1
|
Major V, Palmer S, Rouse P, Morys J, Henderson T, Hübscher T, Sweetman J, Bacon A, An C, Guiyun Q, Wang Y, Corsinotti A, Cholewa-Waclaw J, Chapman SJ, Lütolf MP, Anderson G, Blackburn CC. Establishment of a microwell-array-based miniaturized thymic organoid model suitable for high-throughput applications. Cell Rep 2025; 44:115579. [PMID: 40244847 DOI: 10.1016/j.celrep.2025.115579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/20/2024] [Accepted: 03/27/2025] [Indexed: 04/19/2025] Open
Abstract
T cell development depends critically on the thymic stroma-in particular, the diverse array of functionally distinct thymic epithelial cell (TEC) types. However, a robust in vitro thymus model mimicking the native thymus and compatible with medium-/high-throughput analyses is currently lacking. Here, we demonstrate a high-density microwell-array-based miniaturized thymus organoid (mTO) model that supports T cell commitment and development, possesses key organizational characteristics of the native thymus, and is compatible with live imaging and medium-/high-throughput applications. We establish the minimum cellular input required for a functional mTO and show that mTO TEC phenotype and complexity closely mirror those of the native thymus. Finally, we use an mTO to probe the role of fetal thymic mesenchyme, revealing a requirement beyond maintenance of Foxn1 in differentiation/maintenance of mature TEC sub-populations. Collectively, mTOs present an invitro model of the native thymus adaptable to medium-/high-throughput applications and validated for exploration of thymus and thymus organoid biology.
Collapse
Affiliation(s)
- Viktoria Major
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sam Palmer
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Paul Rouse
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jan Morys
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Timothy Henderson
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Tania Hübscher
- École Polytechnique Fédérale de Lausanne, EPFL SV IBI-SV UPLUT, AI 1208 (Bâtiment AI), Station 15, 1015 Lausanne, Switzerland
| | - Joanna Sweetman
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrea Bacon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Chengrui An
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Qiu Guiyun
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Yu Wang
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrea Corsinotti
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Justyna Cholewa-Waclaw
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - S Jon Chapman
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Matthias P Lütolf
- École Polytechnique Fédérale de Lausanne, EPFL SV IBI-SV UPLUT, AI 1208 (Bâtiment AI), Station 15, 1015 Lausanne, Switzerland
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - C Clare Blackburn
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
2
|
Wedemeyer SA, Jones NE, Raza IGA, Green FM, Xiao Y, Semwal MK, Garza AK, Archuleta KS, Wimberly KL, Venables T, Holländer GA, Griffith AV. Paracrine FGF21 dynamically modulates mTOR signaling to regulate thymus function across the lifespan. NATURE AGING 2025; 5:588-606. [PMID: 39972173 PMCID: PMC12003089 DOI: 10.1038/s43587-024-00801-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
Consequences of age-associated thymic atrophy include declining T-cell responsiveness to pathogens and vaccines and diminished T-cell self-tolerance. Cortical thymic epithelial cells (cTECs) are primary targets of thymic aging, and recent studies suggested that their maintenance requires mTOR signaling downstream of medullary TEC (mTEC)-derived growth factors. Here, to test this hypothesis, we generated a knock-in mouse model in which FGF21 and mCherry are expressed by most mTECs. We find that mTEC-derived FGF21 promotes temporally distinct patterns of mTORC1 and mTORC2 signaling in cTECs, promotes thymus and individual cTEC growth and maintenance, increases T-cell responsiveness to viral infection, and diminishes indicators of peripheral autoimmunity in older mice. The effects of FGF21 overexpression on thymus size and mTOR signaling were abrogated by treatment with the mTOR inhibitor rapamycin. These results reveal a mechanism by which paracrine FGF21 signaling regulates thymus size and function throughout the lifespan, as well as potential therapeutic targets for improving T-cell function and tolerance in aging.
Collapse
Affiliation(s)
- Sarah A Wedemeyer
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Nicholas E Jones
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Iwan G A Raza
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Freedom M Green
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Yangming Xiao
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Manpreet K Semwal
- Sam and Ann Barshop Institute for Aging and Longevity Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Math and Science, Our Lady of the Lake University, San Antonio, TX, USA
| | - Aaron K Garza
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Kahealani S Archuleta
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Kymberly L Wimberly
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Thomas Venables
- Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Georg A Holländer
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital, Basel, Switzerland
- Developmental Immunology, Department of Biosystems and Engineering, ETH Zurich, Zurich, Switzerland
| | - Ann V Griffith
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA.
- Sam and Ann Barshop Institute for Aging and Longevity Studies, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
3
|
Carpenter RS, Lagou MK, Karagiannis GS, Maryanovich M. Neural regulation of the thymus: past, current, and future perspectives. Front Immunol 2025; 16:1552979. [PMID: 40046055 PMCID: PMC11880003 DOI: 10.3389/fimmu.2025.1552979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
The thymus is a primary lymphoid organ critical for the development of mature T cells from hematopoietic progenitors. A highly structured organ, the thymus contains distinct regions, precise cytoarchitecture, and molecular signals tightly regulating thymopoiesis. Although the above are well-understood, the structural and functional implications of thymic innervation are largely neglected. In general, neural regulation has become increasingly identified as a critical component of immune cell development and function. The central nervous system (CNS) in the brain coordinates these immunological responses both by direct innervation through peripheral nerves and by neuroendocrine signaling. Yet how these signals, particularly direct neural innervation, may regulate the thymus biology is unclear and understudied. In this review, we highlight historical and current data demonstrating direct neural input to the thymus and assess current evidence of the neural regulation of thymopoiesis. We further discuss the current knowledge gaps and summarize recent advances in techniques that could be used to study how nerves regulate the thymic microenvironment.
Collapse
Affiliation(s)
- Randall S. Carpenter
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maria K. Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - George S. Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, United States
- The Marilyn and Stanely M. Katz Institute for Immunotherapy for Cancer and Inflammatory Disorders, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| |
Collapse
|
4
|
Lemarquis AL, Kousa AI, Argyropoulos KV, Jahn L, Gipson B, Pierce J, Serrano-Marin L, Victor K, Kanno Y, Girotra NN, Andrlova H, Tsai J, Velardi E, Sharma R, Grassmann S, Ekwall O, Goldstone AB, Dudakov JA, DeWolf S, van den Brink MRM. Recirculating regulatory T cells mediate thymic regeneration through amphiregulin following damage. Immunity 2025; 58:397-411.e6. [PMID: 39892391 PMCID: PMC11932356 DOI: 10.1016/j.immuni.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/15/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
Thymic injury associated with disease or cancer treatment reduces T cell production and makes patients more vulnerable to infections and cancers. Here, we examined the role of regulatory T (Treg) cells on thymic regeneration. Treg cell frequencies increased in the thymus in various acute injury models. Depletion of Treg cells impaired thymic regeneration, impacting both the thymocyte compartment and the stromal cell compartment; adoptive transfer of Treg cells enhanced regeneration. Expansion of circulating Treg cells, as opposed to that of tissue resident or recent thymic emigrants, explained this increase, as seen using parabiotic and adoptive transfer models. Single-cell analyses of recirculating Treg cells revealed expression of various regenerative factors, including the cytokine amphiregulin. Deletion of amphiregulin in these Treg cells impaired regeneration in the injured thymus. We identified an analogous population of CD39+ICOS+ Treg cells in the human thymus. Our findings point to potential therapeutic avenues to address aging- and treatment-induced immunosuppression.
Collapse
Affiliation(s)
- Andri L Lemarquis
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anastasia I Kousa
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA
| | - Kimon V Argyropoulos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenz Jahn
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brianna Gipson
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonah Pierce
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucia Serrano-Marin
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kristen Victor
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuzuka Kanno
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Narina N Girotra
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hana Andrlova
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer Tsai
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Enrico Velardi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Roshan Sharma
- Single Cell Analytics Innovation Lab, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon Grassmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andrew B Goldstone
- Section of Pediatric and Congenital Cardiac Surgery, Division of Cardiothoracic Surgery, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - Jarrod A Dudakov
- Department of Immunology, University of Washington, Seattle, WA, USA; Immunotherapy Integrated Research Center, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcel R M van den Brink
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Muramatsu W, Maryanovich M, Akiyama T, Karagiannis GS. Thymus ad astra, or spaceflight-induced thymic involution. Front Immunol 2025; 15:1534444. [PMID: 39926601 PMCID: PMC11802524 DOI: 10.3389/fimmu.2024.1534444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/24/2024] [Indexed: 02/11/2025] Open
Abstract
Spaceflight imposes a constellation of physiological challenges-cosmic radiation, microgravity, disrupted circadian rhythms, and psychosocial stress-that critically compromise astronaut health. Among the most vulnerable organs is the thymus, a cornerstone of immune system functionality, tasked with generating naive T cells essential for adaptive immunity. The thymus is particularly sensitive to spaceflight conditions, as its role in maintaining immune homeostasis is tightly regulated by a balance of systemic and local factors easily disrupted in space. Cosmic radiation, an omnipresent hazard beyond Earth's magnetosphere, accelerates DNA damage and cellular senescence in thymic epithelial cells, impairing thymopoiesis and increasing the risk of immune dysregulation. Microgravity and circadian rhythm disruption exacerbate this by altering immune cell migration patterns and stromal support, critical for T-cell development. Psychosocial stressors, including prolonged isolation and mission-induced anxiety, further compound thymic atrophy by elevating systemic glucocorticoid levels. Ground-based analogs simulating cosmic radiation and microgravity have been instrumental in elucidating mechanisms of thymic involution and its downstream effects on immunity. These models reveal that long-duration missions result in diminished naive T-cell output, leaving astronauts vulnerable to infections and possibly at high risk for developing neoplasia. Advances in countermeasures, such as pharmacological interventions targeting thymic regeneration and bioengineering approaches to protect thymic architecture, are emerging as vital strategies to preserve immune resilience during prolonged space exploration. Focusing on the thymus as a central hub of immune vulnerability underscores its pivotal role in spaceflight-induced health risks. Understanding these dynamics will not only enhance the safety of human space missions but also provide critical insights into thymus biology under extreme conditions.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| | - Taishin Akiyama
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - George S. Karagiannis
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, United States
- The Marilyn and Stanely M. Katz Institute for Immunotherapy for Cancer and Inflammatory Disorders, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| |
Collapse
|
6
|
Mughal KS, Ikram M, Uddin Z, Rashid A, Rashid U, Khan M, Zehra N, Mughal US, Shah N, Amirzada I. Syringic acid improves cyclophosphamide-induced immunosuppression in a mouse model. Biochem Biophys Res Commun 2024; 734:150777. [PMID: 39383831 DOI: 10.1016/j.bbrc.2024.150777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Syringic acid (SA), a naturally occurring phenolic substance present in many edible plants and fruits, has been shown to have potential in immunoenhancement applications. In this study, we investigated the immunomodulatory effects of SA in mitigating cyclophosphamide (CYP)-induced immunosuppression in BALB/c mice using doxycycline as a positive control. SA administration prevented immune organ atrophy and morphological changes in the thymus, spleen, and bone marrow induced by CYP treatment in mice while also showing a dose-dependent enhancement of thymus and spleen indices compared to mice treated with CYP alone. Furthermore, SA improved thymocyte and splenocyte proliferation and exhibited significant antioxidant activity by reducing the elevated levels of malondialdehyde induced by CYP treatment. SA treatment effectively restored white blood cell (WBC) and lymphocyte counts to normal levels in CYP-treated animals, and the protective effects of CYP on immunological tissues were confirmed through histopathological examination. Moreover, SA treatment upregulated the expression of IL-6, IL-7, IL-15, and FoxN1. Finally, molecular docking studies revealed that binding energy values predicted minor inhibition potential toward IL-6, IL-7, FoxN1, IL-15, STAT3, STAT5, and JAK3. Overall, our findings suggest that SA treatment has the potential to reduce CYP-induced immunosuppression and may have applications as an immunologic adjuvant or functional food additive in chemotherapy.
