1
|
Yao Z, Feng Z, Zhang H, Zhang B. ScRNA-Seq reveals T cell immunity in COVID-19 patients and implications for immunotherapy. Int Immunopharmacol 2025; 155:114663. [PMID: 40233451 DOI: 10.1016/j.intimp.2025.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
SARS-CoV-2, the virus causing COVID-19, poses significant health threats due to its high transmissibility and potential for severe respiratory complications. T cells, central to adaptive immunity, also interact with innate immunity, playing a pivotal role in coordinating defenses and eliminating infected cells. Single-cell RNA sequencing (scRNA-seq) has provided more subtle heterogeneity, rare subpopulations, or new subpopulations that are at the district differentiation stage or with specific function. Thus, elucidating how T cell heterogeneity impacts COVID-19 disease severity remains a critical question requiring comprehensive analysis. This review revealed the heterogeneity of the host T cells, including conventional T cells (CD8+, CD4+ T cells) and unconventional T cells, including natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) and gamma-delta T (γδT) cells in COVID-19 patients with different clinical manifestations. Severe COVID-19 had marked lymphopenia, excessive activation, elevated exhaustion and reduced functional diversity of T cells. Pathogenic contributions arise from dysregulated cytotoxic T cells, Treg cells and unconventional T cells collectively driving systemic hyperinflammation and tissue injury. Current therapeutic strategies targeting T cells-such as enhancing virus-specific T cell responses, reverting T-cell exhaustion and alleviating inflammation-exhibit inconsistent efficacy, underscoring the need for combinatorial approaches. This review highlights how scRNA-seq deciphers T cell heterogeneity and dysfunction in COVID-19. By targeting T cell exhaustion, inflammation, and subset-specific deficits, these insights pave the way for therapies and vaccines.
Collapse
Affiliation(s)
- Zhihong Yao
- Faculty of Clinical Medicine, Hanzhong Vocational and Technical College, Hanzhong 723002, China; Affiliated Hospital, Hanzhong Vocational and Technical College, Hanzhong 723012, China; Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhao Feng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hui Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
Lu T, Kramer ST, York MA, Zahan MN, Howlader DR, Dietz ZK, Whittier SK, Bivens NJ, Jurkevich A, Coghill LM, Picking WD, Picking WL. Spatial visualization provides insight into immune modulation by an L-DBF vaccine formulation against Shigella. Front Immunol 2025; 16:1577040. [PMID: 40336950 PMCID: PMC12056741 DOI: 10.3389/fimmu.2025.1577040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/28/2025] [Indexed: 05/09/2025] Open
Abstract
Shigellosis remains a global public health problem, especially in regions with poor sanitation measures. Our prior work has demonstrated the protective efficacy of a three-dose regimen of L-DBF, a recombinant fusion of IpaD and IpaB from Shigella flexneri with the LTA1 moiety of enterotoxigenic E. coli labile toxin. Here, we investigate how a two-dose regimen (one prime and one booster) of L-DBF, formulated in an oil-in-water emulsion called ME, modulates immune responses in the lung using a spatial transcriptomics approach. Our findings show significant changes in the lung immune landscape following the vaccination, including increased expression of B cell markers, antigen presentation genes, and T cell-associated markers. Our analysis also revealed significant reprogramming of fibroblasts and cardiomyocytes, showing that fibroblasts are shifted from extracellular matrix production to immune modulation, while cardiomyocytes enhanced the signaling for immune cell recruitment and vascular stability. The communication between alveolar type 2 (AT2) cells and cardiomyocytes also increased, reflecting coordinated support for immune readiness and maintaining tissue integrity. These findings underscore the potential of L-DBF/ME vaccination to enhance both humoral and cellular immunity, as well as to reshape lung immune architecture while enhancing immune readiness, thereby offering a promising approach for effective protection against Shigella infections.
Collapse
Affiliation(s)
- Ti Lu
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Skyler T. Kramer
- Bioinformatics and Analytic Core, University of Missouri, Columbia, MO, United States
| | - Mary A. York
- Bioinformatics and Analytic Core, University of Missouri, Columbia, MO, United States
| | - Mst Nusrat Zahan
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Debaki R. Howlader
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Zackary K. Dietz
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Sean K. Whittier
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Nathan J. Bivens
- Genomics Technology Core, University of Missouri, Columbia, MO, United States
| | - Alexander Jurkevich
- Advanced Light Microscopy Core, University of Missouri, Columbia, MO, United States
| | - Lyndon M. Coghill
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
- Bioinformatics and Analytic Core, University of Missouri, Columbia, MO, United States
| | - William D. Picking
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Wendy L. Picking
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Fei H, Lu X, Shi Z, Liu X, Yang C, Zhu X, Lin Y, Jiang Z, Wang J, Huang D, Liu L, Zhang S, Jiang L. Deciphering the preeclampsia-specific immune microenvironment and the role of pro-inflammatory macrophages at the maternal-fetal interface. eLife 2025; 13:RP100002. [PMID: 40152904 PMCID: PMC11952753 DOI: 10.7554/elife.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RA-CCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3-CCR7+Helios-CD127-CD8+) and pro-inflam Macs (CD206-CD163-CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163-CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206- pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1-IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal-fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.
Collapse
Affiliation(s)
- Haiyi Fei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Xiaowen Lu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Zhan Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Xiu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Cuiyu Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Xiaohong Zhu
- Department of Obstetrics and Gynecology, Zhejiang Xiaoshan HospitalHangzhouChina
| | - Yuhan Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Ziqun Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Jianmin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Dong Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Liu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| |
Collapse
|
4
|
Zhuang Q, Zhu J, Peng B, Zhu Y, Cheng K, Ming Y. Correlation between peripheral lymphocyte subsets monitoring and COVID-19 pneumonia in kidney transplant recipients. BMC Infect Dis 2025; 25:426. [PMID: 40148763 PMCID: PMC11948920 DOI: 10.1186/s12879-025-10581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/30/2025] [Indexed: 03/29/2025] Open
Abstract
OBJECTIVES In kidney transplant recipients (KTRs), immune monitoring of peripheral lymphocyte subsets (PLS) reflects the real immune status and aids in the diagnosis of the occurrence and development of infectious diseases, including COVID-19. Exploring the PLS of COVID-19 pneumonia in KTRs is important. METHODS In this study, a total of 103 KTRs were divided into mild pneumonia (MP) and severe pneumonia (SP) groups, as well as a stable group. The clinical information and PLS data were assessed via t or Mann-Whitney test and receiver operating curve analysis. Logistic regression was employed to identify the risk factors, and Spearman's correlation analysis was used to identify correlations. RESULTS Lymphopenia is a common manifestation of COVID-19 in KTRs, and it is positively related to the severity of COVID-19 pneumonia. The CD3 + T-cell count had the highest AUC between the MP and the SP. Multiple PLS measures were found to be independent risk factors for COVID-19 pneumonia progression in KTRs. CONCLUSIONS This study revealed a robust correlation between PLS and severe COVID-19 pneumonia progression in KTRs. PLS monitoring could facilitate real-time diagnosis and therapy for infection, as well as timely and precisive adjustment of immunosuppression instructions, for KTRs with COVID-19.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Key Laboratory of Translational Research in Transplantation Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Clinical Research Center for Infectious Diseases in Hunan Province, Changsha, 410013, China
| | - Jiang Zhu
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Key Laboratory of Translational Research in Transplantation Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Clinical Research Center for Infectious Diseases in Hunan Province, Changsha, 410013, China
| | - Bo Peng
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Key Laboratory of Translational Research in Transplantation Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Clinical Research Center for Infectious Diseases in Hunan Province, Changsha, 410013, China
| | - Yi Zhu
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Key Laboratory of Translational Research in Transplantation Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Clinical Research Center for Infectious Diseases in Hunan Province, Changsha, 410013, China
| | - Ke Cheng
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Key Laboratory of Translational Research in Transplantation Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Clinical Research Center for Infectious Diseases in Hunan Province, Changsha, 410013, China
| | - Yingzi Ming
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Key Laboratory of Translational Research in Transplantation Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Clinical Research Center for Infectious Diseases in Hunan Province, Changsha, 410013, China.
| |
Collapse
|
5
|
Levinger R, Tussia-Cohen D, Friedman S, Lender Y, Nissan Y, Fraimovitch E, Gavriel Y, Tearle JLE, Kolodziejczyk AA, Moon KM, Gomes T, Kunowska N, Weinberg M, Donati G, Foster LJ, James KR, Yovel Y, Hagai T. Single-cell and Spatial Transcriptomics Illuminate Bat Immunity and Barrier Tissue Evolution. Mol Biol Evol 2025; 42:msaf017. [PMID: 39836373 PMCID: PMC11817796 DOI: 10.1093/molbev/msaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/26/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Bats have adapted to pathogens through diverse mechanisms, including increased resistance-rapid pathogen elimination, and tolerance-limiting tissue damage following infection. In the Egyptian fruit bat (an important model in comparative immunology), several mechanisms conferring disease tolerance were discovered, but mechanisms underpinning resistance remain poorly understood. Previous studies on other species suggested that the elevated basal expression of innate immune genes may lead to increased resistance to infection. Here, we test whether such transcriptional patterns occur in Egyptian fruit bat tissues through single-cell and spatial transcriptomics of gut, lung, and blood cells, comparing gene expression between bat, mouse, and human. Despite numerous recent loss and expansion events of interferons in the bat genome, interferon expression and induction are remarkably similar to that of mouse. In contrast, central complement system genes are highly and uniquely expressed in key regions in bat lung and gut epithelium, unlike in human and mouse. Interestingly, the unique expression of these genes in the bat gut is strongest in the crypt, where developmental expression programs are highly conserved. The complement system genes also evolve rapidly in their coding sequences across the bat lineage. Finally, the bat complement system displays strong hemolytic activity. Together, these results indicate a distinctive transcriptional divergence of the complement system, which may be linked to bat resistance, and highlight the intricate evolutionary landscape of bat immunity.
