation rejection, further suggesting the anterior chamber as an optimal drug-delivery site for its treatment.
Collapse
Affiliation(s)
- Hao Chi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Yaoyao Yu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; Qingdao Eye Hospital of Shandong First Medical University, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Ting Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Jinan, 250021, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250117, China.
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Jinan, 250021, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250117, China.
| |
Collapse
|
9
|
Kobayashi R, Hashida N. Overview of Cytomegalovirus Ocular Diseases: Retinitis, Corneal Endotheliitis, and Iridocyclitis. Viruses 2024; 16:1110. [PMID: 39066272 PMCID: PMC11281654 DOI: 10.3390/v16071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Cytomegalovirus (CMV) infection is a significant clinical concern in newborns, immunocompromised patients with acquired immunodeficiency syndrome (AIDS), and patients undergoing immunosuppressive therapy or chemotherapy. CMV infection affects many organs, such as the lungs, digestive organs, the central nerve system, and eyes. In addition, CMV infection sometimes occurs in immunocompetent individuals. CMV ocular diseases includes retinitis, corneal endotheliitis, and iridocyclitis. CMV retinitis often develops in infected newborns and immunocompromised patients. CMV corneal endotheliitis and iridocyclitis sometimes develop in immunocompetent individuals. Systemic infections and CMV ocular diseases often require systemic treatment in addition to topical treatment.
Collapse
Affiliation(s)
| | - Noriyasu Hashida
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Yang SN, Shi Y, Berggren PO. The anterior chamber of the eye technology and its anatomical, optical, and immunological bases. Physiol Rev 2024; 104:881-929. [PMID: 38206586 PMCID: PMC11381035 DOI: 10.1152/physrev.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
The anterior chamber of the eye (ACE) is distinct in its anatomy, optics, and immunology. This guarantees that the eye perceives visual information in the context of physiology even when encountering adverse incidents like inflammation. In addition, this endows the ACE with the special nursery bed iris enriched in vasculatures and nerves. The ACE constitutes a confined space enclosing an oxygen/nutrient-rich, immune-privileged, and less stressful milieu as well as an optically transparent medium. Therefore, aside from visual perception, the ACE unexpectedly serves as an excellent transplantation site for different body parts and a unique platform for noninvasive, longitudinal, and intravital microimaging of different grafts. On the basis of these merits, the ACE technology has evolved from the prototypical through the conventional to the advanced version. Studies using this technology as a versatile biomedical research platform have led to a diverse range of basic knowledge and in-depth understanding of a variety of cells, tissues, and organs as well as artificial biomaterials, pharmaceuticals, and abiotic substances. Remarkably, the technology turns in vivo dynamic imaging of the morphological characteristics, organotypic features, developmental fates, and specific functions of intracameral grafts into reality under physiological and pathological conditions. Here we review the anatomical, optical, and immunological bases as well as technical details of the ACE technology. Moreover, we discuss major achievements obtained and potential prospective avenues for this technology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Yue Shi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Suárez-Herrera N, Li CHZ, Leijsten N, Karjosukarso DW, Corradi Z, Bukkems F, Duijkers L, Cremers FPM, Hoyng CB, Garanto A, Collin RWJ. Preclinical Development of Antisense Oligonucleotides to Rescue Aberrant Splicing Caused by an Ultrarare ABCA4 Variant in a Child with Early-Onset Stargardt Disease. Cells 2024; 13:601. [PMID: 38607040 PMCID: PMC11011354 DOI: 10.3390/cells13070601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Precision medicine is rapidly gaining recognition in the field of (ultra)rare conditions, where only a few individuals in the world are affected. Clinical trial design for a small number of patients is extremely challenging, and for this reason, the development of N-of-1 strategies is explored to accelerate customized therapy design for rare cases. A strong candidate for this approach is Stargardt disease (STGD1), an autosomal recessive macular degeneration characterized by high genetic and phenotypic heterogeneity. STGD1 is caused by pathogenic variants in ABCA4, and amongst them, several deep-intronic variants alter the pre-mRNA splicing process, generally resulting in the insertion of pseudoexons (PEs) into the final transcript. In this study, we describe a 10-year-old girl harboring the unique deep-intronic ABCA4 variant c.6817-713A>G. Clinically, she presents with typical early-onset STGD1 with a high disease symmetry between her two eyes. Molecularly, we designed antisense oligonucleotides (AONs) to block the produced PE insertion. Splicing rescue was assessed in three different in vitro models: HEK293T cells, fibroblasts, and photoreceptor precursor cells, the last two being derived from the patient. Overall, our research is intended to serve as the basis for a personalized N-of-1 AON-based treatment to stop early vision loss in this patient.
Collapse
Affiliation(s)
- Nuria Suárez-Herrera
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Catherina H. Z. Li
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (C.H.Z.L.); (C.B.H.)
| | - Nico Leijsten
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Dyah W. Karjosukarso
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Femke Bukkems
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Lonneke Duijkers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (C.H.Z.L.); (C.B.H.)
- Dutch Center for RNA Therapeutics, 2311 EZ Leiden, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
- Dutch Center for RNA Therapeutics, 2311 EZ Leiden, The Netherlands
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rob W. J. Collin
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
- Dutch Center for RNA Therapeutics, 2311 EZ Leiden, The Netherlands
| |
Collapse
|
12
|
Liu B, Yao X, Shang Y, Dai J. The multiple roles of autophagy in uveal melanoma and the microenvironment. J Cancer Res Clin Oncol 2024; 150:121. [PMID: 38467935 PMCID: PMC10927889 DOI: 10.1007/s00432-023-05576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 03/13/2024]
Abstract
PURPOSE Uveal melanoma (UM) is the most common primary malignant intraocular tumor in adults, and effective clinical treatment strategies are still lacking. Autophagy is a lysosome-dependent degradation system that can encapsulate abnormal proteins, damaged organelles. However, dysfunctional autophagy has multiple types and plays a complex role in tumorigenicity depending on many factors, such as tumor stage, microenvironment, signaling pathway activation, and application of autophagic drugs. METHODS A systematic review of the literature was conducted to analyze the role of autophagy in UM, as well as describing the development of autophagic drugs and the link between autophagy and the tumor microenvironment. RESULTS In this review, we summarize current research advances regarding the types of autophagy, the mechanisms of autophagy, the application of autophagy inhibitors or agonists, autophagy and the tumor microenvironment. Finally, we also discuss the relationship between autophagy and UM. CONCLUSION Understanding the molecular mechanisms of how autophagy differentially affects tumor progression may help to design better therapeutic regimens to prevent and treat UM.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xueting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shang
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Suárez-Herrera N, Riswick IB, Vázquez-Domínguez I, Duijkers L, Karjosukarso DW, Piccolo D, Bauwens M, De Baere E, Cheetham ME, Garanto A, Collin RWJ. Proof-of-concept for multiple AON delivery by a single U7snRNA vector to restore splicing defects in ABCA4. Mol Ther 2024; 32:837-851. [PMID: 38243599 PMCID: PMC10928313 DOI: 10.1016/j.ymthe.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
The high allelic heterogeneity in Stargardt disease (STGD1) complicates the design of intervention strategies. A significant proportion of pathogenic intronic ABCA4 variants alters the pre-mRNA splicing process. Antisense oligonucleotides (AONs) are an attractive yet mutation-specific therapeutic strategy to restore these splicing defects. In this study, we experimentally assessed the potential of a splicing modulation therapy to target multiple intronic ABCA4 variants. AONs were inserted into U7snRNA gene cassettes and tested in midigene-based splice assays. Five potent antisense sequences were selected to generate a multiple U7snRNA cassette construct, and this combination vector showed substantial rescue of all of the splicing defects. Therefore, the combination cassette was used for viral synthesis and assessment in patient-derived photoreceptor precursor cells (PPCs). Simultaneous delivery of several modified U7snRNAs through a single AAV, however, did not show substantial splicing correction, probably due to suboptimal transduction efficiency in PPCs and/or a heterogeneous viral population containing incomplete AAV genomes. Overall, these data demonstrate the potential of the U7snRNA system to rescue multiple splicing defects, but also suggest that AAV-associated challenges are still a limiting step, underscoring the need for further optimization before implementing this strategy as a potential treatment for STGD1.
Collapse
Affiliation(s)
- Nuria Suárez-Herrera
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands
| | - Iris B Riswick
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands
| | - Irene Vázquez-Domínguez
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands
| | - Lonneke Duijkers
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands
| | - Dyah W Karjosukarso
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands
| | | | - Miriam Bauwens
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Alejandro Garanto
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands; Radboud University Medical Center, Amalia Children's Hospital, Department of Pediatrics, Nijmegen 6252GA, the Netherlands
| | - Rob W J Collin
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Choi H, Lee HE, Lee SV, Joo JS, Baek H, Kim S, Park M, Lee SW, Yang SW, Hwang HS, Kim JY, Kang YS. Sialylated IVIg promotes clinical improvements in a rabbit dry eye model by regulating inflammatory cytokines. Exp Eye Res 2024; 240:109782. [PMID: 38199260 DOI: 10.1016/j.exer.2024.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Dry eye disease (DED) is caused by a loss of homeostasis of the tear film, which results in visual disturbance, ocular surface inflammation and damage, and neurosensory abnormalities. Although it is prevalent in 5-50% of the global population, there are limited clinical options for its treatment. This study explored the potential use of human intravenous immunoglobulin (IVIg) and its enriched fractions of sialylation, sialylated IVIg (sIVIg), as a treatment for DED. Fifteen female New Zealand white rabbits were topically instilled with 0.2% benzalkonium chloride (BAC) twice daily for five consecutive days to induce experimental dry eye. Saline, 0.4% IVIg, or 0.04% sIVIg eye drops were instilled twice daily for 20 consecutive days. Clinical evaluations, such as non-invasive tear break-up time (NIBUT) and corneal fluorescein staining (CFS), were conducted. mRNA levels of mucin 4, mucin 16, TNF-α, IL-1β, MMP9, IL-10, TGF-β, and CD209 in rabbit conjunctival tissues were examined using reverse transcription polymerase chain reaction (RT-PCR) or quantitative RT-PCR (qRT-PCR). The relationships between CD209 family members in rabbits and various mammalian species were analyzed using a phylogenetic tree. IVIg or sIVIg treatment resulted in clinical improvements in the rabbit DED model. The inflammatory cytokines, TNF-α and IL-1β, were increased and mucin 4 and mucin 16, cell surface-associated mucins, were decreased in BAC-induced dry eye. Following IVIg or sIVIg treatment, inflammatory cytokines decreased, whereas the anti-inflammatory cytokine, IL-10, increased substantially. Moreover, a 10-fold lower sIVIg treatment dose resulted in prolonged IL-10 production, representing a significantly improved DED compared to IVIg. Furthermore, the expression of rabbit CD209 mRNA in the rabbit conjunctiva and its close relationship with primate homologs suggest that it may interact with IVIg or sIVIg to promote IL-10 expression, as previously described in humans. At a lower dosage, sIVIg showed a more efficient improvement in DED, making it a promising new candidate medication for DED.
