1
|
Mathsson Alm L, Westerlind H, Gehring I, Hansson M, Ghasemzadeh N, Rojas-Restrepo J, Saevarsdottir S, Sexton J, Lillegraven S, Haavardsholm E, Glintborg B, Hammer HB, Kvien TK, Hetland ML, Padyukov L, Askling J, Grönwall C. Recognition of Glycine Versus Nonglycine Citrulline Motifs Dictating the HLA Class II Association of Anticitrullinated Protein Antibodies: Insights From Autoantibody Profiling of 6,900 Scandinavian Patients With Rheumatoid Arthritis. Arthritis Rheumatol 2025. [PMID: 40116570 DOI: 10.1002/art.43161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/13/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
OBJECTIVE Rheumatoid arthritis (RA)-associated anticitrullinated protein antibodies (ACPAs) target various antigens by binding short citrulline amino acid motifs, resulting in heterogeneous ACPA profiles among patients. Here we analyzed ACPA patterns by recognized citrulline motifs in relation to the RA risk factors HLA-DRB1 shared epitope (SE) alleles and history of smoking. METHODS Rheumatoid factor (RF) and anticyclic citrullinated peptide (CCP2) isotypes, 15 anti-Cit- and four anti-Carb/Acet-peptide-IgG, were centrally measured in 6,907 patients from five Scandinavian RA cohorts using fluoroenzyme immunoassay and a custom-made multiplex solid-phase microarray. HLA-DRB1 SE alleles were imputed from single-nucleotide polymorphism genotyping data. RESULTS Single-citrulline peptides derived from four multicitrulline peptides (Cit Fibα36-50, Cit Fibβ60-74, Cit TNC5, and Cit Vim60-75) showed differential binding patterns, supporting recognition of citrulline motifs rather than long peptides. Four citrulline peptides (Cit Fibβ36-52, Cit Fibβ60-74-Cit3, Cit Fil307-324, and Cit Vim60-75-Cit1) captured 97% of IgG anti-CCP2+ patients. Patient subsets based on ACPA, anti-Carb/Acet, and RF displayed differences in ACPA composition and disease activity but not comorbidities. Different ACPAs overlapped, but when dichotomizing patients based on high reactivity to peptide citrulline motifs, only ACPA to nonglycine citrulline motif associated with HLA SE alleles. In IgG anti-CCP2+ patients, 90% of those with only high nonglycine ACPA were HLA SE allele carriers compared with 67% in the group with glycine motif-only ACPA (odds ratio 4.5). Smoking status associated with IgA and glycine motif ACPA. CONCLUSION Although citrulline-glycine motifs are prevalent ACPA targets, our data reveal that HLA SE alleles are primarily associated with ACPA to nonglycine citrulline motifs, providing insight in ACPA T cell dependance. Yet, the etiologic significance of ACPA targeting different protein structures remains unknown.
Collapse
Affiliation(s)
- Linda Mathsson Alm
- Uppsala University and Thermo Fisher Scientific, Uppsala, Sweden
- Thermo Fisher Scientific, Uppsala, Sweden
| | | | | | - Monika Hansson
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Saedis Saevarsdottir
- Karolinska Institutet, Stockholm, Sweden, and deCODE genetics/Amgen, University of Iceland, and Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | - Bente Glintborg
- University of Copenhagen, Copenhagen, Denmark, and DANBIO, The Danish Rheumatologic Biobank, and Copenhagen Center for Arthritis Research (COPECARE), Rigshospitalet, Glostrup, Denmark
| | | | - Tore K Kvien
- Diakonhjemmet Hospital and University of Oslo, Oslo, Norway
| | - Merete Lund Hetland
- University of Copenhagen, Copenhagen, Denmark, and DANBIO, The Danish Rheumatologic Biobank, and Copenhagen Center for Arthritis Research (COPECARE), Rigshospitalet, Glostrup, Denmark
| | - Leonid Padyukov
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Caroline Grönwall
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Yang Y, Shi J, Yu J, Zhao X, Zhu K, Wang S, Zhang X, Zhang X, Wei G, Cao W. New Posttranslational Modification Lactylation Brings New Inspiration for the Treatment of Rheumatoid Arthritis. J Inflamm Res 2024; 17:11845-11860. [PMID: 39758940 PMCID: PMC11697653 DOI: 10.2147/jir.s497240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
Lactic acid (LA) is an essential glycolytic metabolite and energy source in the body, which is present in high levels in the synovial fluid of patients with rheumatoid arthritis (RA) and is a reliable indicator for identifying inflammatory arthritis. LA not only acts as an inflammatory amplifier in RA, recent studies have found that novel posttranslational modification (PTM) lactylation mediated by LA may also play a key role in RA. Single-cell sequencing showed that the RA lactylation score of patients with RA was significantly increased, and core lactylation-promoting genes, including NDUFB3, NGLY1, and other genes, were found to be potential biomarkers of RA. More studies have shown that lactylation can regulate genes in various cells, such as fibroblast-like synoviocytes (FLSs) and macrophages, thus playing a special role in the development and occurrence of autoimmune diseases, neurological diseases, and cancer diseases. In this paper, we review the research on lactylation in RA-related cells and mechanisms and bring new insights into the pathogenesis, diagnosis, and treatment of RA.
Collapse
Affiliation(s)
- Yue Yang
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jinjie Shi
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jiming Yu
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xin Zhao
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Ke Zhu
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Shen Wang
- Orthopedics Department, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, People’s Republic of China
| | - Xinwen Zhang
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xieyu Zhang
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Guangcheng Wei
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wei Cao
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Li Y, Zhu F, Wen R, Hou T, Xie R, Qin J. The First Case of Felty's Syndrome Complicated by COVID-19 Infection. J Inflamm Res 2024; 17:8853-8860. [PMID: 39559396 PMCID: PMC11571983 DOI: 10.2147/jir.s479377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
Felty's syndrome (FS) is an uncommon disorder with a poor prognosis, and most patients die from infections caused by neutropenia. Currently, there is no standardized treatment strategy, and treatment options are based on case reports and clinical experience. To date, no cases of FS complicated by coronavirus disease-2019 (COVID-19) have been reported. This article reports a successful case of FS complicated by COVID-19. We emphasized treating rheumatic diseases with immunosuppressive therapy at appropriate doses based on strong and effective anti-infection when co-infected.
Collapse
Affiliation(s)
- Yueming Li
- Department of Rheumatology and Immunology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
| | - Fanyou Zhu
- Department of Rheumatology and Immunology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
| | - Rui Wen
- Department of Rheumatology and Immunology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
| | - Tingting Hou
- Department of Rheumatology and Immunology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
| | - Rou Xie
- Department of Rheumatology and Immunology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
| | - Jiao Qin
- Department of Rheumatology and Immunology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
4
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Tzang BS, Chin HY, Tzang CC, Chuang PH, Chen DY, Hsu TC. Parvovirus B19 Infection Is Associated with the Formation of Neutrophil Extracellular Traps and Thrombosis: A Possible Linkage of the VP1 Unique Region. Int J Mol Sci 2024; 25:9917. [PMID: 39337405 PMCID: PMC11432092 DOI: 10.3390/ijms25189917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Neutrophil extracellular traps (NETs) formation, namely NETosis, is implicated in antiphospholipid syndrome (APS)-related thrombosis in various autoimmune disorders such as systemic lupus erythematosus (SLE) and APS. Human parvovirus B19 (B19V) infection is closely associated with SLE and APS and causes various clinical manifestations such as blood disorders, joint pain, fever, pregnancy complications, and thrombosis. Additionally, B19V may trigger the production of autoantibodies, including those against nuclear and phospholipid components. Thus, exploring the connection between B19V, NETosis, and thrombosis is highly relevant. An in vitro NETosis model using differentiated HL-60 neutrophil-like cells (dHL-60) was employed to investigate the effect of B19V-VP1u IgG on NETs formation. A venous stenosis mouse model was used to test how B19V-VP1u IgG-mediated NETs affect thrombosis in vivo. The NETosis was observed in the dHL-60 cells treated with rabbit anti-B19V-VP1u IgG and was inhibited in the presence of either 8-Br-cAMP or CGS216800 but not GSK484. Significantly elevated reactive oxygen species (ROS), myeloperoxidase (MPO), and citrullinated histone (Cit-H3) levels were detected in the dHL60 treated with phorbol myristate acetate (PMA), human aPLs IgG and rabbit anti-B19V-VP1u IgG, respectively. Accordingly, a significantly larger thrombus was observed in a venous stenosis-induced thrombosis mouse model treated with PMA, human aPLs IgG, rabbit anti-B19V-VP1u IgG, and human anti-B19V-VP1u IgG, respectively, along with significantly increased amounts of Cit-H3-, MPO- and CRAMP-positive infiltrated neutrophils in the thrombin sections. This research highlights that anti-B19V-VP1u antibodies may enhance the formation of NETosis and thrombosis and implies that managing and treating B19V infection could lower the risk of thrombosis.
Collapse
Affiliation(s)
- Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
| | - Chih-Chen Tzang
- School of Medicine, College of Medicine, National Taiwan University, Taipei City 100, Taiwan;
| | - Pei-Hua Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
| | - Der-Yuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Raposo B, Klareskog L, Robinson WH, Malmström V, Grönwall C. The peculiar features, diversity and impact of citrulline-reactive autoantibodies. Nat Rev Rheumatol 2024; 20:399-416. [PMID: 38858604 DOI: 10.1038/s41584-024-01124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Since entering the stage 25 years ago as a highly specific serological biomarker for rheumatoid arthritis, anti-citrullinated protein antibodies (ACPAs) have been a topic of extensive research. This hallmark B cell response arises years before disease onset, displays interpatient autoantigen variability, and is associated with poor clinical outcomes. Technological and scientific advances have revealed broad clonal diversity and intriguing features including high levels of somatic hypermutation, variable-domain N-linked glycosylation, hapten-like peptide interactions, and clone-specific multireactivity to citrullinated, carbamylated and acetylated epitopes. ACPAs have been found in different isotypes and subclasses, in both circulation and tissue, and are secreted by both plasmablasts and long-lived plasma cells. Notably, although some disease-promoting features have been reported, results now demonstrate that certain monoclonal ACPAs therapeutically block arthritis and inflammation in mouse models. A wealth of functional studies using patient-derived polyclonal and monoclonal antibodies have provided evidence for pathogenic and protective effects of ACPAs in the context of arthritis. To understand the roles of ACPAs, one needs to consider their immunological properties by incorporating different facets such as rheumatoid arthritis B cell biology, environmental triggers and chronic antigen exposure. The emerging picture points to a complex role of citrulline-reactive autoantibodies, in which the diversity and dynamics of antibody clones could determine clinical progression and manifestations.
Collapse
Affiliation(s)
- Bruno Raposo
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Vivianne Malmström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Alghulami OM, Jasim GA, Jasim SY. Evaluating the docetaxel effect in an animal model of polyarthritis. Inflammopharmacology 2024; 32:1827-1838. [PMID: 38619760 DOI: 10.1007/s10787-024-01459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/04/2024] [Indexed: 04/16/2024]
Abstract
Rheumatoid arthritis (RA) is immune-mediated, inflammatory disease that affects synovial joints, and characterized by inflammatory changes in synovial tissue, cartilage, bone, and less commonly in extra-articular structures. Docetaxel (DTX) is a semi-synthetic anti-neoplastic medication. Peptidyl-arginine deiminase type 4 (PAD4) is expressed in macrophages and neutrophils in RA synovial membrane. Their effectiveness is in producing anti-cyclic citrullinated peptide antibodies (ACPA)-targeted citrullinated neoepitopes. AIM To evaluate the anti-inflammatory effects of DTX in RA and the effect of methotrexate on PAD4 to investigate its potential as an RA biomarker. METHODS Forty male Wistar rats were divided into five groups of eight rats. Healthy rats formed the control group. The Second Group to Fifth group were induced with Complete Freund's adjuvant. The third group received DTX at a dosage of 1 mg/kg on alternate days, as determined by a preliminary experiment. The fourth group was given 1 mg/kg/week of methotrexate intraperitoneally. The fifth group was treated with a half dose of DTX and methotrexate simultaneously. RESULTS Significant Arthritis index and knee joint circumference decrease in the DTX group. No significant difference in body weight, platelet-lymphocyte ratio, and white blood cell count between the groups. Neutrophile lymphocyte ratio showed weak correlation with ACPA, while PAD4 showed good correlation with RA markers. Level of ACPA, PAD4, TNF-α, IL-1β, and VEGF significantly decreased in the DTX group than induction group (p < 0.05). CONCLUSION DTX reduces the progression and joint destruction in rats induced by Complete Freund's Adjuvant which may due to inhibition of PAD4, TNF-α, IL-1β, VEGF, and ACPA. Also, methotrexate exhibited anti PAD4 effect.
