1
|
Zheng P, He P, Guo Y, Wang Y, Wang Q. Interpretable machine learning model for prediction functional cure in chronic hepatitis B patients receiving Peg-IFN therapy: A multi-center study. Int J Med Inform 2025; 201:105916. [PMID: 40300485 DOI: 10.1016/j.ijmedinf.2025.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND Functional cure is the ideal treatment goal for chronic hepatitis B (CHB) treatment. We developed and validated machine learning (ML) models to predict functional cure in CHB patients. METHODS This study retrospectively recruited 534 CHB patients who received Peg-IFN treatment to construct model and 269 patients for external validation. We analyzed three strategies: baseline, week 12, week 24. Seven ML models were constructed using selected variables by Boruta and least absolute shrinkage and selection operator regression algorithm, and performance metrics, including area under the curve (AUC), sensitivity, specificity, and F1 score were applied to determine the best model. We utilized SHapley Additive exPlanation to visualize and interpret the best model and built a website to conveniently predict functional cure of CHB. RESULTS A total of 272 participants were cured in our study. Compared to baseline and week 12 strategies, week 24 using Support Vector Machine (SVM) model can better predict functional cure of CHB, with reliable predictive performance (AUC = 0.981), calibration and clinical applicability in external validation cohort. Age, ALT ratio at week 12, HBsAg at week 24 and HBsAg ratio at week 24 were important features. In order to enhance clinical convenience and effectiveness of the constructed model, a web-based dynamic nomogram was created (Dynamic Nomogram (shinyapps.io)). CONCLUSION This study developed SVM model to predict functional cure in CHB patients treated with Peg-IFN. Furthermore, we also built a website that clinicians can individualized predict the efficacy of Peg-IFN therapy in CHB patients.
Collapse
Affiliation(s)
- Peiyu Zheng
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, China; Graduate School of Shanxi Medical University, Taiyuan, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Big Data for Clinical Decision Research (Shanxi Medical University), Jinzhong, China
| | - Ying Guo
- Department of Liver diseases, Taiyuan Infectious Diseases Hospital, Taiyuan, China
| | - Yan Wang
- Department of Infectious Diseases, Shanxi Bethune Hospital, Taiyuan, China
| | - Qinying Wang
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Shah FA, Qadir H, Khan JZ, Faheem M. A review: From old drugs to new solutions: The role of repositioning in alzheimer's disease treatment. Neuroscience 2025; 576:167-181. [PMID: 40164279 DOI: 10.1016/j.neuroscience.2025.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/02/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Drug repositioning or drug reprofiling, involves identifying novel indications for approved and previously abandoned drugs in the treatment of other diseases. The traditional drug discovery process is tedious, time-consuming, risky, and challenging. Fortunately, the inception of the drug repositioning concept has expedited the process by using compounds with established safety profiles in humans, and thereby significantly reducing costs. Alzheimer's disease (AD) is a severe neurological disorder characterized by progressive degeneration of the brain with limited and less effective therapeutic interventions. Researchers have attempted to identify potential treatment of AD from existing drug however, the success of drug repositioning strategy in AD remains uncertain. This article briefly discusses the importance and effectiveness of drug repositioning strategies, the major obstacles in the development of drugs for AD, approaches to address these challenges, and the role of machine learning in identifying early markers of AD for improved management.
Collapse
Affiliation(s)
- Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Halima Qadir
- Shifa College of Pharmaceutical Sciences, STMU, Islamabad Pakistan.
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad Pakistan.
| | - Muhammad Faheem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Pakistan.
| |
Collapse
|
3
|
Fink DL, Etoori D, Hill R, Idilli O, Kartikapallil N, Payne O, Griffith S, Bradford HF, Mauri C, Kennedy PT, McCoy LE, Maini MK, Gill US. Auto-antibodies against interferons are common in people living with chronic hepatitis B virus infection and associate with PegIFNα non-response. JHEP Rep 2025; 7:101382. [PMID: 40276479 PMCID: PMC12018104 DOI: 10.1016/j.jhepr.2025.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 04/26/2025] Open
Abstract
Background & Aims Type one (T1) and three interferons (T3IFNs) are implicated in chronic hepatitis B (CHB) immunopathogenesis. IFN remains the only licenced immune modulating therapy for CHB. We measured the prevalence of auto-antibodies (auto-Abs) against T1 and T3IFNs to examine the hypothesis that they impact HBV control and treatment response, as highlighted by COVID-19. Methods Our multi-centre retrospective longitudinal study accessed two CHB cohorts; auto-Ab levels and neutralisation status were measured against T1IFN and T3IFN. Associations were tested against HBV clinical parameters. Results Overall, 16.7% (46/276) of patients with CHB had any detectable anti-IFN auto-Abs at any time and 6.5% (18/276) anti-T3IFN auto-Abs, with a high incidence of PegIFNα-induced de novo auto-Abs (31.4%, 11/35). However, only a minority of auto-Ab-positive sera demonstrated neutralisation in vitro (4/46, 8.7%). Auto-Ab positivity correlated with higher median HBsAg levels (p = 0.0110). All individuals with detectable anti-T1IFN auto-Abs were PegIFNα non-responders. Conclusions Non-neutralising anti-IFN auto-Abs are common in CHB and associate with higher median HBsAg levels. Further prospective study of anti-cytokine auto-Abs in CHB are required to characterise the association with long-term outcomes. Impact and implications HBV and PegIFNα individually may induce broad autoreactivity associated with dysregulated antiviral immune responses. Auto-Ab screening prior to PegIFNα treatment or other immunotherapies may play a critical role in predicting treatment responses.
Collapse
Affiliation(s)
- Douglas L. Fink
- Infection and Immunity, University College London, London, UK
- Royal Free London NHS Foundation Trust, London, UK
| | - David Etoori
- Institute for Global Health, University College London, London, UK
| | - Robert Hill
- Infection and Immunity, University College London, London, UK
| | - Orest Idilli
- Infection and Immunity, University College London, London, UK
| | | | - Olivia Payne
- Infection and Immunity, University College London, London, UK
| | - Sarah Griffith
- Infection and Immunity, University College London, London, UK
| | | | - Claudia Mauri
- Infection and Immunity, University College London, London, UK
| | - Patrick T.F. Kennedy
- Barts Liver Centre, Blizard Institute, Barts and The London, School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Laura E. McCoy
- Infection and Immunity, University College London, London, UK
| | - Mala K. Maini
- Infection and Immunity, University College London, London, UK
| | - Upkar S. Gill
- Barts Liver Centre, Blizard Institute, Barts and The London, School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Tang C, Flavel M, Londrigan SL, Mackenzie JM. Polyphenol rich sugarcane extract restricts select respiratory viruses depending on their mode of entry. Virology 2025; 606:110500. [PMID: 40121153 DOI: 10.1016/j.virol.2025.110500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
We previously showed that Polyphenol rich sugarcane extract (PRSE) displayed significant inhibitory effect against influenza A virus (IAV). In this study, we investigated the mechanism of action (MOA) of PRSE against respiratory viruses in human-derived cells. We showed that PRSE treatment does not promote an antiviral state via expression of interferon stimulated genes (ISGs). We subsequently investigated any potential perturbation on the viral entry process and observed that PRSE treatment did not affect caveolin-mediated endocytosis but led to a significant attenuation in clathrin-mediated endocytosis. We confirmed this inhibitory effect on IAV entry, as infection was unaffected by PRSE when IAV fusion was induced at the plasma membrane, instead of endosomal membranes. Based on these findings we observed significant inhibitory effect of PRSE against respiratory syncytial virus and human metapneumovirus, which utilise clathrin-mediated endocytosis, but not human parainfluenza virus type 3, which fuses at the plasma membrane. In conclusion, we show that PRSE has broad antiviral activity and potentially perturbs virus entry via clathrin-mediated endocytosis to inhibit viral replication in vitro.
Collapse
Affiliation(s)
- Caolingzhi Tang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia
| | - Matthew Flavel
- The Product Makers (Australia) Pty Ltd, Keysborough, VIC, 3173, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia.
