1
|
Miranda M, Brandsma E, Robben L, Van Dender H, van Alphen FPJ, Fijnvandraat K, van den Biggelaar M, Lacroix-Desmazes S, van Bruggen R, Voorberg J. Exploring red blood cells as an antigen delivery system to modulate the immune response towards FVIII in hemophilia A. J Thromb Haemost 2025; 23:836-848. [PMID: 39617188 DOI: 10.1016/j.jtha.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 03/10/2025]
Abstract
BACKGROUND The main complication in hemophilia A treatment is the development of inhibitory antibodies against factor (F)VIII. Immune tolerance induction, the gold standard for eradicating anti-FVIII antibodies, is efficient in only 60% to 80% of cases. This underscores the need for more efficient induction of tolerance in patients with hemophilia A with FVIII inhibitors. OBJECTIVES In this study, we explored whether red blood cells (RBCs) can be utilized as antigen delivery system to modulate the immune response against FVIII. METHODS Two promiscuously HLA-DR-presented peptides derived from the A2 and C1 domains of FVIII were fused to the TAT cell-penetrating peptide and incubated with RBCs. RESULTS Biotinylated TAT-A2 and TAT-C1 peptides were found to interact with RBCs as shown by flow cytometry and imaging flow cytometry. Moreover, macrophages efficiently phagocytosed TAT-FVIII peptide-treated RBCs. Using mass spectrometry-based immunopeptidomics we established that TAT-FVIII peptides were presented on major histocompatibility complex class II of macrophages that phagocytosed TAT peptide-pulsed RBCs. Specifically, the TAT-A2 peptide exhibited efficient processing and presentation on HLA-DR molecules. Importantly, incubation of TAT-C1 peptide-treated RBCs-loaded macrophages with a FVIII-specific T-cell hybridoma led to a significant increase in IL-2 production, suggesting functional presentation of TAT-C1-derived peptides by macrophages. CONCLUSION Our findings indicate that RBCs can serve as effective vehicle for the delivery of FVIII-derived peptides to antigen-presenting cells. The successful display of T-cell epitopes on antigen-presenting cell using ex vivo-loaded RBC may be potentially utilized to modulate pathogenic immune responses such as observed in a subset of patients with hemophilia A.
Collapse
Affiliation(s)
- Mariarosaria Miranda
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Eelke Brandsma
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Lotte Robben
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Helena Van Dender
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Floris P J van Alphen
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Karin Fijnvandraat
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands; Department of Pediatric Hematology, Amsterdam University Medical Center Location, University of Amsterdam, Amsterdam, The Netherlands
| | - Maartje van den Biggelaar
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Sebastien Lacroix-Desmazes
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Robin van Bruggen
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Jan Voorberg
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Young G. Induction of factor VIII tolerance by hemophilia gene transfer to eradicate factor VIII inhibitors. Blood Adv 2025; 9:265-269. [PMID: 39418639 PMCID: PMC11782813 DOI: 10.1182/bloodadvances.2024013000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
ABSTRACT Patients with hemophilia A can develop antifactor antibodies to factor VIII. The incidence is ∼30%, and such patients suffer worse morbidity and mortality. The only proven method to eradicate these inhibitors is via immune tolerance induction therapy, which consists of infusing factor VIII concentrates at regular intervals. This approach is effective ∼65% of the time, leaving at least a third of patients who develop inhibitors with this lifelong problem. Although emicizumab has greatly improved the quality of life of inhibitor patients, eradicating the inhibitor remains an important treatment goal. Animal models have shown the potential for gene therapy to induce tolerance. A recent abstract describing a study in humans demonstrated the potential for successful tolerance induction. This article will describe the rationale for using gene therapy to induce tolerance and provide this author's viewpoint on the importance and possible historic significance of attempting to eradicate inhibitors with this approach.
Collapse
Affiliation(s)
- Guy Young
- Cancer and Blood Disorders Institute, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA
| |
Collapse
|
3
|
Yada K, Nogami K. Pharmacokinetic evaluation of efanesoctocog alfa: breakthrough factor VIII therapy for hemophilia A. Expert Opin Drug Metab Toxicol 2025; 21:5-14. [PMID: 39323385 DOI: 10.1080/17425255.2024.2409931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Blood coagulation factor (F)VIII functions as a cofactor in the tenase complex responsible for phospholipid-dependent FIXa-mediated activation of FX in plasma. Congenital defect of FVIII causes severe bleeding disorder, hemophilia (H) A. Intravenous FVIII replacement therapy is the gold standard therapy in patients with HA (PwHA) but requirement for frequent dosing of FVIII owing to pharmacokinetics burdens PwHA a lot. Efanesoctocog alfa is a new class of recombinant FVIII and has the ability to overcome conceivable unmet needs in treatment for PwHA. AREAS COVERED Efanesoctocog alfa is a B domain-deleted single-chain fusion FVIII connected to the Fc-region of human immunoglobulin G1, D'D3-fragment of von Willebrand factor (VWF), and unstructured hydrophilic recombinant polypeptides (XTEN). Owing to its novel design, it can function independently of endogenous VWF and elicits 2 to 4 times longer half-life compared to other existing FVIII products. The prolonged half-life contributes to maintain high level of FVIII activity for most of the week and has led to excellent hemostatic effect by once-weekly administration in phase 3 clinical trials. EXPERT OPINION Efanesoctocog alfa with outstanding pharmacological properties, well tolerated in the clinical trials, is a promising FVIII therapy for PwHA. Future studies should include long-term safety, especially in previously untreated patients.
Collapse
Affiliation(s)
- Koji Yada
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
4
|
Wang J, Li Q, Cheng Y, Wang A, Qiao C, Shao J, Wang T, Wang H, Zhang X, Poon MC, Zhang X, Fang Y. Investigation of a hemophilia family with one female hemophilia A patient and 12 male hemophilia A patients. Ann Hematol 2025; 104:163-170. [PMID: 39724248 DOI: 10.1007/s00277-024-06158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Hemophilia A (HA) is an X-chromosome-linked recessive genetic disorder. Female carriers may have bleeding symptoms, but rarely have moderate or severe disease. We identified a female patient with moderate HA by pedigree tracking and genetic testing in a HA family involving consanguineous marriage. To investigate the clinical and laboratory data, as well as F8 genetic variant affecting members in her family. We constructed a detailed pedigree diagram and performed coagulation analyses, including factor VIII activity (FVIII:C), FVIII inhibitor, and von Willebrand factor antigen (VWF: Ag) on 20 family members. The genomic DNA of 11 members was screened for intron 1 and intron 22 inversions using long-distance real-time polymerase chain reaction (RT-PCR). Their F8 coding genes were sequenced with an automatic next-generation sequencing. Thirteen HA persons with hemophilia (12 males, one female) and 18 female carriers were identified in the family. VWF: Ag level was normal in all 13 persons with hemophilia and 7 carriers tested. The female HA patient had FVIII:C 1.9 IU/dL and was homozygous for F8:c.1918G > T:p.V640F. Genetic testing is conducive to the diagnosis of hemophilia carriers and persons with hemophilia. F8: c.1918G > T:p.V640F is the pathogenic HA variant in this family. In any hemophilia family, we need to pay more attention to female carriers and patients.
Collapse
Affiliation(s)
- Jie Wang
- Shandong Blood Center, Shandong Hemophilia Treatment Center, Jinan, China
| | - Qiang Li
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Cheng
- Shandong Blood Center, Shandong Hemophilia Treatment Center, Jinan, China
| | - Aihui Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Cuicui Qiao
- Shandong Blood Center, Shandong Hemophilia Treatment Center, Jinan, China
| | - Jingru Shao
- Shandong Blood Center, Shandong Hemophilia Treatment Center, Jinan, China
| | - Tiantian Wang
- Shandong Blood Center, Shandong Hemophilia Treatment Center, Jinan, China
| | - Hehe Wang
- Shandong Blood Center, Shandong Hemophilia Treatment Center, Jinan, China
| | - Xueqin Zhang
- Shandong Blood Center, Shandong Hemophilia Treatment Center, Jinan, China
| | - Man-Chiu Poon
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Xinsheng Zhang
- Shandong Blood Center, Shandong Hemophilia Treatment Center, Jinan, China
| | - Yunhai Fang
- Shandong Blood Center, Shandong Hemophilia Treatment Center, Jinan, China.
| |
Collapse
|
5
|
Zhang J, Li Z, Liu G, Yao W, Ai D, Li Z, Chen Z, Wu R. Differential genes expression of immune tolerance induction in hemophilia A: an exploratory RNA-seq test from a Chinese hemophilia comprehensive care centre. Transl Pediatr 2024; 13:2110-2117. [PMID: 39823014 PMCID: PMC11732629 DOI: 10.21037/tp-24-300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
Background The production of inhibitors is a serious complication that can arise during coagulation factor replacement therapy for hemophilia A (HA). The primary therapeutic strategy to eliminate inhibitors is immune tolerance induction (ITI), which is known to be an extremely challenging, prolonged, and costly treatment. With the widespread use of RNA sequencing (RNA-seq) to analyze differentially expressed genes (DEGs) across various treatment outcomes, there is potential for predicting ITI outcomes. This study aims to use RNA-seq to test differently expressed genes in different outcomes of ITI treatment for HA patients with high-titer inhibitor (HAI), to explore its prediction possibility. Methods RNA-seq was employed to screen and compare the DEGs between patients in the Success group and those in the Failure group, based on ITI clinical outcomes. DEGs were subjected to Gene Ontology (GO) analysis and enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results Thirteen analyzable HAI cases were collected, comprising seven in the Success group and six in the Failure group. Blood samples were taken before and after ITI. RNA-seq was applied to all samples to screen for expressed genes. In the Success group, a total of 4,967 messenger RNA (mRNA) transcripts were differentially expressed between pre-ITI and post-ITI, with 2,865 being up-regulated and 2,102 down-regulated. In the Failure group, 515 mRNA transcripts were expressed either before or after ITI, showing up-regulation in 68.7% (354/515) and down-regulation in 31.3% (161/515). Conclusions The increased expression of genes which related to immune system activation suggests a possibly favorable therapeutic outcome of ITI. Future studies should test with a larger cohort to validate these findings.
