1
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Duman H, Karav S. Bovine colostrum and its potential contributions for treatment and prevention of COVID-19. Front Immunol 2023; 14:1214514. [PMID: 37908368 PMCID: PMC10613682 DOI: 10.3389/fimmu.2023.1214514] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Bovine colostrum (BC) is the initial milk an animal produces after giving birth, particularly in the first few days. Numerous bioactive substances found in BC, including proteins, enzymes, growth factors, immunoglobulins, etc., are beneficial to human health. BC has a significant role to play as part of a healthy diet, with well-documented health and nutritional advantages for people. Therefore, the use of BC and its crucial derivatives in the development of functional food and pharmaceuticals for the prevention of several diseases such as gastrointestinal and respiratory system disorders is becoming increasingly popular around the world. A novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of a cluster of pneumonia cases that is called Coronavirus Disease 2019 (COVID-19) in China. After the first SARS-CoV-2 virus-related fatality was announced, the illness quickly spread throughout China and to other continents, causing a pandemic. Since then, numerous studies have been initiated to develop safe and efficient treatments. To prevent viral infection and potential lingering effects, it is important to investigate alternative treatments for COVID-19. Due to its effective bioactive profile and its immunomodulatory roles in biological processes, BC might be considered a promising approach to assist in combating people affected by the SARS-CoV-2 or prevention from the virus. BC has immunomodulatory effects because to its high concentration of bioactive components such as immunoglobulins, lactoferrin, cytokines, and growth factors, etc., which might help control immunological responses, potentially fostering a balanced immune response. Furthermore, its bioactive components have a potential cross-reactivity against SARS-CoV-2, aiding in virus neutralization and its comprehensive food profile also supplies important vitamins, minerals, and amino acids, fostering a healthy immune system. Hence, the possible contributions of BC to the management of COVID-19 were reviewed in this article based on the most recent research on the subject. Additionally, the key BC components that influence immune system modulation were evaluated. These components may serve as potential mediators or therapeutic advantages in COVID-19.
Collapse
Affiliation(s)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| |
Collapse
|
3
|
Singh P, Hernandez‐Rauda R, Peña‐Rodas O. Preventative and therapeutic potential of animal milk components against COVID-19: A comprehensive review. Food Sci Nutr 2023; 11:2547-2579. [PMID: 37324885 PMCID: PMC10261805 DOI: 10.1002/fsn3.3314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/24/2023] [Indexed: 06/17/2023] Open
Abstract
The global pandemic of COVID-19 is considered one of the most catastrophic events on earth. During the pandemic, food ingredients may play crucial roles in preventing infectious diseases and sustaining people's general health and well-being. Animal milk acts as a super food since it has the capacity to minimize the occurrence of viral infections due to inherent antiviral properties of its ingredients. SARS-CoV-2 virus infection can be prevented by immune-enhancing and antiviral properties of caseins, α-lactalbumin, β-lactoglobulin, mucin, lactoferrin, lysozyme, lactoperoxidase, oligosaccharides, glycosaminoglycans, and glycerol monolaurate. Some of the milk proteins (i.e., lactoferrin) may work synergistically with antiviral medications (e.g., remdesivir), and enhance the effectiveness of treatment in this disease. Cytokine storm during COVID-19 can be managed by casein hydrolyzates, lactoferrin, lysozyme, and lactoperoxidase. Thrombus formation can be prevented by casoplatelins as these can inhibit human platelet aggregation. Milk vitamins (i.e., A, D, E, and B complexes) and minerals (i.e., Ca, P, Mg, Zn, and Se) can have significantly positive effects on boosting the immunity and health status of individuals. In addition, certain vitamins and minerals can also act as antioxidants, anti-inflammatory, and antivirals. Thus, the overall effect of milk might be a result of synergistic antiviral effects and host immunomodulator activities from multiple components. Due to multiple overlapping functions of milk ingredients, they can play vital and synergistic roles in prevention as well as supportive agents during principle therapy of COVID-19.
Collapse
Affiliation(s)
- Parminder Singh
- Department of Animal Husbandry AmritsarGovernment of PunjabAmritsarIndia
| | - Roberto Hernandez‐Rauda
- Laboratorio de Inocuidad de AlimentosUniversidad Doctor Andres BelloSan SalvadorEl Salvador, América Central
| | - Oscar Peña‐Rodas
- Laboratorio de Inocuidad de AlimentosUniversidad Doctor Andres BelloSan SalvadorEl Salvador, América Central
| |
Collapse
|
4
|
Huang W, Dong A, Pham HT, Zhou C, Huo Z, Wätjen AP, Prakash S, Bang-Berthelsen CH, Turner MS. Evaluation of the fermentation potential of lactic acid bacteria isolated from herbs, fruits and vegetables as starter cultures in nut-based milk alternatives. Food Microbiol 2023; 112:104243. [PMID: 36906309 DOI: 10.1016/j.fm.2023.104243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Fermentation of plant-based milk alternatives (PBMAs), including nut-based products, has the potential to generate new foods with improved sensorial properties. In this study, we screened 593 lactic acid bacteria (LAB) isolates from herbs, fruits and vegetables for their ability to acidify an almond-based milk alternative. The majority of the strongest acidifying plant-based isolates were identified as Lactococcus lactis, which were found to lower the pH of almond milk faster than dairy yoghurt cultures. Whole genome sequencing (WGS) of 18 plant-based Lc. lactis isolates revealed the presence of sucrose utilisation genes (sacR, sacA, sacB and sacK) in the strongly acidifying strains (n = 17), which were absent in one non-acidifying strain. To confirm the importance of Lc. lactis sucrose metabolism in efficient acidification of nut-based milk alternatives, we obtained spontaneous mutants defective in sucrose utilisation and confirmed their mutations by WGS. One mutant containing a sucrose-6-phosphate hydrolase gene (sacA) frameshift mutation was unable to efficiently acidify almond, cashew and macadamia nut milk alternatives. Plant-based Lc. lactis isolates were heterogeneous in their possession of the nisin gene operon near the sucrose gene cluster. The results of this work show that sucrose-utilising plant-based Lc. lactis have potential as starter cultures for nut-based milk alternatives.
Collapse
Affiliation(s)
- Wenkang Huang
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | - Anran Dong
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | - Huong Thi Pham
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | - Cailtin Zhou
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | - Zhaotong Huo
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | - Anders Peter Wätjen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Sangeeta Prakash
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | | | - Mark S Turner
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
Kaczyńska K, Jampolska M, Wojciechowski P, Sulejczak D, Andrzejewski K, Zając D. Potential of Lactoferrin in the Treatment of Lung Diseases. Pharmaceuticals (Basel) 2023; 16:192. [PMID: 37259341 PMCID: PMC9960651 DOI: 10.3390/ph16020192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 11/07/2023] Open
Abstract
Lactoferrin (LF) is a multifunctional iron-binding glycoprotein that exhibits a variety of properties, such as immunomodulatory, anti-inflammatory, antimicrobial, and anticancer, that can be used to treat numerous diseases. Lung diseases continue to be the leading cause of death and disability worldwide. Many of the therapies currently used to treat these diseases have limited efficacy or are associated with side effects. Therefore, there is a constant pursuit for new drugs and therapies, and LF is frequently considered a therapeutic agent and/or adjunct to drug-based therapies for the treatment of lung diseases. This article focuses on a review of the existing and most up-to-date literature on the contribution of the beneficial effects of LF on the treatment of lung diseases, including asthma, viral infections, cystic fibrosis, or lung cancer, among others. Although in vitro and in vivo studies indicate significant potency of LF in the treatment of the listed diseases, only in the case of respiratory tract infections do human studies seem to confirm them by demonstrating the effectiveness of LF in reducing episodes of illness and shortening the recovery period. For lung cancer, COVID-19 and sepsis, the reports are conflicting, and for other diseases, there is a paucity of human studies conclusively confirming the beneficial effects of LF.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Monika Jampolska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dominika Zając
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
6
|
Ahvanooei MRR, Norouzian MA, Vahmani P. Beneficial Effects of Vitamins, Minerals, and Bioactive Peptides on Strengthening the Immune System Against COVID-19 and the Role of Cow's Milk in the Supply of These Nutrients. Biol Trace Elem Res 2022; 200:4664-4677. [PMID: 34837602 PMCID: PMC8627168 DOI: 10.1007/s12011-021-03045-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic, which causes severe respiratory tract infections in humans, has become a global health concern and is spreading rapidly. At present, the most important issue associated with COVID-19 is the immune system and the factors that affect it. It is well known that cow's milk is highly rich in micronutrients that increase and strengthen the immune system. Research shows that the administration of these nutrients is very effective in fighting COVID-19, and a deficiency in any of them can be a weakness in the fight against the virus. On the other hand, cow's milk is accessible to the whole population, and drinking colostrum, raw, and micro-filtered milk from cows vaccinated against SARS-CoV-2 could provide individuals with short-term protection against the SARS-CoV-2 infection until vaccines become commercially available. This review aimed to discuss the effects of milk vitamins, minerals, and bioactive peptides on general health in humans to combat viral diseases, especially COVID-19, and to what extent cow's milk consumption plays a role in providing these metabolites. Cow's milk contains many bioactive compounds that include vitamins, minerals, biogenic amines, nucleotides, oligosaccharides, organic acids, and immunoglobulins. Humans can meet a significant portion of their requirements for vitamins and minerals through the consumption of cow's milk. Recent studies have shown that micronutrients such as vitamins D, E, B, C, and A as well as minerals Zn, Cu, Mg, I, and Se and bioactive peptides, each can have positive and significant effects on strengthening the immune system and general health in humans.