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
5
|
Du Q, He W, Chen X, Liu J, Guan M, Chen Y, Chen M, Yuan Y, Zuo Y, Miao Y, Wang Q, Zhou H, Liu Y, Jiang J, Zheng H. Bilirubin metabolism in the liver orchestrates antiviral innate immunity in the body. Cell Rep 2025; 44:115481. [PMID: 40153433 DOI: 10.1016/j.celrep.2025.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/09/2025] [Accepted: 03/07/2025] [Indexed: 03/30/2025] Open
Abstract
Bilirubin metabolism crucially maintains normal liver function, but whether it contributes to antiviral immunity remains unknown. Here, we reveal that the liver bilirubin metabolic pathway facilitates antiviral innate immunity of the body. We discovered that viral infection upregulates uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) expression in the liver, which in turn stabilizes IRF3 proteins to promote type I interferon (IFN-I) production. Moreover, we found that serum unconjugated bilirubin (UCB), a unique physiological substrate of UGT1A1, can competitively inhibit the binding of IFN-I to IFN-I receptor 2 (IFNAR2), thus attenuating IFN-I-induced antiviral signaling of the body. Accordingly, effective bilirubin metabolism in the liver promotes antiviral immunity of the body by specifically employing liver UGT1A1-mediated enhancement of IFN-I production and reducing serum bilirubin-mediated inhibition of IFN-I signaling. This study uncovers the significance of bilirubin metabolism in antiviral innate immunity and demonstrates that conventional IFN-I therapy is less efficient for patients with hepatitis B virus (HBV) with high levels of bilirubin.
Collapse
Affiliation(s)
- Qian Du
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wei He
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiangjie Chen
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jin Liu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Mingcheng Guan
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
| | - Yichang Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Meixia Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yukang Yuan
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China; Department of Laboratory Medicine, Institute of Laboratory Medicine, Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Yibo Zuo
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China; Department of Laboratory Medicine, Institute of Laboratory Medicine, Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Ying Miao
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China; Department of Laboratory Medicine, Institute of Laboratory Medicine, Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Qin Wang
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China; Department of Laboratory Medicine, Institute of Laboratory Medicine, Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Haiyan Zhou
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jingting Jiang
- Department of Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Hui Zheng
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China; Department of Laboratory Medicine, Institute of Laboratory Medicine, Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.
| |
Collapse
|
6
|
Zhou T, Shu M, Luo F, Dong S, Teng J, Du Y, Qiu H, Cai W. Quantitative Change of Hepatitis B Surface Antigen Leading to Final Hepatitis B Surface Antigen Loss in Patients with Chronic Hepatitis B Receiving Nucleos(t)ide Analogs in China. Clin Transl Gastroenterol 2025; 16:e00820. [PMID: 39968851 PMCID: PMC12020684 DOI: 10.14309/ctg.0000000000000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025] Open
Abstract
INTRODUCTION Loss of hepatitis B surface antigen (HBsAg) is the pivotal component of functional cure in patients suffering from chronic hepatitis B (CHB). The predictive value of quantitative HBsAg (qHBsAg) in HBsAg loss among those undergoing nucleos(t)ide analog (NAs) therapy is an area of ongoing investigation. METHODS A retrospective cohort study using electronic medical records was performed. CHB patients with NAs treatment between January 1, 2012, and December 31, 2020 were enrolled and followed up until discontinuation of NAs, as indicated by a gap more than 12 months in prescription refills, past medical record, or study end. Patients were grouped into NAs treatment-naïve cohort and treatment-experienced cohort. In both cohorts, Cox regression models assessed associations between 12-month reduction in qHBsAg, baseline qHBsAg, and HBsAg loss. RESULTS Overall, 2,627 CHB patients with NAs treatment was identified, including 1,179 in treatment-naïve cohort and 1,448 in treatment-experienced cohort. In treatment-naïve cohort, 9 patients had HBsAg loss (0.51/100 person-years). In treatment-experienced cohort, 30 patients had HBsAg loss (1.03/100 person-years). HBsAg loss was significantly associated with a 0.5-1 log10 (treatment-naïve: adjusted hazard ratio [aHR] 8.06, 95% confidence interval [CI] 1.29-50.40; treatment-experienced: aHR 4.34, 95% CI 1.40-13.47) and >1 log10 qHBsAg decrease (treatment-naïve: aHR 9.19, 95% CI 1.47-57.65; treatment-experienced: aHR 8.02, 95% CI 1.76-36.57) compared with qHBsAg not reduced. HBsAg loss was significantly associated with lower baseline qHBsAg in treatment-experienced cohort, while such difference was not significant in treatment-naïve cohort. DISCUSSION A rapid decline of qHBsAg in 12 months during NAs therapy, as opposed to merely maintaining a low level of qHBsAg, was associated with HBsAg loss.
Collapse
Affiliation(s)
- Tianhui Zhou
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Shu
- Global Epidemiology, Office of the Chief Medical Officer, Johnson & Johnson, Shanghai, China
| | - Fangyun Luo
- Hepatopathy Department, The Fifth People's Hospital of Ganzhou & Ganzhou Institute of Hepatology, Ganzhou, Jiangxi, China
| | - Sijia Dong
- Global Epidemiology, Office of the Chief Medical Officer, Johnson & Johnson, Shanghai, China
| | - Jiaming Teng
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Du
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Qiu
- Global Epidemiology, Office of the Chief Medical Officer, Johnson & Johnson, Titusville, New Jersey, USA
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Jadhav PA, Thomas AB, Pathan MK, Chaudhari SY, Wavhale RD, Chitlange SS. Unlocking the therapeutic potential of unexplored phytocompounds as hepatoprotective agents through integration of network pharmacology and in-silico analysis. Sci Rep 2025; 15:8425. [PMID: 40069278 PMCID: PMC11897136 DOI: 10.1038/s41598-025-92868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Liver diseases account for over two million deaths annually, amounting to 4% of mortality worldwide, underscoring the need for development of novel preventive and therapeutic strategies. The growing interest in natural hepatoprotective agents highlights the potential of traditional medicine for modern drug discovery, though unlocking their molecular complexity requires advanced tools. This study integrates cutting-edge computational techniques with traditional herbal knowledge to identify potential hepatoprotective compounds. Protein targets implicated in liver disorders were identified through network pharmacology and by leveraging the rich molecular diversity inherent in herbal compounds, phytocompounds were selected. The Gene Ontology, Kyoto Encyclopedia of Genes and Genome data were compiled and enrichment analysis was performed using the DAVID database. Molecular docking of selected phytocompounds with top five protein targets helped identify 14 compounds which were employed for building the pharmacophore model. In virtual screening, among 1089 compounds screened, 10 compounds were identified as potential hits based on their predicted scores and alignment with pharmacophore features. The interactions of resulting hits were then analyzed through redocking studies and validated through molecular dynamics simulation and ADMET studies. Notably, (2S,5E)-2-(3,4-Dihydroxybenzyl)-6-(3,4-dihydroxyphenyl)-4-oxo-5-hexenoic acid and 5'-hydroxymorin emerged as lead compounds for further investigation. Both compounds exhibited significant binding affinities with specific amino acids in selected targets, suggesting their potential to modulate key pathways involved in hepatic disorders. Our findings demonstrate the utility of this integrated approach which transits beyond traditional trial-and-error methods. This approach will accelerate the discovery of novel hepatoprotective compounds, providing deeper insights into their mechanistic pathways and action.
Collapse
Affiliation(s)
- Pranali A Jadhav
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, 411 018, India
| | - Asha B Thomas
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, 411 018, India.