Collapse
Affiliation(s)
- Hyeongjwa Choi
- Konkuk-KIST Biomedical Science & Technology, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ha-Eun Lee
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sung-Vin Lee
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jin-Soo Joo
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hayeon Baek
- Konkuk-KIST Biomedical Science & Technology, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seulki Kim
- Department of Obstetrics and Gynecology, Sang-Gye Paik Hospital, Inje University School of Medicine, 1342 Dongil-ro, Nowon-gu, Seoul, 01757, Republic of Korea
| | - Min Park
- Konkuk-KIST Biomedical Science & Technology, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sang-Won Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Veterinary Science Research Institute, KU Research Center for Zoonosis, KU Center for Animal Blood Medical Science Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seung-Woo Yang
- Department of Obstetrics and Gynecology, Sang-Gye Paik Hospital, Inje University School of Medicine, 1342 Dongil-ro, Nowon-gu, Seoul, 01757, Republic of Korea
| | - Han-Sung Hwang
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Joon-Young Kim
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - Young-Sun Kang
- Konkuk-KIST Biomedical Science & Technology, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Veterinary Science Research Institute, KU Research Center for Zoonosis, KU Center for Animal Blood Medical Science Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
15
|
Kalagara R, Asfaw ZK, Carr M, Quinones A, Downes MH, Vasan V, Li T, McCarthy L, Hrabarchuk EI, Genadry L, Schupper AJ, DeMaria S, Gal JS, Choudhri TF. Clinical Considerations and Outcomes for Spine Surgery Patients with a History of Transplant: A Systematic Scoping Review. World Neurosurg 2024; 183:94-105. [PMID: 38123131 DOI: 10.1016/j.wneu.2023.12.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE The objective of this study was to investigate the perioperative management and outcomes of patients with a prior history of successful transplantation undergoing spine surgery. METHODS We searched Medline, Embase, and Cochrane Central Register of Controlled Trials for matching reports in July 2021. We included case reports, cohort studies, and retrospective analyses, including terms for various transplant types and an exhaustive list of key words for various forms of spine surgery. RESULTS We included 45 studies consisting of 34 case reports (published 1982-2021), 3 cohort analyses (published 2005-2006), and 8 retrospective analyses (published 2006-2020). The total number of patients included in the case reports, cohort studies, and retrospective analysis was 35, 48, and 9695, respectively. The mean 1-year mortality rate from retrospective analyses was 4.6% ± 1.93%, while the prevalence of perioperative complications was 24%. Cohort studies demonstrated an 8.5% ± 12.03% 30-day readmission rate. The most common procedure performed was laminectomy (38.9%) among the case reports. Mortality after spine surgery was noted for 4 of 35 case report patients (11.4%). CONCLUSIONS This is the first systematic scoping review examining the population of transplant patients with subsequent unrelated spine surgery. There is significant heterogeneity in the outcomes of post-transplant spine surgery patients. Given the inherent complexity of managing this group and elevated mortality and complications compared to the general spine surgery population, further investigation into their clinical care is warranted.
Collapse
Affiliation(s)
- Roshini Kalagara
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Zerubabbel K Asfaw
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matthew Carr
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Addison Quinones
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Margaret H Downes
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vikram Vasan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Troy Li
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lily McCarthy
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eugene I Hrabarchuk
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Genadry
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexander J Schupper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Samuel DeMaria
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jonathan S Gal
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tanvir F Choudhri
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
16
|
Lee IK, Xie R, Luz-Madrigal A, Min S, Zhu J, Jin J, Edwards KL, Phillips MJ, Ludwig AL, Gamm DM, Gong S, Ma Z. Micromolded honeycomb scaffold design to support the generation of a bilayered RPE and photoreceptor cell construct. Bioact Mater 2023; 30:142-153. [PMID: 37575875 PMCID: PMC10415596 DOI: 10.1016/j.bioactmat.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023] Open
Abstract
Age-related macular degeneration (AMD) causes blindness due to loss of retinal pigment epithelium (RPE) and photoreceptors (PRs), which comprise the two outermost layers of the retina. Given the small size of the macula and the importance of direct contact between RPE and PRs, the use of scaffolds for targeted reconstruction of the outer retina in later stage AMD and other macular dystrophies is particularly attractive. We developed microfabricated, honeycomb-patterned, biodegradable poly(glycerol sebacate) (PGS) scaffolds to deliver organized, adjacent layers of RPE and PRs to the subretinal space. Furthermore, an optimized process was developed to photocure PGS, shortening scaffold production time from days to minutes. The resulting scaffolds robustly supported the seeding of human pluripotent stem cell-derived RPE and PRs, either separately or as a dual cell-layered construct. These advanced, economical, and versatile scaffolds can accelerate retinal cell transplantation efforts and benefit patients with AMD and other retinal degenerative diseases.
Collapse
Affiliation(s)
- In-Kyu Lee
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Agustin Luz-Madrigal
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biomedical Sciences, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Seunghwan Min
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jingcheng Zhu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jiahe Jin
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - M. Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Allison L. Ludwig
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David M. Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biomedical Sciences, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Shaoqin Gong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhenqiang Ma
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
17
|
Sun J, Wang T, Bian J, Shi W, Ruan Q. Immune tolerance induced in the anterior chamber ameliorates corneal transplant rejection. Clin Immunol 2023; 257:109797. [PMID: 37776968 DOI: 10.1016/j.clim.2023.109797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
The relevance of regulatory T cells (Tregs) in induction of tolerance against corneal allografts has been well established. However, whether Tregs can be induced in the anterior chamber and suppress local alloimmune response after corneal transplantation is largely unknown. In the current study we report that not only can alloantigen specific Tregs be generated in the anterior chamber during corneal transplantation, they also play important roles in suppressing allograft rejection. Allograft rejected mice exhibit reduced Treg induction in the anterior chamber and the ability of aqueous humor and corneal endothelial cells from allograft rejected mice to induce Tregs is compromised. Further analysis revealed that the expression of immune-tolerance-related molecules is significantly decreased. Finally, we demonstrate that increasing Treg cells specifically in the anterior chamber can effectively suppress allograft rejection and exhibits better efficacy in promoting corneal allograft survival than systemic administration of Treg cells. Our current study may provide new ideas for the prevention and treatment of corneal transplant rejection.
Collapse
Affiliation(s)
- Jijun Sun
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan 250021, China
| | - Ting Wang
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan 250021, China
| | - Jiang Bian
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan 250021, China; Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao 266071, China.
| | - Qingguo Ruan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao 266071, China.
| |
Collapse
|
18
|
Shetty R, Mahendran K, Joshi PD, Jeyabalan N, Jayadev C, Das D. Corneal stromal regeneration-keratoconus cell therapy: a review. Graefes Arch Clin Exp Ophthalmol 2023; 261:3051-3065. [PMID: 37074409 DOI: 10.1007/s00417-023-06064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Keratoconus is a corneal ectatic disease caused by stromal thinning leading to astigmatism and progressive loss of vision. Loss of the keratocytes and excessive degradation of collagen fibres by matrix metalloproteinases are the molecular signatures of the disease. Despite several limitations, corneal collagen cross-linking and keratoplasty are the most widely used treatment options for keratoconus. In the pursuit of alternative treatment modalities, clinician scientists have explored cell therapy paradigms for treating the condition. METHODS Articles pertaining to keratoconus cell therapy with relevant key words were used to search in PubMed, Researchgate, and Google Scholar. The articles were selected based on their relevance, reliability, publication year, published journal, and accessibility. RESULTS Various cellular abnormalities have been reported in keratoconus. Diverse cell types such as mesenchymal stromal cells, dental pulp cells, bone marrow stem cells, haematopoietic stem cells, adipose-derived stem cells apart from embryonic and induced pluripotent stem cells can be used for keratoconus cell therapy. The results obtained show that there is a potential for these cells from various sources as a viable treatment option. CONCLUSION There is a need for consensus with respect to the source of cells, mode of delivery, stage of disease, and duration of follow-up, to establish a standard operating protocol. This would eventually widen the cell therapy options for corneal ectatic diseases beyond keratoconus.
Collapse
Affiliation(s)
- Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, India
| | - Krithikaa Mahendran
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, India
| | - Parth D Joshi
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, India
| | | | - Chaitra Jayadev
- Department of Vitreo-Retina, Narayana Nethralaya Eye Hospital, Bangalore, India
| | - Debashish Das
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, India.
