1
|
Zhang T, Wang H, Han W, Qian X, Li Q, Ren T, Wang M. HIV complicated with severe pulmonary adenocarcinoma: A case report. Exp Ther Med 2025; 29:65. [PMID: 39991714 PMCID: PMC11843206 DOI: 10.3892/etm.2025.12816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025] Open
Abstract
Currently, lung cancer is the most common non-AIDS-defining cancer (NADC), with pulmonary adenocarcinoma being the most common histological subtype of lung cancer in human immunodeficiency virus (HIV)-infected patients. Most previous studies have focused on the diagnosis of pulmonary malignancies following HIV infection, while fewer patients being diagnosed with acquired immunodeficiency syndrome (AIDS) following the diagnosis of lung cancer. The present report described the diagnosis and treatment of a young patient with HIV infection complicated with severe, rapidly progressing lung cancer, aiming to improve the understanding of this disease, reduce the number of missed diagnoses and misdiagnoses and improve the prognosis and quality of life for these patients.
Collapse
Affiliation(s)
- Ting Zhang
- Department of The First Clinical College, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hansheng Wang
- Department of The First Clinical College, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wenya Han
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xin Qian
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qi Li
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Tao Ren
- Department of The First Clinical College, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Meifang Wang
- Department of The First Clinical College, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
2
|
Liu Z, Xiao Y, Lyu J, Jing D, Liu L, Fu Y, Niu W, Jin L, Zhang C. The expanded application of CAR-T cell therapy for the treatment of multiple non-tumoral diseases. Protein Cell 2024; 15:633-641. [PMID: 38146589 PMCID: PMC11365555 DOI: 10.1093/procel/pwad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023] Open
Affiliation(s)
- Zhuoqun Liu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Yuchen Xiao
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Jianjun Lyu
- Hubei Topgene Research Institute of Hubei Topgene Biotechnology Co., Ltd., East Lake High-Tech Development Zone, Wuhan 430205, China
| | - Duohui Jing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liu Liu
- Shanghai Yuhui Pharmaceutical Technology (Group) Co., Ltd., and Shanghai Ruishen Technology Development Co., Ltd., Shanghai 201203, China
| | - Yanbin Fu
- Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wenxin Niu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Lingjing Jin
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Chao Zhang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| |
Collapse
|
3
|
Rolin C, Zimmer J, Seguin-Devaux C. Bridging the gap with multispecific immune cell engagers in cancer and infectious diseases. Cell Mol Immunol 2024; 21:643-661. [PMID: 38789528 PMCID: PMC11214628 DOI: 10.1038/s41423-024-01176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
By binding to multiple antigens simultaneously, multispecific antibodies are expected to substantially improve both the activity and long-term efficacy of antibody-based immunotherapy. Immune cell engagers, a subclass of antibody-based constructs, consist of engineered structures designed to bridge immune effector cells to their target, thereby redirecting the immune response toward the tumor cells or infected cells. The increasing number of recent clinical trials evaluating immune cell engagers reflects the important role of these molecules in new therapeutic approaches for cancer and infections. In this review, we discuss how different immune cell types (T and natural killer lymphocytes, as well as myeloid cells) can be bound by immune cell engagers in immunotherapy for cancer and infectious diseases. Furthermore, we explore the preclinical and clinical advancements of these constructs, and we discuss the challenges in translating the current knowledge from cancer to the virology field. Finally, we speculate on the promising future directions that immune cell engagers may take in cancer treatment and antiviral therapy.
Collapse
Affiliation(s)
- Camille Rolin
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354, Esch-Sur-Alzette, Luxembourg.
- University of Luxembourg, 2 Place de l'Université, L-4365, Esch-sur-Alzette, Luxembourg.
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354, Esch-Sur-Alzette, Luxembourg
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354, Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
4
|
Sánchez-Martínez A, Giraldo Hoyos S, Alzate-Ángel JC, Guzmán F, Roman T, Velilla PA, Acevedo-Sáenz L. CD8 +T-cell response to mutated HLA-B*35-restricted Gag HY9 and HA9 epitopes from HIV-1 variants from Medellin, Colombia. Heliyon 2024; 10:e33143. [PMID: 39027459 PMCID: PMC11254536 DOI: 10.1016/j.heliyon.2024.e33143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
The HLA-B*35 alleles have been associated with a slow or rapid progression of HIV-1 infection. However, the mechanisms related to HIV-1 progression have yet to be entirely understood. Several reports indicate that the binding affinity between the HLA-I molecule and peptides could be associated with an increased CD8+ T-cell response. Novel HLA-B*35-restricted mutated variants have been described from HSNQVSQNY (HY9) and HPVHAGPIA (HA9) epitopes. Bioinformatic analysis has indicated that these mutated epitopes show low and high binding affinity towards HLA-B*35, respectively. However, the polyfunctionality of CD8+ T-cells stimulated with these mutated and wild-type epitopes has yet to be reported. The results suggest that the low-binding affinity H124 N/S125 N/N126S mutated peptide in the HY9 epitope induced a lower percentage of CD107a+CD8+ T-cells than the wild-type epitope. Instead, the high-binding affinity peptides I223V and I223A in the HA9 epitope induced a significantly higher frequency of polyfunctional CD8+ T-cells. Also, a higher proportion of CD8+ T-cells with two functions, with Granzyme B+ Perforin+ being the predominant profile, was observed after stimulation with mutated peptides associated with high binding affinity in the HA9 epitope. These results suggest that the high-affinity mutated peptides induced a more polyfunctional CD8+ T-cell response, which could be related to the control of viral replication.
Collapse
Affiliation(s)
- Alexandra Sánchez-Martínez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Udea, Calle 70 No 52-21, Medellín, Colombia
| | - Sofía Giraldo Hoyos
- Unidad de Investigación Clínica, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Juan Carlos Alzate-Ángel
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Udea, Calle 70 No 52-21, Medellín, Colombia
- Unidad de Micología Médica y Experimental, Corporación para Investigaciones Biológicas – Universidad de Santander (CIB-UDES), Colombia
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Tanya Roman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Paula A. Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Udea, Calle 70 No 52-21, Medellín, Colombia
| | - Liliana Acevedo-Sáenz
- Grupo Cuidado Enfermería-CES, Facultad de Enfermería, Universidad CES, Medellín, Colombia
| |
Collapse
|
5
|
Yuen CA, Bao S, Pekmezci M, Mo F, Kong XT. Pembrolizumab in an HIV-infected patient with glioblastoma. Immunotherapy 2024; 16:803-811. [PMID: 38889068 PMCID: PMC11457652 DOI: 10.1080/1750743x.2024.2362566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Persons living with human immunodeficiency virus (PLWH) carry increased risk for developing malignancies, including glioblastoma. Despite extensive investigations, both human immunodeficiency virus (HIV) and glioblastoma are incurable. Treatment for a patient with combined glioblastoma and HIV remains an unexplored need. Preliminary evidence suggests that immunotherapy may be effective for the simultaneous treatment of both HIV and cancer by reversing HIV latency and T cell exhaustion. We present a case of glioblastoma in a PLWH who was treated with pembrolizumab. Treatment was well tolerated and safe with a mixed response. Our patient did not develop any opportunistic infections, immune-related adverse events, or worsening of his immunodeficiency. To our knowledge, this is the first reported case of a PLWH and glioblastoma treated with immunotherapy.
