1
|
Gong X, Xu L, Cai P. Friend or foe of tripartite motif-containing protein 21 in cardiovascular disease: A review. Int J Biol Macromol 2025; 308:142682. [PMID: 40164260 DOI: 10.1016/j.ijbiomac.2025.142682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
As an E3 ubiquitin ligase and an Fc receptor, tripartite motif-containing protein 21 (TRIM21) plays a crucial role in immune defense, signal transduction, and cellular regulation. TRIM21 is widely expressed in various tissues, but it is particularly abundant in cardiovascular tissues and is involved in the pathogenesis of various cardiovascular diseases (CVDs). However, although TRIM21 is involved in the regulation of several key molecular pathways in the immune system, its specific role in CVD remains unclear. In this review, we comprehensively summarize the regulatory role of TRIM21 in signaling pathways and discuss the function of TRIM21 in CVD, to provide a systematic understanding of this important protein in CVD and offer insights for further research into the pathogenesis of CVD and its potential applications.
Collapse
Affiliation(s)
- Xiangmei Gong
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Xu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Matta B, Battaglia J, Lapan M, Sharma V, Barnes BJ. IRF5 Controls Plasma Cell Generation and Antibody Production via Distinct Mechanisms Depending on the Antigenic Trigger. Immunology 2025; 174:226-238. [PMID: 39572974 PMCID: PMC11999051 DOI: 10.1111/imm.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Elevated levels of serum autoantibodies are a hallmark of systemic lupus erythematosus (SLE) and are produced by plasma cells in response to a variety of antigenic triggers. In SLE, the triggers are complex and may include both T cell-dependent/-independent and TLR-dependent/-independent mechanisms of immune activation, which ultimately contributes to the significant immune dysregulation seen in patients at the level of cytokine production and cellular activation (B cells, T cells, dendritic cells, neutrophils and macrophages). Interferon regulatory factor 5 (IRF5) has been identified as an autoimmune susceptibility gene and polymorphisms in IRF5 associate with altered expression and hyper-activation in distinct SLE immune cell subsets. To gain further insight into the mechanisms that drive IRF5-mediated SLE immune activation, we characterised wild-type (WT) and Irf5 -/- Balb/c mice in response to immunisation. WT and Irf5 -/- Balb/c mice were immunised to activate various signalling pathways in vivo followed by systemic immunophenotyping and detection of antibody production by multi-colour flow cytometry and ELISPOT. We identified two pathways, TLR9-dependent and T cell-dependent that resulted in IRF5 cell type-specific function. Immunisation with either CpG-B + Alum or NP-KLH + Alum but not with R848 + Alum, NP-LPS + Alum or NP-Ficoll+Alum resulted in decreased plasma cell generation and reduced antibody production in Irf5 -/- mice. Notably, the mechanism(s) leading to this downstream phenotype was distinct. In CpG-B + Alum immunised mice, we found reduced activation of plasmacytoid dendritic cells, resulting in reduced IFNα and IL6 production in Irf5 -/- mice. Conversely, mice immunised with NP-KLH + Alum had reduced numbers of T follicular helper cells and germinal centre B cells with reduced expression of Bcl6 in Irf5 -/- mice. Moreover, T follicular helper cells from Irf5 -/- mice were functionally defective. Even though the downstream phenotype of reduced antibody production in Irf5 -/- mice was conserved between T cell-dependent and TLR9-dependent immunisation, the mechanisms leading to this phenotype were antigen- and cell type-specific.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Jenna Battaglia
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Margaret Lapan
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Departments of Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
3
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Wang Y, Xiu Z, Qu K, Wang L, Wang H, Yu Y. Trailblazing in adjuvant research: succinate's uncharted territory with neutrophils. Am J Physiol Cell Physiol 2024; 327:C1-C10. [PMID: 38708521 DOI: 10.1152/ajpcell.00129.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
The purpose of this study is to investigate the previously unknown connection that succinate has with neutrophils in the setting of adjuvant-mediated immunological enhancement. It has been discovered that succinates stimulate the recruitment of neutrophils in immunization sites, which in turn induces the expression of what is known as neutrophil-derived B cell-activating factor (BAFF). Further amplification of vaccine-induced antibody responses is provided via the succinate receptor 1-interferon regulatory factor 5 (SUCNR1-IRF5)-BAFF signaling pathway, which provides insights into a unique mechanism for immunological enhancement.NEW & NOTEWORTHY This study explores the role of succinate as a vaccine adjuvant, revealing its capacity to enhance neutrophil recruitment at immunization sites, which boosts B cell activation through the succinate receptor 1-interferon regulatory factor 5-B cell-activating factor (SUCNR1-IRF5-BAFF) signaling pathway. Results demonstrate succinate's potential to amplify vaccine-induced antibody responses, highlighting its significance in immunological enhancement and offering new insights into the adjuvant mechanisms of action, particularly in neutrophil-mediated immune responses.
Collapse
Affiliation(s)
- Yangyang Wang
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, People's Republic of China
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| | - Zhiming Xiu
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, People's Republic of China
| | - Kuo Qu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| | - Huiyan Wang
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, People's Republic of China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
5
|
Dai D, Gu S, Han X, Ding H, Jiang Y, Zhang X, Yao C, Hong S, Zhang J, Shen Y, Hou G, Qu B, Zhou H, Qin Y, He Y, Ma J, Yin Z, Ye Z, Qian J, Jiang Q, Wu L, Guo Q, Chen S, Huang C, Kottyan LC, Weirauch MT, Vinuesa CG, Shen N. The transcription factor ZEB2 drives the formation of age-associated B cells. Science 2024; 383:413-421. [PMID: 38271512 PMCID: PMC7616037 DOI: 10.1126/science.adf8531] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Age-associated B cells (ABCs) accumulate during infection, aging, and autoimmunity, contributing to lupus pathogenesis. In this study, we screened for transcription factors driving ABC formation and found that zinc finger E-box binding homeobox 2 (ZEB2) is required for human and mouse ABC differentiation in vitro. ABCs are reduced in ZEB2 haploinsufficient individuals and in mice lacking Zeb2 in B cells. In mice with toll-like receptor 7 (TLR7)-driven lupus, ZEB2 is essential for ABC formation and autoimmune pathology. ZEB2 binds to +20-kb myocyte enhancer factor 2b (Mef2b)'s intronic enhancer, repressing MEF2B-mediated germinal center B cell differentiation and promoting ABC formation. ZEB2 also targets genes important for ABC specification and function, including Itgax. ZEB2-driven ABC differentiation requires JAK-STAT (Janus kinase-signal transducer and activator of transcription), and treatment with JAK1/3 inhibitor reduces ABC accumulation in autoimmune mice and patients. Thus, ZEB2 emerges as a driver of B cell autoimmunity.
Collapse
Affiliation(s)
- Dai Dai
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Shuangshuang Gu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaxia Han
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Yang Jiang
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoou Zhang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chao Yao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Soonmin Hong
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinsong Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yiwei Shen
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guojun Hou
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Bo Qu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Haibo Zhou
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Yuting Qin
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Yuke He
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Jianyang Ma
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Jie Qian
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Lihua Wu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Qiang Guo
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sheng Chen
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chuanxin Huang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leah C. Kottyan
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Matthew T. Weirauch
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Carola G. Vinuesa
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
- Francis Crick Institute, London, UK
| | - Nan Shen
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Roberts BK, Collado G, Barnes BJ. Role of interferon regulatory factor 5 (IRF5) in tumor progression: Prognostic and therapeutic potential. Biochim Biophys Acta Rev Cancer 2024; 1879:189061. [PMID: 38141865 PMCID: PMC11977173 DOI: 10.1016/j.bbcan.2023.189061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Canonically, the transcription factor interferon regulatory factor 5 (IRF5) is a key mediator of innate and adaptive immunity downstream of pathogen recognition receptors such as Toll-like receptors (TLRs). Hence, dysregulation of IRF5 function has been widely implicated in inflammatory and autoimmune diseases. Over the last few decades, dysregulation of IRF5 expression has been also reported in hematologic malignancies and solid cancers that support a role for IRF5 in malignant transformation, tumor immune regulation, clinical prognosis, and treatment response. This review will provide an in-depth overview of the current literature regarding the mechanisms by which IRF5 functions as either a tumor suppressor or oncogene, its role in metastasis, regulation of the tumor-immune microenvironment, utility as a prognostic indicator of disease, and new developments in IRF5 therapeutics that may be used to remodel tumor immunity.