Collapse
Affiliation(s)
- M R Rezaei Ahvanooei
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Mohammad Ali Norouzian
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Payam Vahmani
- Department of Animal Science, University of California, 2251 Meyer Hall, Davis, CA, 95616, USA
| |
Collapse
|
7
|
Porbahaie M, Savelkoul HFJ, de Haan CAM, Teodorowicz M, van Neerven RJJ. Direct Binding of Bovine IgG-Containing Immune Complexes to Human Monocytes and Their Putative Role in Innate Immune Training. Nutrients 2022; 14:nu14214452. [PMID: 36364714 PMCID: PMC9654672 DOI: 10.3390/nu14214452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Bovine milk IgG (bIgG) was shown to bind to and neutralize the human respiratory synovial virus (RSV). In animal models, adding bIgG prevented experimental RSV infection and increased the number of activated T cells. This enhanced activation of RSV-specific T cells may be explained by receptor-mediated uptake and antigen presentation after binding of bIgG-RSV immune complexes (ICs) with FcγRs (primarily CD32) on human immune cells. This indirect effect of bIgG ICs on activation of RSV-specific T cells was confirmed previously in human T cell cultures. However, the direct binding of ICs to antigen-presenting cells has not been addressed. As bovine IgG can induce innate immune training, we hypothesized that this effect could be caused more efficiently by ICs. Therefore, we characterized the expression of CD16, CD32, and CD64 on (peripheral blood mononuclear cells (PBMCs), determined the optimal conditions to form ICs of bIgG with the RSV preF protein, and demonstrated the direct binding of these ICs to human CD14+ monocytes. Similarly, bIgG complexed with a murine anti-bIgG mAb also bound efficiently to the monocytes. To evaluate whether the ICs could induce innate immune training more efficiently than bIgG itself, the resulted ICs, as well as bIgG, were used in an in vitro innate immune training model. Training with the ICs containing bIgG and RSV preF protein-but not the bIgG alone-induced significantly higher TNF-α production upon LPS and R848 stimulation. However, the preF protein itself nonsignificantly increased cytokine production as well. This may be explained by its tropism to the insulin-like growth factor receptor 1 (IGFR1), as IGF has been reported to induce innate immune training. Even so, these data suggest a role for IgG-containing ICs in inducing innate immune training after re-exposure to pathogens. However, as ICs of bIgG with a mouse anti-bIgG mAb did not induce this effect, further research is needed to confirm the putative role of bIgG ICs in enhancing innate immune responses in vivo.
Collapse
Affiliation(s)
- Mojtaba Porbahaie
- Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands
| | - Cornelis A. M. de Haan
- Virology Division, Infectious Diseases and Immunology, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Malgorzata Teodorowicz
- Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands
| | - R. J. Joost van Neerven
- Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
- Correspondence:
| |
Collapse
|
8
|
Jia W, Di C, Zhang R, Shi L. Application of liquid chromatography mass spectrometry-based lipidomics to dairy products research: An emerging modulator of gut microbiota and human metabolic disease risk. Food Res Int 2022; 157:111206. [DOI: 10.1016/j.foodres.2022.111206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022]
|
9
|
Ma Y, Khan MZ, Xiao J, Alugongo GM, Chen X, Li S, Wang Y, Cao Z. An Overview of Waste Milk Feeding Effect on Growth Performance, Metabolism, Antioxidant Status and Immunity of Dairy Calves. Front Vet Sci 2022; 9:898295. [PMID: 35656173 PMCID: PMC9152456 DOI: 10.3389/fvets.2022.898295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Waste milk (WM) is a part of the milk produced on dairy farms, which is usually unsuitable for human consumption. The WM contains transition milk, mastitis milk, colostrum, milk with somatic cells, blood (Hemolactia), harmful pathogens, pathogenic and antibiotic residues. Due to the high cost of milk replacer (MR), dairy farmers prefer raw WM to feed their calves. It has been well established that WM has a greater nutritive value than MR. Hence WM can contribute to improved growth, rumen development, and immune-associated parameters when fed to dairy calves. However, feeding raw WM before weaning has continuously raised some critical concerns. The pathogenic load and antibiotic residues in raw WM may increase the risk of diseases and antibacterial resistance in calves. Thus, pasteurization has been recommended as an effective method to decrease the risk of diseases in calves by killing/inhibiting the pathogenic microorganisms in the raw WM. Altogether, the current review provides a brief overview of the interplay between the positive role of raw WM in the overall performance of dairy calves, limitations of raw WM as a feed source and how to overcome these issues arising from feeding raw WM.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- University of Agriculture, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhijun Cao
| |
Collapse
|
10
|
Woźniak D, Cichy W, Dobrzyńska M, Przysławski J, Drzymała-Czyż S. Reasonableness of Enriching Cow’s Milk with Vitamins and Minerals. Foods 2022; 11:foods11081079. [PMID: 35454665 PMCID: PMC9025252 DOI: 10.3390/foods11081079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/10/2022] Open
Abstract
Milk is an exceptional nutritional product that has been used for many millennia in human nutrition. Milk is a source of many valuable nutrients, including calcium, vitamin B, an especially significant amount of vitamin B2 and fat-soluble vitamins, such as A, D and E. Milk is an attractive product for fortification as it has a high nutritional density in a small volume and a relatively low price. Research shows positive health effects of drinking milk and consuming dairy products. Even more health benefits can be obtained from consuming fortified dairy products. A literature review, current nutritional recommendations, medical recommendations and an analysis of the market situation all recommend introducing milk enriched with minerals in combination with vitamins to the market. This concept corresponds to the current market demand and may supplement the missing and expected range of fortified milk and the correct number of recipients.
Collapse
Affiliation(s)
- Dagmara Woźniak
- Department of Bromatology, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.W.); (M.D.); (J.P.)
| | - Wojciech Cichy
- Department of Cosmetology, Faculty of Health Sciences, The President Stanisław Wojciechowski State University of Applied Sciences in Kalisz, Nowy Świat 4, 62-800 Kalisz, Poland;
| | - Małgorzata Dobrzyńska
- Department of Bromatology, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.W.); (M.D.); (J.P.)
| | - Juliusz Przysławski
- Department of Bromatology, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.W.); (M.D.); (J.P.)
| | - Sławomira Drzymała-Czyż
- Department of Bromatology, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.W.); (M.D.); (J.P.)
- Correspondence:
| |
Collapse
|
11
|
Govers C, Calder PC, Savelkoul HFJ, Albers R, van Neerven RJJ. Ingestion, Immunity, and Infection: Nutrition and Viral Respiratory Tract Infections. Front Immunol 2022; 13:841532. [PMID: 35296080 PMCID: PMC8918570 DOI: 10.3389/fimmu.2022.841532] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Respiratory infections place a heavy burden on the health care system, particularly in the winter months. Individuals with a vulnerable immune system, such as very young children and the elderly, and those with an immune deficiency, are at increased risk of contracting a respiratory infection. Most respiratory infections are relatively mild and affect the upper respiratory tract only, but other infections can be more serious. These can lead to pneumonia and be life-threatening in vulnerable groups. Rather than focus entirely on treating the symptoms of infectious disease, optimizing immune responsiveness to the pathogens causing these infections may help steer towards a more favorable outcome. Nutrition may have a role in such prevention through different immune supporting mechanisms. Nutrition contributes to the normal functioning of the immune system, with various nutrients acting as energy sources and building blocks during the immune response. Many micronutrients (vitamins and minerals) act as regulators of molecular responses of immune cells to infection. It is well described that chronic undernutrition as well as specific micronutrient deficiencies impair many aspects of the immune response and make individuals more susceptible to infectious diseases, especially in the respiratory and gastrointestinal tracts. In addition, other dietary components such as proteins, pre-, pro- and synbiotics, and also animal- and plant-derived bioactive components can further support the immune system. Both the innate and adaptive defense systems contribute to active antiviral respiratory tract immunity. The initial response to viral airway infections is through recognition by the innate immune system of viral components leading to activation of adaptive immune cells in the form of cytotoxic T cells, the production of neutralizing antibodies and the induction of memory T and B cell responses. The aim of this review is to describe the effects of a range different dietary components on anti-infective innate as well as adaptive immune responses and to propose mechanisms by which they may interact with the immune system in the respiratory tract.