Collapse
Affiliation(s)
- Omar Mustafa Alghulami
- Pharmacology and Toxicology Department, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Ghaith Ali Jasim
- College of Health and Medical Techniques, Al-Bayan University, Baghdad, Iraq
| | - Suzan Yousif Jasim
- Deptartment of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
8
|
Wegscheider C, Ferincz V, Schöls K, Maieron A. Felty's syndrome. Front Med (Lausanne) 2023; 10:1238405. [PMID: 37920595 PMCID: PMC10619942 DOI: 10.3389/fmed.2023.1238405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Felty's syndrome was first described in 1924 by the US-American physician Augustus Roi Felty as a triad of rheumatoid arthritis, splenomegaly and leucopenia. Even nearly 100 years later, this rare syndrome is still paralleled by diagnostic and therapeutic challenges and its pathogenesis is incompletely understood. Neutropenia with potentially life-threatening infections is the main problem and several pathomechanisms like Fas-mediated apoptosis, anti-neutrophil antibodies, anti-G-CSF antibodies, neutrophil consumption in the context of NETosis and suppression of granulopoiesis by T-LGLs have been suggested. Felty's syndrome has various differential diagnoses as splenomegaly and cytopenia are common features of different infectious diseases, malignancies and autoimmune disorders. Additionally, benign clonal T-/NK-LGL lymphocytosis is increasingly noticed in Felty's syndrome, which further complicates diagnosis. Today's treatment options are still sparse and are largely based on case reports and small case series. Methotrexate is the mainstay of therapy, followed by rituximab, but there is less evidence for alternatives in the case of adverse reactions or failure of these drugs. This article gives an updated review about Felty's syndrome including its pathogenesis and treatment options.
Collapse
Affiliation(s)
- Christoph Wegscheider
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Division of Internal Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Vera Ferincz
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Division of Internal Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Karin Schöls
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Division of Internal Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Andreas Maieron
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Division of Internal Medicine, University Hospital St. Pölten, St. Pölten, Austria
| |
Collapse
|
9
|
Jurczak A, Sandor K, Bersellini Farinotti A, Krock E, Hunt MA, Agalave NM, Barbier J, Simon N, Wang Z, Rudjito R, Vazquez-Mora JA, Martinez-Martinez A, Raoof R, Eijkelkamp N, Grönwall C, Klareskog L, Jimenéz-Andrade JM, Marchand F, Svensson CI. Insights into FcγR involvement in pain-like behavior induced by an RA-derived anti-modified protein autoantibody. Brain Behav Immun 2023; 113:212-227. [PMID: 37437817 DOI: 10.1016/j.bbi.2023.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Joint pain is one of the most debilitating symptoms of rheumatoid arthritis (RA) and patients frequently rate improvements in pain management as their priority. RA is hallmarked by the presence of anti-modified protein autoantibodies (AMPA) against post-translationally modified citrullinated, carbamylated and acetylated proteins. It has been suggested that autoantibody-mediated processes represent distinct mechanisms contributing to pain in RA. In this study, we investigated the pronociceptive properties of monoclonal AMPA 1325:01B09 (B09 mAb) derived from the plasma cell of an RA patient. We found that B09 mAb induces pain-like behavior in mice that is not associated with any visual, histological or transcriptional signs of inflammation in the joints, and not alleviated by non-steroidal anti-inflammatory drugs (NSAIDs). Instead, we found that B09 mAb is retained in dorsal root ganglia (DRG) and alters the expression of several satellite glia cell (SGC), neuron and macrophage-related factors in DRGs. Using mice that lack activating FcγRs, we uncovered that FcγRs are critical for the development of B09-induced pain-like behavior, and partially drive the transcriptional changes in the DRGs. Finally, we observed that B09 mAb binds SGC in vitro and in combination with external stimuli like ATP enhances transcriptional changes and protein release of pronociceptive factors from SGCs. We propose that certain RA antibodies bind epitopes in the DRG, here on SGCs, form immune complexes and activate resident macrophages via FcγR cross-linking. Our work supports the growing notion that autoantibodies can alter nociceptor signaling via mechanisms that are at large independent of local inflammatory processes in the joint.
Collapse
Affiliation(s)
- Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Alex Bersellini Farinotti
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Emerson Krock
- The Alan Edwards Centre for Research on Pain, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Matthew A Hunt
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Nilesh M Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Julie Barbier
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand 38-63001, France
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Zhenggang Wang
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Resti Rudjito
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Juan Antonio Vazquez-Mora
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Arisai Martinez-Martinez
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Juan Miguel Jimenéz-Andrade
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Fabien Marchand
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand 38-63001, France
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden.
| |
Collapse
|
10
|
Calixto OJ, Meneses-Toro MA, Vera-Parra EC, Bello-Gualtero JM, Romero-Sanchez C, Perdomo SJ. Posttranslational modifications in psoriatic arthritis: A systematic literature review. Autoimmun Rev 2023; 22:103393. [PMID: 37487969 DOI: 10.1016/j.autrev.2023.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND AND AIMS Psoriatic arthritis (PsA) is an inflammatory complex condition. Posttranslational modifications influence almost all aspects of normal cell biology and pathogenesis. The aim of this systematic review was to collect all published evidence regarding posttranslational modifications in PsA, and the main outcome was to evaluate an association between disease outcomes and specific posttranslational modifications in PsA. METHODS A systematic electronic search was performed in Medline, PubMed, Cochrane, Virtual Health Library, and Embase databases. A total of 587 articles were identified; 59 were evaluated after removing duplicates and scanning, of which 47 were included. A descriptive analysis was conducted, with results grouped according to the type of posttranslational modification evaluated. The protocol was registered at the PROSPERO database. RESULTS Seven posttranslational modifications were identified: citrullination, carbamylation, phosphorylation, glycosylation, acetylation, methylation, and oxidative stress. Anti-citrullinated peptide and anti-carbamylated protein have been evaluated in rheumatoid arthritis. There is now information suggesting that these antibodies may be helpful in improving the diagnosis of PsA and that they may demonstrate a correlation with worse disease progression (erosions, polyarticular involvement, and poor treatment response). Glycosylation was associated with increased inflammation and phosphorylation products related to the expression of SIRT2 and pSTAT3 or the presence of Th17 and cytokine interleukin-22, suggesting a possible therapeutic target. CONCLUSIONS Posttranslational modifications often play a key role in modulating protein function in PsA and correlate with disease outcomes. Citrullination, carbamylation, phosphorylation, glycosylation, acetylation, methylation, and oxidative stress were identified as associated with diagnosis and prognosis.
Collapse
Affiliation(s)
- Omar-Javier Calixto
- Universidad Militar Nueva Granada, School of Medicine, Clinical Immunology Group, Bogotá, Colombia; Universidad El Bosque, Cellular and Molecular Immunology Group INMUBO, Bogotá, Colombia.
| | | | - Edward-Camilo Vera-Parra
- Universidad Militar Nueva Granada, School of Medicine, Clinical Immunology Group, Bogotá, Colombia
| | | | - Consuelo Romero-Sanchez
- Universidad Militar Nueva Granada, School of Medicine, Clinical Immunology Group, Bogotá, Colombia; Universidad El Bosque, Cellular and Molecular Immunology Group INMUBO, Bogotá, Colombia
| | - Sandra J Perdomo
- Universidad El Bosque, Cellular and Molecular Immunology Group INMUBO, Bogotá, Colombia
| |
Collapse
|
11
|
Hensvold A, Horuluoglu B, Sahlström P, Thyagarajan R, Diaz Boada JS, Hansson M, Mathsson-Alm L, Gerstner C, Sippl N, Israelsson L, Wedin R, Steen J, Klareskog L, Réthi B, Catrina AI, Diaz-Gallo LM, Malmström V, Grönwall C. The human bone marrow plasma cell compartment in rheumatoid arthritis - Clonal relationships and anti-citrulline autoantibody producing cells. J Autoimmun 2023; 136:103022. [PMID: 37001434 DOI: 10.1016/j.jaut.2023.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/31/2023]
Abstract
A majority of circulating IgG is produced by plasma cells residing in the bone marrow (BM). Long-lived BM plasma cells constitute our humoral immune memory and are essential for infection-specific immunity. They may also provide a reservoir of potentially pathogenic autoantibodies, including rheumatoid arthritis (RA)-associated anti-citrullinated protein autoantibodies (ACPA). Here we investigated paired human BM plasma cell and peripheral blood (PB) B-cell repertoires in seropositive RA, four ACPA+ RA patients and one ACPA- using two different single-cell approaches, flow cytometry sorting, and transcriptomics, followed by recombinant antibody generation. Immunoglobulin (Ig) analysis of >900 paired heavy-light chains from BM plasma cells identified by either surface CD138 expression or transcriptome profiles (including gene expression of MZB1, JCHAIN and XBP1) demonstrated differences in IgG/A repertoires and N-linked glycosylation between patients. For three patients, we identified clonotypes shared between BM plasma cells and PB memory B cells. Notably, four individuals displayed plasma cells with identical heavy chains but different light chains, which may indicate receptor revision or clonal convergence. ACPA-producing BM plasma cells were identified in two ACPA+ patients. Three of 44 recombinantly expressed monoclonal antibodies from ACPA+ RA BM plasma cells were CCP2+, specifically binding to citrullinated peptides. Out of these, two clones reacted with citrullinated histone-4 and activated neutrophils. In conclusion, single-cell investigation of B-cell repertoires in RA bone marrow provided new understanding of human plasma cells clonal relationships and demonstrated pathogenically relevant disease-associated autoantibody expression in long-lived plasma cells.
Collapse
Affiliation(s)
- Aase Hensvold
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Begum Horuluoglu
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Sahlström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Radha Thyagarajan
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Juan Sebastian Diaz Boada
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Monika Hansson
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Mathsson-Alm
- Thermo Fisher Scientific, Uppsala, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christina Gerstner
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Natalie Sippl
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Israelsson
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rikard Wedin
- Department of Trauma and Reparative Medicine, Karolinska University Hospital, and Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden
| | - Johanna Steen
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bence Réthi
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anca I Catrina
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Lina-Marcela Diaz-Gallo
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
12
|
Cîrciumaru A, Afonso MG, Wähämaa H, Krishnamurthy A, Hansson M, Mathsson-Alm L, Keszei M, Stålesen R, Ottosson L, de Vries C, Shelef MA, Malmström V, Klareskog L, Catrina AI, Grönwall C, Hensvold A, Réthi B. Anti-Citrullinated Protein Antibody Reactivity towards Neutrophil-Derived Antigens: Clonal Diversity and Inter-Individual Variation. Biomolecules 2023; 13:biom13040630. [PMID: 37189377 DOI: 10.3390/biom13040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Why the adaptive immune system turns against citrullinated antigens in rheumatoid arthritis (RA) and whether anti-citrullinated protein antibodies (ACPAs) contribute to pathogenesis are questions that have triggered intense research, but still are not fully answered. Neutrophils may be crucial in this context, both as sources of citrullinated antigens and also as targets of ACPAs. To better understand how ACPAs and neutrophils contribute to RA, we studied the reactivity of a broad spectrum of RA patient-derived ACPA clones to activated or resting neutrophils, and we also compared neutrophil binding using polyclonal ACPAs from different patients. Methods: Neutrophils were activated by Ca2+ ionophore, PMA, nigericin, zymosan or IL-8, and ACPA binding was studied using flow cytometry and confocal microscopy. The roles of PAD2 and PAD4 were studied using PAD-deficient mice or the PAD4 inhibitor BMS-P5. Results: ACPAs broadly targeted NET-like structures, but did not bind to intact cells or influence NETosis. We observed high clonal diversity in ACPA binding to neutrophil-derived antigens. PAD2 was dispensable, but most ACPA clones required PAD4 for neutrophil binding. Using ACPA preparations from different patients, we observed high patient-to-patient variability in targeting neutrophil-derived antigens and similarly in another cellular effect of ACPAs, the stimulation of osteoclast differentiation. Conclusions: Neutrophils can be important sources of citrullinated antigens under conditions that lead to PAD4 activation, NETosis and the extrusion of intracellular material. A substantial clonal diversity in targeting neutrophils and a high variability among individuals in neutrophil binding and osteoclast stimulation suggest that ACPAs may influence RA-related symptoms with high patient-to-patient variability.
Collapse
|
13
|
Krishnamurthy A, Circiumaru A, Sun J, Kisten Y, Damberg P, Sakuraba K, Sandor K, Jarvoll P, Zhou T, Malmström V, Svensson CI, Hensvold A, Catrina AI, Klareskog L, Réthi B. Combination of Two Monoclonal Anti-Citrullinated Protein Antibodies Induced Tenosynovitis, Pain, and Bone Loss in Mice in a Peptidyl Arginine Deiminase-4-Dependent Manner. Arthritis Rheumatol 2023; 75:164-170. [PMID: 35930718 PMCID: PMC10108252 DOI: 10.1002/art.42320] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/04/2022] [Accepted: 07/26/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The appearance of anti-citrullinated protein antibodies (ACPAs) in the circulation represents a major risk factor for developing rheumatoid arthritis (RA). Patient-derived ACPAs have been shown to induce pain and bone erosion in mice, suggesting an active role in the pathogenicity of RA. We undertook this study to investigate whether ACPAs can induce tenosynovitis, an early sign of RA, in addition to pain and bone loss and whether these symptoms are dependent on peptidyl arginine deiminase 4 (PAD4). METHODS Monoclonal ACPAs generated from plasma cells of RA patients were transferred to wild-type and PAD4-deficient mice. Pain-like behavior and macroscopic inflammation were monitored for a period of 4 weeks, followed by the analyses of tenosynovitis in the ankle joints using magnetic resonance imaging (MRI) and bone microarchitecture in the tibia using an X-ray microscope. Microscopic changes in the tendon sheath were analyzed in decalcified ankle joint sections. RESULTS The combination of 2 monoclonal ACPAs (1325:04C03 and 1325:01B09) induced long-lasting pain-like behavior and trabecular bone loss in mice. Although no synovitis was observed macroscopically, we detected tenosynovitis in the ACPA-injected mice by MRI. Microscopic analyses of the joints revealed a cellular hyperplasia and a consequent enlargement of the tendon sheath in the ACPA-treated group. In PAD4-/- mice, the effects of ACPAs on pain-like behavior, tenosynovitis, and bone loss were significantly reduced. CONCLUSION Monoclonal ACPAs can induce tenosynovitis in addition to pain and bone loss via mechanisms dependent on PAD4-mediated citrullination.
