1
|
Ngo TH, Menon S, Rivero-Müller A. Nano-immunotherapy: Merging immunotherapy precision with nanomaterial delivery. iScience 2025; 28:112319. [PMID: 40292310 PMCID: PMC12033950 DOI: 10.1016/j.isci.2025.112319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
In current landscape of cancer treatment, nanotherapy and cellular therapy stand out as promising and innovative approaches. Nanotherapy have excelled in delivering functional molecules effectively to target cancer cells, however the targetability is mostly the result of the enhanced permeability and retention effect. Meanwhile, cellular therapies such recently emerging chimeric antigen receptor (CAR)-T therapy are proficient at specifically targeting cancer cells by using engineered receptors on T cells. Yet, cellular therapies preform poor in solid tumors due to immunosuppression and cancer cell resistance to immuno-stimulation, in other words their delivery of deadly cargo is deficient. Therefore, combining nanotherapy and immunotherapy is an emerging trend, with ongoing clinical trials exploring their synergistic effects. This 2-input approach holds promise for enhancing treatment efficacy and overcoming limitations in cancer therapy. In this review, we will discuss two aspects: targetability and delivery for each individual therapy and what the combined nano-immunotherapy strategies have achieved up to now. In the last section, some future perspectives for this combination are suggested.
Collapse
Affiliation(s)
- Thu Ha Ngo
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Soumya Menon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Li T, Gibiansky L, Parikh A, Putnins M, Chiu CW, Sacchi M, Feng H, Ahmadi T, Gupta M, Xu S. Optimal Dosing Regimen for Epcoritamab, a Subcutaneous Bispecific Antibody, in Relapsed or Refractory Large B-Cell Lymphoma. Clin Pharmacol Ther 2025; 117:1437-1450. [PMID: 39935086 PMCID: PMC11993285 DOI: 10.1002/cpt.3588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025]
Abstract
Epcoritamab is a CD3xCD20 bispecific antibody that activates T cells to kill CD20-expressing B cells. Epcoritamab is approved for the treatment of adults with different types of relapsed or refractory lymphoma in various geographies, including the United States, Europe, and Japan. Epcoritamab demonstrated an overall response rate of 63%, a complete response rate of 39%, and manageable safety with the approved dosing regimen (0.16-mg and 0.8-mg step-up doses and 48-mg full dose, with dosing every week in cycles 1-3, every 2 weeks in cycles 4-9, and every 4 weeks in cycles ≥ 10) in patients with relapsed or refractory large B-cell lymphoma from the phase 1/2 EPCORE® NHL-1 trial expansion through January 31, 2022. Exposure-efficacy analyses including the EPCORE NHL-1 and EPCORE NHL-3 trials revealed that higher exposure was associated with a higher overall response rate, complete response rate, progression-free survival, and overall survival. A potential plateau of efficacy was observed at 48 mg or above. The exposure-safety analyses of these trials did not identify any safety concerns with the approved dosing regimen. No associations were detected between exposure and safety endpoints. The step-up doses were clinically active and helped mitigate cytokine release syndrome risk at the subsequent full doses. Most initial responses (94%) were observed during the weekly dosing period, and most responders with large B-cell lymphoma maintained or improved their response during every 2 weeks and every 4 weeks dosing. Overall, these analyses support the approved single-agent epcoritamab 0.16/0.8/48-mg dosing regimen in relapsed or refractory large B-cell lymphoma.
Collapse
MESH Headings
- Humans
- Antibodies, Bispecific/administration & dosage
- Antibodies, Bispecific/adverse effects
- Antibodies, Bispecific/pharmacokinetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/pharmacokinetics
- Drug Administration Schedule
- Injections, Subcutaneous
- Dose-Response Relationship, Drug
- Treatment Outcome
Collapse
|
3
|
Patil H, Bharadwaj RK, Dutta N, Subramanian R, Prasad S, Mamadapur M. CAR-T cell therapy in rheumatic diseases: a review article. Clin Rheumatol 2025:10.1007/s10067-025-07451-7. [PMID: 40285991 DOI: 10.1007/s10067-025-07451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/26/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
CAR-T cell therapy, a pioneering immune-modulating treatment that was initially designed for hematologic malignancies, is now being considered a potential treatment for autoimmune and rheumatic diseases. This method involves genetically engineering T cells to express chimeric antigen receptors (CARs), allowing them to target specific antigens associated with pathogenic immune cells. The review covers the possibility of CAR-T therapy in the treatment of autoimmune diseases like systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc). The therapy's ability to maintain remission by targeting autoreactive B cells in the course of disease has been an important aspect of studies involving SLE. In refractory RA, CAR-T cells also demonstrate a potential therapeutic modality in selectively killing immune cells driving the disease process. For SSc, CAR-T therapy may represent a novel therapeutic approach because it targets the dysregulated activity of B cells as well as the fibrotic processes that drive the disease pathology. Emerging evidence suggests potential applications in conditions such as Sjögren's syndrome and dermatomyositis. While CAR-T therapy promises accuracy, persistence, and the potential for long-term remission, many problems remain, including the risk of cytokine release syndrome, immune toxicity, and treatment affordability. The development of CAR-Tregs and advanced gene-editing techniques may increase the specificity and safety of therapy. In addition, clinical trials and long-term studies should be conducted to establish the efficacy, safety, and economic feasibility of this innovative approach. This review underscores the transformative potential of CAR-T therapy in the management of rheumatic diseases, particularly in refractory cases. Offering targeted immunomodulation with a minimum of systemic immune suppression, CAR-T therapy could redefine therapeutic paradigms and offer hope for improved outcomes in autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | - Ramaswamy Subramanian
- Department of Clinical Immunology and Rheumatology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shiva Prasad
- Department of Clinical Immunology and Rheumatology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, India
| | - Mahabaleshwar Mamadapur
- Department of Clinical Immunology and Rheumatology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, India.
| |
Collapse
|
4
|
Topp MS, Matasar M, Allan JN, Ansell SM, Barnes JA, Arnason JE, Michot JM, Goldschmidt N, O’Brien SM, Abadi U, Avivi I, Cheng Y, Flink DM, Zhu M, Brouwer-Visser J, Chaudhry A, Mohamed H, Ambati S, Crombie JL. Odronextamab monotherapy in R/R DLBCL after progression with CAR T-cell therapy: primary analysis of the ELM-1 study. Blood 2025; 145:1498-1509. [PMID: 39786390 PMCID: PMC12002204 DOI: 10.1182/blood.2024027044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT Patients with relapsed/refractory diffuse large B-cell lymphoma progressing after chimeric antigen receptor T-cell (CAR-T) therapy have dismal outcomes. The prespecified post-CAR-T expansion cohort of the ELM-1 study investigated the efficacy and safety of odronextamab, a CD20×CD3 bispecific antibody, in patients with disease progression after CAR-Ts. Sixty patients received IV odronextamab weekly for 4 cycles followed by maintenance until progression. The primary end point was objective response rate (ORR) by independent central review. The median number of prior lines of therapy was 3 (range, 2-9), 71.7% were refractory to CAR-Ts, and 48.3% relapsed within 90 days of CAR-T therapy. After a median follow-up of 16.2 months, ORR and complete response (CR) rate were 48.3% and 31.7%, respectively. Responses were similar across prior CAR-T products and time to relapse on CAR-T therapy. Median duration of response was 14.8 months and median duration of CR was not reached. Median progression-free survival and overall survival were 4.8 and 10.2 months, respectively. The most common treatment-emergent adverse event was cytokine release syndrome (48.3%; no grade ≥3 events). No cases of immune effector cell-associated neurotoxicity syndrome were reported. Grade ≥3 infections occurred in 12 patients (20.0%), 2 of which were COVID-19. Odronextamab monotherapy demonstrated encouraging efficacy and generally manageable safety, supporting its potential as an off-the-shelf option for patients after CAR-T therapy. This trial was registered at www.clinicaltrials.gov as #NCT02290951.
Collapse
MESH Headings
- Humans
- Female
- Male
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Middle Aged
- Aged
- Adult
- Immunotherapy, Adoptive
- Antibodies, Bispecific/therapeutic use
- Antibodies, Bispecific/adverse effects
- Disease Progression
- Receptors, Chimeric Antigen
- Aged, 80 and over
Collapse
Affiliation(s)
- Max S. Topp
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Matthew Matasar
- Division of Blood Disorders, Rutgers Cancer Institute, New Brunswick, NJ
| | - John N. Allan
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY
| | - Stephen M. Ansell
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Jeffrey A. Barnes
- Department of Medicine, Hematology and Oncology Division, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Jon E. Arnason
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Jean-Marie Michot
- Departement D'Innovation Therapeutique et D'Essais Precoces, Gustave Roussy Cancer Campus, Villejuif, France
| | - Neta Goldschmidt
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Susan M. O’Brien
- Division of Hematology/Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine Medical Center, Orange, CA
| | - Uri Abadi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Hematology, Meir Medical Center, Kfar Saba, Israel
| | - Irit Avivi
- Department of Hematology, Ichilov University Hospital, Tel Aviv, Israel
| | - Yuan Cheng
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY
| | | | - Min Zhu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY
| | | | | | | | | | | |
Collapse
|
5
|
Wang JS, Schellenberg SJ, Demeros A, Lin AY. Exosomes in review: A new frontier in CAR-T cell therapies. Neoplasia 2025; 62:101147. [PMID: 40037165 PMCID: PMC11923832 DOI: 10.1016/j.neo.2025.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Exosomes are extracellular vehicles that facilitate intra-cellular communication via transport of critical proteins and genetic material. Every exosome is intrinsically reflective of the cell from which it was derived and can even mimic effector functions of their parent cells. In recent years, with the success of CAR-T therapies, there has been growing interest in characterizing exosomes derived from CAR-T cells. CAR exosomes contain the same cytotoxic granules as their parent cells and have demonstrated significant anti-tumor activity in vitro and in animal models. Moreover, infusion of CAR exosomes in animal models did not generate cytokine release syndrome. Conversely, there are also novel bispecific antibodies which target tumor-derived exosomes in hopes of derailing immunosuppressive pathways mediated by exosomes produced from malignant cells. The two most promising examples include (a) BsE CD73 x EpCAM which binds and inhibits exosomal CD73 to suppress production of immunosuppressant adenosine and (b) BsE CD3 x PD-L1 which targets exosomal PD-L1 within the tumor microenvironment to guide cytotoxic T-cells towards tumor cells. As our understanding of exosome biology continues to evolve, opportunities for advances in cellular therapies will grow in tandem.
Collapse
Affiliation(s)
- John S Wang
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Chicago, IL, USA
| | - Samuel J Schellenberg
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Chicago, IL, USA
| | | | - Adam Y Lin
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Oncology, Chicago, IL, USA; Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.
| |
Collapse
|
6
|
Nomiyama T, Setoyama D, Yamanaka I, Shimo M, Miyawaki K, Yamauchi T, Jinnouchi F, Sakoda T, Sasaki K, Shima T, Kikushige Y, Mori Y, Akashi K, Kato K, Kunisaki Y. Cerebrospinal fluid proteomics exerts predictive potential for immune effector cell-associated neurotoxicity syndrome (ICANS) in CAR-T cell therapy. Leukemia 2025; 39:983-987. [PMID: 40065076 PMCID: PMC11976296 DOI: 10.1038/s41375-025-02541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/15/2025] [Accepted: 02/12/2025] [Indexed: 04/09/2025]
Affiliation(s)
- Tomoko Nomiyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Ikumi Yamanaka
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Masatoshi Shimo
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuji Yamauchi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumiaki Jinnouchi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Teppei Sakoda
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kensuke Sasaki
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Shima
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshikane Kikushige
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Yasuo Mori
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan.
