1
|
Xu K, Zhang M, Zou X, Wang M. Tetramethylpyrazine Confers Protection Against Oxidative Stress and NLRP3-Dependent Pyroptosis in Rats with Endometriosis. Organogenesis 2025; 21:2460261. [PMID: 39967390 PMCID: PMC11845083 DOI: 10.1080/15476278.2025.2460261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/31/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025] Open
Abstract
Tetramethylpyrazine (TMP) has been confirmed to suppress inflammation in endometriosis (EMs). Herein, this study investigated whether and how TMP affected NLRP3 inflammasomes and oxidative stress in EMs. After establishment of an EMs rat model, rats were treated with different concentrations of TMP. The size of endometriotic lesions and the latency and frequency of torsion in rats were recorded, followed by the measurement of relevant indicators (TNF-α, IL-6, IL-2, IL-10, MDA, SOD, GSH, CAT, ROS, NLRP3, ASC, GSDMD, caspase-1, Nrf2, and HO-1). The study experimentally determined that TMP treatment markedly decreased the size of endometriotic lesions and improved torsion in rats with EMs. The levels of inflammatory proteins, oxidative stress markers, NLRP3 inflammasome, and pyroptotic proteins were elevated in rats with EMs, all of which were reversed upon TMP treatment. Additionally, the activities of SOD, GSH, and CAT were lowered in rats with EMs, which were partly abrogated by TMP treatment. Furthermore, the downregulation of Nrf2 and HO-1 was counteracted by TMP treatment. To sum up, TMP represses excessive oxidative stress, NLRP3 inflammasome activation, and pyroptosis in rats with EMs. Additionally, TMP may activate the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Ke Xu
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Mingzhe Zhang
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaofeng Zou
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Mingyang Wang
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Paik S, Kim JK, Shin HJ, Park EJ, Kim IS, Jo EK. Updated insights into the molecular networks for NLRP3 inflammasome activation. Cell Mol Immunol 2025; 22:563-596. [PMID: 40307577 DOI: 10.1038/s41423-025-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Over the past decade, significant advances have been made in our understanding of how NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes are activated. These findings provide detailed insights into the transcriptional and posttranslational regulatory processes, the structural-functional relationship of the activation processes, and the spatiotemporal dynamics of NLRP3 activation. Notably, the multifaceted mechanisms underlying the licensing of NLRP3 inflammasome activation constitute a focal point of intense research. Extensive research has revealed the interactions of NLRP3 and its inflammasome components with partner molecules in terms of positive and negative regulation. In this Review, we provide the current understanding of the complex molecular networks that play pivotal roles in regulating NLRP3 inflammasome priming, licensing and assembly. In addition, we highlight the intricate and interconnected mechanisms involved in the activation of the NLRP3 inflammasome and the associated regulatory pathways. Furthermore, we discuss recent advances in the development of therapeutic strategies targeting the NLRP3 inflammasome to identify potential therapeutics for NLRP3-associated inflammatory diseases. As research continues to uncover the intricacies of the molecular networks governing NLRP3 activation, novel approaches for therapeutic interventions against NLRP3-related pathologies are emerging.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Biochemistry and Cell Biology, Eulji University School of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Zhang L, Liu J. Spironolactone protects against hypertension-induced renal fibrosis by promoting autophagy and inhibiting the NLRP3 inflammasome. J Hypertens 2025:00004872-990000000-00683. [PMID: 40366120 DOI: 10.1097/hjh.0000000000004020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/16/2025] [Indexed: 05/15/2025]
Abstract
INTRODUCTION We aimed to investigate the mechanism by which spironolactone protects against hypertensive renal fibrosis. METHODS For in-vivo experiments, we established Control, SHR, and SHR+spironolactone (20 mg/kg/day) groups. For in-vitro experiments, we established Control, TGF-β1-induced (10 ng/ml), and spironolactone (1 μmol/l) intervention groups. Renal function and serum potassium, estradiol, testosterone, and plasma aldosterone levels were assessed, along with autophagy indicators LC3 and p62, and NLRP3 inflammasome-related proteins (NLRP3, caspase-1, IL-1β and IL-18). Additionally, changes in macrophage polarization and T cell and dendritic cell populations were determined. RESULTS 20 mg/kg/day of spironolactone effectively maintained systolic pressure and renal function by lowering aldosterone levels and significantly reducing testosterone levels. Hypertensive renal fibrosis was predominant in the glomeruli, tubules, and interstitium, and was associated with autophagy inhibition in renal tubules, NLRP3 inflammasome activation, both M1 and M2 macrophage polarization, with a predominant effect on M1 polarization, decreased CD4+ T cell population and CD4/CD8 ratio, and increased CD8+ T cell and dendritic cell population. Autophagy negatively regulated the NLRP3 inflammasome. Spironolactone inhibited both M1 and M2 macrophages polarization, mainly M1 macrophage polarization, reduced CD8+ T and dendritic cell population, increased CD4+ T cell population, negatively regulated the release of NLRP3 inflammasome-related proteins in macrophages, and restored autophagy in the glomeruli and renal tubules. CONCLUSION Spironolactone acts on sites where the mineralocorticoid receptor is present. A dose of 20 mg/kg/day spironolactone is well tolerated and protects against hypertension-induced renal fibrosis by restoring autophagy and suppressing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Hospital
| | - Jianchang Liu
- Tangshan People's Hospital, Tangshan, Hebei Province, China
| |
Collapse
|
4
|
Lu Y, Wang T, Yu B, Xia K, Guo J, Liu Y, Ma X, Zhang L, Zou J, Chen Z, Zhou J, Qiu T. Mechanism of action of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome and its regulation in liver injury. Chin Med J (Engl) 2025; 138:1061-1071. [PMID: 39719693 PMCID: PMC12068774 DOI: 10.1097/cm9.0000000000003309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 12/26/2024] Open
Abstract
ABSTRACT Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) is a cytosolic pattern recognition receptor that recognizes multiple pathogen-associated molecular patterns and damage-associated molecular patterns. It is a cytoplasmic immune factor that responds to cellular stress signals, and it is usually activated after infection or inflammation, forming an NLRP3 inflammasome to protect the body. Aberrant NLRP3 inflammasome activation is reportedly associated with some inflammatory diseases and metabolic diseases. Recently, there have been mounting indications that NLRP3 inflammasomes play an important role in liver injuries caused by a variety of diseases, specifically hepatic ischemia/reperfusion injury, hepatitis, and liver failure. Herein, we summarize new research pertaining to NLRP3 inflammasomes in hepatic injury, hepatitis, and liver failure. The review addresses the potential mechanisms of action of the NLRP3 inflammasome, and its regulation in these liver diseases.
Collapse
Affiliation(s)
- Yifan Lu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Kang Xia
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yiting Liu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiaoxiong Ma
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Long Zhang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jilin Zou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhongbao Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
5
|
Mohan AA, Talwar P. MAM kinases: physiological roles, related diseases, and therapeutic perspectives-a systematic review. Cell Mol Biol Lett 2025; 30:35. [PMID: 40148800 PMCID: PMC11951743 DOI: 10.1186/s11658-025-00714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondria-associated membranes (MAMs) are tethering regions amid the membranes of the endoplasmic reticulum (ER) and mitochondria. They are a lipid raft-like structure occupied by various proteins that facilitates signal transduction between the two organelles. The MAM proteome participates in cellular functions such as calcium (Ca2+) homeostasis, lipid synthesis, ER stress, inflammation, autophagy, mitophagy, and apoptosis. The human kinome is a superfamily of homologous proteins consisting of 538 kinases. MAM-associated kinases participate in the aforementioned cellular functions and act as cell fate executors. Studies have proved the dysregulated kinase interactions in MAM as an etiology for various diseases including cancer, diabetes mellitus, neurodegenerative diseases, cardiovascular diseases (CVDs), and obesity. Several small kinase inhibitory molecules have been well explored as promising drug candidates in clinical trials with an accelerating impact in the field of precision medicine. This review narrates the physiological actions, pathophysiology, and therapeutic potential of MAM-associated kinases with recent updates in the field.
Collapse
Affiliation(s)
- A Anjana Mohan
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Beesetti S. Ubiquitin Ligases in Control: Regulating NLRP3 Inflammasome Activation. FRONT BIOSCI-LANDMRK 2025; 30:25970. [PMID: 40152367 DOI: 10.31083/fbl25970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 03/29/2025]
Abstract
Ubiquitin ligases play pivotal roles in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, a critical process in innate immunity and inflammatory responses. This review explores the intricate mechanisms by which various E3 ubiquitin ligases exert both positive and negative influences on NLRP3 inflammasome activity through diverse post-translational modifications. Negative regulation of NLRP3 inflammasome assembly is mediated by several E3 ligases, including F-box and leucine-rich repeat protein 2 (FBXL2), tripartite motif-containing protein 31 (TRIM31), and Casitas B-lineage lymphoma b (Cbl-b), which induce K48-linked ubiquitination of NLRP3, targeting it for proteasomal degradation. Membrane-associated RING-CH 7 (MARCH7) similarly promotes K48-linked ubiquitination leading to autophagic degradation, while RING finger protein (RNF125) induces K63-linked ubiquitination to modulate NLRP3 function. Ariadne homolog 2 (ARIH2) targets the nucleotide-binding domain (NBD) domain of NLRP3, inhibiting its activation, and tripartite motif-containing protein (TRIM65) employs dual K48 and K63-linked ubiquitination to suppress inflammasome assembly. Conversely, Pellino2 exemplifies a positive regulator, promoting NLRP3 inflammasome activation through K63-linked ubiquitination. Additionally, ubiquitin ligases influence other components critical for inflammasome function. TNF receptor-associated factor 3 (TRAF3) mediates K63 polyubiquitination of apoptosis-associated speck-like protein containing a CARD (ASC), facilitating its degradation, while E3 ligases regulate caspase-1 activation and DEAH-box helicase 33 (DHX33)-NLRP3 complex formation through specific ubiquitination events. Beyond direct inflammasome regulation, ubiquitin ligases impact broader innate immune signaling pathways, modulating pattern-recognition receptor responses and dendritic cell maturation. Furthermore, they intricately control NOD1/NOD2 signaling through K63-linked polyubiquitination of receptor-interacting protein 2 (RIP2), crucial for nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) activation. Furthermore, we explore how various pathogens, including bacteria, viruses, and parasites, have evolved sophisticated strategies to hijack the host ubiquitination machinery, manipulating NLRP3 inflammasome activation to evade immune responses. This comprehensive analysis provides insights into the molecular mechanisms underlying inflammasome regulation and their implications for inflammatory diseases, offering potential avenues for therapeutic interventions targeting the NLRP3 inflammasome. In conclusion, ubiquitin ligases emerge as key regulators of NLRP3 inflammasome activation, exhibiting a complex array of functions that finely tune immune responses. Understanding these regulatory mechanisms not only sheds light on fundamental aspects of inflammation but also offers potential therapeutic avenues for inflammatory disorders and infectious diseases.
