1
|
Amrouche T, Lammi S, Drider D. Probiotics and Prebiotics Intervention in Respiratory and Digestive Infections Linked to Covid-19. Probiotics Antimicrob Proteins 2025; 17:1356-1367. [PMID: 39614066 DOI: 10.1007/s12602-024-10404-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Probiotics and prebiotics have been suggested as natural agents against viral infections and dysbiosis and may encourage clinical applications. This review aims to analyze the main and recent advances related to viral infections such as Covid-19 and its gastrointestinal complications, antiviral immunity generated and possible preventive role that probiotics and/or prebiotics can play in controlling and promoting antiviral immunity. The literature search was performed through a critical analysis of relevant publications reported in PubMed and Scopus databases on clinical trials and assays conducted in vitro on colon cells and in vivo on mice. Some studies using probiotics and prebiotics for the prevention of viral infection in different age groups are discussed. Covid-19 patients have been shown to suffer from gastrointestinal complications in addition to respiratory symptoms due to interactions between the respiratory system and the gastrointestinal tract infected with SARS-CoV-2. Unfortunately, therapies used to prevent (or treat) symptoms of Covid-19 have proven to be of limited effectiveness. In addition, the lack of access to coronavirus vaccines around the world and vaccine hesitancy continue to hamper control of Covid-19. It is therefore crucial to find alternative methods that can prevent disease symptoms. Evidence-based efficacy of certain probiotics (Lactobacillus and Bifidobacterium) that may be useful in viral infections was shown with immunomodulatory properties (pro-inflammatory mediators reduction), promoting antiviral immunity (antibodies production, virus titers) and controlling inflammation (anti-inflammatory effect), as well as viral clearance and antimicrobial potential against opportunistic bacteria (anti-dysbiosis effect). But, available data about clinical application of probiotics in Covid-19 context remain limited and relevant scientific investigation is still in its early stages. Also, evidence for prebiotics potential in this field is limited, since the exact mechanism involved in systemic immune modulation by these compounds is till now unknown. Thus, further research is necessary to explore in the viral infection context the mechanism by which gut and lung interact in the presence of probiotics and prebiotics through more animal and clinical experiments.
Collapse
Affiliation(s)
- Tahar Amrouche
- Laboratoire Qualité Et Sécurité Des Aliments, Faculté Des Sciences Biologiques Et Des Sciences Agronomiques, Université Mouloud Mammeri, 15 000, Tizi Ouzou, Algeria.
| | - Sarah Lammi
- Laboratoire Qualité Et Sécurité Des Aliments, Faculté Des Sciences Biologiques Et Des Sciences Agronomiques, Université Mouloud Mammeri, 15 000, Tizi Ouzou, Algeria
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro INRAE 1158, Université de Lille (ULille), 59000, Lille, France
| |
Collapse
|
2
|
Cao Z, Xie S, Yang X, Wei N, Zhao Y, Sun M, Lin X, Shi M, Cao R. JEV NS1' protein enhances cell-to-cell viral spread by inducing the formation of tunneling nanotubes. Vet Microbiol 2025; 304:110494. [PMID: 40187292 DOI: 10.1016/j.vetmic.2025.110494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/07/2025]
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne virus, can infect various host cells. However, the efficiency with which JEV spreads from cell to cell remains unclear. This study demonstrates that JEV infection can induce the formation of tunneling nanotubes (TNTs), which is mediated by the viral NS1' protein. Further investigations revealed that NS1' protein induces TNTs formation by interacting with PAK1. The establishment of TNTs facilitates the transport of JEV virions and the NS1' protein, thereby evading neutralization by antibodies. In conclusion, our study elucidates the mechanism through which JEV induces the formation of TNTs in host cells and highlights a novel pathway for JEV intercellular spread.
Collapse
Affiliation(s)
- Ziyu Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengda Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingmiao Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Wei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yundi Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyuan Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Miaolei Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Michita RT, Tran LB, Bark SJ, Kumar D, Toner SA, Jose J, Mysorekar IU, Narayanan A. Zika virus NS1 drives tunneling nanotube formation for mitochondrial transfer and stealth transmission in trophoblasts. Nat Commun 2025; 16:1803. [PMID: 39979240 PMCID: PMC11842757 DOI: 10.1038/s41467-025-56927-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
Zika virus (ZIKV) is unique among orthoflaviviruses in its vertical transmission capacity in humans, yet the underlying mechanisms remain incompletely understood. Here, we show that ZIKV induces tunneling nanotubes (TNTs) in placental trophoblasts which facilitate transfer of viral particles, proteins, mitochondria, and RNA to neighboring uninfected cells. TNT formation is driven exclusively via ZIKV non-structural protein 1 (NS1). Specifically, the N-terminal 1-50 amino acids of membrane-bound ZIKV NS1 are necessary for triggering TNT formation in host cells. Trophoblasts infected with TNT-deficient ZIKVΔTNT mutant virus elicited a robust antiviral IFN-λ 1/2/3 response relative to WT ZIKV, suggesting TNT-mediated trafficking allows ZIKV cell-to-cell transmission camouflaged from host defenses. Using affinity purification-mass spectrometry of cells expressing wild-type NS1 or non-TNT forming NS1, we found mitochondrial proteins are dominant NS1-interacting partners. We demonstrate that ZIKV infection or NS1 expression induces elevated mitochondria levels in trophoblasts and that mitochondria are siphoned via TNTs from healthy to ZIKV-infected cells. Together our findings identify a stealth mechanism that ZIKV employs for intercellular spread among placental trophoblasts, evasion of antiviral interferon response, and the hijacking of mitochondria to augment its propagation and survival and offers a basis for novel therapeutic developments targeting these interactions to limit ZIKV dissemination.
Collapse
Affiliation(s)
- Rafael T Michita
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Long B Tran
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Steven J Bark
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shay A Toner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Huffington Centre on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Anoop Narayanan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA.
| |
Collapse
|
4
|
Novak J, Nahacka Z, Oliveira GL, Brisudova P, Dubisova M, Dvorakova S, Miklovicova S, Dalecka M, Puttrich V, Grycova L, Magalhaes-Novais S, Correia CM, Levoux J, Stepanek L, Prochazka J, Svec D, Reguera DP, Lopez-Domenech G, Zobalova R, Sedlacek R, Terp MG, Gammage PA, Lansky Z, Kittler J, Oliveira PJ, Ditzel HJ, Berridge MV, Rodriguez AM, Boukalova S, Rohlena J, Neuzil J. The adaptor protein Miro1 modulates horizontal transfer of mitochondria in mouse melanoma models. Cell Rep 2025; 44:115154. [PMID: 39792553 DOI: 10.1016/j.celrep.2024.115154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 10/31/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Recent research has shown that mtDNA-deficient cancer cells (ρ0 cells) acquire mitochondria from tumor stromal cells to restore respiration, facilitating tumor formation. We investigated the role of Miro1, an adaptor protein involved in movement of mitochondria along microtubules, in this phenomenon. Inducible Miro1 knockout (Miro1KO) mice markedly delayed tumor formation after grafting ρ0 cancer cells. Miro1KO mice with fluorescently labeled mitochondria revealed that this delay was due to hindered mitochondrial transfer from the tumor stromal cells to grafted B16 ρ0 cells, which impeded recovery of mitochondrial respiration and tumor growth. Miro1KO led to the perinuclear accumulation of mitochondria and impaired mobility of the mitochondrial network. In vitro experiments revealed decreased association of mitochondria with microtubules, compromising mitochondrial transfer via tunneling nanotubes (TNTs) in mesenchymal stromal cells. Here we show the role of Miro1 in horizontal mitochondrial transfer in mouse melanoma models in vivo and its involvement with TNTs.
Collapse
Affiliation(s)
- Jaromir Novak
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Zuzana Nahacka
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic.
| | - Gabriela L Oliveira
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; NC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, Doctoral Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, 3060-197 Cantanhede, Portugal
| | - Petra Brisudova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Maria Dubisova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Sona Miklovicova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Marketa Dalecka
- Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Verena Puttrich
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Lenka Grycova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Silvia Magalhaes-Novais
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | | | - Jennifer Levoux
- Sorbonne University, Institute of Biology Paris-Seine, 75005 Paris, France
| | - Ludek Stepanek
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Jan Prochazka
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - David Svec
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - David Pajuelo Reguera
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Guillermo Lopez-Domenech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Radek Sedlacek
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Mikkel G Terp
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Payam A Gammage
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Josef Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Paulo J Oliveira
- NC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal
| | - Henrik J Ditzel
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
| | | | - Anne-Marie Rodriguez
- Sorbonne University, Institute of Biology Paris-Seine, 75005 Paris, France; University Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic; School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia; 1(st) Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic.
| |
Collapse
|
5
|
Chen M, Zhao D. Invisible Bridges: Unveiling the Role and Prospects of Tunneling Nanotubes in Cancer Therapy. Mol Pharm 2024; 21:5413-5429. [PMID: 39373242 PMCID: PMC11539062 DOI: 10.1021/acs.molpharmaceut.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Tunneling nanotubes (TNTs) are essential intercellular communication channels that significantly impact cancer pathophysiology, affecting tumor progression and resistance. This review methodically examines the mechanisms of TNTs formation, their structural characteristics, and their functional roles in material and signal transmission between cells. Highlighting their regulatory functions within the tumor microenvironment, TNTs are crucial for modulating cell survival, proliferation, drug resistance, and immune evasion. The review critically evaluates the therapeutic potential of TNTs, focusing on their applications in targeted drug delivery and gene therapy. It also proposes future research directions to thoroughly understand TNTs biogenesis, identify cell-specific molecular targets, and develop advanced technologies for the real-time monitoring of TNTs. By integrating insights from molecular biology, nanotechnology, and immunology, this review highlights the transformative potential of TNTs in advancing cancer treatment strategies.
Collapse
Affiliation(s)
- Meiru Chen
- Department
of Gastroenterology, The Second Hospital of Hebei Medical University,
Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei 050000, China
- Department
of Gastroenterology, Hengshui People’s
Hospital, Hengshui, Hebei 053000, China
| | - Dongqiang Zhao
- Department
of Gastroenterology, The Second Hospital of Hebei Medical University,
Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
6
|
Pichler V, Dalkilic L, Shoaib G, Shapira T, Rankine-Wilson L, Boudehen YM, Chao JD, Sexton D, Prieto M, Quon BS, Tocheva EI, Kremer L, Hsiao W, Av-Gay Y. The diversity of clinical Mycobacterium abscessus isolates in morphology, glycopeptidolipids and infection rates in a macrophage model. J Med Microbiol 2024; 73. [PMID: 39158416 DOI: 10.1099/jmm.0.001869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Introduction. Mycobacterium abscessus (MABS) is a pathogenic bacterium that can cause severe lung infections, particularly in individuals with cystic fibrosis. MABS colonies can exhibit either a smooth (S) or rough (R) morphotype, influenced by the presence or absence of glycopeptidolipids (GPLs) on their surface, respectively. Despite the clinical significance of these morphotypes, the relationship between GPL levels, morphotype and the pathogenesis of MABS infections remains poorly understood.Gap statement. The mechanisms and implications of GPL production and morphotypes in clinical MABS infections are unclear. There is a gap in understanding their correlation with infectivity and pathogenicity, particularly in patients with underlying lung disease.Aim. This study aimed to investigate the correlation between MABS morphology, GPL and infectivity by analysing strains from cystic fibrosis patients' sputum samples.Methodology. MABS was isolated from patient sputum samples and categorized by morphotype, GPL profile and replication rate in macrophages. A high-content ex vivo infection model using THP-1 cells assessed the infectivity of both clinical and laboratory strains.Results. Our findings revealed that around 50 % of isolates displayed mixed morphologies. GPL analysis confirmed a consistent relationship between GPL content and morphotype that was only found in smooth isolates. Across morphotype groups, no differences were observed in vitro, yet clinical R strains were observed to replicate at higher levels in the THP-1 infection model. Moreover, the proportion of infected macrophages was notably higher among clinical R strains compared to their S counterparts at 72 h post-infection. Clinical variants also infected THP-1 cells at significantly higher rates compared to laboratory strains, highlighting the limited translatability of lab strain infection data to clinical contexts.Conclusion. Our study confirmed the general correlation between morphotype and GPL levels in smooth strains yet unveiled more variability within morphotype groups than previously recognized, particularly during intracellular infection. As the R morphotype is the highest clinical concern, these findings contribute to the expanding knowledge base surrounding MABS infections, offering insights that can steer diagnostic methodologies and treatment approaches.