Collapse
Affiliation(s)
- Carlen A Yuen
- Department of Neurology, Neuro-Oncology Division, University of California, Irvine, CA 92868, USA
| | - Silin Bao
- Department of Internal Medicine, Neurosciences Division, Community Regional Medical Center, Fresno, CA 93721, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Fan Mo
- Department of Internal Medicine, Neurosciences Division, Community Regional Medical Center, Fresno, CA 93721, USA
| | - Xiao-Tang Kong
- Department of Neurology, Neuro-Oncology Division, University of California, Irvine, CA 92868, USA
| |
Collapse
|
6
|
Mu W, Patankar V, Kitchen S, Zhen A. Examining Chronic Inflammation, Immune Metabolism, and T Cell Dysfunction in HIV Infection. Viruses 2024; 16:219. [PMID: 38399994 PMCID: PMC10893210 DOI: 10.3390/v16020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Vaibhavi Patankar
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott Kitchen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Zhou Y, Jadlowsky J, Baiduc C, Klattenhoff AW, Chen Z, Bennett AD, Pumphrey NJ, Jakobsen BK, Riley JL. Chimeric antigen receptors enable superior control of HIV replication by rapidly killing infected cells. PLoS Pathog 2023; 19:e1011853. [PMID: 38100526 PMCID: PMC10773964 DOI: 10.1371/journal.ppat.1011853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/08/2024] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Engineered T cells hold great promise to become part of an effective HIV cure strategy, but it is currently unclear how best to redirect T cells to target HIV. To gain insight, we generated engineered T cells using lentiviral vectors encoding one of three distinct HIV-specific T cell receptors (TCRs) or a previously optimized HIV-targeting chimeric antigen receptor (CAR) and compared their functional capabilities. All engineered T cells had robust, antigen-specific polyfunctional cytokine profiles when mixed with artificial antigen-presenting cells. However, only the CAR T cells could potently control HIV replication. TCR affinity enhancement did not augment HIV control but did allow TCR T cells to recognize common HIV escape variants. Interestingly, either altering Nef activity or adding additional target epitopes into the HIV genome bolstered TCR T cell anti-HIV activity, but CAR T cells remained superior in their ability to control HIV replication. To better understand why CAR T cells control HIV replication better than TCR T cells, we performed a time course to determine when HIV-specific T cells were first able to activate Caspase 3 in HIV-infected targets. We demonstrated that CAR T cells recognized and killed HIV-infected targets more rapidly than TCR T cells, which correlates with their ability to control HIV replication. These studies suggest that the speed of target recognition and killing is a key determinant of whether engineered T cell therapies will be effective against infectious diseases.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julie Jadlowsky
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Caitlin Baiduc
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alex W. Klattenhoff
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhilin Chen
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | - Bent K. Jakobsen
- Adaptimmune Ltd, Abingdon, United Kingdom
- Immunocore Ltd., Abingdon, United Kingdom
| | - James L. Riley
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
8
|
Jiang H, Suo H, Gao L, Liu Y, Chen B, Lu S, Jin F, Cao Y. Metformin plays an antitumor role by downregulating inhibitory cells and immune checkpoint molecules while activating protective immune responses in breast cancer. Int Immunopharmacol 2023; 118:110038. [PMID: 36996738 DOI: 10.1016/j.intimp.2023.110038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/30/2023]
Abstract
This study seeks to test the effect of metformin treatment on the outcomes of breast cancer in BALB/c mice bearing 4 T1 breast cancer cells. The survival rate and tumor size of mice were compared, as well as evaluation of the changes of immune cells in spleens and the microenvironment of tumors using flow cytometry and ELISA. Our results demonstrate that metformin prolongs mouse survival. A significant decrease in M2-like macrophages (F4/80+CD206+) was found in mice spleen treated with metformin. The treatment also inhibited monocytic myeloid-derived suppressor cells (M-MDSCs, CD11b+Gr-1+) and regulatory T cells (Tregs, CD4+CD25+Foxp3+). Metformin treatment resulted in an increase in the level of IFN-γ and a decrease in IL-10. Expression of the immune checkpoint molecule PD-1 on T cells was inhibited following treatment. Metformin enhances local antitumor activity in the tumor microenvironment, and our data supports the drug as a candidate for evaluation in the treatment of breast cancer.
Collapse
|
9
|
Balibar CJ, Klein DJ, Zamlynny B, Diamond TL, Fang Z, Cheney CA, Kristoff J, Lu M, Bukhtiyarova M, Ou Y, Xu M, Ba L, Carroll SS, El Marrouni A, Fay JF, Forster A, Goh SL, Gu M, Krosky D, Rosenbloom DIS, Sheth P, Wang D, Wu G, Zebisch M, Zhao T, Zuck P, Grobler J, Hazuda DJ, Howell BJ, Converso A. Potent targeted activator of cell kill molecules eliminate cells expressing HIV-1. Sci Transl Med 2023; 15:eabn2038. [PMID: 36812345 DOI: 10.1126/scitranslmed.abn2038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Antiretroviral therapy inhibits HIV-1 replication but is not curative due to establishment of a persistent reservoir after virus integration into the host genome. Reservoir reduction is therefore an important HIV-1 cure strategy. Some HIV-1 nonnucleoside reverse transcriptase inhibitors induce HIV-1 selective cytotoxicity in vitro but require concentrations far exceeding approved dosages. Focusing on this secondary activity, we found bifunctional compounds with HIV-1-infected cell kill potency at clinically achievable concentrations. These targeted activator of cell kill (TACK) molecules bind the reverse transcriptase-p66 domain of monomeric Gag-Pol and act as allosteric modulators to accelerate dimerization, resulting in HIV-1+ cell death through premature intracellular viral protease activation. TACK molecules retain potent antiviral activity and selectively eliminate infected CD4+ T cells isolated from people living with HIV-1, supporting an immune-independent clearance strategy.
Collapse
Affiliation(s)
- Carl J Balibar
- Infectious Disease and Vaccines, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Daniel J Klein
- Computational and Structural Chemistry, Merck & Co. Inc., Rahway, NJ, 07065, USA
| | - Beata Zamlynny
- Computational and Structural Chemistry, Merck & Co. Inc., Rahway, NJ, 07065, USA
| | - Tracy L Diamond
- Infectious Disease and Vaccines, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Zhiyu Fang
- Infectious Disease and Vaccines, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Carol A Cheney
- Infectious Disease and Vaccines, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Jan Kristoff
- Infectious Disease and Vaccines, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Meiqing Lu
- Infectious Disease and Vaccines, Merck & Co. Inc., Rahway, NJ 07065, USA
| | | | - Yangsi Ou
- Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Min Xu
- Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Lei Ba
- Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Steven S Carroll
- Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ 07065, USA
| | | | - John F Fay
- Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Ashley Forster
- Discovery Chemistry, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Shih Lin Goh
- Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Meigang Gu
- Evotec Ltd., Abingdon, Oxfordshire OX14 4RZ, UK
| | - Daniel Krosky
- Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Daniel I S Rosenbloom
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Payal Sheth
- Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Deping Wang
- Computational and Structural Chemistry, Merck & Co. Inc., Rahway, NJ, 07065, USA
| | - Guoxin Wu
- Infectious Disease and Vaccines, Merck & Co. Inc., Rahway, NJ 07065, USA
| | | | - Tian Zhao
- Biostatistics and Research Decision Sciences, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Paul Zuck
- Infectious Disease and Vaccines, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Jay Grobler
- Infectious Disease and Vaccines, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Daria J Hazuda
- Infectious Disease and Vaccines, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Bonnie J Howell
- Infectious Disease and Vaccines, Merck & Co. Inc., Rahway, NJ 07065, USA
| | | |
Collapse
|
10
|
Gao L, Zhou J, Ye L. Role of CXCR5 + CD8 + T cells in human immunodeficiency virus-1 infection. Front Microbiol 2022; 13:998058. [PMID: 36452930 PMCID: PMC9701836 DOI: 10.3389/fmicb.2022.998058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection can be effectively suppressed by life-long administration of combination antiretroviral therapy (cART). However, the viral rebound can occur upon cART cessation due to the long-term presence of HIV reservoirs, posing a considerable barrier to drug-free viral remission. Memory CD4+ T cell subsets, especially T follicular helper (T FH ) cells that reside in B-cell follicles within lymphoid tissues, are regarded as the predominant cellular compartment of the HIV reservoir. Substantial evidence indicates that HIV-specific CD8+ T cell-mediated cellular immunity can sustain long-term disease-free and transmission-free HIV control in elite controllers. However, most HIV cure strategies that rely on expanded HIV-specific CD8+ T cells for virus control are likely to fail due to cellular exhaustion and T FH reservoir-specialized anatomical structures that isolate HIV-specific CD8+ T cell entry into B-cell follicles. Loss of stem-like memory properties is a key feature of exhaustion. Recent studies have found that CXC chemokine receptor type 5 (CXCR5)-expressing HIV-specific CD8+ T cells are memory-like CD8+ T cells that can migrate into B-cell follicles to execute inhibition of viral replication. Furthermore, these unique CD8+ T cells can respond to immune checkpoint blockade (ICB) therapy. In this review, we discuss the functions of these CD8+ T cells as well as the translation of findings into viable HIV treatment and cure strategies.