Collapse
Affiliation(s)
- Akilan Krishnamurthy
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Alexandra Circiumaru
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Jitong Sun
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Yogan Kisten
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Peter Damberg
- Karolinska Experimental Research and Imaging Centre (KERIC)StockholmSweden
| | - Koji Sakuraba
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Katalin Sandor
- Department of Physiology and PharmacologyCenter for Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Patrik Jarvoll
- Karolinska Experimental Research and Imaging Centre (KERIC)StockholmSweden
| | - Tunhe Zhou
- Stockholm University Brain Imaging Centre (SUBIC), Stockholm UniversityStockholmSweden
| | - Vivianne Malmström
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Camilla I. Svensson
- Department of Physiology and PharmacologyCenter for Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Aase Hensvold
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Anca I. Catrina
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Lars Klareskog
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Bence Réthi
- Department of Medicine, Rheumatology UnitCenter of Molecular Medicine, Karolinska InstitutetStockholmSweden
| |
Collapse
|
14
|
Implications of Post-Translational Modifications in Autoimmunity with Emphasis on Citrullination, Homocitrullination and Acetylation for the Pathogenesis, Diagnosis and Prognosis of Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms232415803. [PMID: 36555449 PMCID: PMC9781636 DOI: 10.3390/ijms232415803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications (PTMs) influence cellular processes and consequently, their dysregulation is related to the etiologies of numerous diseases. It is widely known that a variety of autoimmune responses in human diseases depend on PTMs of self-proteins. In this review we summarize the latest findings about the role of PTMs in the generation of autoimmunity and, specifically, we address the most relevant PTMs in rheumatic diseases that occur in synovial tissue. Citrullination, homocitrullination (carbamylation) and acetylation are responsible for the generation of Anti-Modified Protein/Peptide Antibodies (AMPAs family), autoantibodies which have been implicated in the etiopathogenesis, diagnosis and prognosis of rheumatoid arthritis (RA). Synthetic peptides provide complete control over the exact epitopes presented as well as the specific positions in their sequence where post-translationally modified amino acids are located and are key to advancing the detection of serological RA biomarkers that could be useful to stratify RA patients in order to pursue a personalized rheumatology. In this review we specifically address the latest findings regarding synthetic peptides post-translationally modified for the specific detection of autoantibodies in RA patients.
Collapse
|
15
|
Anti-Citrullinated Peptide Antibodies Control Oral Porphyromonas and Aggregatibacter species in Patients with Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms232012599. [PMID: 36293451 PMCID: PMC9604485 DOI: 10.3390/ijms232012599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Oral microbiome changes take place at the initiation of rheumatoid arthritis (RA); however, questions remain regarding the oral microbiome at pre-RA stages in individuals with clinically suspect arthralgia (CSA). Two cross-sectional cohorts were selected including 84 Tatarstan women (15 early-RA as compared to individuals with CSA ranging from CSA = 0 [n = 22], CSA = 1 [n = 19], CSA = 2 [n = 11], and CSA ≥ 3 [n = 17]) and 42 women with established RA (median: 5 years from diagnosis [IQ: 2–11]). Amplicon sequence variants (ASVs) obtained from oral samples (16S rRNA) were analyzed for alpha and beta diversity along with the abundance at the genus level. A decrease in oral Porphyromonas sp. is observed in ACPA-positive individuals, and this predominates in early-RA patients as compared to non-RA individuals irrespective of their CSA score. In the RA-established cohort, Porphyromonas sp. and Aggregatibacter sp. reductions were associated with elevated ACPA levels. In contrast, no associations were reported when considering individual, genetic and clinical RA-associated factors. Oral microbiome changes related to the genera implicated in post-translational citrullination (Porphyromonas sp. and Aggregatibacter sp.) characterized RA patients with elevated ACPA levels, which supports that the role of ACPA in controlling the oral microbiome needs further evaluation.
Collapse
|
16
|
Jung J, Lee LE, Kim H, Kim JE, Jang SH, Roh JS, Lee B, Robinson WH, Sohn DH, Pyun JC, Song JJ. Extracellular histones aggravate autoimmune arthritis by lytic cell death. Front Immunol 2022; 13:961197. [PMID: 36032105 PMCID: PMC9410568 DOI: 10.3389/fimmu.2022.961197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Although recent studies have demonstrated a proinflammatory effect of extracellular histones in sepsis via endothelial cytotoxicity, little is known about their contribution to autoimmune arthritis. Therefore, we investigated the role of extracellular histones in autoimmune arthritis and their cytotoxic effect on synoviocytes and macrophages. We measured histones in the synovial fluid of patients with rheumatoid arthritis (RA) and evaluated arthritis severity in a serum-transfer arthritis (STA) mouse model with intraperitoneal histone injection. Histone-induced cytotoxicity was measured using SYTOX green staining in the synoviocyte cell line MH7A and macrophages differentiated from the monocytic cell line THP-1, and the production of damage-associated molecular patterns (DAMPs) was measured by HMGB1 and ATP. Furthermore, we performed RNA-seq analysis of THP-1 cells stimulated with H2B-α1 peptide or with its citrullinated form. The levels of histones were elevated in RA synovial fluid, and histones aggravated arthritis in the STA model. Histones induced cytotoxicity and DAMP production in synoviocytes and macrophages. Chondroitin sulfate reduced histone-induced cytotoxicity, while lipopolysaccharides aggravated cytotoxicity. Moreover, the cytotoxicity decreased when the arginines in H2B-α1 were replaced with citrullines, which demonstrated its electrostatic nature. In transcriptome analysis, H2B-α1 changed the gene expression pattern of THP-1 cells involving chemokines, interleukin-1, -4, -10, -13, and toll-like receptor (TLR) signaling pathways. Extracellular histones were increased in RA synovial fluid and aggravated synovitis in STA. They induced lytic cell death through electrostatic interaction with synoviocytes and macrophages, leading to the secretion of DAMPs. These findings suggest that histones play a central role in autoimmune arthritis.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, Seoul, South Korea
| | - Lucy Eunju Lee
- Division of Rheumatology, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, South Korea
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hanna Kim
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Eun Kim
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hoon Jang
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Seong Roh
- Department of Herbal Prescription, College of Korean Medicine, Daegu Haany University, Gyeongsan, South Korea
| | - Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, South Korea
| | - William H. Robinson
- VA Palo Alto Health Care System, Palo Alto, CA, United States
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, South Korea
- *Correspondence: Jason Jungsik Song, ; Dong Hyun Sohn, ; Jae-Chul Pyun,
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, Seoul, South Korea
- *Correspondence: Jason Jungsik Song, ; Dong Hyun Sohn, ; Jae-Chul Pyun,
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Jason Jungsik Song, ; Dong Hyun Sohn, ; Jae-Chul Pyun,
| |
Collapse
|
17
|
Jurczak A, Delay L, Barbier J, Simon N, Krock E, Sandor K, Agalave NM, Rudjito R, Wigerblad G, Rogóż K, Briat A, Miot-Noirault E, Martinez-Martinez A, Brömme D, Grönwall C, Malmström V, Klareskog L, Khoury S, Ferreira T, Labrum B, Deval E, Jiménez-Andrade JM, Marchand F, Svensson CI. Antibody-induced pain-like behavior and bone erosion: links to subclinical inflammation, osteoclast activity, and acid-sensing ion channel 3-dependent sensitization. Pain 2022; 163:1542-1559. [PMID: 34924556 PMCID: PMC9341234 DOI: 10.1097/j.pain.0000000000002543] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Several bone conditions, eg, bone cancer, osteoporosis, and rheumatoid arthritis (RA), are associated with a risk of developing persistent pain. Increased osteoclast activity is often the hallmark of these bony pathologies and not only leads to bone remodeling but is also a source of pronociceptive factors that sensitize the bone-innervating nociceptors. Although historically bone loss in RA has been believed to be a consequence of inflammation, both bone erosion and pain can occur years before the symptom onset. Here, we have addressed the disconnection between inflammation, pain, and bone erosion by using a combination of 2 monoclonal antibodies isolated from B cells of patients with RA. We have found that mice injected with B02/B09 monoclonal antibodies (mAbs) developed a long-lasting mechanical hypersensitivity that was accompanied by bone erosion in the absence of joint edema or synovitis. Intriguingly, we have noted a lack of analgesic effect of naproxen and a moderate elevation of few inflammatory factors in the ankle joints suggesting that B02/B09-induced pain-like behavior does not depend on inflammatory processes. By contrast, we found that inhibiting osteoclast activity and acid-sensing ion channel 3 signaling prevented the development of B02/B09-mediated mechanical hypersensitivity. Moreover, we have identified secretory phospholipase A2 and lysophosphatidylcholine 16:0 as critical components of B02/B09-induced pain-like behavior and shown that treatment with a secretory phospholipase A2 inhibitor reversed B02/B09-induced mechanical hypersensitivity and bone erosion. Taken together, our study suggests a potential link between bone erosion and pain in a state of subclinical inflammation and offers a step forward in understanding the mechanisms of bone pain in diseases such as RA.
Collapse
Affiliation(s)
- Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lauriane Delay
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Julie Barbier
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emerson Krock
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nilesh M. Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Resti Rudjito
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustaf Wigerblad
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katarzyna Rogóż
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arnaud Briat
- Université Clermont Auvergne, Inserm UMR 1240, IMoST, Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne, Inserm UMR 1240, IMoST, Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Arisai Martinez-Martinez
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Dieter Brömme
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Spiro Khoury
- Lipotoxicity and Channelopathies (LiTch)—ConicMeds, Université de Poitiers, Poitiers, France
| | - Thierry Ferreira
- Lipotoxicity and Channelopathies (LiTch)—ConicMeds, Université de Poitiers, Poitiers, France
| | - Bonnie Labrum
- Université Côte d’Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France
| | - Emmanuel Deval
- Université Côte d’Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France
| | - Juan Miguel Jiménez-Andrade
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Fabien Marchand
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Inflammatory-associated apoptotic markers: are they the culprit to rheumatoid arthritis pain? Mol Biol Rep 2022; 49:10077-10090. [PMID: 35699858 DOI: 10.1007/s11033-022-07591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a prolonged inflammatory disease resulting from autoimmune reactions that leads to local and systemic bone erosion, joint defects and functional impairment. Although the inflammation is subsided through the prescription of anti-inflammatory therapeutics, the patients persistently complained of sleepless nights due to flare pain. This indicates the possible contribution of other pathways besides inflammation in leading to RA pain. This review aims to uncover the roles and involvement of several inflammatory-associated apoptotic markers in facilitating pain transmission and processing during the pathogenesis of RA. MATERIALS AND METHODS This narrative review focused on the reports from the previous literature based on the search string of "apoptotic marker AND inflammation AND 'chronic pain' OR 'neuropathic pain' and apoptosis AND 'rheumatoid arthritis' OR arthritis from the databases including Science Direct and Scopus, considering the exclusion criteria of the published abstracts, proceedings or articles on other neuropathic pain types such as painful bowel syndrom, insterstitial cystitis, fibrosis and so on. RESULTS Several studies in the literature demonstrate a close association between imbalanced apoptotic regulations and an increased number of synovial fibroblasts and inflammatory cells in RA. Cell death or specific cell survival has been linked with increased central hypersensitivity in various types of chronic and neuropathic pain. CONCLUSION The RA-related flare pain is possibly contributed by the abnormal regulation of apoptosis through several inflammatory-related pathways, and further studies need to modulate these pathways for the putative anti-nociceptive benefits.
Collapse
|
19
|
From risk to chronicity: evolution of autoreactive B cell and antibody responses in rheumatoid arthritis. Nat Rev Rheumatol 2022; 18:371-383. [PMID: 35606567 DOI: 10.1038/s41584-022-00786-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 02/07/2023]
Abstract
The presence of disease-specific autoantibody responses and the efficacy of B cell-targeting therapies in rheumatoid arthritis (RA) indicate a pivotal role for B cells in disease pathogenesis. Important advances have shaped our understanding of the involvement of autoantibodies and autoreactive B cells in the disease process. In RA, autoantibodies target antigens with a variety of post-translational modifications such as carbamylation, acetylation and citrullination. B cell responses against citrullinated antigens generate anti-citrullinated protein antibodies (ACPAs), which are themselves modified in the variable domains by abundant N-linked glycans. Insights into the induction of autoreactive B cells against antigens with post-translational modifications and the development of autoantibody features such as isotype usage, epitope recognition, avidity and glycosylation reveal their relationship to particular RA risk factors and clinical phenotypes. Glycosylation of the ACPA variable domain, for example, seems to predict RA onset in ACPA+ healthy individuals, possibly because it affects B cell receptor signalling. Moreover, ACPA-expressing B cells show dynamic phenotypic changes and develop a continuously proliferative and activated phenotype that can persist in patients who are in drug-induced clinical remission. Together, these findings can be integrated into a conceptual framework of immunological autoreactivity in RA, delineating how it develops and persists and why disease activity recurs when therapy is tapered or stopped.