Collapse
Affiliation(s)
- Virginia Pichler
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- INSERM, IRIM, 34293 Montpellier, France
| | - Lara Dalkilic
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Ghazaleh Shoaib
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Tirosh Shapira
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Leah Rankine-Wilson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - Joseph D Chao
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Danielle Sexton
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Miguel Prieto
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Bradley S Quon
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - William Hsiao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Yossef Av-Gay
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Williams T, McCaw JM, Osborne JM. Spatial information allows inference of the prevalence of direct cell-to-cell viral infection. PLoS Comput Biol 2024; 20:e1012264. [PMID: 39042664 PMCID: PMC11296656 DOI: 10.1371/journal.pcbi.1012264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/02/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
The role of direct cell-to-cell spread in viral infections-where virions spread between host and susceptible cells without needing to be secreted into the extracellular environment-has come to be understood as essential to the dynamics of medically significant viruses like hepatitis C and influenza. Recent work in both the experimental and mathematical modelling literature has attempted to quantify the prevalence of cell-to-cell infection compared to the conventional free virus route using a variety of methods and experimental data. However, estimates are subject to significant uncertainty and moreover rely on data collected by inhibiting one mode of infection by either chemical or physical factors, which may influence the other mode of infection to an extent which is difficult to quantify. In this work, we conduct a simulation-estimation study to probe the practical identifiability of the proportion of cell-to-cell infection, using two standard mathematical models and synthetic data that would likely be realistic to obtain in the laboratory. We show that this quantity cannot be estimated using non-spatial data alone, and that the collection of data which describes the spatial structure of the infection is necessary to infer the proportion of cell-to-cell infection. Our results provide guidance for the design of relevant experiments and mathematical tools for accurately inferring the prevalence of cell-to-cell infection in in vitro and in vivo contexts.
Collapse
Affiliation(s)
- Thomas Williams
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | - James M. McCaw
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - James M. Osborne
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Iorio R, Petricca S, Mattei V, Delle Monache S. Horizontal mitochondrial transfer as a novel bioenergetic tool for mesenchymal stromal/stem cells: molecular mechanisms and therapeutic potential in a variety of diseases. J Transl Med 2024; 22:491. [PMID: 38790026 PMCID: PMC11127344 DOI: 10.1186/s12967-024-05047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 05/26/2024] Open
Abstract
Intercellular mitochondrial transfer (MT) is a newly discovered form of cell-to-cell signalling involving the active incorporation of healthy mitochondria into stressed/injured recipient cells, contributing to the restoration of bioenergetic profile and cell viability, reduction of inflammatory processes and normalisation of calcium dynamics. Recent evidence has shown that MT can occur through multiple cellular structures and mechanisms: tunneling nanotubes (TNTs), via gap junctions (GJs), mediated by extracellular vesicles (EVs) and other mechanisms (cell fusion, mitochondrial extrusion and migrasome-mediated mitocytosis) and in different contexts, such as under physiological (tissue homeostasis and stemness maintenance) and pathological conditions (hypoxia, inflammation and cancer). As Mesenchimal Stromal/ Stem Cells (MSC)-mediated MT has emerged as a critical regulatory and restorative mechanism for cell and tissue regeneration and damage repair in recent years, its potential in stem cell therapy has received increasing attention. In particular, the potential therapeutic role of MSCs has been reported in several articles, suggesting that MSCs can enhance tissue repair after injury via MT and membrane vesicle release. For these reasons, in this review, we will discuss the different mechanisms of MSCs-mediated MT and therapeutic effects on different diseases such as neuronal, ischaemic, vascular and pulmonary diseases. Therefore, understanding the molecular and cellular mechanisms of MT and demonstrating its efficacy could be an important milestone that lays the foundation for future clinical trials.
Collapse
Affiliation(s)
- Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Sabrina Petricca
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Vincenzo Mattei
- Dipartimento di Scienze della Vita, Della Salute e delle Professioni Sanitarie, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy.
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| |
Collapse
|
9
|
Mansueto G, Fusco G, Colonna G. A Tiny Viral Protein, SARS-CoV-2-ORF7b: Functional Molecular Mechanisms. Biomolecules 2024; 14:541. [PMID: 38785948 PMCID: PMC11118181 DOI: 10.3390/biom14050541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
This study presents the interaction with the human host metabolism of SARS-CoV-2 ORF7b protein (43 aa), using a protein-protein interaction network analysis. After pruning, we selected from BioGRID the 51 most significant proteins among 2753 proven interactions and 1708 interactors specific to ORF7b. We used these proteins as functional seeds, and we obtained a significant network of 551 nodes via STRING. We performed topological analysis and calculated topological distributions by Cytoscape. By following a hub-and-spoke network architectural model, we were able to identify seven proteins that ranked high as hubs and an additional seven as bottlenecks. Through this interaction model, we identified significant GO-processes (5057 terms in 15 categories) induced in human metabolism by ORF7b. We discovered high statistical significance processes of dysregulated molecular cell mechanisms caused by acting ORF7b. We detected disease-related human proteins and their involvement in metabolic roles, how they relate in a distorted way to signaling and/or functional systems, in particular intra- and inter-cellular signaling systems, and the molecular mechanisms that supervise programmed cell death, with mechanisms similar to that of cancer metastasis diffusion. A cluster analysis showed 10 compact and significant functional clusters, where two of them overlap in a Giant Connected Component core of 206 total nodes. These two clusters contain most of the high-rank nodes. ORF7b acts through these two clusters, inducing most of the metabolic dysregulation. We conducted a co-regulation and transcriptional analysis by hub and bottleneck proteins. This analysis allowed us to define the transcription factors and miRNAs that control the high-ranking proteins and the dysregulated processes within the limits of the poor knowledge that these sectors still impose.
Collapse
Affiliation(s)
- Gelsomina Mansueto
- Dipartimento di Scienze Mediche e Chirurgiche Avanzate, Università della Campania, L. Vanvitelli, 80138 Naples, Italy;
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Giovanni Colonna
- Medical Informatics AOU, Università della Campania, L. Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
10
|
Zhou C, Huang M, Wang S, Chu S, Zhang Z, Chen N. Tunneling nanotubes: The transport highway for astrocyte-neuron communication in the central nervous system. Brain Res Bull 2024; 209:110921. [PMID: 38447659 DOI: 10.1016/j.brainresbull.2024.110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Tunneling nanotubes (TNTs) have emerged as pivotal structures for intercellular communication, enabling the transfer of cellular components across distant cells. Their involvement in neurological disorders has attracted considerable scientific interest. This review delineates the functions of TNTs within the central nervous system, examining their role in the transmission of bioenergetic substrates, and signaling molecules, and their multifaceted impact on both physiological and pathological processes, with an emphasis on neurodegenerative diseases. The review highlights the selectivity and specificity of TNTs as dedicated pathways for intercellular cargo delivery, particularly under stress conditions that provoke increased TNT formation. The potential of TNTs as therapeutic targets is explored in depth. We pay particular attention to the interactions between astrocytes and neurons mediated by TNTs, which are fundamental to brain architecture and function. Dysfunctions in these interactions are implicated in the spread of protein aggregates and mitochondrial anomalies, contributing to the pathogenesis of neurodegenerative diseases. The review culminates with a synthesis of the current understanding of TNT biology and identifies research gaps, advocating for intensified exploration into TNTs as a promising therapeutic frontier.
Collapse
Affiliation(s)
- Cuixiang Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Min Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shasha Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Naihong Chen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
11
|
Chen Y, Xiao D, Li X. The role of mitochondrial transfer via tunneling nanotubes in the central nervous system: A review. Medicine (Baltimore) 2024; 103:e37352. [PMID: 38428884 PMCID: PMC10906627 DOI: 10.1097/md.0000000000037352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024] Open
Abstract
Tumour necrosis factor alpha-induced protein 2 (TNFAIP2) is a gene induced by tumor necrosis factor in endothelial cells. TNFAIP2 has important functions in physiological and pathological processes, including cell proliferation, adhesion, migration, angiogenesis, inflammation, tunneling nanotube (TNT) formation and tumorigenesis. Moreover, TNFAIP2 is the key factor in the formation of TNTs. TNTs are related to signal transduction between different cell types and are considered a novel means of cell-to-cell communication. Mesenchymal stem cells (MSCs) are pluripotent cells that exhibit self-renewal, multidirectional differentiation, paracrine function and immune-regulating ability. MSCs can transfer mitochondria through TNTs to improve the functions of target cells. This review revealed that TNFAIP2 promotes the formation of TNTs and that MSCs rely on TNTs for mitochondrial transfer to ameliorate cell dysfunction.
Collapse
Affiliation(s)
- Ye Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
12
|
Lv W, Li Z, Wang S, He J, Zhang L. A role for tunneling nanotubes in virus spread. Front Microbiol 2024; 15:1356415. [PMID: 38435698 PMCID: PMC10904554 DOI: 10.3389/fmicb.2024.1356415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Tunneling nanotubes (TNTs) are actin-rich intercellular conduits that mediate distant cell-to-cell communication and enable the transfer of various cargos, including proteins, organelles, and virions. They play vital roles in both physiological and pathological processes. In this review, we focus on TNTs in different types of viruses, including retroviruses such as HIV, HTLV, influenza A, herpesvirus, paramyxovirus, alphavirus and SARS-CoV-2. We summarize the viral proteins responsible for inducing TNT formation and explore how these virus-induced TNTs facilitate intercellular communication, thereby promoting viral spread. Furthermore, we highlight other virus infections that can induce TNT-like structures, facilitating the dissemination of viruses. Moreover, TNTs promote intercellular spread of certain viruses even in the presence of neutralizing antibodies and antiviral drugs, posing significant challenges in combating viral infections. Understanding the mechanisms underlying viral spread via TNTs provides valuable insights into potential drug targets and contributes to the development of effective therapies for viral infections.