Collapse
Affiliation(s)
- Bailey K Roberts
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY 11030, United States of America
| | - Gilbert Collado
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America; Departments of Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, United States of America.
| |
Collapse
|
7
|
Carmona-Pérez L, Dagenais-Lussier X, Mai LT, Stögerer T, Swaminathan S, Isnard S, Rice MR, Barnes BJ, Routy JP, van Grevenynghe J, Stäger S. The TLR7/IRF-5 axis sensitizes memory CD4+ T cells to Fas-mediated apoptosis during HIV-1 infection. JCI Insight 2023; 8:e167329. [PMID: 37227774 PMCID: PMC10371351 DOI: 10.1172/jci.insight.167329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
HIV-1 infection is characterized by inflammation and a progressive decline in CD4+ T cell count. Despite treatment with antiretroviral therapy (ART), the majority of people living with HIV (PLWH) maintain residual levels of inflammation, a low degree of immune activation, and higher sensitivity to cell death in their memory CD4+ T cell compartment. To date, the mechanisms responsible for this high sensitivity remain elusive. We have identified the transcription factor IRF-5 to be involved in impairing the maintenance of murine CD4+ T cells during chronic infection. Here, we investigate whether IRF-5 also contributes to memory CD4+ T cell loss during HIV-1 infection. We show that TLR7 and IRF-5 were upregulated in memory CD4+ T cells from PLWH, when compared with naturally protected elite controllers and HIVfree participants. TLR7 was upstream of IRF-5, promoting Caspase 8 expression in CD4+ T cells from ART HIV-1+ but not from HIVfree donors. Interestingly, the TLR7/IRF-5 axis acted synergistically with the Fas/FasL pathway, suggesting that TLR7 and IRF-5 expression in ART HIV-1+ memory CD4+ T cells represents an imprint that predisposes cells to Fas-mediated apoptosis. This predisposition could be blocked using IRF-5 inhibitory peptides, suggesting IRF-5 blockade as a possible therapy to prevent memory CD4+ T cell loss in PLWH.
Collapse
Affiliation(s)
- Liseth Carmona-Pérez
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Xavier Dagenais-Lussier
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Linh T. Mai
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Tanja Stögerer
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Sharada Swaminathan
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Stéphane Isnard
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Matthew R. Rice
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Julien van Grevenynghe
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Simona Stäger
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| |
Collapse
|
8
|
Neutrophils recruited to immunization sites initiating vaccine-induced antibody responses by locally expressing BAFF. iScience 2022; 25:104453. [PMID: 35874922 PMCID: PMC9301880 DOI: 10.1016/j.isci.2022.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/23/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Neutrophils played a key role in the innate immune responses. Less is known about whether and how the neutrophils recruited in the immunization sites affecting the vaccine-induced antibody responses. In the process of evaluating the efficacy of an oil-in-water emulsion-formulated vaccine in mice, we found that neutrophils were rapidly and massively recruited to immunization sites but were barely detected in the draining lymph nodes. Interestingly, B cell-activating factor (BAFF) was abundantly expressed in the recruiting neutrophils at a very early stage. The initial neutrophil-derived BAFF firstly brought about the B cell responses in the local part, then subsequently in lymphoid organs. Activated B cells produced more BAFF through TLR9-IRF5 signaling pathway, thereby amplifying the vaccine-induced antibody responses. Suppressing BAFF in the neutrophils could weaken the B cell activation and reduce the antibody production. The data indicate that vaccines endow neutrophils with the potential to orchestrate antibody responses at immunization sites. Neutrophils at immunization sites influencing subsequent immune responses Neutrophil-driven BAFF at immunization sites assisting B cell responses to vaccines Activated B cells produce more BAFF through TLR9-IRF5 signaling pathway BAFF-producing neutrophils orchestrate antibody responses at immunization sites
Collapse
|
9
|
Phalke S, Rivera-Correa J, Jenkins D, Flores Castro D, Giannopoulou E, Pernis AB. Molecular mechanisms controlling age-associated B cells in autoimmunity. Immunol Rev 2022; 307:79-100. [PMID: 35102602 DOI: 10.1111/imr.13068] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Age-associated B cells (ABCs) have emerged as critical components of immune responses. Their inappropriate expansion and differentiation have increasingly been linked to the pathogenesis of autoimmune disorders, aging-associated diseases, and infections. ABCs exhibit a distinctive phenotype and, in addition to classical B cell markers, often express the transcription factor T-bet and myeloid markers like CD11c; hence, these cells are also commonly known as CD11c+ T-bet+ B cells. Formation of ABCs is promoted by distinctive combinations of innate and adaptive signals. In addition to producing antibodies, these cells display antigen-presenting and proinflammatory capabilities. It is becoming increasingly appreciated that the ABC compartment exhibits a high degree of heterogeneity, plasticity, and sex-specific regulation and that ABCs can differentiate into effector progeny via several routes particularly in autoimmune settings. In this review, we will discuss the initial insights that have been obtained on the molecular machinery that controls ABCs and we will highlight some of the unique aspects of this control system that may enable ABCs to fulfill their distinctive role in immune responses. Given the expanding array of autoimmune disorders and pathophysiological settings in which ABCs are being implicated, a deeper understanding of this machinery could have important and broad therapeutic implications for the successful, albeit daunting, task of targeting these cells.
Collapse
Affiliation(s)
- Swati Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Evgenia Giannopoulou
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
10
|
Leidere-Reine A, Kolesova O, Kolesovs A, Viksna L. Seroprevalence of diphtheria and measles antibodies and their association with demographics, self-reported immunity, and immunogenetic factors in healthcare workers in Latvia. Vaccine X 2022; 10:100149. [PMID: 35243323 PMCID: PMC8881727 DOI: 10.1016/j.jvacx.2022.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
Latvia is among European countries with outbreaks of diphtheria and measles. Healthcare workers (HCW) are exposed to infections and can transmit them to unvaccinated patients. We assessed the seroprevalence of antibodies against diphtheria and measles and their association with demographics, self-reported immunity, the presence of the HLA-B27 allele, and level of interferon regulatory factor 5 (IRF5) in Latvian HCW. Anti-diphtheria and anti-measles IgG antibodies and the level of IRF5 in serum were tested by enzyme immunoassay. The presence of the HLA-B27 allele was detected by a real-time polymerase chain reaction. The study involved 176 HCW, including 29% doctors and 44% nurses. Among HCW, 95.5% were seropositive for diphtheria. However, only 65.9% had full seroprotection against it. The seronegativity for measles (21.6%) was higher than for diphtheria (4.5%) without differences in gender and medical staff groups. Older age was associated with waning immunity against diphtheria and a higher rate of seropositivity for measles. Considered immunogenetic factors did not affect the level of antibodies, and variability of the level of IRF5 in serum can reflect ageing processes. Self-reported vaccination status had a low informative value regarding full seroprotection against diphtheria and seropositivity for measles indicating the need for pre-vaccination IgG screening in planning the booster vaccination.
Collapse
Affiliation(s)
- Aija Leidere-Reine
- Department of Infectology, Rīga Stradiņš University, 3 Linezera Street, Rīga LV-1006, Latvia
| | - Oksana Kolesova
- Department of Infectology, Rīga Stradiņš University, 3 Linezera Street, Rīga LV-1006, Latvia
- Institute of Microbiology and Virology, Joint Laboratory of Clinical Immunology and Immunogenetics, Rīga Stradiņš University, 5 Ratsupites Street, Rīga LV-1067, Latvia
- Corresponding author at: 5 Ratsupites Street, Rīga LV-1067, Latvia.
| | - Aleksandrs Kolesovs
- Department of Infectology, Rīga Stradiņš University, 3 Linezera Street, Rīga LV-1006, Latvia
- Faculty of Education, Psychology, and Art, University of Latvia, 1 Imantas 7 line, Rīga LV-1083, Latvia
| | - Ludmila Viksna
- Department of Infectology, Rīga Stradiņš University, 3 Linezera Street, Rīga LV-1006, Latvia
| |
Collapse
|
11
|
Satterthwaite AB. TLR7 Signaling in Lupus B Cells: New Insights into Synergizing Factors and Downstream Signals. Curr Rheumatol Rep 2021; 23:80. [PMID: 34817709 DOI: 10.1007/s11926-021-01047-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF THE REVIEW Systemic lupus erythematosus (SLE) is driven by nucleic acid-containing antigens that stimulate endosomal TLRs. We review new advances in our understanding of how TLR7 signaling in B cells drives autoimmunity. RECENT FINDINGS Pathogenic B cell responses to TLR7 engagement are shaped by the disease-associated cytokine environment. TLR7, IFNγ, and IL-21 together promote the formation of autoreactive germinal centers and the ABC/DN2 B cell subset. BAFF and type 1 IFNs enhance autoantibody production from transitional B cells in concert with TLR7. TLR7 signaling components STAT1, BANK1, IRF5, SLC15A4, and CXorf21/TASL are associated genetically with SLE and important for lupus development in mice, while role of T-bet is controversial. Proper control of TLR7 trafficking by UNC93B1, syntenin-1, and αvβ3 integrin is critical for preventing autoimmunity. A better understanding of TLR7 signaling has revealed potential new therapeutic approaches for SLE, several of which are being tested in animal models or clinical trials.