- Stem Cell Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Narayana Health City, 258/A Bommasandra Industrial Area, Bangalore, 560099, Karnataka, India.
| |
Collapse
|
19
|
Li Y, Ke W, Liu X, Zhang Q, Yu N, Wang K, Chen M. Comparison Between Two Types of Viral-Induced Anterior Uveitis In Vitro and In Vivo: A Stronger Response in Herpes Simplex Virus Type 1 Than in Murine Cytomegalovirus. Invest Ophthalmol Vis Sci 2023; 64:20. [PMID: 37971734 PMCID: PMC10664737 DOI: 10.1167/iovs.64.14.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
Purpose To observe the similarities and differences between herpes simplex virus type 1 (HSV-1) and murine cytomegalovirus (MCMV)-induced viral anterior uveitis (VAU), both in vitro and in vivo. Methods Primary rat trabecular meshwork cells (RTMCs) were infected by HSV-1 or MCMV to clarify the pattern of virus replication and the effect on cells. In vivo, intracameral injection of HSV-1 or MCMV was performed to establish the VAU rat models. The clinical manifestation, intraocular pressure (IOP), histological characteristics, ultrastructural changes, and the expression of inflammatory cytokines in the anterior segment were observed and compared between these two types of VAU models. Results Both viruses could infect the RTMCs but HSV-1 exhibited an earlier and greater cytopathic effect in vitro. In vivo, both VAU rats showed typical acute VAU signs, and the IOP elevation seemed to be correlated with the inflammatory progression. Histopathological findings and ultrastructural changes revealed tissue damage and cell infiltration in the anterior chamber angle. In both models, similar proinflammatory cytokines were upregulated. HSV-1 and MCMV viral particles were identified under transmission electron microscopy. Conclusions HSV-1 and MCMV infection share certain similarities but have significant differences both in vitro and in vivo. HSV-1 usually has a stronger anterior segment inflammation with a longer duration compared with MCMV in VAU models. Our results provided a valuable animal model for investigating pathogenesis and exploring therapeutic strategies for clinical VAU.
Collapse
Affiliation(s)
- Yuhang Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Weishaer Ke
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Xin Liu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Qi Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Naiji Yu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Kaijun Wang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Min Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Xu C, Guo R, Hou C, Ma M, Dong X, Ouyang C, Wu J, Huang T. Resveratrol regulates macrophage recruitment and M1 macrophage polarization and prevents corneal allograft rejection in rats. Front Med (Lausanne) 2023; 10:1250914. [PMID: 37937143 PMCID: PMC10626464 DOI: 10.3389/fmed.2023.1250914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Resveratrol is an immune modulator that can reduce M1 macrophage polarization in vitro. Reducing macrophage recruitment and M1 polarization can prevent corneal allograft rejection (CGR). In this study, rat corneal allograft rejection models were established to explore the effects of resveratrol on CGR and macrophages and the underlying mechanisms after corneal transplantation. Methods Corneal allograft models were established, and 100 mg/kg resveratrol was injected intraperitoneally. The corneal allografts were assessed clinically using the Holland rejection scoring system, anterior segment photography, and anterior segment optical coherence tomography. Corneal macrophages, pro-inflammatory cytokines, and corneal lymphatic vessels were detected using hematoxylin and eosin staining, immunofluorescence staining, and real-time quantitative polymerase chain reaction (qRT-PCR). Dendritic cells (DCs) in cervical lymph nodes were explored using flow cytometry. RNA sequencing experiments were conducted to identify the mechanisms through which resveratrol affected CGR. The results were verified using Simple Western analysis. Pro-inflammatory cytokines by macrophages in vitro were measured using qRT-PCR and enzyme-linked immunosorbent assays. Results Resveratrol significantly prolonged the survival of corneal grafts and reduced graft edema and central corneal thickness. Corneal macrophage recruitment and M1 macrophage polarization decreased significantly after corneal transplantation in the resveratrol group. Resveratrol also reduced pro-inflammatory cytokines in corneal grafts and suppressed the early generation of cornea lymphatic vessels and the recruitment of cornea inflammatory cells 14 days after surgery. Resveratrol decreased the proportion of DCs in ipsilateral cervical lymph nodes. The effect of resveratrol on CGR was related to the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/Akt) pathway. Resveratrol reduced the secretion of pro-inflammatory cytokines by M1 macrophages in vitro. Conclusion Our findings suggest that resveratrol can reduce corneal macrophage recruitment and M1 macrophage polarization after corneal transplantation in rats and prevent CGR. The PI3K/Akt pathway may be an important mechanism that warrants further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ting Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
21
|
Woodward R, Konda SM, Grewal DS. Autoimmune Inflammatory Eye Disease: Demystifying Clinical Presentations for the Internist. Curr Allergy Asthma Rep 2023; 23:471-479. [PMID: 37436637 DOI: 10.1007/s11882-023-01088-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE OF REVIEW Provide a framework for recognizing key symptoms and clinical findings in patients with autoimmune inflammatory eye disease. RECENT FINDINGS The most common manifestations of autoimmune inflammatory eye disease are episcleritis, scleritis, uveitis (anterior, intermediate, posterior, and panuveitis), and keratoconjunctivitis sicca. Etiologies can be idiopathic or in association with a systemic autoimmune condition. Referral of patients who may have scleritis is critical for patients presenting with red eyes. Referral of patients who may have uveitis is critical for patients presenting often with floaters and vision complaints. Attention should also be directed to aspects of the history that might suggest a diagnosis of a systemic autoimmune condition, immunosuppression, drug-induced uveitis, or the possibility of a masquerade condition. Infectious etiologies should be ruled out in all cases. Patients with autoimmune inflammatory eye disease may present with ocular or systemic symptoms alone, or in combination. Collaboration with ophthalmologists and other relevant specialists is vital to optimal long-term medical care.
Collapse
Affiliation(s)
- Richmond Woodward
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, Durham, NC, 27701, USA
| | - Sri Meghana Konda
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, Durham, NC, 27701, USA
| | - Dilraj S Grewal
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, Durham, NC, 27701, USA.
| |
Collapse
|
22
|
Downie LE, Zhang X, Wu M, Karunaratne S, Loi JK, Senthil K, Arshad S, Bertram K, Cunningham AL, Carnt N, Mueller SN, Chinnery HR. Redefining the human corneal immune compartment using dynamic intravital imaging. Proc Natl Acad Sci U S A 2023; 120:e2217795120. [PMID: 37487076 PMCID: PMC10400993 DOI: 10.1073/pnas.2217795120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/13/2023] [Indexed: 07/26/2023] Open
Abstract
The healthy human cornea is a uniquely transparent sensory tissue where immune responses are tightly controlled to preserve vision. The cornea contains immune cells that are widely presumed to be intraepithelial dendritic cells (DCs). Corneal immune cells have diverse cellular morphologies and morphological alterations are used as a marker of inflammation and injury. Based on our imaging of corneal T cells in mice, we hypothesized that many human corneal immune cells commonly defined as DCs are intraepithelial lymphocytes (IELs). To investigate this, we developed functional in vivo confocal microscopy (Fun-IVCM) to investigate cell dynamics in the human corneal epithelium and stroma. We show that many immune cells resident in the healthy human cornea are T cells. These corneal IELs are characterized by rapid, persistent motility and interact with corneal DCs and sensory nerves. Imaging deeper into the corneal stroma, we show that crawling macrophages and rare motile T cells patrol the tissue. Furthermore, we identify altered immune cell behaviors in response to short-term contact lens wear (acute inflammatory stimulus), as well as in individuals with allergy (chronic inflammatory stimulus) that was modulated by therapeutic intervention. These findings redefine current understanding of immune cell subsets in the human cornea and reveal how resident corneal immune cells respond and adapt to chronic and acute stimuli.
Collapse
Affiliation(s)
- Laura E. Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, VIC3053, Australia
| | - Xinyuan Zhang
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, VIC3053, Australia
| | - Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, VIC3053, Australia
| | - Senuri Karunaratne
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, VIC3053, Australia
| | - Joon Keit Loi
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3010, Australia
| | - Kirthana Senthil
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, VIC3053, Australia
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3010, Australia
| | - Sana Arshad
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW2145, Australia
| | - Kirstie Bertram
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW2145, Australia
| | - Anthony L. Cunningham
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW2145, Australia
| | - Nicole Carnt
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW2145, Australia
- School of Optometry and Vision Science, University of New South Wales, Kensington, NSW2052, Australia
- Institute of Ophthalmology, University College London, LondonEC1V 9EL, United Kingdom
| | - Scott N. Mueller
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3010, Australia
| | - Holly R. Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, VIC3053, Australia
| |
Collapse
|
23
|
Nouralishahi A, Fazlinejad N, Pecho RDC, Zaidan HK, Kheradjoo H, Amin AH, Mohammadzadehsaliani S. Pathological role of inflammation in ocular disease progress and its targeting by mesenchymal stem cells (MSCs) and their exosome; current status and prospect. Pathol Res Pract 2023; 248:154619. [PMID: 37406377 DOI: 10.1016/j.prp.2023.154619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Because of their unique capacity for differentiation to a diversity of cell lineages and immunosuppressive properties, mesenchymal stem cells (MSC) are being looked at as a potential new treatment option in ophthalmology. The MSCs derived from all tissue sources possess immunomodulatory attributes through cell-to-cell contact and releasing a myriad of immunomodulatory factors (IL-10, TGF-β, growth-related oncogene (GRO), indoleamine 2,3 dioxygenase (IDO), nitric oxide (NO), interleukin 1 receptor antagonist (IL-1Ra), prostaglandin E2 (PGE2)). Such mediators, in turn, alter both the phenotype and action of all immune cells that serve a pathogenic role in the progression of inflammation in eye diseases. Exosomes from MSCs, as natural nano-particles, contain the majority of the bioactive components of parental MSCs and can easily by-pass all biological barriers to reach the target epithelial and immune cells in the eye without interfering with nearby parenchymal cells, thus having no serious side effects. We outlined the most recent research on the molecular mechanisms underlying the therapeutic benefits of MSC and MSC-exosome in the treatment of inflammatory eye diseases in the current article.