Collapse
Affiliation(s)
- Weimiao Lv
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zichen Li
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shule Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Jingyi He
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
13
|
Bartak M, Bąska P, Chodkowski M, Tymińska B, Bańbura MW, Cymerys J. Neurons cytoskeletal architecture remodeling during the replication cycle of mouse coronavirus MHV-JHM: a morphological in vitro study. BMC Vet Res 2024; 20:18. [PMID: 38195523 PMCID: PMC10775625 DOI: 10.1186/s12917-023-03813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/10/2023] [Indexed: 01/11/2024] Open
Abstract
Nowadays, the population is still struggling with a post-COVID19 syndrome known as long COVID, including a broad spectrum of neurological problems. There is an urgent need for a better understanding and exploration of the mechanisms of coronavirus neurotropism. For this purpose, the neurotropic strain of mouse hepatitis virus (MHV-JHM) originating from the beta-coronavirus genus, the same as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been used. The role of the cytoskeleton during virus replication in neurons in vitro was determined to understand the mechanisms of MHV-JHM neuroinfection. We have described for the first time the changes of actin filaments during MHV-JHM infection. We also observed productive replication of MHV-JHM in neurons during 168 h p.i. and syncytial cytopathic effect. We discovered that the MHV-JHM strain modulated neuronal cytoskeleton during infection, which were manifested by: (i) condensation of actin filaments in the cortical layer of the cytoplasm, (ii) formation of microtubule cisternae structures containing viral antigen targeting viral replication site (iii) formation of tunneling nanotubes used by MHV-JHM for intercellular transport. Additionally, we demonstrated that the use of cytoskeletal inhibitors have reduced virus replication in neurons, especially noscapine and nocodazole, the microtubule shortening factors.
Collapse
Affiliation(s)
- Michalina Bartak
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., Warsaw, 02-786, Poland.
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8 St., Warsaw, 02-786, Poland
| | - Marcin Chodkowski
- Laboratory of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4 St., Warsaw, 01-063, Poland
| | - Beata Tymińska
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., Warsaw, 02-786, Poland
| | - Marcin W Bańbura
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., Warsaw, 02-786, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., Warsaw, 02-786, Poland.
| |
Collapse
|
14
|
Valdebenito S, Ajasin D, Valerdi K, Liu YR, Rao S, Eugenin EA. Mechanisms of Intracellular Communication in Cancer and Pathogen Spreading. Results Probl Cell Differ 2024; 73:301-326. [PMID: 39242384 DOI: 10.1007/978-3-031-62036-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Cell-to-cell interactions are essential for proper development, homeostasis, and complex syncytia/organ formation and function. Intercellular communication are mediated by multiple mechanisms including soluble mediators, adhesion molecules and specific mechanisms of cell to cell communication such as Gap junctions (GJ), tunneling nanotubes (TNT), and exosomes. Only recently, has been discovered that TNTs and exosomes enable the exchange of large signaling molecules, RNA, viral products, antigens, and organelles opening new avenues of research and therapeutic approaches. The focus of this review is to summarize these recent findings in physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - David Ajasin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Karl Valerdi
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | | | - Samvrit Rao
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA
| | - Eliseo A Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA.
| |
Collapse
|
15
|
Rey-Barroso J, Dufrançais O, Vérollet C. Tunneling Nanotubes in Myeloid Cells: Perspectives for Health and Infectious Diseases. Results Probl Cell Differ 2024; 73:419-434. [PMID: 39242388 DOI: 10.1007/978-3-031-62036-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Tunneling nanotubes (TNTs) are cellular connections, which represent a novel route for cell-to-cell communication. Strong evidence points to a role for TNTs in the intercellular transfer of signals, molecules, organelles, and pathogens, involving them in many cellular functions. In myeloid cells (e.g., monocytes/macrophages, dendritic cells, and osteoclasts), intercellular communication via TNT contributes to their differentiation and immune functions, by favoring material and pathogen transfer, as well as cell fusion. This chapter addresses the complexity of the definition and characterization of TNTs in myeloid cells, the different processes involved in their formation, their existence in vivo, and finally their function(s) in health and infectious diseases, with the example of HIV-1 infection.
Collapse
Affiliation(s)
- Javier Rey-Barroso
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Ophélie Dufrançais
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France.
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina.
| |
Collapse
|
16
|
Kapoor D, Sharma P, Saini A, Azhar E, Elste J, Kohlmeir EK, Shukla D, Tiwari V. Tunneling Nanotubes: The Cables for Viral Spread and Beyond. Results Probl Cell Differ 2024; 73:375-417. [PMID: 39242387 DOI: 10.1007/978-3-031-62036-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Multicellular organisms require cell-to-cell communication to maintain homeostasis and thrive. For cells to communicate, a network of filamentous, actin-rich tunneling nanotubes (TNTs) plays a pivotal role in facilitating efficient cell-to-cell communication by connecting the cytoplasm of adjacent or distant cells. Substantial documentation indicates that diverse cell types employ TNTs in a sophisticated and intricately organized fashion for both long and short-distance communication. Paradoxically, several pathogens, including viruses, exploit the structural integrity of TNTs to facilitate viral entry and rapid cell-to-cell spread. These pathogens utilize a "surfing" mechanism or intracellular transport along TNTs to bypass high-traffic cellular regions and evade immune surveillance and neutralization. Although TNTs are present across various cell types in healthy tissue, their magnitude is increased in the presence of viruses. This heightened induction significantly amplifies the role of TNTs in exacerbating disease manifestations, severity, and subsequent complications. Despite significant advancements in TNT research within the realm of infectious diseases, further studies are imperative to gain a precise understanding of TNTs' roles in diverse pathological conditions. Such investigations are essential for the development of novel therapeutic strategies aimed at leveraging TNT-associated mechanisms for clinical applications. In this chapter, we emphasize the significance of TNTs in the life cycle of viruses, showcasing the potential for a targeted approach to impede virus-host cell interactions during the initial stages of viral infections. This approach holds promise for intervention and prevention strategies.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Pankaj Sharma
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Akash Saini
- Hinsdale Central High School, Hinsdale, IL, USA
| | - Eisa Azhar
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - James Elste
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | | | - Deepak Shukla
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
17
|
Budinger D, Baker V, Heneka MT. Tunneling Nanotubes in the Brain. Results Probl Cell Differ 2024; 73:203-227. [PMID: 39242381 DOI: 10.1007/978-3-031-62036-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Tunneling nanotubes (TNTs) have emerged as intriguing structures facilitating intercellular communications across diverse cell types, which are integral to several biological processes, as well as participating in various disease progression. This review provides an in-depth analysis of TNTs, elucidating their structural characteristics and functional roles, with a particular focus on their significance within the brain environment and their implications in neurological and neurodegenerative disorders. We explore the interplay between TNTs and neurological diseases, offering potential mechanistic insights into disease progression, while also highlighting their potential as viable therapeutic targets. Additionally, we address the significant challenges associated with studying TNTs, from technical limitations to their investigation in complex biological systems. By addressing some of these challenges, this review aims to pave the way for further exploration into TNTs, establishing them as a central focus in advancing our understanding of neurodegenerative disorders.
Collapse
Affiliation(s)
- Dimitri Budinger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Vivian Baker
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.
| |
Collapse
|
18
|
Mysorekar I, Michita R, Tran L, Bark S, Kumar D, Toner S, Jose J, Narayanan A. Zika Virus NS1 Drives Tunneling Nanotube Formation for Mitochondrial Transfer, Enhanced Survival, Interferon Evasion, and Stealth Transmission in Trophoblasts. RESEARCH SQUARE 2023:rs.3.rs-3674059. [PMID: 38106210 PMCID: PMC10723532 DOI: 10.21203/rs.3.rs-3674059/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Zika virus (ZIKV) infection continues to pose a significant public health concern due to limited available preventive measures and treatments. ZIKV is unique among flaviviruses in its vertical transmission capacity (i.e., transmission from mother to fetus) yet the underlying mechanisms remain incompletely understood. Here, we show that both African and Asian lineages of ZIKV induce tunneling nanotubes (TNTs) in placental trophoblasts and multiple other mammalian cell types. Amongst investigated flaviviruses, only ZIKV strains trigger TNTs. We show that ZIKV-induced TNTs facilitate transfer of viral particles, proteins, and RNA to neighboring uninfected cells. ZIKV TNT formation is driven exclusively via its non-structural protein 1 (NS1); specifically, the N-terminal region (50 aa) of membrane-bound NS1 is necessary and sufficient for triggering TNT formation in host cells. Using affinity purification-mass spectrometry of cells infected with wild-type NS1 or non-TNT forming NS1 (pNS1ΔTNT) proteins, we found mitochondrial proteins are dominant NS1-interacting partners, consistent with the elevated mitochondrial mass we observed in infected trophoblasts. We demonstrate that mitochondria are siphoned via TNTs from healthy to ZIKV-infected cells, both homotypically and heterotypically, and inhibition of mitochondrial respiration reduced viral replication in trophoblast cells. Finally, ZIKV strains lacking TNT capabilities due to mutant NS1 elicited a robust antiviral IFN-λ 1/2/3 response, indicating ZIKV's TNT-mediated trafficking also allows ZIKV cell-cell transmission that is camouflaged from host defenses. Together, our findings identify a new stealth mechanism that ZIKV employs for intercellular spread among placental trophoblasts, evasion of antiviral interferon response, and the hijacking of mitochondria to augment its propagation and survival. Discerning the mechanisms of ZIKV intercellular strategies offers a basis for novel therapeutic developments targeting these interactions to limit its dissemination.
Collapse
|
19
|
Li X, Zhao Y, Teng QY, Zhang XH, Xue J, Zhang GZ. Methyltransferase K-D-K-E motif influences the intercellular transmission of Newcastle disease virus. Virulence 2023; 14:2186336. [PMID: 36919461 PMCID: PMC10026920 DOI: 10.1080/21505594.2023.2186336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
We previously demonstrated that two methyltransferase motifs, K-D-K-E and G-G-D, affect the pathogenicity of Newcastle disease virus (NDV) by regulating mRNA translation and virus transmission. Here, we compared the infectious centre area produced by the NDV strain, rSG10, and methyltransferase motifs mutant rSG10 strains in DF-1 cells. The results show that intercellular transmission was attenuated by methyltransferase motif mutations. We further determined the ability of mutant viruses to spread in cell-free and cell-to-cell situations. Cell-free transmission of rSG10-K1756A was not reduced, indicating that cell-to-cell transmission of rSG10-K1756A was decreased. Using a donor and target system, we demonstrated that NDV can spread from cell-to-cell directly. Furthermore, by comparing the protein distribution area of three strains when treated with 2% agar overlay, we found that rSG10-K1756A was defective in cell-to-cell transmission. Tunnelling nanotubes (TNTs) are an important mode for cell-to-cell transmission. Treatment of cells with cytochalasin D (CytoD) or nocodazole to inhibit the formation of TNTs, reduced protein levels in all strains, but rSG10-K1756A was the least affected. These results indicate that mutation of the K-D-K-E motif is likely to restricted the spread of NDV via TNTs. Finally, we observed that matrix protein (M) and fusion protein (F) promoted the formation of cellular extensions, which may be involved in the cell-to-cell spread of NDV. Our research reveals a novel mechanism by which methyltransferase motifs affect the cell-to-cell spread of NDV and provides insight into dissemination of paramyxoviruses.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qing-Yuan Teng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xue-Hui Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jia Xue
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guo-Zhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Djurkovic MA, Leavitt CG, Arnett E, Kriachun V, Martínez-Sobrido L, Titone R, Sherwood LJ, Hayhurst A, Schlesinger LS, Shtanko O. Ebola Virus Uses Tunneling Nanotubes as an Alternate Route of Dissemination. J Infect Dis 2023; 228:S522-S535. [PMID: 37723997 PMCID: PMC10651192 DOI: 10.1093/infdis/jiad400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
Ebola virus (EBOV) disease is marked by rapid virus replication and spread. EBOV enters the cell by macropinocytosis and replicates in the cytoplasm, and nascent virions egress from the cell surface to infect neighboring cells. Here, we show that EBOV uses an alternate route to disseminate: tunneling nanotubes (TNTs). TNTs, an actin-based long-range intercellular communication system, allows for direct exchange of cytosolic constituents between cells. Using live, scanning electron, and high-resolution quantitative 3-dimensional microscopy, we show that EBOV infection of primary human cells results in the enhanced formation of TNTs containing viral nucleocapsids. TNTs promote the intercellular transfer of nucleocapsids in the absence of live virus, and virus could replicate in cells devoid of entry factors after initial stall. Our studies suggest an alternate model of EBOV dissemination within the host, laying the groundwork for further investigations into the pathogenesis of filoviruses and, importantly, stimulating new areas of antiviral design.