Collapse
Affiliation(s)
- Roy Levinger
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dafna Tussia-Cohen
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sivan Friedman
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yan Lender
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yomiran Nissan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Evgeny Fraimovitch
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yuval Gavriel
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jacqueline L E Tearle
- Translational Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | | | - Kyung-Mee Moon
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, BC, Canada
| | - Tomás Gomes
- Fundação GIMM - Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Natalia Kunowska
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Maya Weinberg
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, BC, Canada
| | - Kylie R James
- Translational Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Yossi Yovel
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
6
|
Du F, Deng Y, Deng L, Du B, Xing A, Tao H, Li H, Xie L, Zhang X, Sun T, Li H. T-cell receptor and B-cell receptor repertoires profiling in pleural tuberculosis. Front Immunol 2024; 15:1473486. [PMID: 39664375 PMCID: PMC11632106 DOI: 10.3389/fimmu.2024.1473486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Background Tuberculosis (TB) is a leading cause of death worldwide from a single infectious agent. In China the most common extra-pulmonary TB (EPTB) is pleural tuberculosis (PLTB). An important clinical feature of PLTB is that the lymphocytes associated with TB will accumulate in the pleural fluid. The adaptive immune repertoires play important roles in Mycobacterium tuberculosis (Mtb) infection. Methods In this study, 10 PLTB patients were enrolled, and their Peripheral Blood Mononuclear Cells(PBMCs) and Pleural Effusion Mononuclear Cells(PEMCs) were collected. After T cells were purified from PBMCs and PEMCs, high-throughput immunosequencing of the TCRβ chain (TRB), TCRγ chain(TRG), and B cell receptor(BCR) immunoglobulin heavy chain (IGH) were conducted on these samples. Results The TRB, TRG, and BCR IGH repertoires were characterized between the pleural effusion and blood in PLTB patients, and the shared clones were analyzed and collected. The binding activity of antibodies in plasma and pleural effusion to Mtb antigens was tested which indicates that different antibodies responses to Mtb antigens in plasma and pleural effusion in PLTB patients. Moreover, GLIPH2 was used to identify the specificity groups of TRB clusters and Mtb-specific TRB sequences were analyzed and collected by VJ mapping. Conclusion We characterize the adaptive immune repertoires and identify the shared clones and Mtb-specific clones in pleural effusion and blood in PLTB patients which can give important clues for TB diagnosis, treatment, and vaccine development.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Tuberculosis, Pleural/immunology
- Tuberculosis, Pleural/diagnosis
- Male
- Female
- Middle Aged
- Mycobacterium tuberculosis/immunology
- Adult
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Aged
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Fengjiao Du
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yunyun Deng
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
| | - Ling Deng
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
| | - Boping Du
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Aiying Xing
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hong Tao
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hua Li
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Li Xie
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xinyong Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tao Sun
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China
- Institute of Wenzhou, Zhejiang University, Wenzhou, China
| | - Hao Li
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Byrne C, Schiffer JT. Ensemble modeling of SARS-CoV-2 immune dynamics in immunologically naïve rhesus macaques predicts that potent, early innate immune responses drive viral elimination. Front Immunol 2024; 15:1426016. [PMID: 39575237 PMCID: PMC11578959 DOI: 10.3389/fimmu.2024.1426016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction An unprecedented breadth of longitudinal viral and multi-scale immunological data has been gathered during SARS-CoV-2 infection. However, due to the high complexity, non-linearity, multi-dimensionality, mixed anatomic sampling, and possible autocorrelation of available immune data, it is challenging to identify the components of the innate and adaptive immune response that drive viral elimination. Novel mathematical models and analytical approaches are required to synthesize contemporaneously gathered cytokine, transcriptomic, flow cytometry, antibody response, and viral load data into a coherent story of viral control, and ultimately to discriminate drivers of mild versus severe infection. Methods We investigated a dataset describing innate, SARS-CoV-2 specific T cell, and antibody responses in the lung during early and late stages of infection in immunologically naïve rhesus macaques. We used multi-model inference and ensemble modeling approaches from ecology and weather forecasting to compare and combine various competing models. Results and discussion Model outputs suggest that the innate immune response plays a crucial role in controlling early infection, while SARS-CoV-2 specific CD4+ T cells correspond to later viral elimination, and anti-spike IgG antibodies do not impact viral dynamics. Among the numerous genes potentially contributing to the innate response, we identified IFI27 as most closely linked to viral load decline. A 90% knockdown of the innate response from our validated model resulted in a ~10-fold increase in peak viral load during infection. Our approach provides a novel methodological framework for future analyses of similar complex, non-linear multi-component immunologic data sets.
Collapse
Affiliation(s)
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center,
Seattle, WA, United States
| |
Collapse
|
8
|
Paran FJ, Oyama R, Khasawneh A, Ai T, Ismanto HS, Sherif AA, Saputri DS, Ono C, Saita M, Takei S, Horiuchi Y, Yagi K, Matsuura Y, Okazaki Y, Takahashi K, Standley DM, Tabe Y, Naito T. BCR, not TCR, repertoire diversity is associated with favorable COVID-19 prognosis. Front Immunol 2024; 15:1405013. [PMID: 39530088 PMCID: PMC11550956 DOI: 10.3389/fimmu.2024.1405013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction The SARS-CoV-2 pandemic has had a widespread and severe impact on society, yet there have also been instances of remarkable recovery, even in critically ill patients. Materials and methods In this study, we used single-cell RNA sequencing to analyze the immune responses in recovered and deceased COVID-19 patients during moderate and critical stages. Results Expanded T cell receptor (TCR) clones were predominantly SARS-CoV-2-specific, but represented only a small fraction of the total repertoire in all patients. In contrast, while deceased patients exhibited monoclonal B cell receptor (BCR) expansions without COVID-19 specificity, survivors demonstrated diverse and specific BCR clones. These findings suggest that neither TCR diversity nor BCR monoclonal expansions are sufficient for viral clearance and subsequent recovery. Differential gene expression analysis revealed that protein biosynthetic processes were enriched in survivors, but that potentially damaging mitochondrial ATP metabolism was activated in the deceased. Conclusion This study underscores that BCR repertoire diversity, but not TCR diversity, correlates with favorable outcomes in COVID-19.
Collapse
MESH Headings
- Humans
- COVID-19/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- SARS-CoV-2/immunology
- Prognosis
- Male
- Female
- Middle Aged
- Aged
- Single-Cell Analysis
- Adult
- B-Lymphocytes/immunology
Collapse
Affiliation(s)
- Faith Jessica Paran
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Rieko Oyama
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Abdullah Khasawneh
- Leading Center for the Development and Research of Cancer Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University, Urayasu Hospital, Chiba, Japan
| | - Hendra Saputra Ismanto
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Aalaa Alrahman Sherif
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Dianita Susilo Saputri
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Mizue Saita
- Department of General Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Satomi Takei
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuki Horiuchi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ken Yagi
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN, Yokohama, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN, Yokohama, Japan
| | - Kazuhisa Takahashi
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Daron M. Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoko Tabe
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshio Naito
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of General Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
9
|
Stambouli N, Bahrini K, Romdhani C, Rebai A, Boughariou S, Zakraoui M, Arfaoui B, Seyli S, Boukhalfa Y, Battikh R, Moussa MB, Labbene I, Ferjani M, Gharssallah H. Humoral and cellular response of two different vaccines against SARS-CoV-2 in a group of healthcare workers: An observational study. J Immunol Methods 2024; 528:113665. [PMID: 38490578 DOI: 10.1016/j.jim.2024.113665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
On March 13, 2021, Tunisia started a widespread immunization program against SARS-CoV-2 utilizing different vaccinations that had been given emergency approval. Herein, we followed prospectively a cohort of participant who received COVID-19 vaccine (Pfizer BioNTech and Sputnik-Gameleya V). The goal of this follow-up was to define the humoral and cellular immunological profile after immunization by assessing neutralizing antibodies and IFN- γ release. 26 vaccinated health care workers by Pfizer BioNTech (n=12) and Sputnik-Gameleya V (n=14) were enrolled from June to December 2021 in Military hospital of Tunis. All consenting participants were sampled for peripheral blood after three weeks of vaccination. The humoral response was investigated by the titer of anti-SARS-CoV-2 immunoglobulin G (IgG) antibodies to S1 protein. The CD4 and CD8 T cell responses were evaluated by the QuantiFERON® SARS-CoV-2 (Qiagen® Basel, Switzerland). Regardless the type of vaccine, the assessment of humoral and cellular response following vaccination showed a strong involvement of the later with expression of IFN-γ as compared to antibodies secretion. Moreover, we showed that people with past SARS-CoV-2 infection developed high levels of antibodies than those who are not previously infected. However, no significant difference was detected concerning interferon gamma (IFN-γ) expression by CD4 and CD8 T cells in health care worker (HCW) previously infection or not with COVID-19 infection. Analysis of immune response according to the type of vaccine, we found that Pfizer BioNTech induced high level of humoral response (91.66%) followed by Sputnik-Gameleya V (64.28%). However, adenovirus vaccine gave a better cellular response (57.14%) than mRNA vaccine (41.66%). Regarding the immune response following vaccine doses, we revealed a significant increase of neutralizing antibodies and IFN-γ release by T cells in patients fully vaccinated as compared to those who have received just one vaccine. Collectively, our data revealed a similar immune response between Pfizer BioNTech and Sputnik-Gameleya V vaccine with a slight increase of humoral response by mRNA vaccine and cellular response by adenovirus vaccine. It's evident that past SARS-CoV-2 infection was a factor that contributed to the vaccination's increased immunogenicity. However, the administration of full doses of vaccines (Pfizer BioNTech or Sputnik-Gameleya V) induces better humoral and cellular responses detectable even more than three months following vaccination.