Collapse
Affiliation(s)
- Anne B Satterthwaite
- Department of Internal Medicine, Rheumatic Diseases Division and Department of Immunology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8884, USA.
| |
Collapse
|
12
|
Leipner J, Dederichs TS, von Ehr A, Rauterberg S, Ehlert C, Merz J, Dufner B, Hoppe N, Krebs K, Heidt T, von Zur Muehlen C, Stachon P, Ley K, Wolf D, Zirlik A, Bode C, Hilgendorf I, Härdtner C. Myeloid cell-specific Irf5 deficiency stabilizes atherosclerotic plaques in Apoe -/- mice. Mol Metab 2021; 53:101250. [PMID: 33991749 PMCID: PMC8178123 DOI: 10.1016/j.molmet.2021.101250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Interferon regulatory factor (IRF) 5 is a transcription factor known for promoting M1 type macrophage polarization in vitro. Given the central role of inflammatory macrophages in promoting atherosclerotic plaque progression, we hypothesize that myeloid cell-specific deletion of IRF5 is protective against atherosclerosis. METHODS Female Apoe-/-LysmCre/+Irf5fl/fl and Apoe-/-Irf5fl/fl mice were fed a high-cholesterol diet for three months. Atherosclerotic plaque size and compositions as well as inflammatory gene expression were analyzed. Mechanistically, IRF5-dependent bone marrow-derived macrophage cytokine profiles were tested under M1 and M2 polarizing conditions. Mixed bone marrow chimeras were generated to determine intrinsic IRF5-dependent effects on macrophage accumulation in atherosclerotic plaques. RESULTS Myeloid cell-specific Irf5 deficiency blunted LPS/IFNγ-induced inflammatory gene expression in vitro and in the atherosclerotic aorta in vivo. While atherosclerotic lesion size was not reduced in myeloid cell-specific Irf5-deficient Apoe-/- mice, plaque composition was favorably altered, resembling a stable plaque phenotype with reduced macrophage and lipid contents, reduced inflammatory gene expression and increased collagen deposition alongside elevated Mertk and Tgfβ expression. Irf5-deficient macrophages, when directly competing with wild type macrophages in the same mouse, were less prone to accumulate in atherosclerotic lesion, independent of monocyte recruitment. Irf5-deficient monocytes, when exposed to oxidized low density lipoprotein, were less likely to differentiate into macrophage foam cells, and Irf5-deficient macrophages proliferated less in the plaque. CONCLUSION Our study provides genetic evidence that selectively altering macrophage polarization induces a stable plaque phenotype in mice.
Collapse
Affiliation(s)
- Julia Leipner
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| | - Tsai-Sang Dederichs
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| | - Alexander von Ehr
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| | - Simon Rauterberg
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| | - Carolin Ehlert
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| | - Julian Merz
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| | - Bianca Dufner
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| | - Natalie Hoppe
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| | - Katja Krebs
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| | - Timo Heidt
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| | - Constantin von Zur Muehlen
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| | - Peter Stachon
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| | - Klaus Ley
- La Jolla Institute for Allergy & Immunology, Division of Inflammation Biology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
| | - Dennis Wolf
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| | - Andreas Zirlik
- LKH-University Hospital Graz, Department of Cardiology, Auenbruggerplatz 15, 8036, Graz, Austria.
| | - Christoph Bode
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| | - Ingo Hilgendorf
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| | - Carmen Härdtner
- University Heart Center, Department of Cardiology and Angiology I, University of Freiburg and Faculty of Medicine, 55 Hugstetter St, 79106, Freiburg, Germany.
| |
Collapse
|
13
|
Jones EL, Laidlaw SM, Dustin LB. TRIM21/Ro52 - Roles in Innate Immunity and Autoimmune Disease. Front Immunol 2021; 12:738473. [PMID: 34552597 PMCID: PMC8450407 DOI: 10.3389/fimmu.2021.738473] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
TRIM21 (Ro52/SSA1) is an E3 ubiquitin ligase with key roles in immune host defence, signal transduction, and possibly cell cycle regulation. It is also an autoantibody target in Sjögren's syndrome, systemic lupus erythematosus, and other rheumatic autoimmune diseases. Here, we summarise the structure and function of this enzyme, its roles in innate immunity, adaptive immunity and cellular homeostasis, the pathogenesis of autoimmunity against TRIM21, and the potential impacts of autoantibodies to this intracellular protein.
Collapse
Affiliation(s)
- Esther L Jones
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Stephen M Laidlaw
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Lynn B Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Yang M, Yi P, Jiang J, Zhao M, Wu H, Lu Q. Dysregulated translational factors and epigenetic regulations orchestrate in B cells contributing to autoimmune diseases. Int Rev Immunol 2021; 42:1-25. [PMID: 34445929 DOI: 10.1080/08830185.2021.1964498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
B cells play a crucial role in antigen presentation, antibody production and pro-/anti-inflammatory cytokine secretion in adaptive immunity. Several translational factors including transcription factors and cytokines participate in the regulation of B cell development, with the cooperation of epigenetic regulations. Autoimmune diseases are generally characterized with autoreactive B cells and high-level pathogenic autoantibodies. The success of B cell depletion therapy in mouse model and clinical trials has proven the role of B cells in pathogenesis of autoimmune diseases. The failure of B cell tolerance in immune checkpoints results in accumulated autoreactive naïve B (BN) cells with aberrant B cell receptor signaling and dysregulated B cell response, contributing to self-antibody-mediated autoimmune reaction. Dysregulation of translational factors and epigenetic alterations in B cells has been demonstrated to correlate with aberrant B cell compartment in autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren's syndrome, multiple sclerosis, diabetes mellitus and pemphigus. This review is intended to summarize the interaction of translational factors and epigenetic regulations that are involved with development and differentiation of B cells, and the mechanism of dysregulation in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ping Yi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jiao Jiang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Sherman CD, Barnes BJ. Intracellular IRF5 Dimerization Assay. Bio Protoc 2021; 11:e4021. [PMID: 34150928 PMCID: PMC8187113 DOI: 10.21769/bioprotoc.4021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/10/2021] [Accepted: 02/28/2021] [Indexed: 11/02/2022] Open
Abstract
The intracellular interferon regulatory factor 5 (IRF5) dimerization assay is a technique designed to measure molecular interaction(s) with endogenous IRF5. Here, we present two methods that detect endogenous IRF5 homodimerization and interaction of endogenous IR5 with cell penetrating peptide (CPP) inhibitors. Briefly, to detect endogenous IRF5 dimers, THP-1 cells are incubated in the presence or absence of the IRF5-targeted CPP (IRF5-CPP) inhibitor for 30 min then the cells are stimulated with R848 for 1 h. Cell lysates are separated by native-polyacrylamide gel electrophoresis (PAGE) and IRF5 dimers are detected by immunoblotting with IRF5 antibodies. To detect endogenous interactions between IRF5 and FITC-labeled IRF5-CPP, an in-cell fluorescence resonance energy transfer (FRET) assay is used. In this assay, THP-1 cells are left untreated or treated with FITC-IRF5-CPP conjugated inhibitors for 1 h. Next, cells are fixed, permeabilized, and stained with anti-IRF5 and TRITC-conjugated secondary antibodies. Transfer of fluorescence can be measured and calculated as FRET units. These methods provide rapid and accurate assays to detect IRF5 molecular interactions.
Collapse
Affiliation(s)
- Cherrie D Sherman
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| |
Collapse
|
16
|
He B, Liu S, Wang Y, Xu M, Cai W, Liu J, Bai W, Ye S, Ma Y, Hu H, Meng H, Sun T, Li Y, Luo H, Shi M, Du X, Zhao W, Chen S, Yang J, Zhu H, Jie Y, Yang Y, Guo D, Wang Q, Liu Y, Yan H, Wang M, Chen YQ. Rapid isolation and immune profiling of SARS-CoV-2 specific memory B cell in convalescent COVID-19 patients via LIBRA-seq. Signal Transduct Target Ther 2021; 6:195. [PMID: 34001847 PMCID: PMC8127497 DOI: 10.1038/s41392-021-00610-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
B cell response plays a critical role against SARS-CoV-2 infection. However, little is known about the diversity and frequency of the paired SARS-CoV-2 antigen-specific BCR repertoire after SARS-CoV-2 infection. Here, we performed single-cell RNA sequencing and VDJ sequencing using the memory and plasma B cells isolated from five convalescent COVID-19 patients, and analyzed the spectrum and transcriptional heterogeneity of antibody immune responses. Via linking BCR to antigen specificity through sequencing (LIBRA-seq), we identified a distinct activated memory B cell subgroup (CD11chigh CD95high) had a higher proportion of SARS-CoV-2 antigen-labeled cells compared with memory B cells. Our results revealed the diversity of paired BCR repertoire and the non-stochastic pairing of SARS-CoV-2 antigen-specific immunoglobulin heavy and light chains after SARS-CoV-2 infection. The public antibody clonotypes were shared by distinct convalescent individuals. Moreover, several antibodies isolated by LIBRA-seq showed high binding affinity against SARS-CoV-2 receptor-binding domain (RBD) or nucleoprotein (NP) via ELISA assay. Two RBD-reactive antibodies C14646P3S and C2767P3S isolated by LIBRA-seq exhibited high neutralizing activities against both pseudotyped and authentic SARS-CoV-2 viruses in vitro. Our study provides fundamental insights into B cell response following SARS-CoV-2 infection at the single-cell level.
