1
|
Valencia-Ledezma OE, Reyes-Montes MDR, Acosta-Altamirano G, Frías-De-León MG, García-Salazar E, Duarte-Escalante E, Santiago-Abundio J, González-Miguel Z, García-Hernández MDL, Martínez-Quezada R, Torres-Páez OU, Galindo-Oseguera E, Meza-Meneses P, Santiago-González N. Invasive Candidiasis Coinfection in Patients with Severe COVID-19 Disease: Scoping Review. Pathogens 2025; 14:466. [PMID: 40430786 DOI: 10.3390/pathogens14050466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Coinfection rates of candidiasis in patients affected by COVID-19 had a significantly increase during the sanitary contingency. The objective of this scoping review is to analyze the available scientific evidence around the coinfection of invasive candidiasis in hospitalized patients with severe COVID-19 disease. Online databases such as PubMed, EBSCO, SciFinder, Scopus, and SciELO were used to analyze the different scientific studies published from January 2020 to December 2022, selecting 48 publications that reported comorbidity between invasive candidiasis and COVID-19 as a study variable. Based on the PRISMA-ScR extension for scoping reviews, we identified more than half of the publications (57%) as observational, descriptive, and analytic studies, while 43% were systematic reviews. Overall, up to 169,468 adult patients admitted to the intensive care unit were examined. Coinfection was due mainly to Candida albicans (75%), but some more species were reported such as Meyerozyma parapsilosis (formerly Candida parapsilosis); Meyerozyma guilliermondii (formerly Candida guilliermondii); Nakaseomyces glabratus (formerly Candida glabrata); Candida tropicalis; Candida dubliniensis; Clavispora lusitaniae (formerly Candida lusitaniae); and Pichia kudriavzevii (formerly Candida krusei). We concluded that patients infected by SARS-CoV-2 had a higher incidence of fungal coinfections, thus increasing the mortality rate, disease severity, and length of hospital stay in the intensive care unit.
Collapse
Affiliation(s)
- Omar Esteban Valencia-Ledezma
- Departamento de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Servicios de Salud del Instituto Mexicano de Seguro Social para el Bienestar (IMSS-BIENESTAR), Ixtapaluca 56530, Mexico
| | - María Del Rocío Reyes-Montes
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Gustavo Acosta-Altamirano
- Departamento de Investigación del Hospital General de México "Dr. Eduardo Liceaga", Mexico City 06720, Mexico
| | - María Guadalupe Frías-De-León
- Departamento de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Servicios de Salud del Instituto Mexicano de Seguro Social para el Bienestar (IMSS-BIENESTAR), Ixtapaluca 56530, Mexico
| | - Eduardo García-Salazar
- Departamento de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Servicios de Salud del Instituto Mexicano de Seguro Social para el Bienestar (IMSS-BIENESTAR), Ixtapaluca 56530, Mexico
| | - Esperanza Duarte-Escalante
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Jesús Santiago-Abundio
- Departamento de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Servicios de Salud del Instituto Mexicano de Seguro Social para el Bienestar (IMSS-BIENESTAR), Ixtapaluca 56530, Mexico
| | - Zuleyma González-Miguel
- Facultad de Enfermería y Obstetricia, Universidad Autónoma del Estado de México (UAEMex), Toluca 50000, Mexico
| | | | - Rebeca Martínez-Quezada
- Departamento de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Servicios de Salud del Instituto Mexicano de Seguro Social para el Bienestar (IMSS-BIENESTAR), Ixtapaluca 56530, Mexico
| | - Oscar Uriel Torres-Páez
- Departamento de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Servicios de Salud del Instituto Mexicano de Seguro Social para el Bienestar (IMSS-BIENESTAR), Ixtapaluca 56530, Mexico
| | - Evelyn Galindo-Oseguera
- Departamento de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Servicios de Salud del Instituto Mexicano de Seguro Social para el Bienestar (IMSS-BIENESTAR), Ixtapaluca 56530, Mexico
| | - Patricia Meza-Meneses
- Departamento de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Servicios de Salud del Instituto Mexicano de Seguro Social para el Bienestar (IMSS-BIENESTAR), Ixtapaluca 56530, Mexico
| | - Nicolás Santiago-González
- Departamento de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Servicios de Salud del Instituto Mexicano de Seguro Social para el Bienestar (IMSS-BIENESTAR), Ixtapaluca 56530, Mexico
| |
Collapse
|
2
|
Ladetto MF, Gantner ME, Rodenak-Kladniew BE, Rodriguez S, Cuestas ML, Talevi A, Castro GR. Promising Prodiginins Biological Activities. Chem Biodivers 2025:e202402940. [PMID: 40244866 DOI: 10.1002/cbdv.202402940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/19/2025]
Abstract
Prodiginins are a large family of at least 34 pyrrolic compounds, including the well-studied red pigment prodigiosin. Prodiginins are produced by several microorganisms displaying broad biological activities, including antimicrobial, antiviral, antiparasitic, antiproliferative, and immunosuppressive activities. The present review aims to compile and analyze the main physicochemical and biological properties and mechanisms of action of prodiginins for microbial disease treatment, particularly SARS-CoV-2 disease and opportunistic infections related to COVID-19. The interaction of prodigiosin, as a model molecule, with cellular membranes, potential drug delivery devices, and toxicological studies, and in silico studies using molecular dynamics showed that the prodigiosin motif, which interacts with lipids, opens a new door for the potential therapeutic use of prodiginins.
Collapse
Affiliation(s)
- María F Ladetto
- Laboratorio de Nanobiomateriales, CINDEFI-Departamento de Química, Facultad de Ciencias Exactas, CONICET-UNLP (CCT La Plata), La Plata, Buenos Aires, Argentina
- Institute for Research in Microbiology and Medical Parasitology (IMPaM), University of Buenos Aires, Buenos Aires, Argentina
| | - Melisa E Gantner
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Boris E Rodenak-Kladniew
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - Santiago Rodriguez
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - María L Cuestas
- Institute for Research in Microbiology and Medical Parasitology (IMPaM), University of Buenos Aires, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Guillermo R Castro
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo Andre, Sao Paulo, Brazil
| |
Collapse
|
3
|
El-Sayed SE, Abdelaziz NA, El-Housseiny GS, Aboshanab KM. In vitro and preclinical evaluation of the antifungal activity of 6-methoxy-1 H-indole-2-carboxylic acid produced by Bacillus toyonensis strain OQ071612 formulated as nanosponge hydrogel. Microb Cell Fact 2025; 24:77. [PMID: 40169999 PMCID: PMC11959791 DOI: 10.1186/s12934-025-02688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/04/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND In a previous study, 6-methoxy-1 H-indole-2-carboxylic acid (MICA) was isolated from the culture broth of Bacillus toyonensis strain OQ071612 soil isolate in our laboratory, and it demonstrated promising antifungal activities. The current study was designed to create a nanosponge (NS)-hydrogel (HG)-containing MICA followed by in vitro and preclinical evaluation for potential clinical use in the topical treatment of mycotic infections. RESULTS The enhanced NS formula was created using the Box Behnken Design (BBD), with independent process parameters including polyvinyl alcohol percentage (w/v%), homogenization time, speed and polymer: linker ratio. Dependent parameters were particle size (PS), polydispersity index (PDI), and entrapment efficiency percent (EE%). A hydrogel was formulated from the NS. In vitro drug release data indicated that the hydrogel best matched Higuchi's kinetic release model. The formulated NS-HG was stable and when compared to fluconazole, it exhibited increased antimycotic activity against C. albicans. An in vivo investigation revealed that MICA-NS-HG enhanced survival rates, wound gap repair, wound reduction, and inflammation inhibition. Masson's trichrome staining and histological analyses revealed increased collagen deposition and improved healing. Moreover, MICA hydrogel exhibited 1.5-fold greater permeability through rat skin compared to the control, 1% isoconazole. CONCLUSION The NS-HG formulation is a viable vehicle for better and more effective topical release of MICA. These findings represent a significant advancement in the formulation of MICA derived from naturally occurring soil bacteria.
Collapse
Affiliation(s)
- Sayed E El-Sayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sixth of October City, Ahram Canadian University, 6 October city, Giza, 12451, Egypt
| | - Neveen A Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sixth of October City, Ahram Canadian University, 6 October city, Giza, 12451, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
4
|
Shaebth LJ, Naser HH, Nacim L. Correlation between the severity of COVID-19 infection and the presence of oropharyngeal candidiasis: a cross-sectional study in Al-Diwaniyah Hospital, Iraq. Pan Afr Med J 2025; 50:25. [PMID: 40322330 PMCID: PMC12049140 DOI: 10.11604/pamj.2025.50.25.43995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/01/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction oropharyngeal candidiasis, commonly known as oral thrush, is a fungal infection caused by candida species, especially Candida albicans. With the onset of COVID-19, concerns have arisen about a possible link between the severity of COVID-19 infections and the presence of oropharyngeal candidiasis in patients. The aim to study the frequency of oropharyngeal candidiasis in COVID-19 patients and identify associated risk factors. Methods a cross-sectional study involving 100 COVID-19 patients was conducted at Al-Diwaniyah Hospital in Iraq. Samples were collected using blood tests and oropharyngeal tampons to diagnose oropharyngeal candidiasis. The mean age of the study population was 55.3 years (SD±12.4), with 60% male and 40% female. The data was analyzed using IBM SPSS software version 22, focusing on the correlation between the severity of COVID-19 and the occurrence of candidiasis. Results among the 100 patients, 30 (30%) were diagnosed with oropharyngeal candidiasis. In patients with severe COVID-19 (45%) symptoms, the prevalence was significantly higher than in patients with mild (15%) and moderate (25%) symptoms (p=0.002). In addition, patients with candidiasis (CRP: 12.5 mg/l) had significantly higher mean levels of C-reactive protein (CRP: 12.5 mg/l) than patients without candidiasis (CRP: 6.8 mg/l, p < 0.001). Other risk factors identified included long-term hospitalization (mean duration of patients with candidiasis 12 days vs. 7 days without patients, p=0.005) and use of corticosteroids (70% of patients with candidiasis vs. 40% without, p=0.01). Conclusion the results show that oropharyngeal candidiasis is common among COVID-19 patients, especially those with severe infections, with a prevalence rate of 45%. The study emphasizes the importance of monitoring fungal infections in COVID-19 patients and the need for early diagnosis and treatment to improve patient outcomes. These findings are supported by the significant differences in prevalence and inflammatory markers observed in the study.
Collapse
Affiliation(s)
- Laila Jasim Shaebth
- Department of Biology, Faculty of Science, University of Sfax, Sfax, Tunisia
- Technical Institute of Al-Diwaniyah, Al-Furat Al-Awsat Technical University, Diwaniyah, Iraq
| | - Hassan Hachim Naser
- Department of Microbiology, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Louhichi Nacim
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| |
Collapse
|
5
|
Liu F, Zeng M, Zhou X, Huang F, Song Z. Aspergillus fumigatus escape mechanisms from its harsh survival environments. Appl Microbiol Biotechnol 2024; 108:53. [PMID: 38175242 DOI: 10.1007/s00253-023-12952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024]
Abstract
Aspergillus fumigatus is a ubiquitous pathogenic mold and causes several diseases, including mycotoxicosis, allergic reactions, and systemic diseases (invasive aspergillosis), with high mortality rates. In its ecological niche, the fungus has evolved and mastered many reply strategies to resist and survive against negative threats, including harsh environmental stress and deficiency of essential nutrients from natural environments, immunity responses and drug treatments in host, and competition from symbiotic microorganisms. Hence, treating A. fumigatus infection is a growing challenge. In this review, we summarized A. fumigatus reply strategies and escape mechanisms and clarified the main competitive or symbiotic relationships between A. fumigatus, viruses, bacteria, or fungi in host microecology. Additionally, we discussed the contemporary drug repertoire used to treat A. fumigatus and the latest evidence of potential resistance mechanisms. This review provides valuable knowledge which will stimulate further investigations and clinical applications for treating and preventing A. fumigatus infections. KEY POINTS: • Harsh living environment was a great challenge for A. fumigatus survival. • A. fumigatus has evolved multiple strategies to escape host immune responses. • A. fumigatus withstands antifungal drugs via intrinsic escape mechanisms.