Collapse
Affiliation(s)
- Alireza Nouralishahi
- Isfahan Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; KIMS Hospital, Oman
| | | | | | - Haider Kamil Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | |
Collapse
|
24
|
Bhujel B, Oh SH, Kim CM, Yoon YJ, Kim YJ, Chung HS, Ye EA, Lee H, Kim JY. Mesenchymal Stem Cells and Exosomes: A Novel Therapeutic Approach for Corneal Diseases. Int J Mol Sci 2023; 24:10917. [PMID: 37446091 DOI: 10.3390/ijms241310917] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The cornea, with its delicate structure, is vulnerable to damage from physical, chemical, and genetic factors. Corneal transplantation, including penetrating and lamellar keratoplasties, can restore the functions of the cornea in cases of severe damage. However, the process of corneal transplantation presents considerable obstacles, including a shortage of available donors, the risk of severe graft rejection, and potentially life-threatening complications. Over the past few decades, mesenchymal stem cell (MSC) therapy has become a novel alternative approach to corneal regeneration. Numerous studies have demonstrated the potential of MSCs to differentiate into different corneal cell types, such as keratocytes, epithelial cells, and endothelial cells. MSCs are considered a suitable candidate for corneal regeneration because of their promising therapeutic perspective and beneficial properties. MSCs compromise unique immunomodulation, anti-angiogenesis, and anti-inflammatory properties and secrete various growth factors, thus promoting corneal reconstruction. These effects in corneal engineering are mediated by MSCs differentiating into different lineages and paracrine action via exosomes. Early studies have proven the roles of MSC-derived exosomes in corneal regeneration by reducing inflammation, inhibiting neovascularization, and angiogenesis, and by promoting cell proliferation. This review highlights the contribution of MSCs and MSC-derived exosomes, their current usage status to overcome corneal disease, and their potential to restore different corneal layers as novel therapeutic agents. It also discusses feasible future possibilities, applications, challenges, and opportunities for future research in this field.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Se-Heon Oh
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Chang-Min Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ye-Ji Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Young-Jae Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ho-Seok Chung
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Eun-Ah Ye
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Hun Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Jae-Yong Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| |
Collapse
|
25
|
Abbondante S, Leal SM, Clark HL, Ratitong B, Sun Y, Ma LJ, Pearlman E. Immunity to pathogenic fungi in the eye. Semin Immunol 2023; 67:101753. [PMID: 37060806 PMCID: PMC10508057 DOI: 10.1016/j.smim.2023.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Indexed: 04/17/2023]
Abstract
Fusarium, Aspergillus and Candida are important fungal pathogens that cause visual impairment and blindness in the USA and worldwide. This review will summarize the epidemiology and clinical features of corneal infections and discuss the immune and inflammatory responses that play an important role in clinical disease. In addition, we describe fungal virulence factors that are required for survival in infected corneas, and the activities of neutrophils in fungal killing, tissue damage and cytokine production.
Collapse
Affiliation(s)
- Serena Abbondante
- Department of Ophthalmology, and Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Sixto M Leal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Bridget Ratitong
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yan Sun
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Eric Pearlman
- Department of Ophthalmology, and Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
| |
Collapse
|
26
|
Maharana PK, Mandal S, Kaweri L, Sahay P, Lata S, Asif MI, Nagpal R, Sharma N. Immunopathogenesis of corneal graft rejection. Indian J Ophthalmol 2023; 71:1733-1738. [PMID: 37203024 PMCID: PMC10391393 DOI: 10.4103/ijo.ijo_2866_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
The most common cause of corneal graft failure is corneal graft rejection (CGR). Although cornea is one of the immune-privileged sites, it can still get a rejection episode due to a breach in its natural protective mechanism. Both anatomical and structural properties of cornea and anterior chamber contribute toward its immune tolerance. Clinically, every layer of the transplanted cornea can get a rejection episode. A proper understanding of immunopathogenesis will help in understanding the various mechanism of CGR and the development of newer strategies for the prevention and management of such cases.
Collapse
Affiliation(s)
- Prafulla Kumar Maharana
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sohini Mandal
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Luci Kaweri
- Consultant, Department of Ophthalmology, Narayan Nethralaya, Bengaluru, Karnataka, India
| | - Pranita Sahay
- Department of Ophthalmology, Centre for Sight Eye Hospital, New Delhi, India
| | - Suman Lata
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | | | - Ritu Nagpal
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Namrata Sharma
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
27
|
Suryawanshi RK, Patil CD, Agelidis A, Koganti R, Yadavalli T, Ames JM, Borase H, Shukla D. Pathophysiology of reinfection by exogenous HSV-1 is driven by heparanase dysfunction. SCIENCE ADVANCES 2023; 9:eadf3977. [PMID: 37115924 PMCID: PMC10146881 DOI: 10.1126/sciadv.adf3977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Limited knowledge exists on exogenous DNA virus reinfections. Herpes simplex virus-1 (HSV-1), a prototype DNA virus, causes multiple human diseases including vision-threatening eye infections. While reinfection with an exogenous HSV-1 strain is considered plausible, little is known about the underlying mechanisms governing its pathophysiology in a host. Heparanase (HPSE), a host endoglycosidase, when up-regulated by HSV-1 infection dictates local inflammatory response by destabilizing tissue architecture. Here, we demonstrate that HSV-1 reinfection in mice causes notable pathophysiology in wild-type controls compared to the animals lacking HPSE. The endoglycosidase promotes infected cell survival and supports a pro-disease environment. In contrast, lack of HPSE strengthens intrinsic immunity by promoting cytokine expression, inducing necroptosis of infected cells, and decreasing leukocyte infiltration into the cornea. Collectively, we report that immunity from a recent prior infection fails to abolish disease manifestation during HSV-1 reinfection unless HPSE is rendered inactive.
Collapse
Affiliation(s)
- Rahul K. Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chandrashekhar D. Patil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joshua M. Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hemant Borase
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
28
|
Chew LA, Iannaccone A. Gene-agnostic approaches to treating inherited retinal degenerations. Front Cell Dev Biol 2023; 11:1177838. [PMID: 37123404 PMCID: PMC10133473 DOI: 10.3389/fcell.2023.1177838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Most patients with inherited retinal degenerations (IRDs) have been waiting for treatments that are "just around the corner" for decades, with only a handful of seminal breakthroughs happening in recent years. Highlighting the difficulties in the quest for curative therapeutics, Luxturna required 16 years of development before finally obtaining United States Food and Drug Administration (FDA) approval and its international equivalents. IRDs are both genetically and phenotypically heterogeneous. While this diversity offers many opportunities for gene-by-gene precision medicine-based approaches, it also poses a significant challenge. For this reason, alternative (or parallel) strategies to identify more comprehensive, across-the-board therapeutics for the genetically and phenotypically diverse IRD patient population are very appealing. Even when gene-specific approaches may be available and become approved for use, many patients may have reached a disease stage whereby these approaches may no longer be viable. Thus, alternate visual preservation or restoration therapeutic approaches are needed at these stages. In this review, we underscore several gene-agnostic approaches that are being developed as therapeutics for IRDs. From retinal supplementation to stem cell transplantation, optogenetic therapy and retinal prosthetics, these strategies would bypass at least in part the need for treating every individual gene or mutation or provide an invaluable complement to them. By considering the diverse patient population and treatment strategies suited for different stages and patterns of retinal degeneration, gene agnostic approaches are very well poised to impact favorably outcomes and prognosis for IRD patients.
Collapse
Affiliation(s)
- Lindsey A. Chew
- Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Alessandro Iannaccone
- Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
29
|
Hoffmann F, Fröhlich A, Sirokay J, de Vos L, Zarbl R, Dietrich J, Strieth S, Landsberg J, Dietrich D. DNA methylation of GITR, OX40, 4-1BB, CD27 , and CD40 correlates with BAP1 aberrancy and prognosis in uveal melanoma. Melanoma Res 2023; 33:116-125. [PMID: 36735464 DOI: 10.1097/cmr.0000000000000879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Uveal melanoma represents an aggressive tumor that responds mostly poorly to established melanoma treatments. Comprehensive methylation profiling of the next-generation immunotherapeutic target genes, for example, members of the tumor necrosis factor receptor superfamily, might allow for the development of companion predictive biomarkers. We have analyzed CpG sites within the immune checkpoint genes GITR, OX40, 4-1BB, CD 27, and CD40 probed by the Illumina Infinium HumanMethylation450 BeadChip in N = 80 uveal melanomas included in The Cancer Genome Atlas with regard to BAP1 aberrancy, mRNA expression, and overall survival. In all analyzed immune checkpoint genes, BAP1 aberrancy was associated with decreased CpG methylation levels. We identified specific CpG sites that significantly correlated with BAP1 aberrancy, mRNA expression levels, and overall survival. Our results suggest epigenetic regulation of the analyzed immune checkpoint genes via DNA methylation in uveal melanoma and provide rationale for methylation testing in biomarker programs in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Romina Zarbl
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Jörn Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | | | - Dimo Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| |
Collapse
|
30
|
Fortress AM, Miyagishima KJ, Reed AA, Temple S, Clegg DO, Tucker BA, Blenkinsop TA, Harb G, Greenwell TN, Ludwig TE, Bharti K. Stem cell sources and characterization in the development of cell-based products for treating retinal disease: An NEI Town Hall report. Stem Cell Res Ther 2023; 14:53. [PMID: 36978104 PMCID: PMC10053463 DOI: 10.1186/s13287-023-03282-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
National Eye Institute recently issued a new Strategic Plan outlining priority research areas for the next 5 years. Starting cell source for deriving stem cell lines is as an area with gaps and opportunities for making progress in regenerative medicine, a key area of emphasis within the NEI Strategic Plan. There is a critical need to understand how starting cell source affects the cell therapy product and what specific manufacturing capabilities and quality control standards are required for autologous vs allogeneic stem cell sources. With the goal of addressing some of these questions, in discussion with the community-at-large, NEI hosted a Town Hall at the Association for Research in Vision and Ophthalmology annual meeting in May 2022. This session leveraged recent clinical advances in autologous and allogeneic RPE replacement strategies to develop guidance for upcoming cell therapies for photoreceptors, retinal ganglion cells, and other ocular cell types. Our focus on stem cell-based therapies for RPE underscores the relatively advanced stage of RPE cell therapies to patients with several ongoing clinical trials. Thus, this workshop encouraged lessons learned from the RPE field to help accelerate progress in developing stem cell-based therapies in other ocular tissues. This report provides a synthesis of the key points discussed at the Town Hall and highlights needs and opportunities in ocular regenerative medicine.