Collapse
Affiliation(s)
- Bing He
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Shuning Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Mengxin Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Wei Cai
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jia Liu
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Wendi Bai
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Shupei Ye
- Pulmonary and critical care medicine, The Third People's Hospital of Dongguan City, Dongguan, Guangdong Province, China
| | - Yong Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hengrui Hu
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Huicui Meng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Tao Sun
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China.,Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, China
| | - Yanling Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Mang Shi
- Infection and Immunity Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Wenjing Zhao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shoudeng Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jingyi Yang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Haipeng Zhu
- Department of Infectious Diseases, The Ninth People's Hospital of Dongguan City, Dongguan, Guangdong Province, China
| | - Yusheng Jie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuedong Yang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Deyin Guo
- Infection and Immunity Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Shenzhen, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huimin Yan
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Manli Wang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
17
|
Lv D, Wu X, Chen X, Yang S, Chen W, Wang M, Liu Y, Gu D, Zeng G. A novel immune-related gene-based prognostic signature to predict biochemical recurrence in patients with prostate cancer after radical prostatectomy. Cancer Immunol Immunother 2021; 70:3587-3602. [PMID: 33934205 DOI: 10.1007/s00262-021-02923-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Accumulating evidences indicates that the immune landscape signature dramatically correlates with tumorigenesis and prognosis of prostate cancer (PCa). Here, we identified a novel immune-related gene-based prognostic signature (IRGPS) to predict biochemical recurrence (BCR) after radical prostatectomy. We also explored the correlation between IRGPS and tumor microenvironment. We identified an IRGPS consisting of seven immune-related genes (PPARGC1A, AKR1C2, COMP, EEF1A2, IRF5, NTM, and TPX2) that were related to the BCR-free survival of PCa patients. The high-risk patients exhibited a higher fraction of regulatory T cells and M2 macrophages than the low-risk BCR patients (P < 0.05) as well as a lower fraction of resting memory CD4 T cells and resting mast cells. These high-risk patients also had higher expression levels of CTLA4, TIGIT, PDCD1, LAG3, and TIM3. Finally, a strong correlation was detected between IRGPS and specific clinicopathological features, including Gleason scores and tumor stage. In conclusion, our study reveals the clinical significance and potential functions of the IRGPS, provides more data for predicting outcomes, and suggests more effective immunotherapeutic target strategies for PCa.
Collapse
Affiliation(s)
- Daojun Lv
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangkun Wu
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xi Chen
- Department of Urology, Guangzhou 12th People's Hospital, Guangzhou, Guangdong, China
| | - Shuxin Yang
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenzhe Chen
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ming Wang
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongda Liu
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Di Gu
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Guohua Zeng
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. .,Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230, Guangdong, China.
| |
Collapse
|
18
|
Yan J, Pandey SP, Barnes BJ, Turner JR, Abraham C. T Cell-Intrinsic IRF5 Regulates T Cell Signaling, Migration, and Differentiation and Promotes Intestinal Inflammation. Cell Rep 2021; 31:107820. [PMID: 32610123 PMCID: PMC7409536 DOI: 10.1016/j.celrep.2020.107820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 04/17/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
IRF5 polymorphisms are associated with multiple immune-mediated diseases, including ulcerative colitis. IRF5 contributions are attributed to its role in myeloid lineages. How T cell-intrinsic IRF5 contributes to inflammatory outcomes is not well understood. We identify a previously undefined key role for T cell-intrinsic IRF5. In mice, IRF5 in CD4+ T cells promotes Th1- and Th17-associated cytokines and decreases Th2-associated cytokines. IRF5 is required for the optimal assembly of the TCR-initiated signaling complex and downstream signaling at early times, and at later times binds to promoters of Th1- and Th17-associated transcription factors and cytokines. IRF5 also regulates chemokine receptor-initiated signaling and, in turn, T cell migration. In vivo, IRF5 in CD4+ T cells enhances the severity of experimental colitis. Importantly, human CD4+ T cells from high IRF5-expressing disease-risk genetic carriers demonstrate increased chemokine-induced migration and Th1/Th17 cytokines and reduced Th2-associated and anti-inflammatory cytokines. These data demonstrate key roles for T cell-intrinsic IRF5 in inflammatory outcomes.
Collapse
Affiliation(s)
- Jie Yan
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Surya P Pandey
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Betsy J Barnes
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Jerrold R Turner
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Song S, De S, Nelson V, Chopra S, LaPan M, Kampta K, Sun S, He M, Thompson CD, Li D, Shih T, Tan N, Al-Abed Y, Capitle E, Aranow C, Mackay M, Clapp WL, Barnes BJ. Inhibition of IRF5 hyperactivation protects from lupus onset and severity. J Clin Invest 2021; 130:6700-6717. [PMID: 32897883 PMCID: PMC7685739 DOI: 10.1172/jci120288] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
The transcription factor IFN regulatory factor 5 (IRF5) is a central mediator of innate and adaptive immunity. Genetic variations within IRF5 are associated with a risk of systemic lupus erythematosus (SLE), and mice lacking Irf5 are protected from lupus onset and severity, but how IRF5 functions in the context of SLE disease progression remains unclear. Using the NZB/W F1 model of murine lupus, we show that murine IRF5 becomes hyperactivated before clinical onset. In patients with SLE, IRF5 hyperactivation correlated with dsDNA titers. To test whether IRF5 hyperactivation is a targetable function, we developed inhibitors that are cell permeable, nontoxic, and selectively bind to the inactive IRF5 monomer. Preclinical treatment of NZB/W F1 mice with an inhibitor attenuated lupus pathology by reducing serum antinuclear autoantibodies, dsDNA titers, and the number of circulating plasma cells, which alleviated kidney pathology and improved survival. Clinical treatment of MRL/lpr and pristane-induced lupus mice with an inhibitor led to significant reductions in dsDNA levels and improved survival. In ex vivo human studies, the inhibitor blocked SLE serum-induced IRF5 activation and reversed basal IRF5 hyperactivation in SLE immune cells. We believe this study provides the first in vivo clinical support for treating patients with SLE with an IRF5 inhibitor.
Collapse
Affiliation(s)
- Su Song
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Saurav De
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Rutgers Graduate School of Biomedical Sciences, Newark, New Jersey, USA
| | - Victoria Nelson
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Samin Chopra
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Margaret LaPan
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Kyle Kampta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Shan Sun
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Mingzhu He
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Cherrie D Thompson
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Dan Li
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Tiffany Shih
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Natalie Tan
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Yousef Al-Abed
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Eugenio Capitle
- Division of Allergy, Immunology and Rheumatology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Cynthia Aranow
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Meggan Mackay
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - William L Clapp
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
20
|
Matta B, Barnes BJ. Coordination between innate immune cells, type I IFNs and IRF5 drives SLE pathogenesis. Cytokine 2020; 132:154731. [PMID: 31130331 PMCID: PMC11931518 DOI: 10.1016/j.cyto.2019.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease which affects multiple organs. The type I interferon (IFN) gene signature and circulating autoantibodies are hallmarks of SLE. Plasmacytoid dendritic cells (pDCs) are considered the main producers of type I IFN and production is modulated by multiple other immune cell types. In SLE, essentially every immune cell type is dysregulated and aberrant deregulation is thought to be due, in part, to direct or indirect exposure to IFN. Genetic variants within or around the transcription factor interferon regulatory factor 5 (IRF5) associate with SLE risk. Elevated IFNα activity was detected in the sera of SLE patients carrying IRF5 risk polymorphisms who were positive for either anti-RNA binding protein (anti-RBP) or anti-double-stranded DNA (anti-dsDNA) autoantibodies. Neutrophils are also an important source of type I IFNs and are found in abundance in human blood. Neutrophil extracellular traps (NETs) are considered a potential source of antigenic trigger in SLE that can lead to type I IFN gene induction, as well as increased autoantibody production. In this review, we will focus on immune cell types that produce type I IFNs and/or are affected by type I IFN in SLE. In addition, we will discuss potential inducers of endogenous type I IFN production in SLE. Last, we will postulate how the different immune cell populations may be affected by an IRF5-SLE risk haplotype.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA; Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA.
| |
Collapse
|
21
|
Nakao M, Miyagaki T, Sugaya M, Sato S. Exacerbated Imiquimod-Induced Psoriasis-Like Skin Inflammation in IRF5-Deficient Mice. Int J Mol Sci 2020; 21:ijms21103681. [PMID: 32456211 PMCID: PMC7279463 DOI: 10.3390/ijms21103681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Interferon regulatory factors (IRFs) play diverse roles in the regulation of the innate and adaptive immune responses in various diseases. In psoriasis, IRF2 is known to be involved in pathogenesis, while studies on other IRFs are limited. In this study, we investigated the role of IRF5 in psoriasis using imiquimod-induced psoriasis-like dermatitis. Although IRF5 is known to play a critical role in the induction of proinflammatory cytokines by immune cells, such as dendritic cells (DCs), macrophages, and monocytes, IRF5 deficiency unexpectedly exacerbated psoriasiform skin inflammation. The interferon-α and tumor necrosis factor-α mRNA expression levels were decreased, while levels of Th17 cytokines including IL-17, IL-22, and IL-23 were increased in IRF5-deficient mice. Furthermore, IL-23 expression in DCs from IRF5-deficient mice was upregulated both in steady state and after toll-like receptor 7/8 agonist stimulation. Importantly, the expression of IRF4, which is also important for the IL-23 production in DCs, was augmented in DCs from IRF5-deficient mice. Taken together, our results suggest that IRF5 deficiency induces the upregulation of IRF4 in DCs followed by augmented IL-23 production, resulting in the amplification of Th17 responses and the exacerbation of imiquimod-induced psoriasis-like skin inflammation. The regulation of IRF4 or IRF5 expression may be a novel therapeutic approach to psoriasis.