Collapse
Affiliation(s)
- Nejla Stambouli
- Research Unit UR17DN05, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Khadija Bahrini
- Research Unit UR17DN05, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia; University Tunis El Manar, Tunis, Tunisia.
| | - Chihebeddine Romdhani
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Aicha Rebai
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Sana Boughariou
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Mohamed Zakraoui
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Bilel Arfaoui
- Department of Internal Medicine, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Sameh Seyli
- Department of Internal Medicine, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Yasmine Boukhalfa
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Riadh Battikh
- Department of Infectious Disease, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Mohamed Ben Moussa
- Laboratory of Virology, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Iheb Labbene
- University Tunis El Manar, Tunis, Tunisia; Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Mustpha Ferjani
- University Tunis El Manar, Tunis, Tunisia; Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Hedi Gharssallah
- Research Unit UR17DN05, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia; University Tunis El Manar, Tunis, Tunisia; Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| |
Collapse
|
10
|
Joo V, Abdelhamid K, Noto A, Latifyan S, Martina F, Daoudlarian D, De Micheli R, Pruijm M, Peters S, Hullin R, Gaide O, Pantaleo G, Obeid M. Primary prophylaxis with mTOR inhibitor enhances T cell effector function and prevents heart transplant rejection during talimogene laherparepvec therapy of squamous cell carcinoma. Nat Commun 2024; 15:3664. [PMID: 38693123 PMCID: PMC11063183 DOI: 10.1038/s41467-024-47965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
The application of mammalian target of rapamycin inhibition (mTORi) as primary prophylactic therapy to optimize T cell effector function while preserving allograft tolerance remains challenging. Here, we present a comprehensive two-step therapeutic approach in a male patient with metastatic cutaneous squamous cell carcinoma and heart transplantation followed with concomitant longitudinal analysis of systemic immunologic changes. In the first step, calcineurin inhibitor/ mycophenolic acid is replaced by the mTORi everolimus to achieve an improved effector T cell status with increased cytotoxic activity (perforin, granzyme), enhanced proliferation (Ki67) and upregulated activation markers (CD38, CD69). In the second step, talimogene laherparepvec (T-VEC) injection further enhances effector function by switching CD4 and CD8 cells from central memory to effector memory profiles, enhancing Th1 responses, and boosting cytotoxic and proliferative activities. In addition, cytokine release (IL-6, IL-18, sCD25, CCL-2, CCL-4) is enhanced and the frequency of circulating regulatory T cells is increased. Notably, no histologic signs of allograft rejection are observed in consecutive end-myocardial biopsies. These findings provide valuable insights into the dynamics of T cell activation and differentiation and suggest that timely initiation of mTORi-based primary prophylaxis may provide a dual benefit of revitalizing T cell function while maintaining allograft tolerance.
Collapse
Affiliation(s)
- Victor Joo
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Karim Abdelhamid
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Alessandra Noto
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Sofiya Latifyan
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Federica Martina
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Douglas Daoudlarian
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Rita De Micheli
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Menno Pruijm
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Nephrology Division, Rue du Bugnon 17, CH-1011, Lausanne, Switzerland
| | - Solange Peters
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Roger Hullin
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Cardiology, Cardiovascular Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Olivier Gaide
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Dermatology Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Michel Obeid
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland.
| |
Collapse
|
11
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
May L, Chu CF, Zielinski CE. Single-Cell RNA Sequencing Reveals HIF1A as a Severity-Sensitive Immunological Scar in Circulating Monocytes of Convalescent Comorbidity-Free COVID-19 Patients. Cells 2024; 13:300. [PMID: 38391913 PMCID: PMC10886588 DOI: 10.3390/cells13040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is characterized by a wide range of clinical symptoms and a poorly predictable disease course. Although in-depth transcriptomic investigations of peripheral blood samples from COVID-19 patients have been performed, the detailed molecular mechanisms underlying an asymptomatic, mild or severe disease course, particularly in patients without relevant comorbidities, remain poorly understood. While previous studies have mainly focused on the cellular and molecular dissection of ongoing COVID-19, we set out to characterize transcriptomic immune cell dysregulation at the single-cell level at different time points in patients without comorbidities after disease resolution to identify signatures of different disease severities in convalescence. With single-cell RNA sequencing, we reveal a role for hypoxia-inducible factor 1-alpha (HIF1A) as a severity-sensitive long-term immunological scar in circulating monocytes of convalescent COVID-19 patients. Additionally, we show that circulating complexes formed by monocytes with either T cells or NK cells represent a characteristic cellular marker in convalescent COVID-19 patients irrespective of their preceding symptom severity. Together, these results provide cellular and molecular correlates of recovery from COVID-19 and could help in immune monitoring and in the design of new treatment strategies.
Collapse
Affiliation(s)
- Lilly May
- Leibniz Institute for Natural Products Research and Infection Biology, Department of Infection Immunology, 07745 Jena, Germany; (L.M.); (C.-F.C.)
- Center for Translational Cancer Research (TranslaTUM) & Institute of Virology, Technical University of Munich, 81675 Munich, Germany
| | - Chang-Feng Chu
- Leibniz Institute for Natural Products Research and Infection Biology, Department of Infection Immunology, 07745 Jena, Germany; (L.M.); (C.-F.C.)
- Center for Translational Cancer Research (TranslaTUM) & Institute of Virology, Technical University of Munich, 81675 Munich, Germany
| | - Christina E. Zielinski
- Leibniz Institute for Natural Products Research and Infection Biology, Department of Infection Immunology, 07745 Jena, Germany; (L.M.); (C.-F.C.)
- Center for Translational Cancer Research (TranslaTUM) & Institute of Virology, Technical University of Munich, 81675 Munich, Germany
- Department of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
13
|
van de Sandt CE, Nguyen THO, Gherardin NA, Crawford JC, Samir J, Minervina AA, Pogorelyy MV, Rizzetto S, Szeto C, Kaur J, Ranson N, Sonda S, Harper A, Redmond SJ, McQuilten HA, Menon T, Sant S, Jia X, Pedrina K, Karapanagiotidis T, Cain N, Nicholson S, Chen Z, Lim R, Clemens EB, Eltahla A, La Gruta NL, Crowe J, Lappas M, Rossjohn J, Godfrey DI, Thomas PG, Gras S, Flanagan KL, Luciani F, Kedzierska K. Newborn and child-like molecular signatures in older adults stem from TCR shifts across human lifespan. Nat Immunol 2023; 24:1890-1907. [PMID: 37749325 PMCID: PMC10602853 DOI: 10.1038/s41590-023-01633-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/24/2023] [Indexed: 09/27/2023]
Abstract
CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αβ signatures. Suboptimal TCRαβ signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Jerome Samir
- School of Medical Sciences and The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | | | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Simone Rizzetto
- School of Medical Sciences and The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Christopher Szeto
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jasveen Kaur
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Nicole Ranson
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Sabrina Sonda
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Alice Harper
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Samuel J Redmond
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tejas Menon
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kate Pedrina
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Theo Karapanagiotidis
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Natalie Cain
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Auda Eltahla
- School of Medical Sciences and The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jamie Rossjohn
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephanie Gras
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Katie L Flanagan
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, Victoria, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Fabio Luciani
- School of Medical Sciences and The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Khadri L, Ziraksaz MH, Barekzai AB, Ghauri B. T cell responses to SARS-CoV-2. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 202:183-217. [PMID: 38237986 DOI: 10.1016/bs.pmbts.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter provides a comprehensive analysis of T cell responses in COVID-19, focusing on T cell differentiation, specificity, and functional characteristics during SARS-CoV-2 infection. The differentiation of T cells in COVID-19 is explored, highlighting the key factors that influence T cell fate and effector functions. The immunology of the spike protein, a critical component of SARS-CoV-2, is discussed in detail, emphasizing its role in driving T-cell responses. The cellular immune responses against SARS-CoV-2 during acute infection are examined, including the specificity, phenotype, and functional attributes of SARS-CoV-2-specific T-cell responses. Furthermore, the chapter explores T-cell cross-recognition against other human coronaviruses (HCoVs) and the mechanisms of immune regulation mediated by spike proteins. This includes the induction of regulation through the innate immune system, the activation of self-spike protein-cross-reactive regulatory T cells, and the impact of self-tolerance on the regulation of spike proteins. The chapter investigates T cell responses to self-spike proteins and their implications in disease. The role of spike proteins as immunological targets in the context of COVID-19 is examined, shedding light on potential therapeutic interventions and clinical trials in autoimmune diseases. In conclusion, this chapter provides a comprehensive understanding of T cell responses in COVID-19, highlighting their differentiation, immune regulation, and clinical implications. This knowledge contributes to the development of targeted immunotherapies, vaccine strategies, and diagnostic approaches for COVID-19 and other related diseases.