Collapse
Affiliation(s)
- Coen Govers
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
| | | | - R. J. Joost van Neerven
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
- Research & Development, FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
12
|
Perez-Araluce R, Martínez-González MÁ, Gea A, Carlos S. Components of the Mediterranean Diet and Risk of COVID-19. Front Nutr 2022; 8:805533. [PMID: 35141266 PMCID: PMC8819171 DOI: 10.3389/fnut.2021.805533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Adherence to the traditional Mediterranean diet has been customarily assessed with the Mediterranean diet score (MDS or Trichopolou Index), with values of 0 or 1 assigned to each of the nine elements, and with the use of the sex-specific median as the cutoff. The value of persons whose consumption of the six beneficial items (ratio of monounsaturated to saturated fatty acids, vegetables, legumes, fruits and nuts, cereal, and fish) is at or above the median and is assigned a value of 1. Otherwise they receive 0 points. For detrimental elements (meats and dairy products) persons whose consumption is below the median are assigned a value of 1. An additional ninth point is assigned to moderate ethanol intake. We assessed the effect of each of the nine components of the MDS (replacing the fats ratio with olive oil, the main source of monounsaturated fats in the Mediterranean diet) on the risk of COVID-19 infection, symptomatic and severe COVID-19. From March to December 2020, 9,699 participants of the "Seguimiento Universidad de Navarra" (SUN) cohort answered a COVID-19 questionnaire. After excluding doctors and nurses, 5,194 participants were included in the main statistical analyses. Among them, we observed 382 cases of COVID-19 based on symptoms and clinical diagnosis; 167 of them with test confirmation. For the two COVID-19 definitions used, we found a significant decrease in risk for a higher adherence to the Mediterranean diet (OR = 0.64, 95% CI: 0.42-0.98, p for trend = 0.040; and OR = 0.44, 95% CI: 0.22-0.88, p for trend = 0.020, for test-diagnosed cases). A protective effect was also found for symptomatic COVID-19 (OR = 0.64, 95% CI: 0.41-1.00, p for trend = 0.050). Among the different individual food groups, only the consumption of whole dairy products showed a harmful direct association. The Mediterranean diet as a whole seems more important than each of its components in preventing the infection and symptoms of COVID-19.
Collapse
Affiliation(s)
- Rafael Perez-Araluce
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
| | - Miguel Ángel Martínez-González
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Navarra Institute for Health Research, Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Alfredo Gea
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Navarra Institute for Health Research, Pamplona, Spain
| | - Silvia Carlos
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
13
|
Tizek L, Redlinger E, Ring J, Eyerich K, Biedermann T, Zink A. Urban vs rural - Prevalence of self-reported allergies in various occupational and regional settings. World Allergy Organ J 2022; 15:100625. [PMID: 35145605 PMCID: PMC8802121 DOI: 10.1016/j.waojou.2022.100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Allergies have an enormous individual and economic impact worldwide and affect more than one quarter of the population in Germany. Various factors influence the development of allergies: besides genetic predisposition the environment in which a person is raised and living also plays a role. The aim of the study was to evaluate differences in allergy prevalence in relation to age, sex, occupation, and living area (settlement structures). METHODS A cross-sectional study using a paper-based questionnaire about allergies was performed at the Munich Oktoberfest 2016. Participants were divided into 4 occupational groups and compared using descriptive statistics and multiple regression. RESULTS Overall, 2701 individuals (mean age 51.9 ± 15.3 years; 53.5% women) participated in the study. The overall rate of any self-reported allergy was 27.3% in the study population, in which women were more likely to be affected than men (OR = 1.82; 95% CI [1.50; 2.22]). Compared to farmers, all other occupational groups had a higher risk of reporting pollen allergies. Participants from rural areas (OR = 0.38; 95% CI [0.26; 0.58]) and suburban areas (OR = 0.44; 95% CI [0.30; 0.64]) were significantly less affected by allergies than participants from urban areas. Around 45.2% of the participants affected by allergies reported not receiving any treatment at all. CONCLUSION Differences in the self-reported prevalence of allergies were shown for age groups, sex, living area, and occupation. Especially the reported pollen allergy prevalence ranged widely between different occupations, indicating that those individuals with an occupational exposure to pollen may have a lower risk than indoor workers. Overall, there remains a high need for sufficient treatment of allergies.
Collapse
Affiliation(s)
- Linda Tizek
- Technical University of Munich, School of Medicine, Department of Dermatology and Allergy, Biedersteinerstraße 29, Munich, 80802, Germany
| | - Elisa Redlinger
- Technical University of Munich, School of Medicine, Department of Dermatology and Allergy, Biedersteinerstraße 29, Munich, 80802, Germany
| | - Johannes Ring
- Technical University of Munich, School of Medicine, Department of Dermatology and Allergy, Biedersteinerstraße 29, Munich, 80802, Germany
| | - Kilian Eyerich
- Technical University of Munich, School of Medicine, Department of Dermatology and Allergy, Biedersteinerstraße 29, Munich, 80802, Germany
- Division of Dermatology and Venereology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tilo Biedermann
- Technical University of Munich, School of Medicine, Department of Dermatology and Allergy, Biedersteinerstraße 29, Munich, 80802, Germany
| | - Alexander Zink
- Technical University of Munich, School of Medicine, Department of Dermatology and Allergy, Biedersteinerstraße 29, Munich, 80802, Germany
- Division of Dermatology and Venereology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
A Review on Dietary Additive, Food Supplement and Exercise Effects on the Prevention of Covid-19. NUTRITION AND FOOD SCIENCES RESEARCH 2022. [DOI: 10.52547/nfsr.9.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
15
|
Illi S, Depner M, Pfefferle PI, Renz H, Roduit C, Taft DH, Kalanetra KM, Mills DA, Farquharson FM, Louis P, Schmausser-Hechfellner E, Divaret-Chauveau A, Lauener R, Karvonen AM, Pekkanen J, Kirjavainen PV, Roponen M, Riedler J, Kabesch M, Schaub B, von Mutius E. Immune Responsiveness to LPS Determines Risk of Childhood Wheeze and Asthma in 17q21 Risk Allele Carriers. Am J Respir Crit Care Med 2021; 205:641-650. [PMID: 34919021 DOI: 10.1164/rccm.202106-1458oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In murine models microbial exposures induce protection from experimental allergic asthma through innate immunity. Our aim was to assess the association of early life innate immunity with the development of asthma in children at risk. METHODS In the PASTURE farm birth cohort innate, Th2, Th1 and Th17 cytokine expression at age 1 year was measured after stimulation of PBMCs with lipopolysaccharide (LPS) in N=445 children. Children at risk of asthma were defined based on single-nucleotide polymorphisms at the 17q21 asthma gene locus. Specifically, we used the SNP rs7216389 in the GSDMB gene. Wheeze in the 1st year of life was assessed by weekly diaries and asthma by questionnaire at age 6 years. RESULTS Not all cytokines were detectable in all children after LPS-stimulation. When classifying detectability of cytokines by latent class analysis, carrying the 17q21 risk allele rs7216389 was associated with risk of wheeze only in the class with the lowest level of LPS-induced activation, odds ratio (OR)=1.89, 95%-CI 1.13-3.16, p=0.015. In contrast, in children with high cytokine activation after LPS-stimulation no association of the 17q21 risk allele with wheeze (OR=0.63, 95%-CI 0.29-1.40, p=0.258, p=0.034 for interaction) or school age asthma was observed. In these children consumption of unprocessed cow's milk was associated with higher cytokine activation (OR=3.37, 95%-CI 1.56-7.30, p=0.002), which was in part mediated by the gut microbiome. CONCLUSIONS These findings suggest that within the 17q21 genotype asthma risk can be mitigated by activated immune responses after innate stimulation, which is partly mediated by a gut-immune axis.