Collapse
|
20
|
Shen Y, You Q, Wu Y, Wu J. Inhibition of PAD4-mediated NET formation by cl-amidine prevents diabetes development in nonobese diabetic mice. Eur J Pharmacol 2022; 916:174623. [PMID: 34767782 DOI: 10.1016/j.ejphar.2021.174623] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Many evidences indicated that neutrophil extracellular traps (NETs) play pathogenic roles in type 1 diabetes (T1D). Peptidylarginine deiminases 4 (PAD4) has been proved to be indispensable for generation of NETs. In the current study, we investigated whether oral administration of cl-amidine, an effective inhibitor of PAD4, protects non-obese diabetic (NOD) mice from T1D development. Female NOD mice were orally administrated with cl-amidine (5 μg/g body weight) from the age of 8 weeks up to 16 weeks. It showed that cl-amidine inhibit NET formation in vitro and in vivo. The onset of T1D was delayed nearly 8 weeks and the incidence of disease was significantly decreased in cl-amidine treated mice compared with the control group. Moreover, cl-amidine decreased the serum levels of anti-citrullinated peptide antibody (ACPA) and anti-neutrophil cytoplasmic antibodies (ANCA) in NOD mice. Also, it decreased generation of T1D autoantibodies such as glutamic acid decarboxylase antibody (GADA), tyrosine phosphatase-related islet antigen-2 antibody (IA2A) and zinc transporter 8 antibody (ZnT8A), which were strongly correlated with the reduced serum PAD4 and MPO-DNA levels. Furthermore, cl-amidine administration inhibited pancreatic inflammation and increased frequency of regulatory T cells in pancreatic lymph nodes (PLNs). In addition, cl-amidine improved gut barrier dysfunction and decreased the serum level of lipopolysaccharide (LPS), which was positively correlated with the NETs markers (PAD4 and MPO-DNA) and T1D autoantibody IA2A. In conclusion, our data showed that orally delivery of cl-amidine effectively prevent T1D development and suggested inhibition of PAD4-dependent NET formation as a potential way of clinical treatment in T1D.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Autoantibodies/blood
- Autoimmune Diseases/prevention & control
- Blood Glucose/drug effects
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Extracellular Traps/drug effects
- Female
- Inflammation/prevention & control
- Intestines/drug effects
- Mice, Inbred NOD
- Ornithine/administration & dosage
- Ornithine/analogs & derivatives
- Ornithine/pharmacology
- Protective Agents/administration & dosage
- Protective Agents/pharmacology
- Protein-Arginine Deiminase Type 4/antagonists & inhibitors
- Protein-Arginine Deiminase Type 4/blood
- Protein-Arginine Deiminase Type 4/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Tight Junctions/drug effects
- Mice
Collapse
Affiliation(s)
- Yiming Shen
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qi You
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiling Wu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
21
|
Mergaert AM, Zheng Z, Denny MF, Amjadi MF, Bashar SJ, Newton MA, Malmström V, Grönwall C, McCoy SS, Shelef MA. Rheumatoid factor and anti-modified protein antibody reactivities converge on IgG epitopes. Arthritis Rheumatol 2022; 74:984-991. [PMID: 35001558 DOI: 10.1002/art.42064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) patients often develop rheumatoid factors (RFs), antibodies that bind IgG Fc, and anti-modified protein antibodies (AMPAs), multi-reactive autoantibodies that commonly bind citrullinated, homocitrullinated, and acetylated antigens. Recently, antibodies that bind citrulline-containing IgG epitopes were discovered in RA, suggesting that additional undiscovered IgG epitopes could exist and that IgG could be a shared antigen for RFs and AMPAs. The objective of this study was to reveal new IgG epitopes in rheumatic disease and to determine if multi-reactive AMPAs bind IgG. METHODS Using RA, systemic lupus erythematosus, Sjögren's disease, and spondyloarthropathy sera, IgG binding to native, citrulline-containing, and homocitrulline-containing linear epitopes of the IgG constant region were evaluated by peptide array with highly bound epitopes further evaluated by ELISA. Monoclonal AMPA binding to IgG-derived peptides and IgG Fc was evaluated by ELISA. RESULTS Seropositive RA sera had high IgG binding to multiple citrulline- and homocitrulline-containing IgG-derived peptides, whereas anti-SSA+ Sjögren's disease sera had consistent binding to a single linear native epitope of IgG in the hinge region. Monoclonal AMPAs bound citrulline- and homocitrulline-containing IgG peptides and modified IgG Fc. CONCLUSION The repertoire of epitopes bound by AMPAs includes modified IgG epitopes, positioning IgG as a common antigen that connects the otherwise divergent reactivities of RFs and AMPAs.
Collapse
Affiliation(s)
- Aisha M Mergaert
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, USA.,Department of Medicine, University of Wisconsin-Madison, Madison, USA
| | - Zihao Zheng
- Department of Statistics, University of Wisconsin-Madison, Madison, USA.,Department of Medicine, University of Wisconsin-Madison, Madison, USA
| | - Michael F Denny
- Department of Medicine, University of Wisconsin-Madison, Madison, USA
| | - Maya F Amjadi
- Department of Medicine, University of Wisconsin-Madison, Madison, USA
| | - S Janna Bashar
- Department of Medicine, University of Wisconsin-Madison, Madison, USA
| | - Michael A Newton
- Department of Statistics, University of Wisconsin-Madison, Madison, USA
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara S McCoy
- Department of Medicine, University of Wisconsin-Madison, Madison, USA
| | - Miriam A Shelef
- Department of Medicine, University of Wisconsin-Madison, Madison, USA.,William S. Middleton Memorial Veterans Hospital, Madison, USA
| |
Collapse
|
22
|
Sokolova MV, Schett G, Steffen U. Autoantibodies in Rheumatoid Arthritis: Historical Background and Novel Findings. Clin Rev Allergy Immunol 2022; 63:138-151. [PMID: 34495490 PMCID: PMC9464122 DOI: 10.1007/s12016-021-08890-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 01/13/2023]
Abstract
Autoantibodies represent a hallmark of rheumatoid arthritis (RA), with the rheumatoid factor (RF) and antibodies against citrullinated proteins (ACPA) being the most acknowledged ones. RA patients who are positive for RF and/or ACPA ("seropositive") in general display a different etiology and disease course compared to so-called "seronegative" patients. Still, the seronegative patient population is very heterogeneous and not well characterized. Due to the identification of new autoantibodies and advancements in the diagnosis of rheumatic diseases in the last years, the group of seronegative patients is constantly shrinking. Aside from antibodies towards various post-translational modifications, recent studies describe autoantibodies targeting some native proteins, further broadening the spectrum of recognized antigens. Next to the detection of new autoantibody groups, much research has been done to answer the question if and how autoantibodies contribute to the pathogenesis of RA. Since autoantibodies can be detected years prior to RA onset, it is a matter of debate whether their presence alone is sufficient to trigger the disease. Nevertheless, there is gathering evidence of direct autoantibody effector functions, such as stimulation of osteoclastogenesis and synovial fibroblast migration in in vitro experiments. In addition, autoantibody positive patients display a worse clinical course and stronger radiographic progression. In this review, we discuss current findings regarding different autoantibody types, the underlying disease-driving mechanisms, the role of Fab and Fc glycosylation and clinical implications.
Collapse
Affiliation(s)
- Maria V. Sokolova
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
23
|
Impact of Posttranslational Modification in Pathogenesis of Rheumatoid Arthritis: Focusing on Citrullination, Carbamylation, and Acetylation. Int J Mol Sci 2021; 22:ijms221910576. [PMID: 34638916 PMCID: PMC8508717 DOI: 10.3390/ijms221910576] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is caused by prolonged periodic interactions between genetic, environmental, and immunologic factors. Posttranslational modifications (PTMs) such as citrullination, carbamylation, and acetylation are correlated with the pathogenesis of RA. PTM and cell death mechanisms such as apoptosis, autophagy, NETosis, leukotoxic hypercitrullination (LTH), and necrosis are related to each other and induce autoantigenicity. Certain microbial infections, such as those caused by Porphyromonasgingivalis, Aggregatibacter actinomycetemcomitans, and Prevotella copri, can induce autoantigens in RA. Anti-modified protein antibodies (AMPA) containing anti-citrullinated protein/peptide antibodies (ACPAs), anti-carbamylated protein (anti-CarP) antibodies, and anti-acetylated protein antibodies (AAPAs) play a role in pathogenesis as well as in prediction, diagnosis, and prognosis. Interestingly, smoking is correlated with both PTMs and AMPAs in the development of RA. However, there is lack of evidence that smoking induces the generation of AMPAs.
Collapse
|
24
|
Studenic P, Alunno A, Sieghart D, Bang H, Aletaha D, Blüml S, Haslacher H, Smolen JS, Gerli R, Steiner G. Presence of anti-acetylated peptide antibodies (AAPA) in inflammatory arthritis and other rheumatic diseases suggests discriminative diagnostic capacity towards early rheumatoid arthritis. Ther Adv Musculoskelet Dis 2021; 13:1759720X211022533. [PMID: 34539818 PMCID: PMC8445531 DOI: 10.1177/1759720x211022533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Aims: To determine the diagnostic value of anti-acetylated peptide antibodies (AAPA) in patients with rheumatoid arthritis (RA). Methods: Three acetylated peptides (ac-lysine, ac-lysine.inv and ac-ornithine) derived from vimentin were employed to measure AAPA by enzyme-linked immunosorbent assay (ELISA) in sera of 120 patients with early RA (eRA), 195 patients with established RA (est RA), 99 healthy controls (HC), and 216 patients with other inflammatory rheumatic diseases. A carbamylated and a citrullinated version of the vimentin peptide were used additionally. Receiver operating characteristics and logistic regression analyses were used to assess the discriminative capacity of AAPA. Results: AAPA were detected in 60% of eRA and 68.7% of estRA patients, 22.2% of HC, and 7.1– 30.6% of patients with other rheumatic diseases. Importantly, AAPA were also present in 40% of seronegative RA patients, while antibodies to the carbamylated peptide were detected less frequently. Diagnostic sensitivity of individual peptides for eRA was 28.3%, 35.8%, and 34% for ac-lysine, ac-ornithine, and ac-lysine.inv, respectively. Positive likelihood ratios (LR+) for eRA versus HC were 14.0, 7.1, and 2.1. While the presence of a single AAPA showed varying specificity (range: 84–98%), the presence of two AAPA increased specificity considerably since 26.7% of eRA, as compared with 6% of disease controls, were double positive. Thus, double positivity discriminated eRA from axial spondyloarthritis with a LR+ of 18.3. Remarkably, triple positivity was 100% specific for RA, being observed in 10% of eRA and 21.5% of estRA patients, even in the absence of RF and ACPA. Conclusion: AAPA are highly prevalent in early RA and occur also independently of RF and ACPA, thereby reducing the gap of seronegativity. Furthermore, multiple AAPA reactivity increased the specificity for RA, suggesting high diagnostic value of AAPA testing.
Collapse
Affiliation(s)
- Paul Studenic
- Division of Rheumatology, Department of Internal Medicine 3, Medical University of Vienna, Währinger Guertel 18-20, Vienna, 1090, Austria
| | - Alessia Alunno
- Rheumatology Unit, Department of Medicine & Surgery, University of Perugia, Perugia, Italy
| | - Daniela Sieghart
- Division of Rheumatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria & Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | | | - Daniel Aletaha
- Division of Rheumatology, Department of Internal Medicine 3, Medical University Vienna, Vienna, Austria
| | - Stephan Blüml
- Division of Rheumatology, Department of Internal Medicine 3, Medical University Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Department of Internal Medicine 3, Medical University Vienna, Vienna, Austria
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine & Surgery, University of Perugia, Perugia, Italy
| | - Günter Steiner
- Division of Rheumatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria & Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
25
|
Durlik-Popińska K, Żarnowiec P, Konieczna-Kwinkowska I, Lechowicz Ł, Gawęda J, Kaca W. Correlations between autoantibodies and the ATR-FTIR spectra of sera from rheumatoid arthritis patients. Sci Rep 2021; 11:17886. [PMID: 34504137 PMCID: PMC8429563 DOI: 10.1038/s41598-021-96848-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases worldwide. Due to high heterogeneity in disease manifestation, accurate and fast diagnosis of RA is difficult. This study analyzed the potential relationship between the infrared (IR) spectra obtained by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and the presence of autoantibodies and antibodies against urease in sera. Additionally, the wave number of the IR spectrum that enabled the best differentiation between patients and healthy blood donors was investigated. Using a mathematical model involving principal component analysis and discriminant analysis, it was shown that the presence of anti-citrullinated protein antibody, rheumatoid factor, anti-neutrophil cytoplasmic antibodies, and anti-nuclear antibodies correlated significantly with the wave numbers in the IR spectra of the tested sera. The most interesting findings derived from determination of the best predictors for distinguishing RA. Characteristic features included an increased reaction with urease mimicking peptides and a correspondence with particular nucleic acid bands. Taken together, the results demonstrated the potential application of ATR-FTIR in the study of RA and identified potential novel markers of the disease.