Collapse
Affiliation(s)
- Swarna Beesetti
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
7
|
Guan Q, Xiong H, Song X, Liu S, Guang Y, Nie Q, Xie Y, Zhang XL. Suppression of NLRP3 inflammasome by a small molecule targeting CK1α-β-catenin-NF-κB and CK1α-NRF2-mitochondrial OXPHOS pathways during mycobacterial infection. Front Immunol 2025; 16:1553093. [PMID: 40092991 PMCID: PMC11906677 DOI: 10.3389/fimmu.2025.1553093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Pyroptosis is an important inflammatory form of cell death and Mycobacterium tuberculosis (M.tb) chronic infection triggers excessive inflammatory pyroptosis of macrophages. Our previous research has confirmed that a small compound pyrvinium pamoate (PP) could inhibit inflammatory pathological changes and mycobacterial burden in M.tb-infected mice, but the potential mechanism of PP for inhibiting M.tb-induced inflammation remains unexplored. Methods The effects of PP on the NLRP3-ASC-Casp1 inflammasome assembly and activation, gasdermin D (GSDMD) mediated pyroptosis and inflammatory cytokines expression were assessed in human THP-1-derived macrophages after M.tb H37Rv/H37Ra/ Salmonella typhimurium (S. typhimurium) infection or LPS treatment by Transcriptome sequencing, RT-qPCR, Co-immunoprecipitation and Western Blot (WB) analysis. The lactate dehydrogenase (LDH) release assay was used to evaluate the CC50 of PP in M.tb-infected THP-1 cells. Results We found that M.tb/S. typhimurium infection and LPS treatment significantly activate NLRP3-ASC-Casp1 inflammasome activation, GSDMD-mediated pyroptosis and inflammatory cytokines (IL-1β and IL-18) expression in macrophages, whereas PP could suppress these inflammatory effects in a dose dependent manner. Regarding the PP-inhibition mechanism, we further found that this inhibitory activity is mediated through the PP-targeting casein kinase 1A1 (CK1α)-β-catenin-NF-κB pathway and CK1α-NRF2-mitochondrial oxidative phosphorylation (OXPHOS) pathway. In addition, a CK1α specific inhibitor D4476 or CK1α siRNA could reverse these inhibitory effects of PP on bacteria-induced inflammatory responses in macrophages. Conclusions This study reveals a previously unreported mechanism that pyrvinium can inhibit NLRP3 inflammasome and GSDMD-IL-1β inflammatory pyroptosis via targeting suppressing CK1α-β-catenin-NF-κB and CK1α-NRF2-mitochondrial OXPHOS pathways, suggesting that pyrvinium pamoate holds great promise as a host directed therapy (HDT) drug for mycobacterial-induced excessive inflammatory response.
Collapse
Affiliation(s)
- Qing Guan
- State Key Laboratory of Virology and Biosafety, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences) Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Department of Allergy Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | - Huan Xiong
- State Key Laboratory of Virology and Biosafety, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences) Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Department of Allergy Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | - Xiangyu Song
- State Key Laboratory of Virology and Biosafety, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences) Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Department of Allergy Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | - Sheng Liu
- State Key Laboratory of Virology and Biosafety, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences) Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Department of Allergy Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuanjun Guang
- State Key Laboratory of Virology and Biosafety, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences) Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Department of Allergy Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | - Qi Nie
- Department of Multidrug-Resistant and Rifampicin-Resistant Tuberculosis (MDR/RR-TB), Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yan Xie
- State Key Laboratory of Virology and Biosafety, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences) Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Department of Allergy Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Biosafety, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences) Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Department of Allergy Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| |
Collapse
|
8
|
Zhang X, Xu C, Liu ZY, Zhang DY, Wang BH, Wang J, Ding XM. The Inflammasome: A Promising Potential Therapeutic Target for Early Brain Injury Following Subarachnoid Hemorrhage. FRONT BIOSCI-LANDMRK 2025; 30:33454. [PMID: 40018941 DOI: 10.31083/fbl33454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/21/2024] [Accepted: 12/31/2024] [Indexed: 03/01/2025]
Abstract
Subarachnoid hemorrhage (SAH), a severe cerebrovascular disorder, is principally instigated by the rupture of an aneurysm. Early brain injury (EBI), which gives rise to neuronal demise, microcirculation impairments, disruption of the blood-brain barrier, cerebral edema, and the activation of oxidative cascades, has been established as the predominant cause of mortality among patients with SAH. These pathophysiological processes hinge on the activation of inflammasomes, specifically the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)and absent in melanoma 2 (AIM2) inflammasomes. These inflammasomes assume a crucial role in downstream intracellular signaling pathways and hold particular significance within the nervous system. The activation of inflammasomes can be modulated, either by independently regulating these two entities or by influencing their engagement at specific target loci within the pathway, thereby attenuating EBI subsequent to SAH. Although certain clinical instances lend credence to this perspective, more in-depth investigations are essential to ascertain the optimal treatment regimen, encompassing dosage, timing, administration route, and frequency. Consequently, targeting the ensuing early brain injury following SAH represents a potentially efficacious therapeutic approach.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Chao Xu
- Department of Neurosurgery, Chongqing General Hospital, 400799 Chongqing, China
| | - Zi-Yuan Liu
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Dong-Yuan Zhang
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Bo-Hong Wang
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Jing Wang
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| | - Xin-Min Ding
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| |
Collapse
|
9
|
Barbalho SM, Leme Boaro B, da Silva Camarinha Oliveira J, Patočka J, Barbalho Lamas C, Tanaka M, Laurindo LF. Molecular Mechanisms Underlying Neuroinflammation Intervention with Medicinal Plants: A Critical and Narrative Review of the Current Literature. Pharmaceuticals (Basel) 2025; 18:133. [PMID: 39861194 PMCID: PMC11768729 DOI: 10.3390/ph18010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Neuroinflammation is a key factor in the progression of neurodegenerative diseases, driven by the dysregulation of molecular pathways and activation of the brain's immune system, resulting in the release of pro-inflammatory and oxidative molecules. This chronic inflammation is exacerbated by peripheral leukocyte infiltration into the central nervous system. Medicinal plants, with their historical use in traditional medicine, have emerged as promising candidates to mitigate neuroinflammation and offer a sustainable alternative for addressing neurodegenerative conditions in a green healthcare framework. This review evaluates the effects of medicinal plants on neuroinflammation, emphasizing their mechanisms of action, effective dosages, and clinical implications, based on a systematic search of databases such as PubMed, SCOPUS, and Web of Science. The key findings highlight that plants like Cleistocalyx nervosum var. paniala, Curcuma longa, Cannabis sativa, and Dioscorea nipponica reduce pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), inhibit enzymes (COX-2 and iNOS), and activate antioxidant pathways, particularly Nrf2. NF-κB emerged as the primary pro-inflammatory pathway inhibited across studies. While the anti-inflammatory potential of these plants is significant, the variability in dosages and phytochemical compositions limits clinical translation. Here, we highlight that medicinal plants are effective modulators of neuroinflammation, underscoring their therapeutic potential. Future research should focus on animal models, standardized protocols, and safety assessments, integrating advanced methodologies, such as genetic studies and nanotechnology, to enhance their applicability in neurodegenerative disease management.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (S.M.B.); (L.F.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Jéssica da Silva Camarinha Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Jiří Patočka
- Faculty of Health and Social Studies, Institute of Radiology, Toxicology and Civil Protection, University of South Bohemia Ceske Budejovice, 37005 Ceske Budejovice, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (S.M.B.); (L.F.L.)
| |
Collapse
|
10
|
Gao H, Sun M, Gao H, Sun Y, Chen W, Dong N. Genome-wide screen based on 2DG activated NLRP3 inflammasome reveals the priming signal of TLR2/4 to IKKβ but not IKKα. Int Immunopharmacol 2025; 145:113781. [PMID: 39657538 DOI: 10.1016/j.intimp.2024.113781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
NLRP3 inflammasome activation is a pivotal area of research in innate immunity, yet the precise priming and activation signal remain unclear. In this study, we demonstrate that glycolysis inhibitor 2-Deoxy-D-glucose (2DG) triggers NLRP3-driven pyroptosis in human leukemia monocyte THP-1 cells by interfering glycosylation rather than glycolysis, which occurs independent of potassium efflux but requires the involvement of glycolysis rate-limiting enzyme PFKP. Using a CRISPR-Cas9 mediated large-scale screen, with 2DG as a new tool for probing NLRP3 activation, we identified that TLR2, rather than TLR4, initiates a rapid and robust priming signal for NLRP3 inflammasome activation. Importantly, both TLR2 and TLR4 depend entirely on MyD88, but not TRIF, for signal transduction. Furthermore, we discovered that TAK1, IKKβ and NEMO, but not IKKα, are essential for the priming signal. Additionally, we observed that deficiency in the linear ubiquitin assembly complex (LUBAC) subunits HOIP and HOIL-1, but not SHARPIN, is sufficient to inhibit 2DG-induced pyroptotic cell death. Collectively, our study reveals some common mechanism in the NLRP3 priming signals, as well as specific mechanisms upstream of NLRP3 triggered by 2DG, and underscores the potential of 2DG as a trigger to facilitate further detailed analysis of the underlying mechanisms of NLRP3 inflammasome activation. One Sentence Summary: Priming signal by IKKβ is essential for NLRP3 activation.
Collapse
Affiliation(s)
- Hui Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Mengning Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Hang Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Yi Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Wenjuan Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Na Dong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| |
Collapse
|
11
|
Du Y, Duan C, Zhang X, Shi S, Zhu X, Lyu M, Wei Y, Hu Y. Modulation of NLRP3 Inflammasome: Advantages of Chinese Herbal Medicine in Treating Myocardial Ischemia/Reperfusion Injury. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:737-769. [PMID: 40374375 DOI: 10.1142/s0192415x25500284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is characterized by severe inflammation and oxidative stress, and involves the recruitment and activation of immune cells, the release of pro-inflammatory cytokines, and the generation of reactive oxygen species (ROS). The NOD-like receptor protein 3 (NLRP3) inflammasome, a multiprotein complex, is activated when exposed to different danger signals like excessive ROS, changes in ionic flux, and mitochondrial dysfunction. Once the NLRP3 inflammasome is activated, it promotes the maturation and release of pro-inflammatory cytokines such as interleukin-1β and interleukin-18, which contributes to the inflammatory storm in myocardial I/R injury. This inflammatory cascade not only leads to adverse cardiac remodeling but also impairs cardiac function, ultimately exacerbating the clinical outcomes of myocardial infarction. Despite the critical role of the NLRP3 inflammasome in myocardial I/R injury, there is a significant absence of effective therapeutic strategies to address it in clinical practice. In recent years, Chinese herbal medicine has emerged as a promising candidate in the therapeutic landscape of myocardial I/R injury. Chinese herbal medicine exerts its cardioprotective effects through various mechanisms of inhibiting NLRP3 inflammasomes, including enhancing mitochondrial function, reducing ROS generation, inhibiting the release of pro-inflammatory cytokines, and suppressing pyroptosis. This review emphasizes the therapeutic potential of Chinese herbal medicine and its extracts to inhibit NLRP3 inflammasomes in an effort to develop effective treatments for myocardial I/R injury. It likewise summarizes the research results of Chinese herbal medicine interventions for myocardial I/R injury by the mechanism of regulating the NLRP3 inflammasome, providing insights for the development of effective treatments for myocardial I/R injury.