| | | | - Somdatta Y Chaudhari
- Department of Pharmaceutical Chemistry, PES's Modern College of Pharmacy, Nigdi, Pune, Maharashtra, India
| | - Ravindra D Wavhale
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, 411 018, India
| | - Sohan S Chitlange
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, 411 018, India
| |
Collapse
|
8
|
Wang P, Chen J, Chen D, Lei Z, Mo Z, Zhang Y. Patients with chronic hepatitis B under nucleos(t)ide analog therapy with Omicron BA.5 infection: A retrospective study in South China. LIVER RESEARCH (BEIJING, CHINA) 2025; 9:66-73. [PMID: 40206433 PMCID: PMC11977153 DOI: 10.1016/j.livres.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/09/2024] [Accepted: 11/07/2024] [Indexed: 04/11/2025]
Abstract
Background and aims Clinical data regarding patients with chronic hepatitis B (CHB) after Omicron BA.5 infection are currently limited. This study aimed to assess the clinical characteristics of patients with CHB and Omicron BA.5 infection in South China. Methods This retrospective study was conducted from January to March 2023 in a cohort of 485 healthy individuals and 553 patients with CHB. Clinical features, encompassing COVID-19-related symptoms, levels of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies, vaccination status, liver functions, and virological markers of hepatitis B virus (HBV) infection were measured. Results COVID-19-related symptom patterns were similar in both groups, except for fever, which was notably less prevalent (85.4% vs. 90.4%, P = 0.047) among patients with CHB who experienced a significantly shorter duration of fever (median 2.2 (25th-75th percentile, 1.0-3.0) days vs. 2.3 (1.0-3.0) days, P = 0.048) and a shorter time for symptom relief (9.2 (5.0-14.0) vs. 11.1 (5.0-14.0) days, P = 0.015). The levels of SARS-CoV-2 antibodies were comparable between the two groups but increased after booster vaccinations. In patients with CHB, globulin (GLB) and hepatitis B envelope antibody levels were significantly increased after Omicron BA.5 infection, regardless of nucleos(t)ide analog regimens comparing entecavir (ETV) with tenofovir (TFV). Patients with CHB treated with TFV had significantly higher levels of SARS-CoV-2 antibodies than those treated with ETV (1065.1 (346.9-1188.5) COI vs. 765.5 (24.5-1119.1) COI, P = 0.025). Conclusions No significant exacerbation of COVID-19 symptoms was observed in conjunction with the efficacy of COVID-19 booster vaccinations. There were no notable alterations in liver functions except for GLB. HBV reactivation, as evidenced by increased HBV DNA, was observed among patients with CHB after Omicron BA.5 infection. These changes were not affected by ETV versus TFV administration; however, TFV resulted in a significant increase in SARS-CoV-2 antibody levels. Further studies are required to improve care and therapeutics for patients with CHB who contracted COVID-19.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Junjian Chen
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Institute of Human Virology, Zhongshan School of Medicine (Sun Yat-sen University), Guangzhou, Guangdong, China
| | - Dabiao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Ziying Lei
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Zhishuo Mo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Ying Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Miao X, Zhou X, Liu C, Shi H, Liu F, Ma Y, Shi H. Alcohol-Induced Dendritic Cells and Their Exosomes Promote T-Cell Immunity in Hepatitis B Virus Transgenic Mice and Patients With Chronic Hepatitis B. J Med Virol 2025; 97:e70287. [PMID: 40045507 DOI: 10.1002/jmv.70287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/20/2025] [Accepted: 02/19/2025] [Indexed: 05/13/2025]
Abstract
Dendritic cells and the exosomes they secrete play a crucial role in the immune system, and studies have shown that dendritic cell function is dramatically reduced in patients with chronic hepatitis B. Alcohol could stimulate dendritic cell maturation. Consequently, the present work explored the therapeutic effect of alcohol-induced dendritic cells and their exosomes in hepatitis B virus (HBV) infection. We systematically investigated the functional effects of alcohol stimulation and HBV infection on dendritic cells and their exosomes, as well as cocultured alcohol-induced dendritic cells and exosomes with lymphocytes from HBV transgenic mice and chronic hepatitis B patients to study the T cell immune response. Our findings revealed that alcohol significantly accelerated the maturation of bone marrow-derived dendritic cells in mice and dendritic cells in patients with chronic hepatitis B, but had no effect on the DC2.4 cell line. Simultaneously, HBV infection was demonstrated to inhibit dendritic cell activation and maturation, as well as exosomes. More importantly, alcohol-induced dendritic cells enhanced T-cell immunity in HBV transgenic mice and chronic hepatitis B patients, and their exosomes had the same impact. The maturation of dendritic cells and their exosomes can be effectively induced by alcohol. Meanwhile, alcohol-induced maturation of dendritic cells and exosomes can significantly repair the poor T-cell immunity caused by HBV infection, making it a promising novel treatment for chronic hepatitis B patients in the future.
Collapse
Affiliation(s)
- Xingzhong Miao
- Beijing Key Laboratory Research on Liver Regeneration and Artificial Liver Transformation, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People's Hospital, The Affiliated People's Hospital of Shanxi Medical University, Shanxi, China
| | - Chaonan Liu
- Beijing Key Laboratory Research on Liver Regeneration and Artificial Liver Transformation, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Department of Nephrology, Shanxi Provincial People's Hospital, The Affiliated People's Hospital of Shanxi Medical University, Shanxi, China
| | - Honglin Shi
- Beijing Key Laboratory Research on Liver Regeneration and Artificial Liver Transformation, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fang Liu
- Beijing Key Laboratory Research on Liver Regeneration and Artificial Liver Transformation, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingmin Ma
- Beijing Key Laboratory Research on Liver Regeneration and Artificial Liver Transformation, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hongbo Shi
- Beijing Key Laboratory Research on Liver Regeneration and Artificial Liver Transformation, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Mohebbi A, Nabavi SPT, Naderi M, Sharifian K, Behnezhad F, Mohebbi M, Gholami A, Askari FS, Mirarab A, Monavari SH. Computer-aided drug repurposing & discovery for Hepatitis B capsid protein. In Silico Pharmacol 2025; 13:35. [PMID: 40018383 PMCID: PMC11861453 DOI: 10.1007/s40203-025-00314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
The primary objective of this study is to harness computer-aided drug repurposing (CADR) techniques to identify existing FDA-approved drugs that can potentially disrupt the assembly of the Hepatitis B Virus (HBV) core protein (HBcAg), an essential process in the virus's life cycle. By targeting this critical step, our study aims to expand the repertoire of therapeutic options for managing chronic Hepatitis B infection, a major global health challenge. Utilizing a combination of computational methods, including the CavityPlus server for ability to analyze druggable protein cavities and extract pharmacophore features and LigandScout for pharmacophore-based virtual screening of a vast library of FDA-approved drugs was conducted. Molecular dynamic simulation (MDS) was employed to evaluate the stability of HBcAg, complexed with Heteroaryldihydropyrimidine (HAP) and statins exhibiting particularly strong binding energies and conformational compatibility. Our approach focused on identifying pharmacophore features that align with known HBcAg inhibitors. The study identified several promising candidates, including Ciclopirox olamine, Voriconazole, Enasidenib, and statins, demonstrating potential interactions with HBc protein residues. Molecular docking further validated these interactions. The significance of these findings lies in their potential to offer new, effective therapeutic strategies for HBV treatment, particularly as alternatives to current therapies that often suffer from issues of viral resistance and adverse side effects. MDS analysis verified the robustness of HAP and statins by showing a high level of binding energies and compatibility with HBcAg. Our results provide a foundation for further experimental validation and underscore the utility of computer-aided drug repurposing as a rapid, cost-effective approach to drug discovery in antiviral research. This study contributes to our understanding of HBV biology and opens avenues for developing novel anti-HBV therapies based on repurposed drugs. The highlighted compound may also enhance the challenges of drug resistance when used as a combination therapy.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vista Aria Rena Gene, Inc., Gorgan, Golestan Province Iran
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Malihe Naderi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Hiroshima Institute of Life Sciences, 7-21, Nishi Asahi-Machi, Minami-ku, Hiroshima-shi, Hiroshima 734-0002 Japan
| | - Kimia Sharifian
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzane Behnezhad
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohebbi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amytis Gholami
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sana Askari
- Vista Aria Rena Gene, Inc., Gorgan, Golestan Province Iran
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azam Mirarab
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | |
Collapse
|
11
|
Rust LN, Wettengel JM, Biswas S, Ryu J, Piekarski N, Yusova S, Lutz SS, Naldiga S, Hinrichs BJ, Sullivan MN, Lo JO, Protzer U, Smedley JV, Sacha JB, Hanna CB, Bimber BN, Hennebold JD, Burwitz BJ. Liver-specific transgenic expression of human NTCP in rhesus macaques confers HBV susceptibility on primary hepatocytes. Proc Natl Acad Sci U S A 2025; 122:e2413771122. [PMID: 39937851 PMCID: PMC11848295 DOI: 10.1073/pnas.2413771122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/17/2024] [Indexed: 02/14/2025] Open
Abstract
Hepatitis B virus (HBV) poses a significant global health challenge, necessitating the urgent development of curative therapeutics. However, this progress is impeded by the lack of robust, immunocompetent preclinical animal models due to HBV's strict species specificity. We previously showed that vector-mediated expression of the HBV entry receptor, human sodium-taurocholate cotransporting polypeptide (hNTCP), renders macaques fully susceptible to HBV infection. In this study, we have generated transgenic macaques expressing hNTCP, marking the creation of the first transgenic nonhuman primate model for infectious disease research. We used PiggyBac (PB) transposon technology to insert a liver-specific hNTCP expression cassette into rhesus macaque zygotes and transferred the resulting embryos into surrogate females, resulting in two healthy transgenic offspring. In both animals, hNTCP is highly and selectively expressed in the liver. Most importantly, we show that isolated hepatocytes from these monkeys are susceptible to HBV infection. These findings lay the foundation for the development of a nonhuman primate HBV model, facilitating the advancement and validation of curative HBV therapies.