Collapse
Affiliation(s)
- Leiqiong Gao
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Zhou
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
11
|
Chen M, Li M, Budai MM, Rice AP, Kimata JT, Mohan M, Wang J. Clearance of HIV-1 or SIV reservoirs by promotion of apoptosis and inhibition of autophagy: Targeting intracellular molecules in cure-directed strategies. J Leukoc Biol 2022; 112:1245-1259. [PMID: 35362118 PMCID: PMC9522917 DOI: 10.1002/jlb.4mr0222-606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
The reservoirs of the HIV display cellular properties resembling long-lived immune memory cells that could be exploited for viral clearance. Our interest in developing a cure for HIV stems from the studies of immunologic memory against infections. We and others have found that long-lived immune memory cells employ prosurvival autophagy and antiapoptotic mechanisms to protect their longevity. Here, we describe the rationale for the development of an approach to clear HIV-1 by selective elimination of host cells harboring replication-competent HIV (SECH). While reactivation of HIV-1 in the host cells with latency reversing agents (LRAs) induces viral gene expression leading to cell death, LRAs also simultaneously up-regulate prosurvival antiapoptotic molecules and autophagy. Mechanistically, transcription factors that promote HIV-1 LTR-directed gene expression, such as NF-κB, AP-1, and Hif-1α, can also enhance the expression of cellular genes essential for cell survival and metabolic regulation, including Bcl-xL, Mcl-1, and autophagy genes. In the SECH approach, we inhibit the prosurvival antiapoptotic molecules and autophagy induced by LRAs, thereby allowing maximum killing of host cells by the induced HIV-1 proteins. SECH treatments cleared HIV-1 infections in humanized mice in vivo and in HIV-1 patient PBMCs ex vivo. SECH also cleared infections by the SIV in rhesus macaque PBMCs ex vivo. Research efforts are underway to improve the efficacy and safety of SECH and to facilitate the development of SECH as a therapeutic approach for treating people with HIV.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Min Li
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Marietta M. Budai
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Andrew P. Rice
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason T. Kimata
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
12
|
Allogeneic MHC-matched T-cell receptor α/β-depleted bone marrow transplants in SHIV-infected, ART-suppressed Mauritian cynomolgus macaques. Sci Rep 2022; 12:12345. [PMID: 35853970 PMCID: PMC9296477 DOI: 10.1038/s41598-022-16306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplants (allo-HSCTs) dramatically reduce HIV reservoirs in antiretroviral therapy (ART) suppressed individuals. However, the mechanism(s) responsible for these post-transplant viral reservoir declines are not fully understood. Therefore, we modeled allo-HSCT in ART-suppressed simian-human immunodeficiency virus (SHIV)-infected Mauritian cynomolgus macaques (MCMs) to illuminate factors contributing to transplant-induced viral reservoir decay. Thus, we infected four MCMs with CCR5-tropic SHIV162P3 and started them on ART 6-16 weeks post-infection (p.i.), maintaining continuous ART during myeloablative conditioning. To prevent graft-versus-host disease (GvHD), we transplanted allogeneic MHC-matched α/β T cell-depleted bone marrow cells and prophylactically treated the MCMs with cyclophosphamide and tacrolimus. The transplants produced ~ 85% whole blood donor chimerism without causing high-grade GvHD. Consequently, three MCMs had undetectable SHIV DNA in their blood post-transplant. However, SHIV-harboring cells persisted in various tissues, with detectable viral DNA in lymph nodes and tissues between 38 and 62 days post-transplant. Further, removing one MCM from ART at 63 days post-transplant resulted in SHIV rapidly rebounding within 7 days of treatment withdrawal. In conclusion, transplanting SHIV-infected MCMs with allogeneic MHC-matched α/β T cell-depleted bone marrow cells prevented high-grade GvHD and decreased SHIV-harboring cells in the blood post-transplant but did not eliminate viral reservoirs in tissues.
Collapse
|
13
|
Abana CZY, Lamptey H, Bonney EY, Kyei GB. HIV cure strategies: which ones are appropriate for Africa? Cell Mol Life Sci 2022; 79:400. [PMID: 35794316 PMCID: PMC9259540 DOI: 10.1007/s00018-022-04421-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Although combination antiretroviral therapy (ART) has reduced mortality and improved lifespan for people living with HIV, it does not provide a cure. Patients must be on ART for the rest of their lives and contend with side effects, unsustainable costs, and the development of drug resistance. A cure for HIV is, therefore, warranted to avoid the limitations of the current therapy and restore full health. However, this cure is difficult to find due to the persistence of latently infected HIV cellular reservoirs during suppressive ART. Approaches to HIV cure being investigated include boosting the host immune system, genetic approaches to disable co-receptors and the viral genome, purging cells harboring latent HIV with latency-reversing latency agents (LRAs) (shock and kill), intensifying ART as a cure, preventing replication of latent proviruses (block and lock) and boosting T cell turnover to reduce HIV-1 reservoirs (rinse and replace). Since most people living with HIV are in Africa, methods being developed for a cure must be amenable to clinical trials and deployment on the continent. This review discusses the current approaches to HIV cure and comments on their appropriateness for Africa.
Collapse
Affiliation(s)
- Christopher Zaab-Yen Abana
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Helena Lamptey
- Department of Immunology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Y Bonney
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - George B Kyei
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- Departments of Medicine and Molecular Microbiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, USA.