Collapse
Affiliation(s)
- Ashley M Fortress
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | - Amberlynn A Reed
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Dennis O Clegg
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA, USA
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Timothy A Blenkinsop
- Ophthalmology Cell Development and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Thomas N Greenwell
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | - Kapil Bharti
- Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
31
|
Habibi A, Zarei-Behjani Z, Falamarzi K, Malekpour M, Ebrahimi F, Soleimani M, Nejabat M, Khosravi A, Moayedfard Z, Pakbaz S, Dehdari Ebrahimi N, Azarpira N. Extracellular vesicles as a new horizon in the diagnosis and treatment of inflammatory eye diseases: A narrative review of the literature. Front Immunol 2023; 14:1097456. [PMID: 36969177 PMCID: PMC10033955 DOI: 10.3389/fimmu.2023.1097456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Extracellular vesicles include exosomes, microvesicles, and apoptotic bodies. Their cargos contain a diverse variety of lipids, proteins, and nucleic acids that are involved in both normal physiology and pathology of the ocular system. Thus, studying extracellular vesicles may lead to a more comprehensive understanding of the pathogenesis, diagnosis, and even potential treatments for various diseases. The roles of extracellular vesicles in inflammatory eye disorders have been widely investigated in recent years. The term "inflammatory eye diseases" refers to a variety of eye conditions such as inflammation-related diseases, degenerative conditions with remarkable inflammatory components, neuropathy, and tumors. This study presents an overview of extracellular vesicles' and exosomes' pathogenic, diagnostic, and therapeutic values in inflammatory eye diseases, as well as existing and potential challenges.
Collapse
Affiliation(s)
- Azam Habibi
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Falamarzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Malekpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masood Soleimani
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Nejabat
- Department of Ophthalmology School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Khosravi
- Department of Ophthalmology School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Pathology, University of Toronto, Toronto, ON, Canada
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
Khan RL, Khraibi AA, Dumée LF, Corridon PR. From waste to wealth: Repurposing slaughterhouse waste for xenotransplantation. Front Bioeng Biotechnol 2023; 11:1091554. [PMID: 36815880 PMCID: PMC9935833 DOI: 10.3389/fbioe.2023.1091554] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Slaughterhouses produce large quantities of biological waste, and most of these materials are underutilized. In many published reports, the possibility of repurposing this form of waste to create biomaterials, fertilizers, biogas, and feeds has been discussed. However, the employment of particular offal wastes in xenotransplantation has yet to be extensively uncovered. Overall, viable transplantable tissues and organs are scarce, and developing bioartificial components using such discarded materials may help increase their supply. This perspective manuscript explores the viability and sustainability of readily available and easily sourced slaughterhouse waste, such as blood vessels, eyes, kidneys, and tracheas, as starting materials in xenotransplantation derived from decellularization technologies. The manuscript also examines the innovative use of animal stem cells derived from the excreta to create a bioartificial tissue/organ platform that can be translated to humans. Institutional and governmental regulatory approaches will also be outlined to support this endeavor.
Collapse
Affiliation(s)
- Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ludovic F. Dumée
- Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
33
|
Hao R, Hu S, Zhang H, Chen X, Yu Z, Ren J, Guo H, Yang H. Mechanical stimulation on a microfluidic device to highly enhance small extracellular vesicle secretion of mesenchymal stem cells. Mater Today Bio 2023; 18:100527. [PMID: 36619203 PMCID: PMC9816961 DOI: 10.1016/j.mtbio.2022.100527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022] Open
Abstract
Small extracellular vesicles (sEVs) are recognized as promising detection biomarkers and attractive delivery vehicles, showing great potential in diagnosis and treatment of diseases. However, the applications of sEVs are usually restricted by their poor secretion amount from donor cells under routine cell culture conditions, which is especially true for mesenchymal stem cells (MSCs) due to their limited expansion and early senescence. Here, a microfluidic device is proposed for boosting sEV secretion from MSCs derived from human fetal bone marrow (BM-MSCs). As the cells rapidly pass through a microfluidic channel with a series of narrow squeezing ridges, mechanical stimulation permeabilizes the cell membrane, thus promoting them to secrete more sEVs into extracellular space. In this study, the microfluidic device demonstrates that mechanical-squeezing effect could increase the secretion amount of sEVs from the BM-MSCs by approximately 4-fold, while maintaining cellular growth state of the stem cells. Further, the secreted sEVs are efficiently taken up by immortalized human corneal epithelial cells and accelerate corneal epithelial wound healing in vitro, indicating that this technique wound not affect the functionality of sEVs and demonstrating the application potentials of this technique.
Collapse
Affiliation(s)
- Rui Hao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Shi Hu
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huitao Zhang
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xi Chen
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zitong Yu
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingyi Ren
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hang Guo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Hui Yang
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
34
|
Fan X, Qiu J, Yuan T, Zhang J, Xu J. Piperlongumine alleviates corneal allograft rejection via suppressing angiogenesis and inflammation. Front Immunol 2022; 13:1090877. [PMID: 36591243 PMCID: PMC9802119 DOI: 10.3389/fimmu.2022.1090877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background Neovascularization and inflammatory response are two essential features of corneal allograft rejection. Here, we investigated the impact of Piperlongumine (PL) on alleviating corneal allograft rejection, primarily focusing on pathological angiogenesis and inflammation. Methods A murine corneal allograft transplantation model was utilized to investigate the role of PL in preventing corneal allograft rejection. PL (10 mg/kg) or vehicle was intraperitoneally injected daily into BALB/c recipients from day -3 to day 14. The clinical signs of the corneal grafts were monitored for 30 days. Corneal neovascularization and inflammatory cell infiltration were detected by immunofluorescence staining and immunohistochemistry. The proportion of CD4+ T cells and macrophages in the draining lymph nodes (DLNs) was examined by flow cytometry. In vitro, HUVECs were cultured under hypoxia or incubated with TNF-α to mimic the hypoxic and inflammatory microenvironment favoring neovascularization in corneal allograft rejection. Multiple angiogenic processes including proliferation, migration, invasion and tube formation of HUVECs in hypoxia with or without PL treatment were routinely evaluated. The influence of PL treatment on TNF-α-induced pro-inflammation in HUVECs was investigated by real-time PCR and ELISA. Results In vivo, PL treatment effectively attenuated corneal allograft rejection, paralleled by coincident suppression of neovascularization and alleviation of inflammatory response. In vitro, PL distinctively inhibited hypoxia-induced angiogenic processes in HUVECs. Two key players in hypoxia-induced angiogenesis, HIF-1α and VEGF-A were significantly suppressed by PL treatment. Also, TNF-α-induced pro-inflammation in HUVECs was hampered by PL treatment, along with a pronounced reduction in ICAM-1, VCAM-1, CCL2, and CXCL5 expression. Conclusions The current study demonstrated that PL could exhibit both anti-angiogenic and anti-inflammatory effects in preventing corneal allograft rejection, highlighting the potential therapeutic applications of PL in clinical strategy.
Collapse
Affiliation(s)
- Xiangyu Fan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jini Qiu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Tianjie Yuan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,National Health Commission (NHC), Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Jing Zhang, ; Jianjiang Xu,
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,National Health Commission (NHC), Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Jing Zhang, ; Jianjiang Xu,
| |
Collapse
|
35
|
Garrity C, Arzi B, Haus B, Lee CA, Vapniarsky N. A Fresh Glimpse into Cartilage Immune Privilege. Cartilage 2022; 13:119-132. [PMID: 36250484 PMCID: PMC9924976 DOI: 10.1177/19476035221126349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increasing prevalence of degenerative cartilage disorders in young patients is a growing public concern worldwide. Cartilage's poor innate regenerative capacity has inspired the exploration and development of cartilage replacement treatments such as tissue-engineered cartilages and osteochondral implants as potential solutions to cartilage loss. The clinical application of tissue-engineered implants is hindered by the lack of long-term follow-up demonstrating efficacy, biocompatibility, and bio-integration. The historically reported immunological privilege of cartilage tissue was based on histomorphological observations pointing out the lack of vascularity and the presence of a tight extracellular matrix. However, clinical studies in humans and animals do not unequivocally support the immune-privilege theory. More in-depth studies on cartilage immunology are needed to make clinical advances such as tissue engineering more applicable. This review analyzes the literature that supports and opposes the concept that cartilage is an immune-privileged tissue and provides insight into mechanisms conferring various degrees of immune privilege to other, more in-depth studied tissues such as testis, eyes, brain, and cancer.