Collapse
Affiliation(s)
- Jialu Zhang
- Department of Hematology Center, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Department of Clinical Laboratory Center, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zekun Li
- Department of Hematology Center, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Department of Clinical Laboratory Center, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Guoqing Liu
- Department of Hematology Center, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wanru Yao
- Department of Hematology Center, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Di Ai
- Department of Hematology Center, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Department of Clinical Laboratory Center, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhengping Li
- Department of Hematology Center, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Department of Clinical Laboratory Center, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhenping Chen
- Department of Clinical Laboratory Center, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Runhui Wu
- Department of Hematology Center, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
6
|
Lévesque H, Guillet B, d'Oiron R, Benhamou Y. [Acquired haemophilia: Update in 2024]. Rev Med Interne 2024; 45:710-725. [PMID: 39245591 DOI: 10.1016/j.revmed.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 09/10/2024]
Abstract
Acquired hemophilia A (AHA) is a rare autoimmune disorder due to autoantibodies against factor VIII, with a high mortality risk. It should be suspected in subjects with abnormal bleedings, especially subcutaneous bleed associated with prolonged activated partial thromboplastin time (aPTT). AHA is often idiopathic but is associated with autoimmune diseases, malignancies, pregnancy and postpartum period or drugs. Treatment is based on haemostatic agents as by-passants agents such as factor VIIa and activated prothrombine concentrate complex or recombinant porcine factor VIII for severe bleeding. Eradication of inhibitor should be established as soon as the diagnosis is confirmed with steroid alone often associated with cytotoxic agents or rituximab, depending on FVIII activity and inhibitor titer. The purpose of this review is to summarize the epidemiology, etiopathogenesis, diagnosis, treatment of AHA and discuss current recommendations.
Collapse
Affiliation(s)
- Hervé Lévesque
- Service de médecine interne, CHU de Rouen, Normandie université, UNIROUEN, U 1096, 1, rue de Germont, 76000 Rouen, France.
| | - Benoit Guillet
- Centre de référence de l'hémophilie et des maladies hémorragiques, constitutionnelles, CHU de Rennes, Rennes, France; EHESP, Institut de recherche en santé, environnement et travail (IRSET) - UMR-S 1085, CHU de Rennes, université de Rennes, Inserm, 35000 Rennes, France
| | - Roseline d'Oiron
- Centre de référence de l'hémophilie et des maladies hémorragiques, constitutionnelles, hôpital Bicêtre, AP-HP, HITh, UMR-S1176, Inserm, université Paris Saclay, Le Kremlin-Bicêtre, Paris, France
| | - Ygal Benhamou
- Service de médecine interne, CHU de Rouen, Normandie université, UNIROUEN, U 1096, 1, rue de Germont, 76000 Rouen, France
| |
Collapse
|
7
|
Holme PA, Blatný J, Chowdary P, Lassila R, O'Connell N, Hermans C, Álvarez Román MT, Négrier C, Coppola A, Oldenburg J. Moving towards Normalization of haemostasis and health equity: Evolving treatment goals for haemophilia A. Haemophilia 2024; 30:1109-1114. [PMID: 38986684 DOI: 10.1111/hae.15031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Treatment options for people with haemophilia are evolving at a rapid pace and a range of prophylactic treatment options using various technologies are currently available, each with their own distinct safety and efficacy profile. TREATMENT GOALS The access to replacement therapy and prophylaxis has driven a dramatic reduction in mortality and resultant increase in life expectancy. Beyond this, the abolition of bleeds and preservation of joint health represent the expected, but rarely attained, goals of haemophilia treatment and care. These outcomes also do not address the complexity of health-related quality of life impacted by haemophilia and its treatment. CONCLUSION Capitalizing on the major potential of therapeutic innovations, 'Normalization' of haemostasis, as a concept, should include the aspiration of enabling individuals to live as normal a life as possible, free from haemophilia-imposed limitations. To achieve this-being supported by the data reviewed in this manuscript-the concept of haemostatic and life Normalization needs to be explored and debated within the wider multidisciplinary teams and haemophilia community.
Collapse
Affiliation(s)
- Pål André Holme
- Department of Haematology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jan Blatný
- Hospital Bory, Bratislava, Slovakia
- Masaryk University, Brno, Czech Republic
| | - Pratima Chowdary
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free London, London, UK
| | - Riitta Lassila
- Coagulation Disorders Unit, Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital, Research Program Unit in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Niamh O'Connell
- National Coagulation Centre, St James's Hospital, Dublin, Ireland and Trinity College Dublin, Dublin, Ireland
| | - Cédric Hermans
- Haemostasis and Thrombosis Unit, Division of Haematology, Cliniques universitaires Saint-Luc, Catholic University of Louvain (UCLouvain), Louvain, Belgium
| | | | - Claude Négrier
- UR4609 Hémostase & Thrombose, University Lyon 1, Lyon, France
| | - Antonio Coppola
- Regional Reference Centre for Inherited Bleeding Disorders, University Hospital of Parma, Parma, Italy
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Hassan S, Baselli G, Mollica L, Rossi RL, Chand H, El-Beshlawy A, Elalfy M, Ramanan V, Eshghi P, Karimi M, Palla R, Rosendaal FR, Peyvandi F. Predicting inhibitor development using a random peptide phage-display library approach in the SIPPET cohort. Blood Adv 2024; 8:2880-2889. [PMID: 38593222 PMCID: PMC11176960 DOI: 10.1182/bloodadvances.2023011388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
ABSTRACT Inhibitor development is the most severe complication of hemophilia A (HA) care and is associated with increased morbidity and mortality. This study aimed to use a novel immunoglobulin G epitope mapping method to explore the factor VIII (FVIII)-specific epitope profile in the SIPPET cohort population and to develop an epitope mapping-based inhibitor prediction model. The population consisted of 122 previously untreated patients with severe HA who were followed up for 50 days of exposure to FVIII or 3 years, whichever occurred first. Sampling was performed before FVIII treatment and at the end of the follow-up. The outcome was inhibitor development. The FVIII epitope repertoire was assessed by means of a novel random peptide phage-display assay. A least absolute shrinkage and selection operator (LASSO) regression model and a random forest model were fitted on posttreatment sample data and validated in pretreatment sample data. The predictive performance of these models was assessed by the C-statistic and a calibration plot. We identified 27 775 peptides putatively directed against FVIII, which were used as input for the statistical models. The C-statistic of the LASSO and random forest models were good at 0.78 (95% confidence interval [CI], 0.69-0.86) and 0.80 (95% CI, 0.72-0.89). Model calibration of both models was moderately good. Two statistical models, developed on data from a novel random peptide phage display assay, were used to predict inhibitor development before exposure to exogenous FVIII. These models can be used to set up diagnostic tests that predict the risk of inhibitor development before starting treatment with FVIII.
Collapse
Affiliation(s)
- Shermarke Hassan
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Guido Baselli
- Department of Transfusion Medicine and Hematology, Translational Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Mollica
- Department of Medical Biotechnologies and Translational Medicine, LITA/University of Milan, Milan, Italy
| | - Riccardo L. Rossi
- Bioinformatics, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi,” Milan, Italy
| | - Himani Chand
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Amal El-Beshlawy
- Pediatric Hematology Department, Cairo University Pediatric Hospital, Cairo, Egypt
| | - Mohsen Elalfy
- Faculty of Medicine, Ain Shams University, Department of Pediatrics, Cairo, Egypt
| | - Vijay Ramanan
- Department of Hematology, Jehangir Clinical Development Centre, Jehangir Hospital Premises, Pune, India
| | - Peyman Eshghi
- Congenital Pediatric Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Karimi
- Pediatric Hematology-Oncology Department, American Hospital Dubai, Dubai, United Arab Emirates
| | - Roberta Palla
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Frits R. Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Flora Peyvandi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| |
Collapse
|
9
|
Porcheddu V, Lhomme G, Giraudet R, Correia E, Maillère B. The self-reactive FVIII T cell repertoire in healthy individuals relies on a short set of epitopes and public clonotypes. Front Immunol 2024; 15:1345195. [PMID: 38510258 PMCID: PMC10951066 DOI: 10.3389/fimmu.2024.1345195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024] Open
Abstract
Non-mutated FVIII-specific CD4 T cell epitopes have been recently found to contribute to the development of inhibitors in patients with hemophilia A (HA), while auto-reactive CD4 T cells specific to FVIII circulate in the blood of healthy individuals at a frequency close to the foreign protein ovalbumin. Thus, although FVIII is a self-protein, the central tolerance raised against FVIII appears to be low. In this study, we conducted a comprehensive analysis of the FVIII CD4 T cell repertoire in 29 healthy donors. Sequencing of the CDR3β TCR region from isolated FVIII-specific CD4 T cells revealed a limited usage and pairing of TRBV and TRBJ genes as well as a mostly hydrophobic composition of the CDR3β region according to their auto-reactivity. The FVIII repertoire is dominated by a few clonotypes, with only 13 clonotypes accounting for half of the FVIII response. Through a large-scale epitope mapping of the full-length FVIII sequence, we identified 18 immunodominant epitopes located in the A1, A3, C1, and C2 domains and covering half of the T cell response. These epitopes exhibited a broad specificity for HLA-DR or DP molecules or both. T cell priming with this reduced set of peptides revealed that highly expanded clonotypes specific to these epitopes were responsible individually for up to 32% of the total FVIII repertoire. These FVIII T cell epitopes and clonotypes were shared among HLA-unrelated donors tested and previously reported HA patients. Our study highlights the role of the auto-reactive T cell response against FVIII in HA and its similarity to the response observed in healthy individuals. Thus, it provides valuable insights for the development of new tolerance induction and deimmunization strategies.
Collapse
Affiliation(s)
- Valeria Porcheddu
- Université de Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Département Médicaments et Technologies pour la Santé, Service d’Ingénierie Moléculaire pour la Santé (SIMoS), Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
10
|
Oomen I, Verhagen M, Miranda M, Allacher P, Beckers EAM, Blijlevens NMA, van der Bom JG, Coppens M, Driessens M, Eikenboom JCJ, Fijnvandraat K, Hassan S, van Heerde WL, Hooimeijer HL, Jansen JH, Kaijen P, Leebeek FWG, Meijer D, Paul H, Rijpma SR, Rosendaal FR, Smit C, van Vulpen LFD, Voorberg J, Schols SEM, Gouw SC. The spectrum of neutralizing and non-neutralizing anti-FVIII antibodies in a nationwide cohort of 788 persons with hemophilia A. Front Immunol 2024; 15:1355813. [PMID: 38455035 PMCID: PMC10918462 DOI: 10.3389/fimmu.2024.1355813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
Objectives Anti-factor VIII (FVIII) antibodies have been reported to exhibit both neutralizing and non-neutralizing characteristics. This is the first study investigating the full spectrum of FVIII-specific antibodies, including non-neutralizing antibodies, very-low titer inhibitors, and inhibitors, in a large nationwide population of persons with hemophilia A of all severities. Methods All persons with hemophilia A (mild (FVIII > 5-40 IU/dL)/moderate [FVIII 1-5 IU/dL)/severe (FVIII < 1 IU/dL)] with an available plasma sample who participated in the sixth Hemophilia in the Netherlands study between 2018 and 2019 were included. The presence of anti-FVIII antibodies of the immunoglobulin A, M, and G isotypes and IgG subclasses, along with antibody titer levels, were assessed using direct-binding ELISAs. FVIII specificity was assessed using a competition-based ELISA approach. The inhibitor status was determined using the Nijmegen ultra-sensitive Bethesda assay (NusBA) and the Nijmegen Bethesda assay (NBA). Results In total, 788 persons with hemophilia A (336 (42.6%) mild, 123 (15.6%) moderate, 329 (41.8%) severe hemophilia) were included. The median age was 45 years (IQR 24-60), and the majority (50.9%) had over 150 exposure days to FVIII concentrates. Within our population, 144 (18.3%) individuals had non-neutralizing FVIII-specific antibodies, 10 (1.3%) had very low-titer inhibitors (NusBA positive; NBA negative), and 13 (1.6%) had inhibitors (both NusBA and NBA positive). IgG1 was the most abundant FVIII-specific antibody subclass, and the highest titer levels were found for IgG4. In individuals without a reported history of inhibitor development, no clear differences were observed in antibody patterns between those who were minimally or highly exposed to FVIII concentrates. IgG4 subclass antibodies were only observed in persons with a reported history of FVIII inhibitor or in those with a currently detected (very low-titer) inhibitor. Conclusion In this cross-sectional study, we identified non-neutralizing antibodies in a relatively large proportion of persons with hemophilia A. In contrast, in our population, consisting of persons highly exposed to FVIII concentrates, (very low-titer) inhibitors were detected only in a small proportion of persons, reflecting a well-tolerized population. Hence, our findings suggest that only a small subpopulation of non-neutralizing FVIII-specific antibodies is associated with clinically relevant inhibitors.