Collapse
Affiliation(s)
- Khoula Sharif Mughal
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan.
| | - Zia Uddin
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Amna Rashid
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Momina Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Naseem Zehra
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Umair Sharif Mughal
- Department of Medicine, Ayub Teaching Hospital, Abbottabad, 22040, Khyber Pakhtunkhwa, Pakistan
| | - Nabi Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Imran Amirzada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
7
|
Lins MP, de Melo IS. Exploring the interplay between cannabinoids and thymic functions. Toxicol Sci 2024; 202:1-12. [PMID: 39250730 DOI: 10.1093/toxsci/kfae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Cannabinoids, derived from the Cannabis sativa plant, have garnered increasing attention for their potential therapeutic applications in various diseases. The pharmacologically active compounds in Cannabis, such as delta-9-tetrahydrocannabinol and cannabidiol, exhibit diverse immunomodulatory properties. Although studies have explored the effects of cannabinoids on immune function, their specific interactions with the thymus, a primary immune organ critical for T-cell development and maturation, remain an intriguing area of investigation. As the thymus plays a fundamental role in shaping the immune repertoire, understanding the interplay between cannabinoids and thymic function may shed light on potential benefits or concerns associated with Cannabis-based therapies. This article aims to provide an overview of the current scientific knowledge regarding the impact of medicinal Cannabis on the thymus and its implications for disease treatment and immune health.
Collapse
Affiliation(s)
- Marvin Paulo Lins
- Laboratory of Immunology, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá-MT, 78060-900, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| | - Igor Santana de Melo
- Laboratory of Neuropharmacology and Integrative Physiology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, 57072-900, Brazil
| |
Collapse
|
8
|
Kousa AI, Jahn L, Zhao K, Flores AE, Acenas D, Lederer E, Argyropoulos KV, Lemarquis AL, Granadier D, Cooper K, D'Andrea M, Sheridan JM, Tsai J, Sikkema L, Lazrak A, Nichols K, Lee N, Ghale R, Malard F, Andrlova H, Velardi E, Youssef S, Burgos da Silva M, Docampo M, Sharma R, Mazutis L, Wimmer VC, Rogers KL, DeWolf S, Gipson B, Gomes ALC, Setty M, Pe'er D, Hale L, Manley NR, Gray DHD, van den Brink MRM, Dudakov JA. Age-related epithelial defects limit thymic function and regeneration. Nat Immunol 2024; 25:1593-1606. [PMID: 39112630 PMCID: PMC11362016 DOI: 10.1038/s41590-024-01915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/03/2024] [Indexed: 09/01/2024]
Abstract
The thymus is essential for establishing adaptive immunity yet undergoes age-related involution that leads to compromised immune responsiveness. The thymus is also extremely sensitive to acute insult and although capable of regeneration, this capacity declines with age for unknown reasons. We applied single-cell and spatial transcriptomics, lineage-tracing and advanced imaging to define age-related changes in nonhematopoietic stromal cells and discovered the emergence of two atypical thymic epithelial cell (TEC) states. These age-associated TECs (aaTECs) formed high-density peri-medullary epithelial clusters that were devoid of thymocytes; an accretion of nonproductive thymic tissue that worsened with age, exhibited features of epithelial-to-mesenchymal transition and was associated with downregulation of FOXN1. Interaction analysis revealed that the emergence of aaTECs drew tonic signals from other functional TEC populations at baseline acting as a sink for TEC growth factors. Following acute injury, aaTECs expanded substantially, further perturbing trophic regeneration pathways and correlating with defective repair of the involuted thymus. These findings therefore define a unique feature of thymic involution linked to immune aging and could have implications for developing immune-boosting therapies in older individuals.
Collapse
Grants
- T32-GM007270 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- 1187367 Department of Health | National Health and Medical Research Council (NHMRC)
- R01 CA228308 NCI NIH HHS
- 1158024 Department of Health | National Health and Medical Research Council (NHMRC)
- R01-HL145276 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL147584 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL165673 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL123340 NHLBI NIH HHS
- R01 HL145276 NHLBI NIH HHS
- R01-CA228308 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- T32 GM007103 NIGMS NIH HHS
- P30 CA015704 NCI NIH HHS
- P01 CA023766 NCI NIH HHS
- R01 HL165673 NHLBI NIH HHS
- R01 HL147584 NHLBI NIH HHS
- P01-AG052359 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- P30-CA015704 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- 1090236 Department of Health | National Health and Medical Research Council (NHMRC)
- P30 CA008748 NCI NIH HHS
- P01 AG052359 NIA NIH HHS
- T32 GM007270 NIGMS NIH HHS
- 1102104 Cancer Council Victoria
- 1078763 Department of Health | National Health and Medical Research Council (NHMRC)
- 1146518 Cancer Council Victoria
- U01-AI70035 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- R35 HL171556 NHLBI NIH HHS
- ALTF-431-2017 European Molecular Biology Organization (EMBO)
- R01 CA228358 NCI NIH HHS
- F30-HL165761 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL123340 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35-HL-171556 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 1121325 Department of Health | National Health and Medical Research Council (NHMRC)
- F30 HL165761 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
Collapse
Affiliation(s)
- Anastasia I Kousa
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA
| | - Lorenz Jahn
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelin Zhao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Angel E Flores
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Dante Acenas
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Emma Lederer
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kimon V Argyropoulos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andri L Lemarquis
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA
| | - David Granadier
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kirsten Cooper
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael D'Andrea
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Julie M Sheridan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jennifer Tsai
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lisa Sikkema
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Amina Lazrak
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Nichols
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nichole Lee
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romina Ghale
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florent Malard
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Hana Andrlova
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Enrico Velardi
- Division of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Salma Youssef
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Melissa Docampo
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linas Mazutis
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Verena C Wimmer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kelly L Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan DeWolf
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brianna Gipson
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio L C Gomes
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manu Setty
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Basic Sciences Division & Translational Data Science Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura Hale
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Nancy R Manley
- Department of Genetics, University of Georgia, Athens, GA, USA
- School of Life Sciences, Arizona State University, Phoenix, AZ, USA
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Marcel R M van den Brink
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jarrod A Dudakov
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Su Q, Yang SP, Guo JP, Rong YR, Sun Y, Chai YR. Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute thymus involution in mice via AMPK/Sirt1 pathway. Microbiol Immunol 2024; 68:281-293. [PMID: 38886542 DOI: 10.1111/1348-0421.13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
The thymus, a site to culture the naïve T lymphocytes, is susceptible to atrophy or involution due to aging, inflammation, and oxidation. Epigallocatechin-3-gallate (EGCG) has been proven to possess anti-inflammatory, antioxidant, and antitumor activity. Here, we investigate the effects of EGCG on thymic involution induced by lipopolysaccharide (LPS), an endotoxin derived from Gram-negative bacteria. The methodology included an in vivo experiment on female Kunming mice exposed to LPS and EGCG. Morphological assessment of thymic involution, immunohistochemical detection, and thymocyte subsets analysis by flow cytometry were further carried out to evaluate the potential role of EGCG on the thymus. As a result, we found that EGCG alleviated LPS-induced thymic atrophy, increased mitochondrial membrane potential and superoxide dismutase levels, and decreased malondialdehyde and reactive oxygen species levels. In addition, EGCG pre-supplement restored the ratio of thymocyte subsets, the expression of autoimmune regulator, sex-determining region Y-box 2, and Nanog homebox, and reduced the number of senescent cells and collagen fiber deposition. Western blotting results indicated that EGCG treatment elevated LPS-induced decrease in pAMPK, Sirt1 protein expression. Collectively, EGCG relieved thymus architecture and function damaged by LPS via regulation of AMPK/Sirt1 signaling pathway. Our findings may provide a new strategy on protection of thymus from involution caused by LPS by using EGCG. And EGCG might be considered as a potential agent for the prevention and treatment of thymic involution.
Collapse
Affiliation(s)
- Qing Su
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shu-Ping Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
- School of Medical Technology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jun-Ping Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yi-Ren Rong
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yun Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
10
|
Uhlemann H, Epp K, Klesse C, Link-Rachner CS, Surendranath V, Günther UP, Schetelig J, Heidenreich F. Shape of the art: TCR-repertoire after allogeneic hematopoietic cell transplantation. Best Pract Res Clin Haematol 2024; 37:101558. [PMID: 39098804 DOI: 10.1016/j.beha.2024.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/03/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
The human adaptive immune repertoire is characterized by specificity and diversity to provide immunity against past and future tasks. Such tasks are mainly infections but also malignant transformations of cells. With its multiple lines of defense, the human immune system contains both, rapid reaction forces and the potential to capture, disassemble and analyze strange structures in order to teach the adaptive immune system and mount a specific immune response. Prevention and mitigation of autoimmunity is of equal importance. In the context of allogeneic hematopoietic cell transplantation (HCT) specific challenges exist with the transfer of cells from the adapted donor immune system to the immunosuppressed recipient. Those challenges are immunogenetic disparity between donor and host, reconstitution of immunity early after HCT by expansion of mature immune effector cells, and impaired thymic function, if the recipient is an adult (as it is the case in most HCTs). The possibility to characterize the adaptive immune repertoire by massively parallel sequencing of T-cell receptor gene rearrangements allows for a much more detailed characterization of the T-cell repertoire. In addition, high-dimensional characterization of immune effector cells based on their immunophenotype and single cell RNA sequencing allow for much deeper insights in adaptive immune responses. We here review, existing - still incomplete - information on immune reconstitution after allogeneic HCT. Building on the technological advances much deeper insights into immune recovery after HCT and adaptive immune responses and can be expected in the coming years.