Collapse
Affiliation(s)
- Yihang Du
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglin Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaohan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueping Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Lyu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wei
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Zhang X, Wu J, Wang M, Chen L, Wang P, Jiang Q, Yang C. The role of gene mutations and immune responses in sensorineural hearing loss. Int Immunopharmacol 2024; 143:113515. [PMID: 39486181 DOI: 10.1016/j.intimp.2024.113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Sensorineural hearing loss (SNHL) is a prevalent clinical condition primarily attributed to dysfunction within various components of the auditory pathway, spanning from the inner ear to the auditory cortex. Recent research has illuminated immune and inflammation-mediated disorders of the inner ear as critical contributors to SNHL. Disruptions in the equilibrium of inflammatory mediators, chemokines, the complement system, and inflammatory vesicles within the cochlea provoke aberrations in immune cell activity, fostering a chronic pro-inflammatory milieu that detrimentally affects the structural and functional integrity of the inner ear, culminating in hearing impairment. Specific genetic mutations, especially those affecting auditory structures, play an important role in SNHL. These mutations regulate inflammatory mediators and cellular responses, thereby altering the inflammatory dynamics within the cochlea. This review delves into the pathogenesis of sensorineural hearing loss, emphasizing the impact of genetic alterations, immune responses within the inner ear, and inflammatory mediators on auditory function. It highlights the significance of Transmembrane Serine Protease 3 (TMPRSS3) and connexin gene mutations as pivotal genetic elements in SNHL, underscoring the central role of inflammatory responses in cochlear damage. Furthermore, the paper discusses the promise of gene therapy and targeted molecular interventions, underscoring the necessity for continued exploration into the specific actions of various inflammatory agents to refine personalized therapeutic strategies.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Junyi Wu
- Department of Otolaryngology-Head and Neck Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu Province, China
| | - Maohua Wang
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Foshan, Hearing and Balance Medical Engineering Technology Center of Guangdong, Foshan, 528000, China
| | - Li Chen
- Department of Otolaryngology-Head and Neck Surgery, The Second People's Hospital of Yibin City, Sichuan Province, 644000, China
| | - Peng Wang
- Department of Otolaryngology-Head and Neck Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Jiangsu Province, 225200, China
| | - Qiao Jiang
- Department of Neurology, Deyang Fifth Hospital, Sichuan Province, 618000, China.
| | - Chunping Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
13
|
Ziehr BK, MacDonald JA. Regulation of NLRPs by reactive oxygen species: A story of crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119823. [PMID: 39173681 DOI: 10.1016/j.bbamcr.2024.119823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The nucleotide oligomerization domain (NOD)-like receptors containing pyrin (NLRP) family of cytosolic pattern-recognition receptors play an integral role in host defense following exposure to a diverse set of pathogenic and sterile threats. The canonical event following ligand recognition is the formation of a heterooligomeric signaling complex termed the inflammasome that produces pro-inflammatory cytokines. Dysregulation of this process is associated with many autoimmune, cardiovascular, metabolic, and neurodegenerative diseases. Despite the range of activating stimuli which affect varied cell types, recent literature makes evident that reactive oxygen species (ROS) are integral to the initiation and propagation of inflammasome signaling. Notably, ROS production and inflammasome activation act in a positive feedback loop to promote this potent immune response. While NLRP3 is by far the most extensively studied NLRP, there is also sufficient literature to make these conclusions for other NLRPs family members. In all cases, a knowledge gap exists regarding the molecular targets and effects of ROS. Future research to define these targets and to parse the order and timing of ROS-mediated NLRP activation will provide meaningful insights into inflammasome biology. This will create novel therapeutic opportunities for the numerous illnesses that are impacted by inflammasome activity.
Collapse
Affiliation(s)
- Bjoern K Ziehr
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.
| |
Collapse
|
14
|
Zou S, Han X, Luo S, Tan Q, Huang H, Yao Z, Hou W, Jie H, Wang J. Bay-117082 treats sepsis by inhibiting neutrophil extracellular traps (NETs) formation through down-regulating NLRP3/N-GSDMD. Int Immunopharmacol 2024; 141:112805. [PMID: 39146778 DOI: 10.1016/j.intimp.2024.112805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
During the inflammatory storm of sepsis, a significant quantity of neutrophil extracellular traps (NETs) are generated, which act as a double-edged sword and not only impede the invasion of foreign microorganisms but also exacerbate organ damage. This study provides evidence that NETs can cause damage to alveolar epithelial cells in vitro. The sepsis model developed in this study showed a significant increase in NETs in the bronchoalveolar lavage fluid (BALF). The development of NETs has been shown to increase the lung inflammatory response and aggravate injury to alveolar epithelial cells. Bay-117082, a well-known NF-κB suppressor, is used to modulate inflammation. This analysis revealed that Bay-117082 efficiently reduced total protein concentration, myeloperoxidase activity, and inflammatory cytokines in BALF. Moreover, Bay-117082 inhibited the formation of NETs, which in turn prevented the activation of the pore-forming protein gasdermin D (GSDMD). In summary, these results indicated that excessive NET production during sepsis exacerbated the onset and progression of acute lung injury (ALI). Therefore, Bay-117082 could serve as a novel therapeutic approach for ameliorating sepsis-associated ALI.
Collapse
Affiliation(s)
- Shujing Zou
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xinai Han
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Shugeng Luo
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Quanguang Tan
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Huiying Huang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhoulanlan Yao
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Hou
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hongyu Jie
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jinghong Wang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Zhang N, Yang Y, Xu D. Emerging roles of palmitoylation in pyroptosis. Trends Cell Biol 2024:S0962-8924(24)00211-3. [PMID: 39521664 DOI: 10.1016/j.tcb.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Pyroptosis is a lytic, proinflammatory type of programmed cell death crucial for the immune response to pathogen infections and internal danger signals. Gasdermin D (GSDMD) acts as the pore-forming protein in pyroptosis following inflammasome activation. While recent research has improved our understanding of pyroptosis activation and execution, many aspects regarding the molecular mechanisms controlling inflammasome and GSDMD activation remain to be elucidated. A growing body of literature has shown that S-palmitoylation, a reversible post-translational modification (PTM) that attaches palmitate to cysteine residues, contributes to multi-layered regulation of pyroptosis. This review summarizes the emerging roles of S-palmitoylation in pyroptosis research with a focus on mechanisms that regulate NLRP3 inflammasome and GSDMD activation.
Collapse
Affiliation(s)
- Na Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China; Shanghai Key Laboratory of Aging Studies, Shanghai, 201210, China.
| |
Collapse
|
16
|
Sahoo PK, Ravi A, Liu B, Yu J, Natarajan SK. Palmitoleate protects against lipopolysaccharide-induced inflammation and inflammasome activity. J Lipid Res 2024; 65:100672. [PMID: 39396700 PMCID: PMC11585775 DOI: 10.1016/j.jlr.2024.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Inflammation is part of natural immune defense mechanism against any form of infection or injury. However, prolonged inflammation could perturb cell homeostasis and contribute to the development of metabolic and inflammatory diseases, including maternal obesity, diabetes, cardiovascular diseases, and metabolic dysfunction-associated steatotic liver diseases (MASLD). Polyunsaturated fatty acids have been shown to mitigate inflammatory response by generating specialized proresolving lipid mediators, which take part in resolution of inflammation. Similarly here, we show that palmitoleate, an omega-7 monounsaturated fatty acid exerts anti-inflammatory properties in response to lipopolysaccharide (LPS)-mediated inflammation. Exposure of bone marrow-derived macrophages (BMDMs) to LPS or TNFα induces robust increase in the expression of proinflammatory cytokines and supplementation of palmitoleate inhibited LPS-mediated upregulation of proinflammatory cytokines. We also observed that palmitoleate was able to block LPS + ATP-induced inflammasome activation mediated cleavage of procaspase 1 and prointerleukin-1β. Further, treatment of palmitoleate protects against LPS-induced inflammation in human THP-1-derived macrophages and trophoblasts. Coexposure of LPS and palmitate (saturated free fatty acid) induces inflammasome and cell death in BMDMs, however, treatment of palmitoleate blocked LPS and palmitate-induced cell death in BMDMs. Further, LPS and palmitate together results in the activation of mitogen-activated protein kinases and pretreatment of palmitoleate inhibited the activation of mitogen-activated protein kinases and nuclear translocation of nuclear factor kappa B in BMDMs. In conclusion, palmitoleate shows anti-inflammatory properties against LPS-induced inflammation and LPS + palmitate/ATP-induced inflammasome activity and cell death.
Collapse
Affiliation(s)
- Prakash Kumar Sahoo
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Aiswariya Ravi
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Baolong Liu
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yang ling, Shaanxi, China
| | - Jiujiu Yu
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; College of Allied Health Professions Medical Nutrition Education, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
17
|
Davidson CB, El Sabbagh DES, Machado AK, Pappis L, Sagrillo MR, Somacal S, Emanuelli T, Schultz JV, Augusto Pereira da Rocha J, Santos AFD, Fagan SB, Silva IZD, Andreazza AC, Machado AK. Euterpe oleracea Mart. Bioactive Molecules: Promising Agents to Modulate the NLRP3 Inflammasome. BIOLOGY 2024; 13:729. [PMID: 39336156 PMCID: PMC11428631 DOI: 10.3390/biology13090729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Inflammation is a vital mechanism that defends the organism against infections and restores homeostasis. However, when inflammation becomes uncontrolled, it leads to chronic inflammation. The NLRP3 inflammasome is crucial in chronic inflammatory responses and has become a focal point in research for new anti-inflammatory therapies. Flavonoids like catechin, apigenin, and epicatechin are known for their bioactive properties (antioxidant, anti-inflammatory, etc.), but the mechanisms behind their anti-inflammatory actions remain unclear. This study aimed to explore the ability of various flavonoids (isolated and combined) to modulate the NLRP3 inflammasome using in silico and in vitro models. Computer simulations, such as molecular docking, molecular dynamics, and MM/GBSA calculations examined the interactions between bioactive molecules and NLRP3 PYD. THP1 cells were treated with LPS + nigericin to activate NLRP3, followed by flavonoid treatment at different concentrations. THP1-derived macrophages were also treated following NLRP3 activation protocols. The assays included colorimetric, fluorometric, microscopic, and molecular techniques. The results showed that catechin, apigenin, and epicatechin had high binding affinity to NLRP3 PYD, similar to the known NLRP3 inhibitor MCC950. These flavonoids, particularly at 1 µg/mL, 0.1 µg/mL, and 0.01 µg/mL, respectively, significantly reduced LPS + nigericin effects in both cell types and decreased pro-inflammatory cytokine, caspase-1, and NLRP3 gene expression, suggesting their potential as anti-inflammatory agents through NLRP3 modulation.
Collapse
Affiliation(s)
- Carolina Bordin Davidson
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
- Laboratory of Cell Culture and Bioactive Effects, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | | | - Amanda Kolinski Machado
- Laboratory of Cell Culture and Bioactive Effects, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - Lauren Pappis
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | | | - Sabrina Somacal
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Tatiana Emanuelli
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Júlia Vaz Schultz
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - João Augusto Pereira da Rocha
- Federal Institute of Pará, Bragança Campus, Computational Chemistry and Modeling Laboratory, Bragança 68600-000, PA, Brazil
| | | | - Solange Binotto Fagan
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - Ivana Zanella da Silva
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - Ana Cristina Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Alencar Kolinski Machado
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
- Laboratory of Cell Culture and Bioactive Effects, Franciscan University, Santa Maria 97010-030, RS, Brazil
| |
Collapse
|
18
|
Xin Q, Xu F, Ma Z, Wu J. β-Caryophyllene mitigates ischemic stroke-induced white matter lesions by inhibiting pyroptosis. Exp Cell Res 2024; 442:114214. [PMID: 39159913 DOI: 10.1016/j.yexcr.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
β-Caryophyllene (BCP), a selective agonist for cannabinoid receptor 2 (CB2R), has demonstrated promising protective effects in various pathological conditions. However, the neuroprotective effects of BCP on white matter damage induced by ischemic stroke have not been elucidated previously. In this study, we find that BCP not only improves sensorimotor and cognitive function via CB2R but also mitigates white matter lesions in mice following ischemic stroke. Furthermore, BCP enhances the viability of MO3.13 oligodendrocytes after oxygen-glucose deprivation and reoxygenation (OGD/R), attenuating OGD/R-induced cellular damage and pyroptosis. Notably, these protective effects of BCP are partially enhanced by the NLRP3 inhibitor MCC950 and counteracted by the NLRP3 activator nigericin. In addition, nigericin significantly exacerbates neurological outcomes and increases white matter lesions following BCP treatment in middle cerebral artery occlusion (MCAO) mice. These results suggest that BCP may ameliorate neurological deficits and white matter damage induced by cerebral ischemia through inhibiting NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Qing Xin
- Institute of Brain Science and Diseases, And Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Neurobiology, Jining Medical University, Jining, 272000, China
| | - Fei Xu
- Department of Vascular Surgery, Jining NO.1 People's Hospital, Jining, 272000, China
| | - Zegang Ma
- Institute of Brain Science and Diseases, And Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jie Wu
- Institute of Brain Science and Diseases, And Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
19
|
Zhang J, Li X, Cui W, Lu D, Zhang Y, Liao J, Guo L, Jiao C, Tao L, Xu Y, Shen X. 1,8-cineole ameliorates experimental diabetic angiopathy by inhibiting NLRP3 inflammasome-mediated pyroptosis in HUVECs via SIRT2. Biomed Pharmacother 2024; 177:117085. [PMID: 38972150 DOI: 10.1016/j.biopha.2024.117085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Accumulating evidence strongly support the key role of NLRP3-mediated pyroptosis in the pathogenesis and progression of vascular endothelial dysfunction associated with diabetes mellitus. Various studies have demonstrated that the activation or upregulation of Silent Information Regulation 2 homolog 2 (SIRT2) exerts inhibitory effect on the expression of NLRP3. Although 1,8-cineole has been found to protect against endothelial dysfunction and cardiovascular diseases, its role and mechanism in diabetic angiopathy remain unknown. Therefore, the aim of this study was to investigate the ameliorative effect of 1,8-cineole through SIRT2 on pyroptosis associated with diabetic angiopathy in human umbilical vein endothelial cells (HUVECs) and to elucidate the underlying mechanism. The findings revealed that 1,8-cineole exhibited a protective effect against vascular injury and ameliorated pathological alterations in the thoracic aorta of diabetic mice. Moreover, it effectively mitigated pyroptosis induced by palmitic acid-high glucose (PA-HG) in HUVECs. Treatment with 1,8-cineole effectively restored the reduced levels of SIRT2 and suppressed the elevated expression of pyroptosis-associated proteins. Additionally, our findings demonstrated the occurrence of NLRP3 deacetylation and the physical interaction between NLRP3 and SIRT2. The SIRT2 inhibitor AGK2 and siRNA-SIRT2 effectively attenuated the effect of 1,8-cineole on NLRP3 deacetylation in HUVECs and compromised its inhibitory effect against pyroptosis in HUVECs. However, overexpression of SIRT2 inhibited PA-HG-induced pyroptosis in HUVECs. 1,8-Cineole inhibited the deacetylation of NLRP3 by regulating SIRT2, thereby reducing pyroptosis in HUVECs. In conclusion, our findings suggest that PA-HG-induced pyroptosis in HUVECs plays a crucial role in the development of diabetic angiopathy, which can be mitigated by 1,8-cineole.