Collapse
Affiliation(s)
- Laiqha Khadri
- Department of Biotechnology, Immune Inspired, Bangalore.
| | | | | | - Baber Ghauri
- Department of Biotechnology, Immune Inspired, Bangalore
| |
Collapse
|
15
|
Feng B, Zheng D, Yang L, Su Z, Tang L, Zhu Y, Xu X, Wang Q, Lin Q, Hu J, Lin M, Huang L, Zhou X, Liu H, Li S, Pan W, Shi R, Lu Y, Wu B, Ding B, Wang Z, Guo J, Zhang Z, Zheng G, Liu Y. Post-hospitalization rehabilitation alleviates long-term immune repertoire alteration in COVID-19 convalescent patients. Cell Prolif 2023; 56:e13450. [PMID: 36938980 PMCID: PMC10542649 DOI: 10.1111/cpr.13450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023] Open
Abstract
The global pandemic of Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an once-in-a-lifetime public health crisis. Among hundreds of millions of people who have contracted with or are being infected with COVID-19, the question of whether COVID-19 infection may cause long-term health concern, even being completely recovered from the disease clinically, especially immune system damage, needs to be addressed. Here, we performed seven-chain adaptome immune repertoire analyses on convalescent COVID-19 patients who have been discharged from hospitals for at least 6 months. Surprisingly, we discovered lymphopenia, reduced number of unique CDR3s, and reduced diversity of the TCR/BCR immune repertoire in convalescent COVID-19 patients. In addition, the BCR repertoire appears to be activated, which is consistent with the protective antibody titres, but serological experiments reveal significantly lower IL-4 and IL-7 levels in convalescent patients compared to those in healthy controls. Finally, in comparison with convalescent patients who did not receive post-hospitalization rehabilitation, the convalescent patients who received post-hospitalization rehabilitation had attenuated immune repertoire abnormality, almost back to the level of healthy control, despite no detectable clinic demographic difference. Overall, we report the potential long-term immunological impairment for COVID-19 infection, and correction of this impairment via post-hospitalization rehabilitation may offer a new prospect for COVID-19 recovery strategy.
Collapse
|
16
|
Onofrio LI, Marin C, Dutto J, Brugo MB, Baigorri RE, Bossio SN, Quiróz JN, Almada L, Ruiz Moreno F, Olivera C, Silvera-Ruiz SM, Ponce NE, Icely PA, Amezcua Vesely MC, Fozzatti L, Rodríguez-Galán MC, Stempin CC, Cervi L, Maletto BA, Acosta Rodríguez EV, Bertone M, Abiega CD, Escudero D, Kahn A, Caeiro JP, Maccioni M, Motrán CC, Gruppi A, Sotomayor CE, Chiapello LS, Montes CL. COVID-19 patients display changes in lymphocyte subsets with a higher frequency of dysfunctional CD8lo T cells associated with disease severity. Front Immunol 2023; 14:1223730. [PMID: 37809093 PMCID: PMC10552777 DOI: 10.3389/fimmu.2023.1223730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
This work examines cellular immunity against SARS-CoV-2 in patients from Córdoba, Argentina, during two major waves characterized by different circulating viral variants and different social behavior. Using flow cytometry, we evaluated the main lymphocyte populations of peripheral blood from hospitalized patients with moderate and severe COVID-19 disease. Our results show disturbances in the cellular immune compartment, as previously reported in different cohorts worldwide. We observed an increased frequency of B cells and a significant decrease in the frequency of CD3+ T cells in COVID-19 patients compared to healthy donors (HD). We also found a reduction in Tregs, which was more pronounced in severe patients. During the first wave, the frequency of GZMB, CD107a, CD39, and PD-1-expressing conventional CD4+ T (T conv) cells was significantly higher in moderate and severe patients than in HD. During the second wave, only the GZMB+ T conv cells of moderate and severe patients increased significantly. In addition, these patients showed a decreased frequency in IL-2-producing T conv cells. Interestingly, we identified two subsets of circulating CD8+ T cells with low and high CD8 surface expression in both HD and COVID-19 patients. While the percentages of CD8hi and CD8lo T cells within the CD8+ population in HD are similar, a significant increase was observed in CD8lo T cell frequency in COVID-19 patients. CD8lo T cell populations from HD as well as from SARS-CoV-2 infected patients exhibited lower frequencies of the effector cytokine-producing cells, TNF, IL-2, and IFN-γ, than CD8hi T cells. Interestingly, the frequency of CD8lo T cells increased with disease severity, suggesting that this parameter could be a potential marker for disease progression. Indeed, the CD8hi/CD8lo index helped to significantly improve the patient's clinical stratification and disease outcome prediction. Our data support the addition of, at least, a CD8hi/CD8lo index into the panel of biomarkers commonly used in clinical labs, since its determination may be a useful tool with impact on the therapeutic management of the patients.
Collapse
Affiliation(s)
- Luisina Ines Onofrio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Constanza Marin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Jeremías Dutto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Belén Brugo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Ruth Eliana Baigorri
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Sabrina Noemi Bossio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Juan Nahuel Quiróz
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Almada
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Federico Ruiz Moreno
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Carolina Olivera
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Silene M. Silvera-Ruiz
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Nicolás Eric Ponce
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Paula Alejandra Icely
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Carolina Amezcua Vesely
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Cecilia Rodríguez-Galán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Cinthia Carolina Stempin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Belkys Angélica Maletto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Eva Virginia Acosta Rodríguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Mariana Bertone
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Claudio Daniel Abiega
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Daiana Escudero
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Adrián Kahn
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Juan Pablo Caeiro
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Mariana Maccioni
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Claudia Cristina Motrán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Claudia Elena Sotomayor
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Silvina Chiapello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Carolina Lucia Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
17
|
Palianina D, Di Roberto RB, Castellanos-Rueda R, Schlatter F, Reddy ST, Khanna N. A method for polyclonal antigen-specific T cell-targeted genome editing (TarGET) for adoptive cell transfer applications. Mol Ther Methods Clin Dev 2023; 30:147-160. [PMID: 37448595 PMCID: PMC10336339 DOI: 10.1016/j.omtm.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Adoptive cell therapy of donor-derived, antigen-specific T cells expressing native T cell receptors (TCRs) is a powerful strategy to fight viral infections in immunocompromised patients. Determining the fate of T cells following patient infusion hinges on the ability to track them in vivo. While this is possible by genetic labeling of parent cells, the applicability of this approach has been limited by the non-specificity of the edited T cells. Here, we devised a method for CRISPR-targeted genome integration of a barcoded gene into Epstein-Barr virus-antigen-stimulated T cells and demonstrated its use for exclusively identifying expanded virus-specific cell lineages. Our method facilitated the enrichment of antigen-specific T cells, which then mediated improved cytotoxicity against Epstein-Barr virus-transformed target cells. Single-cell and deep sequencing for lineage tracing revealed the expansion profile of specific T cell clones and their corresponding gene expression signature. This approach has the potential to enhance the traceability and the monitoring capabilities during immunotherapeutic T cell regimens.
Collapse
Affiliation(s)
- Darya Palianina
- Department of Biomedicine, University and University Hospital of Basel, 4056 Basel, Switzerland
| | - Raphaël B. Di Roberto
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Rocío Castellanos-Rueda
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
- Life Science Zurich Graduate School, Systems Biology, ETH Zürich, University of Zurich, 8057 Zürich, Switzerland
| | - Fabrice Schlatter
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University and University Hospital of Basel, 4056 Basel, Switzerland
- Divsion of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, 4031 Basel, Switzerland
| |
Collapse
|
18
|
Cohen P, DeGrace EJ, Danziger O, Patel RS, Barrall EA, Bobrowski T, Kehrer T, Cupic A, Miorin L, García-Sastre A, Rosenberg BR. Unambiguous detection of SARS-CoV-2 subgenomic mRNAs with single-cell RNA sequencing. Microbiol Spectr 2023; 11:e0077623. [PMID: 37676044 PMCID: PMC10580996 DOI: 10.1128/spectrum.00776-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/12/2023] [Indexed: 09/08/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-Seq) studies have provided critical insight into the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). scRNA-Seq library preparation methods and data processing workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. Here, we compare different scRNA-Seq library preparation methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs). We show that compared to 10X Genomics Chromium Next GEM Single Cell 3' (10X 3') libraries or 10X Genomics Chromium Next GEM Single Cell V(D)J (10X 5') libraries sequenced with standard read configurations, 10X 5' libraries sequenced with an extended length read 1 (R1) that covers both cell barcode and transcript sequence (termed "10X 5' with extended R1") increase the number of unambiguous reads spanning leader-sgmRNA junction sites. We further present a data processing workflow, single-cell coronavirus sequencing (scCoVseq), which quantifies reads unambiguously assigned to viral sgmRNAs or viral genomic RNA (gRNA). We find that combining 10X 5' with extended R1 library preparation/sequencing and scCoVseq data processing maximizes the number of viral UMIs per cell quantified by scRNA-Seq. Corresponding sgmRNA expression levels are highly correlated with expression in matched bulk RNA-Seq data sets quantified with established tools for SARS-CoV-2 analysis. Using this scRNA-Seq approach, we find that SARS-CoV-2 gene expression is highly correlated across individual infected cells, which suggests that the proportion of viral sgmRNAs remains generally consistent throughout infection. Taken together, these results and corresponding data processing workflow enable robust quantification of coronavirus sgmRNA expression at single-cell resolution, thereby supporting high-resolution studies of viral RNA processes in individual cells. IMPORTANCE Single-cell RNA sequencing (scRNA-Seq) has emerged as a valuable tool to study host-virus interactions, especially for coronavirus disease 2019 (COVID-19). Here we compare the performance of different scRNA-Seq library preparation methods and sequencing strategies to detect SARS-CoV-2 RNAs and develop a data processing workflow to quantify unambiguous sequence reads derived from SARS-CoV-2 genomic RNA and subgenomic mRNAs. After establishing a workflow that maximizes the detection of SARS-CoV-2 subgenomic mRNAs, we explore patterns of SARS-CoV-2 gene expression across cells with variable levels of total viral RNA, assess host gene expression differences between infected and bystander cells, and identify non-canonical and lowly abundant SARS-CoV-2 RNAs. The sequencing and data processing strategies developed here can enhance studies of coronavirus RNA biology at single-cell resolution and thereby contribute to our understanding of viral pathogenesis.
