1
|
Liu J, Zhao H, Wang W, Yang B, Zhang N, Zhang Y, Qian J, Ma Q, Lu Y, Han H, Yang Y. A bivalent mRNA vaccine against RSV infection in rodent models. Front Immunol 2025; 16:1542592. [PMID: 40196112 PMCID: PMC11974254 DOI: 10.3389/fimmu.2025.1542592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Because of the higher conservation of RSV Fusion (F) protein than the glycoprotein (G) across RSV strains and serotypes, the majority of vaccine candidates targets to viral fusion protein (F) rather than glycoprotein to elicit a broader range of protective neutralizing antibodies from infection. In this study, we screened two chemically modified mRNA vaccines expressing RSV prefusion stabilized protein (preF) targeting RSV A2 and B subtypes. After immunization, the antigen-specific binding antibody, neutralizing antibody, and T cell-mediated immune response were evaluated. After challenge with live RSV A2 virus in cotton rats, the protection and safety of vaccine was further evaluated. The results showed that the mRNA vaccine candidates elicited robust antigen-specific binding antibody, neutralizing antibody responses and Th1-biased T-cell responses in both mice and cotton rats. Moreover, cotton rats vaccinated with mRNA vaccine, lung pathology and lung infectious viral loads were significantly reduced, and no vaccine enhanced respiratory disease (VERD) happened. These results collectively demonstrated that mRNA-based vaccine induced strong humoral and cellular immunity, provided outstanding protection against both RSV A2 and RSV B subtypes in rodent animals as well. Our data demonstrated that these mRNA vaccines should be further evaluated in clinical trials.
Collapse
Affiliation(s)
- Juan Liu
- Nucleic Acid Medicine Innovation Center, Zhejiang Haichang Biotech Co.,
Ltd., Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | - Yongsheng Yang
- Nucleic Acid Medicine Innovation Center, Zhejiang Haichang Biotech Co.,
Ltd., Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Jastorff A, Gymnopoulou E, Salas J, Merrall E, Buntinx E, Martin C, Askling HH, Schenkenberger I, Yuste AC, Smith W, Sotolongo R, Von Engelhardt C, Bastian AR, Comeaux C, Ligtenberg N, Callendret B, Heijnen E. Safety and immunogenicity of the Ad26/protein preF RSV vaccine in adults aged 18 to 59 years with and without at-risk comorbidities for severe respiratory syncytial virus disease: A phase 3, randomized, controlled, immunobridging trial. Vaccine 2025; 43:126514. [PMID: 39536455 DOI: 10.1016/j.vaccine.2024.126514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) causes a significant disease burden in adults with chronic comorbidities. Rates of severe RSV disease and death are as high, or higher in younger adults with risk factors than in healthy older adults in whom RSV vaccination is recommended. We conducted an immunobridging study using the Ad26/protein RSV preF vaccine, which previously demonstrated efficacy in adults aged ≥65 years to support extrapolation of efficacy demonstrated in an older population to younger adult populations at high risk of severe RSV disease. METHODS This Phase 3 randomized, double-blind, placebo-controlled trial assessed the safety/tolerability and immunogenicity of Ad26/protein preF RSV in adults aged 18-59 years without (Cohort 1) and with (Cohort 2) chronic cardiac or pulmonary comorbidities, compared to adults aged ≥65 years (Cohort 3) in whom efficacy against RSV disease was demonstrated. Humoral and cellular immune responses were assessed at baseline, Days 15 and 183. Reactogenicity and safety were assessed in all participants. RESULTS 1118 participants were enrolled (Cohort 1: 387; Cohort 2: 388; Cohort 3: 343). Compared to adults aged ≥65 years RSV neutralizing antibody titers were non-inferior in adults aged 18-59 years, including those at high risk. Levels of pre-F A IgG antibodies and frequencies of RSV-F specific interferon-gamma T-cells increased by Day 15 post-vaccination, and remained above baseline for at least 6 months in all cohorts. Reactogenicity and safety were clinically acceptable but age-dependent, with higher rates of Grade 3 systemic adverse events in adults aged 18-59-years than adults ≥65 years. CONCLUSION Ad26/protein preF RSV vaccine induced robust humoral and cellular immune responses in adults aged 18-59 years with or without chronic cardiac or pulmonary comorbidities, of similar magnitude to responses in older adults, allowing inference of efficacy and protection against RSV-associated respiratory disease in this population. www. CLINICALTRIALS govNCT05070546.
Collapse
Affiliation(s)
- Archana Jastorff
- Janssen Vaccines & Prevention B.V., Archimedesweg 4, 2333, CN, Leiden, The Netherlands
| | - Efi Gymnopoulou
- Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Jose Salas
- IQVIA RDS GmbH, Unterschweinstiege 2-14, 60549 Frankfurt am Main, Germany
| | - Elizabeth Merrall
- Janssen Vaccines & Prevention B.V., Archimedesweg 4, 2333, CN, Leiden, The Netherlands.
| | - Erik Buntinx
- Animal Research Center, Alkerstraat 28-30-30A-32Z 3570 Alken, Belgium.
| | - Charlotte Martin
- C.H.U. St Pierre Maladies Infectieuses, rue Haute 322, Brussels, Belgium.
| | - Helena H Askling
- Academic Specialist Centre, Stockholm Health Care Services, Solnavägen 1E 113 65 Stockholm, and Department of Medicine/Solna, Karolinska Institutet, Nobels väg 5, Solna, 171 77 Stockholm, Sweden.
| | - Isabelle Schenkenberger
- Velocity Clinical Research GmbH Standort Berlin, Ansbacher St. 17-19, Berlin 10787, Germany.
| | - Angela Cano Yuste
- Clinical Unit of Infectious Diseases, Reina Sofia University Hospital-IMIBIC/CIBERINFEC. Ave. Menendez Pidal s/n, Cordoba 14004, Spain.
| | - William Smith
- Volunteer Research Group and New Orleans Center for Clinical Research, 1924 Alcoa Hwy, Knoxville, TN 37920, United States.
| | - Roberto Sotolongo
- Research Institute of South Florida Inc. 9835 SW 72 St Suite 201, Miami, FL 33173, United States.
| | | | | | - Christy Comeaux
- Janssen Vaccines & Prevention B.V., Archimedesweg 4, 2333, CN, Leiden, The Netherlands
| | - Nynke Ligtenberg
- Janssen Vaccines & Prevention B.V., Archimedesweg 4, 2333, CN, Leiden, The Netherlands.
| | - Benoit Callendret
- Janssen Vaccines & Prevention B.V., Archimedesweg 4, 2333, CN, Leiden, The Netherlands
| | - Esther Heijnen
- Janssen Vaccines & Prevention B.V., Archimedesweg 4, 2333, CN, Leiden, The Netherlands
| |
Collapse
|
3
|
van Heesbeen R, Bastian AR, Omoruyi E, Rosen J, Comeaux CA, Callendret B, Heijnen E. Immunogenicity and safety of different dose levels of Ad26.RSV.preF/RSV preF protein vaccine in adults aged 60 years and older: A randomized, double-blind, placebo-controlled, phase 2a study. Vaccine 2024; 42:126273. [PMID: 39276619 DOI: 10.1016/j.vaccine.2024.126273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) can cause severe illness in older adults. A combination vaccine containing Ad26.RSV.preF and purified recombinant RSV preF protein has previously demonstrated efficacy and tolerability in older adults. We report results of a dose-ranging study to determine immunogenicity and safety of different doses of the Ad26.RSV.preF component in the combined Ad26.RSV.preF/RSV preF protein vaccine to support Ad26.RSV.preF drug product release and stability specifications. METHODS In this randomized, double-blind, placebo-controlled, phase 2a study, adults aged ≥60 years in good or stable health were randomly assigned within 1 of 3 cohorts to receive either placebo or Ad26.RSV.preF/RSV preF protein, composed of different doses of Ad26.RSV.preF with a fixed dose of RSV preF protein (150 μg). Ad26.RSV.preF doses in Cohort 1 (4 dose-down groups) ranged from 3.7 × 109 to 1.0 × 1011 viral particles (vp). Doses in Cohorts 2 and 3 (2 dose-up groups, each) ranged from 1.0 to 1.6 × 1011 vp. Primary endpoints were immunogenicity (RSV preF protein antibody titers) for Cohort 1 and safety (solicited local and systemic adverse events [AEs] and unsolicited AEs) for Cohorts 2 and 3. Immunogenicity analyses (RSV preF protein antibody titers, RSV A2 neutralizing antibodies, and RSV-F-specific interferon-γ enzyme-linked immunosorbent spot) were performed on the day of vaccination and 14 days, 3 months, and 6 months postvaccination. Safety was monitored from vaccination until study end. RESULTS Overall, 454 participants were enrolled and received 1 dose of study vaccine or placebo (Cohort 1, n = 226; Cohort 2, n = 124; Cohort 3, n = 104). No substantial differences in measured immune responses were observed between lower or higher Ad26.RSV.preF doses compared with Ad26.RSV.preF 1.0 × 1011 vp across all postvaccination time points. All Ad26.RSV.preF doses between 3.7 × 109 vp and 1.6 × 1011 vp were well tolerated, with no safety issues identified. CONCLUSIONS Results of this dose-ranging study may be used to inform the refinement of Ad26.RSV.preF drug product release and stability specifications. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04453202.