Collapse
Affiliation(s)
- Katarzyna Durlik-Popińska
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland.
| | - Paulina Żarnowiec
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | | | - Łukasz Lechowicz
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | | | - Wiesław Kaca
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
26
|
Reijm S, Kissel T, Stoeken-Rijsbergen G, Slot LM, Wortel CM, van Dooren HJ, Levarht NEW, Kampstra ASB, Derksen VFAM, Heer POD, Bang H, Drijfhout JW, Trouw LA, Huizinga TWJ, Rispens T, Scherer HU, Toes REM. Cross-reactivity of IgM anti-modified protein antibodies in rheumatoid arthritis despite limited mutational load. Arthritis Res Ther 2021; 23:230. [PMID: 34479638 PMCID: PMC8413699 DOI: 10.1186/s13075-021-02609-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Anti-modified protein antibodies (AMPA) targeting citrullinated, acetylated and/or carbamylated self-antigens are hallmarks of rheumatoid arthritis (RA). Although AMPA-IgG cross-reactivity to multiple post-translational modifications (PTMs) is evident, it is unknown whether the first responding B cells, expressing IgM, display similar characteristics or if cross-reactivity is crucially dependent on somatic hypermutation (SHM). We now studied the reactivity of (germline) AMPA-IgM to further understand the breach of B cell tolerance and to identify if cross-reactivity depends on extensive SHM. Moreover, we investigated whether AMPA-IgM can efficiently recruit immune effector mechanisms. Methods Polyclonal AMPA-IgM were isolated from RA patients and assessed for cross-reactivity towards PTM antigens. AMPA-IgM B cell receptor sequences were obtained by single cell isolation using antigen-specific tetramers. Subsequently, pentameric monoclonal AMPA-IgM, their germline counterparts and monomeric IgG variants were generated. The antibodies were analysed on a panel of PTM antigens and tested for complement activation. Results Pentameric monoclonal and polyclonal AMPA-IgM displayed cross-reactivity to multiple antigens and different PTMs. PTM antigen recognition was still present, although reduced, after reverting the IgM into germline. Valency of AMPA-IgM was crucial for antigen recognition as PTM-reactivity significantly decreased when AMPA-IgM were expressed as IgG. Furthermore, AMPA-IgM was 15- to 30-fold more potent in complement-activation compared to AMPA-IgG. Conclusions We provide first evidence that AMPA-IgM are cross-reactive towards different PTMs, indicating that PTM (cross-)reactivity is not confined to IgG and does not necessarily depend on extensive somatic hypermutation. Moreover, our data indicate that a diverse set of PTM antigens could be involved in the initial tolerance breach in RA and suggest that AMPA-IgM can induce complement-activation and thereby inflammation. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02609-5.
Collapse
Affiliation(s)
- Sanne Reijm
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Linda M Slot
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Corrie M Wortel
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hugo J van Dooren
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nivine E W Levarht
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arieke S B Kampstra
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Veerle F A M Derksen
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pleuni Ooijevaar-de Heer
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Jan W Drijfhout
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, The Netherlands
| | - Hans U Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Okamoto Y, Devoe S, Seto N, Minarchick V, Wilson T, Rothfuss HM, Mohning MP, Arbet J, Kroehl M, Visser A, August J, Thomas SM, Lenis Charry L, Fleischer C, Feser ML, Frazer-Abel AA, Norris JM, Cherrington BD, Janssen WJ, Kaplan MJ, Deane KD, Holers VM, Demoruelle MK. Sputum Neutrophil Extracellular Trap Subsets Associate with IgA Anti-Citrullinated Protein Antibodies in Subjects At-Risk for Rheumatoid Arthritis. Arthritis Rheumatol 2021; 74:38-48. [PMID: 34369110 PMCID: PMC8712364 DOI: 10.1002/art.41948] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/03/2021] [Indexed: 11/06/2022]
Abstract
Objective Mechanisms leading to anti–citrullinated protein antibody (ACPA) generation in rheumatoid arthritis (RA) are hypothesized to originate in the lung. We undertook this study to understand associations between neutrophil extracellular trap (NET) formation in the lung and local ACPA generation in subjects at risk of developing RA. Methods Induced sputum was collected from 49 subjects at risk of developing RA, 12 patients with RA, and 18 controls. Sputum neutrophils were tested for ex vivo NET formation, and sputum‐induced NET formation of control neutrophils was measured using immunofluorescence imaging. Sputum macrophages were tested for ex vivo endocytosis of apoptotic and opsonized cells. Levels of ACPA, NET remnants, and inflammatory proteins were quantified in sputum supernatant. Results Spontaneous citrullinated histone H3 (Cit‐H3)–expressing NET formation was higher in sputum neutrophils from at‐risk subjects and RA patients compared to controls (median 12%, 22%, and 0%, respectively; P < 0.01). In at‐risk subjects, sputum IgA ACPA correlated with the percentage of neutrophils that underwent Cit‐H3+ NET formation (r = 0.49, P = 0.002) and levels of Cit‐H3+ NET remnants (r = 0.70, P < 0.001). Reduced endocytic capacity of sputum macrophages was found in at‐risk subjects and RA patients compared to controls. Using a mediation model, we found that sputum inflammatory proteins were associated with sputum IgA ACPA through a pathway mediated by Cit‐H3+ NET remnants. Sputum‐induced Cit‐H3+ NET formation also correlated with sputum levels of interleukin‐1β (IL‐1β), IL‐6, and tumor necrosis factor in at‐risk subjects, suggesting a causal relationship. Conclusion These data support a potential mechanism for mucosal ACPA generation in subjects at risk of developing RA, whereby inflammation leads to increased citrullinated protein–expressing NETs that promote local ACPA generation.
Collapse
Affiliation(s)
- Yuko Okamoto
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA.,Tokyo Women's Medical University School of Medicine, Department of Rheumatology, Tokyo, Japan
| | - Stephanie Devoe
- University of Colorado Denver, Department of Immunology, Aurora, CO, USA
| | - Nickie Seto
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Valerie Minarchick
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Timothy Wilson
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Heather M Rothfuss
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY, USA
| | - Michael P Mohning
- National Jewish Health, Division of Pulmonary, Critical Care and Sleep Medicine, Denver, CO, USA
| | - Jaron Arbet
- University of Colorado Denver, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - Miranda Kroehl
- University of Colorado Denver, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - Ashley Visser
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Justin August
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Stacey M Thomas
- National Jewish Health, Division of Pulmonary, Critical Care and Sleep Medicine, Denver, CO, USA
| | - Laura Lenis Charry
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Chelsie Fleischer
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Marie L Feser
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | | | - Jill M Norris
- Colorado School of Public Health, Department of Epidemiology, Aurora, CO, USA
| | - Brian D Cherrington
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY, USA
| | - William J Janssen
- National Jewish Health, Division of Pulmonary, Critical Care and Sleep Medicine, Denver, CO, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Kevin D Deane
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - V Michael Holers
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | | |
Collapse
|
28
|
Chirivi RGS, van Rosmalen JWG, van der Linden M, Euler M, Schmets G, Bogatkevich G, Kambas K, Hahn J, Braster Q, Soehnlein O, Hoffmann MH, Es HHGV, Raats JMH. Therapeutic ACPA inhibits NET formation: a potential therapy for neutrophil-mediated inflammatory diseases. Cell Mol Immunol 2021; 18:1528-1544. [PMID: 32203195 PMCID: PMC8166830 DOI: 10.1038/s41423-020-0381-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Excessive release of neutrophil extracellular traps (NETs) is associated with disease severity and contributes to tissue injury, followed by severe organ damage. Pharmacological or genetic inhibition of NET release reduces pathology in multiple inflammatory disease models, indicating that NETs are potential therapeutic targets. Here, we demonstrate using a preclinical basket approach that our therapeutic anti-citrullinated protein antibody (tACPA) has broad therapeutic potential. Treatment with tACPA prevents disease symptoms in various mouse models with plausible NET-mediated pathology, including inflammatory arthritis (IA), pulmonary fibrosis, inflammatory bowel disease and sepsis. We show that citrulline residues in the N-termini of histones 2A and 4 are specific targets for therapeutic intervention, whereas antibodies against other N-terminal post-translational histone modifications have no therapeutic effects. Because citrullinated histones are generated during NET release, we investigated the ability of tACPA to inhibit NET formation. tACPA suppressed NET release from human neutrophils triggered with physiologically relevant human disease-related stimuli. Moreover, tACPA diminished NET release and potentially initiated NET uptake by macrophages in vivo, which was associated with reduced tissue damage in the joints of a chronic arthritis mouse model of IA. To our knowledge, we are the first to describe an antibody with NET-inhibiting properties and thereby propose tACPA as a drug candidate for NET-mediated inflammatory diseases, as it eliminates the noxious triggers that lead to continued inflammation and tissue damage in a multidimensional manner.
Collapse
Affiliation(s)
- Renato G S Chirivi
- ModiQuest B.V., Oss, The Netherlands.
- Citryll B.V., Oss, The Netherlands.
| | | | | | - Maximilien Euler
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | | | - Galina Bogatkevich
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Konstantinos Kambas
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupoli, Greece
| | - Jonas Hahn
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Quinte Braster
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Markus H Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
29
|
Grönwall C, Liljefors L, Bang H, Hensvold AH, Hansson M, Mathsson-Alm L, Israelsson L, Joshua V, Svärd A, Stålesen R, Titcombe PJ, Steen J, Piccoli L, Sherina N, Clavel C, Svenungsson E, Gunnarsson I, Saevarsdottir S, Kastbom A, Serre G, Alfredsson L, Malmström V, Rönnelid J, Catrina AI, Lundberg K, Klareskog L. A Comprehensive Evaluation of the Relationship Between Different IgG and IgA Anti-Modified Protein Autoantibodies in Rheumatoid Arthritis. Front Immunol 2021; 12:627986. [PMID: 34093522 PMCID: PMC8173192 DOI: 10.3389/fimmu.2021.627986] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
Seropositive rheumatoid arthritis (RA) is characterized by the presence of rheumatoid factor (RF) and anti-citrullinated protein autoantibodies (ACPA) with different fine-specificities. Yet, other serum anti-modified protein autoantibodies (AMPA), e.g. anti-carbamylated (Carb), -acetylated (KAc), and malondialdehyde acetaldehyde (MAA) modified protein antibodies, have been described. In this comprehensive study, we analyze 30 different IgG and IgA AMPA reactivities to Cit, Carb, KAc, and MAA antigens detected by ELISA and autoantigen arrays in N=1985 newly diagnosed RA patients. Association with patient characteristics such as smoking and disease activity were explored. Carb and KAc reactivities by different assays were primarily seen in patients also positive for anti-citrulline reactivity. Modified vimentin (mod-Vim) peptides were used for direct comparison of different AMPA reactivities, revealing that IgA AMPA recognizing mod-Vim was mainly detected in subsets of patients with high IgG anti-Cit-Vim levels and a history of smoking. IgG reactivity to acetylation was mainly detected in a subset of patients with Cit and Carb reactivity. Anti-acetylated histone reactivity was RA-specific and associated with high anti-CCP2 IgG levels, multiple ACPA fine-specificities, and smoking status. This reactivity was also found to be present in CCP2+ RA-risk individuals without arthritis. Our data further demonstrate that IgG autoreactivity to MAA was increased in RA compared to controls with highest levels in CCP2+ RA, but was not RA-specific, and showed low correlation with other AMPA. Anti-MAA was instead associated with disease activity and was not significantly increased in CCP2+ individuals at risk of RA. Notably, RA patients could be subdivided into four different subsets based on their AMPA IgG and IgA reactivity profiles. Our serology results were complemented by screening of monoclonal antibodies derived from single B cells from RA patients for the same antigens as the RA cohort. Certain CCP2+ clones had Carb or Carb+KAc+ multireactivity, while such reactivities were not found in CCP2- clones. We conclude that autoantibodies exhibiting different patterns of ACPA fine-specificities as well as Carb and KAc reactivity are present in RA and may be derived from multireactive B-cell clones. Carb and KAc could be considered reactivities within the "Cit-umbrella" similar to ACPA fine-specificities, while MAA reactivity is distinctly different.