Collapse
Affiliation(s)
- Ilja Oomen
- Department of Pediatric Hematology, Amsterdam University Medical Center (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Department of Molecular Hematology, Sanquin Research, Amsterdam, Netherlands
| | - Marieke Verhagen
- Department of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
- Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Nijmegen, Netherlands
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Peter Allacher
- Institute Krems Bioanalytics, International Management Center (IMC) University of Applied Sciences Krems, Krems, Austria
| | - Erik A. M. Beckers
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, Netherlands
| | - Nicole M. A. Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
- Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Nijmegen, Netherlands
| | - Johanna G. van der Bom
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Michiel Coppens
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, Netherlands
| | | | - Jeroen C. J. Eikenboom
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Karin Fijnvandraat
- Department of Pediatric Hematology, Amsterdam University Medical Center (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Department of Molecular Hematology, Sanquin Research, Amsterdam, Netherlands
| | - Shermarke Hassan
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Infectious Diseases Data Observatory, Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Waander L. van Heerde
- Department of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
- Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Nijmegen, Netherlands
- Enzyre BV, Nijmegen, Netherlands
| | - H. Louise Hooimeijer
- Division of Hematology/Oncology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joop H. Jansen
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Paul Kaijen
- Department of Molecular Hematology, Sanquin Research, Amsterdam, Netherlands
| | - Frank W. G. Leebeek
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Daniëlle Meijer
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Helmut Paul
- Institute Krems Bioanalytics, International Management Center (IMC) University of Applied Sciences Krems, Krems, Austria
| | - Sanna R. Rijpma
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frits R. Rosendaal
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Cees Smit
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, Netherlands
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Lize F. D. van Vulpen
- Center for Benign Hematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Jan Voorberg
- Department of Molecular Hematology, Sanquin Research, Amsterdam, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Saskia E. M. Schols
- Department of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
- Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Nijmegen, Netherlands
| | - Samantha C. Gouw
- Department of Pediatric Hematology, Amsterdam University Medical Center (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
11
|
Harhala MA, Gembara K, Rybicka I, Kaźmierczak ZM, Miernikiewicz P, Majewska JM, Budziar W, Nasulewicz-Goldeman A, Nelson DC, Owczarek B, Dąbrowska K. Immunogenic epitope scanning in bacteriolytic enzymes Pal and Cpl-1 and engineering Pal to escape antibody responses. Front Immunol 2023; 14:1075774. [PMID: 37781366 PMCID: PMC10540205 DOI: 10.3389/fimmu.2023.1075774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Bacteriolytic enzymes are promising antibacterial agents, but they can cause a typical immune response in vivo. In this study, we used a targeted modification method for two antibacterial endolysins, Pal and Cpl-1. We identified the key immunogenic amino acids, and designed and tested new, bacteriolytic variants with altered immunogenicity. One new variant of Pal (257-259 MKS → TFG) demonstrated decreased immunogenicity while a similar mutant (257-259 MKS → TFK) demonstrated increased immunogenicity. A third variant (280-282 DKP → GGA) demonstrated significantly increased antibacterial activity and it was not cross-neutralized by antibodies induced by the wild-type enzyme. We propose this variant as a new engineered endolysin with increased antibacterial activity that is capable of escaping cross-neutralization by antibodies induced by wild-type Pal. We show that efficient antibacterial enzymes that avoid cross-neutralization by IgG can be developed by epitope scanning, in silico design, and substitutions of identified key amino acids with a high rate of success. Importantly, this universal approach can be applied to many proteins beyond endolysins and has the potential for design of numerous biological drugs.
Collapse
Affiliation(s)
- Marek Adam Harhala
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Research and Development Centre, Regional Specialist Hospital, Wroclaw, Poland
| | - Katarzyna Gembara
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Research and Development Centre, Regional Specialist Hospital, Wroclaw, Poland
| | - Izabela Rybicka
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Zuzanna Maria Kaźmierczak
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Research and Development Centre, Regional Specialist Hospital, Wroclaw, Poland
| | - Paulina Miernikiewicz
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Marta Majewska
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Wiktoria Budziar
- Research and Development Centre, Regional Specialist Hospital, Wroclaw, Poland
| | - Anna Nasulewicz-Goldeman
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Daniel C. Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Barbara Owczarek
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Krystyna Dąbrowska
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Research and Development Centre, Regional Specialist Hospital, Wroclaw, Poland
| |
Collapse
|
12
|
Kaczmarek R, Piñeros AR, Patterson PE, Bertolini TB, Perrin GQ, Sherman A, Born J, Arisa S, Arvin MC, Kamocka MM, Martinez MM, Dunn KW, Quinn SM, Morris JJ, Wilhelm AR, Kaisho T, Munoz-Melero M, Biswas M, Kaplan MH, Linnemann AK, George LA, Camire RM, Herzog RW. Factor VIII trafficking to CD4+ T cells shapes its immunogenicity and requires several types of antigen-presenting cells. Blood 2023; 142:290-305. [PMID: 37192286 PMCID: PMC10375270 DOI: 10.1182/blood.2022018937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
Despite >80 years of clinical experience with coagulation factor VIII (FVIII) inhibitors, surprisingly little is known about the in vivo mechanism of this most serious complication of replacement therapy for hemophilia A. These neutralizing antidrug alloantibodies arise in ∼30% of patients. Inhibitor formation is T-cell dependent, but events leading up to helper T-cell activation have been elusive because of, in part, the complex anatomy and cellular makeup of the spleen. Here, we show that FVIII antigen presentation to CD4+ T cells critically depends on a select set of several anatomically distinct antigen-presenting cells, whereby marginal zone B cells and marginal zone and marginal metallophilic macrophages but not red pulp macrophages (RPMFs) participate in shuttling FVIII to the white pulp in which conventional dendritic cells (DCs) prime helper T cells, which then differentiate into follicular helper T (Tfh) cells. Toll-like receptor 9 stimulation accelerated Tfh cell responses and germinal center and inhibitor formation, whereas systemic administration of FVIII alone in hemophilia A mice increased frequencies of monocyte-derived and plasmacytoid DCs. Moreover, FVIII enhanced T-cell proliferation to another protein antigen (ovalbumin), and inflammatory signaling-deficient mice were less likely to develop inhibitors, indicating that FVIII may have intrinsic immunostimulatory properties. Ovalbumin, which, unlike FVIII, is absorbed into the RPMF compartment, fails to elicit T-cell proliferative and antibody responses when administered at the same dose as FVIII. Altogether, we propose that an antigen trafficking pattern that results in efficient in vivo delivery to DCs and inflammatory signaling, shape the immunogenicity of FVIII.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Annie R. Piñeros
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Paige E. Patterson
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Thais B. Bertolini
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - George Q. Perrin
- Department of Pediatrics, University of Florida, Gainesville, FL
| | | | - Jameson Born
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Sreevani Arisa
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Matthew C. Arvin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Malgorzata M. Kamocka
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Michelle M. Martinez
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Kenneth W. Dunn
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Sean M. Quinn
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Johnathan J. Morris
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Amelia R. Wilhelm
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Maite Munoz-Melero
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Moanaro Biswas
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Amelia K. Linnemann
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Indiana Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Lindsey A. George
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Rodney M. Camire
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Roland W. Herzog
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
13
|
Yılmaz S, Doğanyiğit Z, Oflamaz AO, Ateş Ş, Söylemez ESA, Nisari M, Farooqı AA. Determination of Rutin's antitumoral effect on EAC solid tumor by AgNOR count and PI3K/AKT/mTOR signaling pathway. Med Oncol 2023; 40:131. [PMID: 36971893 DOI: 10.1007/s12032-023-01999-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Rutin is one of the flavonoids found in fruits and vegetables. The PI3K/AKT/mTOR signaling pathway is critical for the life cycle at the cellular level. In current study, we purposed to demonstrate the antitumoral effect of rutin at different doses through the mTOR-signaling pathway and argyrophilic nucleolar regulatory region. EAC cells were injected subcutaneously into the experimental groups. 25 and 50 mg/kg Rutin were injected intraperitoneally to the animals with solid tumors for 14 days. Immunohistochemical, Real-time PCR and AgNOR analyzes were actualized on the taken tumors. When the rutin given groups and the tumor group were compared, the tumor size increase was detected to be statistically significant (p < 0.05). In immunohistochemical analysis, a significant decrease was encountered in the AKT, mTOR, PI3K and F8 expressions especially in the groups administered 25 mg Rutin, in comparison with the control group (p < 0.05). AgNOR area/nuclear area (TAA/NA) and average AgNOR number were determineted, and statistically important differences were detected between the groups in terms of TAA/NA ratio (p < 0.05). There were significant statistical differences between the mRNA quantity of the PI3K, AKT1 and mTOR genes (p < 0.05). In the in vitro study, cell apoptosis was evaluated with different doses of annexin V and it was determined that a dose of 10 µg/mL Rutin induced apoptosis (p < 0.05). In our study, it was demonstrated in vivo and in vitro that Rutin has an anti-tumor effect on the development of solid tumors formed by both EAC cells.
