1
|
Ge C, Tong Q, Zheng S, Liu L, Tian L, Luo H. Mouse CD8+ T cell subsets differentially generate IL-17-expressing cells in the colon epithelium and lamina propria. Clin Exp Immunol 2025; 219:uxae120. [PMID: 39745881 PMCID: PMC11780888 DOI: 10.1093/cei/uxae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/06/2024] [Accepted: 01/01/2025] [Indexed: 01/04/2025] Open
Abstract
Colon-resident CD8+ T cells actively contribute to gut homeostasis and the pathogenesis of inflammatory bowel disease. However, their heterogeneity in generating IL-17-expressing CD8+ T cells, i.e. Tc17 cells, has not been thoroughly revealed. This study aims to characterize the abilities of mouse colonic intraepithelial (IE) and lamina propria (LP) CD8+ T cell subsets to differentiate into Tc17 cells. Using flow cytometry, we found that normal TCRβ+CD4-CD8αα+ cells (CD8αα T cells) and TCRβ+CD4-CD8αβ T cells, (CD8αβ T cells), either IE or LP, expressed abundant granzymes and IFN-γ but minute IL-17A. Under the in vitro Tc17-inducing condition, IE CD8αα T cells showed the weakest Tc17 differentiation ability and LP CD8αβ T cells exhibited the strongest Tc17 differentiation ability, whereas IE CD8αβ T cells and LP CD8αα T cells demonstrated moderate Tc17 differentiation abilities. The expression of IL-6 receptor, TGF-β receptor, TCR signaling indicators, CD161, and IL-23 receptor was low in IE CD8αα T cells, median in IE CD8αβ T cells and LP CD8αα T cells, but high in LP CD8αβ T cells. IE CD8αα T cells weakly induced the expression of chemokines, cytokines, and host defense mediators in colonic epithelial cells while LP CD8αβ T cells showed a robust up-regulatory effect. Furthermore, these colonic CD8+ T cell subsets also exhibited different abilities to generate Tc17 cells in inflamed colons. Collectively, LP CD8αβ T cells have the strongest Tc17 differentiation ability and might play a more significant role than the other subsets in Tc17-mediated immunity or inflammation in the colon.
Collapse
Affiliation(s)
- Cunjin Ge
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qiaoyun Tong
- Institute of Digestive Disease, Department of Gastroenterology of Yichang Central People’s Hospital, China Three Gorges University, Yichang City, Hubei Province, China
| | - Shihua Zheng
- Institute of Digestive Disease, Department of Gastroenterology of Yichang Central People’s Hospital, China Three Gorges University, Yichang City, Hubei Province, China
| | - Lei Liu
- Institute of Digestive Disease, Department of Gastroenterology of Yichang Central People’s Hospital, China Three Gorges University, Yichang City, Hubei Province, China
| | - Lugao Tian
- Institute of Digestive Disease, Department of Gastroenterology of Yichang Central People’s Hospital, China Three Gorges University, Yichang City, Hubei Province, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Atoki AV, Aja PM, Shinkafi TS, Ondari EN, Awuchi CG. Naringenin: its chemistry and roles in neuroprotection. Nutr Neurosci 2024; 27:637-666. [PMID: 37585716 DOI: 10.1080/1028415x.2023.2243089] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
According to epidemiological research, as the population ages, neurological illnesses are becoming a bigger issue. Despite improvements in the treatment of these diseases, there are still widespread worries about how to find a long-lasting remedy. Several neurological diseases can be successfully treated with natural substances. As a result, current research has been concentrated on finding effective neuroprotective drugs with improved efficacy and fewer side effects. Naringenin is one potential treatment for neurodegenerative diseases. Many citrus fruits, tomatoes, bergamots, and other fruits are rich in naringenin, a flavonoid. This phytochemical is linked to a variety of biological functions. Naringenin has attracted a lot of interest for its ability to exhibit neuroprotection through several mechanisms. In the current article, we present evidence from the literature that naringenin reduces neurotoxicity and oxidative stress in brain tissues. Also, the literatures that are currently accessible shows that naringenin reduces neuroinflammation and other neurological anomalies. Additionally, we found several studies that touted naringenin as a promising anti-amyloidogenic, antidepressant, and neurotrophic treatment option. This review's major goal is to reflect on advancements in knowledge of the molecular processes that underlie naringenin's possible neuroprotective effects. Furthermore, this article also provides highlights of Naringenin with respect to its chemistry and pharmacokinetics.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | - Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Natural and Applied Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
3
|
Bittner-Eddy PD, Fischer LA, Parachuru PV, Costalonga M. MHC-II presentation by oral Langerhans cells impacts intraepithelial Tc17 abundance and Candida albicans oral infection via CD4 T cells. FRONTIERS IN ORAL HEALTH 2024; 5:1408255. [PMID: 38872986 PMCID: PMC11169704 DOI: 10.3389/froh.2024.1408255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
In a murine model (LCΔMHC-II) designed to abolish MHC-II expression in Langerhans cells (LCs), ∼18% of oral LCs retain MHC-II, yet oral mucosal CD4 T cells numbers are unaffected. In LCΔMHC-II mice, we now show that oral intraepithelial conventional CD8αβ T cell numbers expand 30-fold. Antibody-mediated ablation of CD4 T cells in wild-type mice also resulted in CD8αβ T cell expansion in the oral mucosa. Therefore, we hypothesize that MHC class II molecules uniquely expressed on Langerhans cells mediate the suppression of intraepithelial resident-memory CD8 T cell numbers via a CD4 T cell-dependent mechanism. The expanded oral CD8 T cells co-expressed CD69 and CD103 and the majority produced IL-17A [CD8 T cytotoxic (Tc)17 cells] with a minority expressing IFN-γ (Tc1 cells). These oral CD8 T cells showed broad T cell receptor Vβ gene usage indicating responsiveness to diverse oral antigens. Generally supporting Tc17 cells, transforming growth factor-β1 (TGF-β1) increased 4-fold in the oral mucosa. Surprisingly, blocking TGF-β1 signaling with the TGF-R1 kinase inhibitor, LY364947, did not reduce Tc17 or Tc1 numbers. Nonetheless, LY364947 increased γδ T cell numbers and decreased CD49a expression on Tc1 cells. Although IL-17A-expressing γδ T cells were reduced by 30%, LCΔMHC-II mice displayed greater resistance to Candida albicans in early stages of oral infection. These findings suggest that modulating MHC-II expression in oral LC may be an effective strategy against fungal infections at mucosal surfaces counteracted by IL-17A-dependent mechanisms.