Collapse
Affiliation(s)
- Caroline Grönwall
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lisa Liljefors
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Aase H. Hensvold
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Monika Hansson
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Mathsson-Alm
- Thermo Fisher Scientific, Immuno Diagnostics Division, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lena Israelsson
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vijay Joshua
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Svärd
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Clinical Research Dalarna, Uppsala University, Uppsala, Sweden
| | - Ragnhild Stålesen
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Philip J. Titcombe
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- The Center for Immunology and Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Johanna Steen
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Natalia Sherina
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Cyril Clavel
- Unité Différenciation Épithéliale et Autoimmunité Rhumatoïde, INSERM - Université de Toulouse, Toulouse, France
| | - Elisabet Svenungsson
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Saedis Saevarsdottir
- Department of Medicine Solna, Division of Clinical Epidemiology, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Alf Kastbom
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Guy Serre
- Unité Différenciation Épithéliale et Autoimmunité Rhumatoïde, INSERM - Université de Toulouse, Toulouse, France
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm Health Region, Stockholm, Sweden
| | - Vivianne Malmström
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anca I. Catrina
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Lundberg
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
Toes RE, Raza K. The autoimmune response as a potential target for tolerance induction before the development of rheumatoid arthritis. THE LANCET. RHEUMATOLOGY 2021; 3:e214-e223. [PMID: 38279384 DOI: 10.1016/s2665-9913(20)30445-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/28/2024]
Abstract
Rheumatoid arthritis is a chronic inflammatory disease that affects the synovial joints. Although treatment options and efficacy have increased substantially in the past two decades, the disease cannot be cured or prevented. Therefore, rheumatoid arthritis still has a considerable effect on the quality of life of patients, not only because life-long medication is often required, but also because residual disease activity leads to progressive loss of function in the musculoskeletal system and extra-articular morbidity. Key future goals in the management of rheumatoid arthritis are the ability to induce long-lasting drug-free remission in patients with the disease (ie, to achieve a cure), and to prevent disease before it emerges. To reach these goals, it is pivotal to understand the autoimmune response underlying rheumatoid arthritis pathogenesis and to develop ways to permanently silence it (ie, to induce tolerance). For preventive studies, the identification of markers (clinical, immunological, and biological) predictive of future disease is crucial, as prevention of disease will not be feasible without the ability to identify relevant at-risk target populations. In this Series paper, we review the autoimmune response underlying rheumatoid arthritis, how rheumatoid arthritis-specific autoimmunity develops and evolves during the transition from health to disease, and how tolerance studies could be designed to achieve prevention or cure of the disease.
Collapse
Affiliation(s)
- Rene Em Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands.
| | - Karim Raza
- Research into Inflammatory Arthritis Centre Versus Arthritis and MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK; Department of Rheumatology, Sandwell and West Birmingham NHS Trust, Birmingham, UK
| |
Collapse
|
31
|
Catrina A, Krishnamurthy A, Rethi B. Current view on the pathogenic role of anti-citrullinated protein antibodies in rheumatoid arthritis. RMD Open 2021; 7:e001228. [PMID: 33771834 PMCID: PMC8006837 DOI: 10.1136/rmdopen-2020-001228] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
Epidemiological findings suggest a potential role for anti-citrullinated protein antibodies (ACPAs) in rheumatoid arthritis (RA) pathogenesis. ACPA-positive RA is associated with unique genetical and environmental risk factors, in contrast to seronegative RA. ACPA-positive healthy individuals are at risk of developing RA and can develop joint pain and bone loss already before disease onset. ACPA injection triggered bone loss and pain-like behaviour in mice and, in the presence of additional arthritis inducers, exacerbated joint inflammation. In cell culture experiments, ACPAs could bind to and modulate a variety of cellular targets, such as macrophages, osteoclasts, synovial fibroblasts, neutrophil granulocytes, mast cells, dendritic cells and platelets, further underlying a potential role for these autoantibodies in triggering pathogenic pathways and providing clues for their mechanisms of action. Patient-derived ACPA clones have been characterised by unique cellular effects and multiple ways to act on the target cells. ACPAs might directly induce stimulatory signals by ligating key citrullinated cell surface molecules or, alternatively, act as immune complexes on Fc receptors and potentially other molecules that recognise carbohydrate moieties. On the contrary to experimentally manufactured ACPA clones, patient-derived ACPAs are highly promiscuous and cross-reactive, suggesting a simultaneous binding to a range of functionally relevant and irrelevant targets. Moreover, several ACPA clones recognise carbamylated or acetylated targets as well. These features complicate the identification and description of ACPA-induced pathogenic mechanisms. In the current review, we summarise recent data on the functional properties of patient-derived ACPAs and present mechanistic models on how these antibodies might contribute to RA pathogenesis.
Collapse
Affiliation(s)
- Anca Catrina
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Akilan Krishnamurthy
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Bence Rethi
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Anaparti V, Smolik I, Meng X, O'Neil L, Jantz MA, Fritzler MJ, El-Gabalawy H. Expansion of Alternative Autoantibodies Does Not Follow the Evolution of Anti-Citrullinated Protein Antibodies in Preclinical Rheumatoid Arthritis: An Analysis in At-Risk First Degree Relatives. Arthritis Rheumatol 2021; 73:740-749. [PMID: 33538122 DOI: 10.1002/art.41675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Co-occurrence of autoantibodies specific for ≥1 autoimmune disease is widely prevalent in rheumatoid arthritis (RA) patients. To understand the prevalence of polyautoimmunity in preclinical RA, we performed a comprehensive autoantibody assessment in a First Nations cohort of at-risk first-degree relatives (FDR) of RA patients, a subset of whom subsequently developed RA (progressors). METHODS Venous blood was collected from all study participants (n = 50 RA patients and 64 FDR) at scheduled visits, and serum was stored at -20°C. High-sensitivity C-reactive protein level, anti-citrullinated protein antibody (ACPA) status, and autoantibody status were determined using commercially available enzyme-linked immunosorbent assay kits. Rheumatoid factor (RF) was detected by nephelometry. Antinuclear autoantibodies (ANA) were identified using Hep-2 indirect immunofluorescence assay (IFA) and classified according to international consensus nomenclature as various anti-cell (AC) patterns. RESULTS Of our study cohort, 78.9% had positive ANA reactivity (≥1:80), which was either a homogenous, fine-speckled (AC-1 and AC-4) or mixed IFA pattern. Importantly, the AC-4 and mixed ANA patterns were also observed in progressors at the time of disease onset. While all of the RA patients showed a high prevalence of arthritis-associated autoantibodies, they also had a high prevalence of extractable nuclear antigen-positive autoantibodies to other autoantigens. In FDR, we did not observe any increase in serum autoreactivity to nonarthritis autoantigens, either cross-sectionally or in samples collected longitudinally from progressors prior to RA onset. CONCLUSION While alternative autoimmunity and ANA positivity are widely prevalent in First Nations populations, including asymptomatic, seronegative FDR, expansion of alternative autoimmunity does not occur in parallel with ACPA expansion in FDR and is restricted to patients with established RA.
Collapse
Affiliation(s)
| | - Irene Smolik
- University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiaobo Meng
- University of Manitoba, Winnipeg, Manitoba, Canada
| | - Liam O'Neil
- University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
33
|
Okamato Y, Ghosh T, Okamoto T, Schuyler RP, Seifert J, Charry LL, Visser A, Feser M, Fleischer C, Pedrick C, August J, Moss L, Bemis EA, Norris JM, Kuhn KA, Demoruelle MK, Deane KD, Ghosh D, Holers VM, Hsieh EWY. Subjects at-risk for future development of rheumatoid arthritis demonstrate a PAD4-and TLR-dependent enhanced histone H3 citrullination and proinflammatory cytokine production in CD14 hi monocytes. J Autoimmun 2021; 117:102581. [PMID: 33310262 PMCID: PMC7855988 DOI: 10.1016/j.jaut.2020.102581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
The presence of anti-citrullinated protein/peptide antibodies (ACPA) and epitope spreading across the target autoantigens is a unique feature of rheumatoid arthritis (RA). ACPA are present in the peripheral blood for several years prior to the onset of arthritis and clinical classification of RA. ACPA recognize multiple citrullinated proteins, including histone H3 (H3). Intracellular citrullination of H3 in neutrophils and T cells is known to regulate immune cell function by promoting neutrophil extracellular trap formation and citrullinated autoantigen release as well as regulating the Th2/Th17 T cell phenotypic balance. However, the roles of H3 citrullination in other immune cells are not fully elucidated. We aimed to explore H3 citrullination and cytokine/metabolomic signatures in peripheral blood immune cells from subjects prior to and after the onset of RA, at baseline and in response to ex vivo toll-like receptor (TLR) stimulation. Here, we analyzed 13 ACPA (+) subjects without arthritis but at-risk for future development of RA, 14 early RA patients, and 13 healthy controls. We found significantly elevated H3 citrullination in CD14hi monocytes, as well as CD1c+ dendritic cells and CD66+ granulocytes. Unsupervised analysis identified two distinct subsets in CD14hi monocytes characterized by H3 modification and unique cytokine/metabolomic signatures. CD14hi monocytes with elevated TLR-stimulated H3 citrullination were significantly increased in ACPA (+) at-risk subjects. These cells were skewed to produce TNFα, MIP1β, IFNα, and partially IL-12. Additionally, they demonstrate peptidyl arginine deiminase 4 (PAD4) mediated upregulation of the glycolytic enzyme PFKFB3. These CD14hi monocytes with elevated H3 citrullination morphologically formed monocyte extracellular traps (METs). Taken together, dysregulated PAD4-driven cytokine production as well as MET formation in CD14hi monocytes in ACPA (+) at-risk subjects likely plays an important role in the development of RA via promoting and perpetuating inflammation and generation of citrullinated autoantigens.
Collapse
Affiliation(s)
- Yuko Okamato
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA; Tokyo Women's Medical University School of Medicine, Department of Rheumatology, Tokyo, Japan.
| | - Tusharkanti Ghosh
- Colorado School of Public Health, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - Tsukasa Okamoto
- University of Colorado Denver, Department of Medicine, Aurora, CO, USA
| | - Ronald P Schuyler
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, CO, USA
| | - Jennifer Seifert
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Laura Lenis Charry
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Ashley Visser
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Marie Feser
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Chelsie Fleischer
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Chong Pedrick
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Justin August
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Laurakay Moss
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Elizabeth A Bemis
- Colorado School of Public Health, Department of Epidemiology, Aurora, CO, USA
| | - Jill M Norris
- Colorado School of Public Health, Department of Epidemiology, Aurora, CO, USA
| | - Kristine A Kuhn
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | | | - Kevin D Deane
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Debashis Ghosh
- Colorado School of Public Health, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - V Michael Holers
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Elena W Y Hsieh
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, CO, USA; University of Colorado School of Medicine, Children's Hospital Colorado, Department of Pediatrics, Section of Allergy & Immunology, Aurora, CO, USA
| |
Collapse
|
34
|
Zhang Y, Yang Y, Hu X, Wang Z, Li L, Chen P. PADs in cancer: Current and future. Biochim Biophys Acta Rev Cancer 2020; 1875:188492. [PMID: 33321174 DOI: 10.1016/j.bbcan.2020.188492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Protein arginine deiminases (PADs), is a group of calcium-dependent enzymes, which play crucial roles in citrullination, and can catalyze arginine residues into citrulline. This chemical reaction induces citrullinated proteins formation with altered structure and function, leading to numerous pathological diseases, including inflammation and autoimmune diseases. To date, multiple studies have provided solid evidence that PADs are implicated in cancer progression. Nevertheless, the findings on PADs functions in tumors are too complex to understand due to its involvements in variable signaling pathways. The increasing interest in PADs has heightened the need for a comprehensive description for its role in cancer. The present study aims to identify the gaps in present knowledge, including its structures, biological substrates and tissue distribution. Since several irreversible inhibitors for PADs with good potency and selectivity have been explored, the mechanisms on the dysregulation in tumors remain poorly understood. The present study discusses the relationship between PADs and tumor apoptosis, EMT formation and metastasis as well as the implication of neutrophil extracellular traps (NETs) in tumorigenesis. In addition, the potential uses of citrullinated antigens for immunotherapy were proposed.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yiqiong Yang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Xiuxiu Hu
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Zhi Wang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Li Li
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Pingsheng Chen
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
35
|
Reijm S, Kissel T, Toes R. Checkpoints controlling the induction of B cell mediated autoimmunity in human autoimmune diseases. Eur J Immunol 2020; 50:1885-1894. [DOI: 10.1002/eji.202048820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Affiliation(s)
- S. Reijm
- Department of Rheumatology Leiden University Medical Center Leiden The Netherlands
| | - T. Kissel
- Department of Rheumatology Leiden University Medical Center Leiden The Netherlands
| | - R.E.M. Toes
- Department of Rheumatology Leiden University Medical Center Leiden The Netherlands
| |
Collapse
|
36
|
Improved classification of rheumatoid arthritis with a score including anti-acetylated ornithine antibodies. Sci Rep 2020; 10:19263. [PMID: 33159095 PMCID: PMC7648756 DOI: 10.1038/s41598-020-73919-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
The presence of rheumatoid factor (RF) or anti-cyclic citrullinated peptide (anti-CCP) autoantibodies contributes to the current rheumatoid arthritis (RA) classification criteria. These criteria involve stratification on antibody levels, which limits reproducibility, and underperform in the RA patients without RF and anti-CCP. Here, we have explored if two anti-acetylated peptide antibodies (AAPA), anti-acetylated lysine (AcLys) and anti-acetylated ornithine (AcOrn), could improve the performance of the current criteria. The analysis was done in 1062 prospectively-followed early arthritis (EA) patients. The anti-AcOrn were more informative than the anti-AcLys, the conventional RA antibodies and the anti-carbamylated protein antibodies. The anti-AcOrn produced a classification that did not require antibody levels and showed improved specificity (77.6% vs. 72.6%, p = 0.003) and accuracy (79.0% vs. 75.8%, p = 0.002) over the current criteria. These improvements were obtained with a scoring system that values concordance between anti-AcOrn, RF and anti-CCP. No significant gain was obtained in sensitivity (80.2% vs. 78.8%, p = 0.25) or in improving the classification of the RA patients lacking RF and anti-CCP, although the anti-AcOrn ranked first among the analysed new antibodies. Therefore, the anti-AcOrn antibodies could contribute to the improvement of RA classification criteria by exploiting antibody concordance.