Collapse
Affiliation(s)
- Sabina Illi
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, 9150, Institute of Asthma and Allergy Prevention, Neuherberg, Germany.,German Center for Lung Research, 542891, Giessen, Germany;
| | - Martin Depner
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Umwelt und Gesundheit, 9150, Institute of Asthma and Allergy Prevention, Neuherberg, Germany
| | - Petra Ina Pfefferle
- Philipps-Universität Marburg Fachbereich Medizin, 98594, Comprehensive Biobank Marburg CBBM, Marburg, Germany.,German Center for Lung Research, 542891, Giessen, Germany
| | - Harald Renz
- Philipps-Universität Marburg, 9377, Institute of Laboratory Medicine, Marburg, Germany.,Sechenov University, 68477, Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Moskva, Russian Federation.,German Center for Lung Research, 542891, Giessen, Germany
| | - Caroline Roduit
- University of Zurich, Children's Hospital, Zurich, Switzerland.,Christine Kühne Center for Allergy Research and Education (CK-CARE) , Davos, Switzerland.,Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Diana Hazard Taft
- University of California Davis, 8789, Department of Food Science & Technology, Davis, California, United States
| | - Karen M Kalanetra
- University of California Davis, 8789, Department of Food Science & Technology, Davis, California, United States
| | - David A Mills
- University of California Davis, 8789, Department of Food Science & Technology, Davis, California, United States
| | - Freda M Farquharson
- University of Aberdeen, 1019, The Rowett Institute, Aberdeen, United Kingdom of Great Britain and Northern Ireland
| | - Petra Louis
- University of Aberdeen, 1019, The Rowett Institute, Aberdeen, United Kingdom of Great Britain and Northern Ireland
| | - Elisabeth Schmausser-Hechfellner
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, 9150, Institute of Asthma and Allergy Prevention, Neuherberg, Germany
| | - Amandine Divaret-Chauveau
- Burgundy Franche-Comté University, 439716, UMR 6249 Chrono-environment , Besancon, France.,University of Lorraine, 137665, EA3450 Développement Adaptation et Handicap (DevAH) , Nancy, France.,University Hospital Centre Nancy, 26920, Pediatric Allergy Department, Nancy, France
| | - Roger Lauener
- Children's Hospital of Eastern Switzerland, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland.,Christine Kühne Center for Allergy Research and Education (CK-CARE) , Davos, Switzerland
| | - Anne M Karvonen
- Finnish Institute for Health and Welfare, 3837, Department of Health Security, Helsinki, Finland
| | - Juha Pekkanen
- University of Helsinki, Department of Public Health, Helsinki, Finland.,Finnish Institute for Health and Welfare, 3837, Department of Health Security, Helsinki, Finland
| | - Pirkka V Kirjavainen
- Finnish Institute for Health and Welfare, 3837, Department of Health Security, Kuopio, Finland.,University of Eastern Finland, 163043, Institute of Public Health and Clinical Nutrition, Kuopio, Finland
| | - Marjut Roponen
- University of Eastern Finland, 163043, Department of Environmental and Biological Sciences, Kuopio, Finland
| | - Josef Riedler
- Children's Hospital Schwarzach, Children's Hospital Schwarzach, Schwarzach, Austria
| | - Michael Kabesch
- University Children's Hospital Regensburg (KUNO), Department of Pediatric Pneumology and Allergy, Campus St. Hedwig, Regensburg, Germany
| | - Bianca Schaub
- Ludwig-Maximilians-Universitat Munchen, 9183, Dr. von Hauner Children's Hospital, Munchen, Germany.,German Center for Lung Research, 542891, Giessen, Germany
| | - Erika von Mutius
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, 9150, Institute of Asthma and Allergy Prevention, Neuherberg, Germany.,Ludwig-Maximilians-Universitat Munchen, 9183, Dr. von Hauner Children's Hospital, München, Germany.,German Center for Lung Research, 542891, Giessen, Germany
| | | |
Collapse
|
16
|
Deschasaux-Tanguy M, Srour B, Bourhis L, Arnault N, Druesne-Pecollo N, Esseddik Y, de Edelenyi FS, Allègre J, Allès B, Andreeva VA, Baudry J, Fezeu LK, Galan P, Julia C, Kesse-Guyot E, Péneau S, Hercberg S, Bajos N, Severi G, Zins M, de Lamballerie X, Carrat F, Touvier M. Nutritional risk factors for SARS-CoV-2 infection: a prospective study within the NutriNet-Santé cohort. BMC Med 2021; 19:290. [PMID: 34844606 PMCID: PMC8629697 DOI: 10.1186/s12916-021-02168-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Nutritional factors are essential for the functioning of the immune system and could therefore play a role in COVID-19 but evidence is needed. Our objective was to study the associations between diet and the risk of SARS-CoV-2 infection in a large population-based sample. METHODS Our analyses were conducted in the French prospective NutriNet-Santé cohort study (2009-2020). Seroprevalence of anti-SARS-CoV-2 antibodies was assessed by ELISA on dried blood spots. Dietary intakes were derived from repeated 24 h dietary records (at least 6) in the two years preceding the start of the COVID-19 pandemic in France (February 2020). Multi-adjusted logistic regression models were computed. RESULTS A total of 7766 adults (70.3% women, mean age: 60.3 years) were included, among which 311 were positive for anti-SARS-CoV-2 antibodies. Dietary intakes of vitamin C (OR for 1 SD=0.86 (0.75-0.98), P=0.02), vitamin B9 (OR=0.84 (0.72-0.98), P=0.02), vitamin K (OR=0.86 (0.74-0.99), P=0.04), fibers (OR=0.84 (0.72-0.98), P=0.02), and fruit and vegetables (OR=0.85 (0.74-0.97), P=0.02) were associated to a decreased probability of SARS-CoV-2 infection while dietary intakes of calcium (OR=1.16 (1.01-1.35), P=0.04) and dairy products (OR=1.19 (1.06-1.33), P=0.002) associated to increased odds. No association was detected with other food groups or nutrients or with the overall diet quality. CONCLUSIONS Higher dietary intakes of fruit and vegetables and, consistently, of vitamin C, folate, vitamin K and fibers were associated with a lower susceptibility to SARS-CoV-2 infection. Beyond its established role in the prevention of non-communicable diseases, diet could therefore also contribute to prevent some infectious diseases such as COVID-19.
Collapse
Affiliation(s)
- Mélanie Deschasaux-Tanguy
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Bernard Srour
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France.
| | - Laurent Bourhis
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Nathalie Arnault
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Nathalie Druesne-Pecollo
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Younes Esseddik
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Fabien Szabo de Edelenyi
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Julien Allègre
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Benjamin Allès
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Valentina A Andreeva
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Julia Baudry
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Leopold K Fezeu
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Pilar Galan
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Chantal Julia
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Sandrine Péneau
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Serge Hercberg
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| | - Nathalie Bajos
- IRIS, UMR CNRS 8156, EHESS, Inserm U997, Aubervilliers, France
| | - Gianluca Severi
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, Villejuif, France
- Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy
| | - Marie Zins
- Paris University, Paris, France
- Inserm UMS 11, Paris Saclay University, Villejuif, France
| | - Xavier de Lamballerie
- Unité des Virus Emergents (UVE), Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Fabrice Carrat
- Sorbonne Université, Inserm, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, Paris, France
- Département de Santé Publique, APHP, Sorbonne Université, Paris, France
| | - Mathilde Touvier
- Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France
| |
Collapse
|
17
|
Gomes RD, Anaya K, Galdino AB, Oliveira JP, Gama MA, Medeiros CA, Gavioli EC, Porto ALF, Rangel AH. Bovine colostrum: A source of bioactive compounds for prevention and treatment of gastrointestinal disorders. NFS JOURNAL 2021. [DOI: 10.1016/j.nfs.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Martelli P, Saleri R, Andrani M, Cavalli V, De Angelis E, Ferrari L, Borghetti P. Immune B cell responsiveness to single-dose intradermal vaccination against Mycoplasma hyopneumoniae. Res Vet Sci 2021; 141:66-75. [PMID: 34688042 DOI: 10.1016/j.rvsc.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Mycoplasma hyopneumoniae is a major pathogen affecting pig herds and vaccination is the most utilized approach, despite providing partial protection. Age at vaccination, the delivery route, and vaccination protocol can influence vaccine efficacy. The influence of age and the presence of maternally-derived antibodies at vaccination on single-dose needle-less intradermal (ID) administration of an inactivated bacterin-based vaccine (Porcilis® M Hyo ID Once) were assessed in conventional pigs under field conditions. The induction of IgA+ and IgG+ B cell responses and the expression of the activation markers TLR2, TLR7, CCR9, and CCR10 were determined in PBMC. Vaccination at 4 weeks efficiently elicited an anamnestic antibody response associated with TLR2 and TLR7 upregulation. Although animals vaccinated at 1 week did not show seroconversion and a recall response upon infection, the responsiveness of Mycoplasma-recalled IgA+ B cells suggests the activation of mucosal immune cells after vaccination and infection. Vaccination at 1 week induced TLR2, TLR7, and CCR9 upregulation, suggesting the potential for systemic and local activation of immune cell trafficking between blood and target tissues. Vaccination at 4 weeks induced a CCR10 increase, suggesting that recalled IgA+ and IgG+ B cells can display an activated status upon infection. The antibody response after Mycoplasma infection in 4-week-old ID-vaccinated pigs was associated with TLR2 and CCR10 increases, confirming the potential use of this vaccination schedule for the safe and efficient delivery of single-dose M. hyopneumoniae vaccines. ID vaccination, especially at 4 weeks, was associated with a great degree of protection against enzootic pneumonia (EP)-like lung lesions.
Collapse
Affiliation(s)
- Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, Parma 43126, Italy.
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, Parma 43126, Italy.
| | - Melania Andrani
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, Parma 43126, Italy.
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, Parma 43126, Italy.
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, Parma 43126, Italy.
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, Parma 43126, Italy.
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, Parma 43126, Italy.
| |
Collapse
|
19
|
Pan M, Yang J, Liu K, Xie X, Hong L, Wang S, Wang S. Irradiation technology: An effective and promising strategy for eliminating food allergens. Food Res Int 2021; 148:110578. [PMID: 34507726 DOI: 10.1016/j.foodres.2021.110578] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/29/2022]
Abstract
Food allergies are one of the major health concerns worldwide and have been increasing at an alarming rate in recent times. The elimination of food allergenicity has been an important issue in current research on food. Irradiation is a typical nonthermal treatment technology that can effectively reduce the allergenicity of food, showing great application prospects in improving the quality and safety of foods. In this review, the mechanism and remarkable features of irradiation in the elimination of food allergens are mainly introduced, and the research progress on reducing the allergenicity of animal foods (milk, egg, fish and shrimp) and plant foods (soybean, peanut, wheat and nuts) using irradiation is summarized. Furthermore, the influencing factors for irradiation in the elimination of food allergens are analyzed and further research directions of irradiation desensitization technology are also discussed. This article aims to provide a reference for promoting the application of irradiation technology in improving the safety of foods.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
20
|
Haque MH, Islam MA, Karim MR, Kayesh MEH, Sarker S, Nazir KHMNH, Anwer MS. Coronavirus disease 2019 and future pandemics: Impacts on livestock health and production and possible mitigation measures. Vet World 2021; 14:2434-2443. [PMID: 34840464 PMCID: PMC8613784 DOI: 10.14202/vetworld.2021.2434-2443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
The World Health Organization declared coronavirus disease 2019 (COVID-19) a pandemic on March 11, 2020. COVID-19, the current global health emergency, is wreaking havoc on human health systems and, to a lesser degree, on animals globally. The outbreak has continued since the first report of COVID-19 in China in December 2019, and the second and third waves of the outbreak have already begun in several countries. COVID-19 is expected to have adverse effects on crop production, food security, integrated pest control, tourism, the car industry, and other sectors of the global economy. COVID-19 induces a range of effects in livestock that is reflected economically since human health and livelihood are intertwined with animal health. We summarize the potentially harmful effects of COVID-19 on livestock and possible mitigation steps in response to this global outbreak. Mitigation of the negative effects of COVID-19 and future pandemics on livestock requires the implementation of current guidelines.