Collapse
Affiliation(s)
- Seher Yılmaz
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, 66100, Yozgat, Turkey.
| | - Züleyha Doğanyiğit
- Department of Histology and Embriology, Faculty of Medicine, Yozgat Bozok University, 66100, Yozgat, Turkey
| | - Aslı Okan Oflamaz
- Department of Histology and Embriology, Faculty of Medicine, Yozgat Bozok University, 66100, Yozgat, Turkey
| | - Şükrü Ateş
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, 66100, Yozgat, Turkey
| | - Evrim Suna Arıkan Söylemez
- Department of Medical Biology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03100, Afyon, Turkey
| | - Mehtap Nisari
- Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | |
Collapse
|
14
|
Morgan G, Back E, Rosa D, O’Hara J, Finnegan A. Assessing the value of bypassing agent therapy used prophylactic versus on-demand, during immune tolerance induction for treatment of inhibitors: a retrospective chart review. Orphanet J Rare Dis 2023; 18:47. [PMID: 36882773 PMCID: PMC9990186 DOI: 10.1186/s13023-023-02654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Haemophilia A is a bleeding disorder caused by deficiency of coagulation factor VIII (FVIII) which leads to severe and repeated bleedings. There is a need to understand the optimal treatment pathway for FVIII inhibitors with the use of immune tolerance induction (ITI) and the role of haemostatic 'bypassing' agents (BPA) on-demand (OD) or prophylactically (Px). The aim of this study was to gain a better understanding of the real-world use of BPA therapy administered prophylactically or on-demand concomitant with ITI, for the treatment of an inhibitor to FVIII replacement therapy in patients with severe haemophilia A. METHODS Retrospective observational data were used to capture disease management information for patients who were aged 16 or under and had received ITI and BPA treatment for their most recent inhibitor from Jan-2015 to Jan-2019, for 47 patients in the UK and Germany. Descriptive comparisons of the clinical effectiveness and resource utilisation of Px and OD BPA therapy during ITI were conducted. RESULTS During ITI and BPA treatment, for an inhibitor, bleeding events averaged 1.5 and 1.2 for Px and OD treatment respectively. Compared to only BPA therapy we see 3.4 and 1.4 bleeding events for Px and OD respectively during an inhibitor. CONCLUSION Baseline disease characteristics differed between BPA therapy cohorts and this resulted in higher clinical effectiveness of ITI treatment alongside BPA Px than BPA OD during an inhibitor.
Collapse
Affiliation(s)
- George Morgan
- HCD Economics, The Innovation Centre, Keckwick Lane, Daresbury, WA4 4FS UK
| | - Emily Back
- HCD Economics, The Innovation Centre, Keckwick Lane, Daresbury, WA4 4FS UK
| | - Doug Rosa
- HCD Economics, The Innovation Centre, Keckwick Lane, Daresbury, WA4 4FS UK
| | - Jamie O’Hara
- HCD Economics, The Innovation Centre, Keckwick Lane, Daresbury, WA4 4FS UK
- grid.43710.310000 0001 0683 9016Faculty of Health and Social Care, University of Chester, Chester, UK
| | - Alan Finnegan
- grid.43710.310000 0001 0683 9016Faculty of Health and Social Care, University of Chester, Chester, UK
| |
Collapse
|
15
|
Albattat S, Alabdultaif A, Albattat F, Albattat B. Cerebellar hematoma in severe hemophilia with inhibitor on emicizumab prophylaxis: a case report. J Med Case Rep 2023; 17:63. [PMID: 36814352 PMCID: PMC9948523 DOI: 10.1186/s13256-023-03783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Emicizumab is a novel prophylactic medication used to treat patients with hemophilia A. It is indicated to minimize the frequency of bleeding episodes and the severity of serious bleeding in patients with hemophilia A utilizing inhibitors. However, some cases of bleeding episodes have been reported, and more data are needed regarding their management and expected outcomes. CASE PRESENTATION We report a case of a 4-year-old Saudi Arabian boy with severe hemophilia A who presented with a post-traumatic cerebral hemorrhage. The patient, with high titer inhibitors, was on emicizumab prophylaxis therapy. On hospital admission, he received tranexamic acid (10 mg intravenously, every 6 hours), and recombinant activated factor VII 120 µg/kg every 2 hours for 2 days then every 4 hours for 4 days. On follow-up, the patient showed no signs of neurological deficit. There was no need for emergency neurosurgical intervention since the bleeding had been controlled throughout the first 2 days. There were no recorded thrombotic sequelae or neurological complications, with complete resolution within 10 days. CONCLUSIONS This case implies that low-dose recombinant activated factor VII might be used safely and effectively with patients with hemophilia A on emicizumab prophylaxis, to reduce the risk of cerebral hemorrhage or another episode of serious bleeding along with its long-term complications.
Collapse
Affiliation(s)
- Sami Albattat
- Pediatric Department, Maternity and Children's Hospital, Alhassa, Ministry of Health, Najran, Saudi Arabia.
| | - Abbas Alabdultaif
- grid.415696.90000 0004 0573 9824Pediatric Department, Maternity and Children’s Hospital, Alhassa, Ministry of Health, Najran, Saudi Arabia
| | - Fatimah Albattat
- grid.412140.20000 0004 1755 9687King Faisal University, Alhassa, Saudi Arabia
| | - Batla Albattat
- grid.412140.20000 0004 1755 9687King Faisal University, Alhassa, Saudi Arabia
| |
Collapse
|
16
|
Liu W, Xue F, Fu R, Ding B, Li M, Sun T, Chen Y, Liu X, Ju M, Dai X, Wu Q, Zhou Z, Yu J, Wang X, Zhu Q, Zhou H, Yang R, Zhang L. Preclinical studies of a factor X activator and a phase 1 trial for hemophilia patients with inhibitors. J Thromb Haemost 2023; 21:1453-1465. [PMID: 36796484 DOI: 10.1016/j.jtha.2023.01.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Bleeding episodes in hemophiliacs with inhibitors are difficult to control. Staidson protein-0601 (STSP-0601), a specific factor (F)X activator purified from the venom of Daboia russelii siamensis, has been developed. OBJECTIVES We aimed to investigate the efficacy and safety of STSP-0601 in preclinical and clinical studies. METHODS In vitro and in vivo preclinical studies were performed. A phase 1, first-in-human, multicenter, and open-label trial was conducted. The clinical study was divided into parts A and B. Hemophiliacs with inhibitors were eligible for this study. Patients received a single intravenous injection of STSP-0601 (0.01 U/kg, 0.04 U/kg, 0.08 U/kg, 0.16 U/kg, 0.32 U/kg, or 0.48 U/kg) in part A or a maximum of 6 4-hourly injections (0.16 U/kg) in part B. The primary endpoint for each part was the number of adverse events (AEs) from baseline to 168 hours after administration. This study was registered at clinicaltrials.gov (NCT-04747964 and NCT-05027230). RESULTS Preclinical studies showed that STSP-0601 could specifically activate FX in a dose-dependent manner. In the clinical study, 16 patients in part A and 7 patients in part B were enrolled. Eight (22.2%) AEs in part A and 18 (75.0%) AEs in part B were reported to be related to STSP-0601. Neither severe AEs nor dose-limiting toxicity events were reported. There were no thromboembolic event. The antidrug antibody of STSP-0601 was not detected. CONCLUSION Preclinical and clinical studies showed that STSP-0601 had a good ability to activate FX and had a good safety profile. STSP-0601 could be used as a hemostatic treatment in hemophiliacs with inhibitors.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
| | - Bingjie Ding
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Hemostasis and Thrombosis Diagnostic Engineering Research Center of Henan Province, Zhengzhou, China
| | - Mengjuan Li
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Hemostasis and Thrombosis Diagnostic Engineering Research Center of Henan Province, Zhengzhou, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
| | - Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
| | - Quanrui Wu
- Staidson (Beijing) Biopharmaceuticals Co, Ltd, Beijing, China
| | - Zan Zhou
- Staidson (Beijing) Biopharmaceuticals Co, Ltd, Beijing, China
| | - Jiaojiao Yu
- Staidson (Beijing) Biopharmaceuticals Co, Ltd, Beijing, China
| | - Xiaomin Wang
- Staidson (Beijing) Biopharmaceuticals Co, Ltd, Beijing, China
| | - Qing Zhu
- Staidson (Beijing) Biopharmaceuticals Co, Ltd, Beijing, China
| | - Hu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Hemostasis and Thrombosis Diagnostic Engineering Research Center of Henan Province, Zhengzhou, China.
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China.
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China.
| |
Collapse
|
17
|
Azar SS, Gopal S. Serious Blood Disorders: A Focus on Sickle Cell Disease and Hemophilia. PALLIATIVE CARE IN HEMATOLOGIC MALIGNANCIES AND SERIOUS BLOOD DISORDERS 2023:37-54. [DOI: 10.1007/978-3-031-38058-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
One Health: Animal Models of Heritable Human Bleeding Diseases. Animals (Basel) 2022; 13:ani13010087. [PMID: 36611696 PMCID: PMC9818017 DOI: 10.3390/ani13010087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022] Open
Abstract
Animal models of human and animal diseases have long been used as the lynchpin of experimental and clinical research. With the discovery and implementation of novel molecular and nano-technologies, cellular research now has advanced to assessing signal transduction pathways, gene editing, and gene therapies. The contribution of heritable animal models to human and animal health as related to hemostasis is reviewed and updated with the advent of gene editing, recombinant and gene therapies.
Collapse
|
19
|
Arruda VR, Lillicrap D, Herzog RW. Immune complications and their management in inherited and acquired bleeding disorders. Blood 2022; 140:1075-1085. [PMID: 35793465 PMCID: PMC9461471 DOI: 10.1182/blood.2022016530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Disorders of coagulation, resulting in serious risks for bleeding, may be caused by autoantibody formation or by mutations in genes encoding coagulation factors. In the latter case, antidrug antibodies (ADAs) may form against the clotting factor protein drugs used in replacement therapy, as is well documented in the treatment of the X-linked disease hemophilia. Such neutralizing antibodies against factors VIII or IX substantially complicate treatment. Autoantibody formation against factor VIII leads to acquired hemophilia. Although rare, antibody formation may occur in the treatment of other clotting factor deficiencies (eg, against von Willebrand factor [VWF]). The main strategies that have emerged to address these immune responses include (1) clinical immune tolerance induction (ITI) protocols; (2) immune suppression therapies (ISTs); and (3) the development of drugs that can improve hemostasis while bypassing the antibodies against coagulation factors altogether (some of these nonfactor therapies/NFTs are antibody-based, but they are distinct from traditional immunotherapy as they do not target the immune system). Choice of immune or alternative therapy and criteria for selection of a specific regimen for inherited and autoimmune bleeding disorders are explained. ITI serves as an important proof of principle that antigen-specific immune tolerance can be achieved in humans through repeated antigen administration, even in the absence of immune suppression. Finally, novel immunotherapy approaches that are still in the preclinical phase, such as cellular (for instance, regulatory T cell [Treg]) immunotherapies, gene therapy, and oral antigen administration, are discussed.