Collapse
Affiliation(s)
- Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
- Department of Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, People's Republic of China
| | - Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
6
|
El-Sayed SE, Abdelaziz NA, El-Housseiny GS, Aboshanab KM. Nanosponge hydrogel of octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate of Alcaligenes faecalis. Appl Microbiol Biotechnol 2024; 108:100. [PMID: 38217256 PMCID: PMC10786974 DOI: 10.1007/s00253-023-12819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate (ODHP) was extracted in a previous study from the culture broth of soil isolate Alcaligenes faecalis MT332429 and showed a promising antimycotic activity. This study was aimed to formulate ODHP loaded β-cyclodextrins (CD) nanosponge (NS) hydrogel (HG) to control skin fungal ailments since nanosponges augment the retention of tested agents in the skin. Box-Behnken design was used to produce the optimized NS formulation, where entrapment efficiency percent (EE%), polydispersity index (PDI), and particle size (PS) were assigned as dependent parameters, while the independent process parameters were polyvinyl alcohol % (w/v %), polymer-linker ratio, homogenization time, and speed. The carbopol 940 hydrogel was then created by incorporating the nanosponges. The hydrogel fit Higuchi's kinetic release model the best, according to in vitro drug release. Stability and photodegradation studies revealed that the NS-HG remained stable under tested conditions. The formulation also showed higher in vitro antifungal activity against Candida albicans compared to the control fluconazole. In vivo study showed that ODHP-NS-HG increased survival rates, wound contraction, and healing of wound gap and inhibited the inflammation process compared to the other control groups. The histopathological examinations and Masson's trichrome staining showed improved healing and higher records of collagen deposition. Moreover, the permeability of ODHP-NS-HG was higher through rats' skin by 1.5-folds compared to the control isoconazole 1%. Therefore, based on these results, NS-HG formulation is a potential carrier for enhanced and improved topical delivery of ODHP. Our study is a pioneering research on the development of a formulation for ODHP produced naturally from soil bacteria. KEY POINTS: • Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate was successfully formulated as a nanosponge hydrogel and statistically optimized. • The new formula exhibited in vitro good stability, drug release, and higher antifungal activity against C. albicans as compared to the fluconazole. • Ex vivo showed enhanced skin permeability, and in vivo analysis showed high antifungal activity as evidenced by measurement of various biochemical parameters and histopathological examination.
Collapse
Affiliation(s)
- Sayed E El-Sayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Sixth of October City, Giza, 12451, Egypt
| | - Neveen A Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Sixth of October City, Giza, 12451, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
7
|
Washington EJ, Zhou Y, Hsu AL, Petrovich M, Tenor JL, Toffaletti DL, Guan Z, Perfect JR, Borgnia MJ, Bartesaghi A, Brennan RG. Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen Cryptococcus neoformans: A target for antifungals. Proc Natl Acad Sci U S A 2024; 121:e2314087121. [PMID: 39083421 PMCID: PMC11317593 DOI: 10.1073/pnas.2314087121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement toward the catalytic pocket by the N terminus upon ligand binding and identifies residues required for substrate binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved among Cryptococcal species and closely related basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.
Collapse
Affiliation(s)
- Erica J. Washington
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC27708
| | - Allen L. Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Matthew Petrovich
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Jennifer L. Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Dena L. Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
- Department of Computer Science, Duke University, Durham, NC27708
| | - Richard G. Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| |
Collapse
|
8
|
Kilic HH, Gozukucuk R. Comparison of the Results of BAL and ETA Culture in Intubated COVID-19 Patients. Niger J Clin Pract 2024; 27:945-949. [PMID: 39212429 DOI: 10.4103/njcp.njcp_666_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The isolation of pathogens using bronchoalveolar lavage (BAL) culture or endotracheal aspirate (ETA) culture may enhance the treatment success for secondary pneumonia due to COVID-19, thereby reducing the risk of morbidity and mortality. AIM This study aimed to retrospectively analyze the results of BAL and ETA cultures in intubated COVID-19 patients and to determine whether BAL has an advantage over ETA. METHODS We routinely perform BAL culture via bronchoscopy or ETA culture within the first 48 h after intubation. We retrospectively reviewed cases that underwent BAL and ETA. The patients were divided into two groups: Group B (BAL) and Group E (ETA). Various parameters were evaluated and compared between the two groups. RESULTS The demographic data and blood test results were similar between the two groups. However, ICU stay, duration of intubation, and culture positivity were significantly higher in Group B. Although not statistically significant, the mortality rate was higher in Group E. The most commonly isolated microorganisms were Candida species. CONCLUSION The observed mortality rates were consistent with the existing literature. Since the microorganism isolation rate is higher with BAL, leading to more effective antimicrobial treatment, early deaths were prevented, and ICU stay durations were prolonged. Conversely, these durations were shorter in the ETA group due to higher mortality. In intubated COVID-19 patients, a more effective treatment process can be achieved by clearing the airway with fiberoptic bronchoscopy and tailoring the treatment based on BAL culture results. This approach may positively impact prognosis and mortality rates.
Collapse
Affiliation(s)
- H H Kilic
- Department of Anesthesiology, Dogus University, Istanbul, Türkiye
- Anaesthesiology and Reanimation Department, Hisar Intercontinental Hospital, Istanbul, Türkiye
| | - R Gozukucuk
- Clinical Microbiology and Infectious Diseases Department, Hisar Intercontinental Hospital, Istanbul, Türkiye
- Basic Sciences Department, Galata University, Istanbul, Türkiye
| |
Collapse
|
9
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
10
|
Washington EJ, Zhou Y, Hsu AL, Petrovich M, Tenor JL, Toffaletti DL, Guan Z, Perfect JR, Borgnia MJ, Bartesaghi A, Brennan RG. Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen Cryptococcus neoformans : a target for novel antifungals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.14.530545. [PMID: 36993618 PMCID: PMC10054996 DOI: 10.1101/2023.03.14.530545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of novel drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement towards the catalytic pocket by the N-terminus upon ligand binding and identifies residues required for substrate-binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved amongst Cryptococcal species and closely related Basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto , these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes. Significance Statement Fungal infections are responsible for over a million deaths worldwide each year. Biosynthesis of a disaccharide, trehalose, is required for multiple pathogenic fungi to transition from the environment to the human host. Enzymes in the trehalose biosynthesis pathway are absent in humans and, therefore, are potentially significant targets for novel antifungal therapeutics. One enzyme in the trehalose biosynthesis is trehalose-6-phosphate synthase (Tps1). Here, we describe the cryo-electron microscopy structures of the CnTps1 homo-tetramer in the unliganded form and in complex with a substrate and a product. These structures and subsequent biochemical analysis reveal key details of substrate-binding residues and substrate specificity. These structures should facilitate structure-guided design of inhibitors against CnTps1.
Collapse
|
11
|
Gaudin C, Born-Bony M, Villeret B, Jaillet M, Faille D, Timsit JF, Tran-Dinh A, Montravers P, Crestani B, Garcia-Verdugo I, Sallenave JM. COVID-19 PBMCs are doubly harmful, through LDN-mediated lung epithelial damage and monocytic impaired responsiveness to live Pseudomonas aeruginosa exposure. Front Immunol 2024; 15:1398369. [PMID: 38835759 PMCID: PMC11148249 DOI: 10.3389/fimmu.2024.1398369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Although many studies have underscored the importance of T cells, phenotypically and functionally, fewer have studied the functions of myeloid cells in COVID disease. In particular, the potential role of myeloid cells such as monocytes and low-density neutrophils (LDNs) in innate responses and particular in the defense against secondary bacterial infections has been much less documented. Methods Here, we compared, in a longitudinal study, healthy subjects, idiopathic fibrosis patients, COVID patients who were either hospitalized/moderate (M-) or admitted to ICU (COV-ICU) and patients in ICU hospitalized for other reasons (non-COV-ICU). Results We show that COVID patients have an increased proportion of low-density neutrophils (LDNs), which produce high levels of proteases (particularly, NE, MMP-8 and MMP-9) (unlike non-COV-ICU patients), which are partly responsible for causing type II alveolar cell damage in co-culture experiments. In addition, we showed that M- and ICU-COVID monocytes had reduced responsiveness towards further live Pseudomonas aeruginosa (PAO1 strain) infection, an important pathogen colonizing COVID patients in ICU, as assessed by an impaired secretion of myeloid cytokines (IL-1, TNF, IL-8,…). By contrast, lymphoid cytokines (in particular type 2/type 3) levels remained high, both basally and post PAO1 infection, as reflected by the unimpaired capacity of T cells to proliferate, when stimulated with anti-CD3/CD28 beads. Discussion Overall, our results demonstrate that COVID circulatory T cells have a biased type 2/3 phenotype, unconducive to proper anti-viral responses and that myeloid cells have a dual deleterious phenotype, through their LDN-mediated damaging effect on alveolar cells and their impaired responsiveness (monocyte-mediated) towards bacterial pathogens such as P. aeruginosa.
Collapse
Affiliation(s)
- Clémence Gaudin
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Maëlys Born-Bony
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Bérengère Villeret
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Madeleine Jaillet
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Dorothée Faille
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, LVTS, Paris, France
- Laboratoire d'Hématologie, AP-HP, Hôpital Bichat, Paris, France
| | - Jean-François Timsit
- Réanimation Médicale et des Maladies Infectieuses, Centre Hospitalier Universitaire Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexy Tran-Dinh
- Inserm UMR1148, Laboratory for Vascular Translational Science Bichat Hospital, Paris, France
- AP-HP Nord, Anesthesiology and Intensive Care Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Philippe Montravers
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
- AP-HP Nord, Anesthesiology and Intensive Care Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Bruno Crestani
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
- Service de Pneumologie A, Hôpital Bichat, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Ignacio Garcia-Verdugo
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Jean-Michel Sallenave
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| |
Collapse
|
12
|
Al-Kenani HQM, Shaheed OM. Evaluation of some immunological markers in co-infection of COVID-19 with thrush candidiasis. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20230845. [PMID: 38747876 PMCID: PMC11095970 DOI: 10.1590/1806-9282.20230845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/29/2023] [Indexed: 05/18/2024]
Abstract
OBJECTIVE COVID-19 infection poses significant risks, including life-threatening consequences and fungus synchronization, making it a significant concern. This study seeks to assess the effect of concurrent infection of COVID-19 with Thrush Candida albicans on the patient's health state by measuring the proportion of immune cells and certain interleukins such as IL-8, -10, -17, and -33. METHODS The study involved 70 patients (30 patients with COVID-19, 17 patients with thrush candidiasis, and 23 patients with Thrush Candida albicans) and 50 healthy individuals as a control group. COVID-19 was identified using RT-PCR, while C. albicans were identified through culture media, biochemical testing, and oral swabs. Ruby equipment and ELISA kits were used for blood counts and interleukin detection. RESULTS COVID-19, thrush candidiasis, and Thrush Candida albicans infections occur in a wide range of age groups (4-80 years), with no significant differences between sexes (p>0.05). Immunologically, our study found that Thrush Candida albicans patients had the highest rate of neutrophils (89.6%) and basophils (2.01%), while corona patients had the highest percentage of lymphocytes (70.12%) and eosinophils (7.11%), and patients with thrush candidiasis had the highest percentage of monocytes. Thrush Candida albicans patients showed increased IL-8 (56.7 pg/mL) and IL-17 (101.1 pg/mL) concentrations, with the greatest concentration of IL-33 (200.5 pg/mL) in COVID-19, and a decrease in the level of IL-10 in patient groups compared with controls. CONCLUSION Patient groups showed increased neutrophils, lymphocytes, monocytes, and IL-8 levels, with a significant linear association between proinflammatory interleukins and these cells.
Collapse
Affiliation(s)
| | - Orass Madhi Shaheed
- University of Al-Qadisiyah, College of Medicine, Department of Medical Microbiology – Diwaniya, Iraq
| |
Collapse
|
13
|
Zhang X, Nurxat N, Aili J, Yasen Y, Wang Q, Liu Q. The characteristics of microbiome in the upper respiratory tract of COVID-19 patients. BMC Microbiol 2024; 24:138. [PMID: 38658823 PMCID: PMC11040800 DOI: 10.1186/s12866-024-03281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Co-infection with other pathogens in coronavirus disease 2019 (COVID-19) patients exacerbates disease severity and impacts patient prognosis. Clarifying the exact pathogens co-infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is premise of the precise treatment for COVID-19 patients. METHODS Sputum samples were collected from 17 patients in the COVID-19 positive group and 18 patients in the COVID-19 negative group. DNA extraction was performed to obtain the total DNA. Sequencing analysis using 16S and ITS rRNA gene was carried out to analyze the composition of bacterial and fungal communities. Meanwhile, all the samples were inoculated for culture. RESULTS We did not observe significant differences in bacterial composition between the COVID-19 positive and negative groups. However, a significantly higher abundance of Candida albicans was observed in the upper respiratory tract samples from the COVID-19 positive group compared to the COVID-19 negative group. Moreover, the Candida albicans strains isolated from COVID-19 positive group exhibited impaired secretion of aspartyl proteinases. CONCLUSION COVID-19 positive patients demonstrate a notable increase in the abundance of Candida albicans, along with a decrease in the levels of aspartyl proteinases, indicating the alteration of microbiota composition of upper respiratory tract.