Collapse
Affiliation(s)
- Momoko Nakao
- Department of Dermatology, the University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (M.N.); (M.S.); (S.S.)
| | - Tomomitsu Miyagaki
- Department of Dermatology, the University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (M.N.); (M.S.); (S.S.)
- Department of Dermatology, St. Marianna University School of Medicine, Kanagawa 216-8511, Japan
- Correspondence: ; Tel.: +81-44-977-8111; Fax.: +81-44-977-3540
| | - Makoto Sugaya
- Department of Dermatology, the University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (M.N.); (M.S.); (S.S.)
- Department of Dermatology, International University of Health and Welfare, Chiba 286-0124, Japan
| | - Shinichi Sato
- Department of Dermatology, the University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (M.N.); (M.S.); (S.S.)
| |
Collapse
|
22
|
Banga J, Srinivasan D, Sun CC, Thompson CD, Milletti F, Huang KS, Hamilton S, Song S, Hoffman AF, Qin YG, Matta B, LaPan M, Guo Q, Lu G, Li D, Qian H, Bolin DR, Liang L, Wartchow C, Qiu J, Downing M, Narula S, Fotouhi N, DeMartino JA, Tan SL, Chen G, Barnes BJ. Inhibition of IRF5 cellular activity with cell-penetrating peptides that target homodimerization. SCIENCE ADVANCES 2020; 6:eaay1057. [PMID: 32440537 PMCID: PMC7228753 DOI: 10.1126/sciadv.aay1057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/05/2020] [Indexed: 05/07/2023]
Abstract
The transcription factor interferon regulatory factor 5 (IRF5) plays essential roles in pathogen-induced immunity downstream of Toll-, nucleotide-binding oligomerization domain-, and retinoic acid-inducible gene I-like receptors and is an autoimmune susceptibility gene. Normally, inactive in the cytoplasm, upon stimulation, IRF5 undergoes posttranslational modification(s), homodimerization, and nuclear translocation, where dimers mediate proinflammatory gene transcription. Here, we report the rational design of cell-penetrating peptides (CPPs) that disrupt IRF5 homodimerization. Biochemical and imaging analysis shows that IRF5-CPPs are cell permeable, noncytotoxic, and directly bind to endogenous IRF5. IRF5-CPPs were selective and afforded cell type- and species-specific inhibition. In plasmacytoid dendritic cells, inhibition of IRF5-mediated interferon-α production corresponded to a dose-dependent reduction in nuclear phosphorylated IRF5 [p(Ser462)IRF5], with no effect on pIRF5 levels. These data support that IRF5-CPPs function downstream of phosphorylation. Together, data support the utility of IRF5-CPPs as novel tools to probe IRF5 activation and function in disease.
Collapse
Affiliation(s)
- Jaspreet Banga
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | | | - Chia-Chi Sun
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Cherrie D. Thompson
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Francesca Milletti
- Roche Innovation Center New York, 430 East 29th Street, New York, NY 10016, USA
| | - Kuo-Sen Huang
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Shannon Hamilton
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Su Song
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Ann F. Hoffman
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Yajuan Gu Qin
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Bharati Matta
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Margaret LaPan
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Qin Guo
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Gang Lu
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Dan Li
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Hong Qian
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - David R. Bolin
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Lena Liang
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Charles Wartchow
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Jin Qiu
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Michelle Downing
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Satwant Narula
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Nader Fotouhi
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Julie A. DeMartino
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Seng-Lai Tan
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Gang Chen
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
- Corresponding author. (B.J.B.); (G.C.)
| | - Betsy J. Barnes
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Corresponding author. (B.J.B.); (G.C.)
| |
Collapse
|
23
|
Golinski ML, Demeules M, Derambure C, Riou G, Maho-Vaillant M, Boyer O, Joly P, Calbo S. CD11c + B Cells Are Mainly Memory Cells, Precursors of Antibody Secreting Cells in Healthy Donors. Front Immunol 2020; 11:32. [PMID: 32158442 PMCID: PMC7051942 DOI: 10.3389/fimmu.2020.00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
CD11c+ B cells have been reported to be increased in autoimmune diseases, but they are detected in the blood of healthy individuals as well. We aimed to characterize CD11c+ B cells from healthy donors by flow cytometry, microarray analysis, and in vitro functional assays. Here, we report that CD11c+ B cells are a distinct subpopulation of B cells, enriched in the memory subpopulation even if their phenotype is heterogeneous, with overexpression of genes involved in B-cell activation and differentiation as well as in antigen presentation. Upon activation, CD11c+ B cells can differentiate into antibody-secreting cells, and CD11c could be upregulated in CD11c- B cells by B-cell receptor activation. Finally, we show that patients with pemphigus, an autoimmune disease mediated by B cells, have a decreased frequency of CD11c+ B cell after treatment, relative to baseline. Our findings show that CD11c+ B cells are mainly memory B cells prone to differentiate into antibody secreting cells that accumulate with age, independently of gender.
Collapse
Affiliation(s)
- Marie-Laure Golinski
- INSERM U1234, Normandy University, Rouen, France
- Department of Dermatology, Rouen University Hospital, Rouen, France
| | | | | | - Gaetan Riou
- INSERM U1234, Normandy University, Rouen, France
| | - Maud Maho-Vaillant
- INSERM U1234, Normandy University, Rouen, France
- Department of Dermatology, Rouen University Hospital, Rouen, France
| | - Olivier Boyer
- INSERM U1234, Normandy University, Rouen, France
- Department of Immunology, Rouen University Hospital, Rouen, France
| | - Pascal Joly
- INSERM U1234, Normandy University, Rouen, France
- Department of Dermatology, Rouen University Hospital, Rouen, France
| | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The aim of this review is to discuss recent developments in our understanding of how systemic lupus erythematosus (SLE)-associated genes contribute to autoimmunity. RECENT FINDINGS Gene-function studies have revealed mechanisms through which SLE-associated alleles of IFIH1, TNFAIP3, IRF5, and PRDM1 likely contribute to the development of autoimmunity. Novel research has identified Mac-1 (encoded by ITGAM), CaMK4, and iRhom2 as plausible therapeutic targets in lupus nephritis. SUMMARY The work discussed in this review has broad implications for our understanding of the pathogenesis of SLE and for the development of novel therapeutic strategies.
Collapse
|
25
|
Chiang S, Shinohara H, Huang JH, Tsai HK, Okada M. Inferring the transcriptional regulatory mechanism of signal-dependent gene expression via an integrative computational approach. FEBS Lett 2020; 594:1477-1496. [PMID: 32052437 DOI: 10.1002/1873-3468.13757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/26/2019] [Accepted: 01/20/2020] [Indexed: 11/10/2022]
Abstract
Eukaryotic transcription factors (TFs) coordinate different upstream signals to regulate the expression of their target genes. To unveil this regulatory network in B-cell receptor signaling, we developed a computational pipeline to systematically analyze the extracellular signal-regulated kinase (ERK)- and IκB kinase (IKK)-dependent transcriptome responses. We combined a bilinear regression method and kinetic modeling to identify the signal-to-TF and TF-to-gene dynamics, respectively. We input a set of time-course experimental data for B cells and concentrated on transcriptional activators. The results show that the combination of TFs differentially controlled by ERK and IKK could contribute divergent expression dynamics in orchestrating the B-cell response. Our findings provide insights into the regulatory mechanisms underlying signal-dependent gene expression in eukaryotic cells.