Collapse
Affiliation(s)
- Phillip Cohen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma J. DeGrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Oded Danziger
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roosheel S. Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Erika A. Barrall
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tesia Bobrowski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anastija Cupic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
19
|
Kanis FM, Meier JP, Guldan H, Niller HH, Dahm M, Dansard A, Zander T, Struck F, Soutschek E, Deml L, Möbus S, Barabas S. Performance of T-Track ® SARS-CoV-2, an Innovative Dual Marker RT-qPCR-Based Whole-Blood Assay for the Detection of SARS-CoV-2-Reactive T Cells. Diagnostics (Basel) 2023; 13:2722. [PMID: 37685260 PMCID: PMC10486492 DOI: 10.3390/diagnostics13172722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
T-cell immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a central role in the control of the virus. In this study, we evaluated the performance of T-Track® SARS-CoV-2, a novel CE-marked quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay, which relies on the combined evaluation of IFNG and CXCL10 mRNA levels in response to the S1 and NP SARS-CoV-2 antigens, in 335 participants with or without a history of SARS-CoV-2 infection and vaccination, respectively. Of the 62 convalescent donors, 100% responded to S1 and 88.7% to NP antigens. In comparison, of the 68 naïve donors, 4.4% were reactive to S1 and 19.1% to NP. Convalescent donors <50 and ≥50 years of age demonstrated a 100% S1 reactivity and an 89.1% and 87.5% NP reactivity, respectively. T-cell responses by T-Track® SARS-CoV-2 and IgG serology by recomLine SARS-CoV-2 IgG according to the time from the last immunisation (by vaccination or viral infection) were comparable. Both assays showed a persistent cellular and humoral response for at least 36 weeks post immunisation in vaccinated and convalescent donors. Our results demonstrate the very good performance of the T-Track® SARS-CoV-2 molecular assay and suggest that it might be suitable to monitor the SARS-CoV-2-specific T-cell response in COVID-19 vaccinations trials and cross-reactivity studies.
Collapse
Affiliation(s)
| | | | | | - Hans-Helmut Niller
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sant P, Rippe K, Mallm JP. Approaches for single-cell RNA sequencing across tissues and cell types. Transcription 2023; 14:127-145. [PMID: 37062951 PMCID: PMC10807473 DOI: 10.1080/21541264.2023.2200721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Single-cell sequencing of RNA (scRNA-seq) has advanced our understanding of cellular heterogeneity and signaling in developmental biology and disease. A large number of complementary assays have been developed to profile transcriptomes of individual cells, also in combination with other readouts, such as chromatin accessibility or antibody-based analysis of protein surface markers. As scRNA-seq technologies are advancing fast, it is challenging to establish robust workflows and up-to-date protocols that are best suited to address the large range of research questions. Here, we review scRNA-seq techniques from mRNA end-counting to total RNA in relation to their specific features and outline the necessary sample preparation steps and quality control measures. Based on our experience in dealing with the continuously growing portfolio from the perspective of a central single-cell facility, we aim to provide guidance on how workflows can be best automatized and share our experience in coping with the continuous expansion of scRNA-seq techniques.
Collapse
Affiliation(s)
- Pooja Sant
- Single-cell Open Lab, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Karsten Rippe
- Division Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Jan-Philipp Mallm
- Single-cell Open Lab, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| |
Collapse
|
21
|
Pan T, Cao G, Tang E, Zhao Y, Penaloza-MacMaster P, Fang Y, Huang J. A single-cell atlas reveals shared and distinct immune responses and metabolic profiles in SARS-CoV-2 and HIV-1 infections. Front Genet 2023; 14:1105673. [PMID: 36992700 PMCID: PMC10040851 DOI: 10.3389/fgene.2023.1105673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: Within the inflammatory immune response to viral infection, the distribution and cell type-specific profiles of immune cell populations and the immune-mediated viral clearance pathways vary according to the specific virus. Uncovering the immunological similarities and differences between viral infections is critical to understanding disease progression and developing effective vaccines and therapies. Insight into COVID-19 disease progression has been bolstered by the integration of single-cell (sc)RNA-seq data from COVID-19 patients with data from related viruses to compare immune responses. Expanding this concept, we propose that a high-resolution, systematic comparison between immune cells from SARS-CoV-2 infection and an inflammatory infectious disease with a different pathophysiology will provide a more comprehensive picture of the viral clearance pathways that underscore immunological and clinical differences between infections. Methods: Using a novel consensus single-cell annotation method, we integrate previously published scRNA-seq data from 111,566 single PBMCs from 7 COVID-19, 10 HIV-1+, and 3 healthy patients into a unified cellular atlas. We compare in detail the phenotypic features and regulatory pathways in the major immune cell clusters. Results: While immune cells in both COVID-19 and HIV-1+ cohorts show shared inflammation and disrupted mitochondrial function, COVID-19 patients exhibit stronger humoral immunity, broader IFN-I signaling, elevated Rho GTPase and mTOR pathway activity, and downregulated mitophagy. Discussion: Our results indicate that differential IFN-I signaling regulates the distinct immune responses in the two diseases, revealing insight into fundamental disease biology and potential therapeutic candidates.
Collapse
Affiliation(s)
- Tony Pan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Erting Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Yu Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | | | - Yun Fang
- Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| |
Collapse
|
22
|
Cohen P, DeGrace EJ, Danziger O, Patel RS, Barrall EA, Bobrowski T, Kehrer T, Cupic A, Miorin L, García-Sastre A, Rosenberg BR. Unambiguous detection of SARS-CoV-2 subgenomic mRNAs with single cell RNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.11.22.469642. [PMID: 34845443 PMCID: PMC8629185 DOI: 10.1101/2021.11.22.469642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single cell RNA sequencing (scRNA-Seq) studies have provided critical insight into the pathogenesis of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), the causative agent of COronaVIrus Disease 2019 (COVID-19). scRNA-Seq workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. Here, we compare different scRNA-Seq methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs). We present a data processing strategy, single cell CoronaVirus sequencing (scCoVseq), which quantifies reads unambiguously assigned to sgmRNAs or genomic RNA (gRNA). Compared to standard 10X Genomics Chromium Next GEM Single Cell 3' (10X 3') and Chromium Next GEM Single Cell V(D)J (10X 5') sequencing, we find that 10X 5' with an extended read 1 (R1) sequencing strategy maximizes the detection of sgmRNAs by increasing the number of unambiguous reads spanning leader-sgmRNA junction sites. Using this method, we show that viral gene expression is highly correlated across cells suggesting a relatively consistent proportion of viral sgmRNA production throughout infection. Our method allows for quantification of coronavirus sgmRNA expression at single-cell resolution, and thereby supports high resolution studies of the dynamics of coronavirus RNA synthesis.
Collapse
Affiliation(s)
- Phillip Cohen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Emma J DeGrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Oded Danziger
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Roosheel S Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Erika A Barrall
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Tesia Bobrowski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Anastasija Cupic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| |
Collapse
|
23
|
Sun Z, Zhang Z, Banu K, Azzi YA, Reghuvaran A, Fredericks S, Planoutene M, Hartzell S, Kim Y, Pell J, Tietjen G, Asch W, Kulkarni S, Formica R, Rana M, Maltzman JS, Zhang W, Akalin E, Heeger PS, Cravedi P, Menon MC. Blood Transcriptomes of SARS-CoV-2-Infected Kidney Transplant Recipients Associated with Immune Insufficiency Proportionate to Severity. J Am Soc Nephrol 2022; 33:2108-2122. [PMID: 36041788 PMCID: PMC9678030 DOI: 10.1681/asn.2022010125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/10/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Among patients with COVID-19, kidney transplant recipients (KTRs) have poor outcomes compared with non-KTRs. To provide insight into management of immunosuppression during acute illness, we studied immune signatures from the peripheral blood during and after COVID-19 infection from a multicenter KTR cohort. METHODS We ascertained clinical data by chart review. A single sample of blood was collected for transcriptome analysis. Total RNA was poly-A selected and RNA was sequenced to evaluate transcriptome changes. We also measured cytokines and chemokines of serum samples collected during acute infection. RESULTS A total of 64 patients with COVID-19 in KTRs were enrolled, including 31 with acute COVID-19 (<4 weeks from diagnosis) and 33 with post-acute COVID-19 (>4 weeks postdiagnosis). In the blood transcriptome of acute cases, we identified genes in positive or negative association with COVID-19 severity scores. Functional enrichment analyses showed upregulation of neutrophil and innate immune pathways but downregulation of T cell and adaptive immune activation pathways. This finding was independent of lymphocyte count, despite reduced immunosuppressant use in most KTRs. Compared with acute cases, post-acute cases showed "normalization" of these enriched pathways after 4 weeks, suggesting recovery of adaptive immune system activation despite reinstitution of immunosuppression. Analysis of the non-KTR cohort with COVID-19 showed significant overlap with KTRs in these functions. Serum inflammatory cytokines followed an opposite trend (i.e., increased with disease severity), indicating that blood lymphocytes are not the primary source. CONCLUSIONS The blood transcriptome of KTRs affected by COVID-19 shows decreases in T cell and adaptive immune activation pathways during acute disease that, despite reduced immunosuppressant use, associate with severity. These pathways show recovery after acute illness.