Collapse
Affiliation(s)
- Xilong Zhang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Nadira Nurxat
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Jueraiti Aili
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yakupu Yasen
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qichen Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
14
|
Boorgula SY, Yelamanchili S, Sistla SK, Saher L, Gujjarlapudi D, E. S, V. SD, Duvvur NR. An Experience in Laboratory Diagnosis of Fungal Infections in COVID -19 Patients. Int Arch Otorhinolaryngol 2024; 28:e180-e187. [PMID: 38618586 PMCID: PMC11008951 DOI: 10.1055/s-0043-1768140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/24/2023] [Indexed: 04/16/2024] Open
Abstract
Introduction Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has cast a gloom spell on healthcare worldwide, infecting millions of people. Objective The aim of the present study is to determine the prevalence and review the contributing comorbidities and the precipitating factors leading to the emergence of the fungal infections in COVID-19-affected patients. To assess the utility of different laboratory techniques for confirmation of fungal infections. To assess the strengths and limitations of the diagnostic methods. Methods We have studied 252 clinical samples obtained from 121 COVID-positive patients. Results Among the 121 patients clinically diagnosed with fungal infections, 88 had diabetes and were given steroids for treatment ( p -value = 0.001). Ninety-five patients (78.5%) had a positive laboratory diagnosis (either culture positive, potassium hydroxide [KOH]-positive or positive histopathology report). Fungal culture was positive in 75 (61.9%) patients and histopathology report was positive in 62 (51.2%). Histopathology was positive in 7 (5.8%) patients in whom culture and KOH were negative. Conclusion Aggressive treatment methods, administration of immune suppressants, and antibiotics, with an intention to salvage, have made patients susceptible to the benign fungus, causing it to evade the host immunity, thus leading to invasive infections. Applying different laboratory modalities would not only aid in providing fast and valuable information but also help in understanding the pathology which would assist the clinician in selecting the correct treatment for the patient.
Collapse
Affiliation(s)
| | | | | | - Lubna Saher
- Department of Microbiology, AIG Hospitals, Hyderabad, Telangana, India
| | | | - Shalini E.
- Department of Microbiology, AIG Hospitals, Hyderabad, Telangana, India
| | - Sindhu Devi V.
- Department of Microbiology, AIG Hospitals, Hyderabad, Telangana, India
| | | |
Collapse
|
15
|
Kot WY, Li JW, Chan AKY, Zheng LW. A reflection on COVID-19 and oral mucosal lesion: a systematic review. FRONTIERS IN ORAL HEALTH 2023; 4:1322458. [PMID: 38169876 PMCID: PMC10759230 DOI: 10.3389/froh.2023.1322458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction The aim of this systematic review is to provide a clinical update of the current knowledge on COVID-19 and oral mucosal lesions, to analyze the types and prevalence of oral mucosal lesions in patients with COVID-19, and to clarify the potential association between COVID-19 and oral mucosal lesions. Methods The literature search was conducted using PubMed, Web of Science, Scopus and the Cochrane Library, as well as literatures via manual searches of the reference lists of included studies. Studies published in English that mentioned oral mucosal lesions in patients with COVID-19 were included, resulting in a total of 31 studies. Results Most of the included studies were considered to have a moderate to high risk of bias according to the Joanna Briggs Institute bias assessment tools. Based on COVID-19 severity, the characteristics and patterns of oral mucosal lesions in COVID-19 patients were described, analyzed and synthesized. Overall, ulcers without specific diagnosis had the highest prevalence in COVID-19 patients, followed by traumatic ulcers, candidiasis, petechiae and aphthous-like lesions. Homogeneity of data cannot be achieved in statical analysis, indicating randomness of outcome (ulcers without specific diagnosis, 95% CI: 28%-96%, I2 = 98.7%). Discussion Given the limited evidence from currently available studies, the association between COVID-19 and oral mucosal lesions remains difficult to clarify. Healthcare professionals should be aware of the possible association between COVID-19 and oral mucosal lesions, and we hereby discuss our findings.
Collapse
Affiliation(s)
- Wai Ying Kot
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jing Wen Li
- Division of Oral & Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Alice Kit Ying Chan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Li Wu Zheng
- Division of Oral & Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Han B, Lv Y, Moser D, Zhou X, Woehrle T, Han L, Osterman A, Rudelius M, Choukér A, Lei P. ACE2-independent SARS-CoV-2 virus entry through cell surface GRP78 on monocytes - evidence from a translational clinical and experimental approach. EBioMedicine 2023; 98:104869. [PMID: 37967509 PMCID: PMC10679867 DOI: 10.1016/j.ebiom.2023.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND SARS-CoV-2 infects host cells via an ACE2/TMPRSS2 entry mechanism. Monocytes and macrophages, which play a key role during severe COVID-19 express only low or no ACE2, suggesting alternative entry mechanisms in these cells. In silico analyses predicted GRP78, which is constitutively expressed on monocytes and macrophages, to be a potential candidate receptor for SARS-CoV-2 virus entry. METHODS Hospitalized COVID-19 patients were characterized regarding their pro-inflammatory state and cell surface GRP78 (csGRP78) expression in comparison to healthy controls. RNA from CD14+ monocytes of patients and controls were subjected to transcriptome analysis that was specifically complemented by bioinformatic re-analyses of bronchoalveolar lavage fluid (BALF) datasets of COVID-19 patients with a focus on monocyte/macrophage subsets, SARS-CoV-2 infection state as well as GRP78 gene expression. Monocyte and macrophage immunohistocytochemistry on GRP78 was conducted in post-mortem lung tissues. SARS-CoV-2 spike and GRP78 protein interaction was analyzed by surface plasmon resonance, GST Pull-down and Co-Immunoprecipitation. SARS-CoV-2 pseudovirus or single spike protein uptake was quantified in csGRP78high THP-1 cells. FINDINGS Cytokine patterns, monocyte activation markers and transcriptomic changes indicated typical COVID-19 associated inflammation accompanied by upregulated csGRP78 expression on peripheral blood and lung monocytes/macrophages. Subsequent cell culture experiments confirmed an association between elevated pro-inflammatory cytokine levels and upregulation of csGRP78. Interaction of csGRP78 and SARS-CoV-2 spike protein with a dissociation constant of KD = 55.2 nM was validated in vitro. Infection rate analyses in ACE2low and GRP78high THP-1 cells showed increased uptake of pseudovirus expressing SARS-CoV-2 spike protein. INTERPRETATION Our results demonstrate that csGRP78 acts as a receptor for SARS-CoV-2 spike protein to mediate ACE2-independent virus entry into monocytes. FUNDING Funded by the Sino-German-Center for Science Promotion (C-0040) and the Germany Ministry BMWi/K [DLR-grant 50WB1931 and RP1920 to AC, DM, TW].
Collapse
Affiliation(s)
- Bing Han
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Yibing Lv
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dominique Moser
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Xiaoqi Zhou
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tobias Woehrle
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Lianyong Han
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Neuherberg, Germany
| | - Andreas Osterman
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Martina Rudelius
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Alexander Choukér
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany.
| | - Ping Lei
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Torki E, Gharezade A, Doroudchi M, Sheikhi S, Mansury D, Sullman MJM, Fouladseresht H. The kinetics of inhibitory immune checkpoints during and post-COVID-19: the knowns and unknowns. Clin Exp Med 2023; 23:3299-3319. [PMID: 37697158 DOI: 10.1007/s10238-023-01188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
The immune system is tightly regulated to prevent immune reactions to self-antigens and to avoid excessive immune responses during and after challenges from non-self-antigens. Inhibitory immune checkpoints (IICPs), as the major regulators of immune system responses, are extremely important for maintaining the homeostasis of cells and tissues. However, the high and sustained co-expression of IICPs in chronic infections, under persistent antigenic stimulations, results in reduced immune cell functioning and more severe and prolonged disease complications. Furthermore, IICPs-mediated interactions can be hijacked by pathogens in order to evade immune induction or effector mechanisms. Therefore, IICPs can be potential targets for the prognosis and treatment of chronic infectious diseases. This is especially the case with regards to the most challenging infectious disease of recent times, coronavirus disease-2019 (COVID-19), whose long-term complications can persist long after recovery. This article reviews the current knowledge about the kinetics and functioning of the IICPs during and post-COVID-19.
Collapse
Affiliation(s)
- Ensiye Torki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Sheikhi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
Koulenti D, Karvouniaris M, Paramythiotou E, Koliakos N, Markou N, Paranos P, Meletiadis J, Blot S. Severe Candida infections in critically ill patients with COVID-19. JOURNAL OF INTENSIVE MEDICINE 2023; 3:291-297. [PMID: 38028641 PMCID: PMC10658040 DOI: 10.1016/j.jointm.2023.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/20/2023] [Accepted: 07/09/2023] [Indexed: 12/01/2023]
Abstract
The frequency of co-infections with bacterial or fungal pathogens has constantly increased among critically ill patients with coronavirus disease 2019 (COVID-19) during the pandemic. Candidemia was the most frequently reported invasive fungal co-infection. The onset of candidemia in COVID-19 patients was often delayed compared to non-COVID-19 patients. Additionally, Candida invasive infections in COVID-19 patients were more often linked to invasive procedures (e.g., invasive mechanical ventilation or renal replacement therapy) during the intensive care stay and the severity of illness rather than more "classic" risk factors present in patients without COVID-19 (e.g., underlying diseases and prior hospitalization). Moreover, apart from the increased incidence of candidemia during the pandemic, a worrying rise in fluconazole-resistant strains was reported, including a rise in the multidrug-resistant Candida auris. Regarding outcomes, the development of invasive Candida co-infection had a negative impact, increasing morbidity and mortality compared to non-co-infected COVID-19 patients. In this narrative review, we present and critically discuss information on the diagnosis and management of invasive fungal infections caused by Candida spp. in critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Despoina Koulenti
- Second Critical Care Department, Attikon University Hospital, Athens, Greece
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | | | - Nikolaos Koliakos
- Second Critical Care Department, Attikon University Hospital, Athens, Greece
| | - Nikolaos Markou
- ICU of Latseio Burns Centre, General Hospital of Elefsis ‘Thriasio’, Athens, Greece
| | - Paschalis Paranos
- Clinical Microbiology Laboratory, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Stijn Blot
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
San Martín Andrade D, Cárdenas Amendaño CA, Solórzano Cuenca AB, Ulloa Pacheco JM, Medina-Sotomayor P. [Candida albicans: risk factor in covid-19 patients]. REVISTA CIENTÍFICA ODONTOLÓGICA 2023; 10:e132. [PMID: 38390607 PMCID: PMC10880693 DOI: 10.21142/2523-2754-1004-2022-132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/02/2022] [Indexed: 02/24/2024] Open
Abstract
The Candida Albicans fungus in our body can cause various conditions and will depend directly on the systemic condition of the host. Patients with COVID-19 who have previously presented this fungus can increase the likelihood of morbidity and mortality, since this microorganism can be located in areas that correspond to the respiratory system, generating a functional deficit. If not treated timely, it will proliferate into the blood and digestive system. Many patients with respiratory difficulties on account of this condition require mechanical ventilation to combat it. Objective To relate the presence of Candida Albicans as an aggravating factor in patients with COVID-19. Materials and methods: A literature review took place using the Redalyc, Scielo, PubMed, Research gate, Science direct, Google Scholar databases. The inclusion criteria used were: articles in English and Spanish, along with articles published from 2020 up to date. There were 65 scientific articles that met the search criteria and were analyzed. The analysis determined that oral candidiasis negatively affects patients with COVID-19 infection, increasing the risk of admission to the ICU with the use of artificial ventilators.