Collapse
Affiliation(s)
- Marija A Djurkovic
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio
| | - Carson G Leavitt
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio
| | - Eusondia Arnett
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio
| | - Valeriia Kriachun
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio
| | - Luis Martínez-Sobrido
- Disease Prevention and Intervention, Texas Biomedical Research Institute, San Antonio
| | - Rossella Titone
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio
| | - Laura J Sherwood
- Disease Prevention and Intervention, Texas Biomedical Research Institute, San Antonio
| | - Andrew Hayhurst
- Disease Prevention and Intervention, Texas Biomedical Research Institute, San Antonio
| | - Larry S Schlesinger
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio
- Disease Prevention and Intervention, Texas Biomedical Research Institute, San Antonio
| |
Collapse
|
21
|
El-Maradny YA, Rubio-Casillas A, Mohamed KI, Uversky VN, Redwan EM. Intrinsic factors behind long-COVID: II. SARS-CoV-2, extracellular vesicles, and neurological disorders. J Cell Biochem 2023; 124:1466-1485. [PMID: 37801299 DOI: 10.1002/jcb.30486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
With the decline in the number of new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections, the World Health Organization announced the end of the SARS-CoV-2 pandemic. However, the repercussions of this viral pandemic may remain with us for a longer period of time, as it has remodeled the lives of humankind in many ways, including social and economic. Of course, its most important repercussions remain on the human health level. Long-coronavirus disease (COVID) or post-COVID is a state for which we do not have a concrete definition, a specific international classification of diseases Code, clear diagnostic tools, or well-known effective cures as of yet. In this second article from the Intrinsic Factors behind long-COVID Series, we try to link long-COVID symptoms with their causes, starting from the nervous system. Extracellular vesicles (ECVs) play very complex and ramified roles in the bodies of both healthy and not-healthy individuals. ECVs may facilitate the entry of many bioactive molecules and pathogens into the tissues and cells of the nervous system across the blood-brain barrier. Based on the size, quantity, and quality of their cargo, ECVs are directly proportional to the pathological condition and its severity through intertwined mechanisms that evoke inflammatory immune responses typically accompanied by pathological symptoms over variable time periods according to the type of these symptoms.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Egypt
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El-Alamein, Egypt
| | - Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán, Jalisco, Mexico
| | - Kareem I Mohamed
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El-Alamein, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Dagar S, Subramaniam S. Tunneling Nanotube: An Enticing Cell-Cell Communication in the Nervous System. BIOLOGY 2023; 12:1288. [PMID: 37886998 PMCID: PMC10604474 DOI: 10.3390/biology12101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
The field of neuroscience is rapidly progressing, continuously uncovering new insights and discoveries. Among the areas that have shown immense potential in research, tunneling nanotubes (TNTs) have emerged as a promising subject of study. These minute structures act as conduits for the transfer of cellular materials between cells, representing a mechanism of communication that holds great significance. In particular, the interplay facilitated by TNTs among various cell types within the brain, including neurons, astrocytes, oligodendrocytes, glial cells, and microglia, can be essential for the normal development and optimal functioning of this complex organ. The involvement of TNTs in neurodegenerative disorders, such as Alzheimer's disease, Huntington's disease, and Parkinson's disease, has attracted significant attention. These disorders are characterized by the progressive degeneration of neurons and the subsequent decline in brain function. Studies have predicted that TNTs likely play critical roles in the propagation and spread of pathological factors, contributing to the advancement of these diseases. Thus, there is a growing interest in understanding the precise functions and mechanisms of TNTs within the nervous system. This review article, based on our recent work on Rhes-mediated TNTs, aims to explore the functions of TNTs within the brain and investigate their implications for neurodegenerative diseases. Using the knowledge gained from studying TNTs could offer novel opportunities for designing targeted treatments that can stop the progression of neurodegenerative disorders.
Collapse
Affiliation(s)
- Sunayana Dagar
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
- The Scripps Research Institute, La Jolla, CA 92037, USA
- Norman Fixel Institute for Neurological Diseases, 130 Scripps Way, C323, Jupiter, FL 33458, USA
| |
Collapse
|
23
|
Williams T, McCaw JM, Osborne JM. Choice of spatial discretisation influences the progression of viral infection within multicellular tissues. J Theor Biol 2023; 573:111592. [PMID: 37558160 DOI: 10.1016/j.jtbi.2023.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
There has been an increasing recognition of the utility of models of the spatial dynamics of viral spread within tissues. Multicellular models, where cells are represented as discrete regions of space coupled to a virus density surface, are a popular approach to capture these dynamics. Conventionally, such models are simulated by discretising the viral surface and depending on the rate of viral diffusion and other considerations, a finer or coarser discretisation may be used. The impact that this choice may have on the behaviour of the system has not been studied. Here we demonstrate that under realistic parameter regimes - where viral diffusion is small enough to support the formation of familiar ring-shaped infection plaques - the choice of spatial discretisation of the viral surface can qualitatively change key model outcomes including the time scale of infection. Importantly, we show that the choice between implementing viral spread as a cell-scale process, or as a high-resolution converged PDE can generate distinct model outcomes, which raises important conceptual questions about the strength of assumptions underpinning the spatial structure of the model. We investigate the mechanisms driving these discretisation artefacts, the impacts they may have on model predictions, and provide guidance on the design and implementation of spatial and especially multicellular models of viral dynamics. We obtain our results using the simplest TIV construct for the viral dynamics, and therefore anticipate that the important effects we describe will also influence model predictions in more complex models of virus-cell-immune system interactions. This analysis will aid in the construction of models for robust and biologically realistic modelling and inference.
Collapse
Affiliation(s)
- Thomas Williams
- School of Mathematics and Statistics, University of Melbourne, Australia
| | - James M McCaw
- School of Mathematics and Statistics, University of Melbourne, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Australia
| | - James M Osborne
- School of Mathematics and Statistics, University of Melbourne, Australia.
| |
Collapse
|
24
|
Mohammadi B, Dua K, Saghafi M, Singh SK, Heydarifard Z, Zandi M. COVID-19-induced autoimmune thyroiditis: Exploring molecular mechanisms. J Med Virol 2023; 95:e29001. [PMID: 37515444 DOI: 10.1002/jmv.29001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/30/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) damages multiple organs, including the thyroid, by direct invasion and cell entry via angiotensin-converting enzyme 2 or indirectly by promoting excessive inflammation in the body. The immune system is a critical factor in antiviral immunity and disease progression. In the context of SARS-CoV-2 infection, the immune system may become overly activated, resulting in a shift from regulatory to effector responses, which may subsequently promote the development and progression of autoimmune diseases. The incidence of autoimmune thyroid diseases, such as subacute thyroiditis, Graves' disease, and Hashimoto's thyroiditis, increases in individuals with COVID-19 infection. This phenomenon may be attributed to aberrant responses of T-cell subtypes, the presence of autoantibodies, impaired regulatory cell function, and excessive production of inflammatory cytokines, namely interleukin (IL)-6, IL-1β, interferon-γ, and tumor necrosis factor-α. Therefore, insights into the immune responses involved in the development of autoimmune thyroid disease according to COVID-19 can help identify potential therapeutic approaches and guide the development of effective interventions to alleviate patients' symptoms.
Collapse
Affiliation(s)
- Bita Mohammadi
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
- Innovated Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia
- Faculty of Health, Australian Research Center in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mohammadreza Saghafi
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
- Innovated Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Center in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Zahra Heydarifard
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- School of Medicine, Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Wang J, Shang KT, Ma QH, Dong ZY, Chen YH, Yao YF. Herpes Simplex Virus Type 1 Infection Induces the Formation of Tunneling Nanotubes. Microorganisms 2023; 11:1916. [PMID: 37630476 PMCID: PMC10456791 DOI: 10.3390/microorganisms11081916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is human specific virus. The intercellular transmission of HSV-1 is essential in its pathogenesis. The tunneling nanotube (TNT), a new mode connecting distant cells, has been found to play an important role in the spread of various viruses like human immunodeficiency virus (HIV) and influenza virus. However, whether HSV-1 can be transmitted through TNTs has not been confirmed. The purpose of this study was to clarify this, and further to determine the effect of inhibiting the actin-related protein 2/3 (Arp2/3) complex on the intercellular transmission of HSV-1. A scanning electron microscope and fluorescence microscope detected the formation of TNTs between HSV-1 infected cells. Envelope glycoprotein D (gD) and envelope glycoprotein E (gE) of HSV-1 and viral particles were observed in TNTs. Treatment with CK666, an inhibitor of the Arp2/3 complex, reduced the number of TNTs by approximately 40-80%. At the same time, the DNA level of HSV-1 in cells and the number of plaque formation units (PFU) were also reduced by nearly 30%. These findings indicated that TNT contributes to HSV-1 transmission and that the inhibition of the Arp2/3 complex could impair HSV-1 transmission, which not only provides a novel insight into the transmission mode of HSV-1, but also a putative new antiviral target.
Collapse
Affiliation(s)
- Jie Wang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou 310016, China; (J.W.)
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou 310016, China
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou 310003, China
- Department of Ophthalmology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 219 Moganshan Road, Hangzhou 310005, China
| | - Kun-Te Shang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou 310016, China; (J.W.)
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou 310016, China
| | - Qiong-Hong Ma
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou 310016, China; (J.W.)
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou 310016, China
| | - Zhao-Ying Dong
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou 310016, China; (J.W.)
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou 310016, China
| | - Yi-Hong Chen
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou 310016, China; (J.W.)
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou 310016, China
| | - Yu-Feng Yao
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou 310016, China; (J.W.)