Collapse
Affiliation(s)
- Lauren N. Rust
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Jochen M. Wettengel
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich81675, Germany
- German Center for Infection Research, Munich Partner Site, Munich81675, Germany
| | - Sreya Biswas
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Junghyun Ryu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Nadine Piekarski
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Sofiya Yusova
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Savannah S. Lutz
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Spandana Naldiga
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Brayden J. Hinrichs
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Michelle N. Sullivan
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Jamie O. Lo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich81675, Germany
- German Center for Infection Research, Munich Partner Site, Munich81675, Germany
| | - Jeremy V. Smedley
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Jonah B. Sacha
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Carol B. Hanna
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Benjamin N. Bimber
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Jon D. Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Benjamin J. Burwitz
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| |
Collapse
|
12
|
Ugbaja SC, Mokoena AT, Mushebenge AGA, Kumalo HM, Ngcobo M, Gqaleni N. Evaluation of the Potency of Repurposed Antiretrovirals in HBV Therapy: A Narrative Investigation of the Traditional Medicine Alternatives. Int J Mol Sci 2025; 26:1523. [PMID: 40003989 PMCID: PMC11855344 DOI: 10.3390/ijms26041523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Hepatitis B is one of the killer communicable diseases, with a global estimation of 1.1 million deaths resulting from liver diseases annually. The search for HBV therapeutics has resulted in repurposing the existing antiretrovirals (ARVs) for HBV treatment, considering their shared common replication mechanisms. This review is aimed at evaluating the potencies of some of the repurposed ARVs used for HBV treatment, analyzing the common mechanisms of viral replications in HBV and HIV, and investigating the potentials of traditional medicines as an alternative treatment for HBV patients. The topical keywords drug repurposing, drug repositioning, antiretrovirals, hepatitis B treatment, HBV, natural products, traditional medicines, title, and abstract were searched in PubMed, Web of Science, and Google Scholar. The advanced search included the five years, 2019-2024. The search result was filtered from 377 to 110 relevant articles. The evaluation reveals that CD4+ T cells are targeted by HIV, while HBV targets the liver with its associated diseases (cirrhosis and hepatocellular carcinoma (HCC)). Furthermore, treatments with the available repurposed ARVs only prevent or slow down the progression to cirrhosis, reduce the HCC incidence, and can improve the quality of life and increase life expectancy; however, they are not curative for HBV. Traditional medicines/natural product extracts or their phytochemicals exert anti-HBV effects through different mechanisms. Traditional medicines exert improved therapeutic effects when combined properly. The investigation further reveals that consideration of an in silico approach in HBV therapeutics might not only streamline drug development but also contribute to a deeper understanding of viral pathogenesis. Therefore, we recommend the integration of computational drug design methods with traditional medicine and natural product screening for discovering new bioactive HBV drug candidates.
Collapse
Affiliation(s)
- Samuel Chima Ugbaja
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Ata Thabo Mokoena
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4000, South Africa
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Aganze Gloire-Aimé Mushebenge
- Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Faculty of Pharmaceutical Sciences, University of Lubumbashi, Lubumbashi 1825, Democratic Republic of the Congo
| | - Hezekiel M. Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Mlungisi Ngcobo
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Nceba Gqaleni
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4000, South Africa
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
13
|
Shi Z, Tsuge M, Collier N, Takeuchi Y, Uchida T, Rutter CM, Teraoka Y, Uprichard S, Ishida Y, Tateno C, Ozik J, Dahari H, Chayama K. Modeling of hepatitis B virus infection spread in primary human hepatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636596. [PMID: 39975229 PMCID: PMC11838564 DOI: 10.1101/2025.02.05.636596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Chronic hepatitis B virus (HBV) infection poses a significant global health threat, causing severe liver diseases including cirrhosis and hepatocellular carcinoma. We characterized HBV DNA kinetics in primary human hepatocytes (PHH) over 32 days post-inoculation (pi) and used agent-based modeling (ABM) to gain insights into HBV lifecycle and spread. Parallel PHH cultures were mock-treated or HBV entry inhibitor Myr-preS1 (6.25 μg/mL) was initiated 24h pi. In untreated PHH, 3 viral DNA kinetic patterns were identified: (1) an initial decline, followed by (2) rapid amplification, and (3) slower amplification/accumulation. In the presence of Myr-preS1, viral DNA and infected cell numbers in phase 3 were effectively blocked, with minimal to no increase. This suggests that phase 2 represents viral amplification in initially infected cells, while phase 3 corresponds to viral spread to naïve cells. The ABM reproduced well the HBV kinetic patterns observed and predicted that the viral eclipse phase lasts between 18 and 38 hours. After the eclipse phase, the viral production rate increases over time, starting with a slow production cycle of 1 virion per day, which gradually accelerates to 1 virion per hour after 3 days. Approximately 4 days later, virion production reaches a steady state production rate of 4 virions/hour. The estimated median efficacy of Myr-preS1 in blocking HBV spread was 91% (range: 90-92%). The HBV kinetics and the predicted estimates of the HBV eclipse phase duration and HBV production cycles in PHH are similar of those predicted in uPA/SCID mice with human livers.
Collapse
Affiliation(s)
- Zhenzhen Shi
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Masataka Tsuge
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
- Liver Center, Hiroshima University Hospital, Hiroshima, Japan
- Department of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nicholson Collier
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Decision and Infrastructure Sciences, Argonne National Laboratory, Argonne, IL, USA
| | - Yasue Takeuchi
- Hepatitis Information Center, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Takuro Uchida
- Division of Travel Medicine and Health, Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Yufu, Japan
| | - Carolyn M. Rutter
- Fred Hutchinson Cancer Research Center, Hutchinson Institute for Cancer Outcomes Research, Biostatistics Program, Public Health Sciences Division, Seattle, WA, USA
| | - Yuji Teraoka
- Gastroenterology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Susan Uprichard
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Yuji Ishida
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Japan
| | | | - Jonathan Ozik
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Decision and Infrastructure Sciences, Argonne National Laboratory, Argonne, IL, USA
| | - Harel Dahari
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Kazuaki Chayama
- Hiroshima Institute of Life Sciences, Hiroshima, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
14
|
Mon HC, Lee PC, Chi CT, Huang YH. Effect of immune checkpoint inhibitors on patients with hepatitis B virus infection. J Chin Med Assoc 2025; 88:93-97. [PMID: 39726106 DOI: 10.1097/jcma.0000000000001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Hepatitis B virus (HBV) infection is regarded as a major health concern worldwide. In patients with chronic HBV infection, exhausted virus-specific CD8+ T cells, resulting from the activation of the programmed cell death protein 1 and programmed death ligand 1 axis, play a key role in the chronicity of infection. Functional cure for HBV, defined as the seroclearance of hepatitis B surface antigen (HBsAg), is viewed as the optimal goal of chronic HBV infection treatment because HBsAg loss is associated with a low risk of hepatocellular carcinoma and a relatively favorable prognosis. Both interferon treatment and finite antiviral therapy are associated with positive HBV outcomes. Overall, combining immune checkpoint inhibitors with nucleos(t)ide analogs appears to be a promising approach for achieving HBsAg loss, particularly in patients with low HBsAg levels.
Collapse
Affiliation(s)
- Hsien-Chen Mon
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Pei-Chang Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chen-Ta Chi
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yi-Hsiang Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
15
|
Naidu S, Margeridon S. Chronic Hepatitis B Virus Persistence: Mechanisms and Insights. Cureus 2025; 17:e78944. [PMID: 40092015 PMCID: PMC11910171 DOI: 10.7759/cureus.78944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Chronic hepatitis B (CHB) virus infection can lead to severe liver diseases, including cirrhosis and hepatocellular carcinoma. The chronicity of the hepatitis B virus (HBV) occurs because of the persistence of viral covalently closed circular DNA (cccDNA) within hepatocytes. The cccDNA serves as the template for viral replication and is central to HBV, maintaining a viral reservoir within the host. Despite therapeutic advancements, eliminating cccDNA remains elusive due to its evasion of immune surveillance. This review explores the formation and maintenance of cccDNA, highlighting host factors influencing cccDNA stability and viral replication. It also discusses current treatment strategies, including interferon-based therapies and nucleoside/nucleotide analogs, which aim to suppress viral replication. Emerging therapies such as gene editing and molecular interventions hold promise for targeting cccDNA directly. Currently, research is focused on making medications that target host factors of interest to disrupt or clear the viral reservoir. However, future research should focus on innovative approaches that directly target the cccDNA minichromosome, aiming for sustained viral suppression and potentially a cure for the HBV infection.