Collapse
Affiliation(s)
- Peter D. Bittner-Eddy
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Lori A. Fischer
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Praveen Venkata Parachuru
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Massimo Costalonga
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Erice PA, Huang X, Seasock MJ, Robertson MJ, Tung HY, Perez-Negron MA, Lotlikar SL, Corry DB, Kheradmand F, Rodriguez A. Downregulation of Mirlet7 miRNA family promotes Tc17 differentiation and emphysema via de-repression of RORγt. eLife 2024; 13:RP92879. [PMID: 38722677 PMCID: PMC11081633 DOI: 10.7554/elife.92879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.
Collapse
Affiliation(s)
- Phillip A Erice
- Immunology Graduate Program, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
| | - Xinyan Huang
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
| | - Matthew J Seasock
- Immunology Graduate Program, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
| | - Matthew J Robertson
- Dan Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Hui-Ying Tung
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
| | - Melissa A Perez-Negron
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
| | - Shivani L Lotlikar
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
| | - David B Corry
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Center for Translational Research on Inflammatory Diseases, Michael E Debakey, Baylor College of MedicineHoustonUnited States
| | - Farrah Kheradmand
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Center for Translational Research on Inflammatory Diseases, Michael E Debakey, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Section of Pulmonary and Critical Care, Baylor College of MedicineHoustonUnited States
| | - Antony Rodriguez
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
- Center for Translational Research on Inflammatory Diseases, Michael E Debakey, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
5
|
Yang J, Zhao Y, Fu Y, Lv Y, Zhu Y, Zhu M, Zhao J, Wang Y, Wu C, Zhao W. Recombinant antigen P29 of Echinococcus granulosus induces Th1, Tc1, and Th17 cell immune responses in sheep. Front Immunol 2023; 14:1243204. [PMID: 38187382 PMCID: PMC10768560 DOI: 10.3389/fimmu.2023.1243204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
Echinococcosis is a common human and animal parasitic disease that seriously endangers human health and animal husbandry. Although studies have been conducted on vaccines for echinococcosis, to date, there is no human vaccine available for use. One of the main reasons for this is the lack of in-depth research on basic immunization with vaccines. Our previous results confirmed that recombinant antigen P29 (rEg.P29) induced more than 90% immune protection in both mice and sheep, but data on its induction of sheep-associated cellular immune responses are lacking. In this study, we investigated the changes in CD4+ T cells, CD8+ T cells, and antigen-specific cytokines IFN-γ, IL-4, and IL-17A after rEg.P29 immunization using enzyme-linked immunospot assay (ELISPOT), enzyme-linked immunosorbent assay (ELISA), and flow cytometry to investigate the cellular immune response induced by rEg.P29 in sheep. It was found that rEg.P29 immunization did not affect the percentage of CD4+ and CD8+ T cells in peripheral blood mononuclear cells (PBMCs), and was able to stimulate the proliferation of CD4+ and CD8+ T cells after immunization in vitro. Importantly, the results of both ELISPOT and ELISA showed that rEg.P29 can induce the production of the specific cytokines IFN-γ and IL-17A, and flow cytometry verified that rEg.P29 can induce the expression of IFN-γ in CD4+ and CD8+ T cells and IL-17A in CD4+ T cells; however, no IL-4 expression was observed. These results indicate that rEg.P29 can induce Th1, Th17, and Tc1 cellular immune responses in sheep against echinococcosis infection, providing theoretical support for the translation of rEg.P29 vaccine applications.
Collapse
Affiliation(s)
- Jihui Yang
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
| | - Yinqi Zhao
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
| | - Yong Fu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, China
| | - Yongxue Lv
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Yazhou Zhu
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Mingxing Zhu
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
| | - Jiaqing Zhao
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
| | - Yana Wang
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Pastwińska J, Karwaciak I, Karaś K, Bachorz RA, Ratajewski M. RORγT agonists as immune modulators in anticancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189021. [PMID: 37951483 DOI: 10.1016/j.bbcan.2023.189021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
RORγT is a transcription factor that directs the development of Th17 lymphocytes and other IL-17-expressing cells (e.g., Tc17 and ILC3 cells). These cells are involved in the body's defense against pathogenic bacteria and fungi, but they also participate in maintaining the proinflammatory environment in some autoimmune diseases and play a role in the immune system's response to cancer. Similar to other members of the nuclear receptor superfamily, the activity of RORγT is regulated by low-molecular-weight ligands. Therefore, extensive efforts have been dedicated to identifying inverse agonists that diminish the activity of this receptor and subsequently inhibit the development of autoimmune diseases. Unfortunately, in the pursuit of an ideal inverse agonist, the development of agonists has been overlooked. It is important to remember that these types of compounds, by stimulating lymphocytes expressing RORγT (Th17 and Tc17), can enhance the immune system's response to tumors. In this review, we present recent advancements in the biology of RORγT agonists and their potential application in anticancer therapy.