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou 310016, China
| |
Collapse
|
26
|
Li M, Peng D, Cao H, Yang X, Li S, Qiu HJ, Li LF. The Host Cytoskeleton Functions as a Pleiotropic Scaffold: Orchestrating Regulation of the Viral Life Cycle and Mediating Host Antiviral Innate Immune Responses. Viruses 2023; 15:1354. [PMID: 37376653 PMCID: PMC10301361 DOI: 10.3390/v15061354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Viruses are obligate intracellular parasites that critically depend on their hosts to initiate infection, complete replication cycles, and generate new progeny virions. To achieve these goals, viruses have evolved numerous elegant strategies to subvert and utilize different cellular machinery. The cytoskeleton is often one of the first components to be hijacked as it provides a convenient transport system for viruses to enter the cell and reach the site of replication. The cytoskeleton is an intricate network involved in controlling the cell shape, cargo transport, signal transduction, and cell division. The host cytoskeleton has complex interactions with viruses during the viral life cycle, as well as cell-to-cell transmission once the life cycle is completed. Additionally, the host also develops unique, cytoskeleton-mediated antiviral innate immune responses. These processes are also involved in pathological damages, although the comprehensive mechanisms remain elusive. In this review, we briefly summarize the functions of some prominent viruses in inducing or hijacking cytoskeletal structures and the related antiviral responses in order to provide new insights into the crosstalk between the cytoskeleton and viruses, which may contribute to the design of novel antivirals targeting the cytoskeleton.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
27
|
Valdebenito S, Ono A, Rong L, Eugenin EA. The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:169-186. [PMID: 37476291 PMCID: PMC10355284 DOI: 10.1515/nipt-2022-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 07/22/2023]
Abstract
Tunneling nanotubes (TNTs), also called cytonemes or tumor microtubes, correspond to cellular processes that enable long-range communication. TNTs are plasma membrane extensions that form tubular processes that connect the cytoplasm of two or more cells. TNTs are mostly expressed during the early stages of development and poorly expressed in adulthood. However, in disease conditions such as stroke, cancer, and viral infections such as HIV, TNTs proliferate, but their role is poorly understood. TNTs function has been associated with signaling coordination, organelle sharing, and the transfer of infectious agents such as HIV. Here, we describe the critical role and function of TNTs during HIV infection and reactivation, as well as the use of TNTs for cure strategies.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Akira Ono
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
28
|
Polyakova N, Kalashnikova M, Belyavsky A. Non-Classical Intercellular Communications: Basic Mechanisms and Roles in Biology and Medicine. Int J Mol Sci 2023; 24:ijms24076455. [PMID: 37047428 PMCID: PMC10095225 DOI: 10.3390/ijms24076455] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
In multicellular organisms, interactions between cells and intercellular communications form the very basis of the organism’s survival, the functioning of its systems, the maintenance of homeostasis and adequate response to the environment. The accumulated experimental data point to the particular importance of intercellular communications in determining the fate of cells, as well as their differentiation and plasticity. For a long time, it was believed that the properties and behavior of cells were primarily governed by the interactions of secreted or membrane-bound ligands with corresponding receptors, as well as direct intercellular adhesion contacts. In this review, we describe various types of other, non-classical intercellular interactions and communications that have recently come into the limelight—in particular, the broad repertoire of extracellular vesicles and membrane protrusions. These communications are mediated by large macromolecular structural and functional ensembles, and we explore here the mechanisms underlying their formation and present current data that reveal their roles in multiple biological processes. The effects mediated by these new types of intercellular communications in normal and pathological states, as well as therapeutic applications, are also discussed. The in-depth study of novel intercellular interaction mechanisms is required for the establishment of effective approaches for the control and modification of cell properties both for basic research and the development of radically new therapeutic strategies.
Collapse
Affiliation(s)
- Natalia Polyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Maria Kalashnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, 117485 Moscow, Russia
| | - Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, 117485 Moscow, Russia
- Correspondence:
| |
Collapse
|
29
|
Dong LF, Rohlena J, Zobalova R, Nahacka Z, Rodriguez AM, Berridge MV, Neuzil J. Mitochondria on the move: Horizontal mitochondrial transfer in disease and health. J Cell Biol 2023; 222:213873. [PMID: 36795453 PMCID: PMC9960264 DOI: 10.1083/jcb.202211044] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Mammalian genes were long thought to be constrained within somatic cells in most cell types. This concept was challenged recently when cellular organelles including mitochondria were shown to move between mammalian cells in culture via cytoplasmic bridges. Recent research in animals indicates transfer of mitochondria in cancer and during lung injury in vivo, with considerable functional consequences. Since these pioneering discoveries, many studies have confirmed horizontal mitochondrial transfer (HMT) in vivo, and its functional characteristics and consequences have been described. Additional support for this phenomenon has come from phylogenetic studies. Apparently, mitochondrial trafficking between cells occurs more frequently than previously thought and contributes to diverse processes including bioenergetic crosstalk and homeostasis, disease treatment and recovery, and development of resistance to cancer therapy. Here we highlight current knowledge of HMT between cells, focusing primarily on in vivo systems, and contend that this process is not only (patho)physiologically relevant, but also can be exploited for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Lan-Feng Dong
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,Lan-Feng Dong:
| | - Jakub Rohlena
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Renata Zobalova
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Zuzana Nahacka
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | | | | | - Jiri Neuzil
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic,Faculty of Science, Charles University, Prague, Czech Republic,First Faculty of Medicine, Charles University, Prague, Czech Republic,Correspondence to Jiri Neuzil: ,
| |
Collapse
|
30
|
Zhang P, Wu G, Zhang D, Lai WF. Mechanisms and strategies to enhance penetration during intravesical drug therapy for bladder cancer. J Control Release 2023; 354:69-79. [PMID: 36603810 DOI: 10.1016/j.jconrel.2023.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Bladder cancer (BCa) is one of the most prevalent cancers worldwide. The effectiveness of intravesical therapy for bladder cancer, however, is limited due to the short dwell time and the presence of permeation barriers. Considering the histopathological features of BCa, the permeation barriers for drugs to transport across consist of a mucus layer and a nether tumor physiological barrier. Mucoadhesive delivery systems or mucus-penetrating delivery systems are developed to enhance their retention in or penetration across the mucus layer, but delivery systems that are capable of mucoadhesion-to-mucopenetration transition are more efficient to deliver drugs across the mucus layer. For the tumor physiological barrier, delivery systems mainly rely on four types of penetration mechanisms to cross it. This review summarizes the classical and latest approaches to intravesical drug delivery systems to penetrate BCa.
Collapse
Affiliation(s)
- Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Guoqing Wu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Wing-Fu Lai
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Department of Food Science and Nutrition, Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
31
|
Barutta F, Bellini S, Kimura S, Hase K, Corbetta B, Corbelli A, Fiordaliso F, Bruno S, Biancone L, Barreca A, Papotti M, Hirsh E, Martini M, Gambino R, Durazzo M, Ohno H, Gruden G. Protective effect of the tunneling nanotube-TNFAIP2/M-sec system on podocyte autophagy in diabetic nephropathy. Autophagy 2023; 19:505-524. [PMID: 35659195 PMCID: PMC9851239 DOI: 10.1080/15548627.2022.2080382] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Podocyte injury leading to albuminuria is a characteristic feature of diabetic nephropathy (DN). Hyperglycemia and advanced glycation end products (AGEs) are major determinants of DN. However, the underlying mechanisms of podocyte injury remain poorly understood. The cytosolic protein TNFAIP2/M-Sec is required for tunneling nanotubes (TNTs) formation, which are membrane channels that transiently connect cells, allowing organelle transfer. Podocytes express TNFAIP2 and form TNTs, but the potential relevance of the TNFAIP2-TNT system in DN is unknown. We studied TNFAIP2 expression in both human and experimental DN and the renal effect of tnfaip2 deletion in streptozotocin-induced DN. Moreover, we explored the role of the TNFAIP2-TNT system in podocytes exposed to diabetes-related insults. TNFAIP2 was overexpressed by podocytes in both human and experimental DN and exposre of podocytes to high glucose and AGEs induced the TNFAIP2-TNT system. In diabetic mice, tnfaip2 deletion exacerbated albuminuria, renal function loss, podocyte injury, and mesangial expansion. Moreover, blockade of the autophagic flux due to lysosomal dysfunction was observed in diabetes-injured podocytes both in vitro and in vivo and exacerbated by tnfaip2 deletion. TNTs allowed autophagosome and lysosome exchange between podocytes, thereby ameliorating AGE-induced lysosomal dysfunction and apoptosis. This protective effect was abolished by tnfaip2 deletion, TNT inhibition, and donor cell lysosome damage. By contrast, Tnfaip2 overexpression enhanced TNT-mediated transfer and prevented AGE-induced autophagy and lysosome dysfunction and apoptosis. In conclusion, TNFAIP2 plays an important protective role in podocytes in the context of DN by allowing TNT-mediated autophagosome and lysosome exchange and may represent a novel druggable target.Abbreviations: AGEs: advanced glycation end products; AKT1: AKT serine/threonine kinase 1; AO: acridine orange; ALs: autolysosomes; APs: autophagosomes; BM: bone marrow; BSA: bovine serum albumin; CTSD: cathepsin D; DIC: differential interference contrast; DN: diabetic nephropathy; FSGS: focal segmental glomerulosclerosis; HG: high glucose; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; LMP: lysosomal membrane permeabilization; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; PI3K: phosphoinositide 3-kinase; STZ: streptozotocin; TNF: tumor necrosis factor; TNFAIP2: tumor necrosis factor, alpha-induced protein 2; TNTs: tunneling nanotubes; WT: wild type.
Collapse
Affiliation(s)
- F. Barutta
- Department of Medical Sciences, University of Turin, Turin, Italy,CONTACT F. Barutta Department of Medical Sciences, Corso Dogliotti 1410126, Turin, Italy
| | - S. Bellini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - S. Kimura
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - K. Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - B. Corbetta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - A. Corbelli
- Unit of Bioimaging, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - F. Fiordaliso
- Unit of Bioimaging, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - S. Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - L. Biancone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - A. Barreca
- Division of Pathology, Città della Salute e della Scienza Hospital, Turin, Italy
| | - M.G. Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - E. Hirsh
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - M. Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - R. Gambino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - M. Durazzo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - H. Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - G. Gruden
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Buffa V, Alvarez Vargas JR, Galy A, Spinozzi S, Rocca CJ. Hematopoietic stem and progenitors cells gene editing: Beyond blood disorders. Front Genome Ed 2023; 4:997142. [PMID: 36698790 PMCID: PMC9868335 DOI: 10.3389/fgeed.2022.997142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Lessons learned from decades-long practice in the transplantation of hematopoietic stem and progenitor cells (HSPCs) to treat severe inherited disorders or cancer, have set the stage for the current ex vivo gene therapies using autologous gene-modified hematopoietic stem and progenitor cells that have treated so far, hundreds of patients with monogenic disorders. With increased knowledge of hematopoietic stem and progenitor cell biology, improved modalities for patient conditioning and with the emergence of new gene editing technologies, a new era of hematopoietic stem and progenitor cell-based gene therapies is poised to emerge. Gene editing has the potential to restore physiological expression of a mutated gene, or to insert a functional gene in a precise locus with reduced off-target activity and toxicity. Advances in patient conditioning has reduced treatment toxicities and may improve the engraftment of gene-modified cells and specific progeny. Thanks to these improvements, new potential treatments of various blood- or immune disorders as well as other inherited diseases will continue to emerge. In the present review, the most recent advances in hematopoietic stem and progenitor cell gene editing will be reported, with a focus on how this approach could be a promising solution to treat non-blood-related inherited disorders and the mechanisms behind the therapeutic actions discussed.