Collapse
Affiliation(s)
- Samrita Naidu
- Virology, Rio Americano High School, Sacramento, USA
| | - Severine Margeridon
- Molecular Diagnostics and Assay Development, Bio-Rad Laboratories, San Francisco, USA
| |
Collapse
|
16
|
Ramundo F, Rossi E, Peris K, Pontecorvi A, Sani G, Betti S, Marietta M, De Stefano V. Improving the management of Polycythemia Vera patients eligible for cytoreduction: report of a multidisciplinary advisory board. Curr Med Res Opin 2025; 41:239-245. [PMID: 39882590 DOI: 10.1080/03007995.2025.2458531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
INTRODUCTION The management of patients with Polycythemia Vera (PV) traditionally includes low-dose aspirin, phlebotomy, and cytoreductive therapy for high-risk individuals. Recent evidence suggests that cytoreductive treatment may be warranted for patients with additional risk factors beyond the traditional criteria of a history of thrombosis and age over 60 years. Introducing new therapeutic agents, including ropeginterferon alfa-2b and ruxolitinib, enables a more personalized treatment approach tailored to individual patient characteristics. CASE REPORT This report presents three complex clinical scenarios involving patients with PV who required cytoreductive therapy, which were discussed by a multidisciplinary advisory board. Each case is accompanied by a concise literature review and recommendations from non-hematologist specialists on managing adverse events associated with cytoreductive treatment. A multidisciplinary expert panel has identified three conceptual pathways to guide clinicians in selecting cytoreductive therapies and managing their associated complications. CONCLUSION The advent of new criteria for starting cytoreduction and the approval of novel drugs for PV has increased the complexity of selecting appropriate cytoreductive therapies. A multidisciplinary approach is increasingly essential to ensure personalized care that maximizes tolerability and minimizes adverse events, particularly given the often chronic nature of the treatment.
Collapse
Affiliation(s)
- Francesco Ramundo
- Section of Hematology, Department of Radiological and Hematological Sciences, Catholic University, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Elena Rossi
- Section of Hematology, Department of Radiological and Hematological Sciences, Catholic University, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Ketty Peris
- Dermatology, Department of Translational Medicine and Surgery, Catholic University, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Section of Endocrinology, Department of Translational Medicine and Surgery, Catholic University, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Gabriele Sani
- Section of Psychiatry, Department of Neuroscience, Catholic University, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Silvia Betti
- Section of Hematology, Department of Radiological and Hematological Sciences, Catholic University, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Marco Marietta
- Hematology Unit, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Valerio De Stefano
- Section of Hematology, Department of Radiological and Hematological Sciences, Catholic University, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| |
Collapse
|
17
|
Jin Y, Wang S, Tang K, Zhan P, Liu X. Recent advances in screening methods enabling the discovery of novel anti-hepatitis B virus drug candidates. Eur J Med Chem 2025; 282:117093. [PMID: 39612566 DOI: 10.1016/j.ejmech.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
The global population affected by Hepatitis B virus (HBV) is approximately 296 million, but few drugs have been able to completely eradicate HBV and the range of effective treatments remains limited. Recent advancements in molecular biology and artificial intelligence, as well as a comprehensive understanding of the molecular structure of HBV, have greatly aided the rational development of anti-HBV agents. Such advancements have facilitated an increasing array of candidate drugs transitioning into clinical trials, however, no novel target-based compounds have been approved for clinical application. To expedite the progression of anti-HBV drug development, establishing a reliable and robust in vitro HBV infection system is of great importance. However, owing to the host and tissue specificity of HBV, identifying a stable and dependable cell culture system for screening all anti-HBV agents poses significant challenges. In this review, we summarize recent advances in screening methods for small-molecule inhibitors that target key stages of the HBV replication cycle from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Yu Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Kai Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
18
|
Yan F, Tang F, Chen J, Lin Y, Chen X, Du Q, Yin W, Liang J, Liu L, Wang F, Xu B, Ye Q, Xiang H. Exploring using HBsAg to predict interferon treatment course to achieve clinical cure in chronic hepatitis B patients: a clinical study. Front Immunol 2025; 15:1528758. [PMID: 39867915 PMCID: PMC11758162 DOI: 10.3389/fimmu.2024.1528758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Objective Although pegylated interferon α-2b (PEG-IFN α-2b) therapy for chronic hepatitis B has received increasing attention, determining the optimal treatment course remains challenging. This research aimed to develop an efficient model for predicting interferon (IFN) treatment course. Methods Patients with chronic hepatitis B, undergoing PEG-IFN α-2b monotherapy or combined with NAs (Nucleoside Analogs), were recruited from January 2018 to December 2023 at Tianjin Third Central Hospital. All patients achieved hepatitis B surface antigen (HBsAg) clearance post-treatment. Result The study enrolled 176 patients with chronic hepatitis B, with the median IFN treatment course of 35.23 ± 25.22 weeks. They were randomly divided into two cohorts in a ratio of 7:3. And there were 123 patients in the training cohort and 53 patients in the validation cohort. Univariable and multivariable analyses demonstrated that baseline HBsAg, 12 weeks HBsAg and the presence of cirrhosis significantly influenced IFN treatment course, and both are risk factors (β=7.27,4.27,10.91; p<0.05). After adjusting for confounding factors, HBsAg remained a significant predictor (β=6.99, 95%CI: 3.59,10.40; p<0.05), which was finally included to establish the model. The actual and predicted values in the validation cohort were highly matched, meanwhile the mean absolute percentage error (MAPE), root mean square error (RMSE) and accuracy (ACC) of the validation cohort were calculated. External validation also suggests that the model can be used as a tool for initial assessment. Conclusion Baseline HBsAg in chronic hepatitis B patients were a risk factor for prolonged IFN treatment course with a positive correlation. Ultimately, a personalized model based on baseline HBsAg levels can be established to roughly estimate the duration of interferon therapy prior to treatment initiation, thereby guiding clinical decision-making.
Collapse
Affiliation(s)
- Fei Yan
- The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China
| | - Fei Tang
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China
| | - Jing Chen
- The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China
| | - YiCheng Lin
- The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China
| | - XinYu Chen
- The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China
| | - Qin Du
- Nankai University Affiliated Third Center Hospital, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China
| | - WeiLi Yin
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China
| | - Jing Liang
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China
| | - Lei Liu
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China
| | - Fang Wang
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China
| | - BaiGuo Xu
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China
| | - Qing Ye
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China
| | - HuiLing Xiang
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
19
|
Peng Y, Ma M, Liu T, He W, Lin S, Zhong W, Min X. Predictors of HBsAg seroclearance in HBeAg-negative chronic hepatitis B patients treated with nucleotide analogs plus polyethylene glycol interferon. Front Med (Lausanne) 2025; 11:1510230. [PMID: 39845839 PMCID: PMC11751021 DOI: 10.3389/fmed.2024.1510230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction The minority of the chronic hepatitis B (CHB) patients received polyethylene glycol interferon (PEG-IFN) combined with nucleotide analogs (NAs) can obtain hepatitis B surface antigen (HBsAg) clearance. Methods In order to find out the advantaged population, we retrospectively collected 122 CHB patients treated with NAs alone or NAs plus PEG-IFN for 48 weeks, who were admitted to Sun Yat-sen Memorial Hospital from 2019 to 2024. Results We found HBsAg clearance rate in NAs plus PEG-IFN group was 40.98%, which was significantly higher than that in the NAs group. Thus, NAs plus PEG-IFN therapy served as a relatively ideal regimen and the patients received combined treatment were then incorporated for further analysis for searching efficacy predictors. Through using univariate and multivariate analysis, we confirmed the predictive value of HBsAg, alanine aminotransferase (ALT) at week 24, and ALT change values from baseline to week 24. The area under the receiver operating characteristic (ROC) curve of each indicators ranged from 0.663 to 0.982. Discussion In conclusion, our study verified the clinical value of NAs plus PEG-IFN for treating CHB patients. Moreover, for the first time, we found ALT change values from baseline to week 24 (dALT2) could act as a novel independent clinical efficacy predictors in the forementioned population.