Collapse
Affiliation(s)
- Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Rafał A Bachorz
- Laboratory of Molecular Modeling, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland.
| |
Collapse
|
7
|
Koh CH, Lee S, Kwak M, Kim BS, Chung Y. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp Mol Med 2023; 55:2287-2299. [PMID: 37907738 PMCID: PMC10689838 DOI: 10.1038/s12276-023-01105-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023] Open
Abstract
CD8 T cells play crucial roles in immune surveillance and defense against infections and cancer. After encountering antigenic stimulation, naïve CD8 T cells differentiate and acquire effector functions, enabling them to eliminate infected or malignant cells. Traditionally, cytotoxic T cells, characterized by their ability to produce effector cytokines and release cytotoxic granules to directly kill target cells, have been recognized as the constituents of the predominant effector T-cell subset. However, emerging evidence suggests distinct subsets of effector CD8 T cells that each exhibit unique effector functions and therapeutic potential. This review highlights recent advancements in our understanding of CD8 T-cell subsets and the contributions of these cells to various disease pathologies. Understanding the diverse roles and functions of effector CD8 T-cell subsets is crucial to discern the complex dynamics of immune responses in different disease settings. Furthermore, the development of immunotherapeutic approaches that specifically target and regulate the function of distinct CD8 T-cell subsets holds great promise for precision medicine.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suyoung Lee
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyeong Kwak
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon, 25159, Republic of Korea.
| |
Collapse
|
8
|
Andrade AGD, Comberlang FC, Cavalcante-Silva LHA, Kessen TSL. COVID-19 vaccination: Effects of immunodominant peptides of SARS-CoV-2. Cytokine 2023; 170:156339. [PMID: 37607411 DOI: 10.1016/j.cyto.2023.156339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
T-cell immunity plays a critical role in controlling viral infections, making it essential to identify specific viral targets to develop effective vaccines. In this study, we focused on identifying and understanding the potential effects of different SARS-CoV-2-derived peptides, including spike, nucleocapsid, and ORFs, that have the potential to serve as T-cell epitopes. Assessing T cell response through flow cytometry, we demonstrated that PBMC collected from vaccinated individuals had a significantly higher expression of important biomarkers in controlling viral infection and proper regulation of immune response mediated by T CD4+ and T CD8+ cells stimulated with immunodominant peptides. These data highlight how cellular immune responses to some of these peptides could contribute to SARS-CoV-2 protection due to COVID-19 immunization.
Collapse
Affiliation(s)
- Arthur Gomes de Andrade
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Fernando Cézar Comberlang
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Luiz Henrique Agra Cavalcante-Silva
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Tatjana Souza Lima Kessen
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil.
| |
Collapse
|
9
|
Arra A, Lingel H, Pierau M, Brunner-Weinzierl MC. PD-1 limits differentiation and plasticity of Tc17 cells. Front Immunol 2023; 14:1104730. [PMID: 37205114 PMCID: PMC10186197 DOI: 10.3389/fimmu.2023.1104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/05/2023] [Indexed: 05/21/2023] Open
Abstract
Blockade of surface co-inhibitory receptor programmed cell death-1 (PD-1; CD279) has been established as an important immunotherapeutic approach to treat malignancies. On a cellular level, PD-1 is demonstrated to be of particular importance in inhibiting differentiation and effector function of cytotoxic Tc1 cells (CTLs). Nevertheless, the role of PD-1 in modulating interleukin (IL)-17-producing CD8+ T-cells (Tc17 cells), which generally display suppressed cytotoxic nature, is not well understood. To evaluate the impact of PD-1 in Tc17 responses, we examined its functioning using different in vitro and in vivo models. Upon activation of CD8+ T-cells in Tc17 environment, we found that PD-1 was rapidly expressed on the surface of CD8+ T-cells and triggered a T-cell-internal mechanism that inhibited the expression of IL-17 and Tc17-supporting transcription factors pSTAT3 and RORγt. Expression of type17-polarising cytokine IL-21 and the receptor for IL-23 were also suppressed. Intriguingly, adoptively transferred, PD-1-/- Tc17 cells were highly efficient in rejection of established B16 melanoma in vivo and displayed Tc1 like characteristics ex vivo. When using IL-17A-eGFP reporter mice for in vitro fate tracking, IL-17A-eGFP expressing cells lacking PD-1 signaling upon re-stimulation with IL-12 quickly acquired Tc1 characteristics such as IFN-γ, and granzyme B expression, implicating lineage independent upregulation of CTL-characteristics that are needed for tumor control. In line with plasticity characteristics, absence of PD-1 signaling in Tc17 cells increased the expression of the stemness and persistence-associated molecules TCF1 and BCL6. Thus, PD-1 plays a central role in the specific suppression of Tc17 differentiation and its plasticity in relation to CTL-driven tumor rejection, which provides further explanation as to why the blockade of PD-1 is such an efficient therapeutic target for inducing tumor rejection.
Collapse
Affiliation(s)
- Aditya Arra
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Holger Lingel
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Mandy Pierau
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Monika C. Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- *Correspondence: Monika C. Brunner-Weinzierl,
| |
Collapse
|
10
|
Bensussen A, Santana MA, Rodríguez-Jorge O. Metabolic alterations impair differentiation and effector functions of CD8+ T cells. Front Immunol 2022; 13:945980. [PMID: 35983057 PMCID: PMC9380903 DOI: 10.3389/fimmu.2022.945980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
CD8+ T lymphocytes are one of the main effector cells of the immune system, they protect the organism against intracellular threats such as viruses and bacteria, as well as neoplasms. It is currently well established that CD8+ T cells have distinct immune responses, given by their phenotypes Tc1, Tc2, Tc17, and TcReg. The cellular plasticity of such phenotypes depends on the presence of different combinations of cytokines in the extracellular medium. It is known that metabolic imbalances play an important role in immune response, but the precise role of metabolic disturbances on the differentiation and function of CD8+ T cells, however, has not been explored. In this work, we used a computational model to explore the potential effect of metabolic alterations such as hyperglycemia, high alcohol consumption, dyslipidemia, and diabetes on CD8+ T cell differentiation. Our model predicts that metabolic alterations preclude the effector function of all CD8+ T cell phenotypes except for TcReg cells. It also suggests that such inhibition originates from the increase of reactive oxygen species in response to metabolic stressors. Finally, we simulated the outcome of treating metabolic-inhibited CD8+ T cells with drugs targeting key molecules such as mTORC1, mTORC2, Akt, and others. We found that overstimulation of mTORC2 may restore cell differentiation and functions of all effector phenotypes, even in diabetic patients. These findings highlight the importance of our predictive model to find potential targets to strengthen immunosuppressed patients in chronic diseases, like diabetes.