Collapse
Affiliation(s)
- Md. Hakimul Haque
- Department of Veterinary and Animal Sciences, Faculty of Agriculture, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Md. Aminul Islam
- Department of Medicine, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md. Rezaul Karim
- Division of Animal Health Research, Bangladesh Livestock Research Institute, Savar, Dhaka-1341, Bangladesh
| | - Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal-8210, Bangladesh
| | - Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | | | - M. Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, USA
| |
Collapse
|
21
|
Rahman MS, Chandra Das G. Effect of COVID-19 on the livestock sector in Bangladesh and recommendations. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2021; 4:100128. [PMID: 36570025 PMCID: PMC9767479 DOI: 10.1016/j.jafr.2021.100128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/20/2021] [Accepted: 02/24/2021] [Indexed: 06/13/2023]
Abstract
COVID-19 and its accompanying effects have severely affected an estimated 0.3 million dairy farms and 65-70 thousand commercial poultry farms in Bangladesh. Many of them closed down or halted productions due to the burden of continuous losses. Reports showed that about 12-15 million liters of milk have remained unsold, which has caused a daily loss of 570 million Bangladeshi Taka (6.7 million USD) in the dairy sector only. Furthermore, the poultry sector has also encountered a loss of a minimum of 115 billion Bangladeshi Taka (1.35 billion USD) within just two weeks from March 20 to April 4, 2020. The situation might accelerate the arising food crisis due to the collapse of the livestock sector during the COVID-19 pandemic and turn it into a humanitarian catastrophe. Hence, the government should retaliate through the provision of financial assistance to livestock farmers, and the proclamation of emergency veterinary services on the earliest basis. In addition to that, the government could develop long-term, sustainable strategies and projects through multi-sectoral engagement to ensure further capacity building of farmers and other stakeholders.
Collapse
Affiliation(s)
- Md Sahidur Rahman
- One Health Center for Research and Action, Akbarshah, Chattogram, 4207, Bangladesh
| | - Goutam Chandra Das
- Department of Livestock Services, Upazila Livestock Office and Veterinary Hospital, Sadar, Noakhali, 3802, Bangladesh
| |
Collapse
|
22
|
Muuronen K, Partanen R, Heidebrecht HJ, Kulozik U. Effects of conventional processing methods on whey proteins in production of native whey powder. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Batista da Silva Galdino A, do Nascimento Rangel AH, Buttar HS, Sales Lima Nascimento M, Cristina Gavioli E, Oliveira RDP, Cavalcanti Sales D, Urbano SA, Anaya K. Bovine colostrum: benefits for the human respiratory system and potential contributions for clinical management of COVID-19. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1892594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Alyne Batista da Silva Galdino
- Unidade Acadêmica Especializada em Ciências Agrárias – UAECA, Universidade Federal do Rio Grande do Norte – UFRN, Macaíba, Brasil
| | | | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, School of Medicine, Ottawa, Canada
| | - Manuela Sales Lima Nascimento
- Departamento de Microbiologia e Parasitologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte – UFRN, Natal, Brasil
| | - Elaine Cristina Gavioli
- Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte – UFRN, Natal, Brasil
| | - Riva de Paula Oliveira
- Departamento de Ciências Biológicas, Centro de Biociências, Universidade Federal do Rio Grande do Norte – UFRN, Natal, Brasil
| | - Danielle Cavalcanti Sales
- Unidade Acadêmica Especializada em Ciências Agrárias – UAECA, Universidade Federal do Rio Grande do Norte – UFRN, Macaíba, Brasil
| | - Stela Antas Urbano
- Unidade Acadêmica Especializada em Ciências Agrárias – UAECA, Universidade Federal do Rio Grande do Norte – UFRN, Macaíba, Brasil
| | - Katya Anaya
- Faculdade de Ciências da Saúde do Trairi – FACISA, Universidade Federal do Rio Grande do Norte – UFRN, Santa Cruz, Brasil
| |
Collapse
|
24
|
Kaiser F. Osteopathische Prophylaxe und Behandlung bei Infekten im Kindesalter. OSTEOPATHISCHE MEDIZIN 2021. [PMCID: PMC7919510 DOI: 10.1016/s1615-9071(21)00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In der aktuellen Zeit ist das kindliche Infektgeschehen so sehr im Fokus der Öffentlichkeit wie noch nie zuvor. Zum Zeitpunkt des Verfassens dieses Artikels hat sich die Weltöffentlichkeit mit wenigen Ausnahmen auf die Bedrohung durch eine „zweite Welle” von SARS-CoV2 eingestellt, Schulen und Kindertagesstätten werden wieder geschlossen und die Vorsicht im Umgang mit Kindern zur Vermeidung von Infektionen ist deutlich zu spüren. Dabei sind diesmal Kinder nicht die Hauptbetroffenen von unangenehmen bis bedrohlichen Krankheitsverläufen, doch dies ist nicht die Regel.
Collapse
|
25
|
Ren G, Cheng G, Wang J. Understanding the role of milk in regulating human homeostasis in the context of the COVID-19 global pandemic. Trends Food Sci Technol 2021; 107:157-160. [PMID: 33012988 PMCID: PMC7521208 DOI: 10.1016/j.tifs.2020.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/07/2020] [Accepted: 09/23/2020] [Indexed: 01/04/2023]
Abstract
Although data from clinical observation have directly shown that children aged 0-14 years are less susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection than those who are between 15 and 64 years old, due to a lack of biological evidence of differences in cell entry receptors between age groups, it remains debatable whether children are actually less susceptible than adults. To date, studies on COVID-19 have consistently shown that pediatric patients generally have relatively milder cytokine release syndrome and lower mortality rates than adults. Interestingly, similar phenomena of relatively mild symptoms in children have been observed in previous outbreaks of coronaviruses, including SARS-CoV and MERS-CoV. In fact, in the early stage of life, there are many mechanisms that spontaneously regulate excessive inflammatory responses. Milk, as the main food of infants, not only provides necessary energy and nutrients but also plays an important role in regulating homeostasis related to the immune system, gut microecology and nutrition balance. This review discusses some roles of milk in regulating human homeostasis, especially in the disease states. These clues provide new insight and references for personal care at home and/or in the hospital during the global COVID-19 pandemic.
Collapse
Affiliation(s)
- Guangxu Ren
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Guangyan Cheng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Jiaqi Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| |
Collapse
|
26
|
Chen X, Yang H, Jia J, Chen Y, Wang J, Chen H, Jiang C. Mulberry leaf polysaccharide supplementation contributes to enhancing the respiratory mucosal barrier immune response in Newcastle disease virus-vaccinated chicks. Poult Sci 2020; 100:592-602. [PMID: 33518112 PMCID: PMC7858170 DOI: 10.1016/j.psj.2020.11.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Despite high global vaccination coverage, Newcastle disease (ND) remains a constant threat to poultry producers owing to low antibody levels. Given the respiratory mucosa is the important site for Newcastle disease virus (NDV) vaccination, enhancing respiratory mucosal immunity may help control ND. Our previous study showed that mulberry leaf polysaccharide (MLP) is very promising in delivering a robust balanced immune response, but the effects of it on respiratory immunity in chicks are unknown. In this study, we evaluated the potential of MLP to activate respiratory mucosal immunity and revealed the possible mechanism of MLP as an immunopotentiator for ND vaccines. Chicks were randomly divided into 5 groups: blank control, vaccination control (VC), and low-, middle-, and high-dose MLP (MLP-L, MLP-M, and MLP-H) (n = 30). The serum results of humoral and cell-mediated immune responses showed significant increases in NDV hemagglutination inhibition antibody titer, IgG and IgA antibody levels, and the T-lymphocyte population in the MLP-M group compared with the VC group. Validation of results also indicated remarkable increases in tracheal antibody-mediated immunity and a mucosal immune response in the MLP-M group. Furthermore, the upregulation of TLR7 revealed a possible mechanism. Our findings provided evidence to consider MLP as a potential mucosal vaccine adjuvant candidate against ND in chickens.