Collapse
Affiliation(s)
- Jian Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Xinlin Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Wenqing Cui
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Dingchun Lu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Yanyan Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Jiajia Liao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Linlin Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Chunen Jiao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China.
| |
Collapse
|
20
|
Marulanda-Gomez AM, Ribes M, Franzenburg S, Hentschel U, Pita L. Transcriptomic responses of Mediterranean sponges upon encounter with symbiont microbial consortia. BMC Genomics 2024; 25:674. [PMID: 38972970 PMCID: PMC11229196 DOI: 10.1186/s12864-024-10548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.
Collapse
Affiliation(s)
| | - Marta Ribes
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain
| | - Sören Franzenburg
- Research Group Genetics and Bioinformatics/Systems Immunology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Ute Hentschel
- RD3 Marine Ecology, RU Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Lucia Pita
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain.
| |
Collapse
|
21
|
Gu W, Zeng Q, Wang X, Jasem H, Ma L. Acute Lung Injury and the NLRP3 Inflammasome. J Inflamm Res 2024; 17:3801-3813. [PMID: 38887753 PMCID: PMC11182363 DOI: 10.2147/jir.s464838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Acute lung injury (ALI) manifests through harm to the capillary endothelium and alveolar epithelial cells, arising from a multitude of factors, leading to scattered interstitial alterations, pulmonary edema, and subsequent acute hypoxic respiratory insufficiency. Acute lung injury (ALI), along with its more serious counterpart, acute respiratory distress syndrome (ARDS), carry a fatality rate that hovers around 30-40%. Its principal pathological characteristic lies in the unchecked inflammatory reaction. Currently, the main strategies for treating ALI are alleviation of inflammation and prevention of respiratory failure. Concerning the etiology of ALI, NLRP3 Inflammasome is essential to the body's innate immune response. The composition of this inflammasome complex includes NLRP3, the pyroptosis mediator ASC, and pro-caspase-1. Recent research has reported that the inflammatory response centered on NLRP3 inflammasomes plays a key part in inflammation in ALI, and may hence be a prospective candidate for therapeutic intervention. In the review, we present an overview of the ailment characteristics of acute lung injury along with the constitution and operation of the NLRP3 inflammasome within this framework. We also explore therapeutic strategies targeting the NLRP3 inflammasome to combat acute lung injury.
Collapse
Affiliation(s)
- Wanjun Gu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Qi Zeng
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Xin Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Huthaifa Jasem
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Ling Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
22
|
Shui X, Chen J, Fu Z, Zhu H, Tao H, Li Z. Microglia in Ischemic Stroke: Pathogenesis Insights and Therapeutic Challenges. J Inflamm Res 2024; 17:3335-3352. [PMID: 38800598 PMCID: PMC11128258 DOI: 10.2147/jir.s461795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Ischemic stroke is the most common type of stroke, which is the main cause of death and disability on a global scale. As the primary immune cells in the brain that are crucial for preserving homeostasis of the central nervous system microenvironment, microglia have been found to exhibit dual or even multiple effects at different stages of ischemic stroke. The anti-inflammatory polarization of microglia and release of neurotrophic factors may provide benefits by promoting neurological recovery at the lesion in the early phase after ischemic stroke. However, the pro-inflammatory polarization of microglia and secretion of inflammatory factors in the later phase of injury may exacerbate the ischemic lesion, suggesting the therapeutic potential of modulating the balance of microglial polarization to predispose them to anti-inflammatory transformation in ischemic stroke. Microglia-mediated signaling crosstalk with other cells may also be key to improving functional outcomes following ischemic stroke. Thus, this review provides an overview of microglial functions and responses under physiological and ischemic stroke conditions, including microglial activation, polarization, and interactions with other cells. We focus on approaches that promote anti-inflammatory polarization of microglia, inhibit microglial activation, and enhance beneficial cell-to-cell interactions. These targets may hold promise for the creation of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xinyao Shui
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jingsong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Ziyue Fu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Haoyue Zhu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Hualin Tao
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
23
|
Bisht K, Verma VK, Abdullah Z, Prajapati V, Rajiv N, Bhatia J, Ray R, Nag TC, Arya DS. Arglabin: A mediator of inflammasome modulated and independent myocardial injury (PARA-AMI study). Eur J Pharmacol 2024; 970:176465. [PMID: 38479722 DOI: 10.1016/j.ejphar.2024.176465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Arglabin is a plant alkaloid (sesquiterpene lactone) that is used as an anticancer drug. It has potential anti-diabetic and anti-atherogenic effects. PURPOSE Arglabin has drawn particular attention because of its therapeutic effects as an anti-inflammatory agent in multiple diseases. Since arglabin inhibits Epidermal Growth Factor Receptor (EGFR) tyrosine kinase, concerns for cardiotoxic effects are valid. The present study was designed to investigate the protective effects of arglabin on the myocardium. STUDY DESIGN This study was designed to evaluate the effect of arglabin on the myocardium in an experimental model of myocardial necrosis in rats. Different doses of arglabin (2.5, 5, and 10 μg/kg) were investigated as pre-treatment for 21 days in the isoproterenol (ISO) model of myocardial necrosis groups and per se groups. METHODS On the 22nd day, hemodynamic, histopathological, electron microscopy, oxidative stress markers, inflammatory mediators, apoptotic markers, inflammasome mediators, and Western blot analysis were performed to evaluate the effects of arglabin. RESULTS Arglabin pre-treatment showed improvement in hemodynamic parameters and histopathological findings at low doses in isoproterenol-induced myocardial necrosis model of rats. Arglabin administration altered myocardial structure and modulated myocardial function via activation of NFκB/MAPK pathway that led to myocardial injury with an increase in dose. CONCLUSION Arglabin imparted partial cardio-protection via an inflammasome-dependent pathway and mediated injury through the inflammasome-independent pathway.
Collapse
Affiliation(s)
- Khushboo Bisht
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Vipin Kumar Verma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Zia Abdullah
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Prajapati
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Narang Rajiv
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruma Ray
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
24
|
Ri-Wen, Yang YH, Zhang TN, Liu CF, Yang N. Targeting epigenetic and post-translational modifications regulating pyroptosis for the treatment of inflammatory diseases. Pharmacol Res 2024; 203:107182. [PMID: 38614373 DOI: 10.1016/j.phrs.2024.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Inflammatory diseases, including infectious diseases, diabetes-related diseases, arthritis-related diseases, neurological diseases, digestive diseases, and tumor, continue to threaten human health and impose a significant financial burden despite advancements in clinical treatment. Pyroptosis, a pro-inflammatory programmed cell death pathway, plays an important role in the regulation of inflammation. Moderate pyroptosis contributes to the activation of native immunity, whereas excessive pyroptosis is associated with the occurrence and progression of inflammation. Pyroptosis is complicated and tightly controlled by various factors. Accumulating evidence has confirmed that epigenetic modifications and post-translational modifications (PTMs) play vital roles in the regulation of pyroptosis. Epigenetic modifications, which include DNA methylation and histone modifications (such as methylation and acetylation), and post-translational modifications (such as ubiquitination, phosphorylation, and acetylation) precisely manipulate gene expression and protein functions at the transcriptional and post-translational levels, respectively. In this review, we summarize the major pathways of pyroptosis and focus on the regulatory roles and mechanisms of epigenetic and post-translational modifications of pyroptotic components. We also illustrate these within pyroptosis-associated inflammatory diseases. In addition, we discuss the effects of novel therapeutic strategies targeting epigenetic and post-translational modifications on pyroptosis, and provide prospective insight into the regulation of pyroptosis for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ri-Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
25
|
Yang Z, Xu J, Kang T, Chen X, Zhou C. The Impact of NLRP3 Inflammasome on Osteoblasts and Osteogenic Differentiation: A Literature Review. J Inflamm Res 2024; 17:2639-2653. [PMID: 38707958 PMCID: PMC11067939 DOI: 10.2147/jir.s457927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Osteoblasts (OBs), which are a crucial type of bone cells, derive from bone marrow mesenchymal stem cells (MSCs). Accumulating evidence suggests inflammatory cytokines can inhibit the differentiation and proliferation of OBs, as well as interfere with their ability to synthesize bone matrix, under inflammatory conditions. NLRP3 inflammasome is closely associated with cellular pyroptosis, which can lead to excessive release of pro-inflammatory cytokines, causing tissue damage and inflammatory responses, however, the comprehensive roles of NLRP3 inflammasome in OBs and their differentiation have not been fully elucidated, making targeting NLRP3 inflammasome approaches to treat diseases related to OBs uncertain. In this review, we provide a summary of NLRP3 inflammasome activation and its impact on OBs. We highlight the significant roles of NLRP3 inflammasome in regulating OBs differentiation and function. Furthermore, current available strategies to affect OBs function and osteogenic differentiation targeting NLRP3 inflammasome are listed and analyzed. Finally, through the prospective discussion, we seek to provide novel insights into the crucial role of NLRP3 inflammasome in diseases related to OBs and offer valuable information for devising treatment strategies.