Collapse
Affiliation(s)
- Heike Uhlemann
- University Hospital Carl Gustav Carus, Dresden, Germany; DKMS Group gGmbH, Clinical Trials Unit, Dresden, Germany.
| | - Katharina Epp
- University Hospital Carl Gustav Carus, Dresden, Germany
| | | | | | | | | | - Johannes Schetelig
- University Hospital Carl Gustav Carus, Dresden, Germany; DKMS Group gGmbH, Clinical Trials Unit, Dresden, Germany
| | - Falk Heidenreich
- University Hospital Carl Gustav Carus, Dresden, Germany; DKMS Group gGmbH, Clinical Trials Unit, Dresden, Germany
| |
Collapse
|
11
|
Yaglova NV, Obernikhin SS, Timokhina EP, Tsomartova DA, Yaglov VV, Nazimova SV, Tsomartova ES, Ivanova MY, Chereshneva EV, Lomanovskaya TA. Effects of Deuterium Depletion on Age-Declining Thymopoiesis In Vivo. Biomedicines 2024; 12:956. [PMID: 38790918 PMCID: PMC11117614 DOI: 10.3390/biomedicines12050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
The thymus provides maturation and migration of T cells to peripheral organs of immunity, where they recognize diverse antigens and maintain immunological memory and self-tolerance. The thymus is known to be involved with age and in response to stress factors. Therefore, the search for approaches to the restoration of thymopoiesis is of great interest. The present investigation was aimed at evaluating how prolonged deuterium depletion affects morphogenetic processes and the physiological transition of the thymus to age-related involution. The study was performed on 60 male Wistar rats subjected to consumption of deuterium-depleted water with a 10 ppm deuterium content for 28 days. The control rats consumed distilled water with a normal deuterium content of 150 ppm. The examination found no significant differences in body weight gain or the amount of water consumed. The exposed rats exhibited similar to control dynamics of the thymus weight but significant changes in thymic cell maturation according to cytofluorimetric analysis of thymic subpopulations. Changes in T cell production were not monotonic and differentially engaged morphogenetic processes of cell proliferation, differentiation, and migration. The reactive response to deuterium depletion was a sharp increase in the number of progenitor CD4-CD8- cells and their differentiation into T cells. The compensatory reaction was inhibition of thymopoiesis with more pronounced suppression of differentiation of T-cytotoxic lymphocytes, followed by intensification of emigration of mature T cells to the bloodstream. This period lasts from 3 to 14 days, then differentiation of thymic lymphocytes is restored, later cell proliferation is activated, and finally the thymopoiesis rate exceeds the control values. The increase in the number of thymic progenitor cells after 3-4 weeks suggests consideration of deuterium elimination as a novel approach to prevent thymus involution.
Collapse
Affiliation(s)
- Nataliya V. Yaglova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Sergey S. Obernikhin
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Ekaterina P. Timokhina
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Dibakhan A. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (M.Y.I.); (E.V.C.); (T.A.L.)
| | - Valentin V. Yaglov
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Svetlana V. Nazimova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Elina S. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (M.Y.I.); (E.V.C.); (T.A.L.)
| | - Marina Y. Ivanova
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (M.Y.I.); (E.V.C.); (T.A.L.)
| | - Elizaveta V. Chereshneva
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (M.Y.I.); (E.V.C.); (T.A.L.)
| | - Tatiana A. Lomanovskaya
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (M.Y.I.); (E.V.C.); (T.A.L.)
| |
Collapse
|
12
|
Lagou MK, Argyris DG, Vodopyanov S, Gunther-Cummins L, Hardas A, Poutahidis T, Panorias C, DesMarais S, Entenberg C, Carpenter RS, Guzik H, Nishku X, Churaman J, Maryanovich M, DesMarais V, Macaluso FP, Karagiannis GS. Morphometric Analysis of the Thymic Epithelial Cell (TEC) Network Using Integrated and Orthogonal Digital Pathology Approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584509. [PMID: 38559037 PMCID: PMC10979902 DOI: 10.1101/2024.03.11.584509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The thymus, a central primary lymphoid organ of the immune system, plays a key role in T cell development. Surprisingly, the thymus is quite neglected with regards to standardized pathology approaches and practices for assessing structure and function. Most studies use multispectral flow cytometry to define the dynamic composition of the thymus at the cell population level, but they are limited by lack of contextual insight. This knowledge gap hinders our understanding of various thymic conditions and pathologies, particularly how they affect thymic architecture, and subsequently, immune competence. Here, we introduce a digital pathology pipeline to address these challenges. Our approach can be coupled to analytical algorithms and utilizes rationalized morphometric assessments of thymic tissue, ranging from tissue-wide down to microanatomical and ultrastructural levels. This pipeline enables the quantitative assessment of putative changes and adaptations of thymic structure to stimuli, offering valuable insights into the pathophysiology of thymic disorders. This versatile pipeline can be applied to a wide range of conditions that may directly or indirectly affect thymic structure, ranging from various cytotoxic stimuli inducing acute thymic involution to autoimmune diseases, such as myasthenia gravis. Here, we demonstrate applicability of the method in a mouse model of age-dependent thymic involution, both by confirming established knowledge, and by providing novel insights on intrathymic remodeling in the aged thymus. Our orthogonal pipeline, with its high versatility and depth of analysis, promises to be a valuable and practical toolset for both basic and translational immunology laboratories investigating thymic function and disease.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Dimitrios G Argyris
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Integrated Imaging Program for Cancer Research, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Stepan Vodopyanov
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Leslie Gunther-Cummins
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Alexandros Hardas
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hatfield, United Kingdom
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Panorias
- Division of Statistics and Operational Research, Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sophia DesMarais
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Conner Entenberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Randall S Carpenter
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hillary Guzik
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Xheni Nishku
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Joseph Churaman
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Vera DesMarais
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Frank P Macaluso
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Integrated Imaging Program for Cancer Research, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| |
Collapse
|
13
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Laan M, Giraud M, Irla M. Editorial: Thymic function at single cell resolution. Front Immunol 2024; 14:1358957. [PMID: 38259446 PMCID: PMC10801162 DOI: 10.3389/fimmu.2023.1358957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Affiliation(s)
- Martti Laan
- Molecular Pathology, Department of Biomedicine, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Matthieu Giraud
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Magali Irla
- Centre d’Immunologie de Marseille-Luminy (CIML), CNRS, INSERM, Aix-Marseille Université, Marseille, France
| |
Collapse
|
15
|
Jiang Q, Ma X, Zhu G, Si W, He L, Yang G. Altered T cell development in an animal model of multiple sclerosis. Exp Neurol 2024; 371:114579. [PMID: 37866699 DOI: 10.1016/j.expneurol.2023.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS), leading to demyelination and axonal degeneration. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that has significantly improved our understanding of MS. Studies have observed early thymic involution in MS patients, suggesting the potential involvement of the thymus in CNS autoimmunity. However, our knowledge of the thymus's role in autoimmune disorders affecting the CNS remains limited. In this study, we examined the effects of EAE induction on thymopoiesis and observed alterations in T cell development. These changes were characterized by increased apoptosis and decreased proliferation of thymocytes at the EAE peak stage. We also identified a blockade in the transition from CD4-CD8- double-negative thymocytes to CD4+CD8+ double-positive cells, as evidenced by the accumulation of double-negative stage 1 thymocytes at both the EAE onset and peak stages. Furthermore, positive selection was disrupted in the thymus of EAE mice at both stages, leading to an elevated proportion and number of CD4+CD8- and CD4-CD8+ single-positive cells. Meanwhile, we observed an augmented production of regulatory T cells in the thymus of EAE mice. Moreover, peripheral blood analysis of EAE mice at the onset stage showed expanded T cell subsets but not at the peak stage. We also observed altered expression patterns in thymus-derived CD4+CD8- and CD4-CD8+ single-positive cells between MS patients and healthy controls. Our findings demonstrate a modified T cell development in EAE/MS, providing valuable insights into the potential of modulating thymic function as a targeted therapeutic approach to MS/EAE.
Collapse
Affiliation(s)
- Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Xin Ma
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Gaochen Zhu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Wen Si
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Lingyu He
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
| |
Collapse
|
16
|
Stakišaitis D, Kapočius L, Kilimaitė E, Gečys D, Šlekienė L, Balnytė I, Palubinskienė J, Lesauskaitė V. Preclinical Study in Mouse Thymus and Thymocytes: Effects of Treatment with a Combination of Sodium Dichloroacetate and Sodium Valproate on Infectious Inflammation Pathways. Pharmaceutics 2023; 15:2715. [PMID: 38140056 PMCID: PMC10747708 DOI: 10.3390/pharmaceutics15122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The research presents data from a preclinical study on the anti-inflammatory effects of a sodium dichloroacetate and sodium valproate combination (DCA-VPA). The 2-week treatment with a DCA 100 mg/kg/day and VPA 150 mg/kg/day combination solution in drinking water's effects on the thymus weight, its cortex/medulla ratio, Hassall's corpuscles (HCs) number in the thymus medulla, and the expression of inflammatory and immune-response-related genes in thymocytes of male Balb/c mice were studied. Two groups of mice aged 6-7 weeks were investigated: a control (n = 12) and a DCA-VPA-treated group (n = 12). The treatment did not affect the body weight gain (p > 0.05), the thymus weight (p > 0.05), the cortical/medulla ratio (p > 0.05), or the number of HCs (p > 0.05). Treatment significantly increased the Slc5a8 gene expression by 2.1-fold (p < 0.05). Gene sequence analysis revealed a significant effect on the expression of inflammation-related genes in thymocytes by significantly altering the expression of several genes related to the cytokine activity pathway, the inflammatory response pathway, and the Il17 signaling pathway in thymocytes. Data suggest that DCA-VPA exerts an anti-inflammatory effect by inhibiting the inflammatory mechanisms in the mouse thymocytes.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Linas Kapočius
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Evelina Kilimaitė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Dovydas Gečys
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania;
| | - Lina Šlekienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Jolita Palubinskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Vaiva Lesauskaitė
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania;
| |
Collapse
|
17
|
Ragazzini R, Boeing S, Zanieri L, Green M, D'Agostino G, Bartolovic K, Agua-Doce A, Greco M, Watson SA, Batsivari A, Ariza-McNaughton L, Gjinovci A, Scoville D, Nam A, Hayday AC, Bonnet D, Bonfanti P. Defining the identity and the niches of epithelial stem cells with highly pleiotropic multilineage potency in the human thymus. Dev Cell 2023; 58:2428-2446.e9. [PMID: 37652013 PMCID: PMC10957394 DOI: 10.1016/j.devcel.2023.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/19/2022] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
Thymus is necessary for lifelong immunological tolerance and immunity. It displays a distinctive epithelial complexity and undergoes age-dependent atrophy. Nonetheless, it also retains regenerative capacity, which, if harnessed appropriately, might permit rejuvenation of adaptive immunity. By characterizing cortical and medullary compartments in the human thymus at single-cell resolution, in this study we have defined specific epithelial populations, including those that share properties with bona fide stem cells (SCs) of lifelong regenerating epidermis. Thymic epithelial SCs display a distinctive transcriptional profile and phenotypic traits, including pleiotropic multilineage potency, to give rise to several cell types that were not previously considered to have shared origin. Using here identified SC markers, we have defined their cortical and medullary niches and shown that, in vitro, the cells display long-term clonal expansion and self-organizing capacity. These data substantively broaden our knowledge of SC biology and set a stage for tackling thymic atrophy and related disorders.