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
7
|
Renninger J, Kurz L, Stein H. Mitigation and Management of Common Toxicities Associated with the Administration of CAR-T Therapies in Oncology Patients. Drug Saf 2025:10.1007/s40264-025-01538-5. [PMID: 40108072 DOI: 10.1007/s40264-025-01538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapies are one of the main approaches among targeted cellular therapies. Despite the potential benefit and durable responses observed in some patients receiving CAR-T therapies, serious and potentially fatal toxicities remain a major challenge. The most common CAR-T-associated toxicities include cytokine release syndrome (CRS), neurotoxicity, cytopenias, and infections. While CRS and neurotoxicity are generally managed with tocilizumab and corticosteroids, respectively, high-grade toxicities can be life-threatening. Close postinfusion monitoring and assessment of clinical laboratory parameters, patient-related and clinical risk factors (e.g., age, tumor burden, comorbidities, baseline laboratory parameters, and underlying abnormalities), and therapy-related risk factors (e.g., CAR-T type, dose, and CAR-T-induced toxicity) are effective strategies to mitigate the toxicities. Clinical laboratory parameters, including various cytokines, have been identified for CRS (interleukin [IL]-1, IL-2, IL-5, IL-6, IL-8, IL-10, C-reactive protein [CRP], interferon [IFN]-γ, ferritin, granulocyte-macrophage colony-stimulating factor [GM-CSF], and monocyte chemoattractant protein-1), neurotoxicity (IL-1, IL-2, IL-6, IL-15, tumor necrosis factor [TNF]-α, GM-CSF, and IFN-γ), cytopenias (IL-2, IL-4, IL-6, IL-10, IFN-γ, ferritin, and CRP), and infections (IL-8, IL-1β, CRP, IFN-γ, and procalcitonin). CAR-T-associated toxicities can be monitored and treated to mitigate the risk to patients. Assessment of alterations in clinical laboratory parameter values that are correlated with CAR-T-associated toxicities may predict development and/or severity of a given toxicity, which can improve patient management strategies and ultimately enable the patients to better tolerate these therapies.
Collapse
Affiliation(s)
- Jonathan Renninger
- GSK Safety Evaluation and Risk Management, Global Safety, Philadelphia, PA, USA.
| | - Lisa Kurz
- GSK Safety Evaluation and Risk Management, Global Safety, Upper Providence, PA, USA
| | - Heather Stein
- GSK Safety Evaluation and Risk Management, Global Safety, Cambridge, MA, USA
| |
Collapse
|
8
|
He J, Connors J, Meador A, Xu S, Meador H, Jiang H, Fueyo J, Gomez-Manzano C, Friedman GK, Zaky W, Sadighi Z, Slopis JM, Ahmad AH. Immunotherapy-related neurotoxicity in the central nervous system of children with cancer. Neuro Oncol 2025; 27:625-643. [PMID: 39535217 PMCID: PMC11889721 DOI: 10.1093/neuonc/noae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 11/16/2024] Open
Abstract
Significant gaps remain in our understanding of immunotherapy-related neurotoxicity in pediatric patients, largely because much of our knowledge comes from studies in adults. Accurately identifying the adverse effects of immunotherapy in children is also challenging, owing to variations in terminology and grading systems. Moreover, the manifestation of immunotherapy-related neurotoxicity differs greatly across different diseases, various modalities, dosages, and delivery methods. Combining immunotherapy with other treatments might improve outcomes but introduces new complexities and potential for increased toxicities. Additionally, pediatric patients with intracranial malignancy have unique responses to immunotherapies and distinct neurotoxicity compared to those with extracranial malignancy. Consequently, we must enhance our understanding of the pathophysiology, prevalence, severity, and management of immunotherapy's neurotoxic effects in this vulnerable group. This review consolidates the current knowledge of immunotherapy-related neurotoxicity in pediatric oncology, highlighting various types of neurotoxicity including cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and tumor inflammation-associated neurotoxicity (TIAN), among others. Furthermore, we examine the unique features of neurotoxicity associated with adoptive cellular therapy (ACT), antibody-based therapies, immune checkpoint inhibitors (ICIs), oncolytic viruses (OV), and cancer vaccines.
Collapse
Affiliation(s)
- Jiasen He
- Section of Pediatric Neuro-Oncology, Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeremy Connors
- Section of Stem Cell Transplant, Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew Meador
- Texas A&M University School of Medicine, Bryan, Texas, USA
| | - Shuo Xu
- Section of Pediatric Hematology Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Heather Meador
- Section of Pediatric Neuro-Oncology, Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Jiang
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gregory K Friedman
- Section of Pediatric Neuro-Oncology, Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wafik Zaky
- Section of Pediatric Neuro-Oncology, Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zsila Sadighi
- Section of Pediatric Neuro-Oncology, Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John M Slopis
- Section of Pediatric Neuro-Oncology, Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ali H Ahmad
- Section of Pediatric Critical Care, Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Li D, Liu R, Fu Z, Yang F, Ma L, Guo Y, Cao M, Lei Y, Dou Y, Zhang X, Gao Y, Wei B, Deng B, Ke X, Hu K. Combination autologous stem cell transplantation with chimeric antigen receptor T-cell therapy for refractory/relapsed B-cell lymphoma: a single-arm clinical study. Front Immunol 2025; 16:1532460. [PMID: 40078989 PMCID: PMC11897563 DOI: 10.3389/fimmu.2025.1532460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Autologous stem cell transplantation (ASCT) and chimeric antigen receptor T-cells (CAR-T) have been used as consolidation therapies for patients with refractory/relapsed B cell non-Hodgkin's lymphoma (R/R B-NHL) in remission after second-line chemotherapy or salvage therapy. However, patients with different pathological subtypes and remission states may benefit differently from ASCT or CAR-T cell therapy. Furthermore, consolidation treatment involving ASCT or CAR-T cells still poses a significant risk of disease relapse. We conducted a retrospective, single-arm study of 47 patients with R/R B-NHL, and found that the combination of ASCT and CAR-T therapy improved the 3-year progression-free survival (PFS) and overall survival (OS) rates to 66.04% (95%CI: 48.311-78.928) and 72.442% (95%CI: 53.46-84.708) respectively. Furthermore, the combination therapy has no serious adverse events. Thus, ASCT combined with CAR-T cell therapy is effective against multiple subtypes of R/R B-NHL, and can effectively prolong the long-term survival of patients.
Collapse
Affiliation(s)
- Danyang Li
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, Beijing, China
| | - Rui Liu
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, Beijing, China
| | - Zhonghua Fu
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, Beijing, China
| | - Fan Yang
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, Beijing, China
| | - Lixia Ma
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, Beijing, China
| | - Yuelu Guo
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, Beijing, China
| | - Miaomiao Cao
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, Beijing, China
| | - Yang Lei
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, Beijing, China
| | - Yimeng Dou
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, Beijing, China
| | - Xuenan Zhang
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, Beijing, China
| | - Yan Gao
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, Beijing, China
| | - Bian Wei
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, Beijing, China
| | - Biping Deng
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, Beijing, China
| | - Xiaoyan Ke
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, Beijing, China
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Kai Hu
- Department of Lymphoma and Myeloma Research Center, Beijing GoBroad Hospital, Beijing, China
| |
Collapse
|
10
|
Alirezaee A, Mirmoghtadaei M, Heydarlou H, Akbarian A, Alizadeh Z. Interferon therapy in alpha and Delta variants of SARS-CoV-2: The dichotomy between laboratory success and clinical realities. Cytokine 2025; 186:156829. [PMID: 39693873 DOI: 10.1016/j.cyto.2024.156829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
The COVID-19 pandemic has caused significant morbidity and mortality worldwide. The emergence of the Alpha and Delta variants of SARS-CoV-2 has led to a renewed interest in using interferon therapy as a potential treatment option. Interferons are a group of signaling proteins produced by host cells in response to viral infections. They play a critical role in the innate immune response to viral infections by inducing an antiviral state in infected and neighboring cells. Interferon therapy has shown promise as a potential treatment option for COVID-19. In this review paper, we review the current knowledge regarding interferon therapy in the context of the Alpha and Delta variants of SARS-CoV-2 and discuss the challenges that must be overcome to translate laboratory findings into effective clinical treatments.
Collapse
Affiliation(s)
- Atefe Alirezaee
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Mirmoghtadaei
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Heydarlou
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Asiye Akbarian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Alizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Luo C, Min X, Zhang D. New insights into the mechanisms of the immune microenvironment and immunotherapy in osteosarcoma. Front Immunol 2025; 15:1539696. [PMID: 39896817 PMCID: PMC11782189 DOI: 10.3389/fimmu.2024.1539696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Osteosarcoma, a malignant bone tumor primarily affecting adolescents, is highly invasive with a poor prognosis. While surgery and chemotherapy have improved survival for localized cases, pulmonary metastasis significantly reduces survival to approximately 20%, highlighting the need for novel treatments. Immunotherapy, which leverages the immune system to target osteosarcoma cells, shows promise. This review summarizes the biological characteristics of osteosarcoma, mechanisms of pulmonary metastasis, and the tumor immune microenvironment (TME). It involves recent immunotherapy advances, including monoclonal antibodies, tumor vaccines, immune cell therapies, checkpoint inhibitors, and oncolytic viruses, and discusses combining these with standard treatments.
Collapse
Affiliation(s)
- Cong Luo
- Department of Orthopedic Trauma, Zhuji People’s Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| | - Xingxing Min
- Department of Orthopedic Trauma, Zhuji People’s Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| | - Danying Zhang
- Department of Emergency and Critical Care, Shanghai Changzheng Hospital, Shanghai, China
| |
Collapse
|
12
|
Norton J, Stiff P. CAR-T therapy toxicities: the importance of macrophages in their development and possible targets for their management. Discov Oncol 2025; 16:49. [PMID: 39812904 PMCID: PMC11735762 DOI: 10.1007/s12672-025-01776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
CAR-T cell therapies have risen to prominence over the last decade, and their indications are increasing with several products approved as early as second line in Large B Cell non-Hodgkin Lymphomas. Their major toxicities are the cytokine release syndrome (CRS) and the Immune-effector Cell Associated Neurotoxicity Syndrome (ICANS). These entities involve a hyperinflammatory cascade which is amplified through the mononuclear phagocytic system (MPS). Herein, we review the immune mediated adverse events related to CAR therapy, including their pathophysiologies, and current therapies. In particular, we discuss the emerging role of the MPS in both the toxicity and efficacy of CAR-T therapy, and possible avenues for the modulation of the MPS to optimize efficacy while minimizing toxicity.
Collapse
Affiliation(s)
- Joseph Norton
- Internal Medicine Department, Division of Hematology, Oncology, and Transplant, University of Minnesota, 516 Delaware Street SE, PWB 14-100, Minneapolis, MN, 55455, USA.
| | - Patrick Stiff
- Internal Medicine Department, Division of Hematology-Oncology, Loyola University Medical Center, 2160 S 1St Ave, Maywood, IL, 60153, USA
| |
Collapse
|
13
|
Bajwa A, Zhao Q, Geer M, Lin C, Westholder J, Maakaron J, Ghosh M, Frame D, Galal A, Tossey J, Ahmed N, Bezerra E, Denlinger N, de Lima M, Epperla N, Caimi P, Voorhees T. Siltuximab for chimeric antigen receptor T-cell therapy-related CRS and ICANS: a multicenter retrospective analysis. Blood Adv 2025; 9:170-175. [PMID: 39437770 PMCID: PMC11788129 DOI: 10.1182/bloodadvances.2024013688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor T-cell (CAR-T) therapies are effective in many hematologic malignancies; however, adverse events including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) can affect a significant number of patients. Those who develop refractory CRS or ICANS have few treatment options. Siltuximab, a monoclonal antibody binding circulating interleukin-6, has been proposed to have clinical activity in both CRS and ICANS. We conducted a multicenter retrospective analysis of siltuximab treatment for CRS and ICANS after CAR-T therapy in a real-world cohort from 6 academic centers. Fifty-four patients were evaluated. Sixteen patients had CRS previously treated with tocilizumab and 17 patients had ICANS previously treated with steroids. Of the patients with CRS at the time of siltuximab, 75% had improvement in CRS grade. Of the patients with ICANS at the time of siltuximab, 60% had improvement in ICANS grade. To our knowledge, this is the largest cohort of patients treated with siltuximab for CRS and/or ICANS after CAR-T therapies. Siltuximab appeared to be effective for both CRS and ICANS, including previously treated toxicities. These data support the use of siltuximab in CRS and ICANS as well as provide rationale for future prospective studies.