Collapse
Affiliation(s)
- Carissa Garrity
- Department of Pathology, Microbiology
and Immunology, University of California, Davis, Davis, CA, USA
| | - Boaz Arzi
- Department of Surgical and Radiological
Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA,
USA
| | - Brian Haus
- Department of Orthopaedic Surgery,
University of California Davis Medical Center, Sacramento, CA, USA
| | - Cassandra A. Lee
- Department of Orthopaedic Surgery,
University of California Davis Medical Center, Sacramento, CA, USA
| | - Natalia Vapniarsky
- Department of Pathology, Microbiology
and Immunology, University of California, Davis, Davis, CA, USA,Natalia Vapniarsky, Department of
Pathology, Microbiology and Immunology, University of California, Davis, One
Shields Avenue, Davis, CA 95616-5270, USA.
| |
Collapse
|
36
|
Quiescent innate and adaptive immune responses maintain the long-term integrity of corneal endothelium reconstituted through allogeneic cell injection therapy. Sci Rep 2022; 12:18072. [PMID: 36302875 PMCID: PMC9613641 DOI: 10.1038/s41598-022-22522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/17/2022] [Indexed: 01/11/2023] Open
Abstract
This study aims to clarify the immunogenicity in acquired and innate immune responses of cultured human corneal endothelial cells (hCECs) applied for cell injection therapy, a newly established modality for corneal endothelium failures. Thirty-four patients with corneal endothelial failure received injection of allogeneic hCEC suspension into anterior chamber. No sign of immunological rejection was observed in all 34 patients during the 5-8 years postoperative follow-up period. Cell injection therapy was successful in 2 patients treated for endothelial failure after penetrating keratoplasty and one patient with Descemet membrane stripping automated endothelial keratoplasty failure. ELISPOT assays performed in allo-mixed lymphocyte reaction to the alloantigen identical to that on the injected hCECs, elicited sparse IFN-γ-specific spots in the peripheral blood mononuclear cells of patients who received hCEC injection. The therapy generated simple and smooth graft-host junctions without wound stress. The injection of C57BL/6 CECs into the anterior chamber of BALB/c mice, which rejected C57BL/6 corneas 6 weeks ago, induced no sign of inflammatory reactions after the second challenge of alloantigen. Collectively, injection of the hCEC cell suspension in the aqueous humor induces immune tolerance that contributes to the survival of the reconstituted endothelium.
Collapse
|
37
|
Tissue-Characteristic Expression of Mouse Proteome. Mol Cell Proteomics 2022; 21:100408. [PMID: 36058520 PMCID: PMC9562433 DOI: 10.1016/j.mcpro.2022.100408] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/23/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023] Open
Abstract
The mouse is a valuable model organism for biomedical research. Here, we established a comprehensive spectral library and the data-independent acquisition-based quantitative proteome maps for 41 mouse organs, including some rarely reported organs such as the cornea, retina, and nine paired organs. The mouse spectral library contained 178,304 peptides from 12,320 proteins, including 1678 proteins not reported in previous mouse spectral libraries. Our data suggested that organs from the nervous system and immune system expressed the most distinct proteome compared with other organs. We also found characteristic protein expression of immune-privileged organs, which may help understanding possible immune rejection after organ transplantation. Each tissue type expressed characteristic high-abundance proteins related to its physiological functions. We also uncovered some tissue-specific proteins which have not been reported previously. The testis expressed highest number of tissue-specific proteins. By comparison of nine paired organs including kidneys, testes, and adrenal glands, we found left organs exhibited higher levels of antioxidant enzymes. We also observed expression asymmetry for proteins related to the apoptotic process, tumor suppression, and organ functions between the left and right sides. This study provides a comprehensive spectral library and a quantitative proteome resource for mouse studies.
Collapse
|
38
|
Rutigliani C, Tribble JR, Hagström A, Lardner E, Jóhannesson G, Stålhammar G, Williams PA. Widespread retina and optic nerve neuroinflammation in enucleated eyes from glaucoma patients. Acta Neuropathol Commun 2022; 10:118. [PMID: 35986368 PMCID: PMC9392254 DOI: 10.1186/s40478-022-01427-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/10/2022] [Indexed: 04/04/2024] Open
Abstract
Neuroinflammation is recognized as a key component of neurodegenerative disease. In glaucoma, a common neurodegenerative disease and the leading cause of irreversible blindness, the evidence for neuroinflammation in patients is lacking. Animal models have demonstrated significant pro-inflammatory activation of resident glia in the retina, as well as influx of blood-derived monocytes and pro-inflammatory factors. Confirmation of this in human donor tissue has been challenging due to a lack of well-preserved and well-characterized post-mortem tissue. To address this we utilize archived, wax embedded eyes fixed immediately following enucleation from living glaucoma patients. We compared glaucoma to control eyes (enucleated for uveal melanoma where the tumor did not impact the central retina or optic nerve). We performed immunolabelling for neurodegenerative and glial markers (CD45, CD163, IBA1, GFAP, Vimentin) which were quantified by high-resolution light microscopy and image analysis in FIJI. Glaucoma eyes demonstrated significant neural loss consistent with advanced neurodegeneration. IBA1 and GFAP were significantly increased in the retina and optic nerve head of the glaucomatous eyes indicating that significant neuroinflammation had occurred which support findings in animal models. Inflammation is a treatable symptom of many diseases and as such, identification of earlier inflammatory processes in glaucoma could be important for potential future treatment options.
Collapse
|
39
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
40
|
Zhang T, Bai X, Chi H, Liu T, Li S, Wei C, Shi W. The mounted alloimmunity of the iris-ciliary body devotes a hotbed of immune cells for corneal transplantation rejection. Exp Eye Res 2022; 222:109167. [PMID: 35777471 DOI: 10.1016/j.exer.2022.109167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 06/06/2022] [Accepted: 06/25/2022] [Indexed: 11/04/2022]
Abstract
Graft rejection is still the major obstacle causing corneal transplantation failure. However, the underlying pathogenesis remains largely unclear. The iris-ciliary body (I-C) is enriched with blood vessels and various immune cell populations, presumably predisposed to be involved in corneal transplantation rejection. After penetrating keratoplasty, compared to the normal (Nor) and syngeneic (Syn) groups, I-C tissues in the allogeneic (Allo) group displayed stronger alloimmune responses, with more infiltrations of CD45+ inflammatory cells and CD3+ lymphocytes, increased transcriptional levels of pro-inflammatory cytokines, and elevated NF-κB activity. This histopathology was similar to the pathological alterations of corneal allografts. Angiography analysis revealed the abnormal vasculature in the iris during allograft rejection, characterized by vasodilatation, increased vessel density, and vascular permeability. While, immunofluorescence staining showed the intact tight junction of the posterior iris epithelium. In vitro, human microvascular endothelial cells (HMECs) stimulated by tumor necrosis factor-α (TNF-α) showed an increased Evans blue (EB)-albumin leakage, with lower expression of zonula occludens-1 (ZO-1) and Occludin. The increased EB-albumin leakage, up-regulated NF-κB activity, and reduced expression of ZO-1 and Occludin could be partially reversed after cyclosporine A (CsA) administration. In contrast, the barrier function in primary mouse iris pigment epithelial cells (IPEs) after TNF-α treatment remained largely unchanged. These findings revealed the vigorous alloimmunity in I-C tissues, characterized with impaired vascularization but intact posterior epithelial barrier in the iris, which allowed proteins and immune cells to be exudated from the front surface of I-C tissues, and facilitated immune reaction in the anterior chamber, thereby contributing to aggravated corneal transplantation rejection.
Collapse
Affiliation(s)
- Ting Zhang
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, China; School of Ophthalmology, Shandong First Medical University, China
| | - Xiaofei Bai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, China
| | - Hao Chi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, China
| | - Suxia Li
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, China; School of Ophthalmology, Shandong First Medical University, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, China.
| | - Weiyun Shi
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, China; School of Ophthalmology, Shandong First Medical University, China.
| |
Collapse
|
41
|
Tagliaferri L, Lancellotta V, Fionda B, Mangoni M, Casà C, Di Stefani A, Pagliara MM, D’Aviero A, Schinzari G, Chiesa S, Mazzarella C, Manfrida S, Colloca GF, Marazzi F, Morganti AG, Blasi MA, Peris K, Tortora G, Valentini V. Immunotherapy and radiotherapy in melanoma: a multidisciplinary comprehensive review. Hum Vaccin Immunother 2022; 18:1903827. [PMID: 33847208 PMCID: PMC9122308 DOI: 10.1080/21645515.2021.1903827] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/16/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Melanoma is an extremely aggressive tumor and is considered to be an extremely immunogenic tumor because compared to other cancers it usually presents a well-expressed lymphoid infiltration. The aim of this paper is to perform a multidisciplinary comprehensive review of the evidence available about the combination of radiotherapy and immunotherapy for melanoma. Radiation, in fact, can increase tumor antigens visibility and promote priming of T cells but can also exert immunosuppressive action on tumor microenvironment. Combining radiotherapy with immunotherapy provides an opportunity to increase immunostimulatory potential of radiation. We therefore provide the latest clinical evidence about radiobiological rationale, radiotherapy techniques, timing, and role both in advanced and systemic disease (with a special focus on ocular melanoma and brain, liver, and bone metastases) with a particular attention also in geriatric patients. The combination of immunotherapy and radiotherapy seems to be a safe therapeutic option, supported by a clear biological rationale, even though the available data confirm that radiotherapy is employed more for metastatic than for non-metastatic disease. Such a combination shows promising results in terms of survival outcomes; however, further studies, hopefully prospective, are needed to confirm such evidence.