Collapse
Affiliation(s)
- Roberta Ragazzini
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK
| | - Stefan Boeing
- Bioinformatics & Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Luca Zanieri
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK
| | - Mary Green
- Experimental Histopathology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Giuseppe D'Agostino
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Plasticell Limited, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Kerol Bartolovic
- Flow Cytometry Core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Agua-Doce
- Flow Cytometry Core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maria Greco
- Single Cell Facility, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Sara A Watson
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antoniana Batsivari
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Linda Ariza-McNaughton
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Asllan Gjinovci
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK
| | | | - Andy Nam
- NanoString Technologies Inc., Seattle, WA, USA
| | - Adrian C Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Paola Bonfanti
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK.
| |
Collapse
|
18
|
Horie K, Namiki K, Kinoshita K, Miyauchi M, Ishikawa T, Hayama M, Maruyama Y, Hagiwara N, Miyao T, Murata S, Kobayashi TJ, Akiyama N, Akiyama T. Acute irradiation causes a long-term disturbance in the heterogeneity and gene expression profile of medullary thymic epithelial cells. Front Immunol 2023; 14:1186154. [PMID: 38022666 PMCID: PMC10652284 DOI: 10.3389/fimmu.2023.1186154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The thymus has the ability to regenerate from acute injury caused by radiation, infection, and stressors. In addition to thymocytes, thymic epithelial cells in the medulla (mTECs), which are crucial for T cell self-tolerance by ectopically expressing and presenting thousands of tissue-specific antigens (TSAs), are damaged by these insults and recover thereafter. However, given recent discoveries on the high heterogeneity of mTECs, it remains to be determined whether the frequency and properties of mTEC subsets are restored during thymic recovery from radiation damage. Here we demonstrate that acute total body irradiation with a sublethal dose induces aftereffects on heterogeneity and gene expression of mTECs. Single-cell RNA-sequencing (scRNA-seq) analysis showed that irradiation reduces the frequency of mTECs expressing AIRE, which is a critical regulator of TSA expression, 15 days after irradiation. In contrast, transit-amplifying mTECs (TA-mTECs), which are progenitors of AIRE-expressing mTECs, and Ccl21a-expressing mTECs, were less affected. Interestingly, a detailed analysis of scRNA-seq data suggested that the proportion of a unique mTEC cluster expressing Ccl25 and a high level of TSAs was severely decreased by irradiation. In sum, we propose that the effects of acute irradiation disrupt the heterogeneity and properties of mTECs over an extended period, which potentially leads to an impairment of thymic T cell selection.
Collapse
Affiliation(s)
- Kenta Horie
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kano Namiki
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kyouhei Kinoshita
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Maki Miyauchi
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | - Tatsuya Ishikawa
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Mio Hayama
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yuya Maruyama
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Naho Hagiwara
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | - Takahisa Miyao
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Shigeo Murata
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Nobuko Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
19
|
Lee DY, Song WH, Lim YS, Lee C, Rajbongshi L, Hwang SY, Kim BS, Lee D, Song YJ, Kim HG, Yoon S. Fish Collagen Peptides Enhance Thymopoietic Gene Expression, Cell Proliferation, Thymocyte Adherence, and Cytoprotection in Thymic Epithelial Cells via Activation of the Nuclear Factor-κB Pathway, Leading to Thymus Regeneration after Cyclophosphamide-Induced Injury. Mar Drugs 2023; 21:531. [PMID: 37888466 PMCID: PMC10608061 DOI: 10.3390/md21100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Prolonged thymic involution results in decreased thymopoiesis and thymic output, leading to peripheral T-cell deficiency. Since the thymic-dependent pathway is the only means of generating fully mature T cells, the identification of strategies to enhance thymic regeneration is crucial in developing therapeutic interventions to revert immune suppression in immunocompromised patients. The present study clearly shows that fish collagen peptides (FCPs) stimulate activities of thymic epithelial cells (TECs), including cell proliferation, thymocyte adhesion, and the gene expression of thymopoietic factors such as FGF-7, IGF-1, BMP-4, VEGF-A, IL-7, IL-21, RANKL, LTβ, IL-22R, RANK, LTβR, SDF-1, CCL21, CCL25, CXCL5, Dll1, Dll4, Wnt4, CD40, CD80, CD86, ICAM-1, VCAM-1, FoxN1, leptin, cathepsin L, CK5, and CK8 through the NF-κB signal transduction pathway. Furthermore, our study also revealed the cytoprotective effects of FCPs on TECs against cyclophosphamide-induced cellular injury through the NF-κB signaling pathway. Importantly, FCPs exhibited a significant capability to facilitate thymic regeneration in mice after cyclophosphamide-induced damage via the NF-κB pathway. Taken together, this study sheds light on the role of FCPs in TEC function, thymopoiesis, and thymic regeneration, providing greater insight into the development of novel therapeutic strategies for effective thymus repopulation for numerous clinical conditions in which immune reconstitution is required.
Collapse
Affiliation(s)
- Do Young Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Won Hoon Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Urology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Ye Seon Lim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Changyong Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Lata Rajbongshi
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Seon Yeong Hwang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Yong Jung Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Hwi-Gon Kim
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| |
Collapse
|
20
|
Lagou MK, Karagiannis GS. Obesity-induced thymic involution and cancer risk. Semin Cancer Biol 2023; 93:3-19. [PMID: 37088128 DOI: 10.1016/j.semcancer.2023.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Declining thymic functions associated either with old age (i.e., age-related thymic involution), or with acute involution as a result of stress, infectious disease, or cytoreductive therapies (e.g., chemotherapy/radiotherapy), have been associated with cancer development. A key mechanism underlying such increased cancer risk is the thymus-dependent debilitation of adaptive immunity, which is responsible for orchestrating immunoediting mechanisms and tumor immune surveillance. In the past few years, a blooming set of evidence has intriguingly linked obesity with cancer development and progression. The majority of such studies has focused on obesity-driven chronic inflammation, steroid/sex hormone and adipokine production, and hyperinsulinemia, as principal factors affecting the tumor microenvironment and driving the development of primary malignancy. However, experimental observations about the negative impact of obesity on T cell development and maturation have existed for more than half a century. Here, we critically discuss the molecular and cellular mechanisms of obesity-driven thymic involution as a previously underrepresented intermediary pathology leading to cancer development and progression. This knowledge could be especially relevant in the context of childhood obesity, because impaired thymic function in young individuals leads to immune system abnormalities, and predisposes to various pediatric cancers. A thorough understanding behind the molecular and cellular circuitries governing obesity-induced thymic involution could therefore help towards the rationalized development of targeted thymic regeneration strategies for obese individuals at high risk of cancer development.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
21
|
Arana Echarri A, Struszczak L, Beresford M, Campbell JP, Jones RH, Thompson D, Turner JE. Immune cell status, cardiorespiratory fitness and body composition among breast cancer survivors and healthy women: a cross sectional study. Front Physiol 2023; 14:1107070. [PMID: 37324393 PMCID: PMC10267418 DOI: 10.3389/fphys.2023.1107070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Methods: We examined whether immune cell profiles differ between healthy women (n = 38) and breast cancer survivors (n = 27) within 2 years of treatment, and whether any group-differences were influenced by age, cytomegalovirus infection, cardiorespiratory fitness and body composition. Using flow cytometry, CD4+ and CD8+ T cell subsets, including naïve (NA), central memory (CM) and effector cells (EM and EMRA) were identified using CD27/CD45RA. Activation was measured by HLA-DR expression. Stem cell-like memory T cells (TSCMs) were identified using CD95/CD127. B cells, including plasmablasts, memory, immature and naïve cells were identified using CD19/CD27/CD38/CD10. Effector and regulatory Natural Killer cells were identified using CD56/CD16. Results: Compared to healthy women, CD4+ CM were +Δ21% higher among survivors (p = 0.028) and CD8+ NA were -Δ25% lower (p = 0.034). Across CD4+ and CD8+ subsets, the proportion of activated (HLA-DR+) cells was +Δ31% higher among survivors: CD4+ CM (+Δ25%), CD4+ EM (+Δ32%) and CD4+ EMRA (+Δ43%), total CD8+ (+Δ30%), CD8+ EM (+Δ30%) and CD8+ EMRA (+Δ25%) (p < 0.046). The counts of immature B cells, NK cells and CD16+ NK effector cells were higher among survivors (+Δ100%, +Δ108% and +Δ143% respectively, p < 0.04). Subsequent analyses examined whether statistically significant differences in participant characteristics, influenced immunological differences between groups. Compared to healthy women, survivors were older (56 ± 6 y vs. 45 ± 11 y), had lower cardiorespiratory fitness (V˙O2max mL kg-1 min-1: 28.8 ± 5.0 vs. 36.2 ± 8.5), lower lean mass (42.3 ± 5.0 kg vs. 48.4 ± 15.8 kg), higher body fat (36.3% ± 5.3% vs. 32.7% ± 6.4%) and higher fat mass index (FMI kg/m2: 9.5 ± 2.2 vs. 8.1 ± 2.7) (all p < 0.033). Analysis of covariance revealed divergent moderating effects of age, CMV serostatus, cardiorespiratory fitness and body composition on the differences in immune cell profiles between groups, depending on the cell type examined. Moreover, across all participants, fat mass index was positively associated with the proportion of HLA-DR+ CD4+ EMRA and CD8+ EM/EMRA T cells (Pearson correlation: r > 0.305, p < 0.019). The association between fat mass index and HLA-DR+ CD8+ EMRA T cells withstood statistical adjustment for all variables, including age, CMV serostatus, lean mass and cardiorespiratory fitness, potentially implicating these cells as contributors to inflammatory/immune-dysfunction in overweight/obesity.
Collapse
Affiliation(s)
| | | | - Mark Beresford
- Department for Oncology and Haematology, Royal United Hospitals Bath NHS Trust, Bath, United Kingdom
| | | | - Robert H. Jones
- Velindre Cancer Centre and Cardiff University, Cardiff, United Kingdom
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
Michurina SV, Miroshnichenko SM, Ishchenko IY, Serykh AE, Rachkovskaya LN. Effect of Melatonin on the Content of CD3 low and CD3 hi T Cells in the Thymus of Mice with Functional Pinealectomy. Bull Exp Biol Med 2023; 174:754-757. [PMID: 37160598 DOI: 10.1007/s10517-023-05786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 05/11/2023]
Abstract
Continuous lighting for 14 days (functional pinealectomy model) leads to a decrease in the relative number of CD3low and CD3hi T lymphocytes and the CD3low/CD3hi ratio in the thymus of C57BL/6 mice. Intragastric administration of melatonin in physiological doses (1 mg/kg body weight, 14 days) against the background of functional pinealectomy restores the percentage of CD3low and CD3hi thymocytes and CD3low/CD3hi ratio to the control values. Hence, prolonged continuous illumination inhibits the differentiation and maturation of young thymocytes into mature forms, while melatonin treatment helps to compensate the effects of functional pinealectomy triggering cell proliferation in the thymus from the earliest stages of proliferation and differentiation of T cells. Thus, melatonin has immunotropic properties and can be used for correction of the consequences of functional pinealectomy.