Collapse
Affiliation(s)
- Amneet Bajwa
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| | - Qiuhong Zhao
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| | - Marcus Geer
- Rogel Cancer Center, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Chenyu Lin
- Duke Cancer Center, Division of Hematology, Duke University, Durham, NC
| | - James Westholder
- Masonic Cancer Center, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN
| | - Joseph Maakaron
- Masonic Cancer Center, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN
| | - Monalisa Ghosh
- Rogel Cancer Center, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - David Frame
- Rogel Cancer Center, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Ahmed Galal
- Duke Cancer Center, Division of Hematology, Duke University, Durham, NC
| | - Justin Tossey
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| | - Nausheen Ahmed
- University of Kansas Cancer Center, Division of Hematologic Malignancies and Cellular Therapeutics, Overland Park, KS
| | - Evandro Bezerra
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| | - Nathan Denlinger
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| | - Marcos de Lima
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| | - Narendranath Epperla
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| | - Paolo Caimi
- Taussig Cancer Institute, Division of Hematology and Medical Oncology, Cleveland Clinic Foundation, Cleveland, OH
| | - Timothy Voorhees
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| |
Collapse
|
14
|
Youssef E, Fletcher B, Palmer D. Enhancing precision in cancer treatment: the role of gene therapy and immune modulation in oncology. Front Med (Lausanne) 2025; 11:1527600. [PMID: 39871848 PMCID: PMC11769984 DOI: 10.3389/fmed.2024.1527600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025] Open
Abstract
Gene therapy has long been a cornerstone in the treatment of rare diseases and genetic disorders, offering targeted solutions to conditions once considered untreatable. As the field advances, its transformative potential is now expanding into oncology, where personalized therapies address the genetic and immune-related complexities of cancer. This review highlights innovative therapeutic strategies, including gene replacement, gene silencing, oncolytic virotherapy, CAR-T cell therapy, and CRISPR-Cas9 gene editing, with a focus on their application in both hematologic malignancies and solid tumors. CRISPR-Cas9, a revolutionary tool in precision medicine, enables precise editing of cancer-driving mutations, enhancing immune responses and disrupting tumor growth mechanisms. Additionally, emerging approaches target ferroptosis-a regulated, iron-dependent form of cell death-offering new possibilities for selectively inducing tumor cell death in resistant cancers. Despite significant breakthroughs, challenges such as tumor heterogeneity, immune evasion, and the immunosuppressive tumor microenvironment (TME) remain. To overcome these barriers, novel approaches like dual-targeting, armored CAR-T cells, and combination therapies with immune checkpoint inhibitors and ferroptosis inducers are being explored. Additionally, the rise of allogeneic "off-the-shelf" CAR-T therapies offers scalable and more accessible treatment options. The regulatory landscape is evolving to accommodate these advancements, with frameworks like RMAT (Regenerative Medicine Advanced Therapy) in the U.S. and ATMP (Advanced Therapy Medicinal Products) in Europe fast-tracking the approval of gene therapies. However, ethical considerations surrounding CRISPR-based gene editing-such as off-target effects, germline editing, and ensuring equitable access-remain at the forefront, requiring ongoing ethical oversight. Advances in non-viral delivery systems, such as lipid nanoparticles (LNPs) and exosomes, are improving the safety and efficacy of gene therapies. By integrating these innovations with combination therapies and addressing regulatory and ethical concerns, gene therapy is poised to revolutionize cancer treatment, providing durable, effective, and personalized solutions for both hematologic and solid tumors.
Collapse
|
15
|
Totapally BR, Totapally A, Martinez PA. Thrombocytopenia in Critically Ill Children: A Review for Practicing Clinicians. CHILDREN (BASEL, SWITZERLAND) 2025; 12:83. [PMID: 39857914 PMCID: PMC11764412 DOI: 10.3390/children12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Thrombocytopenia frequently occurs in patients before, during, and after admission to Pediatric Intensive Care Units (PICUs). In critically ill children, it is often due to multifactorial causes and can be a sign of significant organ dysfunction. This review summarizes the potential causes/mechanisms of thrombocytopenia in acutely ill children, their identification, and treatments, with special attention paid to septic patients. The mechanisms of thrombocytopenia include decreased production and sequestration, but the most common reason is increased destruction or consumption. This review specifically reviews and compares the presentation, pathogenesis, and treatment of disseminated intravascular coagulation (DIC) and the thrombotic microangiopathic spectrum (TMA), including thrombocytopenia-associated multiorgan failure (TAMOF), hemolytic uremic syndrome, and other diagnoses. The other etiologies discussed include HLH/MAS, immune thrombocytopenia, and dilutional thrombocytopenia. Finally, this review analyzes platelet transfusions, the various thresholds, and complications.
Collapse
Affiliation(s)
- Balagangadhar R. Totapally
- Division of Critical Care Medicine, Nicklaus Children’s Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, USA; (A.T.); (P.A.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Abhinav Totapally
- Division of Critical Care Medicine, Nicklaus Children’s Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, USA; (A.T.); (P.A.M.)
| | - Paul A. Martinez
- Division of Critical Care Medicine, Nicklaus Children’s Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, USA; (A.T.); (P.A.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
16
|
Chhabra L, Pandey RK, Kumar R, Sundar S, Mehrotra S. Navigating the Roadblocks: Progress and Challenges in Cell-Based Therapies for Human Immunodeficiency Virus. J Cell Biochem 2025; 126:e30669. [PMID: 39485037 DOI: 10.1002/jcb.30669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Cell-based therapies represent a major advancement in the treatment and management of HIV/AIDS, with a goal to overcome the limitations of traditional antiretroviral therapy (ART). These innovative approaches not only promise a functional cure by reconstructing the immune landscape but also address the persistent viral reservoirs. For example, stem cell therapies have emerged from the foundational success of allogeneic hematopoietic stem cell transplantation in curing HIV infection in a limited number of cases. B cell therapies make use of genetically modified B cells constitutively expressing broadly neutralizing antibodies (bNAbs) against target viral particles and infected cells. Adoptive cell transfer (ACT), including TCR-T therapy, CAR-T cells, NK-CAR cells, and DC-based therapy, is adapted from cancer immunotherapy and repurposed for HIV eradication. In this review, we summarize the mechanisms through which these engineered cells recognize and destroy HIV-infected cells, the modification strategies, and their role in sustaining remission in the absence of ART. The review also addresses the challenges to cell-based therapies against HIV and discusses the recent advancements aimed at overcoming them.
Collapse
Affiliation(s)
- Lakshay Chhabra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
17
|
Mazetto RASV, Monteiro SON, Bulhões E, Defante MLR, Antunes VLJ, Balieiro CCA, Feitoza L, Ferreira ALC, Carvalho AM, Guida C. The cardiotoxic effects of CAR-T cell therapy: An updated systematic review and meta-analysis. Eur J Haematol 2024; 113:798-809. [PMID: 39171519 DOI: 10.1111/ejh.14289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Chimeric antigen receptor T-cell (CAR-T) therapy has shown promise in treating hematologic malignancies, yet its potential cardiotoxic effects require thorough investigation. OBJECTIVES We aim to conduct a systematic review and meta-analysis to examine the cardiotoxic effects of CAR-T therapy in adults with hematologic malignancies. METHODS We searched PubMed, Embase, and the Cochrane Central Register of Controlled Trials for studies reporting cardiovascular outcomes, such as arrhythmias, heart failure, and reduced left ventricle ejection fraction (LVEF). RESULTS Our analysis of 20 studies involving 4789 patients revealed a 19.68% incidence rate of cardiovascular events, with arrhythmias (7.70%), heart failure (5.73%), and reduced LVEF (3.86%) being the most prevalent. Troponin elevation was observed in 23.61% of patients, while NT-Pro-BNP elevation was observed in 9.4. Subgroup analysis showed higher risks in patients with pre-existing conditions, such as atrial arrhythmia (OR 3.12; p < .001), hypertension (OR 1.85; p = .002), previous heart failure (OR 3.38; p = .003), and coronary artery disease (OR 2.80; p = .003). CONCLUSION Vigilant cardiovascular monitoring is crucial for patients undergoing CAR-T therapy to enhance safety and treatment efficacy.Novelty Statements.
Collapse
Affiliation(s)
| | | | - Elísio Bulhões
- Medicine Department, Faculty of Higher Superior of the Amazon Reunida, Redenção, Brazil
| | | | - Vanio L J Antunes
- Medicine Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | | | - Luanna Feitoza
- Medicine Department, Fametro University Center, Manaus, Brazil
| | - André L C Ferreira
- Medicine Department, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Amadeu M Carvalho
- Medicine Department, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Guida
- Division of Cardiology, Dante Pazzanese Institute of Cardiology, São Paulo, Brazil
| |
Collapse
|
18
|
Pan D, Richter J. Management of Toxicities Associated with BCMA, GPRC5D, and FcRH5-Targeting Bispecific Antibodies in Multiple Myeloma. Curr Hematol Malig Rep 2024; 19:237-245. [PMID: 39145912 DOI: 10.1007/s11899-024-00740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE OF REVIEW The introduction of bispecific antibodies is one of the most significant recent advances in the treatment of relapsed/refractory multiple myeloma. This review will summarize the management of the toxicities associated with newly approved T cell-engaging bispecific antibodies and those which may be approved in the near future. RECENT FINDINGS Numerous trials have shown that bispecific antibodies can be both effective and tolerable when adverse events are properly managed. Cytokine release syndrome and increased infections are observed across all bispecific antibodies. Additional adverse events are target-specific, such as the more severe hypogammaglobulinemia and infections of BCMA bispecific antibodies and the dysgeusia, nail dystrophy, and skin changes of GPRC5D bispecific antibodies. Bispecific antibodies will surely become a mainstay of multiple myeloma therapy given their efficacy and accessibility. Their unique toxicities must be carefully considered and managed to ensure they are utilized safely.
Collapse
Affiliation(s)
- Darren Pan
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Joshua Richter
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
| |
Collapse
|
19
|
Goto H, Oba U, Ueda T, Yamamoto S, Inoue M, Shimo Y, Yokoyama S, Takase Y, Kato W, Suenobu S, Ihara K, Koga Y, Ohga S. Early defibrotide therapy and risk factors for post-transplant veno-occlusive disease/sinusoidal obstruction syndrome in childhood. Pediatr Blood Cancer 2024; 71:e31331. [PMID: 39289887 DOI: 10.1002/pbc.31331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Veno-occlusive disease (VOD), also known as sinusoidal obstruction syndrome (SOS), is a life-threatening complications of hematopoietic cell transplantation (HCT). METHODS We studied the impact of early defibrotide (DF) therapy on the outcomes of pediatric patients with VOD/SOS after transplantation, focusing on recent immunotherapies. A total of 111 pediatric patients who underwent HCT for malignant disease between February 2017 and March 2023 at Kyushu University Hospital were included. RESULTS Among 111 patients of less than 20 years of age who underwent HCT for malignancy at a single institution between 2017 and 2023, VOD/SOS occurred in 25 (23%) patients. VOD/SOS developed more frequently in the post-DF era (2020-2023, n = 58) than in the pre-DF era (31% vs. 13%, p = .04). The proportion of patients with relapsed/refractory acute lymphoblastic leukemia (ALL) was higher in the post-DF era than in the pre-DF era (44% vs. 8%, p = .04). Early DF therapy that was started at two European Society for Blood and Marrow Transplantation diagnostic criteria reduced the severity of VOD/SOS (p < .01) in comparison to non-early therapy started at less than two criteria. A multivariate analysis indicated that a history of cytokine release syndrome (odds ratio [OR] = 10.4, p = .01) and juvenile myelomonocytic leukemia (OR = 8.98, p = .04), but not an endothelial activation and stress index (EASIX) score of greater than 0.85, were independent risk factors for VOD/SOS. CONCLUSIONS Early DF therapy improves the severity and survival outcomes of post-transplant VOD/SOS in children. However, its incidence is increasing in the era of immunotherapy for progressive diseases.
Collapse
Affiliation(s)
- Hironori Goto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan
| | - Utako Oba
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tamaki Ueda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Yamamoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Inoue
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yu Shimo
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satomi Yokoyama
- Department of Pediatrics, NHO Kumamoto Medical Center, Kumamoto, Japan
| | - Yusuke Takase
- Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Wakako Kato
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Souichi Suenobu
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan
- National Hospital Organization Nishibeppu National Hospital, Oita, Japan
| | - Kenji Ihara
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Gharatape A, Amanzadi B, Mohamadi F, Rafieian M, Faridi-Majidi R. Recent advances in polymeric and lipid stimuli-responsive nanocarriers for cell-based cancer immunotherapy. Nanomedicine (Lond) 2024; 19:2655-2678. [PMID: 39540464 DOI: 10.1080/17435889.2024.2416377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer therapy has major limitations, including non-specificity, unavoidable side effects, low specific tumor accumulation and systemic toxicity. In recent years, more effective and precise treatment methods have been developed, including cell-based immunotherapy. Carriers that can accurately and specifically target cells and equip them to combat cancer cells are particularly important for developing this therapy. As a result, attention has been drawn to smart nanocarriers that can react to specific stimuli. Thus, stimuli-responsive nanocarriers have attracted increasing attention because they can change their physicochemical properties in response to stimulus conditions, such as pH, enzymes, redox agents, hypoxia, light and temperature. This review highlights recent advances in various stimuli-responsive nanocarriers, discussing loading, targeted delivery, cellular uptake, biocompatibility and immunomodulation in cell-based immunotherapy. Finally, future challenges and perspectives regarding the possible clinical translation of nanocarriers are discussed.