Collapse
Affiliation(s)
- Yan Peng
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingzhe Ma
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Liu
- Department of Infectious Disease, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenmin He
- Department of Gastroenterology, Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei, China
| | - Shutao Lin
- Department of Infectious Diseases, Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei, China
| | - Wa Zhong
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Min
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Liu F, Liu B, Xu S, Ni Y, Liu X. MicroRNA-122 protects against interferon-α-induced hepatic inflammatory response via the Janus kinase-signal transducer and activator of transcription pathway. Endocr J 2025; 72:53-67. [PMID: 39358210 PMCID: PMC11778391 DOI: 10.1507/endocrj.ej24-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Significant overlap in the epidemiology and coinfection of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) has been identified, which accelerates the development of severe liver cirrhosis and hepatocellular carcinoma worldwide. Interferon-α (IFN-α), a cytokine with antiviral properties, exerts profound physiological effects on innate immunity by regulating interferon-stimulated genes (ISGs) within cells. However, the underlying mechanism of IFN-α in hepatic inflammation remains to be fully elucidated. Here, we utilized LO2 cells treated with the recombinant IFN-α protein and conducted microRNA (miR) sequencing. MiR-122-3p and miR-122-5p_R+1 were the most enriched miRNAs involved in the pathogenesis of IFN-α-induced inflammatory responses and were significantly downregulated by IFN-α treatment. Furthermore, we identified interferon induced protein with tetratricopeptide repeats 1 (IFIT1) as a potential target gene of miR-122. IFN-α markedly increased the expression of proinflammatory cytokines and fibrogenic genes but decreased the mRNA expression of ISGs. Additionally, IFN-α significantly activated the NF-κB p-p65, MAPK p-p38, and Jak/STAT pathways to trigger inflammation. Importantly, supplementation with a miR-122 mimic significantly alleviated IFN-α-induced inflammation and induced IFIT1 expression in LO2 cells. Conversely, the suppression of miR-122 markedly exacerbated the inflammatory response triggered by IFN-α. Furthermore, silencing IFIT1 via an siRNA elicited an inflammatory response, whereas IFIT1 overexpression ameliorated hepatic inflammation and fibrosis in a manner comparable to that induced by IFN-α treatment. Taken together, our findings suggest that miR-122 and its target, IFIT1, reciprocally regulate the inflammatory response associated with IFN through the Jak/STAT pathway.
Collapse
Affiliation(s)
- Fanwei Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Bowen Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Shanshan Xu
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaoli Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
21
|
Zahoor MA, Feld JB, Lin HHS, Mosa AI, Salimzadeh L, Perrillo RP, Chung RT, Schwarz KB, Janssen HLA, Gehring AJ, Feld JJ. Neutralizing antibodies to interferon alfa arising during peginterferon therapy of chronic hepatitis B in children and adults: Results from the HBRN Trials. Hepatology 2025; 81:254-268. [PMID: 38630448 DOI: 10.1097/hep.0000000000000878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/12/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND AIMS Pegylated interferon-α (PegIFNα) is of limited utility during immunotolerant or immune active phases of chronic hepatitis B infection but is being explored as part of new cure regimens. Low/absent levels of IFNα found in some patients receiving treatment are associated with limited/no virological responses. The study aimed to determine if sera from participants inhibit IFNα activity and/or contain therapy-induced anti-IFNα antibodies. APPROACH RESULTS Pre-treatment, on-treatment, and post-treatment sera from 61 immunotolerant trial participants on PegIFNα/entecavir therapy and 88 immune active trial participants on PegIFNα/tenofovir therapy were screened for anti-IFNα antibodies by indirect ELISA. The neutralization capacity of antibodies was measured by preincubation of sera±recombinant human IFNα added to Huh7 cells with the measurement of interferon-stimulated gene (ISG)-induction by qPCR. Correlations between serum-induced ISG inhibition, presence, and titer of anti-IFNα antibodies and virological responses were evaluated. Preincubation of on-treatment serum from 26 immunotolerant (43%) and 13 immune active (15%) participants with recombinant-human IFNα markedly blunted ISG-induction in Huh7 cells. The degree of ISG inhibition correlated with IFNα antibody titer ( p < 0.0001; r = 0.87). On-treatment development of anti-IFNα neutralizing antibodies (nAbs) was associated with reduced quantitative HBsAg and qHBeAg declines ( p < 0.05) and inhibited IFNα bioactivity to 240 weeks after PegIFNα cessation. Children developed anti-IFNα nAbs more frequently than adults ( p = 0.004) but nAbs in children had less impact on virological responses. CONCLUSIONS The development of anti-IFNα nAbs during PegIFNα treatment diminishes responses to antiviral therapy. Understanding how and why anti-IFNα antibodies develop may allow for the optimization of IFN-based therapy, which is critical given its renewed use in HBV-cure strategies.
Collapse
Affiliation(s)
- Muhammad Atif Zahoor
- Department of Medicine, Division of Gastroenterology & Hepatology, Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Joshua B Feld
- Department of Medicine, Division of Gastroenterology & Hepatology, Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hsing-Hua Sylvia Lin
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander I Mosa
- Department of Medicine, Division of Gastroenterology & Hepatology, Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Loghman Salimzadeh
- Department of Medicine, Division of Gastroenterology & Hepatology, Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Robert P Perrillo
- Department of Medicine, Baylor Scott & White Medical Center, Dallas, Texas, USA
| | - Raymond T Chung
- Masschusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathleen B Schwarz
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harry L A Janssen
- Department of Medicine, Division of Gastroenterology & Hepatology, Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Gastroenterology & Hepatology, Erasmus MC University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Adam J Gehring
- Department of Medicine, Division of Gastroenterology & Hepatology, Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jordan J Feld
- Department of Medicine, Division of Gastroenterology & Hepatology, Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Kaewdech A, Charatcharoenwitthaya P, Piratvisuth T. Asian Perspective on Hepatitis B Virus and Hepatitis C Virus Elimination. Viruses 2024; 17:34. [PMID: 39861823 PMCID: PMC11768638 DOI: 10.3390/v17010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections remain significant public health challenges in Asia, affecting millions and contributing to substantial morbidity and mortality. The prevalence of these infections varies across the region, with factors such as vaccination coverage, healthcare infrastructure, and sociocultural barriers influencing the epidemiology of both viruses. The persistent burden of chronic HBV, particularly in older populations, and the evolving HCV genotype landscape highlight the need for targeted, region-specific strategies. Universal screening programs have emerged as essential tools for detecting undiagnosed cases and optimizing healthcare resource allocation. Given the overlapping epidemiology of HBV and HCV, comprehensive public health interventions tailored to the unique contexts of different Asian countries are crucial for achieving global elimination goals. This review examines the epidemiological trends, challenges, and opportunities for addressing HBV and HCV in Asia, emphasizing the importance of overcoming sociocultural barriers to improve prevention, diagnosis, and treatment efforts across diverse populations.
Collapse
Affiliation(s)
- Apichat Kaewdech
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Phunchai Charatcharoenwitthaya
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
23
|
Hu K, Zai W, Xu M, Wang H, Song X, Huang C, Liu J, Chen J, Deng Q, Yuan Z, Chen J. Augmented epigenetic repression of hepatitis B virus covalently closed circular DNA by interferon-α and small-interfering RNA synergy. mBio 2024; 15:e0241524. [PMID: 39570046 PMCID: PMC11633095 DOI: 10.1128/mbio.02415-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
The persistence of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) is a key obstacle for HBV cure. This study aims to comprehensively assess the effect of interferon (IFN) and small-interfering RNA (siRNA) combination on the cccDNA minichromosome. Utilizing both cell and mouse cccDNA models, we compared the inhibitory effects of IFNα, siRNA, and their combination on cccDNA activity and assessed its epigenetic state. IFNα2 treatment alone reduced HBV RNAs, HBeAg, and HBsAg levels by approximately 50%, accompanied by a low-level reconstitution of SMC5/6-a chromatin modulator that restricts cccDNA transcription. HBx-targeting siRNA (siHBx) achieved significant suppression of viral antigens and reconstitution of SMC5/6, but this effect could be reversed by the deacetylase inhibitor Belinostat. The combination of IFN with siHBx resulted in over 95% suppression of virological markers, reduction in epigenetic activation modifications (H3Ac and H4Ac) on cccDNA, and further reduced cccDNA accessibility, with the effect not reversible by Belinostat. In an extracellular humanized IFNAR C57BL/6 mouse model harboring recombinant cccDNA, the effect of combination of clinically used pegylated IFNα2 and GalNac-siHBx was further clarified, indicating a higher and more durable suppression of cccDNA activity compared to either therapy alone. In conclusion, the combination of IFNα and siRNA achieves a more potent and durable epigenetic inhibition of cccDNA activity in cell and mouse models, compared to monotherapy. These findings deepen the understanding of cccDNA modulation and strengthen the scientific basis for the potential of combination therapy. IMPORTANCE Since there are currently no approved drugs targeting and silencing covalently closed circular DNA (cccDNA), achieving a "functional cure" remains difficult. This study aims to comprehensively compare the effects of IFNα, small-interfering RNA targeting hepatitis B virus (HBV), and their combination on the activity, accessibility, and epigenetic modifications of cccDNA minichromosomes in cell models. A more durable and stable inhibition of HBV RNAs and antigens expression by IFNα and HBx-targeting siRNA (siHBx) synergy was observed, associated with augmented epigenetic repression of the cccDNA minichromosome. Besides, in an extracellular humanized IFNAR mouse model harboring recombinant cccDNA with an intact response to human IFNα, the synergistic effect of clinically used pegylated IFNα2 and in-house-developed GalNac-siHBx was further clarified.