Collapse
Affiliation(s)
- S V Michurina
- Research Institute of Clinical and Experimental Lymphology -Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - S M Miroshnichenko
- Research Institute of Clinical and Experimental Lymphology -Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
- Research Institute of Biochemistry, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - I Yu Ishchenko
- Research Institute of Clinical and Experimental Lymphology -Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A E Serykh
- Research Institute of Clinical and Experimental Lymphology -Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
- Research Institute of Experimental and Clinical Medicine, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - L N Rachkovskaya
- Research Institute of Clinical and Experimental Lymphology -Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
23
|
Lei YY, Chen XR, Jiang S, Guo M, Yu CL, Qiao JH, Cai B, Ai HS, Wang Y, Hu KX. Mechanisms of thymic repair of in vitro-induced precursor T cells as a haplo-identical HSCT regimen. Transplant Cell Ther 2023:S2666-6367(23)01174-0. [PMID: 36944387 DOI: 10.1016/j.jtct.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is currently an effective treatment for malignant hematological disease, but the immune deficiency and severe infection triggered by slow immune reconstitution are the main causes of high mortality and transplant failure. One of these outstanding problems is thymus damage, which is associated with graft-versus-host disease (GVHD), and preconditioning including irradiation and chemotherapy. Therefore, rapid repair of damaged thymus and rapid proliferation of thymus-derived donor T cells after transplantation are key to solving the problem. This study is designed to accelerate the recovery of thymus-derived T cells after transplantation. Wild-type mice with normal immunity were used as recipients in a haplo-HSCT mouse model to mimic clinical haplo-HSCT. A modified cell culture system using Notch ligand Delta4 and IL-7 was established that is capable of inducing and amplifying the differentiation and proliferation of hematopoietic stem cells into precursor T (preT) cells in vitro. Haplo-HSCT protocol included the preT and G-CSF mobilized donor splenic mononuclear cells (MNC) co-infusion or MNC alone. Thymic GVHD, thymic repair, and thymus-derived T cell development were compared in two groups by polychromatic immunofluorescence tracking, flow cytometry and detection of T cell receptor Vβ. The thymus homing and T-cell regeneration of allogenic preT cells were observed. The functions of preT cells in accelerating immune reconstitution, restoring thymic architecture, weakening GVH effects, and enhancing immuno-tolerance after transplantation were demonstrated. Further studies revealed that allogeneic preT cells induced by a culture system containing IL7 and Delta4 highly express ccr9 and RANKL. Interestingly, the RANK expression was promoted after preT cells' thymus homing. These results suggested that the RANK/RANKL pathway may play an important role in thymus homing. Our results provide a potential therapeutic option to optimize haplo-HSCT. It further opened up a new field of T cell therapy for artificial induction of allogeneic precursor T cells in vitro to repair the damaged thymus from irradiation and chemotherapy, and to compensate for the recovery of immune function in patients with immune deficiency caused by multiple reasons.
Collapse
Affiliation(s)
- Yang-Yang Lei
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China.
| | - Xin-Rui Chen
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Shan Jiang
- Anhui medical university, anhui province, China
| | - Mei Guo
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Chang-Lin Yu
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Jian-Hui Qiao
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Bo Cai
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Hui-Sheng Ai
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Yi Wang
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China.
| | - Kai-Xun Hu
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China.
| |
Collapse
|
24
|
Kinsella S, Evandy CA, Cooper K, Cardinale A, Iovino L, deRoos P, Hopwo KS, Smith CW, Granadier D, Sullivan LB, Velardi E, Dudakov JA. Damage-induced pyroptosis drives endog thymic regeneration via induction of Foxn1 by purinergic receptor activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524800. [PMID: 36711570 PMCID: PMC9882324 DOI: 10.1101/2023.01.19.524800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Endogenous thymic regeneration is a crucial process that allows for the renewal of immune competence following stress, infection or cytoreductive conditioning. Fully understanding the molecular mechanisms driving regeneration will uncover therapeutic targets to enhance regeneration. We previously demonstrated that high levels of homeostatic apoptosis suppress regeneration and that a reduction in the presence of damage-induced apoptotic thymocytes facilitates regeneration. Here we identified that cell-specific metabolic remodeling after ionizing radiation steers thymocytes towards mitochondrial-driven pyroptotic cell death. We further identified that a key damage-associated molecular pattern (DAMP), ATP, stimulates the cell surface purinergic receptor P2Y2 on cortical thymic epithelial cells (cTECs) acutely after damage, enhancing expression of Foxn1, the critical thymic transcription factor. Targeting the P2Y2 receptor with the agonist UTPγS promotes rapid regeneration of the thymus in vivo following acute damage. Together these data demonstrate that intrinsic metabolic regulation of pyruvate processing is a critical process driving thymus repair and identifies the P2Y2 receptor as a novel molecular therapeutic target to enhance thymus regeneration.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
| | - Cindy A Evandy
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
| | - Kirsten Cooper
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
| | - Antonella Cardinale
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, 00146, Italy
| | - Lorenzo Iovino
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
| | - Paul deRoos
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
| | - Kayla S Hopwo
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
| | - Colton W Smith
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
| | - David Granadier
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
- Medical Scientist Training Program, University of Washington, Seattle WA, 98195, US
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
| | - Enrico Velardi
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, 00146, Italy
| | - Jarrod A Dudakov
- Program in Immunology, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle WA, 98109, US
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle WA, 98109, US
- Department of Immunology, University of Washington, Seattle WA, 98195, US
| |
Collapse
|
25
|
Light-Induced Functional Pinealectomy. Effect on the Thymus of C57BL/6 Mice. Bull Exp Biol Med 2022; 174:152-158. [DOI: 10.1007/s10517-022-05665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/29/2022]
|
26
|
Thymic involution caused by repeated cocaine administration includes apoptotic cell loss followed by ectopic adipogenesis. PLoS One 2022; 17:e0277032. [PMID: 36441681 PMCID: PMC9704633 DOI: 10.1371/journal.pone.0277032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
Cocaine abuse has a negative impact on the immune system. To investigate the adverse effects of binge cocaine administration on lymphoid organs such as thymus and spleen, we examined the effects of repeated intravenous (i.v.) administration of cocaine on rats. Sprague Dawley rats (male, 8 weeks old) received 20 mg/kg body weight of cocaine hydrochloride per day for 7 or 14 days. In addition to a significant loss in the weight of the spleen, consistent with our previous intraperitoneal (i.p.) injection model of binge cocaine abuse (50 mg/kg cocaine for 7 days), we also found a significant loss of weight as well as apparent shrinkage of the thymus in the cocaine group. Transcriptome analysis of the thymus revealed increased expressions of genes involved in apoptosis, such as Ifi27 and Traf2, as well as decreased expressions of several genes related to lipid metabolism, such as Cd36, Adipoq, Scd1, and Fabp4, in the thymus of the cocaine group (7 days), suggesting an apoptotic loss of thymic cells as well as alterations in lipid metabolism. Paradoxically, cocaine activates PPARγ, a key transcriptional factor activating lipid metabolism, although ectopic adipogenesis was scarcely observed in the thymus. Further analysis of rats administered 20 mg/kg cocaine for 14 days revealed ectopic adipogenesis, which was accompanied with the activation of PPARγ as well as increased expression of Adipoq and Fabp4, in the thymus. Taken together, these results indicate that repeated cocaine administration induces thymic involution, which is initiated by the loss of thymic cells through apoptosis and subsequent ectopic adipocyte development.
Collapse
|
27
|
Ba T, Zhao D, Chen Y, Zeng C, Zhang C, Niu S, Dai H. L-Citrulline Supplementation Restrains Ferritinophagy-Mediated Ferroptosis to Alleviate Iron Overload-Induced Thymus Oxidative Damage and Immune Dysfunction. Nutrients 2022; 14:4549. [PMID: 36364817 PMCID: PMC9655478 DOI: 10.3390/nu14214549] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 09/14/2023] Open
Abstract
L-citrulline (L-cit) is a key intermediate in the urea cycle and is known to possess antioxidant and anti-inflammation characteristics. However, the role of L-cit in ameliorating oxidative damage and immune dysfunction against iron overload in the thymus remains unclear. This study explored the underlying mechanism of the antioxidant and anti-inflammation qualities of L-cit on iron overload induced in the thymus. We reported that L-cit administration could robustly alleviate thymus histological damage and reduce iron deposition, as evidenced by the elevation of the CD8+ T lymphocyte number and antioxidative capacity. Moreover, the NF-κB pathway, NCOA4-mediated ferritinophagy, and ferroptosis were attenuated. We further demonstrated that L-cit supplementation significantly elevated the mTEC1 cells' viability and reversed LDH activity, iron levels, and lipid peroxidation caused by FAC. Importantly, NCOA4 knockdown could reduce the intracellular cytoplasmic ROS, which probably relied on the Nfr2 activation. The results subsequently indicated that NCOA4-mediated ferritinophagy was required for ferroptosis by showing that NCOA4 knockdown reduced ferroptosis and lipid ROS, accompanied with mitochondrial membrane potential elevation. Intriguingly, L-cit treatment significantly inhibited the NF-κB pathway, which might depend on restraining ferritinophagy-mediated ferroptosis. Overall, this study indicated that L-cit might target ferritinophagy-mediated ferroptosis to exert antioxidant and anti-inflammation capacities, which could be a therapeutic strategy against iron overload-induced thymus oxidative damage and immune dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, China
| |
Collapse
|
28
|
Lagou MK, Anastasiadou DP, Karagiannis GS. A Proposed Link Between Acute Thymic Involution and Late Adverse Effects of Chemotherapy. Front Immunol 2022; 13:933547. [PMID: 35844592 PMCID: PMC9283860 DOI: 10.3389/fimmu.2022.933547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiologic data suggest that cancer survivors tend to develop a protuberant number of adverse late effects, including second primary malignancies (SPM), as a result of cytotoxic chemotherapy. Besides the genotoxic potential of these drugs that directly inflict mutational burden on genomic DNA, the precise mechanisms contributing to SPM development are poorly understood. Cancer is nowadays perceived as a complex process that goes beyond the concept of genetic disease and includes tumor cell interactions with complex stromal and immune cell microenvironments. The cancer immunoediting theory offers an explanation for the development of nascent neoplastic cells. Briefly, the theory suggests that newly emerging tumor cells are mostly eliminated by an effective tissue immunosurveillance, but certain tumor variants may occasionally escape innate and adaptive mechanisms of immunological destruction, entering an equilibrium phase, where immunologic tumor cell death "equals" new tumor cell birth. Subsequent microenvironmental pressures and accumulation of helpful mutations in certain variants may lead to escape from the equilibrium phase, and eventually cause an overt neoplasm. Cancer immunoediting functions as a dedicated sentinel under the auspice of a highly competent immune system. This perspective offers the fresh insight that chemotherapy-induced thymic involution, which is characterized by the extensive obliteration of the sensitive thymic epithelial cell (TEC) compartment, can cause long-term defects in thymopoiesis and in establishment of diverse T cell receptor repertoires and peripheral T cell pools of cancer survivors. Such delayed recovery of T cell adaptive immunity may result in prolonged hijacking of the cancer immunoediting mechanisms, and lead to development of persistent and mortal infections, inflammatory disorders, organ-specific autoimmunity lesions, and SPMs. Acknowledging that chemotherapy-induced thymic involution is a potential risk factor for the emergence of SPM demarcates new avenues for the rationalized development of pharmacologic interventions to promote thymic regeneration in patients receiving cytoreductive chemotherapies.