Collapse
Affiliation(s)
- Alireza Gharatape
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Bentolhoda Amanzadi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Faranak Mohamadi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Mahdieh Rafieian
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Reza Faridi-Majidi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Pharmaceutical Nanotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Rossor T, Tewari S, Gadian J, Kaliakatsos M, Angelini P, Lim M. Immune-mediated neurological syndromes associated with childhood cancers. Eur J Paediatr Neurol 2024; 53:174-181. [PMID: 39547086 DOI: 10.1016/j.ejpn.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
The association of recognisable neurological conditions with an underlying malignancy is well described. In this review we explore the complex interplay of genetic, environmental and tumour factors which contribute to autoimmunity and paraneoplastic conditions. We review the current understanding of the pathogenesis of well recognised paraneoplastic conditions in children including Opsoclonus myoclonus ataxia syndrome, N-Methyl-D Aspartate receptor encephalitis and limbic encephalitis, and the broad approaches to treatment. Rapid advances in oncological treatment has expanded the arsenal of therapeutic modalities. We explore the broad spectrum of immune therapies in childhood cancer, and the potential neurological complications of these novel therapies, and discuss the fine balance of risk and benefit that these bring.
Collapse
Affiliation(s)
- Thomas Rossor
- Children's Neurosciences, Evelina London Children's Hospital at Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Sanjay Tewari
- Department of Paediatric Haematology, The Royal Marsden, London, United Kingdom
| | - Jon Gadian
- Department of Paediatric Neurology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Marios Kaliakatsos
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Paola Angelini
- Children and Young People's Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom; Memorial Sloan Kettering Cancer Centre, Neuroblastoma service, New York
| | - Ming Lim
- Children's Neurosciences, Evelina London Children's Hospital at Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom; Department Women and Children's Health, School of Life Course Sciences (SoLCS), King's College, London, United Kingdom.
| |
Collapse
|
22
|
Locke FL, Neelapu SS, Bartlett NL, Lekakis LJ, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman JM, Kersten MJ, Zheng Y, Zhang T, Nater J, Shen R, Miao H, Kim JJ, Miklos DB. Tocilizumab Prophylaxis Following Axicabtagene Ciloleucel in Relapsed or Refractory Large B-Cell Lymphoma. Transplant Cell Ther 2024; 30:1065-1079. [PMID: 39187161 DOI: 10.1016/j.jtct.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Axicabtagene ciloleucel (axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved in patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL). Most patients treated with axi-cel experience cytokine release syndrome (CRS) and/or adverse neurologic events (NEs). To explore potential approaches for reducing CAR T-cell-related toxicities with axi-cel, several safety expansion cohorts were added to the pivotal ZUMA-1 trial. ZUMA-1 Cohort 3 was an exploratory safety cohort that investigated the use of the IL-6 receptor-blocking antibody tocilizumab and anticonvulsant levetiracetam as prophylaxis against CRS and NEs in patients treated with axi-cel. Patients with R/R LBCL were enrolled in Cohort 3 and received conditioning chemotherapy on d -5 through -3 followed by a single infusion of axi-cel (2 × 106 cells/kg) on d 0. Prophylactic tocilizumab (8 mg/kg) was administered 48 h after axi-cel infusion. Primary endpoints were incidence and severity of CRS and NEs. Key secondary endpoints included the incidence of adverse events, objective response rate (ORR), duration of response, progression-free survival, overall survival (OS), and biomarker analyses (eg, circulating CAR T cells, cytokines, chemokines). Forty-two patients were enrolled in Cohort 3, 38 of whom received axi-cel. In the 24-month analysis, any-grade CRS and NEs occurred in 92% and 87% of patients, and Grade ≥3 CRS and NEs occurred in 3% and 42% of patients, respectively. One Grade 5 NE (cerebral edema) occurred. With 24-mo minimum follow-up, the ORR was 63%, and 39.5% of patients had ongoing response. With 48-month follow-up, median OS was 34.8 mo (95% CI, 5.4-not estimable). CAR T-cell expansion in ZUMA-1 Cohort 3 was comparable with pivotal Cohorts 1 and 2. Consistent with tocilizumab-mediated inhibition of IL-6R, serum IL-6 levels were increased relative to Cohorts 1 and 2. Grade ≥3 NEs were associated with elevated IL-6 levels, proinflammatory cytokines, and myeloid cells in the cerebrospinal fluid. Based on these findings, prophylactic tocilizumab is not recommended to prevent CAR T-cell-related adverse events, and beneficial effects of prophylactic levetiracetam remain uncertain in patients with R/R LBCL.
Collapse
Affiliation(s)
| | | | | | - Lazaros J Lekakis
- University of Miami Health System, Sylvester Comprehensive Cancer Center, Miami, Florida
| | | | - Ira Braunschweig
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | | | - Tanya Siddiqi
- City of Hope National Medical Center, Duarte, California
| | - Yi Lin
- Mayo Clinic, Rochester, Minnesota
| | | | - Marie José Kersten
- Amsterdam UMC, University of Amsterdam, Amsterdam, Cancer Center Amsterdam, Netherlands, on behalf of HOVON/LLPC
| | - Yan Zheng
- Kite, a Gilead Company, Santa Monica, California
| | - Teresa Zhang
- Kite, a Gilead Company, Santa Monica, California
| | - Jenny Nater
- Kite, a Gilead Company, Santa Monica, California
| | - Rhine Shen
- Kite, a Gilead Company, Santa Monica, California
| | - Harry Miao
- Kite, a Gilead Company, Santa Monica, California
| | - Jenny J Kim
- Kite, a Gilead Company, Santa Monica, California
| | - David B Miklos
- Stanford University School of Medicine, Stanford, California
| |
Collapse
|
23
|
Ochenduszko S, Landete L, Martinez DC, Feria AG, Francés C, Torregrosa MD, Maiques IM. Cytokine release syndrome and immune effector cell‑associated neurotoxicity syndrome in a melanoma patient treated with adjuvant pembrolizumab. Exp Ther Med 2024; 28:423. [PMID: 39301256 PMCID: PMC11412105 DOI: 10.3892/etm.2024.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/11/2024] [Indexed: 09/22/2024] Open
Abstract
The emergence of immune checkpoint inhibitors (ICIs) has significantly improved the prognosis of patients with solid tumors. However, along with their efficacy, new toxicities related to immune system activation have surfaced, some of which pose life-threatening risks. Cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are among the serious, albeit rare, immune-related adverse effects (irAEs) observed. Although commonly associated with hematologic malignancies and chimeric antigen receptor T cell therapies, CRS has been reported in patients treated with ICIs, with ICANS being a less documented complication. The present study presents a case report of a 76-year-old patient with resected melanoma who developed clinical symptoms of CRS and ICANS following adjuvant pembrolizumab therapy. The patient presented with neurological symptoms of weakness and encephalopathy with confusion, bradypsychia, dysarthria, tremors and visual hallucinations. Laboratory tests revealed elevated serum levels of tumor necrosis factor-alpha and interleukin-6 along with inflammatory markers, hepatic and renal dysfunction, as well as rapidly progressive normochromic-normocytic anemia. Treatment with corticosteroids led to rapid symptom resolution, albeit with subsequent symptom recurrence after tapering its dose. This case underscores the importance of recognizing and managing irAEs associated with ICIs and highlights the need for vigilant monitoring and individualized therapeutic approaches.
Collapse
Affiliation(s)
| | - Lamberto Landete
- Department of Neurology, Doctor Peset University Hospital, 46017 Valencia, Spain
| | | | - Ana García Feria
- Department of Hematology, Doctor Peset University Hospital, 46017 Valencia, Spain
| | - Carla Francés
- Department of Endocrinology, Doctor Peset University Hospital, 46017 Valencia, Spain
| | | | | |
Collapse
|
24
|
Kedmi M, Ribakovsy E, Benjamini O, Schiby G, Barshack I, Raskin S, Eshet Y, Mehr R, Horowitz N, Gurion R, Goldschmidt N, Perry C, Levi I, Aviv A, Herzog-Tzarfati K, Nagler A, Avigdor A. Ibrutinib With Bendamustine and Rituximab for Treatment of Patients With Relapsed/Refractory Aggressive B-Cell Lymphoma. Hematol Oncol 2024; 42:e70001. [PMID: 39572395 DOI: 10.1002/hon.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/02/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024]
Abstract
Therapy for relapsed or refractory (R/R) aggressive B-cell non-Hodgkin lymphoma (aB-NHL) post autologous stem cell transplantation (ASCT) or in elderly patients can be challenging. In this single-center, single-arm, phase II clinical study, we investigated the efficacy of ibrutinib (560 mg once daily) in combination with bendamustine and rituximab (IBR) given for six 28-day cycles in their standard dose, to patients with R/R aB-NHL who were either transplant ineligible in first or second relapse or post-ASCT for second relapse. The primary endpoint was overall response rate (ORR). Fifty-six patients (54% male, median age 69.7 years) were included. ORR was 49.1% among 55 patients treated with ≥ 1 cycle of IBR and 69.4% among 36 patients treated with ≥ 3 cycles. Patients with relapsed disease had significantly higher ORR compared to those with refractory disease (72.3% vs. 37.8%, p = 0.024). Median overall survival (OS) was 11.6 months (95% CI, 7.1-22.3) and median progression-free survival was 5.3 months (95% CI, 2.5-7.4). Patients with complete and partial responses had significantly longer median OS compared to those with stable and progressive disease (28.1 vs. 5.2 months, p < 0.0001). Adverse events included thrombocytopenia (19.6%), anemia (16.1%), neutropenia (7.1%), fatigue (35.7%), diarrhea (28.6%) and nausea (28.6%). At the first efficacy evaluation 8 patients were referred to transplantation, and 3 more were referred during follow-up. These data indicate that the IBR regimen is a safe and effective treatment option that can also be used for bridging to transplantation in patients with R/R aB-NHL.Trial Registration: ClinicalTrials.gov: NCT02747732.
Collapse
Affiliation(s)
- Meirav Kedmi
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medical & Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Elena Ribakovsy
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ohad Benjamini
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medical & Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ginette Schiby
- Faculty of Medical & Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Pathology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Iris Barshack
- Faculty of Medical & Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Pathology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Stephen Raskin
- Department of Radiology and Nuclear Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Yael Eshet
- Department of Radiology and Nuclear Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ramit Mehr
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Netanel Horowitz
- Department of Hematology and Stem Cell Transplant, Rambam Health Care Campus, Haifa, Israel
| | - Ronit Gurion
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva, Israel
| | - Neta Goldschmidt
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Chava Perry
- Faculty of Medical & Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Division of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Itai Levi
- Department of Hematology, Soroka Medical Center, Beersheba, Israel
| | - Ariel Aviv
- Department of Hematology, Emek Medical Center, Afula, Israel
| | - Katrin Herzog-Tzarfati
- Faculty of Medical & Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Hematology, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
| | - Arnon Nagler
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medical & Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Abraham Avigdor
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medical & Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
25
|
Stilpeanu RI, Secara BS, Cretu-Stancu M, Bucur O. Oncolytic Viruses as Reliable Adjuvants in CAR-T Cell Therapy for Solid Tumors. Int J Mol Sci 2024; 25:11127. [PMID: 39456909 PMCID: PMC11508774 DOI: 10.3390/ijms252011127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Although impactful scientific advancements have recently been made in cancer therapy, there remains an opportunity for future improvements. Immunotherapy is perhaps one of the most cutting-edge categories of therapies demonstrating potential in the clinical setting. Genetically engineered T cells express chimeric antigen receptors (CARs), which can detect signals expressed by the molecules present on the surface of cancer cells, also called tumor-associated antigens (TAAs). Their effectiveness has been extensively demonstrated in hematological cancers; therefore, these results can establish the groundwork for their applications on a wide range of requirements. However, the application of CAR-T cell technology for solid tumors has several challenges, such as the existence of an immune-suppressing tumor microenvironment and/or inadequate tumor infiltration. Consequently, combining therapies such as CAR-T cell technology with other approaches has been proposed. The effectiveness of combining CAR-T cell with oncolytic virus therapy, with either genetically altered or naturally occurring viruses, to target tumor cells is currently under investigation, with several clinical trials being conducted. This narrative review summarizes the current advancements, opportunities, benefits, and limitations in using each therapy alone and their combination. The use of oncolytic viruses offers an opportunity to address the existing challenges of CAR-T cell therapy, which appear in the process of trying to overcome solid tumors, through the combination of their strengths. Additionally, utilizing oncolytic viruses allows researchers to modify the virus, thus enabling the targeted delivery of specific therapeutic agents within the tumor environment. This, in turn, can potentially enhance the cytotoxic effect and therapeutic potential of CAR-T cell technology on solid malignancies, with impactful results in the clinical setting.