Collapse
Affiliation(s)
- Valder R Arruda
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics at The Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada; and
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
20
|
Childers KC, Peters SC, Spiegel PC. Structural insights into blood coagulation factor VIII: Procoagulant complexes, membrane binding, and antibody inhibition. J Thromb Haemost 2022; 20:1957-1970. [PMID: 35722946 DOI: 10.1111/jth.15793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Advances in structural studies of blood coagulation factor VIII (FVIII) have provided unique insight into FVIII biochemistry. Atomic detail models of the B domain-deleted FVIII structure alone and in complex with its circulatory partner, von Willebrand factor (VWF), provide a structure-based rationale for hemophilia A-associated mutations which impair FVIII stability and increase FVIII clearance rates. In this review, we discuss the findings from these studies and their implications toward the design of a recombinant FVIII with improved circulatory half-life. Additionally, we highlight recent structural studies of FVIII bound to inhibitory antibodies that have refined our understanding of FVIII binding to activated platelet membranes and formation of the intrinsic tenase complex. The combination of bioengineering and structural efforts to understand FVIII biochemistry will improve therapeutics for treating hemophilia A, either through FVIII replacement therapeutics, immune tolerance induction, or gene therapy approaches.
Collapse
Affiliation(s)
- Kenneth C Childers
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - Shaun C Peters
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - Paul Clint Spiegel
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
21
|
Targets of autoantibodies in acquired hemophilia A are not restricted to factor VIII: data from the GTH-AH 01/2010 study. Blood Adv 2022; 7:122-130. [PMID: 35947142 PMCID: PMC9830154 DOI: 10.1182/bloodadvances.2022008071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
The root cause of autoantibody formation against factor VIII (FVIII) in acquired hemophilia A (AHA) remains unclear. We aimed to assess whether AHA is exclusively associated with autoantibodies toward FVIII or whether patients also produce increased levels of autoantibodies against other targets. A case-control study was performed enrolling patients with AHA and age-matched controls. Human epithelial cell (HEp-2) immunofluorescence was applied to screen for antinuclear (ANA) and anticytoplasmic autoantibodies. Screening for autoantibodies against extractable nuclear antigens was performed by enzyme immunoassay detecting SS-A/Ro, SS-B/La, U1RNP, Scl-70, Jo-1, centromere B, Sm, double-stranded DNA, and α-fodrin (AF). Patients with AHA were more often positive for ANA than control patients (64% vs 30%; odds ratio [OR] 4.02, 1.98-8.18) and had higher ANA titers detected than controls. Cytoplasmic autoantibodies and anti-AF immunoglobulin A autoantibodies were also more frequent in patients with AHA compared with controls. Autoantibodies against any target other than FVIII were found in 78% of patients with AHA compared with 46% of controls (OR 4.16, 1.98-8.39). Results were similar preforming sensitivity analyses (excluding either subjects with autoimmune disorders, cancer, pregnancy, or immunosuppressive medication at baseline) and in multivariable binary logistic regression. To exclude that autoantibody staining was merely a result of cross-reactivity of anti-FVIII autoantibodies, we tested a mix of 7 well-characterized monoclonal anti-FVIII antibodies. These antibodies did not stain HEp-2 cells used for ANA detection. In conclusion, a diverse pattern of autoantibodies is associated with AHA, suggesting that a more general breakdown of immune tolerance might be involved in its pathology.
Collapse
|
22
|
Vander Kooi A, Wang S, Fan MN, Chen A, Zhang J, Chen CY, Cai X, Konkle BA, Xiao W, Li L, Miao CH. Influence of N-glycosylation in the A and C domains on the immunogenicity of factor VIII. Blood Adv 2022; 6:4271-4282. [PMID: 35511725 PMCID: PMC9327553 DOI: 10.1182/bloodadvances.2021005758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
The most significant complication in hemophilia A treatment is the formation of inhibitors against factor VIII (FVIII) protein. Glycans and glycan-binding proteins are central to a properly functioning immune system. This study focuses on whether glycosylation of FVIII plays an important role in induction and regulation of anti-FVIII immune responses. We investigated the potential roles of 4 N-glycosylation sites, including N41 and N239 in the A1 domain, N1810 in the A3 domain, and N2118 in the C1 domain of FVIII, in moderating its immunogenicity. Glycomics analysis of plasma-derived FVIII revealed that sites N41, N239, and N1810 contain mostly sialylated complex glycoforms, while high mannose glycans dominate at site N2118. A missense variant that substitutes asparagine (N) to glutamine (Q) was introduced to eliminate glycosylation on each of these sites. Following gene transfer of plasmids encoding B domain deleted FVIII (BDD-FVIII) and each of these 4 FVIII variants, it was found that specific activity of FVIII in plasma remained similar among all treatment groups. Slightly increased or comparable immune responses in N41Q, N239Q, and N1810Q FVIII variant plasmid-treated mice and significantly decreased immune responses in N2118Q FVIII plasmid-treated mice were observed when compared with BDD-FVIII plasmid-treated mice. The reduction of inhibitor response by N2118Q FVIII variant was also demonstrated in AAV-mediated gene transfer experiments. Furthermore, a specific glycopeptide epitope surrounding the N2118 glycosylation site was identified and characterized to activate T cells in an FVIII-specific proliferation assay. These results indicate that N-glycosylation of FVIII can have significant impact on its immunogenicity.
Collapse
Affiliation(s)
- Amber Vander Kooi
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA
| | - Meng-Ni Fan
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Alex Chen
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Junping Zhang
- School of Medicines, Indiana University, Bloomington, IN; and
| | - Chun-Yu Chen
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Xiaohe Cai
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | | | - Weidong Xiao
- School of Medicines, Indiana University, Bloomington, IN; and
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA
| | - Carol H. Miao
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
23
|
Prezotti ANL, Frade-Guanaes JO, Yamaguti-Hayakawa GG, Ozelo MC. Immunogenicity of Current and New Therapies for Hemophilia A. Pharmaceuticals (Basel) 2022; 15:ph15080911. [PMID: 35893734 PMCID: PMC9331070 DOI: 10.3390/ph15080911] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Anti-drug antibody (ADA) development is a significant complication in the treatment of several conditions. For decades, the mainstay of hemophilia A treatment was the replacement of deficient coagulation factor VIII (FVIII) to restore hemostasis, control, and prevent bleeding events. Recently, new products have emerged for hemophilia A replacement therapy, including bioengineered FVIII molecules with enhanced pharmacokinetic profiles: the extended half-life (EHL) recombinant FVIII products. However, the main complication resulting from replacement treatment in hemophilia A is the development of anti-FVIII neutralizing alloantibodies, known as inhibitors, affecting approximately 25–30% of severe hemophilia A patients. Therefore, the immunogenicity of each FVIII product and the mechanisms that could help increase the tolerance to these products have become important research topics in hemophilia A. Furthermore, patients with inhibitors continue to require effective treatment for breakthrough bleedings and procedures, despite the availability of non-replacement therapy, such as emicizumab. Herein, we discuss the currently licensed treatments available for hemophilia A and the immunogenicity of new therapies, such as EHL-rFVIII products, compared to other products available.
Collapse
Affiliation(s)
- Alessandra N. L. Prezotti
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, UNICAMP, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas 13083-887, SP, Brazil; (A.N.L.P.); (J.O.F.-G.); (G.G.Y.-H.)
- HEMOES, Hematology and Hemotherapy Center Dr. Marcos Daniel Santos, Av. Marechal Campos, 1468, Maruípe, Vitória 29047-105, ES, Brazil
| | - Jéssica O. Frade-Guanaes
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, UNICAMP, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas 13083-887, SP, Brazil; (A.N.L.P.); (J.O.F.-G.); (G.G.Y.-H.)
- Hemocentro UNICAMP, University of Campinas, Rua Carlos Chagas, 480, Cidade Universitária, Campinas 13083-878, SP, Brazil
| | - Gabriela G. Yamaguti-Hayakawa
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, UNICAMP, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas 13083-887, SP, Brazil; (A.N.L.P.); (J.O.F.-G.); (G.G.Y.-H.)
- Hemocentro UNICAMP, University of Campinas, Rua Carlos Chagas, 480, Cidade Universitária, Campinas 13083-878, SP, Brazil
| | - Margareth C. Ozelo
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, UNICAMP, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas 13083-887, SP, Brazil; (A.N.L.P.); (J.O.F.-G.); (G.G.Y.-H.)
- Hemocentro UNICAMP, University of Campinas, Rua Carlos Chagas, 480, Cidade Universitária, Campinas 13083-878, SP, Brazil
- Correspondence: ; Tel.: +55-(19)-3521-8395
| |
Collapse
|
24
|
Lundgren TS, Denning G, Stowell SR, Spencer HT, Doering CB. Pharmacokinetic analysis identifies a factor VIII immunogenicity threshold after AAV gene therapy in hemophilia A mice. Blood Adv 2022; 6:2628-2645. [PMID: 35286375 PMCID: PMC9043920 DOI: 10.1182/bloodadvances.2021006359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Advances in the development of novel treatment options for hemophilia A are prevalent. However, the anti-factor VIII (FVIII) neutralizing antibody (inhibitor) response to existing FVIII products remains a major treatment challenge. Although some novel products are designed to function in the presence of inhibitors, they do not specific address the immunogenicity risk or mechanistic causes of inhibitor development, which remain unclear. Furthermore, most preclinical studies supporting clinical gene therapy programs have reported immunogenicity signals in animal models, especially at higher vector doses and sometimes using multiple vector designs. In these settings, immunogenicity risk factor determination, comparative immunogenicity of competing vector designs, and the potential for obtaining meaningful prognostic data remain relatively unexplored. Additionally, there remains the opportunity to investigate clinical gene therapy as an alternative to standard immune tolerance induction therapy. The current study was designed to address these issues through longitudinal dose-response evaluation of 4 adeno-associated viral (AAV) vector candidates encoding 2 different FVIII transgenes in a murine model of hemophilia A. Plasma FVIII activity and anti-FVIII antibody data were used to generate a pharmacokinetic model that (1) identifies initial AAV-FVIII product expression kinetics as the dominant risk factor for inhibitor development, (2) predicts a therapeutic window where immune tolerance is achieved, and (3) demonstrates evidence of gene therapy-based immune tolerance induction. Although there are known limitations to the predictive value of preclinical immunogenicity testing, these studies can uncover or support the development of design principles that can guide the development of safe and effective genetic medicines.