Collapse
|
37
|
Sahlström P, Hansson M, Steen J, Amara K, Titcombe PJ, Forsström B, Stålesen R, Israelsson L, Piccoli L, Lundberg K, Klareskog L, Mueller DL, Catrina AI, Skriner K, Malmström V, Grönwall C. Different Hierarchies of Anti–Modified Protein Autoantibody Reactivities in Rheumatoid Arthritis. Arthritis Rheumatol 2020; 72:1643-1657. [DOI: 10.1002/art.41385] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/13/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Peter Sahlström
- Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden, and Charité Universitätsmedizin Berlin Germany
| | - Monika Hansson
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Johanna Steen
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Khaled Amara
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Philip J. Titcombe
- Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden, and University of Minnesota Medical School Minneapolis
| | | | - Ragnhild Stålesen
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Lena Israelsson
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Luca Piccoli
- Institute for Research in Biomedicine Università della Svizzera italiana Bellinzona Switzerland
| | - Karin Lundberg
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Lars Klareskog
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | | | - Anca I. Catrina
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | | | | | - Caroline Grönwall
- Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
38
|
Wu CY, Yang HY, Lai JH. Anti-Citrullinated Protein Antibodies in Patients with Rheumatoid Arthritis: Biological Effects and Mechanisms of Immunopathogenesis. Int J Mol Sci 2020; 21:ijms21114015. [PMID: 32512739 PMCID: PMC7312469 DOI: 10.3390/ijms21114015] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Individuals with high anti-citrullinated protein antibody (ACPA) titers have an increased risk of developing rheumatoid arthritis (RA). Although our knowledge of the generation and production of ACPAs has continuously advanced during the past decade, our understanding on the pathogenic mechanisms of how ACPAs interact with immune cells to trigger articular inflammation is relatively limited. Citrullination disorders drive the generation and maintenance of ACPAs, with profound clinical significance in patients with RA. The loss of tolerance to citrullinated proteins, however, is essential for ACPAs to exert their pathogenicity. N-linked glycosylation, cross-reactivity and the structural interactions of ACPAs with their citrullinated antigens further direct their biological functions. Although questions remain in the pathogenicity of ACPAs acting as agonists for a receptor-mediated response, immune complex (IC) formation, complement system activation, crystallizable fragment gamma receptor (FcγR) activation, cross-reactivity to joint cartilage and neutrophil extracellular trap (NET)-related mechanisms have all been suggested recently. This paper presents a critical review of the characteristics and possible biological effects and mechanisms of the immunopathogenesis of ACPAs in patients with RA.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
| | - Huang-Yu Yang
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8791-8382; Fax: +886-2-8791-8382
| |
Collapse
|
39
|
Klareskog L, Rönnelid J, Saevarsdottir S, Padyukov L, Alfredsson L. The importance of differences; On environment and its interactions with genes and immunity in the causation of rheumatoid arthritis. J Intern Med 2020; 287:514-533. [PMID: 32176395 DOI: 10.1111/joim.13058] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
The current review uses rheumatoid arthritis (RA) as a prominent example for how studies on the interplay between environmental and genetic factors in defined subsets of a disease can be used to formulate aetiological hypotheses that subsequently can be tested for causality using molecular and functional studies. Major discussed findings are that exposures to airways from many different noxious agents including cigarette smoke, silica dust and more interact with major susceptibility genes, mainly HLA-DR genetic variants in triggering antigen-specific immune reactions specific for RA. We also discuss how several other environmental and lifestyle factors, including microbial, neural and metabolic factors, can influence risk for RA in ways that are different in different subsets of RA.The description of these processes in RA provides the best example so far in any immune-mediated disease of how triggering of immunity at one anatomical site in the context of known environmental and genetic factors subsequently can lead to symptoms that precede the classical inflammatory disease symptoms and later contribute also to the classical RA joint inflammation. The findings referred to in the review have led to a change of paradigms for very early therapy and prevention of RA and to efforts towards what we have named 'personalized prevention'. We believe that the progress described here for RA will be of relevance for research and practice also in other immune-mediated diseases.
Collapse
Affiliation(s)
- L Klareskog
- From the, Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden
| | - J Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - S Saevarsdottir
- Division of Clinical Epidemiology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden.,Faculty of Medicine, School of Health Sciences, University of Iceland, Karolinska Institutet, Stockholm, Sweden
| | - L Padyukov
- From the, Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden
| | - L Alfredsson
- Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Fousert E, Toes R, Desai J. Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells 2020; 9:cells9040915. [PMID: 32276504 PMCID: PMC7226846 DOI: 10.3390/cells9040915] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/15/2022] Open
Abstract
Following fifteen years of research, neutrophil extracellular traps (NETs) are widely reported in a large range of inflammatory infectious and non-infectious diseases. Cumulating evidences from in vitro, in vivo and clinical diagnostics suggest that NETs may play a crucial role in inflammation and autoimmunity in a variety of autoimmune diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). Most likely, NETs contribute to breaking self-tolerance in autoimmune diseases in several ways. During this review, we discuss the current knowledge on how NETs could drive autoimmune responses. NETs can break self-tolerance by being a source of autoantigens for autoantibodies found in autoimmune diseases, such as anti-citrullinated protein antibodies (ACPAs) in RA, anti-dsDNA in SLE and anti-myeloperoxidase and anti-protein 3 in AAV. Moreover, NET components could accelerate the inflammatory response by mediating complement activation, acting as danger-associated molecular patterns (DAMPs) and inflammasome activators, for example. NETs also can activate other immune cells, such as B cells, antigen-presenting cells and T cells. Additionally, impaired clearance of NETs in autoimmune diseases prolongs the presence of active NETs and their components and, in this way, accelerate immune responses. NETs have not only been implicated as drivers of inflammation, but also are linked to resolution of inflammation. Therefore, NETs may be central regulators of inflammation and autoimmunity, serve as biomarkers, as well as promising targets for future therapeutics of inflammatory autoimmune diseases.
Collapse
|
41
|
Kissel T, Reijm S, Slot LM, Cavallari M, Wortel CM, Vergroesen RD, Stoeken-Rijsbergen G, Kwekkeboom JC, Kampstra A, Levarht E, Drijfhout JW, Bang H, Bonger KM, Janssen G, van Veelen PA, Huizinga T, Scherer HU, Reth M, Toes R. Antibodies and B cells recognising citrullinated proteins display a broad cross-reactivity towards other post-translational modifications. Ann Rheum Dis 2020; 79:472-480. [PMID: 32041746 DOI: 10.1136/annrheumdis-2019-216499] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/17/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Autoantibodies against antigens carrying distinct post-translational modifications (PTMs), such as citrulline, homocitrulline or acetyllysine, are hallmarks of rheumatoid arthritis (RA). The relation between these anti-modified protein antibody (AMPA)-classes is poorly understood as is the ability of different PTM-antigens to activate B-cell receptors (BCRs) directed against citrullinated proteins (CP). Insights into the nature of PTMs able to activate such B cells are pivotal to understand the 'evolution' of the autoimmune response conceivable underlying the disease. Here, we investigated the cross-reactivity of monoclonal AMPA and the ability of different types of PTM-antigens to activate CP-reactive BCRs. METHODS BCR sequences from B cells isolated using citrullinated or acetylated antigens were used to produce monoclonal antibodies (mAb) followed by a detailed analysis of their cross-reactivity towards PTM-antigens. Ramos B-cell transfectants expressing CP-reactive IgG BCRs were generated and their activation on stimulation with PTM-antigens investigated. RESULTS Most mAbs were highly cross-reactive towards multiple PTMs, while no reactivity was observed to the unmodified controls. B cells carrying CP-reactive BCRs showed activation on stimulation with various types of PTM-antigens. CONCLUSIONS Our study illustrates that AMPA exhibit a high cross-reactivity towards at least two PTMs indicating that their recognition pattern is not confined to one type of modification. Furthermore, our data show that CP-reactive B cells are not only activated by citrullinated, but also by carbamylated and/or acetylated antigens. These data are vital for the understanding of the breach of B-cell tolerance against PTM-antigens and the possible contribution of these antigens to RA-pathogenesis.
Collapse
Affiliation(s)
- T Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - S Reijm
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - L M Slot
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - M Cavallari
- Department of Biology III (Molecular Immunology), Freiburg University, Freiburg, Germany
| | - C M Wortel
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - R D Vergroesen
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - G Stoeken-Rijsbergen
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - J C Kwekkeboom
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Asb Kampstra
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ewn Levarht
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - J W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - H Bang
- Orgentec Diagnostika, Mainz, Germany
| | - K M Bonger
- Department of Biomolecular Chemistry and Synthetic Organic Chemistry, Radboud University, Nijmegen, The Netherlands
| | - Gmc Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - P A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Twj Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - H U Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - M Reth
- Department of Biology III (Molecular Immunology), Freiburg University, Freiburg, Germany
| | - Rem Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
42
|
Rheumatoid arthritis patients display B-cell dysregulation already in the naïve repertoire consistent with defects in B-cell tolerance. Sci Rep 2019; 9:19995. [PMID: 31882654 PMCID: PMC6934703 DOI: 10.1038/s41598-019-56279-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
B cells are postulated to be central in seropositive rheumatoid arthritis (RA). Here, we use exploratory mass cytometry (n = 23) and next-generation sequencing (n = 19) to study B-cell repertoire shifts in RA patients. Expression of several B-cell markers were significantly different in ACPA+ RA compared to healthy controls, including an increase in HLA-DR across subsets, CD22 in clusters of IgM+ B cells and CD11c in IgA+ memory. Moreover, both IgA+ and IgG+ double negative (IgD− CD27−) CD11c+ B cells were increased in ACPA+ RA, and there was a trend for elevation in a CXCR5/CCR6high transitional B-cell cluster. In the RA BCR repertoire, there were significant differences in subclass distribution and, notably, the frequency of VH with low somatic hypermutation (SHM) was strikingly higher, especially in IgG1 (p < 0.0001). Furthermore, both ACPA+ and ACPA− RA patients had significantly higher total serum IgA and IgM compared to controls, based on serology of larger cohorts (n = 3494 IgA; n = 397 IgM). The observed elevated Ig-levels, distortion in IgM+ B cells, increase in double negative B cells, change in B-cell markers, and elevation of unmutated IgG+ B cells suggests defects in B-cell tolerance in RA. This may represent an underlying cause of increased polyreactivity and autoimmunity in RA.
Collapse
|
43
|
Volkov M, van Schie KA, van der Woude D. Autoantibodies and B Cells: The ABC of rheumatoid arthritis pathophysiology. Immunol Rev 2019; 294:148-163. [PMID: 31845355 PMCID: PMC7065213 DOI: 10.1111/imr.12829] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by joint inflammation. In the last few decades, new insights into RA‐specific autoantibodies and B cells have greatly expanded our understanding of the disease. The best‐known autoantibodies in RA—rheumatoid factor (RF) and anti‐citrullinated protein antibodies (ACPA)—are present long before disease onset, and both responses show signs of maturation around the time of the first manifestation of arthritis. A very intriguing characteristic of ACPA is their remarkably high abundance of variable domain glycans. Since these glycans may convey an important selection advantage of citrulline‐reactive B cells, they may be the key to understanding the evolution of the autoimmune response. Recently discovered autoantibodies targeting other posttranslational modifications, such as anti‐carbamylated and anti‐acetylated protein antibodies, appear to be closely related to ACPA, which makes it possible to unite them under the term of anti‐modified protein antibodies (AMPA). Despite the many insights gained about these autoantibodies, it is unclear whether they are pathogenic or play a causal role in disease development. Autoreactive B cells from which the autoantibodies originate have also received attention as perhaps more likely disease culprits. The development of autoreactive B cells in RA largely depends on the interaction with T cells in which HLA “shared epitope” and HLA DERAA may play an important role. Recent technological advances made it possible to identify and characterize citrulline‐reactive B cells and acquire ACPA monoclonal antibodies, which are providing valuable insights and help to understand the nature of the autoimmune response underlying RA. In this review, we summarize what is currently known about the role of autoantibodies and autoreactive B cells in RA and we discuss the most prominent hypotheses aiming to explain the origins and the evolution of autoimmunity in RA.
Collapse
Affiliation(s)
- Mikhail Volkov
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin Anna van Schie
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Diane van der Woude
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
44
|
Bo M, Erre GL, Bach H, Slavin YN, Manchia PA, Passiu G, Sechi LA. PtpA and PknG Proteins Secreted by Mycobacterium avium subsp. paratuberculosis are Recognized by Sera from Patients with Rheumatoid Arthritis: A Case-Control Study. J Inflamm Res 2019; 12:301-308. [PMID: 31819587 PMCID: PMC6899068 DOI: 10.2147/jir.s220960] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Rheumatoid arthritis (RA) can result from complex interactions between the affected person’s genetic background and environment. Viral and bacterial infections may play a pathogenetic role in RA through different mechanisms of action. We aimed to evaluate the presence of antibodies (Abs) directed against two proteins of Mycobacterium avium subsp. paratuberculosis (MAP) in sera of RA subjects, which are crucial for the survival of the pathogen within macrophages. Moreover, we analyzed the correlation of immune response to both proteins with the following homologous peptides: BOLF1305–320, MAP_402718–32 and IRF5424–434 to understand how the synergic role of Epstein–Barr virus (EBV) and MAP infection in genetically predisposed subjects may lead to a possible deregulation of interferon regulatory factor 5 (IRF5). Materials and methods The presence of Abs against protein tyrosine phosphatase A (PtpA) and protein kinase G (PknG) in sera from Sardinian RA patients (n=84) and healthy volunteers (HCs, n=79) was tested by indirect ELISA. Results RA sera showed a remarkably high frequency of reactivity against PtpA in comparison to HCs (48.8% vs 7.6%; p<0.001) and lower but statistically significant responses towards PknG (27.4% vs 10.1%; p=0.0054). We found a significant linear correlation between the number of swollen joints and the concentrations of antibodies against PtpA (p=0.018). Furthermore, a significant bivariate correlation between PtpA and MAP MAP_402718–32 peptide has been found, suggesting that MAP infection may induce a secondary immune response through cross-reaction with IRF5 (R2=0.5). Conclusion PtpA and PknG are strongly recognized in RA which supports the hypothesis that MAP infection may be involved in the pathogenesis of RA.