Collapse
Affiliation(s)
- Sufeng Chiang
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | | | - Jia-Hsin Huang
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Huai-Kuang Tsai
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Mariko Okada
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory of Cell Systems, Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
26
|
Kunishita Y, Yoshimi R, Kamiyama R, Kishimoto D, Yoshida K, Hashimoto E, Komiya T, Sakurai N, Sugiyama Y, Kirino Y, Ozato K, Nakajima H. TRIM21 Dysfunction Enhances Aberrant B-Cell Differentiation in Autoimmune Pathogenesis. Front Immunol 2020; 11:98. [PMID: 32117252 PMCID: PMC7020776 DOI: 10.3389/fimmu.2020.00098] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/14/2020] [Indexed: 01/06/2023] Open
Abstract
TRIM21 is one of the autoantigens that reacts with an anti-SS-A antibody (Ab) present in patients with systemic lupus erythematosus (SLE) and Sjögren's syndrome. TRIM21 is thought to play a role in B-cell proliferation and apoptosis, among other activities. Here we examined a pathological role of TRIM21 in SLE. Trim21-deficient MRL/lpr mice were generated by backcrossing Trim21-deficient C57BL/6 mice to MRL/lpr mice. The levels of serum anti-dsDNA Ab and urine protein at 28 weeks of age were significantly higher in Trim21-deficient MRL/lpr mice as compared to wild-type MRL/lpr mice (p = 0.029 and 0.003, respectively). Resting B cells from Trim21-deficient mice showed significantly higher abilities to differentiate into plasmablasts and to produce Ab as compared with control mice. Due to the reduction of TRIM21-mediated ubiquitylation, IRF5 protein expression was increased in Trim21-deficient MRL/lpr mice (p = 0.021), which correlated with increased plasmablast generation and immunoglobulin production. B cells from SLE patients with anti-TRIM21 Ab seropositivity also showed a significantly higher ability to differentiate into plasmablasts as compared with those without anti-TRIM21 Ab or healthy controls. These results suggest that TRIM21 dysfunction contributes to SLE pathogenesis by promoting B-cell differentiation, for which anti-TRIM21 Ab may be partly responsible.
Collapse
Affiliation(s)
- Yosuke Kunishita
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryusuke Yoshimi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Reikou Kamiyama
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daiga Kishimoto
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Koji Yoshida
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eijin Hashimoto
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takaaki Komiya
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Natsuki Sakurai
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yumiko Sugiyama
- Center for Rheumatic Diseases, Yokohama City University Medical Center, Yokohama, Japan
| | - Yohei Kirino
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keiko Ozato
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
27
|
Li D, Matta B, Song S, Nelson V, Diggins K, Simpfendorfer KR, Gregersen PK, Linsley P, Barnes BJ. IRF5 genetic risk variants drive myeloid-specific IRF5 hyperactivation and presymptomatic SLE. JCI Insight 2020; 5:124020. [PMID: 31877114 DOI: 10.1172/jci.insight.124020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
Genetic variants within or near the interferon regulatory factor 5 (IRF5) locus associate with systemic lupus erythematosus (SLE) across ancestral groups. The major IRF5-SLE risk haplotype is common across populations, yet immune functions for the risk haplotype are undefined. We characterized the global immune phenotype of healthy donors homozygous for the major risk and nonrisk haplotypes and identified cell lineage-specific alterations that mimic presymptomatic SLE. Contrary to previous studies in B lymphoblastoid cell lines and SLE immune cells, IRF5 genetic variants had little effect on IRF5 protein levels in healthy donors. Instead, we detected basal IRF5 hyperactivation in the myeloid compartment of risk donors that drives the SLE immune phenotype. Risk donors were anti-nuclear antibody positive with anti-Ro and -MPO specificity, had increased circulating plasma cells and plasmacytoid dendritic cells, and had enhanced spontaneous NETosis. The IRF5-SLE immune phenotype was conserved over time and probed mechanistically by ex vivo coculture, indicating that risk neutrophils are drivers of the global immune phenotype. RNA-Seq of risk neutrophils revealed increased IRF5 transcript expression, IFN pathway enrichment, and decreased expression of ROS pathway genes. Altogether, the data support that individuals carrying the IRF5-SLE risk haplotype are more susceptible to environmental/stochastic influences that trigger chronic immune activation, predisposing to the development of clinical SLE.
Collapse
Affiliation(s)
- Dan Li
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Bharati Matta
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Su Song
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Victoria Nelson
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Kirsten Diggins
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Kim R Simpfendorfer
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Peter Linsley
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Betsy J Barnes
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
28
|
Csumita M, Csermely A, Horvath A, Nagy G, Monori F, Göczi L, Orbea HA, Reith W, Széles L. Specific enhancer selection by IRF3, IRF5 and IRF9 is determined by ISRE half-sites, 5' and 3' flanking bases, collaborating transcription factors and the chromatin environment in a combinatorial fashion. Nucleic Acids Res 2020; 48:589-604. [PMID: 31799619 PMCID: PMC6954429 DOI: 10.1093/nar/gkz1112] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022] Open
Abstract
IRF3, IRF5 and IRF9 are transcription factors, which play distinct roles in the regulation of antiviral and inflammatory responses. The determinants that mediate IRF-specific enhancer selection are not fully understood. To uncover regions occupied predominantly by IRF3, IRF5 or IRF9, we performed ChIP-seq experiments in activated murine dendritic cells. The identified regions were analysed with respect to the enrichment of DNA motifs, the interferon-stimulated response element (ISRE) and ISRE half-site variants, and chromatin accessibility. Using a machine learning method, we investigated the predictability of IRF-dominance. We found that IRF5-dominant regions differed fundamentally from the IRF3- and IRF9-dominant regions: ISREs were rare, while the NFKB motif and special ISRE half-sites, such as 5'-GAGA-3' and 5'-GACA-3', were enriched. IRF3- and IRF9-dominant regions were characterized by the enriched ISRE motif and lower frequency of accessible chromatin. Enrichment analysis and the machine learning method uncovered the features that favour IRF3 or IRF9 dominancy (e.g. a tripartite form of ISRE and motifs for NF-κB for IRF3, and the GAS motif and certain ISRE variants for IRF9). This study contributes to our understanding of how IRF members, which bind overlapping sets of DNA sequences, can initiate signal-dependent responses without activating superfluous or harmful programmes.
Collapse
Affiliation(s)
- Mária Csumita
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Attila Csermely
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Fanny Monori
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Loránd Göczi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Hans-Acha Orbea
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Centre Médical Universitaire (CMU), CH-1211 Geneva, Switzerland
| | - Lajos Széles
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| |
Collapse
|
29
|
Mai LT, Smans M, Silva-Barrios S, Fabié A, Stäger S. IRF-5 Expression in Myeloid Cells Is Required for Splenomegaly in L. donovani Infected Mice. Front Immunol 2020; 10:3071. [PMID: 32038622 PMCID: PMC6985270 DOI: 10.3389/fimmu.2019.03071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/16/2019] [Indexed: 01/14/2023] Open
Abstract
Persistent Leishmania donovani infection is characterized by chronic inflammation, immune suppression, and splenomegaly. We have previously reported that the transcription factor interferon regulatory factor 5 (IRF-5) is largely responsible for inducing the inflammatory response and maintaining protective Th1 cells following L. donovani inoculation in mice. However, the cellular source responsible for these effects is yet unknown. In this study, we investigated the role of IRF-5 in myeloid cells during experimental visceral leishmaniasis (VL). First, we show that the LysM-Cre mouse model is not suited for investigating gene expression in splenic myeloid cells during experimental VL. Using the Cd11c-Cre mouse model, we demonstrate that Irf5 expression in CD11c+ cells (monocytes, dendritic cells, activated macrophages) is essential for inducing splenomegaly and for recruiting myeloid cells to the spleen, but it is not required for the development or maintenance of parasite-specific IFNγ-producing CD4 T cells. CD11c-specific Irf5 -/- mice are more resistant to L. donovani infection, suggesting that the induction of splenomegaly is detrimental to the host.