Collapse
Affiliation(s)
- Taran S. Lundgren
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA
| | | | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - H. Trent Spencer
- Expression Therapeutics, Inc., Tucker, GA
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| | - Christopher B. Doering
- Expression Therapeutics, Inc., Tucker, GA
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
25
|
Badescu MC, Badulescu OV, Butnariu LI, Floria M, Ciocoiu M, Costache II, Popescu D, Bratoiu I, Buliga-Finis ON, Rezus C. Current Therapeutic Approach to Atrial Fibrillation in Patients with Congenital Hemophilia. J Pers Med 2022; 12:519. [PMID: 35455634 PMCID: PMC9029474 DOI: 10.3390/jpm12040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular disease in hemophiliacs has an increasing prevalence due to the aging of this population. Hemophiliacs are perceived as having a high bleeding risk due to the coagulation factor VIII/IX deficiency, but it is currently acknowledged that they also have an important ischemic risk. The treatment of atrial fibrillation (AF) is particularly challenging since it usually requires anticoagulant treatment. The CHA2DS2-VASc score is used to estimate the risk of stroke and peripheral embolism, and along with the severity of hemophilia, guide the therapeutic strategy. Our work provides the most complete, structured, and updated analysis of the current therapeutic approach of AF in hemophiliacs, emphasizing that there is a growing interest in therapeutic strategies that allow for short-term anticoagulant therapy. Catheter ablation and left atrial appendage occlusion have proven to be efficient and safe procedures in hemophiliacs, if appropriate replacement therapy can be provided.
Collapse
Affiliation(s)
- Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.B.); (I.-I.C.); (D.P.); (O.N.B.-F.); (C.R.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iasi, Romania
| | - Oana Viola Badulescu
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.V.B.); (M.C.)
- Hematology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iasi, Romania
| | - Lacramioara Ionela Butnariu
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.B.); (I.-I.C.); (D.P.); (O.N.B.-F.); (C.R.)
- Internal Medicine Clinic, “Dr. Iacob Czihac” Emergency Military Clinical Hospital Iasi, 700483 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.V.B.); (M.C.)
| | - Irina-Iuliana Costache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.B.); (I.-I.C.); (D.P.); (O.N.B.-F.); (C.R.)
- Cardiology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iasi, Romania
| | - Diana Popescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.B.); (I.-I.C.); (D.P.); (O.N.B.-F.); (C.R.)
| | - Ioana Bratoiu
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.B.); (I.-I.C.); (D.P.); (O.N.B.-F.); (C.R.)
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.B.); (I.-I.C.); (D.P.); (O.N.B.-F.); (C.R.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iasi, Romania
| |
Collapse
|
26
|
Hoffmeister KM. Nonhuman sugars cause factor VIII troubles. Blood 2022; 139:1262-1263. [PMID: 35238885 PMCID: PMC8900279 DOI: 10.1182/blood.2021012121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
|
27
|
Nonneutralizing FVIII-specific antibody signatures in patients with Hemophilia A and in healthy donors. Blood Adv 2021; 6:946-958. [PMID: 34847225 PMCID: PMC8945293 DOI: 10.1182/bloodadvances.2021005745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
Isotypes and IgG subclasses of nonneutralizing FVIII-specific antibodies are similar in hemophilia A patients and healthy subjects. Prevalences, titers, and affinities of nonneutralizing antibodies, however, differ significantly between patients and healthy subjects.
Previous studies identified nonneutralizing FVIII-specific antibodies in the circulation of severe and nonsevere hemophilia A (sHA and nsHA) patients without FVIII inhibitors and also in some healthy individuals. To gain a better understanding of the nature of these nonneutralizing antibody responses, we analyzed and compared anti-FVIII antibody signatures in 3 study cohorts: previously treated sHA as well as nsHA patients without FVIII inhibitors, and healthy donors. FVIII-binding IgM, IgG1-4, and IgA antibodies were differentiated, FVIII-specificity was assessed, and associated apparent affinity constants were determined. Our results indicate that the nonneutralizing FVIII-specific antibody response in all study cohorts is dominated by IgG1 and IgA. Prevalences, titers, and affinities of these nonneutralizing antibodies were higher in the hemophilia A cohorts than in healthy donors. Stratification for the anti-hepatitis C virus (HCV) antibody status demonstrated the presence of FVIII-specific IgA with elevated titers in sHA patients with an active or past HCV infection when compared with HCV antibody-positive nsHA patients or HCV antibody-negative patients and healthy donors. Increased titers and affinities of FVIII-specific IgG1 antibodies were observed in a considerable number of hemophilia A patients as opposed to healthy subjects independently of the patients’ anti-HCV antibody status. Overall, our findings support the hypothesis that the generation of nonneutralizing anti-FVIII antibodies in healthy individuals and in noninhibitor hemophilia A patients might be based on similar immune mechanisms. However, differences in prevalences, titers, and affinities of these antibodies indicate distinct differences in the antibody evolution between healthy individuals and patients.
Collapse
|
28
|
Srinivasan A, Herzog RW, Khan I, Sherman A, Bertolini T, Wynn T, Daniell H. Preclinical development of plant-based oral immune modulatory therapy for haemophilia B. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1952-1966. [PMID: 33949086 PMCID: PMC8486253 DOI: 10.1111/pbi.13608] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 05/03/2023]
Abstract
Anti-drug antibody (ADA) formation is a major complication in treatment of the X-linked bleeding disorder haemophilia B (deficiency in coagulation factor IX, FIX). Current clinical immune tolerance protocols are often not effective due to complications such as anaphylactic reactions against FIX. Plant-based oral tolerance induction may address this problem, as illustrated by the recent first regulatory approval of orally delivered plant cells to treat peanut allergy. Our previous studies showed that oral delivery of plant cells expressing FIX fused to the transmucosal carrier CTB (cholera toxin subunit B) in chloroplasts suppressed ADA in animals with haemophilia B. We report here creation of the first lettuce transplastomic lines expressing a coagulation factor, in the absence of antibiotic resistance gene. Stable integration of the CTB-FIX gene and homoplasmy (transformation of ˜10 000 copies in each cell) were maintained in both T1 and T2 generation marker-free plants. CTB-FIX expression in lyophilized leaves of T1 and T2 marker-free plants was 1.0-1.5 mg/g dry weight, confirming that the marker excision did not affect antigen levels. Oral administration of CTB-FIX to Sprague Dawley rats at 0.25, 1 or 2.5 mg/kg did not produce overt adverse effects or toxicity. The no-observed-adverse-effect level (NOAEL) is at least 2.5 mg/kg for a single oral administration in rats. Oral administration of CTB-FIX at 0.3 or 1.47 mg/kg either mixed in food or as an oral suspension to Beagle dogs did not produce any observable toxicity. These toxicology studies should facilitate filing of regulatory approval documents and evaluation in haemophilia B patients.
Collapse
Affiliation(s)
- Aparajitha Srinivasan
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland W. Herzog
- Department of PediatricsHerman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Imran Khan
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Alexandra Sherman
- Department of PediatricsHerman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Thais Bertolini
- Department of PediatricsHerman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Tung Wynn
- Department of PediatricsUniversity of FloridaGainesvilleFLUSA
| | - Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
29
|
Schurgers E, Wraith DC. Induction of Tolerance to Therapeutic Proteins With Antigen-Processing Independent T Cell Epitopes: Controlling Immune Responses to Biologics. Front Immunol 2021; 12:742695. [PMID: 34567009 PMCID: PMC8459012 DOI: 10.3389/fimmu.2021.742695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022] Open
Abstract
The immune response to exogenous proteins can overcome the therapeutic benefits of immunotherapies and hamper the treatment of protein replacement therapies. One clear example of this is haemophilia A resulting from deleterious mutations in the FVIII gene. Replacement with serum derived or recombinant FVIII protein can cause anti-drug antibodies in 20-50% of individuals treated. The resulting inhibitor antibodies override the benefit of treatment and, at best, make life unpredictable for those treated. The only way to overcome the inhibitor issue is to reinstate immunological tolerance to the administered protein. Here we compare the various approaches that have been tested and focus on the use of antigen-processing independent T cell epitopes (apitopes) for tolerance induction. Apitopes are readily designed from any protein whether this is derived from a clotting factor, enzyme replacement therapy, gene therapy or therapeutic antibody.
Collapse
Affiliation(s)
| | - David C Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Winterling K, Martin WD, De Groot AS, Daufenbach J, Kistner S, Schüttrumpf J. Development of a novel fully functional coagulation factor VIII with reduced immunogenicity utilizing an in silico prediction and deimmunization approach. J Thromb Haemost 2021; 19:2161-2170. [PMID: 34060724 PMCID: PMC8456792 DOI: 10.1111/jth.15413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Up to 30% of hemophilia A patients develop inhibitory antibodies against the infused factor VIII (FVIII). The development of a deimmunized FVIII is an unmet high medical need. Although improved recombinant FVIII (rFVIII) products evolved within the last years, the immunogenicity has not been solved. A deimmunized FVIII could reduce the probability of inhibitor development, providing safer therapy. OBJECTIVE To develop a deimmunized FVIII molecule by modifying major histocompatibility complex (MHC) class II presentation, leading to a functional but less immunogenic molecule. METHODS We performed (1) in silico prediction of potentially immunogenic T cell epitopes and their modification by amino acid substitutions in the FVIII sequence, (2) evaluation of functional and structural similarity of the modified rFVIII to unmodified FVIII and registered products, and (3) confirmation of the reduced immunogenicity by in vitro testing. RESULTS A partially deimmunized fully functional FVIII molecule incorporating 19 amino acid substitutions was generated. The substitutions led to a reduction of the immunogenicity score, indicating a reduced immunogenicity based on in silico calculations. This was confirmed in an in vitro dendritic cell (DC)--T cell assay. Using this assay, cells from healthy donors proved the significantly reduced immunogenicity of the modified FVIII variant by revealing less proliferation of T helper cells to this variant than to the unmodified FVIII. CONCLUSION In silico predictions resulted in a partially deimmunized FVIII. This FVIII is fully functional and was demonstrated to be less immunogenic in in vitro testing. This approach may result in a reduction of the inhibitor risk for patients with hemophilia A.
Collapse
Affiliation(s)
| | | | - Anne S. De Groot
- EpiVax, Inc.ProvidenceRhode IslandUSA
- Center for Vaccines and ImmunologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | | | | |
Collapse
|
31
|
In vitro immunogenicity prediction: bridging between innate and adaptive immunity. Bioanalysis 2021; 13:1071-1081. [PMID: 34124935 DOI: 10.4155/bio-2021-0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Development of antidrug antibodies (ADAs) is an undesirable potential outcome of administration of biotherapeutics and involves the innate and adaptive immune systems. ADAs can have detrimental clinical consequences: they can reduce biotherapeutic efficacy or produce adverse events. Because animal models are considered poor predictors of immunogenicity in humans, in vitro assays with human innate and adaptive immune cells are commonly used alternatives that can reveal cell-mediated unwanted immune responses. Multiple methods have been developed to assess the immune cell response following exposure to biotherapeutics and estimate the potential immunogenicity of biotherapeutics. This review highlights the role of innate and adaptive immune cells as the drivers of immunogenicity and summarizes the use of these cells in assays to predict clinical ADA.