- Medical and Scientific Research Center, University of Ghana Medical Centre, Accra, Ghana.
| |
Collapse
|
14
|
Affiliation(s)
- Paul Munson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Li W, Syed F, Yu R, Yang J, Xia Y, Relich RF, Russell PM, Zhang S, Khalili M, Huang L, Kacena MA, Zheng X, Yu Q. Soluble Immune Checkpoints Are Dysregulated in COVID-19 and Heavy Alcohol Users With HIV Infection. Front Immunol 2022; 13:833310. [PMID: 35281051 PMCID: PMC8904355 DOI: 10.3389/fimmu.2022.833310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/28/2022] [Indexed: 01/08/2023] Open
Abstract
Immune checkpoints (ICPs) consist of paired receptor-ligand molecules that exert inhibitory or stimulatory effects on immune defense, surveillance, regulation, and self-tolerance. ICPs exist in both membrane and soluble forms in vivo and in vitro. Imbalances between inhibitory and stimulatory membrane-bound ICPs (mICPs) in malignant cells and immune cells in the tumor immune microenvironment (TIME) have been well documented. Blockades of inhibitory mICPs have emerged as an immense breakthrough in cancer therapeutics. However, the origin, structure, production regulation, and biological significance of soluble ICPs (sICPs) in health and disease largely remains elusive. Soluble ICPs can be generated through either alternative mRNA splicing and secretion or protease-mediated shedding from mICPs. Since sICPs are found in the bloodstream, they likely form a circulating immune regulatory system. In fact, there is increasing evidence that sICPs exhibit biological functions including (1) regulation of antibacterial immunity, (2) interaction with their mICP compartments to positively or negatively regulate immune responses, and (3) competition with their mICP compartments for binding to the ICP blocking antibodies, thereby reducing the efficacy of ICP blockade therapies. Here, we summarize current data of sICPs in cancer and infectious diseases. We particularly focus on sICPs in COVID-19 and HIV infection as they are the two ongoing global pandemics and have created the world's most serious public health challenges. A "storm" of sICPs occurs in the peripheral circulation of COVID-19 patients and is associated with the severity of COVID-19. Similarly, sICPs are highly dysregulated in people living with HIV (PLHIV) and some sICPs remain dysregulated in PLHIV on antiretroviral therapy (ART), indicating these sICPs may serve as biomarkers of incomplete immune reconstitution in PLHIV on ART. We reveal that HIV infection in the setting of alcohol misuse exacerbates sICP dysregulation as PLHIV with heavy alcohol consumption have significantly elevated plasma levels of many sICPs. Thus, both stimulatory and inhibitory sICPs are present in the bloodstream of healthy people and their balance can be disrupted under pathophysiological conditions such as cancer, COVID-19, HIV infection, and alcohol misuse. There is an urgent need to study the role of sICPs in immune regulation in health and disease.
Collapse
Affiliation(s)
- Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Fahim Syed
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard Yu
- Department of Internal Medicine, School of Medicine, University of Nevada, Reno, NV, United States
| | - Jing Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying Xia
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ryan F. Relich
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Patrick M. Russell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shanxiang Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mandana Khalili
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Laurence Huang
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiaoqun Zheng
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
16
|
Shimizu K, Iyoda T, Sanpei A, Nakazato H, Okada M, Ueda S, Kato-Murayama M, Murayama K, Shirouzu M, Harada N, Hidaka M, Fujii SI. Identification of TCR repertoires in functionally competent cytotoxic T cells cross-reactive to SARS-CoV-2. Commun Biol 2021; 4:1365. [PMID: 34857854 PMCID: PMC8640030 DOI: 10.1038/s42003-021-02885-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022] Open
Abstract
SARS-CoV-2-specific CD8+ T cells are scarce but detectable in unexposed healthy donors (UHDs). It remains unclear whether pre-existing human coronavirus (HCoV)-specific CD8+ T cells are converted to functionally competent T cells cross-reactive to SARS-CoV-2. Here, we identified the HLA-A24-high binding, immunodominant epitopes in SARS-CoV-2 spike region that can be recognized by seasonal coronavirus-specific CD8+ T cells from HLA-A24+ UHDs. Cross-reactive CD8+ T cells were clearly reduced in patients with hematological malignancy, who are usually immunosuppressed, compared to those in UHDs. Furthermore, we showed that CD8+ T cells in response to a selected dominant epitope display multifunctionality and cross-functionality across HCoVs in HLA-A24+ donors. Cross-reactivity of T-cell receptors isolated from them exhibited selective diversity at the single-cell level. Taken together, when stimulated well by immunodominant epitopes, selective pre-existing CD8+ T cells with high functional avidity may be cross-reactive against SARS-CoV-2.
Collapse
Affiliation(s)
- Kanako Shimizu
- grid.509459.40000 0004 0472 0267Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science (IMS), Yokohama, Japan
| | - Tomonori Iyoda
- grid.509459.40000 0004 0472 0267Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science (IMS), Yokohama, Japan
| | - An Sanpei
- grid.509459.40000 0004 0472 0267Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science (IMS), Yokohama, Japan
| | - Hiroshi Nakazato
- grid.509459.40000 0004 0472 0267Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science (IMS), Yokohama, Japan
| | - Masahiro Okada
- grid.509459.40000 0004 0472 0267Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science (IMS), Yokohama, Japan
| | - Shogo Ueda
- grid.509459.40000 0004 0472 0267Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science (IMS), Yokohama, Japan
| | - Miyuki Kato-Murayama
- grid.508743.dLaboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kazutaka Murayama
- grid.508743.dLaboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan ,grid.69566.3a0000 0001 2248 6943Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Mikako Shirouzu
- grid.508743.dLaboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Naoko Harada
- grid.415538.eDepartment of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Michihiro Hidaka
- grid.415538.eDepartment of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Shin-ichiro Fujii
- grid.509459.40000 0004 0472 0267Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science (IMS), Yokohama, Japan ,grid.7597.c0000000094465255Program for Drug Discovery and Medical Technology Platforms (DMP), RIKEN, Yokohama, Japan
| |
Collapse
|
17
|
Sun S, Xu B, Zhang Q, Zhao CS, Ma R, He J, Zhang Y. The Early Results of Vertebral Pathological Compression Fracture of Extra- nodal Lymphoma with HIV-positive Patients Treated by Percutaneous Kyphoplasty. Curr HIV Res 2021; 18:248-257. [PMID: 32386494 DOI: 10.2174/1570162x18666200510010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vertebral pathological compression fracture involving extra-nodal lymphoma impacts negatively on the quality of life of HIV-positive patients. The choice of a safe and effective approach to palliative care in this condition remains a challenge. OBJECTIVE The purpose of this study was to investigate the safety and efficacy of percutaneous kyphoplasty (PKP) in the treatment of vertebral pathological compression fracture of extra-nodal lymphoma in HIV-positive patients. METHODS A retrospective analysis, from January 2016 to August 2019, was performed on 7 HIVpositive patients, 3 males and 4 females, with extra-nodal lymphoma with a vertebral pathological compression fracture. The patients were treated using percutaneous kyphoplasty in our hospital. Preoperative assessment of the patients was conducted regarding their hematological profile, biochemical indicators, liver and kidney function, blood coagulation function, CD4+T lymphocyte count and viral load. Subsequently, the patients were placed on highly active antiretroviral therapy (HAART) and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (RCHOP) regimen. Besides, antibiotics, nutritional support and immune-modulating drugs were also administered, rationally. Postoperatively, the height of the anterior edge of the injured vertebrae, Visual Analogue Scale (VAS) and Oswestry Disability Index (ODI) values were evaluated. Patients were also monitored for any complications related to the operation. RESULTS The average CD4+T cell count for the patients was 164 (range 114 ~247 / ul), while the viral load was 26,269 (range 5,765 ~82,321 copies/ul). All patients received nutritional and immune support and registered significant improvements in the levels of ALB and Hb (P<0.05). In all cases, the operation was uneventful with neither cement leakage nor toxic reactions observed. Similarly, no opportunistic infections, other complications or deaths were reported. The height of the anterior vertebral body and the ODI score of the injured vertebrae were significantly improved immediately after surgery (P<0.05). Compared to the preoperative VAS (7.71±1.11), postoperative values were significantly reduced immediately after surgery (3.85±0.90) and at 2 weeks, 1 month and 6 months post-surgery: 2.71±0.76, 3.29±1.11, and 4.00±0.82, respectively (P<0.01). CONCLUSION Supported with appropriate perioperative treatment measures, PKP is safe and effective in the treatment of pathological vertebral compression fracture due to extra-nodal lymphoma in HIV-positive patients.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, No.8, Jingshun East Street, Chaoyang District, Beijing 100015, China