Collapse
Affiliation(s)
- Roy van Heesbeen
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, The Netherlands.
| | | | - Edmund Omoruyi
- Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Jeffrey Rosen
- Alliance for Multispecialty Research, 370 Minorca Ave, Miami, FL 33134, USA
| | - Christy A Comeaux
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Benoit Callendret
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Esther Heijnen
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| |
Collapse
|
4
|
Fuchs J, Hübner J, Schmidt A, Irrgang P, Maier C, Vieira Antão A, Oltmanns F, Thirion C, Lapuente D, Tenbusch M. Evaluation of adenoviral vector Ad19a encoding RSV-F as novel vaccine against respiratory syncytial virus. NPJ Vaccines 2024; 9:205. [PMID: 39472590 PMCID: PMC11522487 DOI: 10.1038/s41541-024-01001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infections in infants and toddlers. Since natural infections do not induce persistent immunity, there is the need of vaccines providing long-term protection. Here, we evaluated a new adenoviral vector (rAd) vaccine based on the rare serotype rAd19a and compared the immunogenicity and efficacy to the highly immunogenic rAd5. Given as an intranasal boost in DNA primed mice, both vectors encoding the F protein provided efficient protection against a subsequent RSV infection. However, intramuscular immunization with rAd19a vectors provoked vaccine-enhanced disease after RSV infection compared to non-vaccinated animals. While mucosal IgA antibodies and tissue-resident memory T-cells in intranasally vaccinated mice rapidly control RSV replication, a strong anamnestic systemic T-cell response in absence of local immunity might be the reason for immune-mediated enhanced disease. Our study highlighted the potential benefits of developing effective mucosal against respiratory pathogens.
Collapse
Affiliation(s)
- Jana Fuchs
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Julian Hübner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Anna Schmidt
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Clara Maier
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Ana Vieira Antão
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | | | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany.
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, D-91054, Erlangen, Germany.
| |
Collapse
|
5
|
Langley JM, Nolan TM, Rämet M, Richmond PC, Rosário Filho N, Haazen W, van den Berg SPH, Williams K, Bastian AR, Omoruyi E, Williams Durkin J, Salisch N, Van Geet G, van Duijnhoven W, Heijnen E, Callendret B. A Phase 1/2a Study Evaluating Safety and Immunogenicity of Ad26.RSV.preF in RSV-seronegative Toddlers Aged 12-24 Months. Open Forum Infect Dis 2024; 11:ofae453. [PMID: 39220658 PMCID: PMC11365064 DOI: 10.1093/ofid/ofae453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background Respiratory syncytial virus (RSV) causes serious illness in children. The Ad26.RSV.preF vaccine candidate was immunogenic with acceptable safety in a phase 1/2a study of RSV-seropositive children. Here, we assessed its safety and immunogenicity in RSV-seronegative children. Methods In this randomized, observer-blinded, placebo-controlled, phase 1/2a study (NCT03606512; https://www.clinicaltrials.gov/ct2/show/NCT03606512), RSV-seronegative toddlers aged 12-24 months received Ad26.RSV.preF (2.5 × 1010 viral particles) or placebo on days 1, 29, and 57 (a meningococcal vaccine [Nimenrix] could substitute for day 57 placebo). Primary endpoints were solicited local and systemic adverse events (AEs; 7 days after each vaccination), unsolicited AEs (28 days postvaccination), and serious AEs (first vaccination until study end). Participants were monitored for RSV-respiratory tract infection to assess infection rates and for severe RSV-lower respiratory tract infection as an indication of enhanced disease. RSV-A2 neutralizing, RSV (A and B) preF binding, and RSV postF immunoglobulin G-binding antibodies were evaluated on days 1 (predose), 8, and 85, and after RSV season 1. Results Thirty-eight participants were enrolled and vaccinated (Ad26.RSV.preF, n = 20; placebo, placebo/Nimenrix, n = 18). Solicited AEs were more common following Ad26.RSV.preF than placebo; most were mild/moderate. No vaccine-related serious AEs were reported. Five of 19 participants receiving Ad26.RSV.preF and 2/18 receiving placebo or placebo/Nimenrix had confirmed RSV-respiratory tract infection or RSV-associated otitis media; none were considered severe. At the final season 1 study visit, most Ad26.RSV.preF recipients had ≥2-fold increases from baseline in RSV-A2 neutralizing, RSV A and B preF binding, and RSV postF antibodies. Conclusions Ad26.RSV.preF was well tolerated and immunogenic in RSV-seronegative toddlers.
Collapse
Affiliation(s)
- Joanne M Langley
- Canadian Center for Vaccinology, Dalhousie University, IWK and Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Terry M Nolan
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity at The University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Mika Rämet
- FVR – Finnish Vaccine Research Ltd., and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Peter C Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Discipline of Paediatrics, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Nelson Rosário Filho
- Division of Allergy and Immunology, Complexo Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil
| | - Wouter Haazen
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | | | | | | | | | - Nadine Salisch
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | | | - Esther Heijnen
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | |
Collapse
|
6
|
Falsey AR, Hosman T, Bastian AR, Vandenberghe S, Chan EKH, Douoguih M, Heijnen E, Comeaux CA, Callendret B. Long-term efficacy and immunogenicity of Ad26.RSV.preF-RSV preF protein vaccine (CYPRESS): a randomised, double-blind, placebo-controlled, phase 2b study. THE LANCET. INFECTIOUS DISEASES 2024; 24:1015-1024. [PMID: 38801826 DOI: 10.1016/s1473-3099(24)00226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Ad26.RSV.preF-RSV preF protein showed 80·0% vaccine efficacy against respiratory syncytial virus (RSV) lower respiratory tract disease (LRTD) in older adults during one RSV season. No RSV vaccines have shown three-season efficacy. We aimed to evaluate efficacy of Ad26.RSV.preF-RSV preF protein over three RSV seasons. METHODS CYPRESS was a randomised, double-blind, placebo-controlled, phase 2b study done at 40 US clinical research centres wherein adults aged 65 years or older were centrally randomly assigned 1:1 by computer algorithm to receive Ad26.RSV.preF-RSV preF protein or placebo (one intramuscular injection) on day 1. Investigators, participants, site personnel, and the sponsor were masked to vaccine allocation, except for individuals involved in preparation of study vaccinations. The primary endpoint (first occurrence of RSV-mediated LRTD meeting one of three case definitions) was previously reported. Here, the predefined exploratory endpoint of vaccine efficacy against RSV-positive LRTD was assessed in the per-protocol efficacy set (all participants randomly assigned and vaccinated without protocol deviations affecting efficacy) through season 1 and from day 365 until the end of season 3. Humoral and cellular immunogenicity was assessed in a subset of randomly assigned and vaccinated participants. The secondary endpoint of safety through the first RSV season was previously reported; follow-up for selected safety outcomes (fatal adverse events, adverse events leading to study discontinuation, serious adverse events, and vaccine-related serious adverse events) until study completion is reported here in all randomly assigned and vaccinated participants. This trial is registered with ClinicalTrials.gov, NCT03982199 and is complete. FINDINGS Of 6672 adults screened, 5782 participants (2891 each receiving vaccine or placebo) were enrolled and vaccinated between Aug 5 and Nov 13, 2019. The season 2 per-protocol efficacy set included 2124 vaccine recipients and 2126 placebo recipients (season 3: 864 and 881; across three seasons: 2795 and 2803, respectively). Vaccine efficacy against RSV LRTD was 76·1% (95% CI 26·9-94·2) over seasons 2 and 3 and 78·7% (57·3-90·4) across three seasons. For those in the immunogenicity subset (vaccine n=97; placebo n=98), immune responses remained above baseline for at least 1 year. Serious adverse events occurred in 47 (2·1%) and 12 (1·3%) vaccine recipients and 45 (2·1%) and 10 (1·1%) placebo recipients during seasons 2 and 3, respectively. No treatment-related serious or fatal adverse events were reported. INTERPRETATION Ad26.RSV.preF-RSV preF protein maintained high efficacy against RSV LRTD in older adults across three RSV seasons. FUNDING Janssen Vaccines & Prevention.