Collapse
Affiliation(s)
- Antonio Bensussen
- Laboratorio de Dinámica de Redes Genéticas, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Maria Angelica Santana
- Laboratorio de Inmunología, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Otoniel Rodríguez-Jorge
- Laboratorio de Inmunología, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Otoniel Rodríguez-Jorge,
| |
Collapse
|
11
|
Liu CH, Lin BS, Wu MY, Song YC, Ke TW, Chou YL, Liu CT, Lin CH, Radojcic V, Drake C, Yen HR. Adoptive transfer of IL-4 reprogrammed Tc17 cells elicits anti-tumour immunity through functional plasticity. Immunology 2022; 166:310-326. [PMID: 35322421 PMCID: PMC11558351 DOI: 10.1111/imm.13473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 11/25/2022] Open
Abstract
Ability of IL-17-producing CD8+ T cells (Tc17) to transform into cytotoxic anti-tumour effectors makes them a promising candidate for immune effector cell (IEC) therapy. However, key factors regulating Tc17 reprogramming remain poorly defined, hindering translation of Tc17-based IEC use from bench to bedside. We probed the effects of multiple cytokines and underlying signalling pathways on Tc17 cells and identified pivotal role for IL-4 and PI3K/AKT in promoting Tc17 transformation into cytotoxic IFN-γ-producing IECs, an effect dependent on Eomes expression. IL-4 not only triggered Tc17 cytotoxicity, but also induced cell expansion, which significantly improved the antitumour potential of Tc17 cells compared to that of IFN-γ-producing CD8+ T cells (Tc1) in a murine model. Furthermore, IL-4/AKT signalling drove the upregulation of the T-cell receptor-associated transmembrane adaptor 1 (Trat1) in Tc17 cells to promote IL-4-induced T-cell receptor stabilization and Tc17 cytotoxicity. Finally, we proposed a possible procedure to expand human Tc17 from peripheral blood of cancer patients, and confirmed the function of IL-4 in Tc17 reprogramming. Collectively, these results document a novel IL-4/AKT/Eomes/Trat1 axis that promotes expansion and transformation of Tc17 cells into cytotoxic effectors with a therapeutic potential. IL-4 priming of Tc17 cells should be further explored as a cell therapy engineering strategy to generate IECs to augment anti-tumour responses.
Collapse
Affiliation(s)
- Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Bo-Shiou Lin
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Yao Wu
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ying-Chyi Song
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Lun Chou
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chuan-Teng Liu
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hsin Lin
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Vedran Radojcic
- Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Charles Drake
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Urology, Columbia University Irving Medical Center, New York, New York, USA
- Division of Hematology Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - Hung-Rong Yen
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
12
|
Alhabbab RY, Algaissi A, Mahmoud AB, Alkayyal AA, Al-Amri S, Alfaleh MA, Basabrain M, Alsubki RA, Almarshad IS, Alhudaithi AM, Gafari OAA, Alshamlan YA, Aldossari HM, Alsafi MM, Bukhari A, Bajhmom W, Memish ZA, Al Salem WS, Hashem AM. Middle East Respiratory Syndrome Coronavirus Infection Elicits Long-lasting Specific Antibody, T and B Cell Immune Responses in Recovered Individuals. Clin Infect Dis 2022; 76:e308-e318. [PMID: 35675306 PMCID: PMC9384236 DOI: 10.1093/cid/ciac456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic zoonotic betacoronavirus and a global public health concern. Better undersetting of the immune responses to MERS-CoV is needed to characterize the correlates of protection and durability of the immunity and to aid in developing preventative and therapeutic interventions. Although MERS-CoV-specific circulating antibodies could persist for several years post-recovery, their waning raises concerns about their durability and role in protection. Nonetheless, memory B and T cells could provide long-lasting protective immunity despite the serum antibodies levels. METHODS Serological and flow cytometric analysis of MERS-CoV-specific immune responses were performed on samples collected from a cohort of recovered individuals who required intensive care unit (ICU) admission as well as hospital or home isolation several years after infection to characterize the longevity and quality of humoral and cellular immune responses. RESULTS Our data showed that MERS-CoV infection could elicit robust long-lasting virus-specific binding and neutralizing antibodies as well as T- and B-cell responses up to 6.9 years postinfection regardless of disease severity or need for ICU admission. Apart from the persistent high antibody titers, this response was characterized by B-cell subsets with antibody-independent functions as demonstrated by their ability to produce tumor necrosis factor α (TNF-α), interleukin (IL)-6, and interferon γ (IFN-γ) cytokines in response to antigen stimulation. Furthermore, virus-specific activation of memory CD8+ and CD4+ T cell subsets from MERS-recovered patients resulted in secretion of high levels of TNF-α, IL-17, and IFN-γ. CONCLUSIONS MERS-CoV infection could elicit robust long-lasting virus-specific humoral and cellular responses.
Collapse
Affiliation(s)
| | | | | | | | - Sawsan Al-Amri
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A Alfaleh
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Basabrain
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Roua Abdullah Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | | | | | | | | | | | | | - Abdullah Bukhari
- Department of Medicine, Faculty of Medicine, Imam Mohammed Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | | | - Ziad A Memish
- King Saud Medical City, Research & Innovation Center, Ministry of Health, Riyadh, Saudi Arabia,Al-Faisal University, Riyadh, Saudi Arabia,Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Waleed S Al Salem
- Department of Agriculture, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Anwar M Hashem
- Correspondence: A. M. Hashem, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia ()
| |
Collapse
|
13
|
Jiang D, Chen C, Yan D, Zhang X, Liu X, Yan D, Cui D, Yang S. Exhausted phenotype of circulating CD8 + T cell subsets in hepatitis B virus carriers. BMC Immunol 2022; 23:18. [PMID: 35443611 PMCID: PMC9022260 DOI: 10.1186/s12865-022-00488-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Chronic hepatitis B virus (HBV) infection is characterized by the presence of dysfunctional exhausted CD8+ T cells that hamper viral control. We investigated the phenotypic heterogeneity of exhausted CD8+ T cells in HBV carriers. Methods We enrolled 31 HBV carriers and 23 healthy controls (HCs) in our study. Peripheral blood mononuclear cells (PBMCs) were isolated, and flow cytometry was used to determine the phenotypic distribution of CD8+ T cell subsets. Expression of cytokines such as TNF-α and IFN-γ was detected by quantitative reverse transcription–PCR, a fluorescence flow cytometry-based immunomicrobead assay and flow cytometry. Results There were no significant differences in the baseline characteristics between the 31 HBV carriers and the 23 sex- and age-matched HCs. CD8+ T cells exhibited higher levels of inhibitory receptors (TIM3 and PD1) in the HBV carriers than in the HCs (P < 0.05); in particular, Tfc cells (CXCR5+CD25−) expressed higher levels of TIM3 and PD1 than non-Tfc cells in the HBV carriers. In addition, among the subsets of Tc cells, the Tc17 (CXCR5−CD25−CCR6+) subset displayed increased expression of TIM3 and LAG3 in the HBV carriers. Our findings further showed that CD8+ T cells produced lower levels of IFN-γ, TNF-α, and Granzyme B. Paired analysis of the Tfc subset and the Tc subset indicated that higher levels of cytokines (IFN-γ and TNF-α) were produced by the Tfc subset in the HBV carriers. Among the Tc subsets, the Tc17 subset produced lower levels of cytokines. Conclusion The Tfc subset exhibited an enhanced exhausted phenotype but possessed some functional properties during chronic HBV infection, while the Tc subset showed a lower functional level. The identification of these unique subsets may provide a potential immunotherapeutic target in chronic HBV infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00488-2.