Collapse
Affiliation(s)
- Linh Thuy Mai
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Mélina Smans
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Sasha Silva-Barrios
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Aymeric Fabié
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Simona Stäger
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| |
Collapse
|
30
|
An Ancient BCR-like Signaling Promotes ICP Production and Hemocyte Phagocytosis in Oyster. iScience 2020; 23:100834. [PMID: 31982779 PMCID: PMC6994640 DOI: 10.1016/j.isci.2020.100834] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/24/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
BCR/TCR-based adaptive immune systems arise in the jawed vertebrates, and B cell receptors (BCRs) play an important role in the clonal selection of B cells and their differentiation into antibody-secreting plasma cells. The existence of BCR-like molecule and the activation mechanism of the downstream response are still not clear in invertebrates. In this study, an ancient BCR-like molecule (designated as CgIgR) with an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic tail was identified from the Pacific oyster Crassostrea gigas to investigate its involvement in immune response. CgIgR could bind different bacteria through five extracellular Ig domains and formed dimers. The activated CgIgR recruited CgSyk to promote CgERK phosphorylation. The CgIgR-mediated signaling promoted the production of immunoglobulin domain-containing proteins (CgICP-2 and CgLRRIG-1) through inducing CgH3K4me2. The produced CgICPs eventually facilitated hemocytes to phagocytize and eliminate V. splendidus. This study proposed that there was an ancient BCR-like molecule and BCR-like signaling in molluscs. An ancient BCR-like molecule (defined as CgIgR) was identified from C. gigas We propose IgR-mediated signaling induces CgERK activity in oyster IgR-mediated signaling induced CgH3K4me2 to promote the production of CgICPs CgICPs facilitated the hemocytes to phagocytize and eliminate V. splendidus
Collapse
|
31
|
Feng Y, Yang M, Wu H, Lu Q. The pathological role of B cells in systemic lupus erythematosus: From basic research to clinical. Autoimmunity 2019; 53:56-64. [PMID: 31876195 DOI: 10.1080/08916934.2019.1700232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that often occurs in females of child-bearing age. It involves multiple systems and severely threatens human life. One of the typical characteristics of SLE is the formation of immune complexes with autoantibodies produced by B cells that target various autoantigens, thus indicating the pivotal role of B cells in the pathogenesis of SLE. Increasing evidence has shown abnormal expression of B cells in the peripheral blood of SLE patients. Moreover, numerous studies have shown that B cells in SLE patients are abnormally activated, as well as aberrantly differentiated, and are involved in the inflammatory cytokine milieu, abnormal transcription factor activity, and signalling pathways. Several biological therapies targeting B cells, such as anti-CD20 antibodies, have been intensively studied in preclinical and clinical trials. However, the results have not met expectations. Therefore, new therapies targeting B cells are in great need. This review will summarize the latest progress in basic research on B cells to better understand the pathogenesis of SLE and will discuss the outcomes of B-cell-targeting treatments that provide potential therapeutic targets and strategies for SLE. Studies have clarified high levels of IL-21 in serum from SLE patients and animal models. IL-21 promotes B cell differentiation, which results in antibodies accumulation leads to SLE. Therefore, further studies on IL-21 will give new perspectives on SLE treatments. In addition, the application of drugs targeting plasma cell depletion in SLE patients may also achieve satisfied results in treatment.
Collapse
Affiliation(s)
- Yu Feng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| |
Collapse
|
32
|
Wang C, Deng H, Gong Y, You R, Chen M, Zhao MH. Effect of high mobility group box 1 on Toll-like receptor 9 in B cells in myeloperoxidase-ANCA-associated vasculitis. Autoimmunity 2019; 53:28-34. [PMID: 31790283 DOI: 10.1080/08916934.2019.1696777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
High mobility group box 1 (HMGB1) played pathogenic role in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Recent findings demonstrated that Toll-like receptor 9 (TLR9) was involved in B cell tolerance breaking of autoimmune disease, including AAV. Here, we investigated the effect of HMGB1 on TLR9 in B cells of AAV. In the present work, patients with myeloperoxidase (MPO)-AAV in active stage were recruited. Intracellular TLR9 expression in various B cell subpopulations of the whole blood was detected by flow cytometry and the correlation with clinical data was analysed. Our results showed that intracellular TLR9 expression in B cells, memory B cells and plasmablasts correlated with erythrocyte sedimentation rate (ESR) or C-reactive protein (CRP). In particular, TLR9 expression in plasma cells correlated with ESR, CRP, serum creatinine, eGFR, and Birmingham Vasculitis Activity Score. To further explore the effect of HMGB1 on B cell, peripheral blood mononuclear cells (PBMCs) from AAV patients were isolated. After stimulated with HMGB1, TLR9 expression in various B cell subpopulations and proliferation ratio of live B cells were analysed by flow cytometry. We found that TLR9 expression in plasma cells and the proliferation ratio of live B cells by HMGB1 stimulation were significantly upregulated compared with the control group. Therefore, TLR9 expression in plasma cells was associated with disease activity of MPO-AAV. HMGB1 could enhance TLR9 expression in plasma cells and B cell proliferation. These indicated a role of HMGB1 on TLR9 in B cells in MPO-AAV, which would provide potential clues for intervention strategies.
Collapse
Affiliation(s)
- Chen Wang
- Department of Medicine, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Hui Deng
- Department of Medicine, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Yan Gong
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Ran You
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Min Chen
- Department of Medicine, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ming-Hui Zhao
- Department of Medicine, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
33
|
Shih T, De S, Barnes BJ. RNAi Transfection Optimized in Primary Naïve B Cells for the Targeted Analysis of Human Plasma Cell Differentiation. Front Immunol 2019; 10:1652. [PMID: 31396212 PMCID: PMC6664017 DOI: 10.3389/fimmu.2019.01652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022] Open
Abstract
Upon antigen recognition, naïve B cells undergo rapid proliferation followed by differentiation to specialized antibody secreting cells (ASCs), called plasma cells. Increased circulating plasma cells are reported in patients with B cell-associated malignancies, chronic graft-vs.-host disease, and autoimmune disorders. Our aim was to optimize an RNAi-based method that efficiently and reproducibly knocks-down genes of interest in human primary peripheral B cells for the targeted analysis of ASC differentiation. The unique contributions of transcriptional diversity in species-specific regulatory networks and the mechanisms of gene function need to be approached directly in human B cells with tools to hone our basic inferences from animal models to human biology. To date, methods for gene knockdown in human primary B cells, which tend to be more refractory to transfection than immortalized B cell lines, have been limited by losses in cell viability and ineffective penetrance. Our single-step siRNA nucleofector-based approach for human primary naïve B cells demonstrates reproducible knockdown efficiency (~40–60%). We focused on genes already known to play key roles in murine ASC differentiation, such as interferon regulatory factor 4 (IRF4) and AID. This study reports a validated non-viral method of siRNA delivery into human primary B cells that can be applied to study gene regulatory networks that control human ASC differentiation.
Collapse
Affiliation(s)
- Tiffany Shih
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, Northwell Health, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Saurav De
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, Northwell Health, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Graduate School of Biomedical Sciences Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, Northwell Health, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, United States
| |
Collapse
|
34
|
Wang J, Huang A, Yuan Z, Su L, Xu W. Association of IRF5 rs2004640 polymorphism and systemic lupus erythematosus: A meta‐analysis. Int J Rheum Dis 2019; 22:1598-1606. [PMID: 31347288 DOI: 10.1111/1756-185x.13654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Jia‐Min Wang
- Department of Evidence‐Based Medicine, School of Public Health Southwest Medical University Luzhou Sichuan China
| | - An‐Fang Huang
- Department of Rheumatology and Immunology Affiliated Hospital of Southwest Medical University Luzhou Sichuan China
| | - Zhi‐Chao Yuan
- Department of Evidence‐Based Medicine, School of Public Health Southwest Medical University Luzhou Sichuan China
| | - Lin‐Chong Su
- Department of Rheumatology and Immunology Minda Hospital of Hubei Minzu University Enshi Hubei China
| | - Wang‐Dong Xu
- Department of Evidence‐Based Medicine, School of Public Health Southwest Medical University Luzhou Sichuan China
| |
Collapse
|
35
|
A promising role of interferon regulatory factor 5 as an early warning biomarker for the development of human non-small cell lung cancer. Lung Cancer 2019; 135:47-55. [PMID: 31447002 DOI: 10.1016/j.lungcan.2019.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 06/09/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Non-small cell lung cancer (NSCLC) accounts for 85%-90% of lung cancer cases and is a covert disease lacking early symptoms. Since cancer is recognised as an inflammation-associated condition, we analysed the relationship between the expression of interferon regulatory factor 5 (IRF5), a key transcription factor controlling inflammatory responses, and NSCLC development with the aim of identifying a warning biomarker for early diagnosis of the disease. MATERIALS AND METHODS The expression of IRF5 and its associated inflammatory factors IL-6, IL-10, IP-10, and TNF-α in the peripheral blood of NSCLC patients (n = 66) and healthy controls (n = 42) was analysed by quantitative RT-PCR, flow cytometry, and a cytometric bead array. IRF5 protein expression in NSCLC tissues (n = 102) was detected by Western blotting. The diagnostic value of IRF5 expression was determined by a receiver-operating characteristic (ROC) curve analysis. RESULTS The protein levels of IRF5, IL-6, and IP-10 were significantly higher in the peripheral blood of NSCLC patients than in that of healthy controls. IP-10 levels in plasma and IL-10 mRNA expression in white blood cells (WBCs) were significantly upregulated in early-stage NSCLC, whereas plasma IL-6 and IL-10 were elevated in the progressive stage. IRF5 protein levels in WBCs were positively correlated with plasma IP-10 but negatively correlated with plasma IL-10. Furthermore, the mRNA and protein levels of IRF5 in WBCs were significantly elevated in patients with early stage NSCLC compared to those in the progressive stage. Additionally, IRF5 protein levels were significantly lower in NSCLC tumour tissues than those in normal lung tissues. CONCLUSIONS IRF5 levels in WBCs can be significantly upregulated in early stage NSCLC and were shown to have diagnostic value as an early warning biomarker of NSCLC development.