Collapse
Affiliation(s)
- Ann R Falsey
- University of Rochester School of Medicine, Infectious Diseases Unit, Rochester, NY, USA
| | - Tessa Hosman
- Janssen Vaccines & Prevention, Leiden, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
7
|
CALABRÒ GIOVANNAELISA, RIZZO CATERINA, DOMNICH ALEXANDER, DE WAURE CHIARA, RUMI FILIPPO, BONANNI PAOLO, BOCCALINI SARA, BECHINI ANGELA, PANATTO DONATELLA, AMICIZIA DANIELA, AMODIO EMANUELE, COSTANTINO CLAUDIO, BERT FABRIZIO, LO MORO GIUSEPPINA, DI PIETRO MARIALUISA, GIUFFRIDA SANDRO, GIORDANO VINCENZO, CONVERSANO MICHELE, RUSSO CARMELA, SPADEA ANTONIETTA, ANSALDI FILIPPO, GRAMMATICO FEDERICO, RICCIARDI ROBERTO, TORRISI MELISSA, PORRETTA ANDREADAVIDE, ARZILLI GUGLIELMO, SCARPALEGGIA MARIANNA, BERTOLA CARLOTTA, VECE MICHELE, LUPI CHIARA, LORENZINI ELISA, MASSARO ELVIRA, TOCCO MARCELLO, TRAPANI GIULIO, ZARCONE ELENA, MUNNO LUDOVICA, ZACE DRIEDA, PETRELLA LUIGI, VITALE FRANCESCO, RICCIARDI WALTER. Health Technology Assessment del vaccino ricombinante adiuvato contro il virus respiratorio sinciziale (Arexvy ®). JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2024; 65:E1-E159. [PMID: 39554593 PMCID: PMC11567645 DOI: 10.15167/2421-4248/jpmh2024.65.2s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Affiliation(s)
- GIOVANNA ELISA CALABRÒ
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma
- VIHTALI (Value In Health Technology and Academy for Leadership & Innovation), Spin-off dell’Università Cattolica del Sacro Cuore, Roma
| | - CATERINA RIZZO
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa
| | | | - CHIARA DE WAURE
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia
| | - FILIPPO RUMI
- Alta Scuola di Economia e Management dei Sistemi Sanitari (ALTEMS), Università Cattolica del Sacro Cuore, Roma
| | - PAOLO BONANNI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - SARA BOCCALINI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - ANGELA BECHINI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - DONATELLA PANATTO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
- Centro Interuniversitario di Ricerca sull’Influenza e le altre Infezioni Trasmissibili (CIRI-IT), Genova
| | | | - EMANUELE AMODIO
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - CLAUDIO COSTANTINO
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - FABRIZIO BERT
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università degli Studi di Torino
| | - GIUSEPPINA LO MORO
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università degli Studi di Torino
| | - MARIA LUISA DI PIETRO
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma
| | | | | | | | | | - ANTONIETTA SPADEA
- Direzione UOC Accoglienza, Tutela e Promozione della Salute del XIV Distretto ASL Roma 1
| | | | | | - ROBERTO RICCIARDI
- VIHTALI (Value In Health Technology and Academy for Leadership & Innovation), Spin-off dell’Università Cattolica del Sacro Cuore, Roma
| | - MELISSA TORRISI
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa
| | - ANDREA DAVIDE PORRETTA
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa
| | - GUGLIELMO ARZILLI
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa
| | | | - CARLOTTA BERTOLA
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia
| | - MICHELE VECE
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia
| | - CHIARA LUPI
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia
| | - ELISA LORENZINI
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia
| | - ELVIRA MASSARO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
| | - MARCELLO TOCCO
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - GIULIO TRAPANI
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - ELENA ZARCONE
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - LUDOVICA MUNNO
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma
| | - DRIEDA ZACE
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma
| | - LUIGI PETRELLA
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma
| | - FRANCESCO VITALE
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - WALTER RICCIARDI
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma
| |
Collapse
|
8
|
Burgess MO, Janas P, Berry K, Mayr H, Mack M, Jenkins SJ, Bain CC, McSorley HJ, Schwarze J. Helminth induced monocytosis conveys protection from respiratory syncytial virus infection in mice. Allergy 2024; 79:2157-2172. [PMID: 38924546 DOI: 10.1111/all.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection in infants is a major cause of viral bronchiolitis and hospitalisation. We have previously shown in a murine model that ongoing infection with the gut helminth Heligmosomoides polygyrus protects against RSV infection through type I interferon (IFN-I) dependent reduction of viral load. Yet, the cellular basis for this protection has remained elusive. Given that recruitment of mononuclear phagocytes to the lung is critical for early RSV infection control, we assessed their role in this coinfection model. METHODS Mice were infected by oral gavage with H. polygyrus. Myeloid immune cell populations were assessed by flow cytometry in lung, blood and bone marrow throughout infection and after secondary infection with RSV. Monocyte numbers were depleted by anti-CCR2 antibody or increased by intravenous transfer of enriched monocytes. RESULTS H. polygyrus infection induces bone marrow monopoiesis, increasing circulatory monocytes and lung mononuclear phagocytes in a IFN-I signalling dependent manner. This expansion causes enhanced lung mononuclear phagocyte counts early in RSV infection that may contribute to the reduction of RSV load. Depletion or supplementation of circulatory monocytes prior to RSV infection confirms that these are both necessary and sufficient for helminth induced antiviral protection. CONCLUSIONS H. polygyrus infection induces systemic monocytosis contributing to elevated mononuclear phagocyte numbers in the lung. These cells are central to an anti-viral effect that reduces the peak viral load in RSV infection. Treatments to promote or modulate these cells may provide novel paths to control RSV infection in high risk individuals.
Collapse
Affiliation(s)
- Matthew O Burgess
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Piotr Janas
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Karla Berry
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Hannah Mayr
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Stephen J Jenkins
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Henry J McSorley
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jurgen Schwarze
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Child Life and Health, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Bissett C, Belij-Rammerstorfer S, Ulaszewska M, Smith H, Kailath R, Morris S, Powers C, Sebastian S, Sharpe HR, Allen ER, Wang Z, Cunliffe RF, Sallah HJ, Spencer AJ, Gilbert S, Tregoning JS, Lambe T. Systemic prime mucosal boost significantly increases protective efficacy of bivalent RSV influenza viral vectored vaccine. NPJ Vaccines 2024; 9:118. [PMID: 38926455 PMCID: PMC11208422 DOI: 10.1038/s41541-024-00912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Although licensed vaccines against influenza virus have been successful in reducing pathogen-mediated disease, they have been less effective at preventing viral infection of the airways and current seasonal updates to influenza vaccines do not always successfully accommodate viral drift. Most licensed influenza and recently licensed RSV vaccines are administered via the intramuscular route. Alternative immunisation strategies, such as intranasal vaccinations, and "prime-pull" regimens, may deliver a more sterilising form of protection against respiratory viruses. A bivalent ChAdOx1-based vaccine (ChAdOx1-NP + M1-RSVF) encoding conserved nucleoprotein and matrix 1 proteins from influenza A virus and a modified pre-fusion stabilised RSV A F protein, was designed, developed and tested in preclinical animal models. The aim was to induce broad, cross-protective tissue-resident T cells against heterotypic influenza viruses and neutralising antibodies against RSV in the respiratory mucosa and systemically. When administered via an intramuscular prime-intranasal boost (IM-IN) regimen in mice, superior protection was generated against challenge with either RSV A, Influenza A H3N2 or H1N1. These results support further clinical development of a pan influenza & RSV vaccine administered in a prime-pull regimen.