Collapse
|
32
|
Russell AL, Prince C, Lundgren TS, Knight KA, Denning G, Alexander JS, Zoine JT, Spencer HT, Chandrakasan S, Doering CB. Non-genotoxic conditioning facilitates hematopoietic stem cell gene therapy for hemophilia A using bioengineered factor VIII. Mol Ther Methods Clin Dev 2021; 21:710-727. [PMID: 34141826 PMCID: PMC8181577 DOI: 10.1016/j.omtm.2021.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/29/2021] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem and progenitor cell (HSPC) lentiviral gene therapy is a promising strategy toward a lifelong cure for hemophilia A (HA). The primary risks associated with this approach center on the requirement for pre-transplantation conditioning necessary to make space for, and provide immune suppression against, stem cells and blood coagulation factor VIII, respectively. Traditional conditioning agents utilize genotoxic mechanisms of action, such as DNA alkylation, that increase risk of sterility, infection, and developing secondary malignancies. In the current study, we describe a non-genotoxic conditioning protocol using an immunotoxin targeting CD117 (c-kit) to achieve endogenous hematopoietic stem cell depletion and a cocktail of monoclonal antibodies to provide transient immune suppression against the transgene product in a murine HA gene therapy model. This strategy provides high-level engraftment of hematopoietic stem cells genetically modified ex vivo using recombinant lentiviral vector (LV) encoding a bioengineered high-expression factor VIII variant, termed ET3. Factor VIII procoagulant activity levels were durably elevated into the normal range and phenotypic correction achieved. Furthermore, no immunological rejection or development of anti-ET3 immunity was observed. These preclinical data support clinical translation of non-genotoxic antibody-based conditioning in HSPC LV gene therapy for HA.
Collapse
Affiliation(s)
- Athena L. Russell
- Graduate Program in Genetics and Molecular Biology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Chengyu Prince
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Taran S. Lundgren
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Kristopher A. Knight
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | | | - Jordan S. Alexander
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jaquelyn T. Zoine
- Graduate Program in Cancer Biology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - H. Trent Spencer
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Expression Therapeutics, LLC, Tucker, GA 30084, USA
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher B. Doering
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Expression Therapeutics, LLC, Tucker, GA 30084, USA
| |
Collapse
|
33
|
Ronayne EK, Peters SC, Gish JS, Wilson C, Spencer HT, Doering CB, Lollar P, Spiegel PC, Childers KC. Structure of Blood Coagulation Factor VIII in Complex With an Anti-C2 Domain Non-Classical, Pathogenic Antibody Inhibitor. Front Immunol 2021; 12:697602. [PMID: 34177966 PMCID: PMC8223065 DOI: 10.3389/fimmu.2021.697602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 01/19/2023] Open
Abstract
Factor VIII (fVIII) is a procoagulant protein that binds to activated factor IX (fIXa) on platelet surfaces to form the intrinsic tenase complex. Due to the high immunogenicity of fVIII, generation of antibody inhibitors is a common occurrence in patients during hemophilia A treatment and spontaneously occurs in acquired hemophilia A patients. Non-classical antibody inhibitors, which block fVIII activation by thrombin and formation of the tenase complex, are the most common anti-C2 domain pathogenic inhibitors in hemophilia A murine models and have been identified in patient plasmas. In this study, we report on the X-ray crystal structure of a B domain-deleted bioengineered fVIII bound to the non-classical antibody inhibitor, G99. While binding to G99 does not disrupt the overall domain architecture of fVIII, the C2 domain undergoes an ~8 Å translocation that is concomitant with breaking multiple domain-domain interactions. Analysis of normalized B-factor values revealed several solvent-exposed loops in the C1 and C2 domains which experience a decrease in thermal motion in the presence of inhibitory antibodies. These results enhance our understanding on the structural nature of binding non-classical inhibitors and provide a structural dynamics-based rationale for cooperativity between anti-C1 and anti-C2 domain inhibitors.
Collapse
Affiliation(s)
- Estelle K Ronayne
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| | - Shaun C Peters
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| | - Joseph S Gish
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| | - Celena Wilson
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| | - H Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Christopher B Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Pete Lollar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - P Clint Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| | - Kenneth C Childers
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| |
Collapse
|
34
|
The prospective Hemophilia Inhibitor PUP Study reveals distinct antibody signatures prior to FVIII inhibitor development. Blood Adv 2021; 4:5785-5796. [PMID: 33232473 DOI: 10.1182/bloodadvances.2020002731] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/16/2020] [Indexed: 01/30/2023] Open
Abstract
Preventing factor VIII (FVIII) inhibitors following replacement therapies with FVIII products in patients with hemophilia A remains an unmet medical need. Better understanding of the early events of evolving FVIII inhibitors is essential for risk identification and the design of novel strategies to prevent inhibitor development. The Hemophilia Inhibitor Previously Untreated Patients (PUPs) Study (HIPS; www.clinicaltrials.gov #NCT01652027) is the first prospective cohort study to evaluate comprehensive changes in the immune system during the first 50 exposure days (EDs) to FVIII in patients with severe hemophilia A. HIPS participants were enrolled prior to their first exposure to FVIII or blood products ("true PUPs") and were evaluated for different immunological and clinical parameters at specified time points during their first 50 EDs to a single source of recombinant FVIII. Longitudinal antibody data resulting from this study indicate that there are 4 subgroups of patients expressing distinct signatures of FVIII-binding antibodies. Subgroup 1 did not develop any detectable FVIII-binding immunoglobulin G (IgG) antibodies. Subgroup 2 developed nonneutralizing, FVIII-binding IgG1 antibodies, but other FVIII-binding IgG subclasses were not observed. Subgroup 3 developed transient FVIII inhibitors associated with FVIII-binding IgG1 antibodies, similar to subgroup 2. Subgroup 4 developed persistent FVIII inhibitors associated with an initial development of high-affinity, FVIII-binding IgG1 antibodies, followed by IgG3 and IgG4 antibodies. Appearance of FVIII-binding IgG3 was always associated with persistent FVIII inhibitors and the subsequent development of FVIII-binding IgG4. Some of the antibody signatures identified in HIPS could serve as candidates for early biomarkers of FVIII inhibitor development.
Collapse
|
35
|
Hassan S, Palla R, Valsecchi C, Garagiola I, El-Beshlawy A, Elalfy M, Ramanan V, Eshghi P, Karimi M, Gouw SC, Mannucci PM, Rosendaal FR, Peyvandi F. Performance of a clinical risk prediction model for inhibitor formation in severe haemophilia A. Haemophilia 2021; 27:e441-e449. [PMID: 33988289 PMCID: PMC8360203 DOI: 10.1111/hae.14325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Background There is a need to identify patients with haemophilia who have a very low or high risk of developing inhibitors. These patients could be candidates for personalized treatment strategies. Aims The aim of this study was to externally validate a previously published prediction model for inhibitor development and to develop a new prediction model that incorporates novel predictors. Methods The population consisted of 251 previously untreated or minimally treated patients with severe haemophilia A enrolled in the SIPPET study. The outcome was inhibitor formation. Model discrimination was measured using the C‐statistic, and model calibration was assessed with a calibration plot. The new model was internally validated using bootstrap resampling. Results Firstly, the previously published prediction model was validated. It consisted of three variables: family history of inhibitor development, F8 gene mutation and intensity of first treatment with factor VIII (FVIII). The C‐statistic was 0.53 (95% CI: 0.46–0.60), and calibration was limited. Furthermore, a new prediction model was developed that consisted of four predictors: F8 gene mutation, intensity of first treatment with FVIII, the presence of factor VIII non‐neutralizing antibodies before treatment initiation and lastly FVIII product type (recombinant vs. plasma‐derived). The C‐statistic was 0.66 (95 CI: 0.57–0.75), and calibration was moderate. Using a model cut‐off point of 10%, positive‐ and negative predictive values were 0.22 and 0.95, respectively. Conclusion Performance of all prediction models was limited. However, the new model with all predictors may be useful for identifying a small number of patients with a low risk of inhibitor formation.
Collapse
Affiliation(s)
- Shermarke Hassan
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Roberta Palla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Carla Valsecchi
- Angelo Bianchi Bonomi Haemophilia and Thrombosis Centre and Luigi Villa Foundation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Isabella Garagiola
- Angelo Bianchi Bonomi Haemophilia and Thrombosis Centre and Luigi Villa Foundation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Amal El-Beshlawy
- Pediatric Hematology Department, Cairo University Pediatric Hospital, Cairo, Egypt
| | - Mohsen Elalfy
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Vijay Ramanan
- Department of Hematology, Jehangir Clinical Development Centre, Jehangir Hospital Premises, Pune, India
| | - Peyman Eshghi
- Congenital Pediatric Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Karimi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samantha Claudia Gouw
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.,Pediatric Hematology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Pier Mannuccio Mannucci
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Angelo Bianchi Bonomi Haemophilia and Thrombosis Centre and Luigi Villa Foundation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Frits Richard Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Flora Peyvandi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Angelo Bianchi Bonomi Haemophilia and Thrombosis Centre and Luigi Villa Foundation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | |
Collapse
|
36
|
Moorman CD, Sohn SJ, Phee H. Emerging Therapeutics for Immune Tolerance: Tolerogenic Vaccines, T cell Therapy, and IL-2 Therapy. Front Immunol 2021; 12:657768. [PMID: 33854514 PMCID: PMC8039385 DOI: 10.3389/fimmu.2021.657768] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases affect roughly 5-10% of the total population, with women affected more than men. The standard treatment for autoimmune or autoinflammatory diseases had long been immunosuppressive agents until the advent of immunomodulatory biologic drugs, which aimed at blocking inflammatory mediators, including proinflammatory cytokines. At the frontier of these biologic drugs are TNF-α blockers. These therapies inhibit the proinflammatory action of TNF-α in common autoimmune diseases such as rheumatoid arthritis, psoriasis, ulcerative colitis, and Crohn's disease. TNF-α blockade quickly became the "standard of care" for these autoimmune diseases due to their effectiveness in controlling disease and decreasing patient's adverse risk profiles compared to broad-spectrum immunosuppressive agents. However, anti-TNF-α therapies have limitations, including known adverse safety risk, loss of therapeutic efficacy due to drug resistance, and lack of efficacy in numerous autoimmune diseases, including multiple sclerosis. The next wave of truly transformative therapeutics should aspire to provide a cure by selectively suppressing pathogenic autoantigen-specific immune responses while leaving the rest of the immune system intact to control infectious diseases and malignancies. In this review, we will focus on three main areas of active research in immune tolerance. First, tolerogenic vaccines aiming at robust, lasting autoantigen-specific immune tolerance. Second, T cell therapies using Tregs (either polyclonal, antigen-specific, or genetically engineered to express chimeric antigen receptors) to establish active dominant immune tolerance or T cells (engineered to express chimeric antigen receptors) to delete pathogenic immune cells. Third, IL-2 therapies aiming at expanding immunosuppressive regulatory T cells in vivo.