Collapse
Affiliation(s)
- Daniela San Martín Andrade
- Carrera de Odontologia de la Universidad Catolica de Cuenca. Campus Universitario Azogues, Ecuador. , Universidad Católica de Cuenca Carrera de Odontologia Universidad Catolica de Cuenca Campus Universitario Azogues Ecuador
| | - Cristopher Andrés Cárdenas Amendaño
- Universidad Catolica de Cuenca. Campus Universitario Azogues, Ecuador. , , Universidad Católica de Cuenca Universidad Catolica de Cuenca Campus Universitario Azogues Ecuador
| | - Allison Brigitte Solórzano Cuenca
- Universidad Catolica de Cuenca. Campus Universitario Azogues, Ecuador. , , Universidad Católica de Cuenca Universidad Catolica de Cuenca Campus Universitario Azogues Ecuador
| | - Johanna Maribel Ulloa Pacheco
- Universidad Catolica de Cuenca. Campus Universitario Azogues, Ecuador. , , Universidad Católica de Cuenca Universidad Catolica de Cuenca Campus Universitario Azogues Ecuador
| | - Priscilla Medina-Sotomayor
- Carrera de Odontologia de la Universidad Catolica de Cuenca. Campus Universitario Azogues, Ecuador. , Universidad Católica de Cuenca Carrera de Odontologia Universidad Catolica de Cuenca Campus Universitario Azogues Ecuador
| |
Collapse
|
20
|
Quiroga-Vargas E, Loyola-Cruz MÁ, Rojas-Bernabé A, Moreno-Eutimio MA, Pastelin-Palacios R, Cruz-Cruz C, Durán-Manuel EM, Calzada-Mendoza C, Castro-Escarpulli G, Hernández-Hernández G, Cureño-Díaz MA, Fernández-Sánchez V, Bello-López JM. Typing of Candida spp. from Colonized COVID-19 Patients Reveal Virulent Genetic Backgrounds and Clonal Dispersion. Pathogens 2023; 12:1206. [PMID: 37887722 PMCID: PMC10610241 DOI: 10.3390/pathogens12101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Advances in the knowledge of the pathogenesis of SARS-CoV-2 allowed the survival of COVID-19 patients in intensive care units. However, due to the clinical characteristics of severe patients, they resulted in the appearance of colonization events. Therefore, we speculate that strains of Candida spp. isolated from COVID-19 patients have virulent genetic and phenotypic backgrounds involved in clinical worsening of patients. The aim of this work was to virutype Candida spp. strains isolated from colonized COVID-19 patients, analyze their genomic diversity, and establish clonal dispersion in care areas. The virulent potential of Candida spp. strains isolated from colonized COVID-19 patients was determined through adhesion tests and the search for genes involved with adherence and invasion. Clonal association was done by analysis of intergenic spacer regions. Six species of Candida were involved as colonizing pathogens in COVID-19 patients. The genotype analysis revealed the presence of adherent and invasive backgrounds. The distribution of clones was identified in the COVID-19 care areas, where C. albicans was the predominant species. Evidence shows that Candida spp. have the necessary genetic tools to be able colonize the lungs, and could be a possible causal agent of coinfections in COVID-19 patients. The detection of dispersion of opportunistic pathogens can be unnoticed by classical epidemiology. Epidemiological surveillance against opportunistic fungal pathogens in COVID-19 patients is an immediate need, since the findings presented demonstrate the potential virulence of Candida spp.
Collapse
Affiliation(s)
- Edith Quiroga-Vargas
- Hospital Juárez de México, Mexico City 07760, Mexico (M.Á.L.-C.); (E.M.D.-M.); (M.A.C.-D.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico (C.C.-M.)
| | - Miguel Ángel Loyola-Cruz
- Hospital Juárez de México, Mexico City 07760, Mexico (M.Á.L.-C.); (E.M.D.-M.); (M.A.C.-D.)
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Araceli Rojas-Bernabé
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico (C.C.-M.)
| | - Mario Adán Moreno-Eutimio
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (M.A.M.-E.); (R.P.-P.)
| | - Rodolfo Pastelin-Palacios
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (M.A.M.-E.); (R.P.-P.)
| | - Clemente Cruz-Cruz
- Hospital Juárez de México, Mexico City 07760, Mexico (M.Á.L.-C.); (E.M.D.-M.); (M.A.C.-D.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico (C.C.-M.)
| | - Emilio Mariano Durán-Manuel
- Hospital Juárez de México, Mexico City 07760, Mexico (M.Á.L.-C.); (E.M.D.-M.); (M.A.C.-D.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico (C.C.-M.)
| | - Claudia Calzada-Mendoza
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico (C.C.-M.)
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Geovanni Hernández-Hernández
- Hospital Juárez de México, Mexico City 07760, Mexico (M.Á.L.-C.); (E.M.D.-M.); (M.A.C.-D.)
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | - Verónica Fernández-Sánchez
- Hospital Juárez de México, Mexico City 07760, Mexico (M.Á.L.-C.); (E.M.D.-M.); (M.A.C.-D.)
- Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla de Baz 54090, Mexico
| | | |
Collapse
|
21
|
Singulani JL, Silva DL, Lima CM, Magalhães VCR, Baltazar LM, Moura AS, Santos ARO, Fereguetti T, Martins JC, Rabelo LF, Lyon AC, Martins-Filho OA, Johann S, Peres NTA, Coelho Dos Reis JGA, Santos DA. COVID-19 and candiduria: an investigation of the risk factors and immunological aspects. Braz J Microbiol 2023; 54:1783-1793. [PMID: 37405625 PMCID: PMC10484861 DOI: 10.1007/s42770-023-01042-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
Secondary fungal infections are frequently observed in COVID-19 patients. However, the occurrence of candiduria in these patients and its risk factors are underexplored. We evaluated the risk factors of candiduria in COVID-19 patients, including inflammatory mediators that could be used as prognostic markers. Clinical information, laboratory test results, and outcomes were collected from severely ill COVID-19 patients with and without candiduria. Candida species identification, antifungal susceptibility, and plasma inflammatory mediators' measurements were performed. Regression logistic and Cox regression model were used to evaluate the risk factors. A higher risk of longer hospitalization and mortality were observed in patients with candiduria compared to those with COVID-19 only. Candiduria was caused by Candida albicans, C. glabrata, and C. tropicalis. Isolates with intermediate susceptibility to voriconazole and resistant to caspofungin were identified. Classic factors such as the use of corticosteroids and antibacterials, the worsening of renal function, and hematological parameters (hemoglobin and platelets) were found to predispose to candiduria. The mediators IL-1β, IL-1ra, IL-2, CXCL-8, IL-17, IFN-γ, basic FGF, and MIP-1β were significantly increased in patients with COVID-19 and candiduria. Furthermore, IFN-γ, IL-1ra, and CXCL-8 were associated with the occurrence of candiduria in COVID-19 patients, whereas basic FGF, IL-1β, and CXCL-8 were associated with the risk of death in these patients. Classical and immunological factors were associated with worse prognosis among patients with COVID-19 and candiduria. Some mediators, especially CXCL-8, can be a reliable biomarker of fungal coinfection and may guide the diagnostic and the treatment of these patients.
Collapse
Affiliation(s)
- Junya L Singulani
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle L Silva
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Caroline M Lima
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa C R Magalhães
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
- Hospital Eduardo de Menezes, Fundação Hospitalar Do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Ludmila M Baltazar
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandre S Moura
- Hospital Eduardo de Menezes, Fundação Hospitalar Do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
- Center of Post-Graduation and Research - IEP, Faculdade Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Raquel O Santos
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiani Fereguetti
- Hospital Eduardo de Menezes, Fundação Hospitalar Do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Juliana C Martins
- Hospital Eduardo de Menezes, Fundação Hospitalar Do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Lívia F Rabelo
- Hospital Eduardo de Menezes, Fundação Hospitalar Do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana C Lyon
- Hospital Eduardo de Menezes, Fundação Hospitalar Do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Olindo A Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Susana Johann
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Nalu T A Peres
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Jordana G A Coelho Dos Reis
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel A Santos
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Tsai CS, Lee SSJ, Chen WC, Tseng CH, Lee NY, Chen PL, Li MC, Syue LS, Lo CL, Ko WC, Hung YP. COVID-19-associated candidiasis and the emerging concern of Candida auris infections. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:672-679. [PMID: 36543722 PMCID: PMC9747227 DOI: 10.1016/j.jmii.2022.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/28/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022]
Abstract
The incidence of COVID-19-associated candidiasis (CAC) is increasing, resulting in a grave outcome among hospitalized patients with COVID-19. The most alarming condition is the increasing incidence of multi-drug resistant Candida auris infections among patients with COVID-19 worldwide. The therapeutic strategy towards CAC caused by common Candida species, such as Candida albicans, Candida tropicalis, and Candida glabrata, is similar to the pre-pandemic era. For non-critically ill patients or those with a low risk of azole resistance, fluconazole remains the drug of choice for candidemia. For critically ill patients, those with a history of recent azole exposure or with a high risk of fluconazole resistance, echinocandins are recommended as the first-line therapy. Several novel therapeutic agents alone or in combination with traditional antifungal agents for candidiasis are potential options in the future. However, for multidrug-resistant C. auris infection, only echinocandins are effective. Infection prevention and control policies, including strict isolation of the patients carrying C. auris and regular screening of non-affected patients, are suggested to prevent the spread of C. auris among patients with COVID-19. Whole-genome sequencing may be used to understand the epidemiology of healthcare-associated candidiasis and to better control and prevent these infections.
Collapse
Affiliation(s)
- Chin-Shiang Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Susan Shin-Jung Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wan-Chen Chen
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua City, Taiwan
| | - Chien-Hao Tseng
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Nan-Yao Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Chi Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Shan Syue
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Lung Lo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yuan-Pin Hung
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan; Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
23
|
Li Q, Chen L, Li F, He A. Long-term evaluation of the seroprevalence of SARS-CoV-2 IgG and IgM antibodies in recovered patients: a meta-analysis. BMC Infect Dis 2023; 23:444. [PMID: 37393304 DOI: 10.1186/s12879-023-08425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/24/2023] [Indexed: 07/03/2023] Open
Abstract
Estimating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) -specific immunoglobulin G (IgG) immunoglobulin M (IgM) antibodies are increasingly important for tracking the spread of infection and defining herd immunity barrier and individual immunization levels in the ongoing coronavirus disease 2019 (COVID-19) pandemic. Therefore, we conducted the present systematic review and meta-analysis to evaluate the seroprevalence of SARS-CoV-2 IgM and IgG antibodies of recovered COVID-19 patients in long-term follow-up studies. A systematic search of the MEDLINE, Embase, COVID-19 Primer, PubMed, CNKI, and the Public Health England library databases was conducted. Twenty-fourth eligible studies were included. Meta-analysis showed that 27% (95%CI: 0.04-0.49) and 66% (95%CI:0.47-0.85) were seropositive for SARS-CoV-2 IgM and IgG, respectively, while in long-term 12 months following up studies, the seroprevalences of IgM antibody (17%) decreased and IgG antibody (75%) was higher than 6 months follow-up patients. However, due to the limited number of relevant studies, the high level of heterogeneity, and the large gap in studies conducted, the findings of our study may not accurately reflect the true seroprevalence status of SARS-CoV-2 infection. Nevertheless, sequential vaccination or booster immunization is considered to be a necessary long-term strategy to sustain the fight against the pandemic.
Collapse
Affiliation(s)
- Qiu Li
- Laboratory Medicine Center, Chenzhou First People's Hospital, Chenzhou, 423000, P.R. China
| | - Lu Chen
- Baoshan Community Hospital, Chenzhou, 424400, P.R. China
| | - Fen Li
- Laboratory Medicine Center, Chenzhou First People's Hospital, Chenzhou, 423000, P.R. China
| | - An He
- Laboratory Medicine Center, Chenzhou First People's Hospital, Chenzhou, 423000, P.R. China.
| |
Collapse
|
24
|
Piantoni A, Houard M, Piga G, Zebian G, Ruffier des Aimes S, Holik B, Wallet F, Rouzé A, Kreitmann L, Loiez C, Labreuche J, Nseir S. Relationship between COVID-19 and ICU-Acquired Bloodstream Infections Related to Multidrug-Resistant Bacteria. Antibiotics (Basel) 2023; 12:1105. [PMID: 37508201 PMCID: PMC10376231 DOI: 10.3390/antibiotics12071105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
A bloodstream infection (BSI) is a severe ICU-acquired infection. A growing proportion is caused by multidrug-resistant bacteria (MDRB). COVID-19 was reported to be associated with a high rate of secondary infections. However, there is a lack of data on the relationship between COVID-19 and the incidence of MDRB ICU-acquired BSI. The aim of this study was to evaluate the relationship between COVID-19 and ICU-acquired BSI related to MDRB. This retrospective study was conducted in a single-center ICU during a one-year period. All adult patients admitted for more than 48 h were included. The cumulative incidence of ICU-acquired BSI related to MDRB was estimated using the Kalbfleisch and Prentice method. The association of COVID-19 status with the risk of ICU-acquired BSI related to MDRB was assessed using cause-specific Cox's proportional hazard model. Among the 1320 patients included in the analysis, 497 (37.65%) had COVID-19. ICU-acquired BSI related to MDRB occurred in 50 patients (36 COVID patients (7%) and 14 non-COVID patients (1.6%)). Extended-spectrum beta-lactamase Enterobacteriacae (46%) and carbapenem-resistant Acinetobacter baumannii (30%) were the most commonly isolated MDRB. COVID-19 was significantly associated with a higher risk of MDRB ICU-acquired BSI (adjusted cHR 2.65 (1.25 to 5.59) for the whole study period). However, this relationship was only significant for the period starting at day 15 after ICU admission. ICU-acquired BSI related to MDRB was significantly associated with ICU mortality (HR (95%CI) 1.73 (1-3)), although COVID-19 had no significant impact on this association (p het 0.94). COVID-19 is significantly associated with an increased risk of ICU-acquired BSI related to MDRB, mainly during the period starting at day 15 after ICU admission.