Collapse
Affiliation(s)
- Daixi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Can Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Danying Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Xiaobao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Xiaoxiao Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China. .,School of Public Health, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
14
|
Wu H, Brand B, Eckstein M, Hochrein SM, Shumanska M, Dudek J, Nickel A, Maack C, Bogeski I, Vaeth M. Genetic Ablation of the Mitochondrial Calcium Uniporter (MCU) Does not Impair T Cell-Mediated Immunity In Vivo. Front Pharmacol 2022; 12:734078. [PMID: 34987384 PMCID: PMC8721163 DOI: 10.3389/fphar.2021.734078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
T cell activation and differentiation is associated with metabolic reprogramming to cope with the increased bioenergetic demand and to provide metabolic intermediates for the biosynthesis of building blocks. Antigen receptor stimulation not only promotes the metabolic switch of lymphocytes but also triggers the uptake of calcium (Ca2+) from the cytosol into the mitochondrial matrix. Whether mitochondrial Ca2+ influx through the mitochondrial Ca2+ uniporter (MCU) controls T cell metabolism and effector function remained, however, enigmatic. Using mice with T cell-specific deletion of MCU, we here show that genetic inactivation of mitochondrial Ca2+ uptake increased cytosolic Ca2+ levels following antigen receptor stimulation and store-operated Ca2+ entry (SOCE). However, ablation of MCU and the elevation of cytosolic Ca2+ did not affect mitochondrial respiration, differentiation and effector function of inflammatory and regulatory T cell subsets in vitro and in animal models of T cell-mediated autoimmunity and viral infection. These data suggest that MCU-mediated mitochondrial Ca2+ uptake is largely dispensable for murine T cell function. Our study has also important technical implications. Previous studies relied mostly on pharmacological inhibition or transient knockdown of mitochondrial Ca2+ uptake, but our results using mice with genetic deletion of MCU did not recapitulate these findings. The discrepancy of our study to previous reports hint at compensatory mechanisms in MCU-deficient mice and/or off-target effects of current MCU inhibitors.
Collapse
Affiliation(s)
- Hao Wu
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Benjamin Brand
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Miriam Eckstein
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sophia M Hochrein
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Magdalena Shumanska
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Hospital, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center (CHFC), University Hospital, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Hospital, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Suga Y, Nagatomo I, Kinehara Y, Koyama S, Okuzaki D, Osa A, Naito Y, Takamatsu H, Nishide M, Nojima S, Ito D, Tsuda T, Nakatani T, Nakanishi Y, Futami Y, Koba T, Satoh S, Hosono Y, Miyake K, Fukushima K, Shiroyama T, Iwahori K, Hirata H, Takeda Y, Kumanogoh A. IL-33 Induces Sema4A Expression in Dendritic Cells and Exerts Antitumor Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 207:1456-1467. [PMID: 34380650 DOI: 10.4049/jimmunol.2100076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022]
Abstract
Cancer immunotherapy has shown great promise as a new standard therapeutic strategy against cancer. However, the response rate and survival benefit remain unsatisfactory because most current approaches, such as the use of immune checkpoint inhibitors, depend on spontaneous antitumor immune responses. One possibility for improving the efficacy of immunotherapy is to promote antitumor immunity using adjuvants or specific cytokines actively. IL-33 has been a candidate for such cytokine therapies, but it remains unclear how and in which situations IL-33 exerts antitumor immune effects. In this study, we demonstrate the potent antitumor effects of IL-33 using syngeneic mouse models, which included marked inhibition of tumor growth and upregulation of IFN-γ production by tumor-infiltrating CD8+ T cells. Of note, IL-33 induced dendritic cells to express semaphorin 4A (Sema4A), and the absence of Sema4A abolished the antitumor activity of IL-33, indicating that Sema4A is intrinsically required for the antitumor effects of IL-33 in mice. Collectively, these results not only present IL-33 and Sema4A as potential therapeutic targets but also shed light on the potential use of Sema4A as a biomarker for dendritic cell activation status, which has great value in various fields of cancer research, including vaccine development.