Collapse
Affiliation(s)
- Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Mingzhu Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Haiyu Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Xinluo Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Chao Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Juan Chen
- Key Laboratory of Molecular Biology of Infectious Diseases (MOE), Chongqing Medical University, Chongqing, China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| |
Collapse
|
24
|
Lei Z, Wang L, Gao H, Guo S, Kang X, Yuan J, Lv Z, Jiang Y, Yi J, Chen Z, Wang G. Mechanisms underlying the compromised clinical efficacy of interferon in clearing HBV. Virol J 2024; 21:314. [PMID: 39633459 PMCID: PMC11619119 DOI: 10.1186/s12985-024-02589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic DNA virus that can cause acute or chronic hepatitis, representing a significant global health concern. By 2019, approximately 296 million individuals were chronically infected with HBV, with 1.5 million new cases annually and 820,000 deaths due to HBV-related cirrhosis and liver cancer. Current treatments for chronic hepatitis B include nucleotide analogs (NAs) and interferons (IFNs), particularly IFN-α. NAs, such as entecavir and tenofovir, inhibit viral reverse transcription, while IFN-α exerts antiviral effects by directly suppressing viral replication, modulating viral genome epigenetics, degrading cccDNA, and activating immune responses. Despite its potential, IFN-α shows limited clinical efficacy, partly due to HBV's interference with the IFN signaling pathway. HBV encodes proteins like HBc, Pol, HBsAg, and HBx that disrupt IFN-α function. For example, HBV Pol inhibits STAT1 phosphorylation, HBsAg suppresses STAT3 phosphorylation, and HBx interferes with IFN-α efficacy through multiple mechanisms. Additionally, HBV downregulates key genes in the IFN signaling pathway, further diminishing IFN-α's antiviral effects. Understanding these interactions is crucial for improving IFN-α-based therapies. Future research may focus on overcoming HBV resistance by targeting viral proteins or optimizing IFN-α delivery. In summary, HBV's ability to resist IFN-α limits its therapeutic effectiveness, highlighting the need for new strategies to enhance treatment outcomes.
Collapse
Affiliation(s)
- Zhuoyan Lei
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Luye Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Hanlin Gao
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Shubian Guo
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Xinjian Kang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Jiajun Yuan
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Ziying Lv
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Yuxin Jiang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Jinping Yi
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Gang Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China.
| |
Collapse
|
25
|
Kumar J, Singh A, Tyagi P, Sharma D, Sarin SK, Kumar V. New thiourea derivatives that target the episomal silencing SMC5 protein to inhibit HBx-dependent viral DNA replication and gene transcription. Virusdisease 2024; 35:577-588. [PMID: 39677840 PMCID: PMC11635082 DOI: 10.1007/s13337-024-00895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/17/2024] [Indexed: 12/17/2024] Open
Abstract
Antivirals such as nucleotide analogs (NAs) are potent inhibitors of hepatitis B virus (HBV) replication. However, NAs fail to diminish the signaling and mitogenic activities of the transactivator HBx protein. Earlier we have shown that thiourea derivative IR-415 (DSA-00) targeted HBx to down-regulate its target viral and host genes. However, the molecular mechanism of its antiviral action is poorly understood. Here we investigated the anti-HBV properties of DSA-00 and its new derivatives in cell culture models. DSA-00 and its derivatives DSA-02 and DSA-09 not only suppressed HBV DNA levels similar to well-known antiviral Entecavir but also diminished the expression of pgRNA and secretion of HBsAg and HBeAg. Apparently, the three DSA derivatives inhibited the viral pregenomic RNA expression by stabilizing the episomal DNA silencing protein SMC5, suppressed transcription from viral and host gene promoters, and normalized intracellular CDK2 activity. As none the compounds are reportedly cytotoxic, thiourea derivatives could be good candidates for developing future antivirals for a functional cure of hepatitis B infection. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00895-6.
Collapse
Affiliation(s)
- Jitendra Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070 India
| | - Ankita Singh
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070 India
| | - Purnima Tyagi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070 India
| | - Deepti Sharma
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vijay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, 110 070 India
- Present address: Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Marg, New Delhi, 110054 India
| |
Collapse
|
26
|
Yuen MF, Lim YS, Yoon KT, Lim TH, Heo J, Tangkijvanich P, Tak WY, Thanawala V, Cloutier D, Mao S, Arizpe A, Cathcart AL, Gupta SV, Hwang C, Gane E. VIR-2218 (elebsiran) plus pegylated interferon-alfa-2a in participants with chronic hepatitis B virus infection: a phase 2 study. Lancet Gastroenterol Hepatol 2024; 9:1121-1132. [PMID: 39389081 DOI: 10.1016/s2468-1253(24)00237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) remains a global concern, with current treatments achieving low rates of HBsAg seroclearance. VIR-2218 (elebsiran), a small interfering RNA agent against HBV transcripts, reduces HBsAg concentrations. We aimed to evaluate the safety and antiviral activity of VIR-2218 with and without pegylated interferon-alpha-2a treatment in participants with chronic HBV. METHODS This open-label, phase 2 study was conducted at 23 sites in six countries (New Zealand, Australia, Hong Kong, Thailand, South Korea, and Malaysia). Adults (aged 18-65 years) with chronic HBV infection without cirrhosis and with HBsAg more than 50 IU/mL and HBV DNA less than 90 IU/mL who were on continued nucleoside or nucleotide reverse transcriptase inhibitor (NRTI) therapy for 2 months or longer were eligible. Participants were enrolled into one of six cohorts to receive VIR-2218 200 mg subcutaneously every 4 weeks, with or without 180 μg subcutaneous pegylated interferon-alfa-2a once per week. Cohort 1 received six doses of VIR-2218 (total 20 weeks); cohort 2 received six doses of VIR-2218 starting at day 1, plus 12 doses of pegylated interferon-alfa-2a starting at week 12 (total 24 weeks); cohort 3 received six doses of VIR-2218 and 24 doses of pegylated interferon-alfa-2a (total 24 weeks); cohort 4 received six doses of VIR-2218 and up to 48 doses of pegylated interferon-alfa-2a (total 48 weeks); cohort 5 received up to 13 doses of VIR-2218 and up to 44 doses of pegylated interferon-alfa-2a (total 48 weeks); and cohort 6 received three doses of VIR-2218 and 12 doses of pegylated interferon-alfa-2a (total 12 weeks). The primary endpoints were the incidence of adverse events and clinical assessments (including results of laboratory tests). Secondary endpoints were the mean maximum reduction of serum HBsAg at any timepoint; the proportion of participants with serum HBsAg seroclearance at any timepoint and for more than 6 months after the end of treatment; and the proportion of participants with anti-HBs seroconversion at any timepoint. For patients who were HBeAg-positive, we also assessed the proportion with HBeAg seroclearance or anti-HBe seroconversion at any timepoint. This study is registered with ClinicalTrials.gov, NCT03672188, and is ongoing. FINDINGS Between July 2, 2020, and Nov 2, 2021, 124 individuals were screened for eligibility, 84 of whom were enrolled (15 in cohort 1, 15 in cohort 2, 18 in cohort 3, 18 in cohort 4, 13 in cohort 5, and five in cohort 6). Participants were predominantly HBeAg-negative, Asian, and male (66 [79%] participants were male and 18 [21%] were female). Most treatment emergent adverse events were grades 1-2. Three (20%) participants in cohort 1, four (27%) in cohort 2, eight (44%) in cohort 3, seven (39%) in cohort 4, six (46%) in cohort 5, and two (40%) in cohort 6 reported treatment-emergent adverse events related to VIR-2218. 12 (80%) participants in cohort 2, 12 (67%) in cohort 3, 14 (78%) in cohort 4, 13 (100%) in cohort 5, and three (60%) in cohort 6 reported treatment-emergent adverse events related to pegylated interferon-alfa-2a. Two (13%) participants in cohort 1 had elevations in alanine aminotransferase, compared with 13 (87%) participants in cohort 2, 15 (83%) in cohort 3, 17 (94%) in cohort 4, 11 (85%) in cohort 5, and three (60%) in cohort 6. The mean maximum change from baseline at any timepoint in HBsAg concentration was -2·0 log10 IU/mL (95% CI -2·1 to -1·8) in cohort 1, -2·2 log10 IU/mL (-2·5 to -1·8) in cohort 2, -2·5 log10 IU/mL (-2·8 to -2·1) in cohort 3, -2·4 log10 IU/mL (-3·1 to -1·8) in cohort 4, -3·0 log10 IU/mL (-3·7 to -2·3) in cohort 5, and -1·7 log10 IU/mL (-2·1 to -1·4) in cohort 6. 11 participants (one in cohort 2, one in cohort 3, five in cohort 4, and four in cohort 5) receiving VIR-2218 plus pegylated interferon-alfa-2a had HBsAg seroclearance at any timepoint. Of these, ten (91%; one in cohort 2, five in cohort 4, and four in cohort 5) had anti-HBs seropositivity. Six participants (one in cohort 2, three in cohort 4, and two in cohort 5) had sustained HBsAg seroclearance through to 24 weeks after the end of treatment. No participants receiving VIR-2218 monotherapy (cohort 1) or VIR-2218 plus pegylated interferon-alfa-2a 12-week regimen (cohort 6) had HBsAg seroclearance. 12 (42%) of 26 participants (one of four in cohort 1, two of six in cohort 2, four of seven in cohort 3, four of six in cohort 4, and one of three in cohort 5) who were HBeAg positive at baseline had HBeAg seroclearance or anti-HBe seroconversion. INTERPRETATION The results of this phase 2 study support further development of VIR-2218 as a potential therapy for patients with chronic HBV infection. Additional clinical trials of VIR-2218 with and without pegylated interferon-alfa-2a in combination with an HBsAg-targeting monoclonal antibody are ongoing. FUNDING Vir Biotechnology.