Collapse
Affiliation(s)
- Zeguo Sun
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Khadija Banu
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Yorg Al Azzi
- Montefiore Einstein Center for Transplantation, Albert Einstein College of Medicine, Bronx, New York
| | - Anand Reghuvaran
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Samuel Fredericks
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marina Planoutene
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Susan Hartzell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yesl Kim
- Geriatric Research Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - John Pell
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gregory Tietjen
- Department of Surgery, Yale University school of Medicine, New Haven, Connecticut
| | - William Asch
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Sanjay Kulkarni
- Department of Surgery, Yale University school of Medicine, New Haven, Connecticut
| | - Richard Formica
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Meenakshi Rana
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan S. Maltzman
- Geriatric Research Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California
| | - Weijia Zhang
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Enver Akalin
- Montefiore Einstein Center for Transplantation, Albert Einstein College of Medicine, Bronx, New York
| | - Peter S. Heeger
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Madhav C. Menon
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
24
|
Liu W, Jia J, Dai Y, Chen W, Pei G, Yan Q, Zhao Z. Delineating COVID-19 immunological features using single-cell RNA sequencing. Innovation (N Y) 2022; 3:100289. [PMID: 35879967 PMCID: PMC9299978 DOI: 10.1016/j.xinn.2022.100289] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding the molecular mechanisms of coronavirus disease 2019 (COVID-19) pathogenesis and immune response is vital for developing therapies. Single-cell RNA sequencing has been applied to delineate the cellular heterogeneity of the host response toward COVID-19 in multiple tissues and organs. Here, we review the applications and findings from over 80 original COVID-19 single-cell RNA sequencing studies as well as many secondary analysis studies. We describe that single-cell RNA sequencing reveals multiple features of COVID-19 patients with different severity, including cell populations with proportional alteration, COVID-19-induced genes and pathways, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in single cells, and adaptation of immune repertoire. We also collect published single-cell RNA sequencing datasets from original studies. Finally, we discuss the limitations in current studies and perspectives for future advance.
Collapse
Affiliation(s)
- Wendao Liu
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Johnathan Jia
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wenhao Chen
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute and Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qiheng Yan
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| |
Collapse
|
25
|
Zheng B, Yang Y, Chen L, Wu M, Zhou S. B-Cell Receptor Repertoire Sequencing: Deeper Digging into the Mechanisms and Clinical Aspects of Immune-mediated Diseases. iScience 2022; 25:105002. [PMID: 36157582 PMCID: PMC9494237 DOI: 10.1016/j.isci.2022.105002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
B cells play an essential role in adaptive immunity and are intimately correlated with pleiotropic immune-mediated diseases. Each B cell occupies a unique B cell receptor (BCR), and all BCRs throughout our body form “BCR repertoire.” With the development of sequencing technology and coupled bioinformatics, accumulating evidence indicates that BCR repertoire largely varies under physiological and pathological conditions. Therefore, comprehensive grasp of BCR repertoire will provide new insights into the pathogenesis of immune-mediated diseases and help exploit efficient diagnostic and treatment strategies. In this review, we start with an overview of BCR repertoire and related sequencing technologies and summarize their current applications in immune-mediated diseases. We also underscore the challenges of this emerging field and propose promising future directions in advancing BCR repertoire exploration.
Collapse
Affiliation(s)
- Bohao Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, P. R. China
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yuqing Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Lin Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Mengrui Wu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Corresponding author
| |
Collapse
|
26
|
Chen Z, Zhang Y, Wang M, Islam MS, Liao P, Hu Y, Chen X. Humoral and Cellular Immune Responses of COVID-19 vaccines against SARS-Cov-2 Omicron variant: a systemic review. Int J Biol Sci 2022; 18:4629-4641. [PMID: 35874952 PMCID: PMC9305266 DOI: 10.7150/ijbs.73583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/21/2022] [Indexed: 12/13/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has undergone multiple mutations since its emergence, and its latest variant, Omicron (B.1.1.529), is the most contagious variant of concern (VOC) which poses a major and imminent threat to public health. Since firstly reported by World Health Organization (WHO) in November 2021, Omicron variant has been spreading rapidly and has become the dominant variant in many countries worldwide. Omicron is the most mutated variant so far, containing 60 mutations in its genome, including 37 mutations in the S-protein. Since all current COVID-19 vaccines in use were developed based on ancestral SARS-CoV-2 strains, whether they are protective against Omicron is a critical question which has been the center of study currently. In this article, we systemically reviewed the studies regarding the effectiveness of 2- or 3-dose vaccines delivered in either homologous or heterologous manner. The humoral and cellular immune responses elicited by various vaccine regimens to protect against Omicron variant are discussed. Current understanding of the molecular basis underlying immune escape of Omicron was also analyzed. These studies indicate that two doses of vaccination are insufficient to elicit neutralizing antibody responses against Omicron variant. Nevertheless, Omicron-specific humoral immune responses can be enhanced by booster dose of almost all type vaccines in certain degree, and heterologous vaccination strategy may represent a better choice than homogenous regimens. Intriguingly, results of studies indicate that all current vaccines are still able to elicit robust T cell response against Omicron. Future focus should be the development of Omicron variant vaccine, which may induce potent humoral as well as cellular immune responses simultaneously against all known variants of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| |
Collapse
|
27
|
Gao H, Yu L, Yan F, Zheng Y, Huang H, Zhuang X, Zeng Y. Landscape of B Cell Receptor Repertoires in COVID-19 Patients Revealed Through CDR3 Sequencing of Immunoglobulin Heavy and Light Chains. Immunol Invest 2022; 51:1994-2008. [PMID: 35797435 DOI: 10.1080/08820139.2022.2092407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The outbreak and persistence of coronavirus disease 2019 (COVID-19) threaten human health. B cells play a vital role in fighting the infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite many studies on the immune responses in COVID-19 patients, it is still unclear how B cell receptor (BCR) constituents, including immunoglobulin heavy (IGHs) and light chains (IGLs), respond to SARS-CoV-2 in patients with varying symptoms. In this study, we conducted complementarity-determining region 3 (CDR3) sequencing of BCR IGHs and IGLs from the peripheral blood of COVID-19 patients and healthy donors. The results showed significantly reduced clonal diversity, more expanded clones, and longer CDR3 lengths of IGH and IGL in COVID-19 patients than those in healthy individuals. The IGLs had a much higher percentage of VJ skew usage (47.83% IGLV and 42.86% IGLJ were significantly regulated) than the IGHs (12.09% IGHV and 0% IGHJ) between the healthy individuals and patients, which indicated the importance of BCR light chains. Furthermore, we found a largely expanded IGLV3-25 gene cluster mostly pairing with IGLJ1 and ILGJ2 in COVID-19 patients and a newly identified upregulated IGLJ1 gene and IGLJ2+IGLV13-21 recombination, both of which are potential sources of SARS-CoV-2-targeting antibodies. Our findings on specific immune B-cell signatures associated with COVID-19 have clinical implications for vaccine and biomarker development for disease diagnosis.
Collapse
Affiliation(s)
- Hongzhi Gao
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.,Department of Respiratory Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Furong Yan
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Youxian Zheng
- Department of Microbiology, Quanzhou Municipal Center for Disease Control and Prevention, Fujian Province, Quanzhou, China
| | - Hongbo Huang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xibin Zhuang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yiming Zeng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
28
|
Abondio P, De Intinis C, da Silva Gonçalves Vianez Júnior JL, Pace L. SINGLE CELL MULTIOMIC APPROACHES TO DISENTANGLE T CELL HETEROGENEITY. Immunol Lett 2022; 246:37-51. [DOI: 10.1016/j.imlet.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
|
29
|
Li H, Lin H, Chen X, Li H, Li H, Lin S, Huang L, Chen G, Zheng G, Wang S, Hu X, Huang H, Tu H, Li X, Ji Y, Zhong W, Li Q, Fang J, Lin Q, Yu R, Xie B. Unvaccinated Children Are an Important Link in the Transmission of SARS-CoV-2 Delta Variant (B1.617.2): Comparative Clinical Evidence From a Recent Community Surge. Front Cell Infect Microbiol 2022; 12:814782. [PMID: 35350438 PMCID: PMC8957884 DOI: 10.3389/fcimb.2022.814782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/11/2022] [Indexed: 01/08/2023] Open
Abstract
Objective To evaluate the necessity of Covid-19 vaccination in children aged < 12 y by comparing the clinical characteristics between unvaccinated children aged < 12 y and vaccinated patients aged ≥ 12y during the Delta surge (B.1.617.2) in Putian, Fujian, China. Methods A total of 226 patients with SARS-Cov-2 Delta variant (B.1.167.2; confirmed by Real-time PCR positivity and sequencing) were enrolled from Sep 10th to Oct 20th, 2021, including 77 unvaccinated children (aged < 12y) and 149 people aged ≥ 12y, mostly vaccinated. The transmission route was explored and the clinical data of two groups were compared; The effect factors for the time of the nucleic acid negativization (NAN) were examined by R statistical analysis. Results The Delta surge in Putian spread from children in schools to factories, mostly through family contact. Compared with those aged ≥ 12y, patients aged < 12y accounted for 34.07% of the total and showed milder fever, less cough and fatigue; they reported higher peripheral blood lymphocyte counts [1.84 (1.32, 2.71)×10^9/L vs. 1.31 (0.94, 1.85)×10^9/L; p<0.05), higher normal CRP rate (92.21% vs. 57.72%), lower IL-6 levels [5.28 (3.31, 8.13) vs. 9.10 (4.37, 15.14); p<0.05]. Upon admission, their COVID19 antibodies (IgM and IgG) and IgG in convalescence were lower [0.13 (0.00, 0.09) vs. 0.12 (0.03, 0.41), p<0.05; 0.02 (0.00, 0.14) vs. 1.94 (0.54, 6.40), p<0.05; 5.46 (2.41, 9.26) vs. 73.63 (54.63, 86.55), p<0.05, respectively], but longer NAN time (18 days vs. 16 days, p=0.13). Conclusion Unvaccinated children may be an important link in the transmission of SARS-CoV-2 delta variant (B1.617.2), which indicated an urgent need of vaccination for this particular population.