Collapse
Affiliation(s)
- Cameron Bissett
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | | | - Marta Ulaszewska
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Holly Smith
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Reshma Kailath
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Susan Morris
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Claire Powers
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Sebastian
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hannah R Sharpe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth R Allen
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ziyin Wang
- Department of Infectious Disease, Imperial College London, London, UK
| | - Robert F Cunliffe
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Alexandra J Spencer
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Sarah Gilbert
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Loaiza RA, Ramírez RA, Sepúlveda-Alfaro J, Ramírez MA, Andrade CA, Soto JA, González PA, Bueno SM, Kalergis AM. A molecular perspective for the development of antibodies against the human respiratory syncytial virus. Antiviral Res 2024; 222:105783. [PMID: 38145755 DOI: 10.1016/j.antiviral.2023.105783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
The human respiratory syncytial virus (hRSV) is the leading etiologic agent causing respiratory infections in infants, children, older adults, and patients with comorbidities. Sixty-seven years have passed since the discovery of hRSV, and only a few successful mitigation or treatment tools have been developed against this virus. One of these is immunotherapy with monoclonal antibodies against structural proteins of the virus, such as Palivizumab, the first prophylactic approach approved by the Food and Drug Administration (FDA) of the USA. In this article, we discuss different strategies for the prevention and treatment of hRSV infection, focusing on the molecular mechanisms against each target that underly the rational design of antibodies against hRSV. At the same time, we describe the latest results regarding currently approved therapies against hRSV and the challenges associated with developing new candidates.
Collapse
Affiliation(s)
- Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Robinson A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Javiera Sepúlveda-Alfaro
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
11
|
Comeaux CA, Bart S, Bastian AR, Klyashtornyy V, De Paepe E, Omoruyi E, van der Fits L, van Heesbeen R, Heijnen E, Callendret B, Sadoff J. Safety, Immunogenicity, and Regimen Selection of Ad26.RSV.preF-Based Vaccine Combinations: A Randomized, Double-blind, Placebo-Controlled, Phase 1/2a Study. J Infect Dis 2024; 229:19-29. [PMID: 37433021 PMCID: PMC10786248 DOI: 10.1093/infdis/jiad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Ad26.RSV.preF is an adenovirus serotype 26 vector-based respiratory syncytial virus (RSV) vaccine encoding a prefusion conformation-stabilized RSV fusion protein (preF) that demonstrated robust humoral and cellular immunogenicity and showed promising efficacy in a human challenge study in younger adults. Addition of recombinant RSV preF protein might enhance RSV-specific humoral immune responses, especially in older populations. METHODS This randomized, double-blind, placebo-controlled, phase 1/2a study compared the safety and immunogenicity of Ad26.RSV.preF alone and varying doses of Ad26.RSV.preF-RSV preF protein combinations in adults aged ≥60 years. This report includes data from cohort 1 (initial safety, n = 64) and cohort 2 (regimen selection, n = 288). Primary immunogenicity and safety analyses were performed 28 days postvaccination (cohort 2) for regimen selection. RESULTS All vaccine regimens were well tolerated, with similar reactogenicity profiles among them. Combination regimens induced greater humoral immune responses (virus-neutralizing and preF-specific binding antibodies) and similar cellular ones (RSV-F-specific T cells) as compared with Ad26.RSV.preF alone. Vaccine-induced immune responses remained above baseline up to 1.5 years postvaccination. CONCLUSIONS All Ad26.RSV.preF-based regimens were well tolerated. A combination regimen comprising Ad26.RSV.preF, which elicits strong humoral and cellular responses, and RSV preF protein, which increases humoral responses, was selected for further development. Clinical Trials Registration. NCT03502707.
Collapse
Affiliation(s)
| | - Stephan Bart
- Trial Professionals Consultant Group, Inc., Woodstock, Maryland
| | | | | | | | | | | | | | - Esther Heijnen
- Janssen Vaccines & Prevention B.V., Leiden, the Netherlands
| | | | - Jerald Sadoff
- Janssen Vaccines & Prevention B.V., Leiden, the Netherlands
| |
Collapse
|
12
|
Montero DA, Vidal RM, Velasco J, Carreño LJ, Torres JP, Benachi O. MA, Tovar-Rosero YY, Oñate AA, O'Ryan M. Two centuries of vaccination: historical and conceptual approach and future perspectives. Front Public Health 2024; 11:1326154. [PMID: 38264254 PMCID: PMC10803505 DOI: 10.3389/fpubh.2023.1326154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Over the past two centuries, vaccines have been critical for the prevention of infectious diseases and are considered milestones in the medical and public health history. The World Health Organization estimates that vaccination currently prevents approximately 3.5-5 million deaths annually, attributed to diseases such as diphtheria, tetanus, pertussis, influenza, and measles. Vaccination has been instrumental in eradicating important pathogens, including the smallpox virus and wild poliovirus types 2 and 3. This narrative review offers a detailed journey through the history and advancements in vaccinology, tailored for healthcare workers. It traces pivotal milestones, beginning with the variolation practices in the early 17th century, the development of the first smallpox vaccine, and the continuous evolution and innovation in vaccine development up to the present day. We also briefly review immunological principles underlying vaccination, as well as the main vaccine types, with a special mention of the recently introduced mRNA vaccine technology. Additionally, we discuss the broad benefits of vaccines, including their role in reducing morbidity and mortality, and in fostering socioeconomic development in communities. Finally, we address the issue of vaccine hesitancy and discuss effective strategies to promote vaccine acceptance. Research, collaboration, and the widespread acceptance and use of vaccines are imperative for the continued success of vaccination programs in controlling and ultimately eradicating infectious diseases.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan P. Torres
- Departamento de Pediatría y Cirugía Pediátrica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Manuel A. Benachi O.
- Área de Biotecnología, Tecnoacademia Neiva, Servicio Nacional de Aprendizaje, Regional Huila, Neiva, Colombia
| | - Yenifer-Yadira Tovar-Rosero
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán, Colombia
| | - Angel A. Oñate
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Miguel O'Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Bartsch YC, Cizmeci D, Yuan D, Mehta N, Tolboom J, De Paepe E, van Heesbeen R, Sadoff J, Comeaux CA, Heijnen E, Callendret B, Alter G, Bastian AR. Vaccine-induced antibody Fc-effector functions in humans immunized with a combination Ad26.RSV.preF/RSV preF protein vaccine. J Virol 2023; 97:e0077123. [PMID: 37902399 PMCID: PMC10688327 DOI: 10.1128/jvi.00771-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE Respiratory syncytial virus (RSV) can cause serious illness in older adults (i.e., those aged ≥60 years). Because options for RSV prophylaxis and treatment are limited, the prevention of RSV-mediated illness in older adults remains an important unmet medical need. Data from prior studies suggest that Fc-effector functions are important for protection against RSV infection. In this work, we show that the investigational Ad26.RSV.preF/RSV preF protein vaccine induced Fc-effector functional immune responses in adults aged ≥60 years who were enrolled in a phase 1/2a regimen selection study of Ad26.RSV.preF/RSV preF protein. These results demonstrate the breadth of the immune responses induced by the Ad26.RSV.preF/RSV preF protein vaccine.