Collapse
Affiliation(s)
- Valentina Buffa
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - José Roberto Alvarez Vargas
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Anne Galy
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Simone Spinozzi
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Céline J. Rocca
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France,*Correspondence: Céline J. Rocca,
| |
Collapse
|
33
|
Jahnke R, Matthiesen S, Zaeck LM, Finke S, Knittler MR. Chlamydia trachomatis Cell-to-Cell Spread through Tunneling Nanotubes. Microbiol Spectr 2022; 10:e0281722. [PMID: 36219107 PMCID: PMC9769577 DOI: 10.1128/spectrum.02817-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Tunneling nanotubes (TNTs) are transient cellular connections that consist of dynamic membrane protrusions. They play an important role in cell-to-cell communication and mediate the intercellular exchanges of molecules and organelles. TNTs can form between different cell types and may contribute to the spread of pathogens by serving as cytoplasmic corridors. We demonstrate that Chlamydia (C.) trachomatis-infected human embryonic kidney (HEK) 293 cells and other cells form TNT-like structures through which reticulate bodies (RBs) pass into uninfected cells. Observed TNTs have a life span of 1 to 5 h and contain microtubules, which are essential for chlamydial transfer. They can bridge distances of up to 50 μm between connecting neighboring cells. Consistent with the biological role for TNTs, we show that C. trachomatis spread also occurs under conditions in which the extracellular route of chlamydial entry into host cells is blocked. Based on our findings, we propose that TNTs play a critical role in the direct, cell-to-cell transmission of chlamydia. IMPORTANCE Intracellular bacterial pathogens often undergo a life cycle in which they parasitize infected host cells in membranous vacuoles. Two pathways have been described by which chlamydia can exit infected host cells: lytic cell destruction or exit via extrusion formation. Whether direct, cell-to-cell contact may also play a role in the spread of infection is unknown. Tunneling nanotubes (TNTs) interconnect the cytoplasm of adjacent cells to mediate efficient communication and the exchange of material between them. We used Chlamydia trachomatis and immortalized cells to analyze whether TNTs mediate bacterial transmission from an infected donor to uninfected acceptor cells. We show that chlamydia-infected cells build TNTs through which the intracellular reticulate bodies (RBs) of the chlamydia can pass into uninfected neighboring cells. Our study contributes to the understanding of the function of TNTs in the cell-to-cell transmission of intracellular pathogens and provides new insights into the strategies by which chlamydia spreads among multicellular tissues.
Collapse
Affiliation(s)
- Rico Jahnke
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald, Germany
| | - Svea Matthiesen
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald, Germany
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald, Germany
| | - Michael R. Knittler
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald, Germany
| |
Collapse
|
34
|
Suzuki R, Ogiya D, Ogawa Y, Kawada H, Ando K. Targeting CAM-DR and Mitochondrial Transfer for the Treatment of Multiple Myeloma. Curr Oncol 2022; 29:8529-8539. [PMID: 36354732 PMCID: PMC9689110 DOI: 10.3390/curroncol29110672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The prognosis of patients with multiple myeloma (MM) has improved dramatically with the introduction of new therapeutic drugs, but the disease eventually becomes drug-resistant, following an intractable and incurable course. A myeloma niche (MM niche) develops in the bone marrow microenvironment and plays an important role in the drug resistance mechanism of MM. In particular, adhesion between MM cells and bone marrow stromal cells mediated by adhesion molecules induces cell adhesion-mediated drug resistance (CAM-DR). Analyses of the role of mitochondria in cancer cells, including MM cells, has revealed that the mechanism leading to drug resistance involves exchange of mitochondria between cells (mitochondrial transfer) via tunneling nanotubes (TNTs) within the MM niche. Here, we describe the discovery of these drug resistance mechanisms and the identification of promising therapeutic agents primarily targeting CAM-DR, mitochondrial transfer, and TNTs.
Collapse
Affiliation(s)
- Rikio Suzuki
- Correspondence: ; Tel.: +81-463-93-1121; Fax: +81-463-92-4511
| | | | | | | | | |
Collapse
|
35
|
Han M, Woottum M, Mascarau R, Vahlas Z, Verollet C, Benichou S. Mechanisms of HIV-1 cell-to-cell transfer to myeloid cells. J Leukoc Biol 2022; 112:1261-1271. [PMID: 35355323 DOI: 10.1002/jlb.4mr0322-737r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
In addition to CD4+ T lymphocytes, cells of the myeloid lineage such as macrophages, dendritic cells (DCs), and osteoclasts (OCs) are emerging as important target cells for HIV-1, as they likely participate in all steps of pathogenesis, including sexual transmission and early virus dissemination in both lymphoid and nonlymphoid tissues where they can constitute persistent virus reservoirs. At least in vitro, these myeloid cells are poorly infected by cell-free viral particles. In contrast, intercellular virus transmission through direct cell-to-cell contacts may be a predominant mode of virus propagation in vivo leading to productive infection of these myeloid target cells. HIV-1 cell-to-cell transfer between CD4+ T cells mainly through the formation of the virologic synapse, or from infected macrophages or dendritic cells to CD4+ T cell targets, have been extensively described in vitro. Recent reports demonstrate that myeloid cells can be also productively infected through virus homotypic or heterotypic cell-to-cell transfer between macrophages or from virus-donor-infected CD4+ T cells, respectively. These modes of infection of myeloid target cells lead to very efficient spreading in these poorly susceptible cell types. Thus, the goal of this review is to give an overview of the different mechanisms reported in the literature for cell-to-cell transfer and spreading of HIV-1 in myeloid cells.
Collapse
Affiliation(s)
- Mingyu Han
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| | - Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Zoï Vahlas
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Serge Benichou
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| |
Collapse
|
36
|
Chaudhary V. Prospects of green nanotechnology for efficient management of neurodegenerative diseases. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1055708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Current theranostics for neurodegenerative diseases (NDD) management are majorly symptomatic due to a lack of identification of early-stage biomarkers and the inefficiency of drugs to penetrate through the blood-brain barrier. Recently, the Neuro-nanotechnology interface has emerged as a potential strategy for diagnosis, monitoring, and treatment of NDDs owing to smaller particle size, high specific surface area, tunable physicochemical attributes and rich surface functionalities. However, toxicity and biocompatibility are two significant challenges restricting their commercial prospect in NDD management. On the contrary, green nanosystems fabricated using plant extracts, microorganisms, biome-based precursors, repurposed-byproducts, exosomes, and protein-based bio-nanomaterials are economical, eco-friendly, biocompatible and renewable due to the abundance of biodiversity. This prospect explores the novel and cutting-edge interface of green nanosystems and NDDs for developing diagnostic and implantable devices, targeted drug delivery strategies, surgical prostheses, therapeutics, treatment, nanoscaffolds for neurogeneration, and immunity development. Besides, it discusses the challenges, alternate solutions and advanced prospects of green nanosystems with the integration of modern-age technologies for the development of sustainable green Neuro-nanotechnology for efficient management of NDDs.
Collapse
|
37
|
Iba T, Levi M, Levy JH. Intracellular communication and immunothrombosis in sepsis. J Thromb Haemost 2022; 20:2475-2484. [PMID: 35979601 PMCID: PMC9804233 DOI: 10.1111/jth.15852] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 01/05/2023]
Abstract
Inflammation and coagulation are the critical responses to infection that include leukocytes, platelets, and vascular endothelial cells responding in concert to eradicate the invading pathogen. In sepsis, a variety of cell surface receptors, including toll-like receptors, Fcγ-receptors, G-protein-coupled receptors, and adhesion receptors, detect the pathogens and elicit thromboinflammatory responses. Concurrently, the molecular patterns released from host damaged cells accelerate the immune responses through binding to the same pattern recognition receptors. Cytokines, chemokines, and extracellular vesicles are important mediators for amplifying the responses to distant cells as part of the systemic response to infections. At the same time, cells communicate with each other via direct contact, adhesion molecules, paracrine mediators, and tunneling nanotubes, which are important for regulating inflammation and thrombus formation. Despite increasing attention to immunothrombosis in sepsis, these close communication systems are less understood but play a critical role in host defense mechanisms. In this review, cellular activation and direct intercellular communication systems in sepsis with a focus on the coagulation response will be considered.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster MedicineJuntendo University Graduate School of MedicineTokyoJapan
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Center, the Netherlands and Department of MedicineUniversity College London Hospitals NHS Foundation Trust, and Cardio‐metabolic Programme‐NIHR UCLH/UCL BRC LondonLondonUK
| | - Jerrold H. Levy
- Department of Anesthesiology, Critical Care, and SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
38
|
Ultrastructural analysis and three-dimensional reconstruction of cellular structures involved in SARS-CoV-2 spread. Histochem Cell Biol 2022; 159:47-60. [PMID: 36175690 PMCID: PMC9521873 DOI: 10.1007/s00418-022-02152-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
Abstract
The cytoskeleton not only deals with numerous interaction and communication mechanisms at the cellular level but also has a crucial role in the viral infection cycle. Although numerous aspects of SARS-CoV-2 virus interaction at the cellular level have been widely studied, little has been reported about the structural and functional response of the cytoskeleton. This work aims to characterize, at the ultrastructural level, the modifications in the cytoskeleton of infected cells, namely, its participation in filopodia formation, the junction of these nanostructures forming bridges, the viral surfing, and the generation of tunnel effect nanotubes (TNT) as probable structures of intracellular viral dissemination. The three-dimensional reconstruction from the obtained micrographs allowed observing viral propagation events between cells in detail for the first time. More profound knowledge about these cell-cell interaction models in the viral spread mechanisms could lead to a better understanding of the clinical manifestations of COVID-19 disease and to find new therapeutic strategies.
Collapse
|
39
|
Chelladurai R, Debnath K, Jana NR, Basu JK. Spontaneous formation and growth kinetics of lipid nanotubules induced by passive nanoparticles. SOFT MATTER 2022; 18:7082-7090. [PMID: 36043324 DOI: 10.1039/d2sm00900e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lipid nanotubules (LNTs) are conduits that form on the membranes of cells and organelles, and they are ubiquitous in all forms of life from archaea and bacteria to plants and mammals. The formation, shape and dynamics of these LNTs are critical for cellular functions, supporting the transport of myriad cellular cargoes as well as communication within and between cells, and they are also widely believed to be responsible for exploitation of host cells by pathogens for the spread of infection and diseases. In vitro kinetic control of LNT formation can considerably enhance the scope of utilization of these structures for disease control and therapy. Here we report a new paradigm for spontaneous lipid nanotubulation, capturing the dynamical regimes of growth, stabilization and retraction of the tubes through the binding of synthetic nanoparticles on supported lipid bilayers (SLBs). The tubulation is determined by the spontaneous binding-unbinding of nanoparticles on the LNTs. The presented methodology could be used to rectify malfunctioning cellular tubules or to prevent the pathogenic spread of diseases through inhibition of cell-to-cell nanotubule formation.