| | - Biao Xu
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, No.8, Jingshun East Street, Chaoyang District, Beijing 100015, China
| | - Qiang Zhang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, No.8, Jingshun East Street, Chaoyang District, Beijing 100015, China
| | - Chang-Song Zhao
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, No.8, Jingshun East Street, Chaoyang District, Beijing 100015, China
| | - Rui Ma
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, No.8, Jingshun East Street, Chaoyang District, Beijing 100015, China
| | - Jie He
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, No.8, Jingshun East Street, Chaoyang District, Beijing 100015, China
| | - Yao Zhang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, No.8, Jingshun East Street, Chaoyang District, Beijing 100015, China
| |
Collapse
|
18
|
Svensson JP. Targeting Epigenetics to Cure HIV-1: Lessons From (and for) Cancer Treatment. Front Cell Infect Microbiol 2021; 11:668637. [PMID: 34026665 PMCID: PMC8137950 DOI: 10.3389/fcimb.2021.668637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
The Human Immunodeficiency Virus type 1 (HIV-1) integrates in the host genome as a provirus resulting in a long-lived reservoir of infected CD4 cells. As a provirus, HIV-1 has several aspects in common with an oncogene. Both the HIV-1 provirus and oncogenes only cause disease when expressed. A successful cure of both cancer and HIV-1 includes elimination of all cells with potential to regenerate the disease. For over two decades, epigenetic drugs developed against cancer have been used in the HIV-1 field to modulate the state of the proviral chromatin. Cells with an intact HIV-1 provirus exist in three states of infection: productive, inducible latent, and non-inducible latent. Here focus is on HIV-1, transcription control and chromatin structure; how the inducible proviruses are maintained in a chromatin structure that allows reactivation of transcription; and how transcription switches between different stages to allow for an abundance of different transcripts from a single promoter. Recently it was shown that a functional cure of HIV can be achieved by encapsulating all intact HIV-1 proviruses in heterochromatin, giving hope that epigenetic interventions may be used to end the HIV-1 epidemic.
Collapse
Affiliation(s)
- J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet (KI), Huddinge, Sweden
| |
Collapse
|
19
|
Okoye AA, Duell DD, Fukazawa Y, Varco-Merth B, Marenco A, Behrens H, Chaunzwa M, Selseth AN, Gilbride RM, Shao J, Edlefsen PT, Geleziunas R, Pinkevych M, Davenport MP, Busman-Sahay K, Nekorchuk M, Park H, Smedley J, Axthelm MK, Estes JD, Hansen SG, Keele BF, Lifson JD, Picker LJ. CD8+ T cells fail to limit SIV reactivation following ART withdrawal until after viral amplification. J Clin Invest 2021; 131:141677. [PMID: 33630764 PMCID: PMC8262469 DOI: 10.1172/jci141677] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
To define the contribution of CD8+ T cell responses to control of SIV reactivation during and following antiretroviral therapy (ART), we determined the effect of long-term CD8+ T cell depletion using a rhesusized anti-CD8β monoclonal antibody on barcoded SIVmac239 dynamics on stable ART and after ART cessation in rhesus macaques (RMs). Among the RMs with full CD8+ T cell depletion in both blood and tissue, there were no significant differences in the frequency of viral blips in plasma, the number of SIV RNA+ cells and the average number of RNA copies/infected cell in tissue, and levels of cell-associated SIV RNA and DNA in blood and tissue relative to control-treated RMs during ART. Upon ART cessation, both CD8+ T cell-depleted and control RMs rebounded in fewer than 12 days, with no difference in the time to viral rebound or in either the number or growth rate of rebounding SIVmac239M barcode clonotypes. However, effectively CD8+ T cell-depleted RMs showed a stable, approximately 2-log increase in post-ART plasma viremia relative to controls. These results indicate that while potent antiviral CD8+ T cell responses can develop during ART-suppressed SIV infection, these responses effectively intercept post-ART SIV rebound only after systemic viral replication, too late to limit reactivation frequency or the early spread of reactivating SIV reservoirs.
Collapse
Affiliation(s)
- Afam A. Okoye
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Derick D. Duell
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Benjamin Varco-Merth
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Alejandra Marenco
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Hannah Behrens
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Morgan Chaunzwa
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Andrea N. Selseth
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Roxanne M. Gilbride
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jason Shao
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paul T. Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Mykola Pinkevych
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales, Australia
| | - Miles P. Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales, Australia
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Haesun Park
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jeremy Smedley
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Jeffery D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
20
|
Scott TA, O’Meally D, Grepo NA, Soemardy C, Lazar DC, Zheng Y, Weinberg MS, Planelles V, Morris KV. Broadly active zinc finger protein-guided transcriptional activation of HIV-1. Mol Ther Methods Clin Dev 2021; 20:18-29. [PMID: 33335944 PMCID: PMC7726486 DOI: 10.1016/j.omtm.2020.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) causes a persistent viral infection resulting in the demise of immune regulatory cells. Clearance of HIV-1 infection results in integration of proviral DNA into the genome of host cells, which provides a means for evasion and long-term persistence. A therapeutic compound that specifically targets and sustainably activates a latent HIV-1 provirus could be transformative and is the goal for the "shock-and-kill" approach to a functional cure for HIV-1. Substantial progress has been made toward the development of recombinant proteins that target specific genomic loci for gene activation, repression, or inactivation by directed mutations. However, most of these modalities are too large or too complex for efficient therapeutic application. We describe here the development and testing of a novel recombinant zinc finger protein transactivator, ZFP-362-VPR, which specifically and potently enhances proviral HIV-1 transcription both in established latency models and activity across different viral clades. Additionally, ZFP-362-VPR-activated HIV-1 reporter gene expression in a well-established primary human CD4+ T cell latency model and off-target pathways were determined by transcriptome analyses. This study provides clear proof of concept for the application of a novel, therapeutically relevant, protein transactivator to purge cellular reservoirs of HIV-1.
Collapse
Affiliation(s)
- Tristan A. Scott
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Denis O’Meally
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Nicole Anne Grepo
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Citradewi Soemardy
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Daniel C. Lazar
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yue Zheng
- University of Utah School of Medicine, Division of Microbiology and Immunology, Department of Pathology, Salt Lake City, UT 92037, USA
| | - Marc S. Weinberg
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Vicente Planelles
- University of Utah School of Medicine, Division of Microbiology and Immunology, Department of Pathology, Salt Lake City, UT 92037, USA
| | - Kevin V. Morris
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
21
|
Rutishauser RL, Deguit CDT, Hiatt J, Blaeschke F, Roth TL, Wang L, Raymond KA, Starke CE, Mudd JC, Chen W, Smullin C, Matus-Nicodemos R, Hoh R, Krone M, Hecht FM, Pilcher CD, Martin JN, Koup RA, Douek DC, Brenchley JM, Sékaly RP, Pillai SK, Marson A, Deeks SG, McCune JM, Hunt PW. TCF-1 regulates HIV-specific CD8+ T cell expansion capacity. JCI Insight 2021; 6:136648. [PMID: 33351785 PMCID: PMC7934879 DOI: 10.1172/jci.insight.136648] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Although many HIV cure strategies seek to expand HIV-specific CD8+ T cells to control the virus, all are likely to fail if cellular exhaustion is not prevented. A loss in stem-like memory properties (i.e., the ability to proliferate and generate secondary effector cells) is a key feature of exhaustion; little is known, however, about how these properties are regulated in human virus-specific CD8+ T cells. We found that virus-specific CD8+ T cells from humans and nonhuman primates naturally controlling HIV/SIV infection express more of the transcription factor TCF-1 than noncontrollers. HIV-specific CD8+ T cell TCF-1 expression correlated with memory marker expression and expansion capacity and declined with antigenic stimulation. CRISPR-Cas9 editing of TCF-1 in human primary T cells demonstrated a direct role in regulating expansion capacity. Collectively, these data suggest that TCF-1 contributes to the regulation of the stem-like memory property of secondary expansion capacity of HIV-specific CD8+ T cells, and they provide a rationale for exploring the enhancement of this pathway in T cell-based therapeutic strategies for HIV.