Collapse
Affiliation(s)
- Yasuhiko Suga
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan;
| | - Yuhei Kinehara
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shohei Koyama
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Single Cell Genomics, Human Immunology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Akio Osa
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yujiro Naito
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hyota Takamatsu
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masayuki Nishide
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Satoshi Nojima
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisuke Ito
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takeshi Tsuda
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; and
| | - Takeshi Nakatani
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshimitsu Nakanishi
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yu Futami
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Taro Koba
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shingo Satoh
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuki Hosono
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kiyoharu Fukushima
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Laboratory of Immunopathology, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan; .,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Suita, Osaka, Japan
| |
Collapse
|
16
|
Patil V, Renu S, Feliciano-Ruiz N, Han Y, Ramesh A, Schrock J, Dhakal S, HogenEsch H, Renukaradhya GJ. Intranasal Delivery of Inactivated Influenza Virus and Poly(I:C) Adsorbed Corn-Based Nanoparticle Vaccine Elicited Robust Antigen-Specific Cell-Mediated Immune Responses in Maternal Antibody Positive Nursery Pigs. Front Immunol 2020; 11:596964. [PMID: 33391267 PMCID: PMC7772411 DOI: 10.3389/fimmu.2020.596964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
We designed the killed swine influenza A virus (SwIAV) H1N2 antigen (KAg) with polyriboinosinic:polyribocytidylic acid [(Poly(I:C)] adsorbed corn-derived Nano-11 particle based nanovaccine called Nano-11-KAg+Poly(I:C), and evaluated its immune correlates in maternally derived antibody (MDA)-positive pigs against a heterologous H1N1 SwIAV infection. Immunologically, in tracheobronchial lymph nodes (TBLN) detected enhanced H1N2-specific cytotoxic T-lymphocytes (CTLs) in Nano-11-KAg+Poly(I:C) vaccinates, and in commercial vaccinates detected CTLs with mainly IL-17A+ and early effector phenotypes specific to both H1N2 and H1N1 SwAIV. In commercial vaccinates, activated H1N2- and H1N1-specific IFNγ+&TNFα+, IL-17A+ and central memory T-helper/Memory cells, and in Nano-11-KAg+Poly(I:C) vaccinates H1N2-specific central memory, IFNγ+ and IFNγ+&TNFα+, and H1N1-specific IL-17A+ T-helper/Memory cells were observed. Systemically, Nano-11-KAg+Poly(I:C) vaccine augmented H1N2-specific IFNγ+ CTLs and H1N1-specific IFNγ+ T-helper/Memory cells, and commercial vaccine boosted H1N2- specific early effector CTLs and H1N1-specific IFNγ+&TNFα+ CTLs, as well as H1N2- and H1N1-specific T-helper/Memory cells with central memory, IFNγ+&TNFα+, and IL-17A+ phenotypes. Remarkably, commercial vaccine induced an increase in H1N1-specific T-helper cells in TBLN and naive T-helper cells in both TBLN and peripheral blood mononuclear cells (PBMCs), while H1N1- and H1N2-specific only T-helper cells were augmented in Nano-11-KAg+Poly(I:C) vaccinates in both TBLN and PBMCs. Furthermore, the Nano-11-KAg+Poly(I:C) vaccine stimulated robust cross-reactive IgG and secretory IgA (SIgA) responses in lungs, while the commercial vaccine elicited high levels of serum and lung IgG and serum hemagglutination inhibition (HI) titers. In conclusion, despite vast genetic difference (77% in HA gene identity) between the vaccine H1N2 and H1N1 challenge viruses in Nano-11-KAg+Poly(I:C) vaccinates, compared to over 95% identity between H1N1 of commercial vaccine and challenge viruses, the virus load and macroscopic lesions in the lungs of both types of vaccinates were comparable, but the Nano-11-KAg+Poly(I:C) vaccine cleared the virus from the nasal passage better. These data suggested the important role played by Nano-11 and Poly(I:C) in the induction of polyfunctional, cross-protective cell-mediated immunity against SwIAV in MDA-positive pigs.
Collapse
Affiliation(s)
- Veerupaxagouda Patil
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Ninoshkaly Feliciano-Ruiz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Yi Han
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Anikethana Ramesh
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Jennifer Schrock
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
17
|
Normile TG, Bryan AM, Del Poeta M. Animal Models of Cryptococcus neoformans in Identifying Immune Parameters Associated With Primary Infection and Reactivation of Latent Infection. Front Immunol 2020; 11:581750. [PMID: 33042164 PMCID: PMC7522366 DOI: 10.3389/fimmu.2020.581750] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus species are environmental fungal pathogens and the causative agents of cryptococcosis. Infection occurs upon inhalation of infectious particles, which proliferate in the lung causing a primary infection. From this primary lung infection, fungal cells can eventually disseminate to other organs, particularly the brain, causing lethal meningoencephalitis. However, in most cases, the primary infection resolves with the formation of a lung granuloma. Upon severe immunodeficiency, dormant cryptococcal cells will start proliferating in the lung granuloma and eventually will disseminate to the brain. Many investigators have sought to study the protective host immune response to this pathogen in search of host parameters that keep the proliferation of cryptococcal cells under control. The majority of the work assimilates research carried out using the primary infection animal model, mainly because a reactivation model has been available only very recently. This review will focus on anti-cryptococcal immunity in both the primary and reactivation models. An understanding of the differences in host immunity between the primary and reactivation models will help to define the key host parameters that control the infections and are important for the research and development of new therapeutic and vaccine strategies against cryptococcosis.
Collapse
Affiliation(s)
- Tyler G Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Arielle M Bryan
- Ingenious Targeting Laboratory Incorporated, Ronkonkoma, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States.,Veterans Administration Medical Center, Northport, NY, United States
| |
Collapse
|
18
|
Watad A, Rowe H, Russell T, Zhou Q, Anderson LK, Khan A, Dunsmuir R, Loughenbury P, Borse V, Rao A, Millner PA, Bragazzi NL, Amital H, Cuhtbert R, Wittmann M, Sharif K, Kenna T, Brown MA, Newton D, Bridgewood C, McGonagle DG. Normal human enthesis harbours conventional CD4+ and CD8+ T cells with regulatory features and inducible IL-17A and TNF expression. Ann Rheum Dis 2020; 79:1044-1054. [PMID: 32404344 PMCID: PMC7392498 DOI: 10.1136/annrheumdis-2020-217309] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The human enthesis conventional T cells are poorly characterised. OBJECTIVES To study the biology of the conventional T cells in human enthesis. METHODS CD4+ and CD8+ T cells were investigated in 25 enthesis samples using immunofluorescence, cytometrically, bulk RNAseq and quantitative real-time PCR following anti-CD3/CD28 bead stimulation to determine interleukin (IL)-17A and tumour necrosis factor (TNF) levels. T-cell receptor (TCR) repertoires were characterised and a search for putative T-cell reactivity was carried out using TCR3 database. The impact of pharmacological antagonism with retinoic acid receptor-related orphan nuclear receptor gamma t inhibitor (RORγti), methotrexate and phosphodiesterase type 4 inhibitor (PDE4i) was investigated. RESULTS Immunofluorescence and cytometry suggested entheseal resident CD4+ and CD8+ T cells with a resident memory phenotype (CD69+/CD45RA-) and tissue residency gene transcripts (higher NR4A1/AhR and lower KLF2/T-bet transcripts). Both CD4+ and CD8+ T cells showed increased expression of immunomodulatory genes including IL-10 and TGF-β compared with peripheral blood T cells with entheseal CD8+ T cells having higher CD103, CD49a and lower SIPR1 transcript that matched CD4+ T cells. Following stimulation, CD4+ T cells produced more TNF than CD8+ T cells and IL-17A was produced exclusively by CD4+ T cells. RNAseq suggested both Cytomegalovirus and influenza A virus entheseal resident T-cell clonotype reactivity. TNF and IL-17A production from CD4+ T cells was effectively inhibited by PDE4i, while RORγti only reduced IL-17A secretion. CONCLUSIONS Healthy human entheseal CD4+ and CD8+ T cells exhibit regulatory characteristics and are predicted to exhibit antiviral reactivity with CD8+ T cells expressing higher levels of transcripts suggestive of tissue residency. Inducible IL-17A and TNF production can be robustly inhibited in vitro.