Collapse
Affiliation(s)
| | - Koushik Debnath
- Indian Association for the Cultivation of Science, Kolkata, India
| | - Nikhil R Jana
- Indian Association for the Cultivation of Science, Kolkata, India
| | | |
Collapse
|
40
|
Luchetti F, Carloni S, Nasoni MG, Reiter RJ, Balduini W. Tunneling nanotubes and mesenchymal stem cells: New insights into the role of melatonin in neuronal recovery. J Pineal Res 2022; 73:e12800. [PMID: 35419879 PMCID: PMC9540876 DOI: 10.1111/jpi.12800] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
Efficient cell-to-cell communication is essential for tissue development, homeostasis, and the maintenance of cellular functions after injury. Tunneling nanotubes (TNTs) have emerged as a new important method of cell-to-cell communication. TNTs are primarily established between stressed and unstressed cells and can transport a variety of cellular components. Mitochondria are important trafficked entities through TNTs. Transcellular mitochondria transfer permits the incorporation of healthy mitochondria into the endogenous network of recipient cells, changing the bioenergetic profile and other functional properties of the recipient and may allow the recipient cells to recuperate from apoptotic processes and return to a normal operating state. Mesenchymal cells (MSCs) can form TNTs and transfer mitochondria and other constituents to target cells. This occurs under both physiological and pathological conditions, leading to changes in cellular energy metabolism and functions. This review summarizes the newly described capacity of melatonin to improve mitochondrial fusion/fission dynamics and promote TNT formation. This new evidence suggests that melatonin's protective effects could be attributed to its ability to prevent mitochondrial damage in injured cells, reduce senescence, and promote anastasis, a natural cell recovery phenomenon that rescues cells from the brink of death. The modulation of these new routes of intercellular communication by melatonin could play a key role in increasing the therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Silvia Carloni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Maria G. Nasoni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Russel J. Reiter
- Department of Cell Systems and AnatomyLong School of Medicine, UT HealthSan AntonioTexasUSA
| | - Walter Balduini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| |
Collapse
|
41
|
Nahacka Z, Novak J, Zobalova R, Neuzil J. Miro proteins and their role in mitochondrial transfer in cancer and beyond. Front Cell Dev Biol 2022; 10:937753. [PMID: 35959487 PMCID: PMC9358137 DOI: 10.3389/fcell.2022.937753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are organelles essential for tumor cell proliferation and metastasis. Although their main cellular function, generation of energy in the form of ATP is dispensable for cancer cells, their capability to drive their adaptation to stress originating from tumor microenvironment makes them a plausible therapeutic target. Recent research has revealed that cancer cells with damaged oxidative phosphorylation import healthy (functional) mitochondria from surrounding stromal cells to drive pyrimidine synthesis and cell proliferation. Furthermore, it has been shown that energetically competent mitochondria are fundamental for tumor cell migration, invasion and metastasis. The spatial positioning and transport of mitochondria involves Miro proteins from a subfamily of small GTPases, localized in outer mitochondrial membrane. Miro proteins are involved in the structure of the MICOS complex, connecting outer and inner-mitochondrial membrane; in mitochondria-ER communication; Ca2+ metabolism; and in the recycling of damaged organelles via mitophagy. The most important role of Miro is regulation of mitochondrial movement and distribution within (and between) cells, acting as an adaptor linking organelles to cytoskeleton-associated motor proteins. In this review, we discuss the function of Miro proteins in various modes of intercellular mitochondrial transfer, emphasizing the structure and dynamics of tunneling nanotubes, the most common transfer modality. We summarize the evidence for and propose possible roles of Miro proteins in nanotube-mediated transfer as well as in cancer cell migration and metastasis, both processes being tightly connected to cytoskeleton-driven mitochondrial movement and positioning.
Collapse
Affiliation(s)
- Zuzana Nahacka
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Zuzana Nahacka, ; Jiri Neuzil,
| | - Jaromir Novak
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Renata Zobalova
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Jiri Neuzil
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
- *Correspondence: Zuzana Nahacka, ; Jiri Neuzil,
| |
Collapse
|
42
|
Pepe A, Pietropaoli S, Vos M, Barba-Spaeth G, Zurzolo C. Tunneling nanotubes provide a route for SARS-CoV-2 spreading. SCIENCE ADVANCES 2022; 8:eabo0171. [PMID: 35857849 PMCID: PMC9299553 DOI: 10.1126/sciadv.abo0171] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/08/2022] [Indexed: 05/10/2023]
Abstract
Neurological manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection represent a major issue in long coronavirus disease. How SARS-CoV-2 gains access to the brain and how infection leads to neurological symptoms are not clear because the principal means of viral entry by endocytosis, the angiotensin-converting enzyme 2 receptor, are barely detectable in the brain. We report that human neuronal cells, nonpermissive to infection through the endocytic pathway, can be infected when cocultured with permissive infected epithelial cells. SARS-CoV-2 induces the formation of tunneling nanotubes (TNTs) and exploits this route to spread to uninfected cells. In cellulo correlative fluorescence and cryo-electron tomography reveal that SARS-CoV-2 is associated with TNTs between permissive cells. Furthermore, multiple vesicular structures such as double-membrane vesicles, sites of viral replication, are observed inside TNTs between permissive and nonpermissive cells. Our data highlight a previously unknown mechanism of SARS-CoV-2 spreading, likely used as a route to invade nonpermissive cells and potentiate infection in permissive cells.
Collapse
Affiliation(s)
- Anna Pepe
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Université Paris Cité, 75015 Paris, France
| | - Stefano Pietropaoli
- Unité de Virologie Structurale, CNRS UMR 3569 Département de Virologie, Institut Pasteur 28 rue du Docteur Roux, Université Paris Cité, 75015 Paris, France
- Catalent Pharma Solutions, Strada Provinciale 12 Casilina, 41, 03012 Anagni, Frosinone, Italy
| | - Matthijn Vos
- Plateforme Technologique Nanoimagerie Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Giovanna Barba-Spaeth
- Unité de Virologie Structurale, CNRS UMR 3569 Département de Virologie, Institut Pasteur 28 rue du Docteur Roux, Université Paris Cité, 75015 Paris, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
43
|
Rubio-Casillas A, Redwan EM, Uversky VN. SARS-CoV-2: A Master of Immune Evasion. Biomedicines 2022; 10:1339. [PMID: 35740361 PMCID: PMC9220273 DOI: 10.3390/biomedicines10061339] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
Viruses and their hosts have coevolved for a long time. This coevolution places both the pathogen and the human immune system under selective pressure; on the one hand, the immune system has evolved to combat viruses and virally infected cells, while viruses have developed sophisticated mechanisms to escape recognition and destruction by the immune system. SARS-CoV-2, the pathogen that is causing the current COVID-19 pandemic, has shown a remarkable ability to escape antibody neutralization, putting vaccine efficacy at risk. One of the virus's immune evasion strategies is mitochondrial sabotage: by causing reactive oxygen species (ROS) production, mitochondrial physiology is impaired, and the interferon antiviral response is suppressed. Seminal studies have identified an intra-cytoplasmatic pathway for viral infection, which occurs through the construction of tunneling nanotubes (TNTs), hence enhancing infection and avoiding immune surveillance. Another method of evading immune monitoring is the disruption of the antigen presentation. In this scenario, SARS-CoV-2 infection reduces MHC-I molecule expression: SARS-CoV-2's open reading frames (ORF 6 and ORF 8) produce viral proteins that specifically downregulate MHC-I molecules. All of these strategies are also exploited by other viruses to elude immune detection and should be studied in depth to improve the effectiveness of future antiviral treatments. Compared to the Wuhan strain or the Delta variant, Omicron has developed mutations that have impaired its ability to generate syncytia, thus reducing its pathogenicity. Conversely, other mutations have allowed it to escape antibody neutralization and preventing cellular immune recognition, making it the most contagious and evasive variant to date.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán 48900, Jalisco, Mexico
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
44
|
Couteaudier M, Montange T, Njouom R, Bilounga-Ndongo C, Gessain A, Buseyne F. Plasma antibodies from humans infected with zoonotic simian foamy virus do not inhibit cell-to-cell transmission of the virus despite binding to the surface of infected cells. PLoS Pathog 2022; 18:e1010470. [PMID: 35605011 PMCID: PMC9166401 DOI: 10.1371/journal.ppat.1010470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/03/2022] [Accepted: 03/25/2022] [Indexed: 01/23/2023] Open
Abstract
Zoonotic simian foamy viruses (SFV) establish lifelong infection in their human hosts. Despite repeated transmission of SFV from nonhuman primates to humans, neither transmission between human hosts nor severe clinical manifestations have been reported. We aim to study the immune responses elicited by chronic infection with this retrovirus and previously reported that SFV-infected individuals generate potent neutralizing antibodies that block cell infection by viral particles. Here, we assessed whether human plasma antibodies block SFV cell-to-cell transmission and present the first description of cell-to-cell spreading of zoonotic gorilla SFV. We set-up a microtitration assay to quantify the ability of plasma samples from 20 Central African individuals infected with gorilla SFV and 9 uninfected controls to block cell-associated transmission of zoonotic gorilla SFV strains. We used flow-based cell cytometry and fluorescence microscopy to study envelope protein (Env) localization and the capacity of plasma antibodies to bind to infected cells. We visualized the cell-to-cell spread of SFV by real-time live imaging of a GFP-expressing prototype foamy virus (CI-PFV) strain. None of the samples neutralized cell-associated SFV infection, despite the inhibition of cell-free virus. We detected gorilla SFV Env in the perinuclear region, cytoplasmic vesicles and at the cell surface. We found that plasma antibodies bind to Env located at the surface of cells infected with primary gorilla SFV strains. Extracellular labeling of SFV proteins by human plasma samples showed patchy staining at the base of the cell and dense continuous staining at the cell apex, as well as staining in the intercellular connections that formed when previously connected cells separated from each other. In conclusion, SFV-specific antibodies from infected humans do not block cell-to-cell transmission, at least in vitro, despite their capacity to bind to the surface of infected cells. Trial registration: Clinical trial registration: www.clinicaltrials.gov, https://clinicaltrials.gov/ct2/show/NCT03225794/. Foamy viruses are the oldest known retroviruses and have been mostly described to be nonpathogenic in their natural animal hosts. Simian foamy viruses (SFVs) can be transmitted to humans, in whom they establish persistent infection, as have the simian viruses that led to the emergence of two major human pathogens, human immunodeficiency virus type 1 (HIV-1) and human T lymphotropic virus type 1 (HTLV-1). Such cross-species transmission of SFV is ongoing in many parts of the world where humans have contact with nonhuman primates. We previously showed high titers of neutralizing antibodies in the plasma of most SFV-infected individuals. These antiviral antibodies can inhibit cell-free virus entry. However, SFV efficiently spread from one cell to another. Here, we demonstrate that plasma antibodies do not block such cell-to-cell transmission, despite their capacity to bind to the surface of infected cells. In addition, we document for the first time the cell-to-cell spread of primary zoonotic gorilla SFV.