Collapse
Affiliation(s)
- Yannic C. Bartsch
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dansu Yuan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Nickita Mehta
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Jeroen Tolboom
- Janssen Vaccines & Prevention B.V., Leiden, South Holland, the Netherlands
| | | | - Roy van Heesbeen
- Janssen Vaccines & Prevention B.V., Leiden, South Holland, the Netherlands
| | - Jerald Sadoff
- Janssen Vaccines & Prevention B.V., Leiden, South Holland, the Netherlands
| | - Christy A. Comeaux
- Janssen Vaccines & Prevention B.V., Leiden, South Holland, the Netherlands
| | - Esther Heijnen
- Janssen Vaccines & Prevention B.V., Leiden, South Holland, the Netherlands
| | - Benoit Callendret
- Janssen Vaccines & Prevention B.V., Leiden, South Holland, the Netherlands
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | | |
Collapse
|
14
|
Jeyanathan M, Afkhami S, Kang A, Xing Z. Viral-vectored respiratory mucosal vaccine strategies. Curr Opin Immunol 2023; 84:102370. [PMID: 37499279 DOI: 10.1016/j.coi.2023.102370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
Increasing global concerns of pandemic respiratory viruses highlight the importance of developing optimal vaccination strategies that encompass vaccine platform, delivery route, and regimens. The decades-long effort to develop vaccines to combat respiratory infections such as influenza, respiratory syncytial virus, and tuberculosis has met with challenges, including the inability of systemically administered vaccines to induce respiratory mucosal (RM) immunity. In this regard, ample preclinical and available clinical studies have demonstrated the superiority of RM vaccination to induce RM immunity over parenteral route of vaccination. A great stride has been made in developing vaccines for RM delivery against respiratory pathogens, including M. tuberculosis and SARS-CoV-2. In particular, inhaled aerosol delivery of adenoviral-vectored vaccines has shown significant promise.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
15
|
Maina TW, Grego EA, Broderick S, Sacco RE, Narasimhan B, McGill JL. Immunization with a mucosal, post-fusion F/G protein-based polyanhydride nanovaccine protects neonatal calves against BRSV infection. Front Immunol 2023; 14:1186184. [PMID: 37359514 PMCID: PMC10289034 DOI: 10.3389/fimmu.2023.1186184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of death in young children and there are no FDA approved vaccines. Bovine RSV (BRSV) is antigenically similar to HRSV, and the neonatal calf model is useful for evaluation of HRSV vaccines. Here, we determined the efficacy of a polyanhydride-based nanovaccine encapsulating the BRSV post-fusion F and G glycoproteins and CpG, delivered prime-boost via heterologous (intranasal/subcutaneous) or homologous (intranasal/intranasal) immunization in the calf model. We compared the performance of the nanovaccine regimens to a modified-live BRSV vaccine, and to non-vaccinated calves. Calves receiving nanovaccine via either prime-boost regimen exhibited clinical and virological protection compared to non-vaccinated calves. The heterologous nanovaccine regimen induced both virus-specific cellular immunity and mucosal IgA, and induced similar clinical, virological and pathological protection as the commercial modified-live vaccine. Principal component analysis identified BRSV-specific humoral and cellular responses as important correlates of protection. The BRSV-F/G CpG nanovaccine is a promising candidate vaccine to reduce RSV disease burden in humans and animals.
Collapse
Affiliation(s)
- Teresia W. Maina
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Elizabeth A. Grego
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Scott Broderick
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, United States
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| |
Collapse
|
16
|
Saeland E, van der Fits L, Bolder R, Heemskerk-van der Meer M, Drijver J, van Polanen Y, Vaneman C, Tettero L, Cox F, Serroyen J, Jorgensen MJ, Langedijk JPM, Schuitemaker H, Callendret B, Zahn RC. Combination Ad26.RSV.preF/preF protein vaccine induces superior protective immunity compared with individual vaccine components in preclinical models. NPJ Vaccines 2023; 8:45. [PMID: 36949051 PMCID: PMC10033289 DOI: 10.1038/s41541-023-00637-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe respiratory disease for which no licensed vaccine is available. We have previously shown that a prefusion (preF) conformation-stabilized RSV F protein antigen and an adenoviral vector encoding RSV preF protein (Ad26.RSV.preF) are immunogenic and protective in animals when administered as single components. Here, we evaluated a combination of the 2 components, administered as a single injection. Strong induction of both humoral and cellular responses was shown in RSV-naïve and pre-exposed mice and pre-exposed African green monkeys (AGMs). Both components of the combination vaccine contributed to humoral immune responses, while the Ad26.RSV.preF component was the main contributor to cellular immune responses in both mice and AGMs. Immunization with the combination elicited superior protection against RSV A2 challenge in cotton rats. These results demonstrate the advantage of a combination vaccine and support further clinical development.
Collapse
Affiliation(s)
- Eirikur Saeland
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands.
| | | | - Renske Bolder
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | - Joke Drijver
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | | | | | - Freek Cox
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Jan Serroyen
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Matthew J Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | - Roland C Zahn
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| |
Collapse
|
17
|
Falsey AR, Williams K, Gymnopoulou E, Bart S, Ervin J, Bastian AR, Menten J, De Paepe E, Vandenberghe S, Chan EKH, Sadoff J, Douoguih M, Callendret B, Comeaux CA, Heijnen E. Efficacy and Safety of an Ad26.RSV.preF-RSV preF Protein Vaccine in Older Adults. N Engl J Med 2023; 388:609-620. [PMID: 36791161 DOI: 10.1056/nejmoa2207566] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) can cause serious lower respiratory tract disease in older adults, but no licensed RSV vaccine currently exists. An adenovirus serotype 26 RSV vector encoding a prefusion F (preF) protein (Ad26.RSV.preF) in combination with RSV preF protein was previously shown to elicit humoral and cellular immunogenicity. METHODS We conducted a randomized, double-blind, placebo-controlled, phase 2b, proof-of-concept trial to evaluate the efficacy, immunogenicity, and safety of an Ad26.RSV.preF-RSV preF protein vaccine. Adults who were 65 years of age or older were randomly assigned in a 1:1 ratio to receive vaccine or placebo. The primary end point was the first occurrence of RSV-mediated lower respiratory tract disease that met one of three case definitions: three or more symptoms of lower respiratory tract infection (definition 1), two or more symptoms of lower respiratory tract infection (definition 2), and either two or more symptoms of lower respiratory tract infection or one or more symptoms of lower respiratory tract infection plus at least one systemic symptom (definition 3). RESULTS Overall, 5782 participants were enrolled and received an injection. RSV-mediated lower respiratory tract disease meeting case definitions 1, 2, and 3 occurred in 6, 10, and 13 vaccine recipients and in 30, 40, and 43 placebo recipients, respectively. Vaccine efficacy was 80.0% (94.2% confidence interval [CI], 52.2 to 92.9), 75.0% (94.2% CI, 50.1 to 88.5), and 69.8% (94.2% CI, 43.7 to 84.7) for case definitions 1, 2, and 3, respectively. After vaccination, RSV A2 neutralizing antibody titers increased by a factor of 12.1 from baseline to day 15, a finding consistent with other immunogenicity measures. Percentages of participants with solicited local and systemic adverse events were higher in the vaccine group than in the placebo group (local, 37.9% vs. 8.4%; systemic, 41.4% vs. 16.4%); most adverse events were mild to moderate in severity. The frequency of serious adverse events was similar in the vaccine group and the placebo group (4.6% and 4.7%, respectively). CONCLUSIONS In adults 65 years of age or older, Ad26.RSV.preF-RSV preF protein vaccine was immunogenic and prevented RSV-mediated lower respiratory tract disease. (Funded by Janssen Vaccines and Prevention; CYPRESS ClinicalTrials.gov number, NCT03982199.).