Collapse
Affiliation(s)
| | | | - Hyewon Phee
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
37
|
Bai H, Xue X, Tian L, Liu XT, Li Q. Case Report: Identification of a de novo Missense Mutation in the F8 Gene, p.(Phe690Leu)/c.2070C > A, Causing Hemophilia A: A Case Report. Front Genet 2021; 11:589899. [PMID: 33747028 PMCID: PMC7973284 DOI: 10.3389/fgene.2020.589899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/23/2020] [Indexed: 12/03/2022] Open
Abstract
Hemophilia A is an X-linked recessive bleeding disorder caused by various types of pathological defects in the factor VIII gene (F8/FVIII). Preimplantation genetic testing for monogenic disease (PGT-M) is a powerful tool to tackle the transmission of monogenic inherited disorders from generation to generation. In our case, a mutation in F8 had passed through female carriers in a hemophilia A family and resulted in two male patients with hemophilia A. To identify the etiological genetic variants of F8, next-generation sequencing (NGS) was used for chromosome copy number variation detection, Sanger sequencing to verify mutation sites, single nucleotide polymorphism (SNP) for site amplification, and sequencing to validate the genetic linkage. Finally, a novel missense mutation, p. (Phe690Leu)/c.2070C > A, occurring in exon 13 of F8, was screened out as a pathogenic mutation. Following this, an F8 normal euploid blastocyst was transferred. At the 18th week, the pregnant mother underwent amniocentesis, NGS, Sanger sequencing, and SNP typing that further confirmed that the fetus had a healthy genotype. After delivery, a neonatal blood sample was sent for FVIII concentration detection, and the result established that the FVIII protein was rescued to a nearly average level. We first identified a new type of pathogenic mutation in F8, which has not been previously reported, selected a genetically healthy progeny for an affected family, and provided valuable knowledge of the diagnosis and treatment of hemophilia A.
Collapse
Affiliation(s)
- Haiyan Bai
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, China
| | - Xia Xue
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, China
| | - Li Tian
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, China
| | - Xi Tong Liu
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, China
| | - Qian Li
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, China
| |
Collapse
|
38
|
Making friends out of foes: novel therapeutic approaches for haemophilia. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2021; 19:179-180. [PMID: 33656979 PMCID: PMC7925227 DOI: 10.2450/2020.0403-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/09/2020] [Indexed: 01/23/2023]
|
39
|
Li J, Chen J, Schroeder JA, Hu J, Williams CB, Shi Q. Platelet gene therapy induces robust immune tolerance even in a primed model via peripheral clonal deletion of antigen-specific T cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:719-730. [PMID: 33575117 PMCID: PMC7851450 DOI: 10.1016/j.omtn.2020.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/30/2020] [Indexed: 11/08/2022]
Abstract
While platelet-specific gene therapy is effective in inducing immune tolerance to a targeted protein, how the reactivity of pre-existing immunity affects the efficacy, and whether CD8 T cells were involved in tolerization, is unclear. In this study, ovalbumin (OVA) was used as a surrogate protein. Platelet-OVA expression was introduced by 2bOVA lentivirus transduction of Sca-1+ cells from either wild-type (WT)/CD45.2 or OT-II/CD45.2 donors followed by transplantation into OVA-primed WT/CD45.1 recipients preconditioned with 6.6 Gy of irradiation. Sustained platelet-OVA expression was achieved in >85% of OVA-primed recipients but abolished in animals with high-reactive pre-existing immunity. As confirmed by OVA rechallenge and skin graft transplantation, immune tolerance was achieved in 2bOVA-transduced recipients. We found that there is a negative correlation between platelet-OVA expression and the percentage of OVA-specific CD4 T cells and a positive correlation with the OVA-specific regulatory T (Treg) cells. Using the OT-I/WT model, we showed that antigen-specific CD8 T cells were partially deleted in recipients after platelet-targeted gene transfer. Taken together, our studies demonstrate that robust antigen-specific immune tolerance can be achieved through platelet-specific gene therapy via peripheral clonal deletion of antigen-specific CD4 and CD8 T effector cells and induction of antigen-specific Treg cells. There is an antagonistic dynamic process between immune responses and immune tolerance after platelet-targeted gene therapy.
Collapse
Affiliation(s)
- Jing Li
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA.,Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Juan Chen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Jocelyn A Schroeder
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Calvin B Williams
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Children's Research Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Qizhen Shi
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Children's Research Institute, Children's Wisconsin, Milwaukee, WI, USA.,Midwest Athletes Against Childhood Cancer Fund Research Center, Milwaukee, WI, USA
| |
Collapse
|
40
|
Croteau SE, Wang M, Wheeler AP. 2021 clinical trials update: Innovations in hemophilia therapy. Am J Hematol 2021; 96:128-144. [PMID: 33064330 DOI: 10.1002/ajh.26018] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 01/19/2023]
Abstract
Therapies engineered to prolong clotting factor protein circulation time, manipulate the balance of pro-coagulant and anti-coagulant proteins, or introduce new genetic material to enable endogenous factor protein production dominate the clinical trial landscape of hemophilia. The availability of clotting factor concentrates and the establishment of primary prophylaxis have dramatically improved health outcomes for hemophilia patients. But, the burden of hemostatic therapy remains significant, and many barriers to consistent longitudinal use of prophylaxis exist. Several types of emerging therapeutics including engineered factor concentrates, substitutive therapies, rebalancing therapies, and gene transfer/editing all aim to reduce the challenges of current hemophilia treatment. Emerging treatment options may reduce treatment frequency or need for intravenous administration. They may also introduce new challenges in laboratory assessment of hemostasis. These novel therapies must not introduce significant new health risks and continue to support similar or improved outcomes. The potential ramifications of rebalancing the coagulation cascade, particularly in a stress or inflammatory state, or introduction of new genetic material are not trivial. The focus of this review is to provide an overview of active and recently completed clinical trials as well as emerging preclinical data investigating new therapeutic possibilities for hemophilia patients and potentially other rare bleeding disorders.
Collapse
Affiliation(s)
| | - Michael Wang
- University of Colorado Hemophilia and Thrombosis Center Aurora Colorado
| | - Allison P. Wheeler
- Department of Pathology, Microbiology & Immunology Vanderbilt University Medical Center Nashville Tennessee
| |
Collapse
|
41
|
Pratt KP, Arruda VR, Lacroix-Desmazes S. Inhibitors-Recent insights. Haemophilia 2020; 27 Suppl 3:28-36. [PMID: 32608138 DOI: 10.1111/hae.14077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022]
Abstract
The development of inhibitory antibodies to therapeutic factor VIII (FVIII) in haemophilia A (HA) patients is the major complication in treatment/prevention of haemorrhages. The reasons some HA patients develop inhibitors while others do not remain unclear. This review briefly summarizes our understanding of anti-FVIII immune responses, the roles of T cells, both effector and regulatory, and generally discusses the interplay between FVIII and the immune system, both in factor replacement therapy and gene therapy, with some comparisons to factor IX and haemophilia B therapies. Notably, we propose that the prevailing observed active tolerance to FVIII in both HA and non-HA individuals rests to greater or lesser extents on peripherally induced immune tolerance. We also propose that the immune systems of inhibitor-negative HA patients do not merely ignore therapeutic FVIII, but rather have immunologically assessed and actively tolerized the patients to exogenous FVIII. Induction of such peripheral immune tolerance may further be triggered in HA patients who failed to tolerize upon initial FVIII exposure by 'appropriate' stimulation of their immune system, eg by immune tolerance induction therapy via intensive FVIII therapy, by oral administration of FVIII, by cellular therapies or by gene therapy directed to immuno-tolerogenic sites such as the liver.
Collapse
Affiliation(s)
- Kathleen P Pratt
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Valder R Arruda
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
42
|
Karim AF, Soltis AR, Sukumar G, Königs C, Ewing NP, Dalgard CL, Wilkerson MD, Pratt KP. Hemophilia A Inhibitor Subjects Show Unique PBMC Gene Expression Profiles That Include Up-Regulated Innate Immune Modulators. Front Immunol 2020; 11:1219. [PMID: 32595650 PMCID: PMC7303277 DOI: 10.3389/fimmu.2020.01219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Formation of pathological anti-FVIII antibodies, or "inhibitors," is the most serious complication of therapeutic FVIII infusions, affecting up to 1/3 of severe Hemophilia A (HA) patients. Inhibitor formation is a classical T-cell dependent adaptive immune response. As such, it requires help from the innate immune system. However, the roles of innate immune cells and mechanisms of inhibitor development vs. immune tolerance, achieved with or without Immune Tolerance Induction (ITI) therapy, are not well-understood. To address these questions, temporal transcriptomics profiling of FVIII-stimulated peripheral blood mononuclear cells (PBMCs) was carried out for HA subjects with and without a current or historic inhibitor using RNA-Seq. PBMCs were isolated from 40 subjects in the following groups: HA with an inhibitor that resolved either following ITI or spontaneously; HA with a current inhibitor; HA with no inhibitor history and non-HA controls. PBMCs were stimulated with 5 nM FVIII and RNA was isolated 4, 16, 24, and 48 h following stimulation. Time-series differential expression analysis was performed and distinct transcriptional signatures were identified for each group, providing clues as to cellular mechanisms leading to or accompanying their disparate anti-FVIII antibody responses. Subjects with a current inhibitor showed differential expression of 56 genes and a clustering analysis identified three major temporal profiles. Interestingly, gene ontology enrichments featured innate immune modulators, including NLRP3, TLR8, IL32, CLEC10A, and COLEC12. NLRP3 and TLR8 are associated with enhanced secretion of the pro-inflammatory cytokines IL-1β and TNFα, while IL32, which has several isoforms, has been associated with both inflammatory and regulatory immune processes. RNA-Seq results were validated by RT-qPCR, ELISAs, multiplex cytokine analysis, and flow cytometry. The inflammatory status of HA patients suffering from an ongoing inhibitor includes up-regulated innate immune modulators, which may act as ongoing danger signals that influence the responses to, and eventual outcomes of, ITI therapy.
Collapse
Affiliation(s)
- Ahmad Faisal Karim
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Anthony R Soltis
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Collaborative Health Initiative Research Program, Henry Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gauthaman Sukumar
- Collaborative Health Initiative Research Program, Henry Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - Nadia P Ewing
- City of Hope National Medical Center, Duarte, CA, United States
| | - Clifton L Dalgard
- Collaborative Health Initiative Research Program, Henry Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Matthew D Wilkerson
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Collaborative Health Initiative Research Program, Henry Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kathleen P Pratt
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
43
|
Scott DW, Pratt KP. Factor VIII: Perspectives on Immunogenicity and Tolerogenic Strategies. Front Immunol 2020; 10:3078. [PMID: 32010137 PMCID: PMC6978909 DOI: 10.3389/fimmu.2019.03078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
Therapeutic treatment of bleeds with FVIII can lead to an antibody response that effectively inhibits its function. Herein, we review the factors that contribute to this immunogenicity and possible ways to overcome it.
Collapse
Affiliation(s)
- David W. Scott
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | |
Collapse
|