Collapse
Affiliation(s)
- Luca Tagliaferri
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Valentina Lancellotta
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Bruno Fionda
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Monica Mangoni
- Sezione di Radioterapia Oncologica, Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Florence, Italy
| | - Calogero Casà
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Alessandro Di Stefani
- UOC Dermatologia, Dipartimento di Scienze mediche e chirurgiche, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Monica Maria Pagliara
- UOC Oncologia Oculare, Dipartimento di Scienze dell'Invecchiamento, neurologiche ortopediche e della testa collo, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Andrea D’Aviero
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Giovanni Schinzari
- UOC Oncologia Medica, Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Roma, Italy
| | - Silvia Chiesa
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Ciro Mazzarella
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Stefania Manfrida
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Giuseppe Ferdinando Colloca
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Fabio Marazzi
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Alessio Giuseppe Morganti
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Settore Scientifico Disciplinare, Università di Bologna, Bologna, Italy
| | - Maria Antonietta Blasi
- UOC Oncologia Oculare, Dipartimento di Scienze dell'Invecchiamento, neurologiche ortopediche e della testa collo, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Roma, Italy
| | - Ketty Peris
- UOC Dermatologia, Dipartimento di Scienze mediche e chirurgiche, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giampaolo Tortora
- UOC Oncologia Medica, Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Roma, Italy
| | - Vincenzo Valentini
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
42
|
Loi JK, Alexandre YO, Senthil K, Schienstock D, Sandford S, Devi S, Christo SN, Mackay LK, Chinnery HR, Osborne PB, Downie LE, Sloan EK, Mueller SN. Corneal tissue-resident memory T cells form a unique immune compartment at the ocular surface. Cell Rep 2022; 39:110852. [PMID: 35613584 DOI: 10.1016/j.celrep.2022.110852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/27/2022] [Accepted: 04/29/2022] [Indexed: 11/03/2022] Open
Abstract
The eye is considered immune privileged such that immune responses are dampened to protect vision. As the most anterior compartment of the eye, the cornea is exposed to pathogens and can mount immune responses that recruit effector T cells. However, presence of immune memory in the cornea is not defined. Here, we use intravital 2-photon microscopy to examine T cell responses in the cornea in mice. We show that recruitment of CD8+ T cells in response to ocular virus infection results in the formation of tissue-resident memory T (TRM) cells. Motile corneal TRM cells patrol the cornea and rapidly respond in situ to antigen rechallenge. CD103+ TRM cell generation requires antigen and transforming growth factor β. In vivo imaging in humans also reveals highly motile cells that patrol the healthy cornea. Our study finds that TRM cells form in the cornea where they can provide local protective immunity.
Collapse
Affiliation(s)
- Joon Keit Loi
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yannick O Alexandre
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kirthana Senthil
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dominik Schienstock
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sarah Sandford
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sapna Devi
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Peregrine B Osborne
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; Division of Surgery, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
43
|
Yu Z, Hao R, Du J, Wu X, Chen X, Zhang Y, Li W, Gu Z, Yang H. A human cornea-on-a-chip for the study of epithelial wound healing by extracellular vesicles. iScience 2022; 25:104200. [PMID: 35479406 PMCID: PMC9035703 DOI: 10.1016/j.isci.2022.104200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Organs-on-chips are microfluidic devices for cell culturing to simulate tissue-level or organ-level physiology and recapitulate their microenvironment, providing new and significant solutions other than traditional animal tests. In vitro testing platforms for ocular biological studies have been increasingly used in preclinical efficacy and toxicity prediction. Here, we developed a microfluidic platform consisting of human corneal cells and porous membrane, replicating the multi-scale structural organization and biological phenotype. We verified the fully integrated human cornea's barrier effects on the chip. Moreover, we found that extracellular vesicles derived from bone marrow-derived mesenchymal stem cells can significantly accelerate the mild corneal epithelial wound healing, and the decreased expression of matrix metallopeptidase-2 protein indicated that this method effectively inhibits corneal inflammation and angiogenesis. This work improves our ability to simulate the interaction between the human cornea and the external world in vitro and contributes to the future development of new screening platforms for biopharmaceuticals.
Collapse
Affiliation(s)
- Zitong Yu
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rui Hao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Du
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoliang Wu
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xi Chen
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi Zhang
- Center for Medical AI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Li
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhongze Gu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Yang
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
44
|
Frutos-Rincón L, Gómez-Sánchez JA, Íñigo-Portugués A, Acosta MC, Gallar J. An Experimental Model of Neuro-Immune Interactions in the Eye: Corneal Sensory Nerves and Resident Dendritic Cells. Int J Mol Sci 2022; 23:ijms23062997. [PMID: 35328417 PMCID: PMC8951464 DOI: 10.3390/ijms23062997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
The cornea is an avascular connective tissue that is crucial, not only as the primary barrier of the eye but also as a proper transparent refractive structure. Corneal transparency is necessary for vision and is the result of several factors, including its highly organized structure, the physiology of its few cellular components, the lack of myelinated nerves (although it is extremely innervated), the tightly controlled hydration state, and the absence of blood and lymphatic vessels in healthy conditions, among others. The avascular, immune-privileged tissue of the cornea is an ideal model to study the interactions between its well-characterized and dense sensory nerves (easily accessible for both focal electrophysiological recording and morphological studies) and the low number of resident immune cell types, distinguished from those cells migrating from blood vessels. This paper presents an overview of the corneal structure and innervation, the resident dendritic cell (DC) subpopulations present in the cornea, their distribution in relation to corneal nerves, and their role in ocular inflammatory diseases. A mouse model in which sensory axons are constitutively labeled with tdTomato and DCs with green fluorescent protein (GFP) allows further analysis of the neuro-immune crosstalk under inflammatory and steady-state conditions of the eye.
Collapse
Affiliation(s)
- Laura Frutos-Rincón
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- The European University of Brain and Technology-NeurotechEU, 03550 San Juan de Alicante, Spain
| | - José Antonio Gómez-Sánchez
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- Correspondence: ; Tel.: +34-965-91-9594
| | - Almudena Íñigo-Portugués
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
| | - M. Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- The European University of Brain and Technology-NeurotechEU, 03550 San Juan de Alicante, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (L.F.-R.); (A.Í.-P.); (M.C.A.); (J.G.)
- The European University of Brain and Technology-NeurotechEU, 03550 San Juan de Alicante, Spain
- Instituto de Investigación Biomédica y Sanitaria de Alicante, 03010 Alicante, Spain
| |
Collapse
|
45
|
Reinehr S, Mueller-Buehl AM, Tsai T, Joachim SC. Specific Biomarkers in the Aqueous Humour of Glaucoma Patients. Klin Monbl Augenheilkd 2022; 239:169-176. [PMID: 35211939 DOI: 10.1055/a-1690-7468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Glaucoma, a multifactorial neurodegenerative disease, is the second most common cause of blindness. Since early diagnosis facilitates timely treatment, it is therefore essential to identify appropriate markers. In the future, so-called biomarkers could be helpful in early detection and follow-up. In glaucoma, these parameters could be obtained in the aqueous humour. Altered antibodies, proteins, microRNA (miRNA) and trace element levels have already been identified. This review provides insight into possible changes in the aqueous humour of patients with primary open-angle glaucoma (POAG), normal tension glaucoma (NTG) or pseudoexfoliation glaucoma (PEXG). Studies on antibody changes in POAG patients identified an upregulation of immune system associated antibodies such as heat shock protein (HSP) 27. HSP27 was also upregulated in PEXG patients but decreased in NTG. In POAG and PEXG samples, the levels of certain proteins, including interleukins and endothelin-1, were elevated. The vasoconstrictor endothelin-1 may play a role in regulating intraocular pressure. By contrast, proteins playing a role in the response to oxidative stress were downregulated. In NTG patients, proteins responsible for the elimination of toxic by-products from the respiratory chain were downregulated. In addition, the aqueous humour of POAG and PEXG patients contained several miRNAs that have been linked to tissue development, neurological disease and cellular organisation. Other miRNAs regulated in glaucoma play a role in extracellular matrix remodelling and thus may affect drainage resistance in the trabecular meshwork. It is also interesting to note that the aqueous humour of glaucoma patients showed changes in the levels of trace elements such as zinc and selenium. The elevated zinc levels could be responsible for the imbalance of intraocular matrix metalloproteinases and thus for increased intraocular pressure. All these studies demonstrate the complex changes in aqueous humour in glaucoma. Some of these biomarkers may be useful in the future for early diagnosis of the disease.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, Ruhr-Universität Bochum, Deutschland
| | | | - Teresa Tsai
- Experimental Eye Research Institute, Ruhr-Universität Bochum, Deutschland
| | | |
Collapse
|
46
|
Tong TML, van der Kooij MK, Speetjens FM, van Erkel AR, van der Meer RW, Lutjeboer J, van Persijn van Meerten EL, Martini CH, Zoethout RWM, Tijl FGJ, Blank CU, Burgmans MC, Kapiteijn E. Combining Hepatic Percutaneous Perfusion with Ipilimumab plus Nivolumab in advanced uveal melanoma (CHOPIN): study protocol for a phase Ib/randomized phase II trial. Trials 2022; 23:137. [PMID: 35152908 PMCID: PMC8842930 DOI: 10.1186/s13063-022-06036-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/16/2022] [Indexed: 12/23/2022] Open
Abstract
Background While immune checkpoint inhibition (ICI) has revolutionized the treatment of metastatic cutaneous melanoma, no standard treatments are available for patients with metastatic uveal melanoma (UM). Several locoregional therapies are effective in the treatment of liver metastases, such as percutaneous hepatic perfusion with melphalan (M-PHP). The available literature suggests that treatment with ICI following locoregional treatment of liver UM metastases can result in clinical response. We hypothesize that combining M-PHP with ICI will lead to enhanced antigen presentation and increased immunomodulatory effect, improving control of both hepatic and extrahepatic disease. Methods Open-label, single-center, phase Ib/randomized phase II trial, evaluating the safety and efficacy of the combination of M-PHP with ipilimumab (anti-CTLA-4 antibody) and nivolumab (anti-PD-1 antibody) in patients with unresectable hepatic metastases of UM in first-line treatment, with or without the limited extrahepatic disease. The primary objective is to determine the safety, toxicity, and efficacy of the combination regimen, defined by maximum tolerated dose (MTD) and progression-free survival (PFS) at 1 year. Secondary objectives include overall survival (OS) and overall response rate (ORR). A maximum of 88 patients will be treated in phase I and phase II combined. Baseline characteristics will be described with descriptive statistics (t-test, chi-square test). To study the association between risk factors and toxicity, a logistic regression model will be applied. PFS and OS will be summarized using Kaplan-Meier curves. Discussion This is the first trial to evaluate this treatment combination by establishing the maximum tolerated dose and evaluating the efficacy of the combination treatment. M-PHP has shown to be a safe and effective treatment for UM patients with liver metastases and became the standard treatment option in our center. The combination of ICI with M-PHP is investigated in the currently described trial which might lead to a better treatment response both in and outside the liver. Trial Registration This trial was registered in the US National Library of Medicine with identifier NCT04283890. Registered as per February 2020 - Retrospectively registered. EudraCT registration number: 2018-004248-49. Local MREC registration number: NL60508.058.19.