Collapse
Affiliation(s)
- Maria K. Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - Dimitra P. Anastasiadou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - George S. Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
29
|
Bhalla P, Su DM, van Oers NSC. Thymus Functionality Needs More Than a Few TECs. Front Immunol 2022; 13:864777. [PMID: 35757725 PMCID: PMC9229346 DOI: 10.3389/fimmu.2022.864777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/03/2022] [Indexed: 12/18/2022] Open
Abstract
The thymus, a primary lymphoid organ, produces the T cells of the immune system. Originating from the 3rd pharyngeal pouch during embryogenesis, this organ functions throughout life. Yet, thymopoiesis can be transiently or permanently damaged contingent on the types of systemic stresses encountered. The thymus also undergoes a functional decline during aging, resulting in a progressive reduction in naïve T cell output. This atrophy is evidenced by a deteriorating thymic microenvironment, including, but not limited, epithelial-to-mesenchymal transitions, fibrosis and adipogenesis. An exploration of cellular changes in the thymus at various stages of life, including mouse models of in-born errors of immunity and with single cell RNA sequencing, is revealing an expanding number of distinct cell types influencing thymus functions. The thymus microenvironment, established through interactions between immature and mature thymocytes with thymus epithelial cells (TEC), is well known. Less well appreciated are the contributions of neural crest cell-derived mesenchymal cells, endothelial cells, diverse hematopoietic cell populations, adipocytes, and fibroblasts in the thymic microenvironment. In the current review, we will explore the contributions of the many stromal cell types participating in the formation, expansion, and contraction of the thymus under normal and pathophysiological processes. Such information will better inform approaches for restoring thymus functionality, including thymus organoid technologies, beneficial when an individuals’ own tissue is congenitally, clinically, or accidentally rendered non-functional.
Collapse
Affiliation(s)
- Pratibha Bhalla
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dong-Ming Su
- Department of Microbiology, Immunology & Genetics, The University of North Texas Health Sciences Center, Fort Worth, TX, United States
| | - Nicolai S C van Oers
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
30
|
Iovino L, Cooper K, deRoos P, Kinsella S, Evandy C, Ugrai T, Mazziotta F, Ensbey KS, Granadier D, Hopwo K, Smith C, Gagnon A, Galimberti S, Petrini M, Hill GR, Dudakov JA. Activation of the zinc-sensing receptor GPR39 promotes T-cell reconstitution after hematopoietic cell transplant in mice. Blood 2022; 139:3655-3666. [PMID: 35357432 PMCID: PMC9227099 DOI: 10.1182/blood.2021013950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Prolonged lymphopenia represents a major clinical problem after cytoreductive therapies such as chemotherapy and the conditioning required for hematopoietic stem cell transplant (HCT), contributing to the risk of infections and malignant relapse. Restoration of T-cell immunity depends on tissue regeneration in the thymus, the primary site of T-cell development, although the capacity of the thymus to repair itself diminishes over its lifespan. However, although boosting thymic function and T-cell reconstitution is of considerable clinical importance, there are currently no approved therapies for treating lymphopenia. Here we found that zinc (Zn) is critically important for both normal T-cell development and repair after acute damage. Accumulated Zn in thymocytes during development was released into the extracellular milieu after HCT conditioning, where it triggered regeneration by stimulating endothelial cell production of BMP4 via the cell surface receptor GPR39. Dietary supplementation of Zn was sufficient to promote thymic function in a mouse model of allogeneic HCT, including enhancing the number of recent thymic emigrants in circulation although direct targeting of GPR39 with a small molecule agonist enhanced thymic function without the need for prior Zn accumulation in thymocytes. Together, these findings not only define an important pathway underlying tissue regeneration but also offer an innovative preclinical approach to treat lymphopenia in HCT recipients.
Collapse
Affiliation(s)
- Lorenzo Iovino
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Hematology, University of Pisa, Pisa, Italy
| | - Kirsten Cooper
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Paul deRoos
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sinéad Kinsella
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Cindy Evandy
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Tamas Ugrai
- School of Oceanography, University of Washington, Seattle, WA
| | - Francesco Mazziotta
- Department of Hematology, University of Pisa, Pisa, Italy
- School of Oceanography, University of Washington, Seattle, WA
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Kathleen S Ensbey
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - David Granadier
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA; and
| | - Kayla Hopwo
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Colton Smith
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Alex Gagnon
- School of Oceanography, University of Washington, Seattle, WA
| | | | - Mario Petrini
- Department of Hematology, University of Pisa, Pisa, Italy
| | - Geoffrey R Hill
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
31
|
Veldkamp SR, Jansen MHA, Swart JF, Lindemans CA. Case Report: Lessons Learned From Subsequent Autologous and Allogeneic Hematopoietic Stem Cell Transplantations in a Pediatric Patient With Relapsing Polychondritis. Front Immunol 2022; 13:812927. [PMID: 35359992 PMCID: PMC8960202 DOI: 10.3389/fimmu.2022.812927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/17/2022] [Indexed: 12/29/2022] Open
Abstract
Background Autologous hematopoietic stem cell transplantation (autoHSCT) is increasingly being recognized as a treatment option for severe refractory autoimmune diseases (AD). However, efficacy is hampered by high relapse rates. In contrast, allogeneic HSCT (alloHSCT) has high potential to cure AD, but is associated with significant morbidity and mortality, and data in AD are limited. Experience with autoHSCT in relapsing polychondritis, a rare episodic inflammatory disorder characterized by destruction of cartilage, is scarce and alloHSCT has not been described before. Case Presentation Here, we present a case of a 9-year-old girl who was diagnosed with relapsing polychondritis, with severe airway involvement requiring a tracheostomy. The disease proved to be steroid-dependent and refractory to a wide array of disease-modifying anti-rheumatic drugs and biologicals. After an autoHSCT procedure, the disease became inactive for a short period of time, until the patient experienced a relapse after 31 days, accompanied by repopulation of effector/memory CD8+ T cells. Because of persistent inflammation and serious steroid toxicity, including severe osteoporosis, growth restriction, and excessive weight gain, the patient was offered an alloHSCT. She experienced transient antibody-mediated immune events post-alloHSCT, which subsided after rituximab. She ultimately developed a balanced immune reconstitution and is currently still in long-term disease remission, 8 years after alloHSCT. Conclusion This case adds to the few existing reports on autoHSCT in relapsing polychondritis and gives new insights in its pathogenesis, with a possible role for CD8+ T cells. Moreover, it is the first report of successful alloHSCT as a treatment for children with this severe autoimmune disease.
Collapse
Affiliation(s)
- Saskia R Veldkamp
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marc H A Jansen
- Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joost F Swart
- Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Caroline A Lindemans
- Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.,Blood and Bone Marrow Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
32
|
Fish Collagen Peptides Protect against Cisplatin-Induced Cytotoxicity and Oxidative Injury by Inhibiting MAPK Signaling Pathways in Mouse Thymic Epithelial Cells. Mar Drugs 2022; 20:md20040232. [PMID: 35447905 PMCID: PMC9032569 DOI: 10.3390/md20040232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Thymic epithelial cells (TECs) account for the most abundant and dominant stromal component of the thymus, where T cells mature. Oxidative- or cytotoxic-stress associated injury in TECs, a significant and common problem in many clinical settings, may cause a compromised thymopoietic capacity of TECs, resulting in clinically significant immune deficiency disorders or impairment in the adaptive immune response in the body. The present study demonstrated that fish collagen peptides (FCP) increase cell viability, reduce intracellular levels of reactive oxygen species (ROS), and impede apoptosis by repressing the expression of Bax and Bad and the release of cytochrome c, and by upregulating the expression of Bcl-2 and Bcl-xL in cisplatin-treated TECs. These inhibitory effects of FCP on TEC damage occur via the suppression of ROS generation and MAPK (p38 MAPK, JNK, and ERK) activity. Taken together, our data suggest that FCP can be used as a promising protective agent against cytotoxic insults- or ROS-mediated TEC injury. Furthermore, our findings provide new insights into a therapeutic approach for the future application of FCP in the prevention and treatment of various types of oxidative- or cytotoxic stress-related cell injury in TECs as well as age-related or acute thymus involution.
Collapse
|
33
|
Avolio F, Martinotti S, Khavinson VK, Esposito JE, Giambuzzi G, Marino A, Mironova E, Pulcini R, Robuffo I, Bologna G, Simeone P, Lanuti P, Guarnieri S, Trofimova S, Procopio AD, Toniato E. Peptides Regulating Proliferative Activity and Inflammatory Pathways in the Monocyte/Macrophage THP-1 Cell Line. Int J Mol Sci 2022; 23:ijms23073607. [PMID: 35408963 PMCID: PMC8999041 DOI: 10.3390/ijms23073607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
This study evaluates the effects of five different peptides, the Epitalon® tetrapeptide, the Vilon® dipeptide, the Thymogen® dipeptide, the Thymalin® peptide complex, and the Chonluten® tripeptide, as regulators of inflammatory and proliferative processes in the human monocytic THP-1, which is a human leukemia monocytic cell line capable of differentiating into macrophages by PMA in vitro. These peptides (Khavinson Peptides®), characterized by Prof. Khavinson from 1973 onwards, were initially isolated from animal tissues and found to be organ specific. We tested the capacity of the five peptides to influence cell cultures in vitro by incubating THP-1 cells with peptides at certain concentrations known for being effective on recipient cells in culture. We found that all five peptides can modulate key proliferative patterns, increasing tyrosine phosphorylation of mitogen-activated cytoplasmic kinases. In addition, the Chonluten tripeptide, derived from bronchial epithelial cells, inhibited in vitro tumor necrosis factor (TNF) production of monocytes exposed to pro-inflammatory bacterial lipopolysaccharide (LPS). The low TNF release by monocytes is linked to a documented mechanism of TNF tolerance, promoting attenuation of inflammatory action. Therefore, all peptides inhibited the expression of TNF and pro-inflammatory IL-6 cytokine stimulated by LPS on terminally differentiated THP-1 cells. Lastly, by incubating the THP1 cells, treated with the peptides, on a layer of activated endothelial cells (HUVECs activated by LPS), we observed a reduction in cell adhesion, a typical pro-inflammatory mechanism. Overall, the results suggest that the Khavinson Peptides® cooperate as natural inducers of TNF tolerance in monocyte, and act on macrophages as anti-inflammatory molecules during inflammatory and microbial-mediated activity.
Collapse
Affiliation(s)
- Francesco Avolio
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Stefano Martinotti
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Vladimir Kh. Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.K.); (E.M.); (S.T.)
| | - Jessica Elisabetta Esposito
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Giulia Giambuzzi
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Antonio Marino
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Ekaterina Mironova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.K.); (E.M.); (S.T.)
| | - Riccardo Pulcini
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, 66100 Chieti, Italy;
| | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.S.); (P.L.)