Collapse
MESH Headings
- Humans
- Neoplasms/therapy
- Neoplasms/immunology
- Oncolytic Viruses/genetics
- Oncolytic Viruses/immunology
- Immunotherapy, Adoptive/methods
- Oncolytic Virotherapy/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Tumor Microenvironment/immunology
- T-Lymphocytes/immunology
- Combined Modality Therapy/methods
- Adjuvants, Immunologic
- Antigens, Neoplasm/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Ruxandra Ilinca Stilpeanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
| | - Bianca Stefania Secara
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
| | | | - Octavian Bucur
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
- Genomics Research and Development Institute, 020021 Bucharest, Romania
- Viron Molecular Medicine Institute, Boston, MA 02108, USA
| |
Collapse
|
26
|
Acharya S, Basar R, Daher M, Rafei H, Li P, Uprety N, Ensley E, Shanley M, Kumar B, Banerjee PP, Melo Garcia L, Lin P, Mohanty V, Kim KH, Jiang X, Pan Y, Li Y, Liu B, Nunez Cortes AK, Zhang C, Fathi M, Rezvan A, Montalvo MJ, Cha SL, Reyes-Silva F, Shrestha R, Guo X, Kundu K, Biederstadt A, Muniz-Feliciano L, Deyter GM, Kaplan M, Jiang XR, Liu E, Jain A, Roszik J, Fowlkes NW, Solis Soto LM, Raso MG, Khoury JD, Lin P, Vega F, Varadarajan N, Chen K, Marin D, Shpall EJ, Rezvani K. CD28 Costimulation Augments CAR Signaling in NK Cells via the LCK/CD3ζ/ZAP70 Signaling Axis. Cancer Discov 2024; 14:1879-1900. [PMID: 38900051 PMCID: PMC11452288 DOI: 10.1158/2159-8290.cd-24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Multiple factors in the design of a chimeric antigen receptor (CAR) influence CAR T-cell activity, with costimulatory signals being a key component. Yet, the impact of costimulatory domains on the downstream signaling and subsequent functionality of CAR-engineered natural killer (NK) cells remains largely unexplored. Here, we evaluated the impact of various costimulatory domains on CAR-NK cell activity, using a CD70-targeting CAR. We found that CD28, a costimulatory molecule not inherently present in mature NK cells, significantly enhanced the antitumor efficacy and long-term cytotoxicity of CAR-NK cells both in vitro and in multiple xenograft models of hematologic and solid tumors. Mechanistically, we showed that CD28 linked to CD3ζ creates a platform that recruits critical kinases, such as lymphocyte-specific protein tyrosine kinase (LCK) and zeta-chain-associated protein kinase 70 (ZAP70), initiating a signaling cascade that enhances CAR-NK cell function. Our study provides insights into how CD28 costimulation enhances CAR-NK cell function and supports its incorporation in NK-based CARs for cancer immunotherapy. Significance: We demonstrated that incorporation of the T-cell-centric costimulatory molecule CD28, which is normally absent in mature natural killer (NK) cells, into the chimeric antigen receptor (CAR) construct recruits key kinases including lymphocyte-specific protein tyrosine kinase and zeta-chain-associated protein kinase 70 and results in enhanced CAR-NK cell persistence and sustained antitumor cytotoxicity.
Collapse
Affiliation(s)
- Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bijender Kumar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pinaki P. Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kun Hee Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xianli Jiang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuchen Pan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chenyu Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohsen Fathi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
- CellChorus, Inc., Houston, TX, USA
| | - Ali Rezvan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Melisa J. Montalvo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Sophia L Cha
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francia Reyes-Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rejeena Shrestha
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingliang Guo
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Kundu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Biederstadt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine III: Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gary M. Deyter
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Ru Jiang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Janos Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M. Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D. Khoury
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Armstrong A, Tang Y, Mukherjee N, Zhang N, Huang G. Into the storm: the imbalance in the yin-yang immune response as the commonality of cytokine storm syndromes. Front Immunol 2024; 15:1448201. [PMID: 39318634 PMCID: PMC11420043 DOI: 10.3389/fimmu.2024.1448201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
There is a continuous cycle of activation and contraction in the immune response against pathogens and other threats to human health in life. This intrinsic yin-yang of the immune response ensures that inflammatory processes can be appropriately controlled once that threat has been resolved, preventing unnecessary tissue and organ damage. Various factors may contribute to a state of perpetual immune activation, leading to a failure to undergo immune contraction and development of cytokine storm syndromes. A literature review was performed to consider how the trajectory of the immune response in certain individuals leads to cytokine storm, hyperinflammation, and multiorgan damage seen in cytokine storm syndromes. The goal of this review is to evaluate how underlying factors contribute to cytokine storm syndromes, as well as the symptomatology, pathology, and long-term implications of these conditions. Although the recognition of cytokine storm syndromes allows for universal treatment with steroids, this therapy shows limitations for symptom resolution and survival. By identifying cytokine storm syndromes as a continuum of disease, this will allow for a thorough evaluation of disease pathogenesis, consideration of targeted therapies, and eventual restoration of the balance in the yin-yang immune response.
Collapse
Affiliation(s)
- Amy Armstrong
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yuting Tang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Neelam Mukherjee
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Urology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nu Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Gang Huang
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Pathology & Laboratory Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
28
|
Hakan G, Engin K, Elifcan KA, Haluk D, Mehmet T, Suman K, Maxwell K. CAR-T cell therapy in relapsed or refractory multiple myeloma and access in Turkey. Front Med (Lausanne) 2024; 11:1413825. [PMID: 39267974 PMCID: PMC11391105 DOI: 10.3389/fmed.2024.1413825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
The past decade has seen the development of immunotherapy for the treatment of multiple myeloma (MM), beginning with monoclonal antibodies (mAbs) in the relapsed and refractory setting and culminating in the market approval of chimeric antigen receptor T cells (CAR-T) and bispecific antibodies (BsAbs). The medical community is evaluating the efficacy and safety of these targeted immunotherapies, most of which currently target B-cell maturation antigen (BCMA) on the surface of plasma cells. Two anti-BCMA CAR-T products are available for treating relapsed or refractory MM: idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel). Ide-cel and cilta-cel demonstrate the ability to induce deep responses in heavily pretreated diseases, including patients with triple-class-refractory and penta-refractory diseases. However, there are key similarities and differences regarding these agents, unknowns regarding their comparative efficacy and toxicity, and mechanisms underlying resistance to these new immunotherapies. This review discusses CAR-T cell therapy in relapsed refractory MM, with a focus on efficacy, toxicities, and the evolving trajectories of these therapies in the USA, as well as access in Turkey.
Collapse
Affiliation(s)
- Goker Hakan
- Department of Hematology, Medical Faculty of Hacettepe University, Ankara, Türkiye
| | - Kelkitli Engin
- Department of Hematology, Medical Faculty of Ondokuz Mayis University, Samsun, Türkiye
| | | | - Demiroglu Haluk
- Department of Hematology, Medical Faculty of Hacettepe University, Ankara, Türkiye
| | - Turgut Mehmet
- Department of Hematology, Medical Faculty of Ondokuz Mayis University, Samsun, Türkiye
| | - Kambhampati Suman
- Research Medical Center, HCA Midwest Health, Kansas City, MO, United States
| | - Krem Maxwell
- Research Medical Center, HCA Midwest Health, Kansas City, MO, United States
| |
Collapse
|
29
|
Kuznetsova V, Oza H, Rosenfeld H, Sales C, van der Linde S, Roos I, Roberts S, D'Aprano F, Loi SM, Dowling M, Dickinson M, Kalincik T, Harrison SJ, Anderson MA, Malpas CB. Neuropsychological outcomes of patients with haematological malignancies undergoing chimeric antigen receptor T-cell therapy: protocol for a prospective study. BMJ Neurol Open 2024; 6:e000800. [PMID: 39296526 PMCID: PMC11409319 DOI: 10.1136/bmjno-2024-000800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/27/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Immune effector cell-associated neurotoxicity syndrome (ICANS) is a common side-effect of chimeric antigen receptor T-cell (CAR-T) therapy, with symptoms ranging from mild to occasionally life-threatening. The neurological, cognitive, psychiatric and psychosocial sequelae of ICANS are diverse and not well defined, posing a challenge for diagnosis and management. The recovery trajectory of the syndrome is uncertain. Patients are rarely examined in this population pretherapy, adding a layer of complexity to specifying symptoms pertinent solely to CAR-T treatment. We present a protocol of a prospective longitudinal research study of adult patients in a single Australian haematology service undergoing CAR-T therapy. The study will describe neurocognitive features specific to ICANS, characterise the underlying syndrome, capture recovery, identify predictors of differential postinfusion outcomes and determine a set of cognitive instruments necessary to monitor patients acutely. Methods and analysis This is a prospective longitudinal study that comprises neuropsychological and neurological examinations occurring prior to CAR-T, during the acute post-treatment period, 28 days, 6 months and 12 months post infusion. Data will be sourced from objective psychometric measures, clinical examinations, self-report questionnaires of psychopathology and accounts of subjective cognitive complaint. Ethics and dissemination This study aims to guide diagnosis, management and monitoring of neurocognitive features of CAR-T cell therapy. Results of this study will be disseminated through publication in peer-reviewed journals and presentations at scientific conferences. All procedures involving human subjects/patients were approved by the Peter MacCallum Cancer Centre Human Research Ethics Committee (21/145).
Collapse
Affiliation(s)
- Valeriya Kuznetsova
- Centre of Excellence for Cellular Immunotherapy and Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Clinical Outcomes Research Unit (CORe), Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia
| | - Harsh Oza
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Hannah Rosenfeld
- Centre of Excellence for Cellular Immunotherapy and Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Carmela Sales
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Samantha van der Linde
- Centre of Excellence for Cellular Immunotherapy and Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Izanne Roos
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Clinical Outcomes Research Unit (CORe), Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia
| | - Stefanie Roberts
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Clinical Outcomes Research Unit (CORe), Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia
| | - Fiore D'Aprano
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Samantha M Loi
- Neuropsychiatry, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark Dowling
- Centre of Excellence for Cellular Immunotherapy and Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Dickinson
- Centre of Excellence for Cellular Immunotherapy and Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Tomas Kalincik
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Clinical Outcomes Research Unit (CORe), Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia
| | - Simon J Harrison
- Centre of Excellence for Cellular Immunotherapy and Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mary Ann Anderson
- Centre of Excellence for Cellular Immunotherapy and Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - Charles B Malpas
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Clinical Outcomes Research Unit (CORe), Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Ramamurthy A, Tommasi A, Saha K. Advances in manufacturing chimeric antigen receptor immune cell therapies. Semin Immunopathol 2024; 46:12. [PMID: 39150566 DOI: 10.1007/s00281-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
Biomedical research has witnessed significant strides in manufacturing chimeric antigen receptor T cell (CAR-T) therapies, marking a transformative era in cellular immunotherapy. Nevertheless, existing manufacturing methods for autologous cell therapies still pose several challenges related to cost, immune cell source, safety risks, and scalability. These challenges have motivated recent efforts to optimize process development and manufacturing for cell therapies using automated closed-system bioreactors and models created using artificial intelligence. Simultaneously, non-viral gene transfer methods like mRNA, CRISPR genome editing, and transposons are being applied to engineer T cells and other immune cells like macrophages and natural killer cells. Alternative sources of primary immune cells and stem cells are being developed to generate universal, allogeneic therapies, signaling a shift away from the current autologous paradigm. These multifaceted innovations in manufacturing underscore a collective effort to propel this therapeutic approach toward broader clinical adoption and improved patient outcomes in the evolving landscape of cancer treatment. Here, we review current CAR immune cell manufacturing strategies and highlight recent advancements in cell therapy scale-up, automation, process development, and engineering.