Collapse
Affiliation(s)
- Ziyuan Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Jiaan Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Ting Kang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Chengcong Zhou
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| |
Collapse
|
26
|
Kiser C, Gonul CP, Genc S. Nrf2 activator Diethyl Maleate attenuates ROS mediated NLRP3 inflammasome activation in murine microglia. Cytotechnology 2024; 76:197-208. [PMID: 38495294 PMCID: PMC10940551 DOI: 10.1007/s10616-023-00609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/06/2023] [Indexed: 03/19/2024] Open
Abstract
Microglia are the tissue-resident immune cells of the central nervous system. As a part of the innate immune response, NLR Family Pyrin Domain Containing Protein 3 (NLRP3) inflammasome activation leads to cleavage of caspase-1 and triggers secretion of proinflammatory cytokines and may also result in pyroptotic cell death. Inflammasome activation plays a crucial role in inflammatory conditions; aberrant activation of inflammasome contributes to the pathogenesis of neurodegenerative diseases. Diethyl Maleate (DEM) is a promising antiinflammatory chemical to alleviate inflammasome activation. In this study, NLRP3 inflammasome was activated in N9 murine microglia via 1 µg/ml LPS (Lipopolysaccharide) for 4 h and 5 mM ATP (Adenosine 5'-triphosphate) for 1 h, respectively. We demonstrated that 1 h pretreatment of DEM attenuated NLRP3 inflammasome activation in microglial cells. Besides, mitochondrial ROS decreased upon DEM pretreatment in inflammasome-induced cells. Likewise, it ameliorated pyroptotic cell death in microglia. DEM is a potent activator of Nrf2 transcription factor, the key regulator of the antioxidant response pathway. Nrf2 has been a significant target to decrease aberrant inflammasome activation through the antioxidant compounds, including DEM. Here, we have shown that DEM increased Nrf2 translocation to the nucleus, resulting in Nrf2 target gene expression in microglia. In conclusion, DEM is a promising protective agent against NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Cagla Kiser
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Mithatpasa St. 58/5 Balcova, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ceren Perihan Gonul
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Mithatpasa St. 58/5 Balcova, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Mithatpasa St. 58/5 Balcova, 35340 Izmir, Turkey
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
27
|
Alvarez Quintero GS, Lima A, Roig P, Meyer M, de Kloet ER, De Nicola AF, Garay LI. Effects of the mineralocorticoid receptor antagonist eplerenone in experimental autoimmune encephalomyelitis. J Steroid Biochem Mol Biol 2024; 238:106461. [PMID: 38219844 DOI: 10.1016/j.jsbmb.2024.106461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
There is growing evidence indicating that mineralocorticoid receptor (MR) expression influences a wide variety of functions in metabolic and immune response. The present study explored if antagonism of the MR reduces neuroinflammation in the spinal cord of mice with experimental autoimmune encephalomyelitis (EAE). Eplerenone (EPLE) (100 mg/kg dissolved in 30% 2-hydroxypropyl-β-cyclodextrin) was administered intraperitoneally (i.p.) daily from EAE induction (day 0) until sacrificed on day 17 post-induction. The MR blocker (a) significantly decreased the inflammatory parameters TLR4, MYD88, IL-1β, and iNOS mRNAs; (b) attenuated HMGB1, NLRP3, TGF-β mRNAs, microglia, and aquaporin4 immunoreaction without modifying GFAP. Serum IL-1β was also decreased in the EAE+EPLE group. Moreover, EPLE treatment prevented demyelination and improved clinical signs of EAE mice. Interestingly, MR was decreased and GR remained unchanged in EAE mice while EPLE treatment restored MR expression, suggesting that a dysbalanced MR/GR was associated with the development of neuroinflammation. Our results indicated that MR blockage with EPLE attenuated inflammation-related spinal cord pathology in the EAE mouse model of Multiple Sclerosis, supporting a novel therapeutic approach for immune-related diseases.
Collapse
Affiliation(s)
- Guido S Alvarez Quintero
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - E R de Kloet
- Department of Clinical Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina
| | - Laura I Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina.
| |
Collapse
|
28
|
Chen KT, Yeh CT, Yadav VK, Pikatan NW, Fong IH, Lee WH, Chiu YS. Notopterol mitigates IL-1β-triggered pyroptosis by blocking NLRP3 inflammasome via the JAK2/NF-kB/hsa-miR-4282 route in osteoarthritis. Heliyon 2024; 10:e28094. [PMID: 38532994 PMCID: PMC10963379 DOI: 10.1016/j.heliyon.2024.e28094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Osteoarthritis (OA), the most prevalent form of arthritis, impacts approximately 10% of men and 18% of women aged above 60 years. Currently, a complete cure for OA remains elusive, making clinical management challenging. The traditional Chinese herb Notopterygium incisum, integral to the Juanbi pill for rheumatism, shows promise in safeguarding chondrocytes through its strong anti-inflammatory effects. Methods To explore the protective effect of notopterol and miRNA (has-miR-4248) against inflammation, we simulated an inflammatory environment in chondrocytes cell lines C20A4 and C28/12, focusing on inflammasome formation and pyroptosis. Results Our finding indicates notopterol significantly reduced interleukin (IL)-18 and tumor necrosis factor (TNF)-alpha levels in inflamed cells, curtailed reactive oxygen species (ROS) production post-inflammation, and inhibited the JAK2/STAT3 signaling pathway, thus offering chondrocytes protection from inflammation. Importantly, notopterol also hindered inflammasome assembly and pyroptosis by blocking the NF-κB/NLRP3 pathway through hsa-miR-4282 modulation. In vivo experiments showed that notopterol treatment markedly decreased Osteoarthritis Research Society International (OARSI) scores in OA mice and boosted hsa-miR-4282 expression compared to control groups. Conclusions This study underscores notopterol's potential as a therapeutic agent in OA treatment, highlighting its capacity to shield cartilage from inflammation-induced damage, particularly by preventing pyroptosis.
Collapse
Affiliation(s)
- Ko-Ta Chen
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung, 95092, Taiwan
| | - Vijesh Kumar Yadav
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Narpati Wesa Pikatan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Iat-Hang Fong
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yen-Shuo Chiu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
29
|
Qiu X, Zhang Y, Xu YJ, Liang ZD, Dai XC, Xiao WL, Zhang XJ, Li XL. Euphzycopins A - D, macrocyclic diterpenoids with potential anti-inflammatory activity from Euphorbia Helioscopia. Fitoterapia 2024; 173:105821. [PMID: 38211643 DOI: 10.1016/j.fitote.2024.105821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Four new diterpenoids (1-4) and four known diterpenoids (5-8) were purified from the whole plant of Euphorbia helioscopia L. Compounds 1 and 2 were jathophanes diterpenoids with a 5/12 polycyclic systems, compound 3 was rhamofolane diterpenoid with a 5/10 bicyclic skeleton and compound 4 was a rare class of euphorbia diterpenes featuring an unusual 5/10 fused ring system. Anti-inflammatory activity tests were conducted on the separated compounds, indicating that compound 4 had significant inhibitory effect on NLRP3 inflammasome with an IC50 value of 7.75 μM. Further, the inhibitory effect of 4 was determined using immunofluorescence assays.
Collapse
Affiliation(s)
- Xiong Qiu
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, People's Republic of China
| | - Yao-Jun Xu
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, People's Republic of China
| | - Zhong-Dan Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, People's Republic of China
| | - Xiao-Chang Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, People's Republic of China
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, People's Republic of China.
| | - Xing-Jie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, People's Republic of China.
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, People's Republic of China.
| |
Collapse
|
30
|
Assis SISD, Amendola LS, Okamoto MM, Ferreira GDS, Iborra RT, Santos DR, Santana MDFM, Santana KG, Correa-Giannella ML, Barbeiro DF, Soriano FG, Machado UF, Passarelli M. The Prolonged Activation of the p65 Subunit of the NF-Kappa-B Nuclear Factor Sustains the Persistent Effect of Advanced Glycation End Products on Inflammatory Sensitization in Macrophages. Int J Mol Sci 2024; 25:2713. [PMID: 38473959 DOI: 10.3390/ijms25052713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Advanced glycation end products (AGEs) prime macrophages for lipopolysaccharide (LPS)-induced inflammation. We investigated the persistence of cellular AGE-sensitization to LPS, considering the nuclear content of p50 and p65 nuclear factor kappa B (NFKB) subunits and the expression of inflammatory genes. Macrophages treated with control (C) or AGE-albumin were rested for varying intervals in medium alone before being incubated with LPS. Comparisons were made using one-way ANOVA or Student t-test (n = 6). AGE-albumin primed macrophages for increased responsiveness to LPS, resulting in elevated levels of TNF, IL-6, and IL-1beta (1.5%, 9.4%, and 5.6%, respectively), compared to C-albumin. TNF, IL-6, and IL-1 beta secretion persisted for up to 24 h even after the removal of AGE-albumin (area under the curve greater by 1.6, 16, and 5.2 times, respectively). The expressions of Il6 and RelA were higher 8 h after albumin removal, and Il6 and Abca1 were higher 24 h after albumin removal. The nuclear content of p50 remained similar, but p65 showed a sustained increase (2.9 times) for up to 24 h in AGE-albumin-treated cells. The prolonged activation of the p65 subunit of NFKB contributes to the persistent effect of AGEs on macrophage inflammatory priming, which could be targeted for therapies to prevent complications based on the AGE-RAGE-NFKB axis.
Collapse
Affiliation(s)
- Sayonara Ivana Santos de Assis
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Leonardo Szalo Amendola
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Maristela Mitiko Okamoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Guilherme da Silva Ferreira
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Rodrigo Tallada Iborra
- Ciências Biológicas e da Saúde, Campos Mooca, Universidade São Judas Tadeu, São Paulo 03408-050, Brazil
| | - Danielle Ribeiro Santos
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Monique de Fátima Mello Santana
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Kelly Gomes Santana
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Maria Lucia Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM 18), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Denise Frediani Barbeiro
- Laboratório de Emergências Clínicas (LIM 51), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Francisco Garcia Soriano
- Laboratório de Emergências Clínicas (LIM 51), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marisa Passarelli
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo 01525-000, Brazil
| |
Collapse
|
31
|
Xu R, Yuan LS, Gan YQ, Lu N, Li YP, Zhou ZY, Zha QB, He XH, Wong TS, Ouyang DY. Potassium ion efflux induces exaggerated mitochondrial damage and non-pyroptotic necrosis when energy metabolism is blocked. Free Radic Biol Med 2024; 212:117-132. [PMID: 38151213 DOI: 10.1016/j.freeradbiomed.2023.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Damage-associated molecular patterns (DAMPs) such as extracellular ATP and nigericin (a bacterial toxin) not only act as potassium ion (K+) efflux inducers to activate NLRP3 inflammasome, leading to pyroptosis, but also induce cell death independently of NLRP3 expression. However, the roles of energy metabolism in determining NLRP3-dependent pyroptosis and -independent necrosis upon K+ efflux are incompletely understood. Here we established cellular models by pharmacological blockade of energy metabolism, followed by stimulation with a K+ efflux inducer (ATP or nigericin). Two energy metabolic inhibitors, namely CPI-613 that targets α-ketoglutarate dehydrogenase and pyruvate dehydrogenase (a rate-limiting enzyme) and 2-deoxy-d-glucose (2-DG) that targets hexokinase, are recruited in this study, and Nlrp3 gene knockout macrophages were used. Our data showed that CPI-613 and 2-DG dose-dependently inhibited NLRP3 inflammasome activation, but profoundly increased cell death in the presence of ATP or nigericin. The cell death was K+ efflux-induced but NLRP3-independent, which was associated with abrupt reactive oxygen species (ROS) production, reduction of mitochondrial membrane potential, and oligomerization of mitochondrial proteins, all indicating mitochondrial damage. Notably, the cell death induced by K+ efflux and blockade of energy metabolism was distinct from pyroptosis, apoptosis, necroptosis or ferroptosis. Furthermore, fructose 1,6-bisphosphate, a high-energy intermediate of glycolysis, significantly suppressed CPI-613+nigericin-induced mitochondrial damage and cell death. Collectively, our data show that energy deficiency diverts NLRP3 inflammasome activation-dependent pyroptosis to Nlrp3-independent necrosis upon K+ efflux inducers, which can be dampened by high-energy intermediate, highlighting a critical role of energy metabolism in cell survival and death under inflammatory conditions.