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.S.); (P.L.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.S.); (P.L.)
| | - Simone Guarnieri
- Department of Neuroscience, Center of Advanced Studies and Technology, Imaging and Clinical Sciences, University of Chieti, 66100 Chieti, Italy;
| | - Svetlana Trofimova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.K.); (E.M.); (S.T.)
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Politecnic University of Marche, 60121 Ancona, Italy;
- INRCA-IRCCS, Clinic of Laboratory and Precision Medicine, 60121 Ancona, Italy
| | - Elena Toniato
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
- Unicamillus—Saint Unicamillus of Health Science, 00131 Rome, Italy
- Correspondence:
| |
Collapse
|
34
|
Sunaoshi M, Blyth BJ, Shang Y, Tsuruoka C, Morioka T, Shinagawa M, Ogawa M, Shimada Y, Tachibana A, Iizuka D, Kakinuma S. Post-Irradiation Thymic Regeneration in B6C3F1 Mice Is Age Dependent and Modulated by Activation of the PI3K-AKT-mTOR Pathway. BIOLOGY 2022; 11:biology11030449. [PMID: 35336821 PMCID: PMC8945464 DOI: 10.3390/biology11030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary Because children have a long life expectancy relative to adults and their tissues and organs are growing and developing rapidly, the risk of radiation carcinogenesis for children is considered higher than that for adults. However, the underlying mechanism(s) is unclear. To uncover the mechanism, we previously revealed that principal causative genes in mouse thymic lymphomas arising in irradiated infants or adults as Pten or Ikzf1, respectively, suggesting that cells with mutation in these genes might be the origin of lymphomas arising after irradiation depending on age at exposure. Here, we clarified the age-dependent differences in thymus-cell dynamics in mice during the initial post-irradiation period. Our results demonstrate that the dynamics of thymocytes during the post-irradiation period depends on the age at exposure. For irradiated infants in particular, the number of proliferating cells increase dramatically, and this correlate with activation of the PI3K-AKT-mTOR pathway. Thus, we conclude that the PI3K-AKT-mTOR pathway in infants contributed, at least in part, to thymus-cell dynamics through the modification of cell proliferation and survival after irradiation, which may be associated with the risk of Pten mutation-associated thymic lymphoma. Abstract The risk of radiation-induced carcinogenesis depends on age at exposure. We previously reported principal causative genes in lymphomas arising after infant or adult exposure to 4-fractionated irradiation as Pten or Ikzf1, respectively, suggesting that cells with mutation in these genes might be the origin of lymphomas arising after irradiation depending on age at exposure. Here, we clarified the age-dependent differences in thymus-cell dynamics in mice during the initial post-irradiation period. The thymocyte number initially decreased, followed by two regeneration phases. During the first regeneration, the proportion of phosphorylated-AKT-positive (p-AKT+) cells in cell-cycle phases S+G2/M of immature CD4−CD8− and CD4+CD8+ thymocytes and in phases G0/G1 of mature CD4+CD8− and CD4−CD8+ thymocytes was significantly greater in irradiated infants than in irradiated adults. During the second regeneration, the proportion of p-AKT+ thymocytes in phases G0/G1 increased in each of the three populations other than CD4−CD8− thymocytes more so than during the first regeneration. Finally, PI3K-AKT-mTOR signaling in infants contributed, at least in part, to biphasic thymic regeneration through the modification of cell proliferation and survival after irradiation, which may be associated with the risk of Pten mutation-associated thymic lymphoma.
Collapse
Affiliation(s)
- Masaaki Sunaoshi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Benjamin J. Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Chizuru Tsuruoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Mayumi Shinagawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Mari Ogawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Yoshiya Shimada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Akira Tachibana
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Japan;
| | - Daisuke Iizuka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
- Correspondence: ; Tel.: +81-43-206-3160
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| |
Collapse
|
35
|
Wang W, Yang H, Piao Y, Quan M, Guo D. Progressive multifocal leukoencephalopathy in a patient with mediastinal teratoma: a case report. BMC Neurol 2022; 22:40. [PMID: 35086492 PMCID: PMC8793245 DOI: 10.1186/s12883-022-02563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating lytic brain infection caused by the John Cunningham virus (JCV). JCV manifests primarily in patients with innate immunodeficiency or taking immunomodulatory medications. In this case study, we report a PML patient with comorbid mediastinal teratoma and mild lymphopenia. Case presentation A 73-year-old female presented with a 3-month history of progressive hemiplegia, hemianopsia, and cognitive impairment. She was diagnosed as PML by cerebrospinal fluid metagenomics sequencing and brain biopsy. Extensive immunological tests did not reveal an apparent immunodeficiency, but further work-up revealed that the PML was most likely the first presentation of mediastinal teratoma and the mild lymphopenia. Mirtazapine and immunoglobulin were started, the patient’s condition was relatively stable and approved to be discharged from hospital. But unfortunately, she died of the lung infection 10 months after first presentation. Conclusions This case confirms that mediastinal teratoma may induce the lymphopenia and trigger PML, delayed or incorrect diagnosis may worsen the course of the disease and result in poor prognosis.
Collapse
Affiliation(s)
- Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Hui Yang
- Department of Neurology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yueshan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Dongmei Guo
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
36
|
Sandgaard KS, Gkouleli T, Attenborough T, Adams S, Gibbons D, Holm M, Eisen S, Baxendale H, De Rossi A, Pahwa S, Chain B, Gkazi AS, Klein N. The importance of taking ART appropriately in children and adolescents with HIV-1 to reach the highest capacity of immune function later in life. Front Immunol 2022; 13:860316. [PMID: 35967315 PMCID: PMC9364750 DOI: 10.3389/fimmu.2022.860316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Current antiretroviral therapy (ART) guidelines recommend treating all children with HIV-1 infection. This has changed from the broader use of ART to treat children to improve morbidity and minimise mortality. However, prior to current recommendations, not everyone with HIV-1 received timely treatment. What happens to the paediatric immune system when HIV-1 replication is not appropriately supressed remains unclear. 11 samples from adolescents with HIV-1 on ART and uninfected controls in the UK, aged 12-25 years, were examined; overall, adolescents with CD4+ counts > 500/μl and a viral load < 50 copies/ml were compared with adolescents with CD4+ counts < 500/μl and a viral load > 50 copies/ml at time of sampling. Measurements of thymic output were combined with high throughput next generation sequencing and bioinformatics to systematically organize CD4+ and CD8+ T cell receptor (TCR) repertoires. TCR repertoire diversity, clonal expansions, TCR sequence sharing, and formation of TCR clusters in HIV-1 infected adolescents with successful HIV-1 suppression were compared to adolescents with ineffective HIV-1 suppression. Thymic output and CD4+ T cell numbers were decreased in HIV-1 infected adolescents with poor HIV-1 suppression. A strong homeostatic TCR response, driven by the decreased CD4+ T cell compartment and reduced thymic output was observed in the virally uncontrolled HIV-1-infected adolescents. Formation of abundant robust TCR clusters and structurally related TCRs were found in the adolescents with effective HIV-1 suppression. Numerous CD4+ T cell numbers in the virally controlled adolescents emphasize the importance of high thymic output and formation of robust TCR clusters in the maintenance of HIV-1 suppression. While the profound capacity for immune recovery in children may allow better opportunity to deal with immunological stress, when ART is taken appropriately, this study demonstrates new insights into the unique paediatric immune system and the immunological changes when HIV-1 replication is ongoing.
Collapse
Affiliation(s)
- Katrine Schou Sandgaard
- Infection, Immunity and Inflammation, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Triantafylia Gkouleli
- Infection, Immunity and Inflammation, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom.,University College London (UCL) Zayed Centre for Research into Rare Disease in Children, London, United Kingdom
| | - Teresa Attenborough
- Infection, Immunity and Inflammation, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stuart Adams
- Genetics and Rare Diseases, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Deena Gibbons
- Peter Gorer Department of Immunobiology, Kings College London, London, United Kingdom
| | - Mette Holm
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Sarah Eisen
- Tropical Diseases, University College London Hospital, London, United Kingdom
| | - Helen Baxendale
- Clinical Immunology Department, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Anita De Rossi
- Department of Mother and Child Health, University of Padova, Padova, Italy
| | - Savita Pahwa
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Benny Chain
- University College London (UCL) Division of Infection and Immunity, University College London (UCL) Cruciform Building, London, United Kingdom
| | - Athina S Gkazi
- Genetics and Rare Diseases, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Nigel Klein
- Infection, Immunity and Inflammation, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
37
|
Kernen L, Phan A, Bo J, Herzog EL, Huynh J, Segner H, Baumann L. Estrogens as immunotoxicants: 17α-ethinylestradiol exposure retards thymus development in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106025. [PMID: 34837781 DOI: 10.1016/j.aquatox.2021.106025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Estrogenic endocrine disrupting compounds (EEDCs) can cause alterations in sexual development and reproductive function of fish. Growing evidence suggests that EEDCs can also interfere with development and function of innate immunity of fish. The present study examined a potential disruptive effect of EEDCs at field-relevant concentrations on the development of adaptive immunity, more specifically the thymus. Zebrafish (Danio rerio) were exposed from fertilization until 64 days post-fertilization (dpf) to environmentally relevant (3 and 10 ng/L) concentrations of the synthetic estrogen 17α-ethinylestradiol (EE2). The exposure duration covered the period of initial thymus differentiation to maximum growth. Thymus development was assessed by histological and morphometric (thymus area) analysis, thymocyte number, and transcript levels of thymocyte marker genes. Additionally, transcript levels of the estrogen receptors (esr1 and esr2a) were determined. The EE2 exposure altered sexual development (gonad differentiation, transcript levels of hepatic vitellogenin and estrogen receptors) of zebrafish, as expected. At the same time, the EE2 treatment reduced the thymus growth (thymus area, thymocyte number) and transcript levels of thymus marker genes. The expression of the thymic estrogen receptors responded to the EE2 exposure but in a different pattern than the hepatic estrogen receptors. After the 64-day-exposure period, the juvenile fish were transferred into clean water for another 95 days to assess the reversibility of EE2-induced effects. The thymic alterations were found to be reversible in female zebrafish but persisted in males. The present study provides the first evidence that the development of the fish adaptive immune system is sensitive to EEDCs, and that this takes place at concentrations similar to those that disrupt sexual development.