Collapse
Affiliation(s)
- Ann R Falsey
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Kristi Williams
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Efi Gymnopoulou
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Stephan Bart
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - John Ervin
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Arangassery R Bastian
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Joris Menten
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Els De Paepe
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Sjouke Vandenberghe
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Eric K H Chan
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Jerald Sadoff
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Macaya Douoguih
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Benoit Callendret
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Christy A Comeaux
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| | - Esther Heijnen
- From the University of Rochester School of Medicine, Rochester, NY (A.R.F.); Janssen Vaccines and Prevention, Leiden, the Netherlands (K.W., A.R.B., J.S., M.D., B.C., C.A.C., E.H.); Janssen Infectious Diseases, Beerse, Belgium (E.G., J.M., E.D.P., S.V.); Trial Professionals Consultant Group, Woodstock, MD (S.B.); AMR Kansas City, Kansas City, MO (J.E.); and Janssen Global Services, Raritan, NJ (E.K.H.C.)
| |
Collapse
|
18
|
Janse M, Soekhradj SD, de Jong R, van de Burgwal LHM. Identifying Cross-Utilization of RSV Vaccine Inventions across the Human and Veterinary Field. Pathogens 2022; 12:pathogens12010046. [PMID: 36678394 PMCID: PMC9865526 DOI: 10.3390/pathogens12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
The respiratory syncytial virus (RSV) has two main variants with similar impact, a human and a bovine variant. The human respiratory syncytial virus (HRSV) is the most frequent cause of acute respiratory disease (pneumonia) in children, leading to hospitalization and causing premature death. In Europe, lower respiratory tract infections caused by HRSV are responsible for 42-45 percent of hospital admissions in children under two. Likewise, the bovine respiratory syncytial virus (BRSV) is a significant cause of acute viral broncho-pneumonia in calves. To date no licensed HRSV vaccine has been developed, despite the high burden of the disease. In contrast, BRSV vaccines have been on the market since the 1970s, but there is still an articulated unmet need for improved BRSV vaccines with greater efficacy. HRSV/BRSV vaccine development was chosen as a case to assess whether collaboration and knowledge-sharing between human and veterinary fields is taking place, benefiting the development of new vaccines in both fields. The genetic relatedness, comparable pathogeneses, and similar severity of the diseases suggests much can be gained by sharing knowledge and experiences between the human and veterinary fields. We analyzed patent data, as most of pharmaceutical inventions, such as the development of vaccines, are protected by patents. Our results show only little cross-utilization of inventions and no collaborations, as in shared IP as an exchange of knowledge. This suggests that, despite the similarities in the genetics and antigenicity of HRSV and BRSV, each fields follows its own process in developing new vaccines.
Collapse
Affiliation(s)
- Marga Janse
- Athena Institute, Faculteit der Bètawetenschappen W&N Gebouw, VU Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| | - Swasti D. Soekhradj
- Athena Institute, Faculteit der Bètawetenschappen W&N Gebouw, VU Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Rineke de Jong
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Linda H. M. van de Burgwal
- Athena Institute, Faculteit der Bètawetenschappen W&N Gebouw, VU Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
19
|
Covarrubias CE, Rivera TA, Soto CA, Deeks T, Kalergis AM. Current GMP standards for the production of vaccines and antibodies: An overview. Front Public Health 2022; 10:1021905. [PMID: 36743162 PMCID: PMC9891391 DOI: 10.3389/fpubh.2022.1021905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The manufacture of pharmaceutical products made under good manufacturing practices (GMP) must comply with the guidelines of national regulatory bodies based on international or regional compendia. The existence of this type of regulation allows pharmaceutical laboratories to count on the standardization of high-quality production processes, obtaining a safe product for human use, with a positive impact on public health. In addition, the COVID-19 pandemic highlights the importance of having more and better-distributed manufacturing plants, emphasizing regions such as Latin America. This review shows the most important GMP standards in the world and, in particular, their relevance in the production of vaccines and antibodies.
Collapse
Affiliation(s)
- Consuelo E. Covarrubias
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thomas A. Rivera
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A. Soto
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Trevor Deeks
- Deeks Pharmaceutical Consulting Services, Rockville, MD, United States
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
20
|
Soto JA, Galvez NMS, Rivera DB, Díaz FE, Riedel CA, Bueno SM, Kalergis AM. From animal studies into clinical trials: the relevance of animal models to develop vaccines and therapies to reduce disease severity and prevent hRSV infection. Expert Opin Drug Discov 2022; 17:1237-1259. [PMID: 36093605 DOI: 10.1080/17460441.2022.2123468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (hRSV) is an important cause of lower respiratory tract infections in the pediatric and the geriatric population worldwide. There is a substantial economic burden resulting from hRSV disease during winter. Although no vaccines have been approved for human use, prophylactic therapies are available for high-risk populations. Choosing the proper animal models to evaluate different vaccine prototypes or pharmacological treatments is essential for developing efficient therapies against hRSV. AREAS COVERED This article describes the relevance of using different animal models to evaluate the effect of antiviral drugs, pharmacological molecules, vaccine prototypes, and antibodies in the protection against hRSV. The animal models covered are rodents, mustelids, bovines, and nonhuman primates. Animals included were chosen based on the available literature and their role in the development of the drugs discussed in this manuscript. EXPERT OPINION Choosing the correct animal model is critical for exploring and testing treatments that could decrease the impact of hRSV in high-risk populations. Mice will continue to be the most used preclinical model to evaluate this. However, researchers must also explore the use of other models such as nonhuman primates, as they are more similar to humans, prior to escalating into clinical trials.
Collapse
Affiliation(s)
- J A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - N M S Galvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D B Rivera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - S M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
21
|
Low YL, Wong SY, Lee EKH, Muhammed MH. Prevalence of respiratory viruses among paediatric patients in acute respiratory illnesses in Malaysia. PLoS One 2022; 17:e0265288. [PMID: 35921317 PMCID: PMC9348681 DOI: 10.1371/journal.pone.0265288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives
Acute respiratory infections (ARIs) are one of the leading causes of childhood morbidity and mortality worldwide. However, there is limited surveillance data on the epidemiological burden of respiratory pathogens in tropical countries like Malaysia. This study aims to estimate the prevalence of respiratory pathogens causing ARIs among children aged <18 years old in Malaysia and their epidemiological characteristics.
Methods
Nasopharyngeal swab specimens received at 12 laboratories located in different states of Malaysia from 2015–2019 were studied. Detection of 18 respiratory pathogens were performed using multiplex PCR.
Results
Data from a total of 23,306 paediatric patients who presented with ARI over a five-year period was studied. Of these, 18538 (79.5%) were tested positive. The most prevalent respiratory pathogens detected in this study were enterovirus/ rhinovirus (6837/ 23000; 29.7%), influenza virus (5176/ 23000; 22.5%) and respiratory syncytial virus (RSV) (3652/ 23000; 15.9%). Throughout the study period, RSV demonstrated the most pronounce seasonality; peak infection occurred during July to September. Whereas the influenza virus was detected year-round in Malaysia. No seasonal variation was noted in other respiratory pathogens. The risk of RSV hospitalisation was found to be significantly higher in children aged less than two years old, whereas hospitalisation rates for the influenza virus peaked at children aged between 3–6 years old.
Conclusion
This study provides insight into the epidemiology and the seasonality of the causative pathogens of ARI among the paediatric population in Malaysia. Knowledge of seasonal respiratory pathogens epidemiological dynamics will facilitate the identification of a target window for vaccination.