Collapse
Affiliation(s)
- Rong Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Sha Yuan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ying-Qing Gan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Na Lu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ya-Ping Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Zhi-Ya Zhou
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Bing Zha
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| | - Tak-Sui Wong
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Dong-Yun Ouyang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
32
|
Zheng H, Liu Q, Zhou S, Luo H, Zhang W. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases. Front Immunol 2024; 15:1345625. [PMID: 38370420 PMCID: PMC10869479 DOI: 10.3389/fimmu.2024.1345625] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
The P2X7 receptor (P2X7R), a non-selective cation channel modulated by adenosine triphosphate (ATP), localizes to microglia, astrocytes, oligodendrocytes, and neurons in the central nervous system, with the most incredible abundance in microglia. P2X7R partake in various signaling pathways, engaging in the immune response, the release of neurotransmitters, oxidative stress, cell division, and programmed cell death. When neurodegenerative diseases result in neuronal apoptosis and necrosis, ATP activates the P2X7R. This activation induces the release of biologically active molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen species, and excitotoxic glutamate/ATP. Subsequently, this leads to neuroinflammation, which exacerbates neuronal involvement. The P2X7R is essential in the development of neurodegenerative diseases. This implies that it has potential as a drug target and could be treated using P2X7R antagonists that are able to cross the blood-brain barrier. This review will comprehensively and objectively discuss recent research breakthroughs on P2X7R genes, their structural features, functional properties, signaling pathways, and their roles in neurodegenerative diseases and possible therapies.
Collapse
Affiliation(s)
- Huiyong Zheng
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Liu
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siwei Zhou
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
33
|
Yang F, Ma N, Li S, Chen F, Huang X, Zhao L, Cao L. Tanshinone IIA Alleviates Early Brain Injury after Subarachnoid Hemorrhage in Rats by Inhibiting the Activation of NF-κB/NLRP3 Inflammasome. Biol Pharm Bull 2024; 47:279-291. [PMID: 38057100 DOI: 10.1248/bpb.b23-00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The abnormal activation of the nuclear factor-kappa B (NF-κB)/nod-like receptor family-pyrin domain-containing 3 (NLRP3) signaling pathway is closely related to early brain injury after subarachnoid hemorrhage (SAH). Targeting the NLRP3-inflammasome has been considered an efficient therapy for the local inflammatory response after SAH. Tanshinone IIA (Tan IIA), a major component extracted from Salvia miltiorrhiza, has been reported to have anti-inflammatory effects. The aim of this study was to investigate the effect and mechanism of Tan IIA on early brain injury after SAH. In vivo SAH injury was established by endovascular perforation technique in Sprague-Dawley rats. Limb-placement test and corner turning test were used to measure the behavior. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining, hematoxylin-eosin (H&E) staining, and immunofluorescence were used to evaluate the nerve damage. Real-time RT quantitative PCR (RT-qPCR) was used to quantify the levels of inflammatory factors. Western blot was performed for the activation of the NF-κB/NLRP3 pathway. An in vitro SAH model was used to validate the conclusion. We found that the neurobehavioral impairment and cerebral edema in SAH model rats given Tan IIA were alleviated. Further study demonstrated that Tan IIA could inhibit SAH-secondary neuronal apoptosis around hematoma and alleviate brain injury. Tan IIA down-regulated the expression of interleukin-6 (IL)-6, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor (TNF)-α, and inhibited the activation of NF-κB. And the overexpression of pro-inflammatory factors NLRP3, IL-1β, and IL-18 induced after SAH was also reversed by Tan IIA. In conclusions, Tan IIA could inhibit the NF-κB/NLRP3 inflammasome activation to protect and ameliorate SAH-followed early brain injury, and may be a preventive and therapeutic strategy against SAH.
Collapse
Affiliation(s)
- Fanhui Yang
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College
| | - Ningshuai Ma
- Department of Ultrasonography, The Affiliated Hospital of North Sichuan Medical College
| | - Suping Li
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College
| | - Fei Chen
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College
| | - Xiaohong Huang
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College
| | - Li Zhao
- Department of Neurology, The Affiliated Hospital of North Sichuan Medical College
- Institute of Neurological Diseases, North Sichuan Medical College
| | - Lingzhi Cao
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College
| |
Collapse
|
34
|
Liu Z, Li SS, Zhang GY, Lv S, Wang S, Li FQ. Whole transcriptome sequencing for revealing the pathogenesis of sporotrichosis caused by Sporothrix globosa. Sci Rep 2024; 14:359. [PMID: 38172590 PMCID: PMC10764346 DOI: 10.1038/s41598-023-50728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
This study aimed to investigate the molecular mechanism of sporotrichosis and identify possible novel therapeutic targets. Total RNA was extracted from skin lesion samples from sporotrichosis patients and used to construct a long-chain RNA transcriptome library and miRNA transcriptome library for whole transcriptome sequencing. The differentially expressed genes (DEGs) between the groups were identified, and then Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis enrichment analyses were performed based on the DEGs. An lncRNA-miRNA-mRNA ceRNA network was constructed. The expressions of JAK/STAT pathway-related proteins were detected in the patient and control tissues using RT-qPCR and Western blot analysis. Enrichment analysis showed that the DEGs were mainly enriched in various infectious diseases and immune response-related signaling pathways. Competing endogenous RNA network analysis was performed and identified the hub lncRNAs, miRNAs, and mRNAs. Compared with the control group, the mRNA expressions of SOCS3, IL-6, and JAK3 were significantly upregulated, while the expression of STAT3 did not change significantly. Also, the protein expressions of SOCS3, IL-6, JAK3, and STAT3, as well as phosphorylated JAK3 and STAT3, were significantly upregulated. We identified 671 lncRNA DEGs, 3281 mRNA DEGs, and 214 miRNA DEGs to be involved in Sporothrix globosa infection. The study findings suggest that the JAK/STAT pathway may be a therapeutic target for sporotrichosis.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Su-Shan Li
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Gui-Yun Zhang
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Sha Lv
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Shuang Wang
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China.
| | - Fu-Qiu Li
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China.
| |
Collapse
|
35
|
Choi SB, Kim JH, Kwon S, Ahn NH, Lee JH, Yang WS, Kim CH, Yang SH. 5-methylthiopentyl Isothiocyanate, a Sulforaphane Analogue, Inhibits Pro-inflammatory Cytokines by Regulating LPS/ATP-mediated NLRP3 Inflammasome Activation. Curr Pharm Biotechnol 2024; 25:645-654. [PMID: 37622701 DOI: 10.2174/1389201024666230824093927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Pro-inflammatory cytokines secreted from activated macrophages and astrocytes are crucial mediators of inflammation for host defense. Among them, the secretion of IL-1β, a major pro-inflammatory cytokine, is especially mediated by the activation of NLRP3 inflammasome. Pro-IL-1β, which is produced in response to the invaded pathogens, such as LPS, is cleaved and matured in the NLRP3 inflammasome by the recognition of ATP. Excessively activated IL-1β induces other immune cells, resulting in the up-regulation of inflammation. Therefore, regulation of NLRP3 inflammasome can be a good strategy for alleviating inflammation. OBJECTIVE Our study aimed to examine whether 5-methylthiopentyl isothiocyanate, a sulforaphane analogue (berteroin), has an anti-inflammatory effect on the NLRP3 inflammasome activation induced by LPS and ATP. METHODS Primary bone marrow-derived macrophages (BMDMs) and astrocytes were stimulated by LPS and ATP with the treatment of 5-methylthiopentyl isothiocyanate, a sulforaphane analogue. The secretion of pro-inflammatory cytokines was measured by ELISA, and the expression level of NLRP3 inflammasome-associated proteins was detected by western blot. The association of NLRP3 inflammasome was assessed by co-immunoprecipitation, and the formation of ASC specks was evaluated by fluorescent microscope. RESULTS 5-methylthiopentyl isothiocyanate, a sulforaphane analogue (berteroin), decreased the release of pro-inflammatory cytokines, IL-1β, and IL-6 in the BMDMs. Berteroin notably prevented the formation of both NLRP3 inflammasome and ASC specks, which reduced the secretion of IL-1β. Additionally, berteroin reduced the IL-1β secretion and cleaved IL-1β expression in the primary astrocytes. DISCUSSION AND CONCLUSION These results indicated the anti-inflammatory effects of 5- methylthiopentyl isothiocyanate (berteroin) by regulating NLRP3 inflammasome activation, suggesting that berteroin could be the potential natural drug candidate for the regulation of inflammation.
Collapse
Affiliation(s)
- Su-Bin Choi
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul, 04620, Republic of Korea
| | - Ji-Hye Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul, 04620, Republic of Korea
| | - Sehee Kwon
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul, 04620, Republic of Korea
| | - Na-Hyun Ahn
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul, 04620, Republic of Korea
| | - Joo-Hee Lee
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul, 04620, Republic of Korea
| | - Woong-Suk Yang
- National Institute for Nanomaterials Technology (NINT), POSTECH, 77, Pohang, 37673, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Sciences, Sungkyunkwan University and Samsung Advanced Institute of Health Science and Technology, Suwon, 1649, Republic of Korea
| | - Seung-Hoon Yang
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul, 04620, Republic of Korea
| |
Collapse
|
36
|
Wang Y, Xiong Z, Zhang Q, Liu M, Zhang J, Qi X, Jiang X, Yu W. Acetyl-11-Keto-β-Boswellic Acid Accelerates the Repair of Spinal Cord Injury in Rats by Resisting Neuronal Pyroptosis with Nrf2. Int J Mol Sci 2023; 25:358. [PMID: 38203528 PMCID: PMC10779011 DOI: 10.3390/ijms25010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The primary aim of this study is to delve into the potential of Acetyl-11-keto-β-boswellic acid (AKBA) in ameliorating neuronal damage induced by acute spinal cord injury, as well as to unravel the intricate underlying mechanisms. A cohort of 40 Sprague-Dawley rats was meticulously categorized into four groups. Following a seven-day oral administration of AKBA, damaged spinal cord samples were meticulously procured for Nissl staining and electron microscopy to assess neuronal demise. Employing ELISA, immunofluorescence, Western blot (WB), and quantitative polymerase chain reaction (qPCR), the modulatory effects of AKBA within the context of spinal cord injury were comprehensively evaluated. Furthermore, employing an ex vivo extraction of spinal cord neurons, an ATP + LPS-induced pyroptotic injury model was established. The model was subsequently subjected to Nrf2 inhibition, followed by a battery of assessments involving ELISA, DCFH-DA staining, flow cytometry, immunofluorescence, and WB to decipher the effects of AKBA on the spinal cord neuron pyroptosis model. By engaging the Nrf2-ROS-NLRP3 pathway, AKBA exerted a repressive influence on the expression of the pyroptotic initiator protein Caspase-1, thereby mitigating the release of GSDMD and alleviating pyroptosis. Additionally, AKBA demonstrated the ability to attenuate the release of IL-18 and IL-1β, curbing neuronal loss and expediting the restorative processes within the context of spinal cord injury. Our study elucidates that AKBA can reduce spinal cord neuronal apoptosis, providing a basis for the development of AKBA as a clinical treatment for spinal cord injury.
Collapse
Affiliation(s)
- Yao Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Zongliang Xiong
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Qiyuan Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Mengmeng Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Jingjing Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Xinyue Qi
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
37
|
Awad AM, Elshaer SL, Gangaraju R, Abdelaziz RR, Nader MA. CysLTR1 antagonism by montelukast can ameliorate diabetes-induced aortic and testicular inflammation. Int Immunopharmacol 2023; 125:111127. [PMID: 37907048 DOI: 10.1016/j.intimp.2023.111127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
AIMS Montelukast, a cysteinyl leukotriene receptor (CysLTR)1 antagonist, is emerging as an attractive strategy to curtail diabetic complications; however, its role in aortic and testicular tissues is unknown. This study investigated the effect of CysLTR1 antagonism by montelukast on toll-like receptor (TLR)4 and nuclear factor kappa B (NF-κB) pathways in diabetes-induced aortic and testicular injury. METHODS Adult male Sprague-Dawley rats were made diabetic with Streptozotocin (STZ, 55 mg/kg). Following this, Streptozotocin-induced diabetic (SD) rats were administered montelukast (10 and 20 mg/kg, orally) for 8 weeks. Blood glucose, serum malondialdehyde (MDA), inflammatory markers, and histopathology were evaluated. RESULTS Montelukast showed protection against diabetic complications, as evidenced by the ameliorative effect against STZ-induced alterations in oxidative stress as indicated by serum MDA levels. Moreover, montelukast conferred a significant decrease in the aortic and testicular levels of CysLTR1, TLR4, and NF-κB with a subsequent decrease in the levels of NOD-like receptor family pyrin domain containing (NLRP)3, caspase 1, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein (MCP)-1, and tumor necrosis factor (TNF)-α. Additionally, administration of montelukast resulted in autophagy stimulation, as shown by decreased p62/Sequestosome (SQSTM)1 levels. Finally, montelukast protection resulted in normal thickness of whole aortic wall, regular tunica (t.) intima, mild vacuolation of smooth muscle fibers in aorta, increased size of seminiferous tubules, and increased spermatogenesis in testis as demonstrated by histopathology. CONCLUSIONS The protective effect of montelukast against diabetes-induced aortic and testicular injury is due to its antioxidant, anti-inflammatory, and autophagy stimulation characteristics.