Collapse
Affiliation(s)
- Abdulla Watad
- University of Leeds Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
- Internal Medicine "B", Sheba Medical Center, Tel Hashomer, Israel
- The Zabludowicz Center for Autoimmune Diseases, Rheumatology Unit, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hannah Rowe
- University of Leeds Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
| | - Tobias Russell
- University of Leeds Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
| | - Qiao Zhou
- University of Leeds Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
- Department of Rheumatology & Immunology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lisa K Anderson
- Queensland University of Technology, Institute for Health and Biomedical Innovation, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Almas Khan
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | | | | - Abhay Rao
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Nicola Luigi Bragazzi
- Universita degli Studi di Genova Dipartimento di Medicina Interna e Specialita Mediche, Genova, Liguria, Italy
- Department of Mathematics and Statistics, Laboratory for Industrial and Applied Mathematics (LIAM), York University, Toronto, Ontario, Canada
| | - Howard Amital
- Internal Medicine "B", Sheba Medical Center, Tel Hashomer, Israel
- The Zabludowicz Center for Autoimmune Diseases, Rheumatology Unit, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard Cuhtbert
- University of Leeds Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
| | - Miriam Wittmann
- University of Leeds Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, NIHR Leeds Biomedical Research Centre, UK
| | - Kassem Sharif
- University of Leeds Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
- Internal Medicine "B", Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tony Kenna
- Queensland University of Technology, Institute for Health and Biomedical Innovation, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Matthew A Brown
- Queensland University of Technology, Institute for Health and Biomedical Innovation, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Guy's and St Thomas' NHS Foundation Trust, King's College London NIHR Biomedical Research Centre, London, United Kingdom
| | - Darren Newton
- Division of Haematology and Immunology, University of Leeds, Leeds, West Yorkshire, UK
| | - Charlie Bridgewood
- University of Leeds Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
| | - Dennis G McGonagle
- University of Leeds Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
| |
Collapse
|
19
|
St Paul M, Ohashi PS. The Roles of CD8 + T Cell Subsets in Antitumor Immunity. Trends Cell Biol 2020; 30:695-704. [PMID: 32624246 DOI: 10.1016/j.tcb.2020.06.003] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/04/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Effector CD8+ T cells are typically thought to be a homogenous group of cytotoxic cells that produce interferon-(IFN) γ. However, recent findings have challenged this notion because multiple subsets of CD8+ T cells have been described, each with distinct effector functions and cytotoxic potential. These subsets, referred to as the Tc subsets, have also been detected in tumor microenvironments (TMEs), where they potentially influence the antitumor response and patient outcomes. In this review, we highlight the prevalence and roles of Tc subsets in the TME. We also discuss their therapeutic applications in the context of adoptive immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Michael St Paul
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1C1, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1C1, Canada.
| |
Collapse
|
20
|
Steel KJA, Srenathan U, Ridley M, Durham LE, Wu SY, Ryan SE, Hughes CD, Chan E, Kirkham BW, Taams LS. Polyfunctional, Proinflammatory, Tissue-Resident Memory Phenotype and Function of Synovial Interleukin-17A+CD8+ T Cells in Psoriatic Arthritis. Arthritis Rheumatol 2020; 72:435-447. [PMID: 31677365 PMCID: PMC7065207 DOI: 10.1002/art.41156] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
Abstract
Objective Genetic associations imply a role for CD8+ T cells and the interleukin‐23 (IL‐23)/IL‐17 axis in psoriatic arthritis (PsA) and other spondyloarthritides (SpA). IL‐17A+CD8+ (Tc17) T cells are enriched in the synovial fluid (SF) of patients with PsA, and IL‐17A blockade is clinically efficacious in PsA/SpA. This study was undertaken to determine the immunophenotype, molecular profile, and function of synovial Tc17 cells in order to elucidate their role in PsA/SpA pathogenesis. Methods Peripheral blood (PB) and SF mononuclear cells were isolated from patients with PsA or other types of SpA. Cells were phenotypically, transcriptionally, and functionally analyzed by flow cytometry (n = 6–18), T cell receptor β (TCRβ) sequencing (n = 3), RNA‐Seq (n = 3), quantitative reverse transcriptase–polymerase chain reaction (n = 4), and Luminex or enzyme‐linked immunosorbent assay (n = 4–16). Results IL‐17A+CD8+ T cells were predominantly TCRαβ+ and their frequencies were increased in the SF versus the PB of patients with established PsA (P < 0.0001) or other SpA (P = 0.0009). TCRβ sequencing showed that these cells were polyclonal in PsA (median clonality 0.08), while RNA‐Seq and deep immunophenotyping revealed that PsA synovial Tc17 cells had hallmarks of Th17 cells (RORC/IL23R/CCR6/CD161) and Tc1 cells (granzyme A/B). Synovial Tc17 cells showed a strong tissue‐resident memory T (Trm) cell signature and secreted a range of proinflammatory cytokines. We identified CXCR6 as a marker for synovial Tc17 cells, and increased levels of CXCR6 ligand CXCL16 in PsA SF (P = 0.0005), which may contribute to their retention in the joint. Conclusion Our results identify synovial Tc17 cells as a polyclonal subset of Trm cells characterized by polyfunctional, proinflammatory mediator production and CXCR6 expression. The molecular signature and functional profiling of these cells may help explain how Tc17 cells can contribute to synovial inflammation and disease persistence in PsA and possibly other types of SpA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Catherine D Hughes