Collapse
Affiliation(s)
- Larissa Kernen
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Audrey Phan
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen 361102, China
| | - Elio L Herzog
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - John Huynh
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Lisa Baumann
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland; Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120 Heidelberg, Germany.
| |
Collapse
|
38
|
Kinsella S, Evandy CA, Cooper K, Iovino L, deRoos PC, Hopwo KS, Granadier DW, Smith CW, Rafii S, Dudakov JA. Attenuation of apoptotic cell detection triggers thymic regeneration after damage. Cell Rep 2021; 37:109789. [PMID: 34610317 PMCID: PMC8627669 DOI: 10.1016/j.celrep.2021.109789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023] Open
Abstract
The thymus, which is the primary site of T cell development, is particularly sensitive to insult but also has a remarkable capacity for repair. However, the mechanisms orchestrating regeneration are poorly understood, and delayed repair is common after cytoreductive therapies. Here, we demonstrate a trigger of thymic regeneration, centered on detecting the loss of dying thymocytes that are abundant during steady-state T cell development. Specifically, apoptotic thymocytes suppressed production of the regenerative factors IL-23 and BMP4 via TAM receptor signaling and activation of the Rho-GTPase Rac1, the intracellular pattern recognition receptor NOD2, and micro-RNA-29c. However, after damage, when profound thymocyte depletion occurs, this TAM-Rac1-NOD2-miR29c pathway is attenuated, increasing production of IL-23 and BMP4. Notably, pharmacological inhibition of Rac1-GTPase enhanced thymic function after acute damage. These findings identify a complex trigger of tissue regeneration and offer a regenerative strategy for restoring immune competence in patients whose thymic function has been compromised.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Cindy A Evandy
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kirsten Cooper
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lorenzo Iovino
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul C deRoos
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kayla S Hopwo
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David W Granadier
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Colton W Smith
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Shahin Rafii
- Department of Genetic Medicine and Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
39
|
Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus Degeneration and Regeneration. Front Immunol 2021; 12:706244. [PMID: 34539637 PMCID: PMC8442952 DOI: 10.3389/fimmu.2021.706244] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
The immune system’s ability to resist the invasion of foreign pathogens and the tolerance to self-antigens are primarily centered on the efficient functions of the various subsets of T lymphocytes. As the primary organ of thymopoiesis, the thymus performs a crucial role in generating a self-tolerant but diverse repertoire of T cell receptors and peripheral T cell pool, with the capacity to recognize a wide variety of antigens and for the surveillance of malignancies. However, cells in the thymus are fragile and sensitive to changes in the external environment and acute insults such as infections, chemo- and radiation-therapy, resulting in thymic injury and degeneration. Though the thymus has the capacity to self-regenerate, it is often insufficient to reconstitute an intact thymic function. Thymic dysfunction leads to an increased risk of opportunistic infections, tumor relapse, autoimmunity, and adverse clinical outcome. Thus, exploiting the mechanism of thymic regeneration would provide new therapeutic options for these settings. This review summarizes the thymus’s development, factors causing thymic injury, and the strategies for improving thymus regeneration.
Collapse
Affiliation(s)
- Maxwell Duah
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qiu Lan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
40
|
Graft-versus-host disease: a disorder of tissue regeneration and repair. Blood 2021; 138:1657-1665. [PMID: 34370823 DOI: 10.1182/blood.2021011867] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Regenerative failure at barrier surfaces and maladaptive repair leading to fibrosis are hallmarks of graft-versus-host disease (GVHD). Although immunosuppressive treatment can control inflammation, impaired tissue homeostasis leads to prolonged organ damage and impaired quality of life. In this Spotlight article, we review recent research that addresses the critical failures in tissue regeneration and repair that underpin treatment-resistant GVHD. We highlight current interventions designed to overcome these defects and provide our assessment of the future therapeutic landscape.
Collapse
|
41
|
Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol 2021; 22:687-698. [PMID: 33986548 DOI: 10.1038/s41590-021-00927-z] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The aged adaptive immune system is characterized by progressive dysfunction as well as increased autoimmunity. This decline is responsible for elevated susceptibility to infection and cancer, as well as decreased vaccination efficacy. Recent evidence indicates that CD4+ T cell-intrinsic alteratins contribute to chronic inflammation and are sufficient to accelerate an organism-wide aging phenotype, supporting the idea that T cell aging plays a major role in body-wide deterioration. In this Review, we propose ten molecular hallmarks to represent common denominators of T cell aging. These hallmarks are grouped into four primary hallmarks (thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, and loss of proteostasis) and four secondary hallmarks (reduction of the TCR repertoire, naive-memory imbalance, T cell senescence, and lack of effector plasticity), and together they explain the manifestation of the two integrative hallmarks (immunodeficiency and inflammaging). A major challenge now is weighing the relative impact of these hallmarks on T cell aging and understanding their interconnections, with the final goal of defining molecular targets for interventions in the aging process.
Collapse
Affiliation(s)
- Maria Mittelbrunn
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain. .,Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
42
|
Paiola M, Moreira C, Hétru J, Duflot A, Pinto PIS, Scapigliati G, Knigge T, Monsinjon T. Prepubertal gonad investment modulates thymus function: evidence in a teleost fish. J Exp Biol 2021; 224:238091. [PMID: 33789987 DOI: 10.1242/jeb.238576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Thymus plasticity following gonadectomy or sex hormone replacement has long since exemplified sex hormone effects on the immune system in mammals and, to a lesser extent, in 'lower vertebrates', including amphibians and fish. Nevertheless, the underlying physiological significances as well as the ontogenetic establishment of this crosstalk remain largely unknown. Here, we used a teleost fish, the European sea bass, Dicentrarchus labrax, to investigate: (1) whether the regulation of thymus plasticity relies on resource trade-off with somatic growth and reproductive investment and (2) if the gonad-thymus interaction takes place during gonadal differentiation and development. Because gonadal development and, supposedly, thymus function in sea bass depend on environmental changes associated with the winter season, we evaluated thymus changes (foxn1 expression, and thymocyte and T cell content) in juvenile D. labrax raised for 1 year under either constant or fluctuating photoperiod and temperature. Importantly, in both conditions, intensive gonadal development following sex differentiation coincided with a halt of thymus growth, while somatic growth continued. To the best of our knowledge, this is the first study showing that gonadal development during prepuberty regulates thymus plasticity. This finding may provide an explanation for the initiation of the thymus involution related to ageing in mammals. Comparing fixed and variable environmental conditions, our work also demonstrates that the extent of the effects on the thymus, which are related to reproduction, depend on ecophysiological conditions, rather than being directly related to sexual maturity and sex hormone levels.
Collapse
Affiliation(s)
- Matthieu Paiola
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Catarina Moreira
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Julie Hétru
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Aurélie Duflot
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Patricia I S Pinto
- Laboratory of Comparative Endocrinology and Integrative Biology, CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, 01100 Viterbo, Italy
| | - Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Tiphaine Monsinjon
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| |
Collapse
|
43
|
Ishikawa T, Akiyama N, Akiyama T. In Pursuit of Adult Progenitors of Thymic Epithelial Cells. Front Immunol 2021; 12:621824. [PMID: 33717123 PMCID: PMC7946825 DOI: 10.3389/fimmu.2021.621824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral T cells capable of discriminating between self and non-self antigens are major components of a robust adaptive immune system. The development of self-tolerant T cells is orchestrated by thymic epithelial cells (TECs), which are localized in the thymic cortex (cortical TECs, cTECs) and medulla (medullary TECs, mTECs). cTECs and mTECs are essential for differentiation, proliferation, and positive and negative selection of thymocytes. Recent advances in single-cell RNA-sequencing technology have revealed a previously unknown degree of TEC heterogeneity, but we still lack a clear picture of the identity of TEC progenitors in the adult thymus. In this review, we describe both earlier and recent findings that shed light on features of these elusive adult progenitors in the context of tissue homeostasis, as well as recovery from stress-induced thymic atrophy.
Collapse
Affiliation(s)
- Tatsuya Ishikawa
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Nobuko Akiyama
- Laboratory for Immunogenetics, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | - Taishin Akiyama
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
44
|
Granadier D, Iovino L, Kinsella S, Dudakov JA. Dynamics of thymus function and T cell receptor repertoire breadth in health and disease. Semin Immunopathol 2021; 43:119-134. [PMID: 33608819 PMCID: PMC7894242 DOI: 10.1007/s00281-021-00840-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
T cell recognition of unknown antigens relies on the tremendous diversity of the T cell receptor (TCR) repertoire; generation of which can only occur in the thymus. TCR repertoire breadth is thus critical for not only coordinating the adaptive response against pathogens but also for mounting a response against malignancies. However, thymic function is exquisitely sensitive to negative stimuli, which can come in the form of acute insult, such as that caused by stress, infection, or common cancer therapies; or chronic damage such as the progressive decline in thymic function with age. Whether it be prolonged T cell deficiency after hematopoietic cell transplantation (HCT) or constriction in the breadth of the peripheral TCR repertoire with age; these insults result in poor adaptive immune responses. In this review, we will discuss the importance of thymic function for generation of the TCR repertoire and how acute and chronic thymic damage influences immune health. We will also discuss methods that are used to measure thymic function in patients and strategies that have been developed to boost thymic function.
Collapse
Affiliation(s)
- David Granadier
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Lorenzo Iovino
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
45
|
Irla M. RANK Signaling in the Differentiation and Regeneration of Thymic Epithelial Cells. Front Immunol 2021; 11:623265. [PMID: 33552088 PMCID: PMC7862717 DOI: 10.3389/fimmu.2020.623265] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022] Open
Abstract
Thymic epithelial cells (TECs) provide essential clues for the proliferation, survival, migration, and differentiation of thymocytes. Recent advances in mouse and human have revealed that TECs constitute a highly heterogeneous cell population with distinct functional properties. Importantly, TECs are sensitive to thymic damages engendered by myeloablative conditioning regimen used for bone marrow transplantation. These detrimental effects on TECs delay de novo T-cell production, which can increase the risk of morbidity and mortality in many patients. Alike that TECs guide the development of thymocytes, reciprocally thymocytes control the differentiation and organization of TECs. These bidirectional interactions are referred to as thymic crosstalk. The tumor necrosis factor receptor superfamily (TNFRSF) member, receptor activator of nuclear factor kappa-B (RANK) and its cognate ligand RANKL have emerged as key players of the crosstalk between TECs and thymocytes. RANKL, mainly provided by positively selected CD4+ thymocytes and a subset of group 3 innate lymphoid cells, controls mTEC proliferation/differentiation and TEC regeneration. In this review, I discuss recent advances that have unraveled the high heterogeneity of TECs and the implication of the RANK-RANKL signaling axis in TEC differentiation and regeneration. Targeting this cell-signaling pathway opens novel therapeutic perspectives to recover TEC function and T-cell production.
Collapse
Affiliation(s)
- Magali Irla
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
46
|
Nitta T, Takayanagi H. Non-Epithelial Thymic Stromal Cells: Unsung Heroes in Thymus Organogenesis and T Cell Development. Front Immunol 2021; 11:620894. [PMID: 33519827 PMCID: PMC7840694 DOI: 10.3389/fimmu.2020.620894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
The stromal microenvironment in the thymus is essential for generating a functional T cell repertoire. Thymic epithelial cells (TECs) are numerically and phenotypically one of the most prominent stromal cell types in the thymus, and have been recognized as one of most unusual cell types in the body by virtue of their unique functions in the course of the positive and negative selection of developing T cells. In addition to TECs, there are other stromal cell types of mesenchymal origin, such as fibroblasts and endothelial cells. These mesenchymal stromal cells are not only components of the parenchymal and vascular architecture, but also have a pivotal role in controlling TEC development, although their functions have been less extensively explored than TECs. Here, we review both the historical studies on and recent advances in our understanding of the contribution of such non-TEC stromal cells to thymic organogenesis and T cell development. In particular, we highlight the recently discovered functional effect of thymic fibroblasts on T cell repertoire selection.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|