Collapse
Affiliation(s)
- Mathilde Couteaudier
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Thomas Montange
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | | | | | - Antoine Gessain
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Florence Buseyne
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
- * E-mail:
| |
Collapse
|
45
|
Driscoll J, Gondaliya P, Patel T. Tunneling Nanotube-Mediated Communication: A Mechanism of Intercellular Nucleic Acid Transfer. Int J Mol Sci 2022; 23:5487. [PMID: 35628298 PMCID: PMC9143920 DOI: 10.3390/ijms23105487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/19/2022] Open
Abstract
Tunneling nanotubes (TNTs) are thin, F-actin-based membranous protrusions that connect distant cells and can provide e a novel mechanism for intercellular communication. By establishing cytoplasmic continuity between interconnected cells, TNTs enable the bidirectional transfer of nuclear and cytoplasmic cargo, including organelles, nucleic acids, drugs, and pathogenic molecules. TNT-mediated nucleic acid transfer provides a unique opportunity for donor cells to directly alter the genome, transcriptome, and metabolome of recipient cells. TNTs have been reported to transport DNA, mitochondrial DNA, mRNA, viral RNA, and non-coding RNAs, such as miRNA and siRNA. This mechanism of transfer is observed in physiological as well as pathological conditions, and has been implicated in the progression of disease. Herein, we provide a concise overview of TNTs' structure, mechanisms of biogenesis, and the functional effects of TNT-mediated intercellular transfer of nucleic acid cargo. Furthermore, we highlight the potential translational applications of TNT-mediated nucleic acid transfer in cancer, immunity, and neurological diseases.
Collapse
Affiliation(s)
| | | | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (J.D.); (P.G.)
| |
Collapse
|
46
|
Fereydouni M, Ahani E, Desai P, Motaghed M, Dellinger A, Metcalfe DD, Yin Y, Lee SH, Kafri T, Bhatt AP, Dellinger K, Kepley CL. Human Tumor Targeted Cytotoxic Mast Cells for Cancer Immunotherapy. Front Oncol 2022; 12:871390. [PMID: 35574362 PMCID: PMC9097604 DOI: 10.3389/fonc.2022.871390] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
The diversity of autologous cells being used and investigated for cancer therapy continues to increase. Mast cells (MCs) are tissue cells that contain a unique set of anti-cancer mediators and are found in and around tumors. We sought to exploit the anti-tumor mediators in MC granules to selectively target them to tumor cells using tumor specific immunoglobin E (IgE) and controllably trigger release of anti-tumor mediators upon tumor cell engagement. We used a human HER2/neu-specific IgE to arm human MCs through the high affinity IgE receptor (FcεRI). The ability of MCs to bind to and induce apoptosis of HER2/neu-positive cancer cells in vitro and in vivo was assessed. The interactions between MCs and cancer cells were investigated in real time using confocal microscopy. The mechanism of action using cytotoxic MCs was examined using gene array profiling. Genetically manipulating autologous MC to assess the effects of MC-specific mediators have on apoptosis of tumor cells was developed using siRNA. We found that HER2/neu tumor-specific IgE-sensitized MCs bound, penetrated, and killed HER2/neu-positive tumor masses in vitro. Tunneling nanotubes formed between MCs and tumor cells are described that parallel tumor cell apoptosis. In solid tumor, human breast cancer (BC) xenograft mouse models, infusion of HER2/neu IgE-sensitized human MCs co-localized to BC cells, decreased tumor burden, and prolonged overall survival without indications of toxicity. Gene microarray of tumor cells suggests a dependence on TNF and TGFβ signaling pathways leading to apoptosis. Knocking down MC-released tryptase did not affect apoptosis of cancer cells. These studies suggest MCs can be polarized from Type I hypersensitivity-mediating cells to cytotoxic cells that selectively target tumor cells and specifically triggered to release anti-tumor mediators. A strategy to investigate which MC mediators are responsible for the observed tumor killing is described so that rational decisions can be made in the future when selecting which mediators to target for deletion or those that could further polarize them to cytotoxic MC by adding other known anti-tumor agents. Using autologous human MC may provide further options for cancer therapeutics that offers a unique anti-cancer mechanism of action using tumor targeted IgE’s.
Collapse
Affiliation(s)
- Mohammad Fereydouni
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Elnaz Ahani
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical (AT) State University, Greensboro, NC, United States
| | - Parth Desai
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Mona Motaghed
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical (AT) State University, Greensboro, NC, United States
| | - Anthony Dellinger
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yuzhi Yin
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sung Hyun Lee
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tal Kafri
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Aadra P. Bhatt
- Lineberger Comprehensive Cancer Center, and the Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical (AT) State University, Greensboro, NC, United States
| | - Christopher L. Kepley
- Department of Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
- *Correspondence: Christopher L. Kepley,
| |
Collapse
|
47
|
Merolli A, Kasaei L, Ramasamy S, Kolloli A, Kumar R, Subbian S, Feldman LC. An intra-cytoplasmic route for SARS-CoV-2 transmission unveiled by Helium-ion microscopy. Sci Rep 2022; 12:3794. [PMID: 35260703 PMCID: PMC8904465 DOI: 10.1038/s41598-022-07867-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/23/2022] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 virions enter the host cells by docking their spike glycoproteins to the membrane-bound Angiotensin Converting Enzyme 2. After intracellular assembly, the newly formed virions are released from the infected cells to propagate the infection, using the extra-cytoplasmic ACE2 docking mechanism. However, the molecular events underpinning SARS-CoV-2 transmission between host cells are not fully understood. Here, we report the findings of a scanning Helium-ion microscopy study performed on Vero E6 cells infected with mNeonGreen-expressing SARS-CoV-2. Our data reveal, with unprecedented resolution, the presence of: (1) long tunneling nanotubes that connect two or more host cells over submillimeter distances; (2) large scale multiple cell fusion events (syncytia); and (3) abundant extracellular vesicles of various sizes. Taken together, these ultrastructural features describe a novel intra-cytoplasmic connection among SARS-CoV-2 infected cells that may act as an alternative route of viral transmission, disengaged from the well-known extra-cytoplasmic ACE2 docking mechanism. Such route may explain the elusiveness of SARS-CoV-2 to survive from the immune surveillance of the infected host.
Collapse
Affiliation(s)
- Antonio Merolli
- Department of Physics and Astronomy, School of Arts and Sciences, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, 08854, USA. .,Department Physics and Astronomy, Rutgers University, DLS Building, 145 Bevier Road, Room 108, Piscataway, NJ, 08854, USA.
| | - Leila Kasaei
- Department of Physics and Astronomy, School of Arts and Sciences, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Santhamani Ramasamy
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Afsal Kolloli
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Ranjeet Kumar
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Leonard C Feldman
- Department of Physics and Astronomy, School of Arts and Sciences, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
48
|
Kloc M, Uosef A, Wosik J, Kubiak JZ, Ghobrial RM. Virus interactions with the actin cytoskeleton-what we know and do not know about SARS-CoV-2. Arch Virol 2022; 167:737-749. [PMID: 35102456 PMCID: PMC8803281 DOI: 10.1007/s00705-022-05366-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton and actin-dependent molecular and cellular events are responsible for the organization of eukaryotic cells and their functions. Viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), depend on host cell organelles and molecular components for cell entry and propagation. Thus, it is not surprising that they also interact at many levels with the actin cytoskeleton of the host. There have been many studies on how different viruses reconfigure and manipulate the actin cytoskeleton of the host during successive steps of their life cycle. However, we know relatively little about the interactions of SARS-CoV-2 with the actin cytoskeleton. Here, we describe how the actin cytoskeleton is involved in the strategies used by different viruses for entry, assembly, and egress from the host cell. We emphasize what is known and unknown about SARS-CoV-2 in this regard. This review should encourage further investigation of the interactions of SARS-CoV-2 with cellular components, which will eventually be helpful for developing novel antiviral therapies for mitigating the severity of COVID-19.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA.
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX, 77204, USA
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA
| | - Jacek Z Kubiak
- Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, 04-141, Warsaw, Poland
- Institute of Genetics and Development of Rennes, Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Univ. Rennes, UMR 6290, CNRS, 35000, Rennes, France
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
49
|
Ottonelli I, Caraffi R, Tosi G, Vandelli MA, Duskey JT, Ruozi B. Tunneling Nanotubes: A New Target for Nanomedicine? Int J Mol Sci 2022; 23:ijms23042237. [PMID: 35216348 PMCID: PMC8878036 DOI: 10.3390/ijms23042237] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Tunneling nanotubes (TNTs), discovered in 2004, are thin, long protrusions between cells utilized for intercellular transfer and communication. These newly discovered structures have been demonstrated to play a crucial role in homeostasis, but also in the spreading of diseases, infections, and metastases. Gaining much interest in the medical research field, TNTs have been shown to transport nanomedicines (NMeds) between cells. NMeds have been studied thanks to their advantageous features in terms of reduced toxicity of drugs, enhanced solubility, protection of the payload, prolonged release, and more interestingly, cell-targeted delivery. Nevertheless, their transfer between cells via TNTs makes their true fate unknown. If better understood, TNTs could help control NMed delivery. In fact, TNTs can represent the possibility both to improve the biodistribution of NMeds throughout a diseased tissue by increasing their formation, or to minimize their formation to block the transfer of dangerous material. To date, few studies have investigated the interaction between NMeds and TNTs. In this work, we will explain what TNTs are and how they form and then review what has been published regarding their potential use in nanomedicine research. We will highlight possible future approaches to better exploit TNT intercellular communication in the field of nanomedicine.
Collapse
Affiliation(s)
- Ilaria Ottonelli
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Riccardo Caraffi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
- Correspondence:
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| |
Collapse
|
50
|
Bertacchi G, Posch W, Wilflingseder D. HIV-1 Trans Infection via TNTs Is Impeded by Targeting C5aR. Biomolecules 2022; 12:biom12020313. [PMID: 35204813 PMCID: PMC8868603 DOI: 10.3390/biom12020313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Nonadjacent immune cells communicate through a complex network of tunneling nanotubes (TNTs). TNTs can be hijacked by HIV-1, allowing it to spread between connected cells. Dendritic cells (DCs) are among the first cells to encounter HIV-1 at mucosal sites, but they are usually efficiently infected only at low levels. However, HIV-1 was demonstrated to productively infect DCs when the virus was complement-opsonized (HIV-C). Such HIV-C-exposed DCs mediated an improved antiviral and T-cell stimulatory capacity. The role of TNTs in combination with complement in enhancing DC infection with HIV-C remains to be addressed. To this aim, we evaluated TNT formation on the surface of DCs or DC/CD4+ T-cell co-cultures incubated with non- or complement-opsonized HIV-1 (HIV, HIV-C) and the role of TNTs or locally produced complement in the infection process using either two different TNT or anaphylatoxin receptor antagonists. We found that HIV-C significantly increased the formation of TNTs between DCs or DC/CD4+ T-cell co-cultures compared to HIV-exposed DCs or co-cultures. While augmented TNT formation in DCs promoted productive infection, as was previously observed, a significant reduction in productive infection was observed in DC/CD4+ T-cell co-cultures, indicating antiviral activity in this setting. As expected, TNT inhibitors significantly decreased infection of HIV-C-loaded-DCs as well as HIV- and HIV-C-infected-DC/CD4+ T-cell co-cultures. Moreover, antagonizing C5aR significantly inhibited TNT formation in DCs as well as DC/CD4+ T-cell co-cultures and lowered the already decreased productive infection in co-cultures. Thus, local complement mobilization via DC stimulation of complement receptors plays a pivotal role in TNT formation, and our findings herein might offer an exciting opportunity for novel therapeutic approaches to inhibit trans infection via C5aR targeting.
Collapse
|