Collapse
Affiliation(s)
- Hongru Li
- Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Shengli Medical College, Fujian Medical University, Fuzhou, China
| | - Haibin Lin
- Department of Orthopaedics, Affiliated Hospital of Fujian Putian University, Putian, China
| | - Xiaoping Chen
- College of Mathematics and Statistics, Fujian Normal University, Fuzhou, China
| | - Hang Li
- Department of Orthopaedics, Affiliated Hospital of Fujian Putian University, Putian, China
| | - Hong Li
- Nursing Department, Fujian Provincial Hospital, Fuzhou, China
| | - Sheng Lin
- Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Shengli Medical College, Fujian Medical University, Fuzhou, China
| | - Liping Huang
- Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Shengli Medical College, Fujian Medical University, Fuzhou, China
| | - Gongping Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guilin Zheng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Putian University, Putian, China
| | - Shibiao Wang
- Department of Pediatrics, Fujian Maternal and Child Health Hospital, Fuzhou, China
| | - Xiaowei Hu
- Fujian Hospital of Shanghai Children’s Medical Center, Fuzhou, China
| | - Handong Huang
- Department of Internal Critical Medicine, Affiliated Hospital of Putian University, Putian, China
| | - Haijian Tu
- Department of Laboratory Medicine, Affiliated Hospital of Putian University, Putian, China
| | - Xiaoqin Li
- Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Shengli Medical College, Fujian Medical University, Fuzhou, China
| | - Yuejiao Ji
- College of Mathematics and Statistics, Fujian Normal University, Fuzhou, China
| | - Wen Zhong
- Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Shengli Medical College, Fujian Medical University, Fuzhou, China
| | - Qing Li
- Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Shengli Medical College, Fujian Medical University, Fuzhou, China
| | - Jiabin Fang
- Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Shengli Medical College, Fujian Medical University, Fuzhou, China
| | - Qunying Lin
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Putian University, Putian, China
- *Correspondence: Baosong Xie, ; Rongguo Yu, ; Qunying Lin,
| | - Rongguo Yu
- Department of Surgical Critical Medicine, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Baosong Xie, ; Rongguo Yu, ; Qunying Lin,
| | - Baosong Xie
- Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital, Fujian Shengli Medical College, Fujian Medical University, Fuzhou, China
- *Correspondence: Baosong Xie, ; Rongguo Yu, ; Qunying Lin,
| |
Collapse
|
30
|
Sun Z, Zhang Z, Banu K, Azzi YA, Reghuvaran A, Fredericks S, Planoutene M, Hartzell S, Pell J, Tietjen G, Asch W, Kulkarni S, Formica R, Rana M, Zhang W, Akalin E, Cravedi P, Heeger PS, Menon MC. Blood transcriptomes of SARS-CoV-2 infected kidney transplant recipients demonstrate immune insufficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.31.22270203. [PMID: 35132424 PMCID: PMC8820676 DOI: 10.1101/2022.01.31.22270203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Kidney transplant recipients (KTRs) with COVID-19 have poor outcomes compared to non-KTRs. To provide insight into management of immunosuppression during acute illness, we studied immune signatures from the peripheral blood during and after COVID-19 infection from a multicenter KTR cohort.□. METHODS Clinical data were collected by chart review. PAXgene blood RNA was poly-A selected and RNA sequencing was performed to evaluate transcriptome changes. RESULTS A total of 64 cases of COVID-19 in KTRs were enrolled, including 31 acute cases (< 4 weeks from diagnosis) and 33 post-acute cases (>4 weeks). In the blood transcriptome of acute cases, we identified differentially expressed genes (DEGs) in positive or negative association COVID-19 severity scores. Functional enrichment analyses showed upregulation of neutrophil and innate immune pathways, but downregulation of T-cell and adaptive immune-activation pathways proportional to severity score. This finding was independent of lymphocyte count and despite reduction in immunosuppression (IS) in most KTRs. Comparison with post-acute cases showed "normalization" of these enriched pathways after >4 weeks, suggesting recovery of adaptive immune system activation despite reinstitution of IS. The latter analysis was adjusted for COVID-19 severity score and lymphocyte count. DEGs associated with worsening disease severity in a non-KTR cohort with COVID-19 (GSE152418) showed significant overlap with KTRs in these identified enriched pathways. CONCLUSION Blood transcriptome of KTRs affected by COVID-19 shows decrease in T-cell and adaptive immune activation pathways during acute disease that associate with severity despite IS reduction and show recovery after acute illness. SIGNIFICANCE STATEMENT Kidney transplant recipients (KTRs) are reported to have worse outcomes with COVID-19, and empiric reduction of maintenance immunosuppression is pursued. Surprisingly, reported rates of acute rejection have been low despite reduced immunosuppression. We evaluated the peripheral blood transcriptome of 64 KTRs either during or after acute COVID-19. We identified transcriptomic signatures consistent with suppression of adaptive T-cell responses which significantly associated with disease severity and showed evidence of recovery after acute disease, even after adjustment for lymphocyte number. Our transcriptomic findings of immune-insufficiency during acute COVID-19 provide an explanation for the low rates of acute rejection in KTRs despite reduced immunosuppression. Our data support the approach of temporarily reducing T -cell-directed immunosuppression in KTRs with acute COVID-19.
Collapse
|
31
|
Abstract
The adaptive immune response is a major determinant of the clinical outcome after SARS-CoV-2 infection and underpins vaccine efficacy. T cell responses develop early and correlate with protection but are relatively impaired in severe disease and are associated with intense activation and lymphopenia. A subset of T cells primed against seasonal coronaviruses cross reacts with SARS-CoV-2 and may contribute to clinical protection, particularly in early life. T cell memory encompasses broad recognition of viral proteins, estimated at around 30 epitopes within each individual, and seems to be well sustained so far. This breadth of recognition can limit the impact of individual viral mutations and is likely to underpin protection against severe disease from viral variants, including Omicron. Current COVID-19 vaccines elicit robust T cell responses that likely contribute to remarkable protection against hospitalization or death, and novel or heterologous regimens offer the potential to further enhance cellular responses. T cell immunity plays a central role in the control of SARS-CoV-2 and its importance may have been relatively underestimated thus far.
Collapse
Affiliation(s)
- Paul Moss
- University of Birmingham, Birmingham, UK.
| |
Collapse
|
32
|
Geronikolou SA, Takan I, Pavlopoulou A, Mantzourani M, Chrousos GP. Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia. Int J Mol Med 2022; 49:35. [PMID: 35059730 PMCID: PMC8815408 DOI: 10.3892/ijmm.2022.5090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
The highly heterogeneous symptomatology and unpredictable progress of COVID-19 triggered unprecedented intensive biomedical research and a number of clinical research projects. Although the pathophysiology of the disease is being progressively clarified, its complexity remains vast. Moreover, some extremely infrequent cases of thrombotic thrombocytopenia following vaccination against SARS-CoV-2 infection have been observed. The present study aimed to map the signaling pathways of thrombocytopenia implicated in COVID-19, as well as in vaccine-induced thrombotic thrombocytopenia (VITT). The biomedical literature database, MEDLINE/PubMed, was thoroughly searched using artificial intelligence techniques for the semantic relations among the top 50 similar words (>0.9) implicated in COVID-19-mediated human infection or VITT. Additionally, STRING, a database of primary and predicted associations among genes and proteins (collected from diverse resources, such as documented pathway knowledge, high-throughput experimental studies, cross-species extrapolated information, automated text mining results, computationally predicted interactions, etc.), was employed, with the confidence threshold set at 0.7. In addition, two interactomes were constructed: i) A network including 119 and 56 nodes relevant to COVID-19 and thrombocytopenia, respectively; and ii) a second network containing 60 nodes relevant to VITT. Although thrombocytopenia is a dominant morbidity in both entities, three nodes were observed that corresponded to genes (AURKA, CD46 and CD19) expressed only in VITT, whilst ADAM10, CDC20, SHC1 and STXBP2 are silenced in VITT, but are commonly expressed in both COVID-19 and thrombocytopenia. The calculated average node degree was immense (11.9 in COVID-19 and 6.43 in VITT), illustrating the complexity of COVID-19 and VITT pathologies and confirming the importance of cytokines, as well as of pathways activated following hypoxic events. In addition, PYCARD, NLP3 and P2RX7 are key potential therapeutic targets for all three morbid entities, meriting further research. This interactome was based on wild-type genes, revealing the predisposition of the body to hypoxia-induced thrombosis, leading to the acute COVID-19 phenotype, the 'long-COVID syndrome', and/or VITT. Thus, common nodes appear to be key players in illness prevention, progression and treatment.