Collapse
Affiliation(s)
| | - Christian Deo T. Deguit
- Department of Medicine, UCSF, San Francisco, California, USA
- Institute of Human Genetics, University of the Philippines-National Institutes of Health, Manila, Philippines
| | - Joseph Hiatt
- Department of Microbiology and Immunology
- Medical Scientist Training Program
- Biomedical Sciences Graduate Program, and
| | - Franziska Blaeschke
- Department of Microbiology and Immunology
- Diabetes Center, UCSF, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
| | - Theodore L. Roth
- Department of Microbiology and Immunology
- Medical Scientist Training Program
- Biomedical Sciences Graduate Program, and
| | - Lynn Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Kyle A. Raymond
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, California, USA
| | | | - Joseph C. Mudd
- Barrier Immunity Section, Laboratory of Viral Diseases and
| | - Wenxuan Chen
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Carolyn Smullin
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Rodrigo Matus-Nicodemos
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Rebecca Hoh
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Melissa Krone
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | | | | | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases , NIH, Bethesda, Maryland, USA
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Satish K. Pillai
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, California, USA
| | - Alexander Marson
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Microbiology and Immunology
- Diabetes Center, UCSF, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- UCSF Hellen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Peter W. Hunt
- Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
22
|
Zmievskaya E, Valiullina A, Ganeeva I, Petukhov A, Rizvanov A, Bulatov E. Application of CAR-T Cell Therapy beyond Oncology: Autoimmune Diseases and Viral Infections. Biomedicines 2021; 9:biomedicines9010059. [PMID: 33435454 PMCID: PMC7827151 DOI: 10.3390/biomedicines9010059] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Adoptive cell transfer (ACT) has long been at the forefront of the battle with cancer that began last century with the therapeutic application of tumor-infiltrating lymphocytes (TILs) against melanoma. The development of novel ACT approaches led researchers and clinicians to highly efficient technologies based on genetically engineered T lymphocytes, with chimeric antigen receptor (CAR)-T cells as the most prominent example. CARs consist of an extracellular domain that represents the single-chain variable fragment (scFv) of a monoclonal antibody (mAb) responsible for target recognition and the intracellular domain, which was built from up to several signaling motifs that mediated T cell activation. The number of potential targets amenable for CAR-T cell therapy is expanding rapidly, which means that the tremendous success of this approach in oncology could be further translated to treating other diseases. In this review, we outlined modern trends and recent developments in CAR-T cell therapy from an unusual point of view by focusing on diseases beyond cancer, such as autoimmune disorders and viral infections, including SARS-CoV-2.
Collapse
Affiliation(s)
- Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.Z.); (A.V.); (I.G.); (A.R.)
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.Z.); (A.V.); (I.G.); (A.R.)
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.Z.); (A.V.); (I.G.); (A.R.)
| | - Alexey Petukhov
- Almazov National Medical Research Center, Institute of Hematology, 197341 Saint Petersburg, Russia;
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.Z.); (A.V.); (I.G.); (A.R.)
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.Z.); (A.V.); (I.G.); (A.R.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence:
| |
Collapse
|
23
|
Fleury H, Caldato S, Recordon-Pinson P, Thebault P, Guidicelli GL, Hessamfar M, Morlat P, Bonnet F, Visentin J. ART-Treated Patients Exhibit an Adaptive Immune Response against the HFVAC Peptides, a Potential HIV-1 Therapeutic Vaccine (Provir/Latitude45 Study). Viruses 2020; 12:v12111256. [PMID: 33167335 PMCID: PMC7694376 DOI: 10.3390/v12111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/21/2022] Open
Abstract
We proposed a new HIV-1 therapeutic vaccine based on conserved cytotoxic T lymphocyte (CTL) epitopes of archived HIV-1 DNA according to their affinity to the dominant HLA-A and -B alleles of the population investigated. Our proposal (Hla Fitted VAC, HFVAC) was composed of 15 peptides originating from the RT, gag and nef parts of proviral DNA. Our aim was to investigate baseline immune reactivity to the vaccine in HIV-1 chronically infected patients at success of antiretroviral therapy (ART) who would be eligible for a therapeutic vaccine. Forty-one patients were tested. Most of them had been infected with HIV-1 subtype B and all had been receiving successful ART for 2 to 20 years. The predominant HLA-A and -B alleles were those of a Caucasian population. ELISPOT was carried out using the HFVAC peptides. In 22 patients, the PD-1 marker was investigated on CD4+ and CD8+ T cells by flow cytometry in order to evaluate global T cell exhaustion. ELISPOT positivity was 65% overall and 69% in patients exhibiting at least one HLA allele fitting with HFVAC. The percentages of CD4+ and CD8+ T cells expressing PD-1 were high (median values 23.70 and 32.60, respectively), but did not seem to be associated with an impairment of the immune response investigated in vitro. In conclusion, reactivity to HFVAC was high in this ART-treated population with dominant HLA alleles, despite potential cellular exhaustion associated with the PD-1 marker.
Collapse
Affiliation(s)
- Hervé Fleury
- Pole de Biologie, CHU de Bordeaux, 33076 Bordeaux, France
- CNRS UMR 5234, Université de Bordeaux, 33076 Bordeaux, France;
- Correspondence:
| | - Sabrina Caldato
- Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint André, CHU de Bordeaux et Université de Bordeaux, ISPED INSERM U 1219, 33076 Bordeaux, France; (S.C.); (M.H.); (P.M.); (F.B.)
| | | | - Patricia Thebault
- Laboratoire Bordelais de Recherche en Informatique (LaBri), Université de Bordeaux, 33400 Talence, France;
| | - Gwenda-Line Guidicelli
- Laboratoire d’Immunologie et Immunogénétique, CHU de Bordeaux, 33076 Bordeaux, France; (G.-L.G.); (J.V.)
| | - Mojgan Hessamfar
- Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint André, CHU de Bordeaux et Université de Bordeaux, ISPED INSERM U 1219, 33076 Bordeaux, France; (S.C.); (M.H.); (P.M.); (F.B.)
| | - Philippe Morlat
- Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint André, CHU de Bordeaux et Université de Bordeaux, ISPED INSERM U 1219, 33076 Bordeaux, France; (S.C.); (M.H.); (P.M.); (F.B.)
| | - Fabrice Bonnet
- Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint André, CHU de Bordeaux et Université de Bordeaux, ISPED INSERM U 1219, 33076 Bordeaux, France; (S.C.); (M.H.); (P.M.); (F.B.)
| | - Jonathan Visentin
- Laboratoire d’Immunologie et Immunogénétique, CHU de Bordeaux, 33076 Bordeaux, France; (G.-L.G.); (J.V.)