Collapse
Affiliation(s)
- Antoine Piantoni
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
| | - Marion Houard
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
| | - Gaetan Piga
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
| | - Ghadi Zebian
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
| | | | - Bérénice Holik
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
| | - Frédéric Wallet
- CHU de Lille, Laboratoire de Bactériologie-Hygiène, Centre de Biologie Pathologie, F-59000 Lille, France
| | - Anahita Rouzé
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
- Inserm U1285, Université de Lille, CNRS, UMR 8576-UGSF, F-59000 Lille, France
- CNRS, UMR 8576-UGSF, F-59000 Lille, France
- Inserm, U1285, F-59000 Lille, France
| | - Louis Kreitmann
- Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0HS, UK
- ICU West, The Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Caroline Loiez
- CHU de Lille, Laboratoire de Bactériologie-Hygiène, Centre de Biologie Pathologie, F-59000 Lille, France
| | - Julien Labreuche
- Department of Biostatistics, CHU de Lille, F-59000 Lille, France
| | - Saad Nseir
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
- Inserm U1285, Université de Lille, CNRS, UMR 8576-UGSF, F-59000 Lille, France
- CNRS, UMR 8576-UGSF, F-59000 Lille, France
- Inserm, U1285, F-59000 Lille, France
| |
Collapse
|
25
|
Singh R, Malik P, Kumar M, Kumar R, Alam MS, Mukherjee TK. Secondary fungal infections in SARS-CoV-2 patients: pathological whereabouts, cautionary measures, and steadfast treatments. Pharmacol Rep 2023:10.1007/s43440-023-00506-z. [PMID: 37354313 DOI: 10.1007/s43440-023-00506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
The earliest documented COVID-19 case caused by the SARS-CoV-2 coronavirus occurred in Wuhan, China, in December 2019. Since then, several SARS-CoV-2 mutants have rapidly disseminated as exemplified by the community spread of the recent omicron variant. The disease already attained a pandemic status with ever-dwindling mortality even after two and half years of identification and considerable vaccination. Aspergillosis, candidiasis, cryptococcosis and mucormycosis are the prominent fungal infections experienced by the majority of SARS-CoV-2 high-risk patients. In its entirety, COVID-19's nexus with these fungal infections may worsen the intricacies in the already beleaguered high-risk patients, making this a topic of substantial clinical concern. Thus, thorough knowledge of the subject is necessary. This article focuses on the concomitant fungal infection(s) in COVID-19 patients, taking into account their underlying causes, the screening methods, manifested drug resistance, and long-term effects. The information and knowledge shared herein could be crucial for the management of critically ill, aged, and immunocompromised SARS-CoV-2 patients who have had secondary fungal infections (SFIs).
Collapse
Affiliation(s)
- Raj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Mukesh Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Raman Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Md Shamshir Alam
- Department of Pharmacy Practice, College of Pharmacy, National University of Science and Technology, PO Box 620, 130, Bosher-Muscat, Sultanate of Oman
| | - Tapan Kumar Mukherjee
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, UP, India.
- Department of Biotechnology, Amity University, Major Arterial Road, Action Area II, Rajarhat, New Town, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
26
|
Riboflavin Targets the Cellular Metabolic and Ribosomal Pathways of Candida albicans In Vitro and Exhibits Efficacy against Oropharyngeal Candidiasis. Microbiol Spectr 2023; 11:e0380122. [PMID: 36625571 PMCID: PMC9927497 DOI: 10.1128/spectrum.03801-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Oropharyngeal candidiasis (OPC), which has a high incidence in immunocompromised and denture stomatitis patients, is commonly caused by Candida albicans infection and in some cases develops into disseminated candidiasis throughout the throat and esophagus, resulting in high mortality. New drugs are needed to combat OPC because of the limited treatment options currently available and increasing resistance to existing drugs. Here, we confirmed that riboflavin (RF), a cofactor of flavin adenine mononucleotide and flavin adenine dinucleotide, has broad-spectrum anti-Candida activity. The formation of C. albicans hyphae and biofilm was inhibited by RF. Mechanistically, RF disrupted membrane and cell wall integrity, as well as promoting reactive oxygen species and pyruvate accumulation. Furthermore, RF targeted multiple essential pathways via functional disruption of thiamine and RF metabolic pathways, central carbon metabolism, and ribosome metabolism. Similar to the results in vitro, the inhibitory effect of RF on C. albicans hyphae was confirmed in a mouse model of OPC. Moreover, after 5 consecutive days of intraperitoneal injection, RF exhibited therapeutic efficacy, as demonstrated by phenotype investigation, the fungal burden, and histopathological analysis. These findings revealed that RF exerts a multifaceted anti-Candida effect and has potential benefits in the treatment of OPC. IMPORTANCE Candida species are common pathogens in fungal infections, causing mucosal infection and invasive infection in immunodeficient patients. Given the limited classes of drugs and resistance to these drugs, new antifungal agents need to be developed. Drug repurposing is a potential method for antifungal drug development. This study demonstrated that riboflavin (RF) exhibited broad-spectrum anti-Candida activity. RF affected multiple targets involving the membrane and cell wall integrity, the accumulation of reactive oxygen species and pyruvate, and the altered metabolic pathways in C. albicans. Moreover, RF exhibited efficacy in the treatment of C. albicans in an oropharyngeal candidiasis mouse model. Taken together, the antifungal activity and the promising clinical application of RF were highlighted.
Collapse
|
27
|
Liu S, Luo W, Szatmary P, Zhang X, Lin JW, Chen L, Liu D, Sutton R, Xia Q, Jin T, Liu T, Huang W. Monocytic HLA-DR Expression in Immune Responses of Acute Pancreatitis and COVID-19. Int J Mol Sci 2023; 24:3246. [PMID: 36834656 PMCID: PMC9964039 DOI: 10.3390/ijms24043246] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease with increasing incidence worldwide. COVID-19 is a potentially life-threatening contagious disease spread throughout the world, caused by severe acute respiratory syndrome coronavirus 2. More severe forms of both diseases exhibit commonalities with dysregulated immune responses resulting in amplified inflammation and susceptibility to infection. Human leucocyte antigen (HLA)-DR, expressed on antigen-presenting cells, acts as an indicator of immune function. Research advances have highlighted the predictive values of monocytic HLA-DR (mHLA-DR) expression for disease severity and infectious complications in both acute pancreatitis and COVID-19 patients. While the regulatory mechanism of altered mHLA-DR expression remains unclear, HLA-DR-/low monocytic myeloid-derived suppressor cells are potent drivers of immunosuppression and poor outcomes in these diseases. Future studies with mHLA-DR-guided enrollment or targeted immunotherapy are warranted in more severe cases of patients with acute pancreatitis and COVID-19.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenjuan Luo
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BE, UK
| | - Xiaoying Zhang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing-Wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BE, UK
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Jin
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Dorneles GP, Teixeira PC, Peres A, Rodrigues Júnior LC, da Fonseca SG, Monteiro MC, Eller S, Oliveira TF, Wendland EM, Romão PRT. Endotoxin tolerance and low activation of TLR-4/NF-κB axis in monocytes of COVID-19 patients. J Mol Med (Berl) 2023; 101:183-195. [PMID: 36790534 PMCID: PMC9930695 DOI: 10.1007/s00109-023-02283-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 02/16/2023]
Abstract
Higher endotoxin in the circulation may indicate a compromised state of host immune response against coinfections in severe COVID-19 patients. We evaluated the inflammatory response of monocytes from COVID-19 patients after lipopolysaccharide (LPS) challenge. Whole blood samples of healthy controls, patients with mild COVID-19, and patients with severe COVID-19 were incubated with LPS for 2 h. Severe COVID-19 patients presented higher LPS and sCD14 levels in the plasma than healthy controls and mild COVID-19 patients. In non-stimulated in vitro condition, severe COVID-19 patients presented higher inflammatory cytokines and PGE-2 levels and CD14 + HLA-DRlow monocytes frequency than controls. Moreover, severe COVID-19 patients presented higher NF-κB p65 phosphorylation in CD14 + HLA-DRlow, as well as higher expression of TLR-4 and NF-κB p65 phosphorylation in CD14 + HLA-DRhigh compared to controls. The stimulation of LPS in whole blood of severe COVID-19 patients leads to lower cytokine production but higher PGE-2 levels compared to controls. Endotoxin challenge with both concentrations reduced the frequency of CD14 + HLA-DRlow in severe COVID-19 patients, but the increases in TLR-4 expression and NF-κB p65 phosphorylation were more pronounced in both CD14 + monocytes of healthy controls and mild COVID-19 patients compared to severe COVID-19 group. We conclude that acute SARS-CoV-2 infection is associated with diminished endotoxin response in monocytes. KEY MESSAGES: Severe COVID-19 patients had higher levels of LPS and systemic IL-6 and TNF-α. Severe COVID-19 patients presented higher CD14+HLA-DRlow monocytes. Increased TLR-4/NF-κB axis was identified in monocytes of severe COVID-19. Blunted production of cytokines after whole blood LPS stimulation in severe COVID-19. Lower TLR-4/NF-κB activation in monocytes after LPS stimulation in severe COVID-19.
Collapse
Affiliation(s)
- Gilson P Dorneles
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, Porto Alegre, RS, 245, 90050-170, Brazil
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Paula C Teixeira
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, Porto Alegre, RS, 245, 90050-170, Brazil
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Alessandra Peres
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, Porto Alegre, RS, 245, 90050-170, Brazil
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Luiz Carlos Rodrigues Júnior
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, Porto Alegre, RS, 245, 90050-170, Brazil
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | - Marta Chagas Monteiro
- Graduate Program in Pharmaceutical Science, Health Science Institute, Universidade Federal Do Pará, Belém, Pará, Brazil
| | - Sarah Eller
- Pharmacosciences Department, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Tiago F Oliveira
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Eliana M Wendland
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Pediatrics, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Pedro R T Romão
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, Porto Alegre, RS, 245, 90050-170, Brazil.
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
29
|
High Incidence of Candidemia in Critically Ill COVID-19 Patients Supported by Veno-Venous Extracorporeal Membrane Oxygenation: A Retrospective Study. J Fungi (Basel) 2023; 9:jof9010119. [PMID: 36675940 PMCID: PMC9861971 DOI: 10.3390/jof9010119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The incidence of candidemia in severe COVID-19 patients (0.8-14%) is two- to ten-fold higher than in non-COVID-19 patients. METHODS This retrospective analysis aimed to analyse the incidence of bloodstream infections (BSI) due to Candida in a cohort of COVID-19 patients supported with ECMO. RESULTS Among 138 intubated and ventilated patients hospitalized for ≥10 days in the intensive care unit of a teaching hospital, 45 (32.6%) patients received ECMO support, while 93 patients (67.4%) did not meet ECMO criteria and were considered the control group. In the ECMO group, 16 episodes of candidaemia were observed, while only 13 in patients of the control group (36.0% vs. 14.0%, p-value 0.004). It was confirmed at the survival analysis (SHR: 2.86, 95% CI: 1.39-5.88) and at the multivariable analyses (aSHR: 3.91, 95% CI: 1.73-8.86). A higher candida score seemed to increase the hazard for candidemia occurrence (aSHR: 3.04, 95% CI: 2.09-4.42), while vasopressor therapy was negatively associated with the outcome (aSHR: 0.15, 95% CI: 0.05-0.43). CONCLUSIONS This study confirms that the incidence of candidemia was significantly higher in critically ill COVID-19 patients supported with VV-ECMO than in critically ill COVID patients who did not meet criteria for VV-ECMO.
Collapse
|
30
|
Ioannou P, Kofteridis DP, Alexakis K, Koutserimpas C, Papakitsou I, Maraki S, Samonis G. Candida Species Isolation from Hospitalized Patients with COVID-19-A Retrospective Study. Diagnostics (Basel) 2022; 12:3065. [PMID: 36553072 PMCID: PMC9776868 DOI: 10.3390/diagnostics12123065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), a disease characterized by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has so far led to hundreds of millions of infections and millions of deaths. Fungal infections are known to complicate COVID-19 patients and are associated with significant morbidity and mortality. The aim of this study was to assess the incidence of positive cultures for Candida spp. among patients hospitalized with COVID-19, describe their characteristics and identify factors associated with overall mortality in this patient population. Hospitalized COVID-19 patients with Candida spp. isolation were retrospectively assessed and their clinical, laboratory and microbiological characteristics were assessed and evaluated. In total, 69 patients with COVID-19 had a positive culture for Candida spp., representing a rate of 4.5% among all hospitalized COVID-19 patients. Their median age was 78 years (IQR 67-85 years) and 44.9% were male. Hospitalized patients with COVID-19 and Candida spp. isolation who died were older, were more likely to have a diagnosis of dementia, and had higher Charlson comorbidity index, higher Candida score and higher 4C score. Candida score was identified with a multivariate logistic regression analysis model to be independently associated with mortality. The most commonly identified Candida species was C. albicans, followed by C. tropicalis and C. glabrata and the most common source was the urine, even though in most cases the positive culture was not associated with a true infection. Thus, Candida score may be used in COVID-19 patients with isolation of Candida spp. from different body specimens for mortality risk stratification.