Collapse
|
36
|
Krueger CC, Thoms F, Keller E, Leoratti FMS, Vogel M, Bachmann MF. RNA and Toll-Like Receptor 7 License the Generation of Superior Secondary Plasma Cells at Multiple Levels in a B Cell Intrinsic Fashion. Front Immunol 2019; 10:736. [PMID: 31024563 PMCID: PMC6467167 DOI: 10.3389/fimmu.2019.00736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
Secondary plasma cells (PCs) originate from memory B cells and produce increased levels of antibodies with higher affinity compared to PCs generated during primary responses. Here we demonstrate that virus-like particles (VLPs) only induce secondary PCs in the presence of toll-like receptor (TLR) 7 and if they are loaded with RNA. Furthermore, adoptive transfer experiments demonstrate that RNA and TLR7 signaling are required for secondary PC generation, both at the level of memory B cell as well as PC differentiation. TLR7-signaling occurred in a B cell intrinsic manner as TLR7-deficient B cells in an otherwise TLR7-competent environment failed to differentiate into secondary PCs. Therefore, RNA inside VLPs is essential for the generation of memory B cells, which are competent to differentiate to secondary PCs and for the differentiation of secondary PCs themselves. While we have not tested all other TLR or non-TLR adjuvants with our VLPs, these data have obvious implications for vaccine design, as RNA packaged into VLPs is a simple way to enhance induction of memory B cells capable of generating secondary PCs.
Collapse
Affiliation(s)
- Caroline C. Krueger
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
| | - Franziska Thoms
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
| | - Elsbeth Keller
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
| | - Fabiana M. S. Leoratti
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
| | - Monique Vogel
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
- Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Fike AJ, Elcheva I, Rahman ZSM. The Post-GWAS Era: How to Validate the Contribution of Gene Variants in Lupus. Curr Rheumatol Rep 2019; 21:3. [DOI: 10.1007/s11926-019-0801-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Thompson CD, Matta B, Barnes BJ. Therapeutic Targeting of IRFs: Pathway-Dependence or Structure-Based? Front Immunol 2018; 9:2622. [PMID: 30515152 PMCID: PMC6255967 DOI: 10.3389/fimmu.2018.02622] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
The interferon regulatory factors (IRFs) are a family of master transcription factors that regulate pathogen-induced innate and acquired immune responses. Aberration(s) in IRF signaling pathways due to infection, genetic predisposition and/or mutation, which can lead to increased expression of type I interferon (IFN) genes, IFN-stimulated genes (ISGs), and other pro-inflammatory cytokines/chemokines, has been linked to the development of numerous diseases, including (but not limited to) autoimmune and cancer. What is currently lacking in the field is an understanding of how best to therapeutically target these transcription factors. Many IRFs are regulated by post-translational modifications downstream of pattern recognition receptors (PRRs) and some of these modifications lead to activation or inhibition. We and others have been able to utilize structural features of the IRFs in order to generate dominant negative mutants that inhibit function. Here, we will review potential therapeutic strategies for targeting all IRFs by using IRF5 as a candidate targeting molecule.
Collapse
Affiliation(s)
- Cherrie D Thompson
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
39
|
Chow KT, Driscoll C, Loo YM, Knoll M, Gale M. IRF5 regulates unique subset of genes in dendritic cells during West Nile virus infection. J Leukoc Biol 2018; 105:411-425. [PMID: 30457675 DOI: 10.1002/jlb.ma0318-136rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023] Open
Abstract
Pathogen recognition receptor (PRR) signaling is critical for triggering innate immune activation and the expression of immune response genes, including genes that impart restriction against virus replication. RIG-I-like receptors and TLRs are PRRs that signal immune activation and drive the expression of antiviral genes and the production of type I IFN leading to induction of IFN-stimulated genes, in part through the interferon regulatory factor (IRF) family of transcription factors. Previous studies with West Nile virus (WNV) showed that IRF3 and IRF7 regulate IFN expression in fibroblasts and neurons, whereas macrophages and dendritic cells (DCs) retained the ability to induce IFN-β in the absence of IRF3 and IRF7 in a manner implicating IRF5 in PRR signaling actions. Here we assessed the contribution of IRF5 to immune gene induction in response to WNV infection in DCs. We examined IRF5-dependent gene expression and found that loss of IRF5 in mice resulted in modest and subtle changes in the expression of WNV-regulated genes. Anti-IRF5 chromatin immunoprecipitation with next-generation sequencing of genomic DNA coupled with mRNA analysis revealed unique IRF5 binding motifs within the mouse genome that are distinct from the canonical IRF binding motif and that link with IRF5-target gene expression. Using integrative bioinformatics analyses, we identified new IRF5 primary target genes in DCs in response to virus infection. This study provides novel insights into the distinct and unique innate immune and immune gene regulatory program directed by IRF5.
Collapse
Affiliation(s)
- Kwan T Chow
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Connor Driscoll
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Yueh-Ming Loo
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Megan Knoll
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| |
Collapse
|
40
|
Emerging areas for therapeutic discovery in SLE. Curr Opin Immunol 2018; 55:1-8. [PMID: 30245241 DOI: 10.1016/j.coi.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
Abstract
Recent advances in the field of autoimmunity have identified numerous dysfunctional pathways in Systemic Lupus Erythematosus (SLE), including aberrant clearance of nucleic-acid-containing debris and immune complexes, excessive innate immune activation leading to overactive type I IFN signalling, and abnormal B and T cell activation. On the background of genetic polymorphisms that reset thresholds for immune responses, multiple immune cells contribute to inflammatory amplification circuits. Neutrophils activated by immune complexes are a rich source of immunogenic nucleic acids. Identification of new B subsets suggests several mechanisms for induction of autoantibody producing effector cells. Disordered T cell regulation involves both CD4 and CD8 cells. An imbalance in immunometabolism in immune cells amplifies autoimmunity and inflammation. These new advances in understanding of disease pathogenesis provide fertile ground for therapeutic development.
Collapse
|
41
|
Horiuchi S, Ueno H. Potential Pathways Associated With Exaggerated T Follicular Helper Response in Human Autoimmune Diseases. Front Immunol 2018; 9:1630. [PMID: 30061896 PMCID: PMC6054970 DOI: 10.3389/fimmu.2018.01630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/02/2018] [Indexed: 12/26/2022] Open
Abstract
Convincing lines of evidence in both mice and humans show that exaggerated T follicular helper (Tfh) responses is pathogenic in autoimmune diseases. However, the cause of exaggerated Tfh response in humans is still much less clear than in mouse models where genetic factors can be manipulated for in vivo testing. Nonetheless, recent advances in our understanding on the mechanisms of human Tfh differentiation and identification of multiple risk loci in genome-wide association studies have revealed several pathways potentially associated with exaggerated Tfh response in human autoimmune diseases. In this review, we will first briefly summarize the differentiation mechanisms of Tfh cells in humans. We describe the features of “Tfh-like” cells recently identified in inflamed tissues of human autoimmune diseases. Then we will discuss how risk loci identified in GWAS are potentially involved in exaggerated Tfh response in human autoimmune diseases.
Collapse
Affiliation(s)
- Shu Horiuchi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hideki Ueno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
42
|
Kaur A, Lee LH, Chow SC, Fang CM. IRF5-mediated immune responses and its implications in immunological disorders. Int Rev Immunol 2018; 37:229-248. [PMID: 29985675 DOI: 10.1080/08830185.2018.1469629] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcription factors are gene regulators that activate or repress target genes. One family of the transcription factors that have been extensively studied for their crucial role in regulating gene network in the immune system is the interferon regulatory factors (IRFs). IRFs possess a novel turn-helix turn motif that recognizes a specific DNA consensus found in the promoters of many genes that are involved in immune responses. IRF5, a member of IRFs has recently gained much attention for its role in regulating inflammatory responses and autoimmune diseases. Here, we discuss the role of IRF5 in regulating immune cells functions and how the dysregulation of IRF5 contributes to the pathogenesis of immune disorders. We also review the latest findings of potential IRF5 inhibitors that modulate IRF5 activity in the effort of developing therapeutic approaches for treating inflammatory disorders.
Collapse
Affiliation(s)
- Ashwinder Kaur
- a School of Pharmacy, Faculty of Science , The University of Nottingham Malaysia Campus , Selangor Darul , Ehsan , Malaysia
| | - Learn-Han Lee
- c School of Pharmacy , Monash University Malaysia , Selangor Darul , Ehsan , Malaysia.,e Jeffrey Cheah School of Medicine and Health Sciences , Monash University Malaysia , Selangor Darul , Ehsan , Malaysia
| | - Sek-Chuen Chow
- d School of Science , Monash University Malaysia , Selangor Darul , Ehsan , Malaysia
| | - Chee-Mun Fang
- b Department of Biomedical Sciences, Faculty of Science , The University of Nottingham Malaysia Campus , Selangor Darul , Ehsan , Malaysia
| |
Collapse
|