Collapse
Affiliation(s)
- Xiaolan Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, PR China.
| | - Haifeng Yang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, PR China
| | - Jiping Jia
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, PR China
| | - Yu Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, PR China
| | - Jing Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, PR China
| | - Haifeng Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, PR China
| | - Chunmao Jiang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, PR China
| |
Collapse
|
27
|
Naidu SAG, Clemens RA, Pressman P, Zaigham M, Davies KJA, Naidu AS. COVID-19 during Pregnancy and Postpartum. J Diet Suppl 2020; 19:78-114. [PMID: 33164606 DOI: 10.1080/19390211.2020.1834047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As the COVID-19 pandemic intensified the global health crisis, the containment of SARS-CoV-2 infection in pregnancies, and the inherent risk of vertical transmission of virus from mother-to-fetus (or neonate) poses a major concern. Most COVID-19-Pregnancy patients showed mild to moderate COVID-19 pneumonia with no pregnancy loss and no congenital transmission of the virus; however, an increase in hypoxia-induced preterm deliveries was apparent. Also, the breastmilk of several mothers with COVID-19 tested negative for the virus. Taken together, the natural barrier function during pregnancy and postpartum seems to deter the SARS-CoV-2 transmission from mother-to-child. This clinical observation warrants to explore the maternal-fetal interface and identify the innate defense factors for prevention and control of COVID-19-Pregnancy. Lactoferrin (LF) is a potent antiviral iron-binding protein present in the maternal-fetal interface. In concert with immune co-factors, maternal-LF modulates chemokine release and lymphocyte migration and amplify host defense during pregnancy. LF levels during pregnancy may resolve hypertension via down-regulation of ACE2; consequently, may limit the membrane receptor access to SARS-CoV-2 for cellular entry. Furthermore, an LF-derived peptide (LRPVAA) has been shown to block ACE receptor activity in vitro. LF may also reduce viral docking and entry into host cells and limit the early phase of COVID-19 infection. An in-depth understanding of LF and other soluble mammalian milk-derived innate antiviral factors may provide insights to reduce co-morbidities and vertical transmission of SARS-CoV-2 infection and may lead to the development of effective nutraceutical supplements.
Collapse
Affiliation(s)
| | - Roger A Clemens
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | | | - Mehreen Zaigham
- Department of Obstetrics & Gynecology, Skåne University Hospital, Malmö, Sweden
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, CA, USA.,Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA, USA.,Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
28
|
van Esch BCAM, Porbahaie M, Abbring S, Garssen J, Potaczek DP, Savelkoul HFJ, van Neerven RJJ. The Impact of Milk and Its Components on Epigenetic Programming of Immune Function in Early Life and Beyond: Implications for Allergy and Asthma. Front Immunol 2020; 11:2141. [PMID: 33193294 PMCID: PMC7641638 DOI: 10.3389/fimmu.2020.02141] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Specific and adequate nutrition during pregnancy and early life is an important factor in avoiding non-communicable diseases such as obesity, type 2 diabetes, cardiovascular disease, cancers, and chronic allergic diseases. Although epidemiologic and experimental studies have shown that nutrition is important at all stages of life, it is especially important in prenatal and the first few years of life. During the last decade, there has been a growing interest in the potential role of epigenetic mechanisms in the increasing health problems associated with allergic disease. Epigenetics involves several mechanisms including DNA methylation, histone modifications, and microRNAs which can modify the expression of genes. In this study, we focus on the effects of maternal nutrition during pregnancy, the effects of the bioactive components in human and bovine milk, and the environmental factors that can affect early life (i.e., farming, milk processing, and bacterial exposure), and which contribute to the epigenetic mechanisms underlying the persistent programming of immune functions and allergic diseases. This knowledge will help to improve approaches to nutrition in early life and help prevent allergies in the future.
Collapse
Affiliation(s)
- Betty C. A. M. van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Mojtaba Porbahaie
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Suzanne Abbring
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Daniel P. Potaczek
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), The Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- John Paul II Hospital, Krakow, Poland
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - R. J. Joost van Neerven
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
- FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
29
|
Direct Inhibition of the Allergic Effector Response by Raw Cow's Milk-An Extensive In Vitro Assessment. Cells 2020; 9:cells9051258. [PMID: 32438725 PMCID: PMC7290799 DOI: 10.3390/cells9051258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying the allergy-protective effects of raw cow’s milk are poorly understood. The current focus is mainly on the modulation of T cell responses. In the present study, we investigated whether raw cow’s milk can also directly inhibit mast cells, the key effector cells in IgE-mediated allergic responses. Primary murine bone marrow-derived mast cells (BMMC) and peritoneal mast cells (PMC), were incubated with raw milk, heated raw milk, or shop milk, prior to IgE-mediated activation. The effects on mast cell activation and underlying signaling events were assessed. Raw milk was furthermore fractionated based on molecular size and obtained fractions were tested for their capacity to reduce IgE-mediated mast cell activation. Coincubation of BMMC and PMC with raw milk prior to activation reduced β-hexosaminidase release and IL-6 and IL-13 production, while heated raw milk or shop milk had no effect. The reduced mast cell activation coincided with a reduced intracellular calcium influx. In addition, SYK and ERK phosphorylation levels, both downstream signaling events of the FcεRI, were lower in raw milk-treated BMMC compared to control BMMC, although differences did not reach full significance. Raw milk-treated BMMC furthermore retained membrane-bound IgE expression after allergen stimulation. Raw milk fractionation showed that the heat-sensitive raw milk components responsible for the reduced mast cell activation are likely to have a molecular weight of > 37 kDa. The present study demonstrates that raw cow’s milk can also directly affect mast cell activation. These results extend the current knowledge on mechanisms via which raw cow’s milk prevents allergic diseases, which is crucial for the development of new, microbiologically safe, nutritional strategies to reduce allergic diseases.
Collapse
|
30
|
Oral Feeding of Cow Milk Containing A1 Variant of β Casein Induces Pulmonary Inflammation in Male Balb/c Mice. Sci Rep 2020; 10:8053. [PMID: 32415285 PMCID: PMC7228999 DOI: 10.1038/s41598-020-64997-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/22/2020] [Indexed: 11/08/2022] Open
Abstract
Milk is globally consumed as a rich source of protein and calcium. A major protein component of milk is casein, with β-casein having 2 major variants A1 and A2. Of these, A1 casein variant has been implicated as a potential etiological factor in several pathologies, but direct effect on lungs has not been studied. The objective of the present study was to evaluate the A1and A2 β casein variants of cow milk as factors causing allergic airway disease in murine model. Mice fed with A1A1 milk exhibited increased airway hyperresponsiveness with increasing concentration of bronchoconstrictor (methacholine), which was not observed in mice fed with A2A2 milk. Significantly elevated levels of IL-4 and IL-5 were found in bronchoalveolar lavage and serum of A1A1 variant fed mice. Increased IgE and IgG levels along with increased infiltration of lymphocytes and eosinophils, leading to peribronchial inflammation was also observed in A1A1 variant fed mice, although, no goblet cell hyperplasia or airway remodeling was observed. In contrast, A2A2 milk fed mice presented phenotype matching the control group, while A1A2 milk fed group presented an intermediate phenotype. In summary, our results show that A1 form of cow milk has a proinflammatory effect on the lung resulting in phenotype closely matching with the typical allergic asthma phenotype.
Collapse
|
31
|
van der Gaag E, Brandsema R, Nobbenhuis R, van der Palen J, Hummel T. Influence of Dietary Advice Including Green Vegetables, Beef, and Whole Dairy Products on Recurrent Upper Respiratory Tract Infections in Children: A Randomized Controlled Trial. Nutrients 2020; 12:nu12010272. [PMID: 31968697 PMCID: PMC7019298 DOI: 10.3390/nu12010272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Since no treatment exists for children suffering from upper respiratory tract infections (URTIs) without immunological disorders, we searched for a possible tool to improve the health of these children. Aim: We evaluated whether dietary advice (based on food matrix and food synergy), including standard supportive care, can decrease the number and duration of URTIs in children with recurrent URTIs. Design and Setting: This study was a multicenter randomized controlled trial in two pediatric outpatient clinics in the Netherlands, with 118 children aged one to four years with recurrent URTIs. The dietary advice group received dietary advice plus standard supportive care, while the control group received standard supportive care alone for six months. The dietary advice consisted of green vegetables five times per week, beef three times per week, 300 mL whole milk per day, and whole dairy butter on bread every day. Portion sizes were age-appropriate. Results and Conclusion: Children in the dietary advice group had 4.8 (1.6–9.5) days per month with symptoms of an URTI in the last three months of the study, compared to 7.7 (4.0–12.3) in the control group (p = 0.028). The total number of URTIs during the six-month study period was 5.7 (±0.55) versus 6.8 (±0.49), respectively (p = 0.068). The use of antibiotics was significantly reduced in the dietary advice group, as well as visits to a general practitioner, thereby possibly reducing healthcare costs. The results show a reduced number of days with symptoms of a URTI following dietary advice. The number of infections was not significantly reduced.
Collapse
Affiliation(s)
- Ellen van der Gaag
- Department of Pediatrics, Hospital Group Twente, 17609 PP Almelo, The Netherlands;
- Department of BMS, University Twente, 57522 NB Enschede, The Netherlands; (R.B.); (J.v.d.P.)