Collapse
Affiliation(s)
- Petros Ioannou
- COVID-19 Department, University Hospital of Heraklion, 71500 Heraklion, Greece
| | | | | | - Christos Koutserimpas
- Department of Orthopaedics and Traumatology, “251” Hellenic Air Force General Hospital of Athens, 11525 Athens, Greece
| | - Ioanna Papakitsou
- COVID-19 Department, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Sofia Maraki
- Department of Clinical Microbiology, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - George Samonis
- Department of Medicine, University of Crete, 71500 Heraklion, Greece
- First Department of Medical Oncology, “Metropolitan” Hospital, Neon Faliron, 18547 Attica, Greece
| |
Collapse
|
31
|
Acosta-Altamirano G, Garduño-Javier E, Hernández-Gómez V, Espinosa JA, Vaca-Paniagua F, Rodríguez-Sosa M, Juárez-Avelar I, Terrazas LI, Bravata-Alcántara JC, Sierra-Martínez M, Olguín JE. Dual activation profile of monocytes is associated with protection in Mexican patients during SARS-CoV-2 disease. Appl Microbiol Biotechnol 2022; 106:7905-7916. [PMID: 36342507 PMCID: PMC9640868 DOI: 10.1007/s00253-022-12256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/12/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been one of the most catastrophic diseases observed in recent years. It has reported nearly 550 million cases worldwide, with more than 6.35 million deaths. In Mexico, an increased incidence and mortality of this disease were observed, where the immune response has been involved in the magnitude and severity. A critical version of the disease is accompanied by hyperinflammatory responses, with cytokine and defective cellular responses. A detailed understanding of the role of molecules and cells in the immune response during COVID-19 disease may help to generate effective protection mechanisms, improving those we already have. Here we analyzed blood samples obtained from patients at the Hospital Regional de Alta Especialidad de Ixtapaluca (HRAEI), Mexico, which were classified according to living guidance for clinical management of COVID-19 by the World Health Organization: asymptomatic, mild, severe, and critical disease. We observed increased interleukin (IL)-6 levels and a T-CD8+ and T-CD4+ cell reduction correlated with the critical disease version. Importantly, here, we described a significant reduction of CD11b+CD45highCD14low monocytes during severe disease, which displayed a non-classical profile, expressing IL-10, transforming growth factor (TGF)-β, and indoleamine 2,3-dioxygenase (IDO)1 molecule. Moreover, CD11b+CD45highCD14low monocytes obtained from infected one-dose vaccinated patients (Pfizer® vaccine) who suffered minimal symptoms showed simultaneously a dual classical and no-classical profile expressing pro- and anti-inflammatory cytokines. These results suggest that blood monocytes expressing a dual pro- and anti-inflammatory profile might be a predictive marker for protection in the Mexican population during COVID-19 disease. KEY POINTS : • Exacerbated immune response is associated with COVID-19 severe disease. • Dual monocyte activation profile is crucial for predicting protection during COVID-19. • Vaccination is crucial to induce the dual activation profile in monocytes.
Collapse
Affiliation(s)
- Gustavo Acosta-Altamirano
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca, Estado de México, Mexico
| | - Elizabeth Garduño-Javier
- Área de Citometría de Flujo, Laboratorio Nacional en Salud: Diagnóstico Molecular Y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios # 1, CP 54090, Tlalnepantla, Estado de México, Mexico
| | - Victoria Hernández-Gómez
- Área de Citometría de Flujo, Laboratorio Nacional en Salud: Diagnóstico Molecular Y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios # 1, CP 54090, Tlalnepantla, Estado de México, Mexico
| | - Jossael Alonso Espinosa
- Área de Citometría de Flujo, Laboratorio Nacional en Salud: Diagnóstico Molecular Y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios # 1, CP 54090, Tlalnepantla, Estado de México, Mexico
| | - Felipe Vaca-Paniagua
- Área de Citometría de Flujo, Laboratorio Nacional en Salud: Diagnóstico Molecular Y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios # 1, CP 54090, Tlalnepantla, Estado de México, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México, Mexico
| | - Imelda Juárez-Avelar
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México, Mexico
| | - Luis Ignacio Terrazas
- Área de Citometría de Flujo, Laboratorio Nacional en Salud: Diagnóstico Molecular Y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios # 1, CP 54090, Tlalnepantla, Estado de México, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México, Mexico
| | | | - Mónica Sierra-Martínez
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca, Estado de México, Mexico
| | - Jonadab E Olguín
- Área de Citometría de Flujo, Laboratorio Nacional en Salud: Diagnóstico Molecular Y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios # 1, CP 54090, Tlalnepantla, Estado de México, Mexico.
| |
Collapse
|
32
|
Liu S, Jiang L, Miao H, Lv Y, Zhang Q, Ma M, Duan W, Huang Y, Wei X. Autophagy regulation of ATG13 and ATG27 on biofilm formation and antifungal resistance in Candida albicans. BIOFOULING 2022; 38:926-939. [PMID: 36476055 DOI: 10.1080/08927014.2022.2153332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Autophagy is a highly conserved catabolic pathway that is vital for cells; however, the effects of autophagy on the biofilm formation and antifungal resistance of Candida albicans are still unknown. In this study, the potential molecular mechanisms of autophagy in biofilm formation and antifungal resistance were investigated. It was found that 3536 genes were differentially expressed between biofilm and planktonic C. albicans. ATG gene expression and autophagy activity were higher in biofilm than in planktonic C. albicans. Autophagic activities were higher in matured biofilms than that in pre-matured biofilms. Autophagy was involved in C. albicans biofilm formation and its activity increased during biofilm maturation. Further, ALP activity, AO staining cells, and autophagosomes inside cells were obviously reduced in biofilms of atg13Δ/Δ and atg27Δ/Δ strains; moreover, biofilm formation and antifungal resistance were also significantly decreased. Lastly, autophagy regulates biofilm formation and drug resistance of C. albicans and could be served as a new molecular target to the C. albicans biofilm infections.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Liuliu Jiang
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Haochen Miao
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Ying Lv
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Qinqin Zhang
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Ming Ma
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Wei Duan
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yun Huang
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Xin Wei
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
SARS-CoV-2 pneumonia and bacterial pneumonia patients differ in a second hit immune response model. Sci Rep 2022; 12:15485. [PMID: 36109525 PMCID: PMC9476429 DOI: 10.1038/s41598-022-17368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Secondary infections have been shown to complicate the clinical course and worsen the outcome of critically ill patients. Severe Coronavirus Disease 2019 (COVID-19) may be accompanied by a pronounced cytokine release, and immune competence of these patients towards most pathogenic antigens remains uncompromised early in the disease. Patients with bacterial sepsis also exhibit excessive cytokine release with systemic hyper-inflammation, however, typically followed by an anti-inflammatory phase, causing immune paralysis. In a second hit immune response model, leukocyte activation capacity of severely ill patients with pneumonia caused by SARS-CoV-2 or by bacteria were compared upon ICU admission and at days 4 and 7 of the ICU stay. Blood cell count and release of the pro-inflammatory cytokines IL-2, IFNγ and TNF were assessed after whole-blood incubation with the potent immune stimulus pokeweed mitogen (PWM). For comparison, patients with bacterial sepsis not originating from pneumonia, and healthy volunteers were included. Lymphopenia and granulocytosis were less pronounced in COVID-19 patients compared to bacterial sepsis patients. After PWM stimulation, COVID-19 patients showed a reduced release of IFNγ, while IL-2 levels were found similar and TNF levels were increased compared to healthy controls. Interestingly, concentrations of all three cytokines were significantly higher in samples from COVID-19 patients compared to samples from patients with bacterial infection. This fundamental difference in immune competence during a second hit between COVID-19 and sepsis patients may have implications for the selection of immune suppressive or enhancing therapies in personalized medicine.
Collapse
|
34
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
35
|
Prevalence of Fungal Drug Resistance in COVID-19 Infection: a Global Meta-analysis. CURRENT FUNGAL INFECTION REPORTS 2022; 16:154-164. [PMID: 35990407 PMCID: PMC9376562 DOI: 10.1007/s12281-022-00439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
Abstract
Purpose Secondary bacterial or fungal infections are one of the most important medical complications among patients with Coronavirus Disease 2019 (COVID-19). The emergence of multidrug-resistant (MDR) candida can cause many problems such as treatment failure, adverse clinical outcomes, and even disease outbreaks. This systematic review and meta-analysis aims to investigate the prevalence and outcomes of fungal drug-resistant in COVID-19 patients. Methods PubMed, Embase, Scopus, Cochrane Library, and Web of Science databases were searched for peer reviewed-articles published in English up to May 20, 2021. Heterogeneity across studies was evaluated using Cochrane’s Q test and the I2 index. The pooled point prevalence and their corresponding 95% confidence intervals (CIs) were considered to estimate the prevalence of fungal drug resistance infection in COVID-19 patients. Results Eight eligible articles were included in our meta-analysis. The number of COVID-19 patients with fungal co-infection varied from 5 to 35 among selected studies. The overall pooled prevalence of fungal drug resistance among patients with co-infections of fungal and COVID-19 was 69% (95% CI: 37%, 94%) by using a random-effects model. In terms of specific species, the pooled meta-analysis for Candida Auris was estimated to be 100% (95%CI: 98%, 100%; I2 = 0%), for Multi-Candida 59% (95%CI: 38%, 79%; I2 = 12.5%), and for Aspergillus 15% (95%CI: 0%, 42%; I2 = 0%). Conclusion Our study shows the high prevalence of fungal drug resistance in COVID-19 patients and emphasizes the need to strengthen antimicrobial stewardship programs, close monitoring for treatment failure, and the emergence of resistance upon treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s12281-022-00439-9.
Collapse
|
36
|
Abstract
Coronavirus disease 2019 (COVID-19)-associated invasive fungal infections are an important complication in a substantial number of critically ill, hospitalized patients with COVID-19. Three groups of fungal pathogens cause co-infections in COVID-19: Aspergillus, Mucorales and Candida species, including Candida auris. Here we review the incidence of COVID-19-associated invasive fungal infections caused by these fungi in low-, middle- and high-income countries. By evaluating the epidemiology, clinical risk factors, predisposing features of the host environment and immunological mechanisms that underlie the pathogenesis of these co-infections, we set the scene for future research and development of clinical guidance. Hoenigl and colleagues review the epidemiology, immunology and clinical risk factors contributing to COVID-19-associated fungal infections.
Collapse
|
37
|
Khalil MAF, El-Ansary MRM, Bassyouni RH, Mahmoud EE, Ali IA, Ahmed TI, Hassan EA, Samir TM. Oropharyngeal Candidiasis among Egyptian COVID-19 Patients: Clinical Characteristics, Species Identification, and Antifungal Susceptibility, with Disease Severity and Fungal Coinfection Prediction Models. Diagnostics (Basel) 2022; 12:diagnostics12071719. [PMID: 35885623 PMCID: PMC9316654 DOI: 10.3390/diagnostics12071719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
The study aimed to investigate the causative species, antifungal susceptibility, and factors associated with oropharyngeal candidiasis (OPC) among Egyptian COVID-19 patients. This is an observational, case-controlled, single-center study that included three groups: COVID-19 patients (30), COVID-19 patients with OPC (39), and healthy individuals (31). Patients’ demographic data (age, sex), laboratory tests, comorbidities, treatment, and outcomes were included. Candida species were isolated from COVID-OPC patient’s oropharyngeal swabs by convenient microbiological methods. Isolated strains were tested for antimicrobial susceptibility, biofilm production, aspartyl protease, and phospholipase activities. The most common respiratory symptoms reported were dyspnea (36/39; 92.4%) and cough (33/39; 84.7%). Candida albicans was the most common isolated species, accounting for 74.36% (29/39), followed by Candida tropicalis and Candida glabrata (15.38% and 10.26%, respectively). Amphotericin was effective against all isolates, while fluconazole was effective against 61.5%. A total of 53.8% of the isolates were biofilm producers. The phospholipase activity of C. albicans was detected among 58.6% (17/29) of the isolates. Significant variables from this study were used to create two equations from a regression model that can predict the severity of disease course and liability to fungal infection, with a stativity of 87% and 91%, respectively. According to our findings, COVID-19 patients with moderate to severe infection under prolonged use of broad-spectrum antibiotics and corticosteroids should be considered a high-risk group for developing OPC, and prophylactic measures are recommended to be included in the treatment protocols. In addition, due to the increased rate of fluconazole resistance, other new antifungals should be considered.