Collapse
Affiliation(s)
- Apoorva Ramamurthy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Tommasi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
31
|
O’Neal J, Mavers M, Jayasinghe RG, DiPersio JF. Traversing the bench to bedside journey for iNKT cell therapies. Front Immunol 2024; 15:1436968. [PMID: 39170618 PMCID: PMC11335525 DOI: 10.3389/fimmu.2024.1436968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are immune cells that harness properties of both the innate and adaptive immune system and exert multiple functions critical for the control of various diseases. Prevention of graft-versus-host disease (GVHD) by iNKT cells has been demonstrated in mouse models and in correlative human studies in which high iNKT cell content in the donor graft is associated with reduced GVHD in the setting of allogeneic hematopoietic stem cell transplants. This suggests that approaches to increase the number of iNKT cells in the setting of an allogeneic transplant may reduce GVHD. iNKT cells can also induce cytolysis of tumor cells, and murine experiments demonstrate that activating iNKT cells in vivo or treating mice with ex vivo expanded iNKT cells can reduce tumor burden. More recently, research has focused on testing anti-tumor efficacy of iNKT cells genetically modified to express a chimeric antigen receptor (CAR) protein (CAR-iNKT) cells to enhance iNKT cell tumor killing. Further, several of these approaches are now being tested in clinical trials, with strong safety signals demonstrated, though efficacy remains to be established following these early phase clinical trials. Here we review the progress in the field relating to role of iNKT cells in GVHD prevention and anti- cancer efficacy. Although the iNKT field is progressing at an exciting rate, there is much to learn regarding iNKT cell subset immunophenotype and functional relationships, optimal ex vivo expansion approaches, ideal treatment protocols, need for cytokine support, and rejection risk of iNKT cells in the allogeneic setting.
Collapse
Affiliation(s)
- Julie O’Neal
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
| | - Melissa Mavers
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Reyka G. Jayasinghe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
32
|
Wang X, Zhang B, Zhang Q, Zhou H, Sun Q, Zhou Y, Li T, Zhou D, Shen Z, Zhang J, Li P, Liang A, Zhou K, Han L, Hu Y, Yang Y, Cao J, Li Z, Xu K, Sang W. Impact of tocilizumab on anti-CD19 chimeric antigen receptor T-cell therapy in B-cell acute lymphoblastic leukemia. Cancer 2024; 130:2660-2669. [PMID: 38578977 DOI: 10.1002/cncr.35316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Tocilizumab is commonly used for the management of chimeric antigen receptor (CAR) T-cell therapy-associated cytokine release syndrome (CRS). However, it remains unknown whether tocilizumab or its dosage affects the efficacy and safety of CAR T-cell therapy. The objective of this multicenter retrospective study was to explore the impact of tocilizumab on CAR T-cell therapy. METHODS In total, 93 patients with B-cell acute lymphoblastic leukemia (B-ALL) receiving humanized anti-CD19 CAR T cells were recruited from May 2016 to November 2022. Forty-five patients received tocilizumab (tocilizumab group), whereas 48 patients did not (nontocilizumab group). Thirteen patients received >1 dose of tocilizumab. The primary end point was the effect of tocilizumab on the efficacy and safety of CAR T cells. Additionally, proliferation, killing, and cytokine assays of CAR T cells were performed in vitro in the presence of tocilizumab. RESULTS The median age of the patients was 33 years, with 47 males and 46 females. Patients in the tocilizumab group showed similar complete response (CR) rate, overall survival (OS), and event-free survival (EFS) compared with the nontocilizumab group. Compared with patients who received ≤1 dose of tocilizumab, receiving >1 dose of tocilizumab did not affect their CR rate, OS, or EFS. In the tocilizumab group, all patients experienced CRS and 26.7% experienced immune effector cell-associated neurotoxicity syndrome (ICANS). In the nontocilizumab group, 64.6% of patients experienced CRS and 8.3% experienced ICANS. Up to 75% of ICANS and 87.5% of grade ≥3 ICANS occurred in the tocilizumab group. In vitro, tocilizumab did not impair the proliferation and killing effects of CAR T cells. CONCLUSIONS Tocilizumab does not affect the efficacy of CAR T cells but may increase the likelihood of ICANS.
Collapse
Affiliation(s)
- Xiangmin Wang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Bingpei Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qing Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Hongyuan Zhou
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qian Sun
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Yi Zhou
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Tianci Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Dian Zhou
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Ziyuan Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jiaoli Zhang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ping Li
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, China
| | - Keshu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Han
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongxian Hu
- Department of Hematology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Yang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Wei Sang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
33
|
Ohno R, Nakamura A. Advancing autoimmune Rheumatic disease treatment: CAR-T Cell Therapies - Evidence, Safety, and future directions. Semin Arthritis Rheum 2024; 67:152479. [PMID: 38810569 DOI: 10.1016/j.semarthrit.2024.152479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/20/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Despite advancements in managing autoimmune rheumatic diseases (ARDs) with existing treatments, many patients still encounter challenges such as inadequate responses, difficulty in maintaining remission, and side effects. Chimeric Antigen Receptor (CAR) T-cell therapy, originally developed for cancer, has now emerged as a promising option for cases of refractory ARDs. METHODS A search of the literature was conducted to compose a narrative review exploring the current evidence, potential safety, limitations, potential modifications, and future directions of CAR-T cells in ARDs. RESULTS CAR-T cell therapy has been administered to patients with refractory ARDs, including systemic lupus erythematosus, antisynthetase syndrome, and systemic sclerosis, demonstrating significant improvement. Notable responses include enhanced clinical symptoms, reduced serum autoantibody titers, and sustained remissions in disease activity. Preclinical and in vitro studies using both animal and human samples also support the efficacy and elaborate on potential mechanisms of CAR-T cells against antineutrophil cytoplasmic antibody-associated vasculitis and rheumatoid arthritis. While cautious monitoring of adverse events, such as cytokine release syndrome, is crucial, the therapy appears to be highly tolerable. Nevertheless, challenges persist, including cost, durability due to potential CAR-T cell exhaustion, and manufacturing complexities, urging the development of innovative solutions to further enhance CAR-T cell therapy accessibility in ARDs. CONCLUSIONS CAR-T cell therapy for refractory ARDs has demonstrated high effectiveness. While no significant warning signs are currently reported, achieving a balance between therapeutic efficacy and safety is vital in adapting CAR-T cell therapy for ARDs. Moreover, there is significant potential for technological advancements to enhance the delivery of this treatment to patients, thereby ensuring safer and more effective disease control for patients.
Collapse
Affiliation(s)
- Ryunosuke Ohno
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Okayama University, Okayama, Japan
| | - Akihiro Nakamura
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, Ontario, Canada; Translational Institute of Medicine, School of Medicine, Queen's University, Ontario, Canada; Rheumatology Clinic, Kingston Health Science Centre, Kingston, Ontario, Canada.
| |
Collapse
|
34
|
Chitkara A, Sreenivasan S, Yin Y, Rai M, Sadashiv S. Venous Thromboembolism Risk in Hematological Malignancies Post-Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: A Meta-Analysis of Phase 2 and Phase 3 Clinical Trials. Curr Oncol 2024; 31:4338-4345. [PMID: 39195306 PMCID: PMC11352860 DOI: 10.3390/curroncol31080323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Chimeric Antigen Receptor T-cell (CAR-T) therapy uses genetically engineered T-cells with specific binding sites. This therapy allows for tumor specificity and durable treatment responses for patients with hematological malignancies. In this review, we study the risk of venous thromboembolism (VTE) associated with CAR-T therapy. We searched the National Institutes of Health library, Cochrane Library Databases, ClinicalTrials.gov database, and medical literature search engines PubMed and Google Scholar for Phase 2 and Phase 3 drug-efficacy and safety trials to determine the aggregate incidence and risk of VTE treated with CAR-T. Of 1127 search results, nine studies were identified and included in our meta-analysis. Of the 1017 patients who received therapy, 805 patients (79.15%) experienced some degree of CRS, and 122 patients (11.9%) experienced severe CRS (higher than grade 3). Only three out of one thousand and seventeen patients were reported to have experienced venous thromboembolism. Our study did not find a statistically significant association between increased VTE incidence (OR = 0.0005, 95% CI [0.0001, 0.0017]) and CRS/ICANS (p < 0.0001). There was a 0.0050 (95% confidence interval [0.0019, 0.0132]) relative risk for VTE. In our study, we did not find a statistically significantly increased risk of developing VTE despite CRS and underlying malignancy, which have been associated with increased risk of VTE.
Collapse
Affiliation(s)
- Akshit Chitkara
- Department of Internal Medicine, University of California, Riverside, CA 92521, USA;
| | - Sushanth Sreenivasan
- Department of Internal Medicine, Allegheny Health Consortium, Pittsburgh, PA 15222, USA
| | - Yue Yin
- Allegheny Singer Research Institute, Pittsburgh, PA 15212, USA;
| | - Maitreyee Rai
- Division of Hematology and Cellular Therapy, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15224, USA (S.S.)
| | - Santhosh Sadashiv
- Division of Hematology and Cellular Therapy, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15224, USA (S.S.)
| |
Collapse
|
35
|
Zhang Q, Zhu X, Xiao Y. The critical role of endothelial cell in the toxicity associated with chimeric antigen receptor T cell therapy and intervention strategies. Ann Hematol 2024; 103:2197-2206. [PMID: 38329486 PMCID: PMC11224091 DOI: 10.1007/s00277-024-05640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown promising results in patients with hematological malignancies. However, many patients still have poor prognoses or even fatal outcomes due to the life-threatening toxicities associated with the therapy. Moreover, even after improving the known influencing factors (such as number or type of CAR-T infusion) related to CAR-T cell infusion, the results remain unsatisfactory. In recent years, it has been found that endothelial cells (ECs), which are key components of the organization, play a crucial role in various aspects of immune system activation and inflammatory response. The levels of typical markers of endothelial activation positively correlated with the severity of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxic syndrome (ICANS), suggesting that ECs are important targets for intervention and toxicity prevention. This review focuses on the critical role of ECs in CRS and ICANS and the intervention strategies adopted.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
36
|
Pullarkat S, Black G, Bleakley M, Buenrostro D, Chapuis AG, Hirayama AV, Jaeger-Ruckstuhl CA, Kimble EL, Lee BM, Maloney DG, Radich J, Seaton BW, Specht JM, Turtle CJ, Woolston DW, Wright JH, Yeung CCS. qPCR assay for detection of Woodchuck Hepatitis Virus Post-Transcriptional Regulatory Elements from CAR-T and TCR-T cells in fresh and formalin-fixed tissue. PLoS One 2024; 19:e0303057. [PMID: 38843256 PMCID: PMC11156344 DOI: 10.1371/journal.pone.0303057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
As adoptive cellular therapies become more commonplace in cancer care, there is a growing need to monitor site-specific localization of engineered cells-such as chimeric antigen receptor T (CAR-T) cells and T-cell receptor T (TCR-T) cells-in patients' tissues to understand treatment effectiveness as well as associated adverse events. Manufacturing CAR-T and TCR-T cells involves transduction with viral vectors commonly containing the WPRE gene sequence to enhance gene expression, providing a viable assay target unique to these engineered cells. Quantitative PCR (qPCR) is currently used clinically in fresh patient tissue samples and blood with target sequences specific to each immunotherapy product. Herein, we developed a WPRE-targeted qPCR assay that is broadly applicable for detection of engineered cell products in both fresh and archival formalin-fixed paraffin embedded (FFPE) tissues. Using both traditional PCR and SYBR Green PCR protocols, we demonstrate the use of this WPRE-targeted assay to successfully detect two CAR-T cell and two TCR-T cell products in FFPE tissue. Standard curve analysis reported a reproducible limit of detection at 100 WPRE copies per 20μL PCR reaction. This novel and inexpensive technique could provide better understanding of tissue abundance of engineered therapeutic T cells in both tumor and second-site toxicity tissues and provide quantitative assessment of immune effector cell trafficking in archival tissue.