Collapse
Affiliation(s)
- Marco Bo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Sassari 07100, Italy
| | - Gian Luca Erre
- Department of Clinical and Experimental Medicine, Azienda Ospedaliero-Universitaria di Sassari, UOC di Reumatologia, Sassari 07100, Italy
| | - Horacio Bach
- Division of Infectious Diseases, Faculty of Medicine, The University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Yael N Slavin
- Division of Infectious Diseases, Faculty of Medicine, The University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | | | - Giuseppe Passiu
- Department of Clinical and Experimental Medicine, Azienda Ospedaliero-Universitaria di Sassari, UOC di Reumatologia, Sassari 07100, Italy
| | - Leonardo A Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
45
|
Sun M, Rethi B, Krishnamurthy A, Joshua V, Circiumaru A, Hensvold AH, Ossipova E, Grönwall C, Liu Y, Engstrom M, Catrina SB, Steen J, Malmstrom V, Klareskog L, Svensson C, Ospelt C, Wähämaa H, Catrina AI. Anticitrullinated protein antibodies facilitate migration of synovial tissue-derived fibroblasts. Ann Rheum Dis 2019; 78:1621-1631. [PMID: 31481351 PMCID: PMC6900251 DOI: 10.1136/annrheumdis-2018-214967] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Rheumatoid arthritis (RA)-specific anti-citrullinated protein/peptide antibodies (ACPAs) might contribute to bone loss and arthralgia before the onset of joint inflammation. We aimed to dissect additional mechanisms by which ACPAs might contribute to development of joint pathology. METHODS Fibroblast-like synoviocytes (FLS) were isolated from the synovial membrane of patients with RA. The FLS cultures were stimulated with polyclonal ACPAs (anti-CCP-2 antibodies) purified from the peripheral blood of patients with RA or with monoclonal ACPAs derived from single synovial fluid B cells. We analysed how ACPAs modulate FLS by measuring cell adhesion and mobility as well as cytokine production. Expression of protein arginine deiminase (PAD) enzymes and protein citrullination were analysed by immunofluorescence, and signal transduction was studied using immunoblotting. RESULTS Challenge of FLS by starvation-induced stress or by exposure to the chemokine interleukin-8 was essential to sensitise the cells to ACPAs. These challenges led to an increased PAD expression and protein citrullination and an ACPA-mediated induction of FLS migration through a mechanism involving phosphoinositide 3-kinase activation. Inhibition of the PAD enzymes or competition with soluble citrullinated proteins or peptides completely abolished the ACPA-induced FLS migration. Different monoclonal ACPAs triggered distinct cellular effects in either fibroblasts or osteoclasts, suggesting unique roles for individual ACPA clones in disease pathogenesis. CONCLUSION We propose that transient synovial insults in the presence of a certain pre-existing ACPA repertoire might result in an ACPA-mediated increase of FLS migration.
Collapse
Affiliation(s)
- Meng Sun
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Bence Rethi
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Akilan Krishnamurthy
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Vijay Joshua
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Circiumaru
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Aase Haj Hensvold
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Elena Ossipova
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Grönwall
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Yanying Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Marianne Engstrom
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sergiu Bogdan Catrina
- Molecular Medicine and Surgery, Karolinska University Hospital and Institutet, Stockholm, Sweden
| | - Johanna Steen
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Vivianne Malmstrom
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Svensson
- Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Heidi Wähämaa
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anca Irinel Catrina
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Ge C, Holmdahl R. The structure, specificity and function of anti-citrullinated protein antibodies. Nat Rev Rheumatol 2019; 15:503-508. [PMID: 31253945 DOI: 10.1038/s41584-019-0244-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2019] [Indexed: 01/14/2023]
Abstract
In this Perspectives article, we outline a proposed model for understanding the specificity and function of anti-citrullinated protein antibodies (ACPAs). We suggest that ACPAs vary in specificity between two extremes: some are 'promiscuous' in that they are highly specific for the citrulline side chain, but cross-react with a range of citrullinated peptides, whereas others are 'private' in that their recognition of citrulline as well as proximal amino acid side chains enables protein-specific interactions. Promiscuous ACPAs tend to dominate in the sera both before and after the onset of rheumatoid arthritis, but their functional role has not been clarified. No firm evidence exists that these ACPAs are pathogenic. By contrast, private ACPAs encompass antibodies that specifically recognize citrullinated epitopes on joint proteins or that cross-react with joint proteins, thereby opening up the possibility that these private ACPAs are arthritogenic. These joint-reactive antibodies are more likely to target joints by binding to joint tissues and to promote the formation of local immune complexes leading to bone erosions, pain and arthritis.
Collapse
Affiliation(s)
- Changrong Ge
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
47
|
Kampstra ASB, Dekkers JS, Volkov M, Dorjée AL, Hafkenscheid L, Kempers AC, van Delft M, Kissel T, Reijm S, Janssen GMC, van Veelen PA, Bang H, Huizinga TWJ, Trouw LA, van der Woude D, Toes REM. Different classes of anti-modified protein antibodies are induced on exposure to antigens expressing only one type of modification. Ann Rheum Dis 2019; 78:908-916. [PMID: 31151934 DOI: 10.1136/annrheumdis-2018-214950] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/05/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Autoantibodies against post-translationally modified proteins (anti-modified protein antibodies or AMPAs) are a hallmark of rheumatoid arthritis (RA). A variety of classes of AMPAs against different modifications on proteins, such as citrullination, carbamylation and acetylation, have now been described in RA. At present, there is no conceptual framework explaining the concurrent presence or mutual relationship of different AMPA responses in RA. Here, we aimed to gain understanding of the co-occurrence of AMPA by postulating that the AMPA response shares a common 'background' that can evolve into different classes of AMPAs. METHODS Mice were immunised with modified antigens and analysed for AMPA responses. In addition, reactivity of AMPA purified from patients with RA towards differently modified antigens was determined. RESULTS Immunisation with carbamylated proteins induced AMPAs recognising carbamylated proteins and also acetylated proteins. Similarly, acetylated proteins generated (autoreactive) AMPAs against other modifications as well. Analysis of anti-citrullinated protein antibodies from patients with RA revealed that these also display reactivity to acetylated and carbamylated antigens. Similarly, anti-carbamylated protein antibodies showed cross-reactivity against all three post-translational modifications. CONCLUSIONS Different AMPA responses can emerge from exposure to only a single type of modified protein. These findings indicate that different AMPA responses can originate from a common B-cell response that diversifies into multiple distinct AMPA responses and explain the presence of multiple AMPAs in RA, one of the hallmarks of the disease.
Collapse
Affiliation(s)
| | | | - Mikhail Volkov
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Annemarie L Dorjée
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Lise Hafkenscheid
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Ayla C Kempers
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Myrthe van Delft
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Theresa Kissel
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Sanne Reijm
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - George M C Janssen
- Center of Proteomics and Metabolomics, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Peter A van Veelen
- Center of Proteomics and Metabolomics, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Holger Bang
- Research and development, Orgentec Diagnostika, Mainz, Germany
| | - Tom W J Huizinga
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Leendert A Trouw
- Department of Immunohematology and Bloodtransfusion, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Diane van der Woude
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| |
Collapse
|
48
|
Mergaert AM, Bawadekar M, Nguyen TQ, Massarenti L, Holmes CL, Rebernick R, Schrodi SJ, Shelef MA. Reduced Anti-Histone Antibodies and Increased Risk of Rheumatoid Arthritis Associated with a Single Nucleotide Polymorphism in PADI4 in North Americans. Int J Mol Sci 2019; 20:ijms20123093. [PMID: 31242568 PMCID: PMC6627847 DOI: 10.3390/ijms20123093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 01/26/2023] Open
Abstract
Autoantibodies against citrullinated proteins are a hallmark of rheumatoid arthritis, a destructive inflammatory arthritis. Peptidylarginine deiminase 4 (PAD4) has been hypothesized to contribute to rheumatoid arthritis by citrullinating histones to induce neutrophil extracellular traps (NETs), which display citrullinated proteins that are targeted by autoantibodies to drive inflammation and arthritis. Consistent with this theory, PAD4-deficient mice have reduced NETs, autoantibodies, and arthritis. However, PAD4′s role in human rheumatoid arthritis is less clear. Here, we determine if single nucleotide polymorphism rs2240335 in PADI4, whose G allele is associated with reduced PAD4 in neutrophils, correlates with NETs, anti-histone antibodies, and rheumatoid arthritis susceptibility in North Americans. Control and rheumatoid arthritis subjects, divided into anti-cyclic citrullinated peptide (CCP) antibody positive and negative groups, were genotyped at rs2240335. In homozygotes, in vitro NETosis was quantified in immunofluorescent images and circulating NET and anti-histone antibody levels by enzyme linked immunosorbent assay (ELISA). Results were compared by t-test and correlation of rheumatoid arthritis diagnosis with rs2240335 by Armitage trend test. NET levels did not significantly correlate with genotype. G allele homozygotes in the CCP− rheumatoid arthritis group had reduced anti-native and anti-citrullinated histone antibodies. However, the G allele conferred increased risk for rheumatoid arthritis diagnosis, suggesting a complex role for PAD4 in human rheumatoid arthritis.
Collapse
Affiliation(s)
- Aisha M Mergaert
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Mandar Bawadekar
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Thai Q Nguyen
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Laura Massarenti
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark.
| | - Caitlyn L Holmes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Ryan Rebernick
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Steven J Schrodi
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA.
| | - Miriam A Shelef
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
49
|
Toes R, Pisetsky DS. Pathogenic effector functions of ACPA: Where do we stand? Ann Rheum Dis 2019; 78:716-721. [PMID: 31005898 DOI: 10.1136/annrheumdis-2019-215337] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 01/20/2023]
Affiliation(s)
- René Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - David S Pisetsky
- Department of Medicine, Duke University Medical Center and Medical Research Service, VA Medical Center, Durham, North Carolina, USA
| |
Collapse
|
50
|
Tsai KL, Liao CC, Chang YS, Huang CW, Huang YC, Chen JH, Lin SH, Tai CC, Lin YF, Lin CY. Low Levels of IgM and IgA Recognizing Acetylated C1-Inhibitor Peptides Are Associated with Systemic Lupus Erythematosus in Taiwanese Women. Molecules 2019; 24:molecules24091645. [PMID: 31027344 PMCID: PMC6539680 DOI: 10.3390/molecules24091645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to identify novel acetylation (Ac) modifications of the C1-inhibitor (C1-INH) and explain the association of the levels of autoantibodies against acetylated C1-INH peptides with the risk of developing systemic lupus erythematosus (SLE). Ac modifications of the C1-INH were identified and validated through in-gel digestion, nano-liquid chromatography-tandem mass spectrometry, immunoprecipitation, and Western blotting by using serum protein samples obtained from patients with SLE and age-matched healthy controls (HCs). In addition, the levels of serum C1-INH, Ac-protein adducts, and autoantibodies against unmodified and acetylated C1-INH peptides were measured. C1-INH levels in patients with SLE were significantly lower than those in HCs by 1.53-fold (p = 0.0008); however, Ac-protein adduct concentrations in patients with SLE were significantly higher than those in HCs by 1.35-fold (p = 0.0009). Moreover, immunoglobulin M (IgM) anti-C1-INH367-385 Ac and IgA anti-C1-INH367-385 Ac levels in patients with SLE were significantly lower than those in HCs. The low levels of IgM anti-C1-INH367-385 (odds ratio [OR] = 4.725, p < 0.001), IgM anti-C1-INH367-385 Ac (OR = 4.089, p = 0.001), and IgA anti-C1-INH367-385 Ac (OR = 5.566, p < 0.001) indicated increased risks for the development of SLE compared with HCs.
Collapse
Affiliation(s)
- Kai-Leun Tsai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yu-Sheng Chang
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ching-Wen Huang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Chu Huang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jin-Hua Chen
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan.
- Research Center of Biostatistics, College of Management, Taipei Medical University, Taipei 11031, Taiwan.
| | - Sheng-Hong Lin
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.
| | - Chih-Chun Tai
- Department of Laboratory Medicine, Taipei Medical University-Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.
| | - Yi-Fang Lin
- Department of Laboratory Medicine, Taipei Medical University-Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.
| | - Ching-Yu Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 26047, Taiwan.
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|