Collapse
Affiliation(s)
- Mahmoud A. F. Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
| | - Mahmoud R. M. El-Ansary
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Misr University for Science and Technology (MUST), Giza 12566, Egypt;
| | - Rasha H. Bassyouni
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum 63514, Egypt;
| | - Eman E. Mahmoud
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Fayoum University, Fayoum 63514, Egypt;
| | - Inas A. Ali
- Department of Family and Community Medicine, Faculty of Medicine, Misr University for Science and Technology (MUST), Giza 12566, Egypt;
| | - Tarek I. Ahmed
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum 63514, Egypt;
| | - Essam A. Hassan
- Department of Tropical Medicine, Faculty of Medicine, Fayoum University, Fayoum 63514, Egypt;
| | - Tamer M. Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Giza 12566, Egypt
- Correspondence:
| |
Collapse
|
38
|
Miryala SK, Anbarasu A, Ramaiah S. Organ-specific host differential gene expression analysis in systemic candidiasis: A systems biology approach. Microb Pathog 2022; 169:105677. [PMID: 35839997 PMCID: PMC9283004 DOI: 10.1016/j.micpath.2022.105677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022]
Abstract
Patients admitted to the hospital with coronavirus disease (COVID-19) are at risk for acquiring mycotic infections in particular Candidemia. Candida albicans (C. albicans) constitutes an important component of the human mycobiome and the most common cause of invasive fungal infections. Invasive yeast infections are gaining interest among the scientific community as a consequence of complications associated with severe COVID-19 infections. Early identification and surveillance for Candida infections is critical for decreasing the COVID-19 mortality. Our current study attempted to understand the molecular-level interactions between the human genes in different organs during systematic candidiasis. Our research findings have shed light on the molecular events that occur during Candidiasis in organs such as the kidney, liver, and spleen. The differentially expressed genes (up and down-regulated) in each organ will aid in designing organ-specific therapeutic protocols for systemic candidiasis. We observed organ-specific immune responses such as the development of the acute phase response in the liver; TGF-pathway and genes involved in lymphocyte activation, and leukocyte proliferation in the kidney. We have also observed that in the kidney, filament production, up-regulation of iron acquisition mechanisms, and metabolic adaptability are aided by the late initiation of innate defense mechanisms, which is likely related to the low number of resident immune cells and the sluggish recruitment of new effector cells. Our findings point to major pathways that play essential roles in specific organs during systemic candidiasis. The hub genes discovered in the study can be used to develop novel drugs for clinical management of Candidiasis.
Collapse
Affiliation(s)
- Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Biosciences and Technology Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
39
|
Lima RM, Rathod BB, Tiricz H, Howan DHO, Al Bouni MA, Jenei S, Tímár E, Endre G, Tóth GK, Kondorosi É. Legume Plant Peptides as Sources of Novel Antimicrobial Molecules Against Human Pathogens. Front Mol Biosci 2022; 9:870460. [PMID: 35755814 PMCID: PMC9218685 DOI: 10.3389/fmolb.2022.870460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/18/2022] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides are prominent components of the plant immune system acting against a wide variety of pathogens. Legume plants from the inverted repeat lacking clade (IRLC) have evolved a unique gene family encoding nodule-specific cysteine-rich NCR peptides acting in the symbiotic cells of root nodules, where they convert their bacterial endosymbionts into non-cultivable, polyploid nitrogen-fixing cells. NCRs are usually 30–50 amino acids long peptides having a characteristic pattern of 4 or 6 cysteines and highly divergent amino acid composition. While the function of NCRs is largely unknown, antimicrobial activity has been demonstrated for a few cationic Medicago truncatula NCR peptides against bacterial and fungal pathogens. The advantages of these plant peptides are their broad antimicrobial spectrum, fast killing modes of actions, multiple bacterial targets, and low propensity to develop resistance to them and no or low cytotoxicity to human cells. In the IRLC legumes, the number of NCR genes varies from a few to several hundred and it is possible that altogether hundreds of thousands of different NCR peptides exist. Due to the need for new antimicrobial agents, we investigated the antimicrobial potential of 104 synthetic NCR peptides from M. truncatula, M. sativa, Pisum sativum, Galega orientalis and Cicer arietinum against eight human pathogens, including ESKAPE bacteria. 50 NCRs showed antimicrobial activity with differences in the antimicrobial spectrum and effectivity. The most active peptides eliminated bacteria at concentrations from 0.8 to 3.1 μM. High isoelectric point and positive net charge were important but not the only determinants of their antimicrobial activity. Testing the activity of shorter peptide derivatives against Acinetobacter baumannii and Candida albicans led to identification of regions responsible for the antimicrobial activity and provided insight into their potential modes of action. This work provides highly potent lead molecules without hemolytic activity on human blood cells for novel antimicrobial drugs to fight against pathogens.
Collapse
Affiliation(s)
- Rui M Lima
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | | | - Hilda Tiricz
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Dian H O Howan
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | | | - Sándor Jenei
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Edit Tímár
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Gabriella Endre
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Éva Kondorosi
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| |
Collapse
|
40
|
Faazil S, Shaheer Malik M, Ahmed SA, Alsantali RI, Yedla P, Alsharif MA, Shaikh IN, Kamal A. Novel linezolid-based oxazolidinones as potent anticandidiasis and antitubercular agents. Bioorg Chem 2022; 126:105869. [DOI: 10.1016/j.bioorg.2022.105869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/08/2022] [Accepted: 05/08/2022] [Indexed: 11/26/2022]
|
41
|
Kundu R, Singla N. COVID-19 and Plethora of Fungal Infections. CURRENT FUNGAL INFECTION REPORTS 2022; 16:47-54. [PMID: 35432691 PMCID: PMC8994097 DOI: 10.1007/s12281-022-00432-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/15/2022]
Abstract
Purpose of Review Severe-acute respiratory coronavirus 2 (SARS-CoV-2) causing corona virus disease 2019 (COVID-19) has been the single most important pathogen driving health care delivery system for the last one and half years. Now, as the time is passing, many issues related to co-infections/secondary infections/superinfections in COVID-19 patients are emerging. The literature is getting enriched everyday by addition of reports from all over the world for the same. The purpose of this review is to decipher the plethora of fungal infections in COVID-19. Recent Findings COVID-19 infection along with it brought many risk factors namely lung injury, immunosuppression, need for oxygen therapy, monoclonal antibodies, steroid therapy, etc. which are known predisposing factors for fungal infections. Rather the extent and severity of fungal pathogens has been so much that it has led to new terminologies like CAC (COVID-19-associated Candida), CAPA (COVID-19-associated pulmonary aspergillosis) and CAM (COVID-19-associated mucormycosis). There is increase in invasiveness of Candida, prevalence of aspergillosis in COVID-19 damaged lung and outbreak of mucormycosis in COVID-19 patients resulting in “double trouble,” keeping laboratory personnel, clinicians, and intensivists on their toes in managing these patients. Summary Awareness and understanding regarding these possible complications is necessary to decrease the morbidity and mortality among patients. The COVID-19 and fungal coinfections may bring more insight into ways of pathogenesis of fungal infections, need for better antifungal agents, quick diagnostic modalities, and better management policies in the near future.
Collapse
Affiliation(s)
- Reetu Kundu
- Department of Cytology and Gynecological Pathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Nidhi Singla
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| |
Collapse
|
42
|
D'Agostino I, Mathew GE, Angelini P, Venanzoni R, Angeles Flores G, Angeli A, Carradori S, Marinacci B, Menghini L, Abdelgawad MA, Ghoneim MM, Mathew B, Supuran CT. Biological investigation of N-methyl thiosemicarbazones as antimicrobial agents and bacterial carbonic anhydrases inhibitors. J Enzyme Inhib Med Chem 2022; 37:986-993. [PMID: 35322729 PMCID: PMC8956313 DOI: 10.1080/14756366.2022.2055009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The enormous burden of the COVID-19 pandemic in economic and healthcare terms has cast a shadow on the serious threat of antimicrobial resistance, increasing the inappropriate use of antibiotics and shifting the focus of drug discovery programmes from antibacterial and antifungal fields. Thus, there is a pressing need for new antimicrobials involving innovative modes of action (MoAs) to avoid cross-resistance rise. Thiosemicarbazones (TSCs) stand out due to their easy preparation and polypharmacological application, also in infectious diseases. Recently, we reported a small library of TSCs (1–9) that emerged for their non-cytotoxic behaviour. Inspired by their multifaceted activity, we investigated the antibacterial, antifungal, and antidermatophytal profiles of derivatives 1–9, highlighting a new promising research line. Furthermore, the ability of these compounds to inhibit selected microbial and human carbonic anhydrases (CAs) was assessed, revealing their possible involvement in the MoA and a good selectivity index for some derivatives.
Collapse
Affiliation(s)
- Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | | | - Andrea Angeli
- Neurofarba Department, University of Florence, Sesto Fiorentino, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Beatrice Marinacci
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Claudiu T Supuran
- Neurofarba Department, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
43
|
Eltaweil AS, Abdelfatah AM, Hosny M, Fawzy M. Novel Biogenic Synthesis of a Ag@Biochar Nanocomposite as an Antimicrobial Agent and Photocatalyst for Methylene Blue Degradation. ACS OMEGA 2022; 7:8046-8059. [PMID: 35284719 PMCID: PMC8908515 DOI: 10.1021/acsomega.1c07209] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 05/08/2023]
Abstract
The conventional synthesis of nanomaterials employing physical and chemical methods usually requires high cost and toxic chemicals. Thus, a facile, ecofriendly, cost-effective, novel, and sustainable route for the synthesis of a silver-loaded biochar nanocomposite (Ag@biochar) using Chenopodium ambrosioides leaf extract and biomass is reported for the first time in this study to advocate many of the principles of green chemistry such as safer solvents and auxiliaries. UV spectroscopic analysis at 420 nm indicated the formation of silver nanoparticles (AgNPs). The band gap energy of Ag@biochar was 1.9 eV, confirming its potential use as a photocatalyst. Ag@biochar was found to be photoluminescent at 425 nm. AgNPs on the surface of biochar were predominantly spherical with a size range of 25-35 nm and a surface area of 47.61 m2/g. A zeta potential of -5.87 mV designated the stability of Ag@biochar. Testing the photocatalytic potential of Ag@biochar to remove methylene blue from wastewater demonstrated its high removal efficiency that reached 88.4% due to its high efficiency of electron transfer confirmed via electrochemical impedance spectroscopy analysis and retained 70.65% after six cycles of reuse. Ag@biochar was shown to be a powerful broad-spectrum antimicrobial agent as it completely prevented the growth of Escherichia coli and also inhibited the growth of Pseudomonas aeruginosa, Klebsiella pneumoniae, Bacillus subtilis, and Candida albicans with the inhibition zones of 19, 18, 22, and 16 mm, respectively.
Collapse
Affiliation(s)
- Abdelazeem S. Eltaweil
- Department
of Chemistry, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Ahmed M. Abdelfatah
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Mohamed Hosny
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Manal Fawzy
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- National
Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Cairo 33516, Egypt
| |
Collapse
|
44
|
Prevalence and Clinical Impact of Coinfection in Patients with Coronavirus Disease 2019 in Korea. Viruses 2022; 14:v14020446. [PMID: 35216039 PMCID: PMC8876760 DOI: 10.3390/v14020446] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
Coinfection rates with other pathogens in coronavirus disease 2019 (COVID-19) varied during the pandemic. We assessed the latest prevalence of coinfection with viruses, bacteria, and fungi in COVID-19 patients for more than one year and its impact on mortality. A total of 436 samples were collected between August 2020 and October 2021. Multiplex real-time PCR, culture, and antimicrobial susceptibility testing were performed to detect pathogens. The coinfection rate of respiratory viruses in COVID-19 patients was 1.4%. Meanwhile, the rates of bacteria and fungi were 52.6% and 10.5% in hospitalized COVID-19 patients, respectively. Respiratory syncytial virus, rhinovirus, Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were the most commonly detected pathogens. Ninety percent of isolated A. baumannii was non-susceptible to carbapenem. Based on a multivariate analysis, coinfection (odds ratio [OR] = 6.095), older age (OR = 1.089), and elevated lactate dehydrogenase (OR = 1.006) were risk factors for mortality as a critical outcome. In particular, coinfection with bacteria (OR = 11.250), resistant pathogens (OR = 11.667), and infection with multiple pathogens (OR = 10.667) were significantly related to death. Screening and monitoring of coinfection in COVID-19 patients, especially for hospitalized patients during the pandemic, are beneficial for better management and survival.