Collapse
MESH Headings
- Humans
- Formaldehyde
- Hepatitis B Virus, Woodchuck/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tissue Fixation/methods
- Immunotherapy, Adoptive/methods
- Real-Time Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- Shalini Pullarkat
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Graeme Black
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Marie Bleakley
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Program in Immunology, University of Washington, Seattle, Washington, United States of America
| | - Denise Buenrostro
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Program in Immunology, University of Washington, Seattle, Washington, United States of America
| | - Aude G. Chapuis
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Program in Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
| | - Alexandre V. Hirayama
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
| | - Carla A. Jaeger-Ruckstuhl
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Erik L. Kimble
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
| | - Bo M. Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - David G. Maloney
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
| | - Jerald Radich
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Brandon W. Seaton
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Jennifer M. Specht
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
| | - Cameron J. Turtle
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington, United States of America
- Integrated Immunotherapy Research Center, Fred Hutchinson Cancer Center, Seattle, WA, United States of America
| | - David W. Woolston
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Jocelyn H. Wright
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Program in Immunology, University of Washington, Seattle, Washington, United States of America
| | - Cecilia C. S. Yeung
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
37
|
Storci G, De Felice F, Ricci F, Santi S, Messelodi D, Bertuccio SN, Laprovitera N, Dicataldo M, Rossini L, De Matteis S, Casadei B, Vaglio F, Ursi M, Barbato F, Roberto M, Guarino M, Asioli GM, Arpinati M, Cortelli P, Maffini E, Tomassini E, Tassoni M, Cavallo C, Iannotta F, Naddeo M, Tazzari PL, Dan E, Pellegrini C, Guadagnuolo S, Carella M, Sinigaglia B, Pirazzini C, Severi C, Garagnani P, Kwiatkowska KM, Ferracin M, Zinzani PL, Bonafè M, Bonifazi F. CAR+ extracellular vesicles predict ICANS in patients with B cell lymphomas treated with CD19-directed CAR T cells. J Clin Invest 2024; 134:e173096. [PMID: 38833312 PMCID: PMC11245152 DOI: 10.1172/jci173096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUNDPredicting immune effector cell-associated neurotoxicity syndrome (ICANS) in patients infused with CAR T cells is still a conundrum. This complication, thought to be consequent to CAR T cell activation, arises a few days after infusion, when circulating CAR T cells are scarce and specific CAR T cell-derived biomarkers are lacking.METHODSCAR+ extracellular vesicle (CAR+EV) release was assessed in human CD19.CAR T cells cocultured with CD19+ target cells. A prospective cohort of 100 patients with B cell lymphoma infused with approved CD19.CAR T cell products was assessed for plasma CAR+EVs as biomarkers of in vivo CD19.CAR T cell activation. Human induced pluripotent stem cell-derived (iPSC-derived) neural cells were used as a model for CAR+EV-induced neurotoxicity.RESULTSIn vitro release of CAR+EVs occurs within 1 hour after target engagement. Plasma CAR+EVs are detectable 1 hour after infusion. A concentration greater than 132.8 CAR+EVs/μL at hour +1 or greater than 224.5 CAR+EVs/μL at day +1 predicted ICANS in advance of 4 days, with a sensitivity and a specificity outperforming other ICANS predictors. ENO2+ nanoparticles were released by iPSC-derived neural cells upon CAR+EV exposure and were increased in plasma of patients with ICANS.CONCLUSIONPlasma CAR+EVs are an immediate signal of CD19.CAR T cell activation, are suitable predictors of neurotoxicity, and may be involved in ICANS pathogenesis.TRIAL REGISTRATIONNCT04892433, NCT05807789.FUNDINGLife Science Hub-Advanced Therapies (financed by Health Ministry as part of the National Plan for Complementary Investments to the National Recovery and Resilience Plan [NRRP]: E.3 Innovative health ecosystem for APC fees and immunomonitoring).
Collapse
Affiliation(s)
- Gianluca Storci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco De Felice
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Francesca Ricci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Spartaco Santi
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy
| | - Daria Messelodi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | - Michele Dicataldo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Lucrezia Rossini
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Vaglio
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Margherita Ursi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Francesco Barbato
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Marcello Roberto
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Maria Guarino
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Mario Arpinati
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, Università di Bologna, Bologna, Italy
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Enrico Maffini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Enrica Tomassini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marta Tassoni
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Carola Cavallo
- Laboratory Ramses, Research & Innovation Technology Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Maria Naddeo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Elisa Dan
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | - Matteo Carella
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Chiara Pirazzini
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Paolo Garagnani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Manuela Ferracin
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero–Università di Bologna, Istituto di Ematologia “Seràgnoli,” Bologna, Italy
| | - Massimiliano Bonafè
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | |
Collapse
|
38
|
Rotolo A, Atherton MJ. Applications and Opportunities for Immune Cell CAR Engineering in Comparative Oncology. Clin Cancer Res 2024; 30:2359-2369. [PMID: 38573683 PMCID: PMC11147717 DOI: 10.1158/1078-0432.ccr-23-3690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 04/05/2024]
Abstract
Chimeric antigen receptor (CAR) T-adoptive cell therapy has transformed the treatment of human hematologic malignancies. However, its application for the treatment of solid tumors remains challenging. An exciting avenue for advancing this field lies in the use of pet dogs, in which cancers that recapitulate the biology, immunological features, and clinical course of human malignancies arise spontaneously. Moreover, their large size, outbred genetic background, shared environment with humans, and immunocompetency make dogs ideal for investigating and optimizing CAR therapies before human trials. Here, we will outline how challenges in early clinical trials in patients with canine lymphoma, including issues related to autologous CAR T-cell manufacturing, limited CAR T-cell persistence, and tumor antigen escape, mirrored challenges observed in human CAR T trials. We will then highlight emerging adoptive cell therapy strategies currently under investigation in dogs with hematological and solid cancers, which will provide crucial safety and efficacy data on novel CAR T regimens that can be used to support clinical trials. By drawing from ongoing studies, we will illustrate how canine patients with spontaneous cancer may serve as compelling screening platforms to establish innovative CAR therapy approaches and identify predictive biomarkers of response, with a specific emphasis on solid tumors. With increased funding for canine immunotherapy studies, multi-institutional investigations are poised to generate highly impactful clinical data that should translate into more effective human trials, ultimately benefiting both human and canine cancer patients.
Collapse
MESH Headings
- Animals
- Dogs
- Humans
- Dog Diseases/therapy
- Dog Diseases/immunology
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Clinical Trials, Veterinary as Topic
Collapse
Affiliation(s)
- Antonia Rotolo
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Matthew J. Atherton
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
39
|
Lampe H, Tam L, Hansen AR. Bi-specific T-cell engagers (BiTEs) in prostate cancer and strategies to enhance development: hope for a BiTE-r future. Front Pharmacol 2024; 15:1399802. [PMID: 38873417 PMCID: PMC11169794 DOI: 10.3389/fphar.2024.1399802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Metastatic castrate resistant prostate cancer (mCRPC) continues to have poor survival rates due to limited treatment options. Bi-specific T cell engagers (BiTEs) are a promising class of novel immunotherapies with demonstrated success in haematological malignancies and melanoma. BiTEs developed for tumour associated antigens in prostate cancer have entered clinical testing. These trials have been hampered by high rates of treatment related adverse events, minimal or transient anti-tumour efficacy and generation of high titres of anti-drug antibodies. This paper aims to analyse the challenges faced by the different BiTE therapy constructs and the mCRPC tumour microenvironment that result in therapeutic resistance and identify possible strategies to overcome these issues.
Collapse
Affiliation(s)
| | | | - Aaron R. Hansen
- Department of Medical Oncology, Division of Cancer Care Services, Princess Alexandra Hospital, Metro South Health Service, Queensland Health, Brisbane, QLD, Australia
| |
Collapse
|
40
|
Shen J, Li J, Lei Y, Chen Z, Wu L, Lin C. Frontiers and hotspots evolution in cytokine storm: A bibliometric analysis from 2004 to 2022. Heliyon 2024; 10:e30955. [PMID: 38774317 PMCID: PMC11107250 DOI: 10.1016/j.heliyon.2024.e30955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
Background As a fatal disease, cytokine storm has garnered research attention in recent years. Nonetheless, as the body of related studies expands, a thorough and impartial evaluation of the current status of research on cytokine storms remains absent. Consequently, this study aimed to thoroughly explore the research landscape and evolution of cytokine storm utilizing bibliometric and knowledge graph approaches. Methods Research articles and reviews centered on cytokine storms were retrieved from the Web of Science Core Collection database. For bibliometric analysis, tools such as Excel 365, CiteSpace, VOSviewer, and the Bibliometrix R package were utilized. Results This bibliometric analysis encompassed 6647 articles published between 2004 and 2022. The quantity of pertinent articles and citation frequency exhibited a yearly upward trend, with a sharp increase starting in 2020. Network analysis of collaborations reveals that the United States holds a dominant position in this area, boasting the largest publication count and leading institutions. Frontiers in Immunology ranks as the leading journal for the largest publication count in this area. Stephan A. Grupp, a prominent researcher in this area, has authored the largest publication count and has the second-highest citation frequency. Research trends and keyword evaluations show that the connection between cytokine storm and COVID-19, as well as cytokine storm treatment, are hot topics in research. Furthermore, research on cytokine storm and COVID-19 sits at the forefront in this area. Conclusion This study employed bibliometric analysis to create a visual representation of cytokine storm research, revealing current trends and burgeoning topics in this area for the first time. It will provide valuable insights, helping scholars pinpoint critical research areas and potential collaborators.
Collapse
Affiliation(s)
- Junyi Shen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiaming Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yuqi Lei
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhengrui Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lingling Wu
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chunyan Lin
- Department of Teaching and Research Section of Internal Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Evangelidis P, Evangelidis N, Kalmoukos P, Kourti M, Tragiannidis A, Gavriilaki E. Genetic Susceptibility in Endothelial Injury Syndromes after Hematopoietic Cell Transplantation and Other Cellular Therapies: Climbing a Steep Hill. Curr Issues Mol Biol 2024; 46:4787-4802. [PMID: 38785556 PMCID: PMC11119915 DOI: 10.3390/cimb46050288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains a cornerstone in the management of patients with hematological malignancies. Endothelial injury syndromes, such as HSCT-associated thrombotic microangiopathy (HSCT-TMA), veno-occlusive disease/sinusoidal obstruction syndrome (SOS/VOD), and capillary leak syndrome (CLS), constitute complications after HSCT. Moreover, endothelial damage is prevalent after immunotherapy with chimeric antigen receptor-T (CAR-T) and can be manifested with cytokine release syndrome (CRS) or immune effector cell-associated neurotoxicity syndrome (ICANS). Our literature review aims to investigate the genetic susceptibility in endothelial injury syndromes after HSCT and CAR-T cell therapy. Variations in complement pathway- and endothelial function-related genes have been associated with the development of HSCT-TMA. In these genes, CFHR5, CFHR1, CFHR3, CFI, ADAMTS13, CFB, C3, C4, C5, and MASP1 are included. Thus, patients with these variations might have a predisposition to complement activation, which is also exaggerated by other factors (such as acute graft-versus-host disease, infections, and calcineurin inhibitors). Few studies have examined the genetic susceptibility to SOS/VOD syndrome, and the implicated genes include CFH, methylenetetrahydrofolate reductase, and heparinase. Finally, specific mutations have been associated with the onset of CRS (PFKFB4, CX3CR1) and ICANS (PPM1D, DNMT3A, TE2, ASXL1). More research is essential in this field to achieve better outcomes for our patients.
Collapse
Affiliation(s)
- Paschalis Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Nikolaos Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Panagiotis Kalmoukos
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Maria Kourti
- 3rd Department of Pediatrics, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Athanasios Tragiannidis
- 2nd Department of Pediatrics, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| |
Collapse
|
42
|
Strongyli E, Evangelidis P, Sakellari I, Gavriilaki M, Gavriilaki E. Change in Neurocognitive Function in Patients Who Receive CAR-T Cell Therapies: A Steep Hill to Climb. Pharmaceuticals (Basel) 2024; 17:591. [PMID: 38794161 PMCID: PMC11123727 DOI: 10.3390/ph17050591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Immunotherapy with chimeric antigen receptor T (CAR-T) cell therapies has brought substantial improvement in clinical outcomes in patients with relapsed/refractory B cell neoplasms. However, complications such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) limit the therapeutic efficacy of this treatment approach. ICANS can have a broad range of clinical manifestations, while various scoring systems have been developed for its grading. Cognitive decline is prevalent in CAR-T therapy recipients including impaired attention, difficulty in item naming, and writing, agraphia, and executive dysfunction. In this review, we aim to present the diagnostic methods and tests that have been used for the recognition of cognitive impairment in these patients. Moreover, up-to-date data about the duration of cognitive impairment symptoms after the infusion are presented. More research on the risk factors, pathogenesis, preventive measures, and therapy of neurocognitive impairment is crucial for better outcomes for our patients.
Collapse
Affiliation(s)
- Evlampia Strongyli
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (E.S.); (I.S.)
| | - Paschalis Evangelidis
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (E.S.); (I.S.)
| | - Maria Gavriilaki
- 1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Eleni Gavriilaki
- Hematology Department and Bone Marrow Transplant (BMT) Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece; (E.S.); (I.S.)