Collapse
Affiliation(s)
- Styliani A Geronikolou
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Işil Takan
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey
| | | | - Marina Mantzourani
- First Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | - George P Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
33
|
Unterman A, Sumida TS, Nouri N, Yan X, Zhao AY, Gasque V, Schupp JC, Asashima H, Liu Y, Cosme C, Deng W, Chen M, Raredon MSB, Hoehn KB, Wang G, Wang Z, DeIuliis G, Ravindra NG, Li N, Castaldi C, Wong P, Fournier J, Bermejo S, Sharma L, Casanovas-Massana A, Vogels CBF, Wyllie AL, Grubaugh ND, Melillo A, Meng H, Stein Y, Minasyan M, Mohanty S, Ruff WE, Cohen I, Raddassi K, Niklason LE, Ko AI, Montgomery RR, Farhadian SF, Iwasaki A, Shaw AC, van Dijk D, Zhao H, Kleinstein SH, Hafler DA, Kaminski N, Dela Cruz CS. Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19. Nat Commun 2022; 13:440. [PMID: 35064122 PMCID: PMC8782894 DOI: 10.1038/s41467-021-27716-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/03/2021] [Indexed: 02/06/2023] Open
Abstract
Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Adaptive Immunity/genetics
- Adaptive Immunity/immunology
- Aged
- Antibodies, Monoclonal, Humanized/therapeutic use
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- COVID-19/genetics
- COVID-19/immunology
- Cells, Cultured
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Humans
- Immunity, Innate/drug effects
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Male
- RNA-Seq/methods
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- SARS-CoV-2/drug effects
- SARS-CoV-2/immunology
- SARS-CoV-2/physiology
- Single-Cell Analysis/methods
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Avraham Unterman
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
- Pulmonary Institute, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel.
| | - Tomokazu S Sumida
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA.
| | - Nima Nouri
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Center for Medical Informatics, Yale School of Medicine, New Haven, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Xiting Yan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Amy Y Zhao
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Victor Gasque
- Department of Computer Science, Yale University, New Haven, CT, USA
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jonas C Schupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
| | - Hiromitsu Asashima
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Yunqing Liu
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Carlos Cosme
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Wenxuan Deng
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Ming Chen
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Micha Sam Brickman Raredon
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Guilin Wang
- Yale Center for Genome Analysis/Keck Biotechnology Resource Laboratory, Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Giuseppe DeIuliis
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Neal G Ravindra
- Department of Computer Science, Yale University, New Haven, CT, USA
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ningshan Li
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Patrick Wong
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - John Fournier
- School of Medicine, Yale University, New Haven, CT, USA
| | - Santos Bermejo
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anthony Melillo
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Yan Stein
- Pulmonary Institute, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Maksym Minasyan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - William E Ruff
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Inessa Cohen
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Khadir Raddassi
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Laura E Niklason
- Departments of Anesthesiology & Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Shelli F Farhadian
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - David van Dijk
- Department of Computer Science, Yale University, New Haven, CT, USA
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Inter-Departmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Steven H Kleinstein
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Inter-Departmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- West Haven Veterans Affair Medical Center, West Haven, CT, USA
| |
Collapse
|
34
|
Pan T, Cao G, Tang E, Zhao Y, Penaloza-MacMaster P, Fang Y, Huang J. A single-cell atlas reveals shared and distinct immune responses and metabolism during SARS-CoV-2 and HIV-1 infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.10.475725. [PMID: 35043114 PMCID: PMC8764725 DOI: 10.1101/2022.01.10.475725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
UNLABELLED SARS-CoV-2 and HIV-1 are RNA viruses that have killed millions of people worldwide. Understanding the similarities and differences between these two infections is critical for understanding disease progression and for developing effective vaccines and therapies, particularly for 38 million HIV-1 + individuals who are vulnerable to SARS-CoV-2 co-infection. Here, we utilized single-cell transcriptomics to perform a systematic comparison of 94,442 PBMCs from 7 COVID-19 and 9 HIV-1 + patients in an integrated immune atlas, in which 27 different cell types were identified using an accurate consensus single-cell annotation method. While immune cells in both cohorts show shared inflammation and disrupted mitochondrial function, COVID-19 patients exhibit stronger humoral immunity, broader IFN-I signaling, elevated Rho GTPase and mTOR pathway activities, and downregulated mitophagy. Our results elucidate transcriptional signatures associated with COVID-19 and HIV-1 that may reveal insights into fundamental disease biology and potential therapeutic targets to treat these viral infections. HIGHLIGHTS COVID-19 and HIV-1 + patients show disease-specific inflammatory immune signatures COVID-19 patients show more productive humoral responses than HIV-1 + patients SARS-CoV-2 elicits more enriched IFN-I signaling relative to HIV-IDivergent, impaired metabolic programs distinguish SARS-CoV-2 and HIV-1 infections.
Collapse
|
35
|
Hasankhani A, Bahrami A, Sheybani N, Aria B, Hemati B, Fatehi F, Ghaem Maghami Farahani H, Javanmard G, Rezaee M, Kastelic JP, Barkema HW. Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic. Front Immunol 2021; 12:789317. [PMID: 34975885 PMCID: PMC8714803 DOI: 10.3389/fimmu.2021.789317] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background The recent emergence of COVID-19, rapid worldwide spread, and incomplete knowledge of molecular mechanisms underlying SARS-CoV-2 infection have limited development of therapeutic strategies. Our objective was to systematically investigate molecular regulatory mechanisms of COVID-19, using a combination of high throughput RNA-sequencing-based transcriptomics and systems biology approaches. Methods RNA-Seq data from peripheral blood mononuclear cells (PBMCs) of healthy persons, mild and severe 17 COVID-19 patients were analyzed to generate a gene expression matrix. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules in healthy samples as a reference set. For differential co-expression network analysis, module preservation and module-trait relationships approaches were used to identify key modules. Then, protein-protein interaction (PPI) networks, based on co-expressed hub genes, were constructed to identify hub genes/TFs with the highest information transfer (hub-high traffic genes) within candidate modules. Results Based on differential co-expression network analysis, connectivity patterns and network density, 72% (15 of 21) of modules identified in healthy samples were altered by SARS-CoV-2 infection. Therefore, SARS-CoV-2 caused systemic perturbations in host biological gene networks. In functional enrichment analysis, among 15 non-preserved modules and two significant highly-correlated modules (identified by MTRs), 9 modules were directly related to the host immune response and COVID-19 immunopathogenesis. Intriguingly, systemic investigation of SARS-CoV-2 infection identified signaling pathways and key genes/proteins associated with COVID-19's main hallmarks, e.g., cytokine storm, respiratory distress syndrome (ARDS), acute lung injury (ALI), lymphopenia, coagulation disorders, thrombosis, and pregnancy complications, as well as comorbidities associated with COVID-19, e.g., asthma, diabetic complications, cardiovascular diseases (CVDs), liver disorders and acute kidney injury (AKI). Topological analysis with betweenness centrality (BC) identified 290 hub-high traffic genes, central in both co-expression and PPI networks. We also identified several transcriptional regulatory factors, including NFKB1, HIF1A, AHR, and TP53, with important immunoregulatory roles in SARS-CoV-2 infection. Moreover, several hub-high traffic genes, including IL6, IL1B, IL10, TNF, SOCS1, SOCS3, ICAM1, PTEN, RHOA, GDI2, SUMO1, CASP1, IRAK3, HSPA5, ADRB2, PRF1, GZMB, OASL, CCL5, HSP90AA1, HSPD1, IFNG, MAPK1, RAB5A, and TNFRSF1A had the highest rates of information transfer in 9 candidate modules and central roles in COVID-19 immunopathogenesis. Conclusion This study provides comprehensive information on molecular mechanisms of SARS-CoV-2-host interactions and identifies several hub-high traffic genes as promising therapeutic targets for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Behzad Aria
- Department of Physical Education and Sports Science, School of Psychology and Educational Sciences, Yazd University, Yazd, Iran
| | - Behzad Hemati
- Biotechnology Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahsa Rezaee
- Department of Medical Mycology, School of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - John P. Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
Cimolai N. Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clin Hematol Int 2021; 3:47-68. [PMID: 34595467 PMCID: PMC8432400 DOI: 10.2991/chi.k.210328.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
In the absence of effective antiviral chemotherapy and still in the context of emerging vaccines for severe acute respiratory syndrome-CoV-2 infections, passive immunotherapy remains a key treatment and possible prevention strategy. What might initially be conceived as a simplified donor-recipient process, the intricacies of donor plasma, IV immunoglobulins, and monoclonal antibody modality applications are becoming more apparent. Key targets of such treatment have largely focused on virus neutralization and the specific viral components of the attachment Spike protein and its constituents (e.g., receptor binding domain, N-terminal domain). The cumulative laboratory and clinical experience suggests that beneficial protective and treatment outcomes are possible. Both a dose- and a time-dependency emerge. Lesser understood are the concepts of bioavailability and distribution. Apart from direct antigen binding from protective immunoglobulins, antibody effector functions have potential roles in outcome. In attempting to mimic the natural but variable response to infection or vaccination, a strong functional polyclonal approach attracts the potential benefits of attacking antigen diversity, high antibody avidity, antibody persistence, and protection against escape viral mutation. The availability and ease of administration for any passive immunotherapy product must be considered in the current climate of need. There is never a perfect product, but yet there is considerable room for improving patient outcomes. Given the variability of human genetics, immunity, and disease, and given the nuances of the virus and its potential for change, passive immunotherapy can be developed that will be effective for some but not all patients. An understanding of such patient variability and limitations is just as important as the understanding of the direct interactions between immunotherapy and virus.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Children’s and Women’s Health Centre of British Columbia, 4480 Oak Street, Vancouver, BC, Canada V6H 3V4
| |
Collapse
|