- CNRS Immuno ConcEpT, Université de Bordeaux, UMR 5164, 33076 Bordeaux, France
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The application of immunotherapies to HIV presents a new horizon of treatment options, but little is known about what impact they may have on the central nervous system (CNS). Here we review the most promising immunotherapeutic strategies that can be used to target HIV in the CNS and focus on identifying their potential benefits while exploring the challenges that remain in their application. RECENT FINDINGS We have identified five immunotherapeutic strategies that hold potential in managing CNS disease among HIV-infected patients. These include broadly neutralizing antibodies, multi-affinity antibodies, CAR-T cell therapy, checkpoint inhibitors, and therapeutic vaccines. Each class of immunotherapy presents unique mechanisms by which CNS viremia and latency may be addressed but are faced with several challenges. CAR-T cell therapy and multi-affinity antibodies seem to hold promise, but combination therapy is likely to be most effective. However, more human trials are needed before the clinical benefits of these therapies are realized.
Collapse
Affiliation(s)
- Andrew Kapoor
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C Sabrina Tan
- Division of Infectious Diseases, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue E/CLS 1011, Boston, MA, 02215, USA.
| |
Collapse
|
25
|
Liu D, Badeti S, Dotti G, Jiang JG, Wang H, Dermody J, Soteropoulos P, Streck D, Birge RB, Liu C. The Role of Immunological Synapse in Predicting the Efficacy of Chimeric Antigen Receptor (CAR) Immunotherapy. Cell Commun Signal 2020; 18:134. [PMID: 32843053 PMCID: PMC7446110 DOI: 10.1186/s12964-020-00617-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract Chimeric Antigen Receptor (CAR) immunotherapy utilizes genetically-engineered immune cells that express a unique cell surface receptor that combines tumor antigen specificity with immune cell activation. In recent clinical trials, the adoptive transfer of CAR-modified immune cells (including CAR-T and CAR-NK cells) into patients has been remarkably successful in treating multiple refractory blood cancers. To improve safety and efficacy, and expand potential applicability to other cancer types, CARs with different target specificities and sequence modifications are being developed and tested by many laboratories. Despite the overall progress in CAR immunotherapy, conventional tools to design and evaluate the efficacy and safety of CAR immunotherapies can be inaccurate, time-consuming, costly, and labor-intensive. Furthermore, existing tools cannot always determine how responsive individual patients will be to a particular CAR immunotherapy. Recent work in our laboratory suggests that the quality of the immunological synapse (IS) can accurately predict CAR-modified cell efficacy (and toxicity) that can correlate with clinical outcomes. Here we review current efforts to develop a Synapse Predicts Efficacy (SPE) system for easy, rapid and cost-effective evaluation of CAR-modified immune cell immunotherapy. Ultimately, we hypothesize the conceptual basis and clinical application of SPE will serve as an important parameter in evaluating CAR immunotherapy and significantly advance precision cancer immunotherapy. Video abstract
Graphical abstract Graphic abstract for manuscript CCAS-D-20-00136 by Liu, D., et al., ‘The Role of Immunological Synapse in Predicting the Efficacy of Chimeric Antigen Receptor (CAR) Immunotherapy”. The various branches of evaluating cancer immunotherapy metaphorically represented as a Rubik’s cube. The development of a novel approach to predict the effectiveness of Chimeric Antigen Receptor (CAR)-modified cells by quantifying the quality of CAR IS will introduce a new parameter to the rapidly expanding field of cancer immunotherapy. Currently, no single parameter can predict the clinical outcome or efficacy of a specific type of CAR-modified cell. IS quality will serve as a quantifiable measure to evaluate CAR products and can be used in conjunction with other conventional parameters to form a composite clinical predictor. Much like a Rubik’s cube has countless configurations, several methods and combinations of clinical metrics have arisen for evaluating the ability of a given immunotherapeutic strategy to treat cancer. The quality of IS depicting cancer immunotherapy is metaphorically expressed as a Rubik’s cube. Each face/color represents one aspect of cancer therapy. Each grid in one face indicates one factor within that aspect of cancer therapy. For example, the green color represents the tumor microenvironment, and one out of the nine grids in the green color indicates suppressor cells (suppressors in green). Changes in one factor may completely alter the entire strategy of cancer therapy. However, the quality of IS (illuminated center red grid) makes the effectiveness of CAR immunotherapy predictable.
![]()
Collapse
Affiliation(s)
- Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA. .,Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07101, USA.
| | - Saiaditya Badeti
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jie-Gen Jiang
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - He Wang
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - James Dermody
- Institute of Genomic Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
| | - Patricia Soteropoulos
- Institute of Genomic Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
| | - Deanna Streck
- Institute of Genomic Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA.,Department of Pathology, Yale School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06510, USA
| |
Collapse
|
26
|
Lee PH, Keller MD, Hanley PJ, Bollard CM. Virus-Specific T Cell Therapies for HIV: Lessons Learned From Hematopoietic Stem Cell Transplantation. Front Cell Infect Microbiol 2020; 10:298. [PMID: 32775304 PMCID: PMC7381350 DOI: 10.3389/fcimb.2020.00298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) has caused millions of deaths and continues to threaten the health of millions of people worldwide. Despite anti-retroviral therapy (ART) substantially alleviating severity and limiting transmission, HIV has not been eradicated and its persistence can lead to other health concerns such as cancer. The only two cases of HIV cure to date are HIV+ cancer patients receiving an allogeneic hematopoietic stem cell transplantation (allo-HSCT) from a donor with the CCR5 Δ32 mutation. While this approach has not led to such success in other patients and is not applicable to HIV+ individuals without cancer, the encouraging results may point toward a breakthrough in developing a cure strategy for HIV. Adoptive transfer of virus-specific T cells (VSTs) post HSCT has been effectively used to treat and prevent reactivation of latent viral infections such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV), making VSTs an attractive therapeutic to control HIV rebound. Here we will discuss the potential of using adoptive T cell therapies in combination with other treatments such as HSCT and latency reversing agents (LRAs) to achieve a functional cure for HIV.
Collapse
Affiliation(s)
- Ping-Hsien Lee
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, United States
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, United States.,Division of Allergy & Immunology, Children's National Hospital, Washington, DC, United States
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, United States.,Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, United States.,GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, United States.,Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, United States.,GW Cancer Center, The George Washington University, Washington, DC, United States
| |
Collapse
|
27
|
Ivanov S, Lagunin A, Filimonov D, Tarasova O. Network-Based Analysis of OMICs Data to Understand the HIV-Host Interaction. Front Microbiol 2020; 11:1314. [PMID: 32625189 PMCID: PMC7311653 DOI: 10.3389/fmicb.2020.01314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/25/2020] [Indexed: 12/22/2022] Open
Abstract
The interaction of human immunodeficiency virus with human cells is responsible for all stages of the viral life cycle, from the infection of CD4+ cells to reverse transcription, integration, and the assembly of new viral particles. To date, a large amount of OMICs data as well as information from functional genomics screenings regarding the HIV–host interaction has been accumulated in the literature and in public databases. We processed databases containing HIV–host interactions and found 2910 HIV-1-human protein-protein interactions, mostly related to viral group M subtype B, 137 interactions between human and HIV-1 coding and non-coding RNAs, essential for viral lifecycle and cell defense mechanisms, 232 transcriptomics, 27 proteomics, and 34 epigenomics HIV-related experiments. Numerous studies regarding network-based analysis of corresponding OMICs data have been published in recent years. We overview various types of molecular networks, which can be created using OMICs data, including HIV–human protein–protein interaction networks, co-expression networks, gene regulatory and signaling networks, and approaches for the analysis of their topology and dynamics. The network-based analysis can be used to determine the critical pathways and key proteins involved in the HIV life cycle, cellular and immune responses to infection, viral escape from host defense mechanisms, and mechanisms mediating different susceptibility of humans to infection. The proteins and pathways identified in these studies represent a basis for developing new anti-HIV therapeutic strategies such as new drugs preventing infection of CD4+ cells and viral replication, effective vaccines, “shock and kill” and “block and lock” approaches to cure latent infection.