Collapse
Affiliation(s)
- Yoke Lee Low
- Pantai Premier Pathology Sdn Bhd, Kuala Lumpur, Malaysia
- * E-mail:
| | - Shin Yee Wong
- Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
22
|
Bian L, Zheng Y, Guo X, Li D, Zhou J, Jing L, Chen Y, Lu J, Zhang K, Jiang C, Zhang Y, Kong W. Intramuscular Inoculation of AS02-Adjuvanted Respiratory Syncytial Virus (RSV) F Subunit Vaccine Shows Better Efficiency and Safety Than Subcutaneous Inoculation in BALB/c Mice. Front Immunol 2022; 13:938598. [PMID: 35935960 PMCID: PMC9354885 DOI: 10.3389/fimmu.2022.938598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
We previously explored a panel of adjuvants formulated with pre-fusion RSV-F protein and found that AS02 may be a promising candidate adjuvant for developing RSV-F subunit vaccines with improved immunogenicity and desired immune response type. In this study, we performed a head-to-head comparison of the effect of intramuscular injection to that of subcutaneous injection on the immune response and protective efficacy of recombinant RSV-F subunit vaccine with or without adjuvants (Alhydrogel, squalene-based emulsion adjuvants MF59, AS03, and AS02) in BALB/c mice. After inoculations, antigen-specific antibodies, neutralizing antibodies, antibody subtypes, cytokines, and the persistence of immune response were evaluated. Moreover, challenge tests were also performed to illustrate the possible effect of inoculation routes and adjuvant on virus clearance and histochemistry changes in the lungs of mice. The results indicated that intramuscular inoculation is a more effective and antigen dose-sparing route to enhance the immune response, although subcutaneous inoculation induced faster and stronger IgG antibodies after the initial immunization. Furthermore, adjuvant, but not immunization route, is a more critical factor to affect the humoral/cellular immune response and the immune bias. In addition, adjuvant inoculated via the intramuscular route is safer than that via the subcutaneous route, especially for AS02. This study highlights the importance of the adjuvant and immunization routes in the design and clinical transformation of adjuvanted vaccines. Further investigation is needed to illustrate the mechanism underlying the above difference in both efficiency and safety.
Collapse
Affiliation(s)
- Lijun Bian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yu Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaohong Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Dongdong Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jingying Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Linyao Jing
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, China
| | - Jingcai Lu
- R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| | - Ke Zhang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Department of Parasitology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, China
- R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
- *Correspondence: Yong Zhang, ; ; Chunlai Jiang,
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, China
- *Correspondence: Yong Zhang, ; ; Chunlai Jiang,
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, China
- R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| |
Collapse
|
23
|
Mesa-Frias M, Rossi C, Emond B, Bookhart B, Anderson D, Drummond S, Wang J, Lefebvre P, Lamerato LE, Lafeuille MH. Incidence and economic burden of respiratory syncytial virus among adults in the United States: A retrospective analysis using 2 insurance claims databases. J Manag Care Spec Pharm 2022; 28:753-765. [PMID: 35503888 DOI: 10.18553/jmcp.2022.21459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND: Respiratory syncytial virus (RSV) is a common, contagious, and seasonal pathogen causing 64 million acute respiratory infections annually in adults and children worldwide. High-risk adults, including older adults and those with cardiopulmonary conditions or weakened immune systems, are more likely to be infected. However, limited information exists on RSV incidence and associated costs among adults, including high-risk patients. OBJECTIVE: To evaluate the annual incidence of medically attended, International Classification of Diseases (ICD)-coded RSV among commercially insured adults and assess health care costs among adults with ICD-coded RSV in the United States. METHODS: Optum's deidentified Clinformatics Data Mart Database (January 01, 2007, to June 30, 2020) and IBM's MarketScan Databases (January 01, 2000, to July 31, 2020) were used. Medically attended, ICD-coded RSV incidence among adults was assessed from July 1 of a given year to June 30 of the next year and reported per 100,000 population. Trends in all-cause mean weekly costs pre-RSV and post-RSV diagnosis were reported. Results were reported overall and among patients aged 60-64 years, 65 years or older, 85 years or older, and 18-59 years at high risk of severe RSV (defined as having cardiopulmonary conditions or a weakened immune system). RESULTS: Annual incidence of medically attended, ICD-coded RSV in adults overall was 22.0-52.9 in Optum and 23.4-63.6 in MarketScan. Incidence rates were higher among patients aged 60-64 years (Optum: 25.2-66.1; MarketScan: 31.9-82.1), 65 years or older (Optum: 37.3-75.5; MarketScan: 54.1-97.3), 85 years or older (Optum: 92.4-140.6; MarketScan: 79.4-234.7), and 18-59 years at high risk of severe RSV (Optum: 41.3-135.9; MarketScan: 46.3-112.4). Mean weekly costs increased during the week before (Optum: $2,325; MarketScan: $2,080) and post-RSV diagnosis (Optum: $9,523; MarketScan: $3,551), compared with those in weeks 2-8 pre-RSV diagnosis (Optum: $1,350; MarketScan: $872). The increases in mean weekly costs during the week before and the week following RSV diagnosis were higher among patients aged 60-64 years (mean weekly costs in weeks 2-8 pre-RSV, week 1 pre-RSV, week 1 post-RSV; Optum: $1,623, $2,690, $10,823; MarketScan: $1,259, $2,992, $5,069), 65 years or older (Optum: $1,731, $3,067, $12,866; MarketScan: $1,517, $3,571, $5,268), 85 years or older (Optum: $1,563, $2,430, $18,134; MarketScan: $1,613, $4,113, $6,231), and 18-59 years at high risk of severe RSV (only for MarketScan: $1,237, $3,294, $5,531; costs were similar for Optum). CONCLUSIONS: Incidence of medically attended, ICD-coded RSV in adults was 22.0-63.6 per 100,000 population, a likely underestimation since RSV was not systematically tested and only RSV-coded cases were observed. Incremental costs associated with RSV were substantial. Incidence rates and costs were higher among patients aged 60 years or older and patients at high risk of severe RSV. DISCLOSURES: This study was sponsored by Janssen Scientific Affairs, LLC. The sponsor was involved in the study design, interpretation of results, manuscript preparation, and publication decisions. B. Brookhart and D. Anderson are employees of Janssen Scientific Affairs, LLC, and are stockholders of Johnson & Johnson. C. Rossi, B. Emond, J. Wang, P. Lefebvre, and M.-H. Lafeuille are employees of Analysis Group, Inc., a consulting company that has provided paid consulting services to Janssen Scientific Affairs, LLC, which funded the development and conduct of this study and manuscript. M. Mesa-Frias. and S. Drummond are former employees of Janssen Scientific Affairs, LLC. L. Lamerato is an employee of Henry Ford Health System and received research funding from Janssen Scientific Affairs, LLC.
Collapse
|
24
|
Sadeghsoltani F, Mohammadzadeh I, Safari MM, Hassanpour P, Izadpanah M, Qujeq D, Moein S, Vaghari-Tabari M. Zinc and Respiratory Viral Infections: Important Trace Element in Anti-viral Response and Immune Regulation. Biol Trace Elem Res 2022; 200:2556-2571. [PMID: 34368933 PMCID: PMC8349606 DOI: 10.1007/s12011-021-02859-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Influenza viruses, respiratory syncytial virus (RSV), and SARS-COV2 are among the most dangerous respiratory viruses. Zinc is one of the essential micronutrients and is very important in the immune system. The aim of this narrative review is to review the most interesting findings about the importance of zinc in the anti-viral immune response in the respiratory tract and defense against influenza, RSV, and SARS-COV2 infections. The most interesting findings on the role of zinc in regulating immunity in the respiratory tract and the relationship between zinc and acute respiratory distress syndrome (ARDS) are reviewed, as well. Besides, current findings regarding the relationship between zinc and the effectiveness of respiratory viruses' vaccines are reviewed. The results of reviewed studies have shown that zinc and some zinc-dependent proteins are involved in anti-viral defense and immune regulation in the respiratory tract. It seems that zinc can reduce the viral titer following influenza infection. Zinc may reduce RSV burden in the lungs. Zinc can be effective in reducing the duration of viral pneumonia symptoms. Zinc may enhance the effectiveness of hydroxychloroquine in reducing mortality rate in COVID-19 patients. Besides, zinc has a positive effect in preventing ARDS and ventilator-induced lung damage. The relationship between zinc levels and the effectiveness of respiratory viruses' vaccines, especially influenza vaccines, is still unclear, and the findings are somewhat contradictory. In conclusion, zinc has anti-viral properties and is important in defending against respiratory viral infections and regulating the immune response in the respiratory tract.