- King's College London, Guy's Hospital, and St. Thomas' Hospital, London, UK
| | - Estee Chan
- Guy's Hospital and St. Thomas' Hospital, London, UK
| | | | | |
Collapse
|
21
|
Ma WT, Yao XT, Peng Q, Chen DK. The protective and pathogenic roles of IL-17 in viral infections: friend or foe? Open Biol 2019; 9:190109. [PMID: 31337278 PMCID: PMC6685926 DOI: 10.1098/rsob.190109] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Viral infections cause substantial human morbidity and mortality, and are a significant health burden worldwide. Following a viral infection, the host may initiate complex antiviral immune responses to antagonize viral invasion and replication. However, proinflammatory antiviral immune responses pose a great threat to the host if not properly held in check. Interleukin (IL)-17 is a pleiotropic cytokine participating in a variety of physiological and pathophysiological conditions, including tissue integrity maintenance, cancer progression, autoimmune disease development and, more intriguingly, infectious diseases. Abundant evidence suggests that while IL-17 plays a crucial role in enhancing effective antiviral immune responses, it may also promote and exacerbate virus-induced illnesses. Accumulated experimental and clinical evidence has broadened our understanding of the seemingly paradoxical role of IL-17 in viral infections and suggests that IL-17-targeted immunotherapy may be a promising therapeutic option. Herein, we summarize current knowledge regarding the protective and pathogenic roles of IL-17 in viral infections, with emphasis on underlying mechanisms. The various and critical roles of IL-17 in viral infections necessitate the development of therapeutic strategies that are uniquely tailored to both the infectious agent and the infection environment.
Collapse
Affiliation(s)
- Wen-Tao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| | - Xiao-Ting Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| | - Qun Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| | - De-Kun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| |
Collapse
|
22
|
Liu X, Zawidzka EM, Li H, Lesch CA, Dunbar J, Bousley D, Zou W, Hu X, Carter LL. RORγ Agonists Enhance the Sustained Antitumor Activity through Intrinsic Tc17 Cytotoxicity and Tc1 Recruitment. Cancer Immunol Res 2019; 7:1054-1063. [PMID: 31064778 DOI: 10.1158/2326-6066.cir-18-0714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/06/2019] [Accepted: 05/02/2019] [Indexed: 11/16/2022]
Abstract
Activation of RORγ with synthetic small-molecule agonists has been shown to enhance type 17 effector (CD4+ Th17 and CD8+ Tc17 cells) cell functions and decrease immunosuppressive mechanisms, leading to improved antitumor efficacy in adoptive cell transfer and syngeneic murine tumor models. However, whether Tc17 cells possess intrinsic cytotoxicity and the mechanism they use to lyse target cells is controversial. We report here that Tc17 cells were lytic effectors dependent on perforin and granzyme A. In contrast to Tc1 cells, Tc17 cells resisted activation-induced cell death and maintained granzyme A levels, which conferred the ability to lyse target cells in serial encounters. Thus, although the acute lytic capacity of Tc17 cells could be inferior to Tc1 cells, comparable lysis was achieved over time. In addition to direct lytic activity, Tc17 cells infiltrated early into the tumor mass, recruited other CD8+ T cells to the tumor, and enhanced the survival and lytic capability of these cells during repeated target encounters. Synthetic RORγ agonists further augmented Tc17 survival and lytic activity in vitro and in vivo, controlling tumor growth not only through direct cytotoxicity, but also through recruitment and improved function of other effector cells in the tumor microenvironment, which suggests complementary and cooperate activities for effective immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weiping Zou
- University of Michigan Medical School, Ann Arbor, Michigan
| | - Xiao Hu
- Lycera Corp. Ann Arbor, Michigan
| | | |
Collapse
|
23
|
IL-17A Is Critical for CD8+ T Effector Response in Airway Epithelial Injury After Transplantation. Transplantation 2019; 102:e483-e493. [PMID: 30211827 DOI: 10.1097/tp.0000000000002452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Airway epithelium is the primary target of trachea and lung transplant rejection, the degree of epithelial injury is closely correlated with obliterative bronchiolitis development. In this study, we investigated the cellular and molecular mechanisms of IL-17A-mediated airway epithelial injury after transplantation. METHODS Murine orthotopic allogeneic trachea or lung transplants were implemented in wild type or RORγt mice. Recipients received anti-IL-17A or anti-IFNγ for cytokine neutralization, anti-CD8 for CD8 T-cell depletion, or STAT3 inhibitor to suppress type 17 CD4+/CD8+ T cell development. Airway injury and graft inflammatory cell infiltration were examined by histopathology and immunohistochemistry. Gene expression of IL-17A, IFNγ, perforin, granzyme B, and chemokines in grafts was quantitated by real-time RT-PCR. RESULTS IL-17A and IFNγ were rapidly expressed and associated with epithelial injury and CD8 T-cell accumulation after allotransplantation. Depletion of CD8 T cells prevented airway epithelial injury. Neutralization of IL-17A or devoid of IL-17A production by RORγt deficiency improved airway epithelial integrity of the trachea allografts. Anti-IL-17A reduced the expression of CXCL9, CXCL10, CXCL11, and CCL20, and abolished CD8 T-cell accumulation in the trachea allografts. Inhibition of STAT3 activation significantly reduced IL-17A expression in both trachea and lung allografts; however, it increased IFNγ expression and cytotoxic activities, which resulted in the failure of airway protection. CONCLUSIONS Our data reveal the critical role of IL-17A in mediating CD8 T effector response that causes airway epithelial injury and lung allograft rejection, and indicate that inhibition of STAT3 signals could drive CD8 T cells from Tc17 toward Tc1 development.
Collapse
|