Collapse
Affiliation(s)
- Sergey Ivanov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia.,Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexey Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia.,Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry Filimonov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Olga Tarasova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
28
|
Hajduczki A, Danielson DT, Elias DS, Bundoc V, Scanlan AW, Berger EA. A Trispecific Anti-HIV Chimeric Antigen Receptor Containing the CCR5 N-Terminal Region. Front Cell Infect Microbiol 2020; 10:242. [PMID: 32523897 PMCID: PMC7261873 DOI: 10.3389/fcimb.2020.00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/27/2020] [Indexed: 01/24/2023] Open
Abstract
Anti-HIV chimeric antigen receptors (CARs) promote direct killing of infected cells, thus offering a therapeutic approach aimed at durable suppression of infection emerging from viral reservoirs. CD4-based CARs represent a favored option, since they target the essential conserved primary receptor binding site on the HIV envelope glycoprotein (Env). We have previously shown that adding a second Env-binding moiety, such as the carbohydrate recognition domain of human mannose-binding lectin (MBL) that recognizes the highly conserved oligomannose patch on gp120, increases CAR potency in an in vitro HIV suppression assay; moreover it reduces the undesired capacity for the CD4 of the CAR molecule to act as an entry receptor, thereby rendering CAR-expressing CD8+ T cells susceptible to infection. Here, we further improve the bispecific CD4-MBL CAR by adding a third targeting moiety against a distinct conserved Env determinant, i.e. a polypeptide sequence derived from the N-terminus of the HIV coreceptor CCR5. The trispecific CD4-MBL-R5Nt CAR displays enhanced in vitro anti-HIV potency compared to the CD4-MBL CAR, as well as undetectable HIV entry receptor activity. The high anti-HIV potency of the CD4-MBL-R5Nt CAR, coupled with its all-human composition and absence of immunogenic variable regions associated with antibody-based CARs, offer promise for the trispecific construct in therapeutic approaches seeking durable drug-free HIV remission.
Collapse
Affiliation(s)
- Agnes Hajduczki
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David T Danielson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David S Elias
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Virgilio Bundoc
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Aaron W Scanlan
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Edward A Berger
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
29
|
Frega S, Ferro A, Bonanno L, Guarneri V, Conte P, Pasello G. Lung Cancer (LC) in HIV Positive Patients: Pathogenic Features and Implications for Treatment. Int J Mol Sci 2020; 21:E1601. [PMID: 32111093 PMCID: PMC7084664 DOI: 10.3390/ijms21051601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 12/23/2022] Open
Abstract
: The human immunodeficiency virus (HIV) infection continues to be a social and public health problem. Thanks to more and more effective antiretroviral therapy (ART), nowadays HIV-positive patients live longer, thus increasing their probability to acquire other diseases, malignancies primarily. Senescence along with immune-system impairment, HIV-related habits and other oncogenic virus co-infections increase the cancer risk of people living with HIV (PLWH); in the next future non-AIDS-defining cancers will prevail, lung cancer (LC) in particular. Tumor in PLWH might own peculiar predictive and/or prognostic features, and antineoplastic agents' activity might be subverted by drug-drug interactions (DDIs) due to concurrent ART. Moreover, PLWH immune properties and comorbidities might influence both the response and tolerability of oncologic treatments. The therapeutic algorithm of LC, rapidly and continuously changed in the last years, should be fitted in the context of a special patient population like PLWH. This is quite challenging, also because HIV-positive patients have been often excluded from participation to clinical trials, so that levels of evidence about systemic treatments are lower than evidence in HIV-uninfected individuals. With this review, we depicted the epidemiology, pathogenesis, clinical-pathological characteristics and implications for LC care in PLWH, offering a valid focus about this topic to clinicians.
Collapse
Affiliation(s)
- Stefano Frega
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35, 128 Padova, Italy; (S.F.); (A.F.); (L.B.); (V.G.); (P.C.)
| | - Alessandra Ferro
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35, 128 Padova, Italy; (S.F.); (A.F.); (L.B.); (V.G.); (P.C.)
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35, 128 Padova, Italy
| | - Laura Bonanno
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35, 128 Padova, Italy; (S.F.); (A.F.); (L.B.); (V.G.); (P.C.)
| | - Valentina Guarneri
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35, 128 Padova, Italy; (S.F.); (A.F.); (L.B.); (V.G.); (P.C.)
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35, 128 Padova, Italy
| | - PierFranco Conte
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35, 128 Padova, Italy; (S.F.); (A.F.); (L.B.); (V.G.); (P.C.)
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35, 128 Padova, Italy
| | - Giulia Pasello
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35, 128 Padova, Italy; (S.F.); (A.F.); (L.B.); (V.G.); (P.C.)
| |
Collapse
|
30
|
Abstract
HIV infection can be effectively treated by lifelong administration of combination antiretroviral therapy, but an effective vaccine will likely be required to end the HIV epidemic. Although the majority of current vaccine strategies focus on the induction of neutralizing antibodies, there is substantial evidence that cellular immunity mediated by CD8+ T cells can sustain long-term disease-free and transmission-free HIV control and may be harnessed to induce both therapeutic and preventive antiviral effects. In this Review, we discuss the increasing evidence derived from individuals who spontaneously control infection without antiretroviral therapy as well as preclinical immunization studies that provide a clear rationale for renewed efforts to develop a CD8+ T cell-based HIV vaccine in conjunction with B cell vaccine efforts. Further, we outline the remaining challenges in translating these findings into viable HIV prevention, treatment and cure strategies. Recently, antibody-mediated control of HIV infection has received considerable attention. Here, the authors discuss the importance of CD8+ T cells in HIV infection and suggest that efforts to develop vaccines that target these cells in conjunction with B cells should be renewed.
Collapse
|
31
|
Pham HT, Yoo S, Mesplède T. Combination therapies currently under investigation in phase I and phase II clinical trials for HIV-1. Expert Opin Investig Drugs 2020; 29:273-283. [PMID: 31994943 DOI: 10.1080/13543784.2020.1724281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: HIV infection is manageable through the use of antiretroviral drugs. However, HIV reservoirs that are constituted early during infection are resistant to treatment. HIV persistence under treatment necessitates life-long treatment and is associated with various co-morbidities. Two significant research avenues are explored through the development of either new antiretroviral drugs or interventions aimed at stimulating the immune system to eradicate HIV reservoirs.Areas covered: This report provides a review of investigational drugs and cell-based interventions against HIV infection that are currently under Phase I or Phase II clinical trials. We report on new antiretroviral drugs, antibodies directed against viral or host targets, reactivating agents, immune modulators and immune checkpoint inhibitors, and cell-based interventions. These new therapies are often tested in combination, including with current antiretroviral drugs.Expert opinion: Islatravir and GS-6207 are promising antiretroviral drugs that are expected to perform well in phase III trials. Whether the host immune system can be activated sufficiently to reduce HIV reservoirs remains unknown. Additional research is needed to identify surrogate markers of success for curative interventions. Given the current safety and efficacy of antiretroviral treatment, risk-benefits should be carefully evaluated before interventions that risk triggering high levels of immune stimulation.
Collapse
Affiliation(s)
- Hanh Thi Pham
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Subin Yoo
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Thibault Mesplède
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|