Collapse
Affiliation(s)
- Ahmed M Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt; Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Sally L Elshaer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
38
|
Hu M, Zhao X, Liu Y, Zhou H, You Y, Xue Z. Complex interplay of gut microbiota between obesity and asthma in children. Front Microbiol 2023; 14:1264356. [PMID: 38029078 PMCID: PMC10655108 DOI: 10.3389/fmicb.2023.1264356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is an important risk factor and common comorbidity of childhood asthma. Simultaneously, obesity-related asthma, a distinct asthma phenotype, has attracted significant attention owing to its association with more severe clinical manifestations, poorer disease control, and reduced quality of life. The establishment of the gut microbiota during early life is essential for maintaining metabolic balance and fostering the development of the immune system in children. Microbial dysbiosis influences host lipid metabolism, triggers chronic low-grade inflammation, and affects immune responses. It is intimately linked to the susceptibility to childhood obesity and asthma and plays a potentially crucial transitional role in the progression of obesity-related asthma. This review article summarizes the latest research on the interplay between asthma and obesity, with a particular focus on the mediating role of gut microbiota in the pathogenesis of obesity-related asthma. This study aims to provide valuable insight to enhance our understanding of this condition and offer preliminary evidence to support the development of therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Yannan You
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xue
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Zheng X, Zhao D, Jin Y, Liu Y, Liu D. Role of the NLRP3 inflammasome in gynecological disease. Biomed Pharmacother 2023; 166:115393. [PMID: 37660654 DOI: 10.1016/j.biopha.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in the innate immune system and is a three-part macromolecular complex comprising the NLRP3 protein, apoptosis-associated speck-like protein containing a CARD (ASC) and the cysteine protease pro-caspase-1. When the NLRP3 inflammasome is activated, it can produce interleukin (IL)- 1β and IL-18 and eventually lead to inflammatory cell pyroptosis. Related studies have demonstrated that the NLRP3 inflammasome can induce an immune response and is related to the occurrence and development of gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer. NLRP3 inflammasome inhibitors are beneficial for maintaining cellular homeostasis and tissue health and have been found effective in targeting some gynecological diseases. However, excessive inhibitor concentrations have been found to cause adverse effects. Therefore, proper control of NLRP3 inflammasome activity is critical. This paper summarizes the structure and function of the NLRP3 inflammasome and highlights the therapeutic potential of targeting it in gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer The application of NLRP3 inflammasome inhibitors is also discussed.
Collapse
Affiliation(s)
- Xu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Dan Zhao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Yang Liu
- Acupuncture department,Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| |
Collapse
|
40
|
Dumbuya JS, Chen X, Du J, Li S, Liang L, Xie H, Zeng Q. Hydrogen-rich saline regulates NLRP3 inflammasome activation in sepsis-associated encephalopathy rat model. Int Immunopharmacol 2023; 123:110758. [PMID: 37556997 DOI: 10.1016/j.intimp.2023.110758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is characterised by long-term cognitive impairment and psychiatric illness in sepsis survivors, associated with increased morbidity and mortality. There is a lack of effective therapeutics for SAE. Molecular hydrogen (H2) plays multiple roles in septic diseases by regulating neuroinflammation, reducing oxidative stress parameters, regulating signalling pathways, improving mitochondrial dysfunction, and regulating astrocyte and microglia activation. Here we report the protective effect of hydrogen-rich saline in the juvenile SAE rat model and its possible underlying mechanisms. Rats were injected intraperitoneally with lipopolysaccharide at a dose of 5 mg/kg to induce sepsis; Hydrogen-rich saline (HRS) was administered 1 h after LPS induction at a dose of 5 ml/kg and nigericin at 1 mg/kg 1 h before LPS injection. H&E staining for neuronal damage, TUNEL assay for detection of apoptotic cells, immunofluorescence, ELISA protocol for inflammatory cytokines and 8-OHdG determination and western blot analysis to determine the effect of HRS in LPS-induced septic rats. Rats treated with HRS showed decreased TNF-α and IL-1β expression levels. HRS treatment enhanced the activities of antioxidant enzymes (SOD, CAT and GPX) and decreased MDA and MPO activities. The number of MMP-9 and NLRP3 positive immunoreactivity cells decreased in the HRS-treated group. Subsequently, GFAP, IBA-1 and CD86 immunoreactivity were reduced, and CD206 increased after HRS treatment. 8-OHdG expression was decreased in the HRS-treated rats. Western blot analysis showed decreased NLRP3, ASC, caspase-1, MMP-2/9, TLR4 and Bax protein levels after HRS treatment, while Bcl-2 expression increased after HRS treatment. These data demonstrated that HRS attenuated neuroinflammation, NLRP3 inflammasome activation, neuronal injury, and mitochondrial damage via NLRP3/Caspase-1/TLR4 signalling in the juvenile rat model, making it a potential therapeutic agent in the treatment of paediatric SAE.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China
| | - Xinxin Chen
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China
| | - Jiang Du
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China
| | - Siqi Li
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China
| | - Lili Liang
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China
| | - Hairui Xie
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China.
| | - Qiyi Zeng
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 PR China.
| |
Collapse
|
41
|
Nazari S, Pourmand SM, Motevaseli E, Hassanzadeh G. Mesenchymal stem cells (MSCs) and MSC-derived exosomes in animal models of central nervous system diseases: Targeting the NLRP3 inflammasome. IUBMB Life 2023; 75:794-810. [PMID: 37278718 DOI: 10.1002/iub.2759] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
The NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is a multimeric protein complex that is engaged in the innate immune system and plays a vital role in inflammatory reactions. Activation of the NLRP3 inflammasome and subsequent release of proinflammatory cytokines can be triggered by microbial infection or cellular injury. The NLRP3 inflammasome has been implicated in the pathogenesis of many disorders affecting the central nervous system (CNS), ranging from stroke, traumatic brain injury, and spinal cord injury to Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and depression. Furthermore, emerging evidence has suggested that mesenchymal stem cells (MSCs) and their exosomes may modulate NLRP3 inflammasome activation in a way that might be promising for the therapeutic management of CNS diseases. In the present review, particular focus is placed on highlighting and discussing recent scientific evidence regarding the regulatory effects of MSC-based therapies on the NLRP3 inflammasome activation and their potential to counteract proinflammatory responses and pyroptotic cell death in the CNS, thereby achieving neuroprotective impacts and improvement in behavioral impairments.
Collapse
Affiliation(s)
- Shahrzad Nazari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Pourmand
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Qin Y, Zhao W. Posttranslational modifications of NLRP3 and their regulatory roles in inflammasome activation. Eur J Immunol 2023; 53:e2350382. [PMID: 37382218 DOI: 10.1002/eji.202350382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is a multimolecular complex that plays a fundamental role in inflammation. Optimal activation of NLRP3 inflammasome is crucial for host defense against pathogens and the maintenance of immune homeostasis. Aberrant NLRP3 inflammasome activity has been implicated in various inflammatory diseases. Posttranslational modifications (PTMs) of NLRP3, a key inflammasome sensor, play critical roles in directing inflammasome activation and controlling the severity of inflammation and inflammatory diseases, such as arthritis, peritonitis, inflammatory bowel disease, atherosclerosis, and Parkinson's disease. Various NLRP3 PTMs, including phosphorylation, ubiquitination, and SUMOylation, could direct inflammasome activation and control inflammation severity by affecting the protein stability, ATPase activity, subcellular localization, and oligomerization of NLRP3 as well as the association between NLRP3 and other inflammasome components. Here, we provide an overview of the PTMs of NLRP3 and their roles in controlling inflammation and summarize potential anti-inflammatory drugs targeting NLRP3 PTMs.
Collapse
Affiliation(s)
- Ying Qin
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
43
|
Zhang M, Lan H, Peng S, Zhou W, Wang X, Jiang M, Hong J, Zhang Q. MiR-223-3p attenuates radiation-induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages. Int Immunopharmacol 2023; 122:110616. [PMID: 37459784 DOI: 10.1016/j.intimp.2023.110616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/25/2023]
Abstract
Macrophage pyroptosis plays an important role in the development of radiation-induced cell and tissue damage, leading to acute lung injury. However, the underlying mechanisms of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3)-mediated macrophage pyroptosis and the regulatory factors involved in radiation-induced pyroptosis are unclear. In this study, the expression of the NLRP3 inflammasome and pyroptosis-associated factors in murine macrophage cell lines was investigated after ionizing radiation. High-throughput RNA sequencing was performed to identify and characterize miRNAs and mRNA transcripts associated with NLRP3-mediated cell death. Our results demonstrated that cleaved-caspase-1 (p10) and N-terminal domain of gasdermin-D (GSDMD-N) were upregulated, and the number of NLRP3 inflammasomes and pyroptotic cells increased in murine macrophage cell lines after irradiation (8 Gy). Comparativeprofiling of 300miRNAs revealed that 41 miRNAsexhibited significantly different expression after 8 Gy of irradiation. Granulocyte-specific microRNA-223-3p (miR-223-3p) is a negative regulator of NLRP3. In vitro experiments revealed that the expression of miR-223-3p was significantly altered by irradiation. Moreover, miR-223-3p decreased the expression of NLRP3 and proinflammatory factors, resulting in reduced pyroptosis in irradiated murine macrophages. Subsequently, in vivo experiments revealed the efficacy of miR-223-3p supplementation in ameliorating alveolar macrophage (AM) pyroptosis, attenuating the infiltration of inflammatory monocytes, and significantly alleviating the severity of acute radiation-induced lung injury (ARILI). Our findings suggest that the miR-223-3p/NLRP3/caspase-1 axis is involved in radiation-induced AM pyroptosis and ARILI.
Collapse
Affiliation(s)
- Mingwei Zhang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hailin Lan
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shaoli Peng
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Weitong Zhou
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xuezhen Wang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Meina Jiang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Qiuyu Zhang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
44
|
Ketelauri P, Scharov K, von Gall C, Johann S. Acute Circadian Disruption Due to Constant Light Promotes Caspase 1 Activation in the Mouse Hippocampus. Cells 2023; 12:1836. [PMID: 37508501 PMCID: PMC10378425 DOI: 10.3390/cells12141836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
In mammals, the circadian system controls various physiological processes to maintain metabolism, behavior, and immune function during a daily 24 h cycle. Although driven by a cell-autonomous core clock in the hypothalamus, rhythmic activities are entrained to external cues, such as environmental lighting conditions. Exposure to artificial light at night (ALAN) can cause circadian disruption and thus is linked to an increased occurrence of civilization diseases in modern society. Moreover, alterations of circadian rhythms and dysregulation of immune responses, including inflammasome activation, are common attributes of neurodegenerative diseases, including Alzheimer', Parkinson's, and Huntington's disease. Although there is evidence that the inflammasome in the hippocampus is activated by stress, the direct effect of circadian disruption on inflammasome activation remains poorly understood. In the present study, we aimed to analyze whether exposure to constant light (LL) affects inflammasome activation in the mouse hippocampus. In addition to decreased circadian power and reduced locomotor activity, we found cleaved caspase 1 significantly elevated in the hippocampus of mice exposed to LL. However, we did not find hallmarks of inflammasome priming or cleavage of pro-interleukins. These findings suggest that acute circadian disruption leads to an assembled "ready to start" inflammasome, which may turn the brain more vulnerable to additional aversive stimuli.