- Correspondence:
| | - Ruben Brandsema
- Department of BMS, University Twente, 57522 NB Enschede, The Netherlands; (R.B.); (J.v.d.P.)
| | - Rosan Nobbenhuis
- Department of Pediatrics, Hospital Group Twente, 17609 PP Almelo, The Netherlands;
| | - Job van der Palen
- Department of BMS, University Twente, 57522 NB Enschede, The Netherlands; (R.B.); (J.v.d.P.)
| | - Thalia Hummel
- Medical Spectrum Twente, 17512 KZ Enschede, The Netherlands;
| |
Collapse
|
32
|
The Beneficial Effect of Farm Milk Consumption on Asthma, Allergies, and Infections: From Meta-Analysis of Evidence to Clinical Trial. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:878-889.e3. [PMID: 31770653 DOI: 10.1016/j.jaip.2019.11.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022]
Abstract
The low prevalence of asthma and allergies in farm children has partially been ascribed to the consumption of raw cow's milk. A literature search identified 12 publications on 8 pertinent studies. A meta-analysis corroborated the protective effect of raw milk consumption early in life (<1 to 5 years, according to study) on asthma (odds ratio [OR], 0.58; 95% CI, 0.49-0.69), current wheeze (OR, 0.66; 95% CI, 0.55-0.78), hay fever or allergic rhinitis (OR, 0.68; 95% CI, 0.57-0.82), and atopic sensitization (OR, 0.76; 95% CI, 0.62-0.95). The effect particularly on asthma was observed not only in children raised on farms (OR, 0.62; 95% CI, 0.58-0.82) but also in children living in rural areas but not on a farm (OR, 0.60; 95% CI, 0.48-0.74). This demonstrates that the effect of farm milk consumption is independent of other farm exposures and that children not living on a farm can theoretically profit from this effect. Because of the minimal but real risk of life-threatening infections, however, consumption of raw milk and products thereof is strongly discouraged. Raw farm milk and industrially processed milk differ in many instances including removal of cellular components, manipulation of the fat fraction, and various degrees of heating. Preliminary evidence attributes the effect to heat-labile molecules and components residing in the fat fraction. The Milk Against Respiratory Tract Infections and Asthma (MARTHA) trial is currently testing the protective effect of microbiologically safe, minimally processed cow's milk against standard ultra-heat-treated milk in children from 6 months to 3 years with the primary outcome of an asthma diagnosis until age 5 years. If successful, this approach might provide a simple but effective prevention strategy.
Collapse
|
33
|
Abbring S, Ryan JT, Diks MAP, Hols G, Garssen J, van Esch BCAM. Suppression of Food Allergic Symptoms by Raw Cow's Milk in Mice is Retained after Skimming but Abolished after Heating the Milk-A Promising Contribution of Alkaline Phosphatase. Nutrients 2019; 11:nu11071499. [PMID: 31262028 PMCID: PMC6683262 DOI: 10.3390/nu11071499] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Raw cow's milk was previously shown to suppress allergic symptoms in a murine model for food allergy. In the present study, we investigated the contribution of fat content and heat-sensitive milk components to this allergy-protective effect. In addition, we determined the potency of alkaline phosphatase (ALP), a heat-sensitive raw milk component, to affect the allergic response. C3H/HeOuJ mice were treated with raw milk, pasteurized milk, skimmed raw milk, pasteurized milk spiked with ALP, or phosphate-buffered saline for eight days prior to sensitization and challenge with ovalbumin (OVA). Effects of these milk types on the allergic response were subsequently assessed. Similar to raw milk, skimmed raw milk suppressed food allergic symptoms, demonstrated by a reduced acute allergic skin response and low levels of OVA-specific IgE and Th2-related cytokines. This protective effect was accompanied by an induction of CD103+CD11b+ dendritic cells and TGF-β-producing regulatory T cells in the mesenteric lymph nodes. Pasteurized milk was not protective but adding ALP restored the allergy-protective effect. Not the fat content, but the heat-sensitive components are responsible for the allergy-protective effects of raw cow's milk. Adding ALP to heat-treated milk might be an interesting alternative to raw cow's milk consumption, as spiking pasteurized milk with ALP restored the protective effects.
Collapse
Affiliation(s)
- Suzanne Abbring
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | | | - Mara A P Diks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Gert Hols
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands.
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
34
|
Sreenivasan CC, Thomas M, Kaushik RS, Wang D, Li F. Influenza A in Bovine Species: A Narrative Literature Review. Viruses 2019; 11:v11060561. [PMID: 31213032 PMCID: PMC6631717 DOI: 10.3390/v11060561] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
It is quite intriguing that bovines were largely unaffected by influenza A, even though most of the domesticated and wild animals/birds at the human-animal interface succumbed to infection over the past few decades. Influenza A occurs on a very infrequent basis in bovine species and hence bovines were not considered to be susceptible hosts for influenza until the emergence of influenza D. This review describes a multifaceted chronological review of literature on influenza in cattle which comprises mainly of the natural infections/outbreaks, experimental studies, and pathological and seroepidemiological aspects of influenza A that have occurred in the past. The review also sheds light on the bovine models used in vitro and in vivo for influenza-related studies over recent years. Despite a few natural cases in the mid-twentieth century and seroprevalence of human, swine, and avian influenza viruses in bovines, the evolution and host adaptation of influenza A virus (IAV) in this species suffered a serious hindrance until the novel influenza D virus (IDV) emerged recently in cattle across the world. Supposedly, certain bovine host factors, particularly some serum components and secretory proteins, were reported to have anti-influenza properties, which could be an attributing factor for the resilient nature of bovines to IAV. Further studies are needed to identify the host-specific factors contributing to the differential pathogenetic mechanisms and disease progression of IAV in bovines compared to other susceptible mammalian hosts.
Collapse
Affiliation(s)
- Chithra C Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Milton Thomas
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- BioSystems Networks and Translational Research Center (BioSNTR), Brookings, SD 57007, USA.
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- BioSystems Networks and Translational Research Center (BioSNTR), Brookings, SD 57007, USA.
| |
Collapse
|
35
|
Perdijk O, Marsland BJ. The microbiome: toward preventing allergies and asthma by nutritional intervention. Curr Opin Immunol 2019; 60:10-18. [PMID: 31078013 DOI: 10.1016/j.coi.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 01/05/2023]
Abstract
Allergies and asthma have increased in prevalence over recent decades while the development of therapies to treat or prevent them has stagnated. Genetic predisposition and lifestyle changes influence the constituents of the microbiome and these host-environment-microbe interactions represent a key underlying pressure influencing disease susceptibility. Consequently, there has been a surge of interest in shaping the microbiome to a health-promoting state particularly through nutritional intervention strategies. However, mechanistic insights into the nutrition-microbe-host interplay are still needed in order for such approaches to succeed. In addition, little is known about how trans-kingdom interactions might influence disease susceptibility and progression. Future steps toward revealing the underlying mechanisms of host-microbe interactions will be pivotal for the development of effective dietary intervention strategies for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
36
|
Abbring S, Kusche D, Roos TC, Diks MAP, Hols G, Garssen J, Baars T, van Esch BCAM. Milk processing increases the allergenicity of cow's milk-Preclinical evidence supported by a human proof-of-concept provocation pilot. Clin Exp Allergy 2019; 49:1013-1025. [PMID: 30945370 PMCID: PMC6849791 DOI: 10.1111/cea.13399] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/16/2022]
Abstract
Background Several studies demonstrated the adverse effect of milk processing on the allergy‐protective capacity of raw cow's milk. Whether milk processing also affects the allergenicity of raw milk is hardly investigated. Objective To assess the allergenicity of raw (unprocessed) and processed cow's milk in a murine model for food allergy as well as in cow's milk allergic children. Methods C3H/HeOuJ mice were either sensitized to whole milk (raw cow's milk, heated raw cow's milk or shop milk [store‐bought milk]) and challenged with cow's milk protein or they were sensitized and challenged to whey proteins (native or heated). Acute allergic symptoms, mast cell degranulation, allergen‐specific IgE levels and cytokine concentrations were determined upon challenge. Cow's milk allergic children were tested in an oral provocation pilot with organic raw and conventional shop milk. Results Mice sensitized to raw milk showed fewer acute allergic symptoms upon intradermal challenge than mice sensitized to processed milk. The acute allergic skin response was low (103 ± 8.5 µm vs 195 ± 17.7 µm for heated raw milk, P < 0.0001 and vs 149 ± 13.6 µm for shop milk, P = 0.0316), and there were no anaphylactic shock symptoms and no anaphylactic shock‐induced drop in body temperature. Moreover, allergen‐specific IgE levels and Th2 cytokines were significantly lower in raw milk sensitized mice. Interestingly, the reduced sensitizing capacity was preserved in the isolated native whey protein fraction of raw milk. Besides, native whey protein challenge diminished allergic symptoms in mice sensitized to heated whey proteins. In an oral provocation pilot, cow's milk allergic children tolerated raw milk up to 50 mL, whereas they only tolerated 8.6 ± 5.3 mL shop milk (P = 0.0078). Conclusion and Clinical Relevance This study demonstrates that raw (unprocessed) cow's milk and native whey proteins have a lower allergenicity than their processed counterparts. The preclinical evidence in combination with the human proof‐of‐concept provocation pilot provides evidence that milk processing negatively influences the allergenicity of milk.