Collapse
|
47
|
Burgos R, Cardona AF, Santoyo N, Ruiz-Patiño A, Cure-Casilimas J, Rojas L, Ricaurte L, Muñoz Á, Garcia-Robledo JE, Ordoñez C, Sotelo C, Rodríguez J, Zatarain-Barrón ZL, Pineda D, Arrieta O. Case Report: Differential Genomics and Evolution of a Meningeal Melanoma Treated With Ipilimumab and Nivolumab. Front Oncol 2022; 11:691017. [PMID: 35070950 PMCID: PMC8766339 DOI: 10.3389/fonc.2021.691017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Primary melanocytic tumors of the CNS are extremely rare conditions, encompassing different disease processes including meningeal melanoma and meningeal melanocytosis. Its incidence range between 3-5%, with approximately 0.005 cases per 100,000 people. Tumor biological behavior is commonly aggressive, with poor prognosis and very low survivability, and a high recurrence rate, even after disease remission with multimodal treatments. Specific genetic alterations involving gene transcription, alternative splicing, RNA translation, and cell proliferation are usually seen, affecting genes like BRAF, TERT, GNAQ, SF3B1, and EIF1AX. Here we present an interesting case of a 59-year-old male presenting with neurologic symptoms and a further confirmed diagnosis of primary meningeal melanoma. Multiple therapy lines were used, including radiosurgery, immunotherapy, and chemotherapy. The patient developed two relapses and an evolving genetic makeup that confirmed the disease’s clonal origin. We also provide a review of the literature on the genetic basis of primary melanocytic tumors of the CNS.
Collapse
Affiliation(s)
- Remberto Burgos
- Neurosurgery Department, Clínica del Country/Clínica Colsanitas, Bogotá, Colombia
| | - Andrés F Cardona
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia.,Direction of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
| | - Nicolas Santoyo
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
| | - Alejandro Ruiz-Patiño
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | | | - Leonardo Rojas
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia.,Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia.,Clinical Oncology Department, Clínica Colsanitas, Bogotá, Colombia
| | - Luisa Ricaurte
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia.,Direction of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
| | - Álvaro Muñoz
- Radiotherapy Department, Carlos Ardila Lulle Institute of Cancer (ICCAL), Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Camila Ordoñez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Carolina Sotelo
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - July Rodríguez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Zyanya Lucia Zatarain-Barrón
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), México City, Mexico
| | - Diego Pineda
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), México City, Mexico
| | - Oscar Arrieta
- Radiology Department, Clinica del County/Resonancia Magnética de Colombia, Bogotá, Colombia
| |
Collapse
|
48
|
Valdivia E, Bertolin M, Breda C, Carvalho Oliveira M, Salz AK, Hofmann N, Börgel M, Blasczyk R, Ferrari S, Figueiredo C. Genetic Modification of Limbal Stem Cells to Decrease Allogeneic Immune Responses. Front Immunol 2021; 12:747357. [PMID: 34956181 PMCID: PMC8696204 DOI: 10.3389/fimmu.2021.747357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/23/2021] [Indexed: 11/22/2022] Open
Abstract
Limbal stem cell (LSC) transplantation is the only efficient treatment for patients affected by LSC deficiency (LSCD). Allogeneic LSC transplantation is one of the most successful alternative for patients with bilateral LSCD. Nevertheless, the high variability of the human leukocyte antigens (HLA) remains a relevant obstacle to long-term allogeneic graft survival. This study characterized the immunologic properties of LSCs and proposed a genetic engineering strategy to reduce the immunogenicity of LSCs and of their derivatives. Hence, LSC HLA expression was silenced using lentiviral vectors encoding for short hairpin (sh) RNAs targeting β2-microglobulin (β2M) or class II major histocompatibility complex transactivator (CIITA) to silence HLA class I and II respectively. Beside the constitutive expression of HLA class I, LSCs showed the capability to upregulate HLA class II expression under inflammatory conditions. Furthermore, LSCs demonstrated the capability to induce T-cell mediated immune responses. LSCs phenotypical and functional characteristics are not disturbed after genetic modification. However, HLA silenced LSC showed to prevent T cell activation, proliferation and cytotoxicity in comparison to fully HLA-expressing LSCs. Additionally; HLA-silenced LSCs were protected against antibody-mediated cellular-dependent cytotoxicity. Our data is a proof-of-concept of the feasibility to generate low immunogenic human LSCs without affecting their typical features. The use of low immunogenic LSCs may support for long-term survival of LSCs and their derivatives after allogeneic transplantation.
Collapse
Affiliation(s)
- Emilio Valdivia
- Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | | | - Claudia Breda
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | | | | | - Nicola Hofmann
- German Society for Tissue Transplantation (DGFG), Hannover, Germany
| | - Martin Börgel
- German Society for Tissue Transplantation (DGFG), Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | | | | |
Collapse
|
49
|
Prognostic Biomarkers in Uveal Melanoma: The Status Quo, Recent Advances and Future Directions. Cancers (Basel) 2021; 14:cancers14010096. [PMID: 35008260 PMCID: PMC8749988 DOI: 10.3390/cancers14010096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Although rare, uveal melanoma (UM) is the most common cancer that develops inside adult eyes. The prognosis is poor, since 50% of patients will develop lethal metastases in the first decade, especially to the liver. Once metastases are detected, life expectancy is limited, given that the available treatments are mostly unsuccessful. Thus, there is a need to find methods that can accurately predict UM prognosis and also effective therapeutic strategies to treat this cancer. In this manuscript, we initially compile the current knowledge on epidemiological, clinical, pathological and molecular features of UM. Then, we cover the most relevant prognostic factors currently used for the evaluation and follow-up of UM patients. Afterwards, we highlight emerging molecular markers in UM published over the last three years. Finally, we discuss the problems preventing meaningful advances in the treatment and prognostication of UM patients, as well as forecast new roadblocks and paths of UM-related research. Abstract Uveal melanoma (UM) is the most common malignant intraocular tumour in the adult population. It is a rare cancer with an incidence of nearly five cases per million inhabitants per year, which develops from the uncontrolled proliferation of melanocytes in the choroid (≈90%), ciliary body (≈6%) or iris (≈4%). Patients initially present either with symptoms like blurred vision or photopsia, or without symptoms, with the tumour being detected in routine eye exams. Over the course of the disease, metastases, which are initially dormant, develop in nearly 50% of patients, preferentially in the liver. Despite decades of intensive research, the only approach proven to mildly control disease spread are early treatments directed to ablate liver metastases, such as surgical excision or chemoembolization. However, most patients have a limited life expectancy once metastases are detected, since there are limited therapeutic approaches for the metastatic disease, including immunotherapy, which unlike in cutaneous melanoma, has been mostly ineffective for UM patients. Therefore, in order to offer the best care possible to these patients, there is an urgent need to find robust models that can accurately predict the prognosis of UM, as well as therapeutic strategies that effectively block and/or limit the spread of the metastatic disease. Here, we initially summarized the current knowledge about UM by compiling the most relevant epidemiological, clinical, pathological and molecular data. Then, we revisited the most important prognostic factors currently used for the evaluation and follow-up of primary UM cases. Afterwards, we addressed emerging prognostic biomarkers in UM, by comprehensively reviewing gene signatures, immunohistochemistry-based markers and proteomic markers resulting from research studies conducted over the past three years. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues of research in UM.
Collapse
|
50
|
Chandler LC, McClements ME, Yusuf IH, Martinez-Fernandez de la Camara C, MacLaren RE, Xue K. Characterizing the cellular immune response to subretinal AAV gene therapy in the murine retina. Mol Ther Methods Clin Dev 2021; 22:52-65. [PMID: 34485594 PMCID: PMC8390455 DOI: 10.1016/j.omtm.2021.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Although adeno-associated viral (AAV) vector-mediated retinal gene therapies have demonstrated efficacy, the mechanisms underlying dose-dependent retinal inflammation remain poorly understood. Here, we present a quantitative analysis of cellular immune response to subretinal AAV gene therapy in mice using multicolor flow cytometry with a panel of key immune cell markers. A significant increase in CD45+ retinal leukocytes was detected from day 14 post-subretinal injection of an AAV8 vector (1 × 109 genome copies) encoding green fluorescent protein (GFP) driven by a ubiquitous promoter. These predominantly consisted of infiltrating peripheral leukocytes including macrophages, natural killer cells, CD4 and CD8 T cells, and natural killer T cells; no significant change in resident microglia population was detected. This cellular response was persistent at 28 days and suggestive of type 1 cell-mediated effector immunity. High levels (80%) of GFP fluorescence were found in the microglia, implicating their role in viral antigen presentation and peripheral leukocyte recruitment. When compared against AAV.GFP in paired eyes, an equivalent dose of an otherwise identical vector encoding the human therapeutic transgene Rab-escort protein 1 (REP1) elicited a significantly diminished cellular immune response (4.2-fold; p = 0.0221). However, the distribution of immune cell populations remained similar, indicating a common mechanism of AAV-induced immune activation.
Collapse
Affiliation(s)
- Laurel C. Chandler
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, Level 6, West Wing, John Radcliffe Hospital, Headley Way, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, Level 6, West Wing, John Radcliffe Hospital, Headley Way, University of Oxford, Oxford OX3 9DU, UK
| | - Imran H. Yusuf
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, Level 6, West Wing, John Radcliffe Hospital, Headley Way, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Cristina Martinez-Fernandez de la Camara
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, Level 6, West Wing, John Radcliffe Hospital, Headley Way, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, Level 6, West Wing, John Radcliffe Hospital, Headley Way, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, Level 6, West Wing, John Radcliffe Hospital, Headley Way, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|