Collapse
|
45
|
The Continuing Emergence of Candida blankii as a Pathogenic Fungus: A New Case of Fungemia in a Patient Infected with SARS-CoV-2. J Fungi (Basel) 2022; 8:jof8020166. [PMID: 35205920 PMCID: PMC8878287 DOI: 10.3390/jof8020166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/27/2022] Open
Abstract
Candida blankii is a recently recognized human pathogen, with most cases of the infection being reported in the immunocompromised. We here describe the case of a critically ill elderly woman with COVID-19 who developed a C. blankii bloodstream infection from a femoral central venous catheter. Aspergillus niger was also isolated from her respiratory secretions. The patient was started on voriconazole for empiric coverage of both A. niger, and at that time, unidentified yeast was found in the blood. Fevers persisted, and the patient expired six days after the yeast was first isolated. Almost one month after her death, C. blankii was identified as the cause of fungemia by sequencing of the internal transcribed spacer (ITS) region of the ribosomal gene and BLAST searching against two databases (performed by a reference laboratory). The isolate demonstrated high minimum inhibitory concentrations (MICs) to azoles and low MICs to amphotericin B, similar to previously described isolates. Timely identification of C. blankii would have prompted different empiric antifungal choices and possibly changed the final outcome. Clinicians should be aware of the pathological potential of C. blankii, the challenges of correctly identifying the organism, and its susceptibility patterns to common antifungals. There is an urgent need to improve assays for C. blankii identification, which will aid in accurate and timely pathogen identification, and appropriate therapeutic management.
Collapse
|
46
|
Mahalingam SS, Jayaraman S, Pandiyan P. Fungal Colonization and Infections-Interactions with Other Human Diseases. Pathogens 2022; 11:212. [PMID: 35215155 PMCID: PMC8875122 DOI: 10.3390/pathogens11020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Candida albicans is a commensal fungus that asymptomatically colonizes the skin and mucosa of 60% of healthy individuals. Breaches in the cutaneous and mucosal barriers trigger candidiasis that ranges from asymptomatic candidemia and mucosal infections to fulminant sepsis with 70% mortality rates. Fungi influence at least several diseases, in part by mechanisms such as the production of pro-carcinogenic agents, molecular mimicking, and triggering of the inflammation cascade. These processes impact the interactions among human pathogenic and resident fungi, the bacteriome in various organs/tissues, and the host immune system, dictating the outcomes of invasive infections, metabolic diseases, and cancer. Although mechanistic investigations are at stages of infancy, recent studies have advanced our understanding of host-fungal interactions, their role in immune homeostasis, and their associated pathologies. This review summarizes the role of C. albicans and other opportunistic fungi, specifically their association with various diseases, providing a glimpse at the recent developments and our current knowledge in the context of inflammatory-bowel disease (IBD), cancers, and COVID-19. Two of the most common human diseases where fungal interactions have been previously well-studied are cancer and IBD. Here we also discuss the emerging role of fungi in the ongoing and evolving pandemic of COVID-19, as it is relevant to current health affairs.
Collapse
Affiliation(s)
- Shanmuga S. Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
| | - Sangeetha Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
47
|
Kamat M, Datar U, Byakodi S, Kamat S, Vimal Kumar V. COVID-19-associated mucormycosis of head-and-neck region: A systematic review. J Clin Transl Res 2022; 8:31-42. [PMID: 35187287 PMCID: PMC8848761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND AIM With the second wave of COVID-19, there has been a substantial rise in opportunistic infections like mucormycosis. Mucormycosis is a fatal fungal infection and understanding the associated risk factors and their management plays a key role to reduce mortality and morbidity caused due to such infections. This systematic review was conducted to assess the risk factors, clinical characteristics and to understand the pathogenesis of COVID-19-associated mucormycosis (CAM) affecting the head-and-neck region. METHODS The PubMed database was searched with the keywords; ((Mucormycosis) OR (invasive fungal sinusitis)) AND (COVID-19) and the PRISMA chart was prepared for the selection of the reports based on the inclusion and exclusion criteria. RESULTS A total of 261 cases of CAM affecting the head-and-neck region were analyzed in this systematic review. Most of the patients presented with rhino-orbital/rhino-orbito-cerebral form of mucormycosis (rhino-orbital mucormycosis/rhino-orbital-cerebral mucormycosis). Pulmonary mucormycosis along with rhino-orbital form, involvement of hard palate, and maxillary sinus was seen in one case each. A total of 224 (85.8%) patients were diabetic, 68 (30.3%) of them had poor glycemic control. Steroids were administered in 210 (80.4%) patients. Except for two, antifungal treatment was given to all patients. Follow-up data revealed 67 (25.6%) deaths and 193 (73.9%) were alive with one patient lost during follow-up. CONCLUSION The findings of this systematic review suggested that the occurrence of mucormycosis in COVID-19 patients is related to the inherent effects of COVID-19 infection on the immune system, comorbidities especially diabetes, and treatment aspects. Hence, a detailed understanding of these factors may aid in the personalized management of CAM and improve the disease outcome. RELEVANCE FOR PATIENTS The risk factors in patients affected by CAM should be recognized and closely monitored in post-COVID-19 patients. A multidisciplinary team must be in place to reduce the mortality and morbidity in such patients.
Collapse
Affiliation(s)
- Mamata Kamat
- 1Department of Oral and Maxillofacial Pathology, BV(DU) Dental College and Hospital, Sangli, Maharashtra, India,Corresponding author: Dr. Mamata Kamat MDS, PhD Department of Oral and Maxillofacial Pathology, BV(DU) Dental College and Hospital, Sangli, Maharashtra - 416 416, India.
| | - Uma Datar
- 1Department of Oral and Maxillofacial Pathology, BV(DU) Dental College and Hospital, Sangli, Maharashtra, India
| | - Sanjay Byakodi
- 2Department of Oral and Maxillofacial Surgery, BV(DU) Dental College and Hospital, Sangli, Maharashtra, India
| | - Sharad Kamat
- 3Department of Conservative Dentistry and Endodontics, BV(DU) Dental College and Hospital, Sangli, Maharashtra, India
| | - Varsha Vimal Kumar
- 4Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
48
|
Spiliopoulou A, Kolonitsiou F, Vrioni G, Tsoupra S, Lekkou A, Paliogianni F. Invasive Candida kefyr infection presenting as pyelonephritis in an ICU hospitalized COVID-19 patient: Case report and review of the literature. J Mycol Med 2021; 32:101236. [PMID: 34974339 PMCID: PMC8694783 DOI: 10.1016/j.mycmed.2021.101236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022]
Abstract
Candida kefyr (Kluyveromyces marxianus), an ascomycetous environmental yeast, occasionally isolated from dairy products, represents an uncommon but emerging pathogen in immunocompromised patients. Herein, we present a case of C. kefyr pyelonephritis in a 41-year-old, previously immunocompetent, patient who was hospitalized in an COVID-19 ICU. Pyelonephritis was associated with caliectasis and obstruction due to possible fungus ball formation. Predisposing factors included ICU stay, use of broad spectrum antibiotics and steroids, central venous catheterization, mechanical ventilation and urologic manipulation. Susceptibility testing revealed high MIC values to amphotericin B. Infection was effectively controlled by prolonged administration of fluconazole without further surgical intervention. COVID-19 complicated with invasive candidiasis is an increasingly observed clinical situation that warrants high suspicion index and careful evaluation of laboratory data.
Collapse
Affiliation(s)
| | | | - Georgia Vrioni
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatia Tsoupra
- Department of Internal Medicine, University Hospital of Patras, Greece
| | - Alexandra Lekkou
- Department of Internal Medicine, Division of Infectious Diseases, University Hospital of Patras, Greece
| | - Fotini Paliogianni
- Department of Microbiology, University Hospital of Patras, Patras, Greece
| |
Collapse
|
49
|
Cuevas-Gonzalez MV, Espinosa-Cristóbal LF, Donohue-Cornejo A, Tovar-Carrillo KL, Saucedo-Acuña RA, García-Calderón AG, Guzmán-Gastelum DA, Cuevas-Gonzalez JC. COVID-19 and its manifestations in the oral cavity: A systematic review. Medicine (Baltimore) 2021; 100:e28327. [PMID: 34941133 PMCID: PMC8701462 DOI: 10.1097/md.0000000000028327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND SARS-CoV-2 is the virus responsible for coronavirus disease-19 (COVID-19) disease, which has been shown to trigger multiple affectations. One of the first tissue areas to come into contact with the virus is the oral cavity, which develops various alterations. Hence, the objective of this systematic review was to identify the main signs and symptoms of this disease in the oral cavity, and the following research question was established: What are the main oral signs and symptoms in COVID-19-positive persons? METHODS The electronic databases of PUBMED, SCOPUS, and SCIENCE DIRECT were analyzed, the keywords "ORAL DISEASES," "ORAL MANIFESTACTIONS," and "COVID-19" were used taking into account the following inclusion criteria: studies whose main objective was oral manifestations secondary to the confirmation of COVID-19, plus clinical cases, case series, and retrospective or prospective studies. For the assessment of the risk of bias the JBI Critical Appraisal Checklist for Case Series tool was used. RESULTS A total of 18 studies were included, the most common initial signs/symptoms after contagion of SARS-CoV-2 were dysgeusia, dry mouth, and burning mouth, and the main signs/symptoms were the presence of ulcerative lesions, dysgeusia, and Candida albicans infections. CONCLUSIONS It is very important to detect any alteration in the mucosa in patients with COVID-19 and to provide assertive treatment to avoid complications, and try to maintain adequate oral hygiene throughout the course of the disease to avoid the colonization of opportunistic microorganisms and to avoid complications both orally and systemically.
Collapse
Affiliation(s)
| | | | - Alejandro Donohue-Cornejo
- Institute of Biomedical Sciences, Autonomous University of Ciudad Juarez, Juarez City, Chihuahua, Mexico
| | | | - Rosa Alicia Saucedo-Acuña
- Institute of Biomedical Sciences, Autonomous University of Ciudad Juarez, Juarez City, Chihuahua, Mexico
| | | | | | | |
Collapse
|
50
|
Rajni E, Singh A, Tarai B, Jain K, Shankar R, Pawar K, Mamoria V, Chowdhary A. A High Frequency of Candida auris Blood Stream Infections in Coronavirus Disease 2019 Patients Admitted to Intensive Care Units, Northwestern India: A Case Control Study. Open Forum Infect Dis 2021; 8:ofab452. [PMID: 34904116 PMCID: PMC8522362 DOI: 10.1093/ofid/ofab452] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Background The ongoing pandemic of coronavirus disease 2019 (COVID-19) has overwhelmed healthcare facilities and raises an important novel concern of nosocomial transmission of Candida species in the intensive care units (ICUs). Methods We evaluated the incidence and risk factors for development of candidemia in 2384 COVID-19 patients admitted during August 2020–January 2021 in ICUs of 2 hospitals (Delhi and Jaipur) in India. A 1:2 case-control matching was used to identify COVID-19 patients who did not develop candidemia as controls. Results A total of 33 patients developed candidemia and accounted for an overall incidence of 1.4% over a median ICU stay of 24 days. A 2-fold increase in the incidence of candidemia in COVID-19 versus non-COVID-19 patients was observed with an incidence rate of 14 and 15/1000 admissions in 2 ICUs. Candida auris was the predominant species (42%) followed by Candida tropicalis. Multivariable regression analysis revealed the use of tocilizumab, duration of ICU stay (24 vs 14 days), and raised ferritin level as an independent predictor for the development of candidemia. Azole resistance was observed in C auris and C tropicalis harboring mutations in the azole target ERG11 gene. Multilocus sequence typing (MLST) identified identical genotypes of C tropicalis in COVID-19 patients, raising concern for nosocomial transmission of resistant strains. Conclusions Secondary bacterial infections have been a concern with the use of tocilizumab. In this cohort of critically ill COVID-19 patients, tocilizumab was associated with the development of candidemia. Surveillance of antifungal resistance is warranted to prevent transmission of multidrug-resistant strains of nosocomial yeasts in COVID-19 hospitalized patients.
Collapse
Affiliation(s)
- Ekadashi Rajni
- Department of Microbiology, Mahatma Gandhi University of Medical Science & Technology, Jaipur, Rajasthan, India
| | - Ashutosh Singh
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | - Kusum Jain
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.,Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Ravi Shankar
- Department of Biostatistics, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Kalpana Pawar
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Vedprakash Mamoria
- Department of Microbiology, Mahatma Gandhi University of Medical Science & Technology, Jaipur, Rajasthan, India
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|