Collapse
Affiliation(s)
- Suzanne Abbring
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Daniel Kusche
- Section of Organic Farming and Cropping Systems, Faculty of Organic Agricultural Sciences, University of Kassel, Witzenhausen, Germany
| | | | - Mara A P Diks
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gert Hols
- Danone Nutricia Research, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Ton Baars
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Betty C A M van Esch
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| |
Collapse
|
37
|
Raw Cow's Milk and Its Protective Effect on Allergies and Asthma. Nutrients 2019; 11:nu11020469. [PMID: 30813365 PMCID: PMC6413174 DOI: 10.3390/nu11020469] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/27/2022] Open
Abstract
Living on a farm and having contact with rural exposures have been proposed as one of the most promising ways to be protected against allergy and asthma development. There is a significant body of epidemiological evidence that consumption of raw milk in childhood and adulthood in farm but also nonfarm populations can be one of the most effective protective factors. The observation is even more intriguing when considering the fact that milk is one of the most common food allergens in childhood. The exact mechanisms underlying this association are still not well understood, but the role of raw milk ingredients such as proteins, fat and fatty acids, and bacterial components has been recently studied and its influence on the immune function has been documented. In this review, we present the current understanding of the protective effect of raw milk on allergies and asthma.
Collapse
|
38
|
Verlaet A, van der Bolt N, Meijer B, Breynaert A, Naessens T, Konstanti P, Smidt H, Hermans N, Savelkoul HFJ, Teodorowicz M. Toll-Like Receptor-Dependent Immunomodulatory Activity of Pycnogenol ®. Nutrients 2019; 11:E214. [PMID: 30678156 PMCID: PMC6412808 DOI: 10.3390/nu11020214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pycnogenol® (PYC), an extract of French maritime pine bark, is widely used as a dietary supplement. PYC has been shown to exert anti-inflammatory actions via inhibiting the Toll-like receptor 4 (TLR4) pathway. However, the role of the other receptors from the TLR family in the immunomodulatory activity of PYC has not been described so far. AIM The aim of this study was to investigate whether PYC might exert its immunomodulatory properties through cell membrane TLRs (TLR1/2, TLR5, and TLR2/6) other than TLR4. Moreover, the effect of gastrointestinal metabolism on the immunomodulatory effects of PYC was investigated. FINDINGS We showed that intact non-metabolized PYC dose-dependently acts as an agonist of TLR1/2 and TLR2/6 and as a partial agonist of TLR5. PYC on its own does not agonize or antagonize TLR4. However, after the formation of complexes with lipopolysaccharides (LPS), it is a potent activator of TLR4 signaling. Gastrointestinal metabolism of PYC revealed the immunosuppressive potential of the retentate fraction against TLR1/2 and TLR2/6 when compared to the control fraction containing microbiota and enzymes only. The dialyzed fraction containing PYC metabolites revealed the capacity to induce anti-inflammatory IL-10 secretion. Finally, microbially metabolized PYC affected the colonic microbiota composition during in vitro gastrointestinal digestion. CONCLUSIONS This study showed that gastrointestinal metabolism of PYC reveals its biological activity as a potential inhibitor of TLRs signaling. The results suggest that metabolized PYC acts as a partial agonist of TLR1/2 and TLR2/6 in the presence of the microbiota-derived TLR agonists (retentate fraction) and that it possesses anti-inflammatory potential reflected by the induction of IL-10 from THP-1 macrophages (dialysate fraction).
Collapse
Affiliation(s)
- Annelies Verlaet
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Functional Food Science, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Nieke van der Bolt
- Department of Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands.
| | - Ben Meijer
- Department of Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands.
| | - Annelies Breynaert
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Functional Food Science, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Tania Naessens
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Functional Food Science, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University& Research, 6708 WE Wageningen, The Netherlands.
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University& Research, 6708 WE Wageningen, The Netherlands.
| | - Nina Hermans
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Functional Food Science, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Huub F J Savelkoul
- Department of Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands.
| | - Malgorzata Teodorowicz
- Department of Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands.
| |
Collapse
|
39
|
Abbring S, Hols G, Garssen J, van Esch BCAM. Raw cow's milk consumption and allergic diseases - The potential role of bioactive whey proteins. Eur J Pharmacol 2018; 843:55-65. [PMID: 30439365 DOI: 10.1016/j.ejphar.2018.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
The prevalence of allergic diseases has increased significantly in Western countries in the last decades. This increase is often explained by the loss of rural living conditions and associated changes in diet and lifestyle. In line with this 'hygiene hypothesis', several epidemiological studies have shown that growing up on a farm lowers the risk of developing allergic diseases. The consumption of raw, unprocessed, cow's milk seems to be one of the factors contributing to this protective effect. Recent evidence indeed shows an inverse relation between raw cow's milk consumption and the development of asthma and allergies. However, the consumption of raw milk is not recommended due to the possible contamination with pathogens. Cow's milk used for commercial purposes is therefore processed, but this milk processing is shown to abolish the allergy-protective effects of raw milk. This emphasizes the importance of understanding the components and mechanisms underlying the allergy-protective capacity of raw cow's milk. Only then, ways to produce a safe and protective milk can be developed. Since mainly heat treatment is shown to abolish the allergy-protective effects of raw cow's milk, the heat-sensitive whey protein fraction of raw milk is an often-mentioned source of the protective components. In this review, several of these whey proteins, their potential contribution to the allergy-protective effects of raw cow's milk and the consequences of heat treatment will be discussed. A better understanding of these bioactive whey proteins might eventually contribute to the development of new nutritional approaches for allergy management.
Collapse
Affiliation(s)
- Suzanne Abbring
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Gert Hols
- Danone Nutricia Research, Utrecht, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Danone Nutricia Research, Utrecht, the Netherlands
| | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Danone Nutricia Research, Utrecht, the Netherlands.
| |
Collapse
|
40
|
Bogahawaththa D, Ashraf R, Chandrapala J, Donkor O, Vasiljevic T. In vitro immunogenicity of various native and thermally processed bovine milk proteins and their mixtures. J Dairy Sci 2018; 101:8726-8736. [DOI: 10.3168/jds.2018-14488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022]
|
41
|
Brugman S, Ikeda-Ohtsubo W, Braber S, Folkerts G, Pieterse CMJ, Bakker PAHM. A Comparative Review on Microbiota Manipulation: Lessons From Fish, Plants, Livestock, and Human Research. Front Nutr 2018; 5:80. [PMID: 30234124 PMCID: PMC6134018 DOI: 10.3389/fnut.2018.00080] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
During recent years the impact of microbial communities on the health of their host (being plants, fish, and terrestrial animals including humans) has received increasing attention. The microbiota provides the host with nutrients, induces host immune development and metabolism, and protects the host against invading pathogens (1-6). Through millions of years of co-evolution bacteria and hosts have developed intimate relationships. Microbial colonization shapes the host immune system that in turn can shape the microbial composition (7-9). However, with the large scale use of antibiotics in agriculture and human medicine over the last decades an increase of diseases associated with so-called dysbiosis has emerged. Dysbiosis refers to either a disturbed microbial composition (outgrowth of possible pathogenic species) or a disturbed interaction between bacteria and the host (10). Instead of using more antibiotics to treat dysbiosis there is a need to develop alternative strategies to combat disturbed microbial control. To this end, we can learn from nature itself. For example, the plant root (or "rhizosphere") microbiome of sugar beet contains several bacterial species that suppress the fungal root pathogen Rhizoctonia solani, an economically important fungal pathogen of this crop (11). Likewise, commensal bacteria present on healthy human skin produce antimicrobial molecules that selectively kill skin pathogen Staphylococcus aureus. Interestingly, patients with atopic dermatitis (inflammation of the skin) lacked antimicrobial peptide secreting commensal skin bacteria (12). In this review, we will give an overview of microbial manipulation in fish, plants, and terrestrial animals including humans to uncover conserved mechanisms and learn how we might restore microbial balance increasing the resilience of the host species.
Collapse
Affiliation(s)
- Sylvia Brugman
- Cell Biology and Immunology Group, Animal Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Wakako Ikeda-Ohtsubo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Peter A. H. M. Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
42
|
Satitsuksanoa P, Jansen K, Głobińska A, van de Veen W, Akdis M. Regulatory Immune Mechanisms in Tolerance to Food Allergy. Front Immunol 2018; 9:2939. [PMID: 30619299 PMCID: PMC6299021 DOI: 10.3389/fimmu.2018.02939] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Oral tolerance can develop after frequent exposure to food allergens. Upon ingestion, food is digested into small protein fragments in the gastrointestinal tract. Small food particles are later absorbed into the human body. Interestingly, some of these ingested food proteins can cause allergic immune responses, which can lead to food allergy. So far it has not been completely elucidated how these proteins become immunogenic and cause food allergies. In contrast, oral tolerance helps to prevent the pathologic reactions against different types of food antigens from animal or plant origin. Tolerance to food is mainly acquired by dendritic cells, epithelial cells in the gut, and the gut microbiome. A subset of CD103+ DCs is capable of inducing T regulatory cells (Treg cells) that express anti-inflammatory cytokines. Anergic T cells also contribute to oral tolerance, by reducing the number of effector cells. Similar to Treg cells, B regulatory cells (Breg cells) suppress effector T cells and contribute to the immune tolerance to food allergens. Furthermore, the human microbiome is an essential mediator in the induction of oral tolerance or food allergy. In this review, we outline the current understanding of regulatory immune mechanisms in oral tolerance. The biological changes reflecting early consequences of immune stimulation with food allergens should provide useful information for the development of novel therapeutic treatments.
Collapse
|