Collapse
Affiliation(s)
- Pikria Ketelauri
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
| | - Katerina Scharov
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
| | - Sonja Johann
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251 Hamburg, Germany
| |
Collapse
|
45
|
Zhao J, Liu H, Hong Z, Luo W, Mu W, Hou X, Xu G, Fang Z, Ren L, Liu T, Wen J, Shi W, Wei Z, Yang Y, Zou W, Zhao J, Xiao X, Bai Z, Zhan X. Tanshinone I specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC. Mol Med 2023; 29:84. [PMID: 37400760 DOI: 10.1186/s10020-023-00671-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/29/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Abnormal activation of NLRP3 inflammasome is related to a series of inflammatory diseases, including type 2 diabetes, gouty arthritis, non-alcoholic steatohepatitis (NASH), and neurodegenerative disorders. Therefore, targeting NLRP3 inflammasome is regarded as a potential therapeutic strategy for many inflammatory diseases. A growing number of studies have identified tanshinone I (Tan I) as a potential anti-inflammatory agent because of its good anti-inflammatory activity. However, its specific anti-inflammatory mechanism and direct target are unclear and need further study. METHODS IL-1β and caspase-1 were detected by immunoblotting and ELISA, and mtROS levels were measured by flow cytometry. Immunoprecipitation was used to explore the interaction between NLRP3, NEK7 and ASC. In a mouse model of LPS-induced septic shock, IL-1β levels in peritoneal lavage fluid and serum were measured by ELISA. Liver inflammation and fibrosis in the NASH model were analyzed by HE staining and immunohistochemistry. RESULTS Tan I inhibited the activation of NLRP3 inflammasome in macrophages, but had no effect on the activation of AIM2 or NLRC4 inflammasome. Mechanistically, Tan I inhibited NLRP3 inflammasome assembly and activation by targeting NLRP3-ASC interaction. Furthermore, Tan I exhibited protective effects in mouse models of NLRP3 inflammasome-mediated diseases, including septic shock and NASH. CONCLUSIONS Tan I specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC, and exhibits protective effects in mouse models of LPS-induced septic shock and NASH. These findings suggest that Tan I is a specific NLRP3 inhibitor and may be a promising candidate for treating NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, North SiChuan Medical College, Nanchong, 637000, China
| | - Hongbin Liu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Department of Pharmacy, Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, 075000, China
| | - Zhixian Hong
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Luo
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenqing Mu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaorong Hou
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Guang Xu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhie Fang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Lutong Ren
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Tingting Liu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jincai Wen
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Shi
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ziying Wei
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yongping Yang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jun Zhao
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiaohe Xiao
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhaofang Bai
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiaoyan Zhan
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
46
|
Pazoki H, Mirjalali H, Niyyati M, Seyed Tabaei SJ, Mosaffa N, Shahrokh S, Asadzadeh Ahdaei H, Kupz A, Zali MR. Toxoplasma gondii profilin induces NLRP3 activation and IL-1β production/secretion in THP-1 cells. Microb Pathog 2023; 180:106120. [PMID: 37080500 DOI: 10.1016/j.micpath.2023.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Toxoplasma gondii is a highly prevalent protozoan that infects a broad spectrum of warm-blooded animals. Profilin is a critical protein that plays a role in the movement and invasion of T. gondii. In the current study, we assessed how profilin stimulates inflammasomes and how it induces transcription and secretion of IL-1β. For this purpose, we assessed the level of TLR 2, 4, 5, and 9 expressions in a THP-1 cell line treated with profilin from T. gondii (TgP). In addition, we analyzed the expression levels of various inflammasomes, as well as IL-1β, and IL-18 in THP-1 cells treated with the NLRP3 inhibitor MCC950. TgP significantly increased the expression of TLR5 but the expression of TLR2, 4, and 9 was not significantly increased. In addition, TgP did not significantly increase the level of inflammasomes after 5 h. Treatment with MCC950 significantly reduced NLRP3 and IL-1β on both transcription and protein levels. Although the transcription level of NLRP3 was reduced 5 h after treatment with TgP, western blot analysis showed an increase in NLRP3. The western blot and ELISA analysis also showed that TgP increased both pro- and mature IL-1β. In summary, our study showed that NLRP3 most probably plays a pivotal role in the expression and production levels of IL-1β during the interaction between TgP and macrophages.
Collapse
Affiliation(s)
- Hossein Pazoki
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Parasitology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Javad Seyed Tabaei
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Ahdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, 4878, Queensland, Australia
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Cheng Y, Dempsey RE, Roodsari SK, Shuboni-Mulligan DD, George O, Sanford LD, Guo ML. Cocaine Regulates NLRP3 Inflammasome Activity and CRF Signaling in a Region- and Sex-Dependent Manner in Rat Brain. Biomedicines 2023; 11:1800. [PMID: 37509440 PMCID: PMC10376186 DOI: 10.3390/biomedicines11071800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Cocaine, one of the most abused drugs worldwide, is capable of activating microglia in vitro and in vivo. Several neuroimmune pathways have been suggested to play roles in cocaine-mediated microglial activation. Previous work showed that cocaine activates microglia in a region-specific manner in the brains of self-administered mice. To further characterize the effects of cocaine on microglia and neuroimmune signaling in vivo, we utilized the brains from both sexes of outbred rats with cocaine self-administration to explore the activation status of microglia, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activity, corticotropin-releasing factor (CRF) signaling, and NF-κB levels in the striatum and hippocampus (HP). Age-matched rats of the same sex (drug naïve) served as controls. Our results showed that cocaine increased neuroinflammation in the striatum and HP of both sexes with a relatively higher increases in male brains. In the striatum, cocaine upregulated NLRP3 inflammasome activity and CRF levels in males but not in females. In contrast, cocaine increased NLRP3 inflammasome activity in the HP of females but not in males, and no effects on CRF signaling were observed in this region of either sex. Interestingly, cocaine increased NF-κB levels in the striatum and HP with no sex difference. Taken together, our results provide evidence that cocaine can exert region- and sex-specific differences in neuroimmune signaling in the brain. Targeting neuroimmune signaling has been suggested as possible treatment for cocaine use disorders (CUDs). Our current results indicate that sex should be taken into consideration when determining the efficacy of these new therapeutic approaches.
Collapse
Affiliation(s)
- Yan Cheng
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Rachael Elizabeth Dempsey
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Soheil Kazemi Roodsari
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Dorela D Shuboni-Mulligan
- Sleep Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Olivier George
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Larry D Sanford
- Sleep Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ming-Lei Guo
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
48
|
Bai Y, Tian M, He P, Zhang Y, Chen J, Zhao Z, Lan J, Zhang B. LMCD1 is involved in tubulointerstitial inflammation in the early phase of renal fibrosis by promoting NFATc1-mediated NLRP3 activation. Int Immunopharmacol 2023; 121:110362. [PMID: 37311356 DOI: 10.1016/j.intimp.2023.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Prolonged renal inflammation contributes to fibrosis, which may eventually lead to irreversible chronic kidney disease. Our previous work demonstrated that LIM and cysteine-rich domain 1 (LMCD1) are associated with renal interstitial fibrosis in a 21-day unilateral ureteral obstruction (21UUO) mouse model. Interestingly, based on the gene expression omnibus database, we found that LMCD1 is enhanced in the mouse kidney as early as 5, 7, and 10 days following unilateral ureteral obstruction (UUO), suggesting that LMCD1 may exert its function in an earlier phase. To validate this conjecture, a 7UUO mouse model and a tumor necrosis factor-α (TNF-α)-stimulated HK-2 cell model were established, followed by injection of adenovirus vectors carrying short hairpin RNA targeting LMCD1. LMCD1 silencing ameliorated renal collagen deposition and reduced the expression of profibrotic factors in the 7UUO model. LMCD1 silencing alleviated tubulointerstitial inflammation by mitigating F4/80+ cell infiltration, monocyte chemoattractant protein-1 release and nuclear factor-κB activation. In addition, LMCD1 silencing suppressed NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and nuclear factor of activated T cells 1 (NFATc1) nuclear translocation. Consistent results were obtained in TNF-α-stimulated HK-2 cells in vitro. Mechanistically, the transcriptional coactivator LMCD1 cooperates with the transcription factor NFATc1 to increase NLRP3 expression. Collectively, these findings suggest that LMCD1 participates in tubulointerstitial inflammation via an LMCD1-NFATc1/NLRP3 mechanism. LMCD1 may therefore become a potential target for the control of renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Yu Bai
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Mi Tian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Ping He
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Yongzhe Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Jie Chen
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Jingsi Lan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Beiru Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China.
| |
Collapse
|
49
|
Li X, Jiang Q, Song G, Barkestani MN, Wang Q, Wang S, Fan M, Fang C, Jiang B, Johnson J, Geirsson A, Tellides G, Pober JS, Jane-Wit D. A ZFYVE21-Rubicon-RNF34 signaling complex promotes endosome-associated inflammasome activity in endothelial cells. Nat Commun 2023; 14:3002. [PMID: 37225719 PMCID: PMC10209169 DOI: 10.1038/s41467-023-38684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
Internalization of complement membrane attack complexes (MACs) assembles NLRP3 inflammasomes in endothelial cells (EC) and promotes IL-β-mediated tissue inflammation. Informed by proteomics analyses of FACS-sorted inflammasomes, we identify a protein complex modulating inflammasome activity on endosomes. ZFVYE21, a Rab5 effector, partners with Rubicon and RNF34, forming a "ZRR" complex that is stabilized in a Rab5- and ZFYVE21-dependent manner on early endosomes. There, Rubicon competitively disrupts inhibitory associations between caspase-1 and its pseudosubstrate, Flightless I (FliI), while RNF34 ubiquitinylates and degradatively removes FliI from the signaling endosome. The concerted actions of the ZRR complex increase pools of endosome-associated caspase-1 available for activation. The ZRR complex is assembled in human tissues, its associated signaling responses occur in three mouse models in vivo, and the ZRR complex promotes inflammation in a skin model of chronic rejection. The ZRR signaling complex reflects a potential therapeutic target for attenuating inflammasome-mediated tissue injury.
Collapse
Affiliation(s)
- Xue Li
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Quan Jiang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Guiyu Song
- VA Connecticut Healthcare System, West Haven, CT, USA.
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Mahsa Nouri Barkestani
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Qianxun Wang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Shaoxun Wang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew Fan
- Yale College, Yale University, New Haven, CT, USA
| | - Caodi Fang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Bo Jiang
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
- Dept of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Dept of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Justin Johnson
- Dept of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Arnar Geirsson
- Dept of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - George Tellides
- Dept of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jordan S Pober
- Dept of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Dan Jane-Wit
- VA Connecticut Healthcare System, West Haven, CT, USA.
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Dept of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
50
|
Wei D, Tian X, Zhai X, Sun C. Adipose Tissue Macrophage-Mediated Inflammation in Obesity: A Link to Posttranslational Modification. Immunol Invest 2023:1-25. [PMID: 37129471 DOI: 10.1080/08820139.2023.2205883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adipose tissue macrophages (ATM) are an essential type of immune cells in adipose tissue. Obesity induces the inflammation of adipose tissues, as expressed by ATM accumulation, that is more likely to become a source of systemic metabolic diseases, including insulin resistance. The process is characterized by the transcriptional regulation of inflammatory pathways by virtue of signaling molecules such as cytokines and free fatty acids. Notably, posttranslational modification (PTM) is a key link for these signaling molecules to trigger the proinflammatory or anti-inflammatory phenotype of ATMs. This review focuses on summarizing the functions and molecular mechanisms of ATMs regulating inflammation in obese adipose tissue. Furthermore, the role of PTM is elaborated, hoping to identify new horizons of treatment and prevention for obesity-mediated metabolic disease.
Collapse
Affiliation(s)
- Dongqin Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Xin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Xiangyun Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| |
Collapse
|