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| |
Collapse
|
43
|
Wang Y, Dong H, Dong T, Zhao L, Fan W, Zhang Y, Yao W. Treatment of cytokine release syndrome-induced vascular endothelial injury using mesenchymal stem cells. Mol Cell Biochem 2024; 479:1149-1164. [PMID: 37392343 DOI: 10.1007/s11010-023-04785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/04/2023] [Indexed: 07/03/2023]
Abstract
Cytokine release syndrome (CRS) is an acute systemic inflammatory reaction in which hyperactivated immune cells suddenly release a large amount of cytokines, leading to exaggerated inflammatory responses, multiple organ dysfunction, and even death. Although palliative treatment strategies have significantly reduced the overall mortality, novel targeted treatment regimens with superior therapy efficacy are urgently needed. Vascular endothelial cells (ECs) are important target cells of systemic inflammation, and their destruction is considered to be the initiating event underlying many serious complications of CRS. Mesenchymal stem/stromal cells (MSCs) are multipotent cells with self-renewing differentiation capacity and immunomodulatory properties. MSC transplantation can effectively suppress the activation of immune cells, reduce the bulk release of cytokines, and repair damaged tissues and organs. Here, we review the molecular mechanisms underlying CRS-induced vascular endothelial injury and discuss potential treatments using MSCs. Preclinical studies demonstrate that MSC therapy can effectively repair endothelium damage and thus reduce the incidence and severity of ensuing CRS-induced complications. This review highlights the therapeutic role of MSCs in fighting against CRS-induced EC damage, and summarizes the possible therapeutic formulations of MSCs for improved efficacy in future clinical trials.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Health Science Center, Yangtze University, Jingzhou, China
| | - Haibo Dong
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Tengyun Dong
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Lulu Zhao
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Wen Fan
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, China.
| | - Yu Zhang
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China.
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Tianjin, China.
| | - Weiqi Yao
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China.
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China.
- Department of Biology and Medicine, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
44
|
Peng Y, Liang S, Meng QF, Liu D, Ma K, Zhou M, Yun K, Rao L, Wang Z. Engineered Bio-Based Hydrogels for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313188. [PMID: 38362813 DOI: 10.1002/adma.202313188] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Immunotherapy represents a revolutionary paradigm in cancer management, showcasing its potential to impede tumor metastasis and recurrence. Nonetheless, challenges including limited therapeutic efficacy and severe immune-related side effects are frequently encountered, especially in solid tumors. Hydrogels, a class of versatile materials featuring well-hydrated structures widely used in biomedicine, offer a promising platform for encapsulating and releasing small molecule drugs, biomacromolecules, and cells in a controlled manner. Immunomodulatory hydrogels present a unique capability for augmenting immune activation and mitigating systemic toxicity through encapsulation of multiple components and localized administration. Notably, hydrogels based on biopolymers have gained significant interest owing to their biocompatibility, environmental friendliness, and ease of production. This review delves into the recent advances in bio-based hydrogels in cancer immunotherapy and synergistic combinatorial approaches, highlighting their diverse applications. It is anticipated that this review will guide the rational design of hydrogels in the field of cancer immunotherapy, fostering clinical translation and ultimately benefiting patients.
Collapse
Affiliation(s)
- Yuxuan Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kaiqing Yun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
45
|
Shumnalieva R, Velikova T, Monov S. Expanding the role of CAR T-cell therapy: From B-cell hematological malignancies to autoimmune rheumatic diseases. Int J Rheum Dis 2024; 27:e15182. [PMID: 38742463 DOI: 10.1111/1756-185x.15182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/04/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a form of immunotherapy where the lymphocytes, mostly T-cells, are redirected to specifically recognize and eliminate a target antigen by coupling them with CARs. The binding of CAR and target cell surface antigens leads to vigorous T cell activation and robust anti-tumor immune responses. Areas of implication of CAR T-cell therapies include mainly hematological malignancies (i.e., advanced B-cell cancers); however, recent studies have proven the unprecedented success of the new immunotherapy also in autoimmune rheumatic diseases. We aim to review the recent advances in CAR T-cell therapies in rheumatology but also to address the limitations of their use in the real clinical practice based on the data on their efficacy and safety.
Collapse
Affiliation(s)
- Russka Shumnalieva
- Department of Rheumatology, Clinic of Rheumatology, Medical University-Sofia, Faculty of Medicine, Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University "St. Kliment Ohridski"- Sofia, Sofia, Bulgaria
| | - Simeon Monov
- Department of Rheumatology, Clinic of Rheumatology, Medical University-Sofia, Faculty of Medicine, Sofia, Bulgaria
| |
Collapse
|
46
|
Berghmans T, Brandão M, Ilzkovitz M, Meert AP. [Severe complications of systemic treatment in thoracic oncology]. Rev Mal Respir 2024; 41:317-324. [PMID: 38461088 DOI: 10.1016/j.rmr.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/07/2024] [Indexed: 03/11/2024]
Abstract
Primary thoracic cancers affect a large number of patients, mainly those with lung cancer and to a lesser extent those with pleural mesothelioma and thymic tumours. Given their frequency and associated comorbidities, in patients whose mean age is high, these diseases are associated with multiple complications. This article, the last of a series dedicated to emergencies in onco-haematological patients, aims to present a clinical picture of the severe complications (side effects, immune-related adverse events) associated with systemic treatments, excluding infections and respiratory emergencies, with which general practitioners and specialists can be confronted. New toxicities are to be expected with the implementation of innovative therapeutic approaches, such as CAR-T cells, along with immunomodulators and antibody-drug conjugates.
Collapse
Affiliation(s)
- T Berghmans
- Clinique d'oncologie thoracique, institut Jules-Bordet, rue Meylemeersch 90, 1070 Bruxelles, Belgique.
| | - M Brandão
- Clinique d'oncologie thoracique, institut Jules-Bordet, rue Meylemeersch 90, 1070 Bruxelles, Belgique
| | - M Ilzkovitz
- Service de médecine interne, institut Jules-Bordet, hôpital universitaire de Bruxelles, université Libre de Bruxelles, Bruxelles, Belgique
| | - A-P Meert
- Service de médecine interne, institut Jules-Bordet, hôpital universitaire de Bruxelles, université Libre de Bruxelles, Bruxelles, Belgique
| |
Collapse
|
47
|
Giraudo MF, Jackson Z, Das I, Abiona OM, Wald DN. Chimeric Antigen Receptor (CAR)-T Cell Therapy for Non-Hodgkin's Lymphoma. Pathog Immun 2024; 9:1-17. [PMID: 38550613 PMCID: PMC10972674 DOI: 10.20411/pai.v9i1.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/28/2024] [Indexed: 04/15/2024] Open
Abstract
This review focuses on the use of chimeric antigen receptor (CAR)-T cell therapy to treat non-Hodgkin's lymphoma (NHL), a classification of heterogeneous malignant neoplasms of the lymphoid tissue. Despite various conventional and multidrug chemotherapies, the poor prognosis for NHL patients remains and has prompted the utilization of groundbreaking personalized therapies such as CAR-T cells. CAR-T cells are T cells engineered to express a CAR that enables T cells to specifically lyse tumor cells with extracellular expression of a tumor antigen of choice. A CAR is composed of an extracellular antibody fragment or target protein binding domain that is conjugated to activating intracellular signaling motifs common to T cells. In general, CAR-T cell therapies for NHL are designed to recognize cellular markers ubiquitously expressed on B cells such as CD19+, CD20+, and CD22+. Clinical trials using CAR-T cells such as ZUMA-7 and TRANSFORM demonstrated promising results compared to standard of care and ultimately led to FDA approval for the treatment of relapsed/refractory NHL. Despite the success of CAR-T therapy for NHL, challenges include adverse side effects as well as extrinsic and intrinsic mechanisms of tumor resistance that lead to suboptimal outcomes. Overall, CAR-T cell therapies have improved clinical outcomes in NHL patients and generated optimism around their future applications.
Collapse
Affiliation(s)
| | - Zachary Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Indrani Das
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - David N. Wald
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| |
Collapse
|
48
|
Andersen L, Baker KM, Difilippo H, Meghani SH, Porter D, Deng J. The Patient Symptom Experience After Tisagenlecleucel and Lisocabtagene Maraleucel CAR T-Cell Therapy for Lymphoma. Semin Oncol Nurs 2024:151614. [PMID: 38443220 DOI: 10.1016/j.soncn.2024.151614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES Chimeric Antigen Receptor (CAR) T-cell treatment is associated with several unique toxicities, and the short-term symptom trajectory in the immediately after therapy is well-documented. However, little is known about patients' long-term symptom experience. The study aimed to elicit the symptom experience of adult patients in remission after CAR T-cell therapy for B cell lymphoma. DATA SOURCES A qualitative descriptive design with thematic analysis was utilized. Recruitment occurred at a tertiary academic medical center using the following inclusion criteria: adult recipient of CAR T-cell therapy for B-cell lymphoma between 3 and 12 months prior to enrollment, and currently in remission. Semi-structured interviews were conducted, transcripts were inductively coded, and team members met weekly to ensure rigor. The final sample included 10 patients: Seven received tisagenlecleucel and three received lisocabtagene marleucel and were a median of 169 days post-infusion and 65 years of age. CONCLUSIONS Participants continued to report symptoms, including fatigue, neuropathy, low endurance, insomnia, memory problems, and pain. Most symptoms improved over time. Some symptoms interfered with social activities, work, driving, and physical activity, though participants reported that most symptoms existed prior to CAR T-cell therapy, and overall, found CAR T-cell therapy acceptable. IMPLICATIONS FOR NURSING PRACTICE Patients in remission after CAR T-cell therapy often continue to experience symptoms. Nurses should continue to assess this growing patient population and determine if patients require additional symptom management or support. Further research is needed to understand long-term symptom trajectory and associations with prior lines of therapy and CAR T-cell therapy.
Collapse
Affiliation(s)
- Lucy Andersen
- Department of Biobehavioral Health Sciences, School of Nursing, The University of Pennsylvania, Philadelphia, PA.
| | - Kayla M Baker
- Department of Biobehavioral Health Sciences, School of Nursing, The University of Pennsylvania, Philadelphia, PA
| | - Heather Difilippo
- Cell Therapy and Transplant Program, Abramson Cancer Center at the University of Pennsylvania, and Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
| | - Salimah H Meghani
- Department of Biobehavioral Health Sciences, School of Nursing, The University of Pennsylvania, Philadelphia, PA
| | - David Porter
- Cell Therapy and Transplant Program, Abramson Cancer Center at the University of Pennsylvania, Philadelphia, PA
| | - Jie Deng
- Department of Biobehavioral Health Sciences, School of Nursing, The University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
49
|
Dickinson M, Martinez-Lopez J, Jousseaume E, Yang H, Chai X, Xiang C, Wang T, Zhang J, Ramos R, Schuster SJ, Fowler N. Comparative efficacy and safety of tisagenlecleucel and axicabtagene ciloleucel among adults with r/r follicular lymphoma. Leuk Lymphoma 2024; 65:323-332. [PMID: 38179688 DOI: 10.1080/10428194.2023.2289854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Regulatory approvals of tisagenlecleucel (tisa-cel) and axicabtagene ciloleucel (axi-cel) have established the feasibility of chimeric antigen receptor T-cell therapies for the treatment of adults with relapsed or refractory follicular lymphoma (r/r FL). This study used individual patient data from ELARA (tisa-cel) and aggregate published patient data from ZUMA-5 (axi-cel) to compare efficacy and safety outcomes in r/r FL using matching-adjusted indirect comparison methods. After adjustment for baseline differences in the trial populations, the results suggested that tisa-cel (n = 52), compared with axi-cel (n = 86), had similar effects on overall response rate (91.2% vs. 94.2%; p = .58), complete response rate (74.0% vs. 79.1%; p = .60), progression-free survival (HR [95% CI]: 0.8 [0.4, 1.9]; p = .67), and overall survival (HR [95% CI]: 0.5 [0.2, 1.5]; p = .21). Tisa-cel (n = 53) was associated with better safety outcomes than axi-cel (n = 124), reflected by lower rates of any grade and grade ≥3 cytokine release syndrome and neurological events.
Collapse
Affiliation(s)
- Michael Dickinson
- Peter MacCallum Cancer Centre, Royal Melbourne Hospital and the University of Melbourne, Melbourne, Australia
| | - Joaquin Martinez-Lopez
- Department of Medicine, School of Medicine, Hospital Universitario 12 de Octubre, Complutense University, CNIO, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | | | | | | | | | | | - Jie Zhang
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Roberto Ramos
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathan Fowler
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
50
|
Franklin RJM, Bodini B, Goldman SA. Remyelination in the Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041371. [PMID: 38316552 PMCID: PMC10910446 DOI: 10.1101/cshperspect.a041371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, while this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granule neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this work, we will (1) review the biology of remyelination, including the cells and signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs Cambridge Institute of Science, Cambridge CB21 6GH, United Kingdom
| | - Benedetta Bodini
- Sorbonne Université, Paris Brain Institute, CNRS, INSERM, Paris 75013, France
- Saint-Antoine Hospital, APHP, Paris 75012, France
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA
- University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|