Collapse
Affiliation(s)
- Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran
| | - Iraj Mohammadzadeh
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mir-Meghdad Safari
- Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran
| | - Melika Izadpanah
- Department of Anatomy, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Murray J, Bergeron HC, Jones LP, Reener ZB, Martin DE, Sancilio FD, Tripp RA. Probenecid Inhibits Respiratory Syncytial Virus (RSV) Replication. Viruses 2022; 14:v14050912. [PMID: 35632652 PMCID: PMC9147281 DOI: 10.3390/v14050912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
RNA viruses like SARS-CoV-2, influenza virus, and respiratory syncytial virus (RSV) are dependent on host genes for replication. We investigated if probenecid, an FDA-approved and safe urate-lowering drug that inhibits organic anion transporters (OATs) has prophylactic or therapeutic efficacy to inhibit RSV replication in three epithelial cell lines used in RSV studies, i.e., Vero E6 cells, HEp-2 cells, and in primary normal human bronchoepithelial (NHBE) cells, and in BALB/c mice. The studies showed that nanomolar concentrations of all probenecid regimens prevent RSV strain A and B replication in vitro and RSV strain A in vivo, representing a potential prophylactic and chemotherapeutic for RSV.
Collapse
Affiliation(s)
- Jackelyn Murray
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; (J.M.); (H.C.B.); (L.P.J.); (Z.B.R.)
| | - Harrison C. Bergeron
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; (J.M.); (H.C.B.); (L.P.J.); (Z.B.R.)
| | - Les P. Jones
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; (J.M.); (H.C.B.); (L.P.J.); (Z.B.R.)
| | - Zachary Beau Reener
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; (J.M.); (H.C.B.); (L.P.J.); (Z.B.R.)
| | | | - Fred D. Sancilio
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL 33431, USA;
| | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; (J.M.); (H.C.B.); (L.P.J.); (Z.B.R.)
- TrippBio, Inc., Jacksonville, FL 32256, USA;
- Correspondence: ; Tel.: +1-706-542-1557
| |
Collapse
|
26
|
Ren S, Shi T, Shan W, Shen S, Chen Q, Zhang W, Dai Z, Xue J, Zhang T, Tian J, Zhao G. Hospitalization rate of respiratory syncytial virus-associated acute lower respiratory infection among young children in Suzhou, China, 2010-2014. Influenza Other Respir Viruses 2022; 16:789-799. [PMID: 34989118 PMCID: PMC9178065 DOI: 10.1111/irv.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
Background There is a limited amount of data in China on the disease burden of respiratory syncytial virus‐ (RSV) associated acute lower respiratory infection (ALRI) among young children. This study aimed to estimate the hospitalization rate of RSV‐associated ALRI (RSV‐ALRI) among children aged 0–59 months in Suzhou, China. Methods All cases from children hospitalized with ALRI who were aged 0–59 months in Suzhou University Affiliated Children's Hospital during January 2010 to December 2014 were retrospectively identified. Detailed diagnosis and treatment data were collected by reviewing each individual's medical chart. In accordance with the World Health Organization (WHO) influenza disease burden estimation, the hospitalization rate of RSV‐ALRI among children aged 0–59 months in Suzhou, China, was then estimated. Results Out of the 28,209 ALRI cases, 19,317 (68.5%) were tested for RSV, of which the RSV positive proportion was 21.3% (4107/19,317). The average hospitalization rate of RSV‐ALRI for children aged 0–59 months was 14 (95% confidence interval [CI]:14–14)/1000 children years, and that for children aged 0–5, 6–11, 12–23, and 24–59 months were 70 (95% CI: 67–73), 31 (95% CI: 29–33), 11 (95% CI: 10–12), and 3 (95% CI: 3–3)/1000 children years, respectively. Conclusion A considerable degree of RSV‐ALRI hospitalization exists among children aged 0–59 months, particularly in those under 1 year of age. Therefore, an effective monoclonal antibody or vaccine is urgently needed to address the substantial hospitalization burden of RSV infection.
Collapse
Affiliation(s)
- Shaolong Ren
- Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Ting Shi
- Soochow University Affiliated Children's Hospital, Suzhou, China
| | - Wei Shan
- Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Si Shen
- Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Qinghui Chen
- Soochow University Affiliated Children's Hospital, Suzhou, China
| | - Wanqing Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Zirui Dai
- Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jian Xue
- Soochow University Affiliated Children's Hospital, Suzhou, China
| | - Tao Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jianmei Tian
- Soochow University Affiliated Children's Hospital, Suzhou, China
| | - Genming Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| |
Collapse
|
27
|
Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology 2021; 10:e1345. [PMID: 34667600 PMCID: PMC8510854 DOI: 10.1002/cti2.1345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.
Collapse
Affiliation(s)
- Ahmed Elkashif
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Marwa Alhashimi
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Ekramy E Sayedahmed
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | | | - Suresh K Mittal
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
28
|
Díaz FE, Guerra-Maupome M, McDonald PO, Rivera-Pérez D, Kalergis AM, McGill JL. A Recombinant BCG Vaccine Is Safe and Immunogenic in Neonatal Calves and Reduces the Clinical Disease Caused by the Respiratory Syncytial Virus. Front Immunol 2021; 12:664212. [PMID: 33981309 PMCID: PMC8108697 DOI: 10.3389/fimmu.2021.664212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) constitutes a major health burden, causing millions of hospitalizations in children under five years old worldwide due to acute lower respiratory tract infections. Despite decades of research, licensed vaccines to prevent hRSV are not available. Development of vaccines against hRSV targeting young infants requires ruling out potential vaccine-enhanced disease presentations. To achieve this goal, vaccine testing in proper animal models is essential. A recombinant BCG vaccine that expresses the Nucleoprotein of hRSV (rBCG-N-hRSV) protects mice against hRSV infection, eliciting humoral and cellular immune protection. Further, this vaccine was shown to be safe and immunogenic in human adult volunteers. Here, we evaluated the safety, immunogenicity, and protective efficacy of the rBCG-N-hRSV vaccine in a neonatal bovine RSV calf infection model. Newborn, colostrum-replete Holstein calves were either vaccinated with rBCG-N-hRSV, WT-BCG, or left unvaccinated, and then inoculated via aerosol challenge with bRSV strain 375. Vaccination with rBCG-N-hRSV was safe and well-tolerated, with no systemic adverse effects. There was no evidence of vaccine-enhanced disease following bRSV challenge of rBCG-N-hRSV vaccinated animals, suggesting that the vaccine is safe for use in neonates. Vaccination increased virus-specific IgA and virus-neutralization activity in nasal fluid and increased the proliferation of virus- and BCG-specific CD4+ and CD8+ T cells in PBMCs and lymph nodes at 7dpi. Furthermore, rBCG-N-hRSV vaccinated calves developed reduced clinical disease as compared to unvaccinated control calves, although neither pathology nor viral burden were significantly reduced in the lungs. These results suggest that the rBCG-N-hRSV vaccine is safe in neonatal calves and induces protective humoral and cellular immunity against this respiratory virus. These data from a newborn animal model provide further support to the notion that this vaccine approach could be considered as a candidate for infant immunization against RSV.
Collapse
Affiliation(s)
- Fabián E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Guerra-Maupome
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, United States
| | - Paiton O McDonald
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, United States
| | - Daniela Rivera-Pérez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
29
|
Current State and Challenges in Developing Respiratory Syncytial Virus Vaccines. Vaccines (Basel) 2020; 8:vaccines8040672. [PMID: 33187337 PMCID: PMC7711987 DOI: 10.3390/vaccines8040672] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/01/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the main cause of acute respiratory tract infections in infants and it also induces significant disease in the elderly. The clinical course may be severe, especially in high-risk populations (infants and elderly), with a large number of deaths in developing countries and of intensive care hospitalizations worldwide. To date, prevention strategies against RSV infection is based on hygienic measures and passive immunization with humanized monoclonal antibodies, limited to selected high-risk children due to their high costs. The development of a safe and effective vaccine is a global health need and an important objective of research in this field. A growing number of RSV vaccine candidates in different formats (particle-based vaccines, vector-based vaccines, subunit vaccines and live-attenuated vaccines) are being developed and are now at different stages, many of them already being in the clinical stage. While waiting for commercially available safe and effective vaccines, immune prophylaxis in selected groups of high-risk populations is still mandatory. This review summarizes the state-of-the-art of the RSV vaccine research and its implications for clinical practice, focusing on the characteristics of the vaccines that reached the clinical stage of development.
Collapse
|