Collapse
Affiliation(s)
- Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Young-Suk Lim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ki Tae Yoon
- Liver Center, Pusan National University Yangsan Hospital, Yangsan, South Korea; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Pusan National University College of Medicine, Yangsan, South Korea
| | - Tien-Huey Lim
- Department of Gastroenterology and Hepatology, Middlemore Hospital, Auckland, New Zealand
| | - Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Won Young Tak
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine Kyungpook National University, Daegu, South Korea
| | | | | | | | | | | | | | | | - Edward Gane
- Department of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Li Y, Ashuo A, Hao M, Li Y, Ye J, Liu J, Hua T, Fang Z, Li J, Yuan Z, Chen J. An extracellular humanized IFNAR immunocompetent mouse model for analyses of human interferon alpha and subtypes. Emerg Microbes Infect 2024; 13:2287681. [PMID: 37994664 PMCID: PMC10810641 DOI: 10.1080/22221751.2023.2287681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 11/24/2023]
Abstract
Type I interferons (IFN-Is) have key roles in immune defense and treatments for various diseases, including chronic hepatitis B virus (HBV) infection. All IFN-Is signal through a shared IFN-I heterodimeric receptor complex comprising IFN-α receptor 1 (IFNAR1) and IFNAR2 subunits, but differences in antiviral and immunomodulatory responses among IFN-I subtypes remain largely unknown. Because the IFN-IFNAR interactions are species-specific, mice exhibit weak responses to human IFN-I. To more fully characterize the actions of human IFN-α and its subtypes in vivo, a gene targeting strategy was employed to generate gene knock-in mice with extracellular-humanized IFNAR1/2 (IFNAR-hEC) in the C57BL/6N strain. IFNAR-hEC mice actively responded to human IFN-I, and endogenous mouse IFN-I signalling remained active in heterozygous mice (IfnarhEC/+). Analyses of IFNAR-hEC mice and isolated cells showed that human IFN-α2 and α14 subtypes exerted differential effect on the activation of JAK-STAT signalling and immune responses. Compared with IFN-α2, IFN-α14 induced greater activation of STAT1/2 and IFN-stimulated genes, synergistically elicited IFN-α and -γ signalling, and induced higher numbers of antigen-specific CD8+ T cells. Moreover, IFNAR-hEC mice with HBV replication displayed long-term viral suppression upon treatment with the clinically-used PEGylated hIFN-α2. These results indicate that IFNAR-hEC mice may be useful for elucidating antiviral and immunomodulatory functions of human IFN-Is and for conducting preclinical studies. A better understanding of the distinct activities of IFN-α subtypes can provide insights concerning the development of improved IFN-based therapy.
Collapse
Affiliation(s)
- Yumeng Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Asha Ashuo
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Menghan Hao
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, People’s Republic of China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Ting Hua
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Zhong Fang
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, People’s Republic of China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
28
|
Matrenec R, Oropeza CE, Dekoven E, Matrenec C, Maienschein-Cline M, Chau CS, Green SJ, Kaestner KH, McLachlan A. Foxa deficiency restricts hepatitis B virus biosynthesis through epigenic silencing. J Virol 2024; 98:e0137124. [PMID: 39377604 PMCID: PMC11575325 DOI: 10.1128/jvi.01371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
In the hepatis B virus (HBV) transgenic mouse model of chronic infection, the forkhead box protein A/hepatocyte nuclear factor 3 (Foxa/HNF3) family of pioneer transcription factors are required to support postnatal viral demethylation and subsequent HBV transcription and replication. Liver-specific Foxa-deficient mice with hepatic expression of only Foxa3 do not support HBV replication but display biliary epithelial hyperplasia with bridging fibrosis. However, liver-specific Foxa-deficient mice with hepatic expression of only Foxa1 or Foxa2 also successfully restrict viral transcription and replication but display only minimal alterations in liver physiology. These observations suggest that the level of Foxa activity, rather than the combination of specific Foxa genes, is a key determinant of HBV biosynthesis. Together, these findings suggest that targeting Foxa activity could lead to HBV DNA methylation and transcriptional inactivation, resulting in the resolution of chronic HBV infections that are responsible for approximately one million deaths annually worldwide. IMPORTANCE The current absence of curative therapies capable of resolving chronic hepatis B virus (HBV) infection is a major clinical problem associated with considerable morbidity and mortality. The small viral genome limits molecular targets for drug development, suggesting that the identification of cellular factors essential for HBV biosynthesis may represent alternative targets for therapeutic intervention. Genetic Foxa deficiency in the neonatal liver of HBV transgenic mice leads to the transcriptional silencing of viral DNA by CpG methylation without affecting viability or displaying an obvious phenotype. Therefore, limiting liver Foxa activity therapeutically may lead to the methylation of viral covalently closed circular DNA (cccDNA), resulting in its transcriptional silencing and ultimately the resolution of chronic HBV infection.
Collapse
Affiliation(s)
- Rachel Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Claudia E. Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Eddie Dekoven
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Carly Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark Maienschein-Cline
- Research Resources Center, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cecilia S. Chau
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
29
|
Huang C, Jin Y, Fu P, Hu K, Wang M, Zai W, Hua T, Song X, Ye J, Zhang Y, Luo G, Wang H, Liu J, Chen J, Li X, Yuan Z. Discovery of novel small molecules targeting hepatitis B virus core protein from marine natural products with HiBiT-based high-throughput screening. Acta Pharm Sin B 2024; 14:4914-4933. [PMID: 39664428 PMCID: PMC11628845 DOI: 10.1016/j.apsb.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 12/13/2024] Open
Abstract
Due to the limitations of current anti-HBV therapies, the HBV core (HBc or HBcAg) protein assembly modulators (CpAMs) are believed to be potential anti-HBV agents. Therefore, discovering safe and efficient CpAMs is of great value. In this study, we established a HiBiT-based high-throughput screening system targeting HBc and screened novel CpAMs from an in-house marine chemicals library. A novel lead compound 8a, a derivative of the marine natural product naamidine J, has been successfully screened for potential anti-HBV activity. Bioactivity-driven synthesis was then conducted, and the structure‒activity relationship was analyzed, resulting in the discovery of the most effective compound 11a (IC50 = 0.24 μmol/L). Furthermore, 11a was found to significantly inhibit HBV replication in multiple cell models and exhibit a synergistic effect with tenofovir disoproxil fumarate (TDF) and IFNa2 in vitro for anti-HBV activity. Treatment with 11a in a hydrodynamic-injection mouse model demonstrated significant anti-HBV activity without apparent hepatotoxicity. These findings suggest that the naamidine J derivative 11a could be used as the HBV core protein assembly modulator to develop safe and effective anti-HBV therapies.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Jin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Panpan Fu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Mengxue Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Ting Hua
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Xinluo Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Yiqing Zhang
- Guixi Hospital of Chinese Medicine, Guixi 335400, China
| | - Gan Luo
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Haiyu Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
| | - Xuwen Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China
| |
Collapse
|
30
|
Liang M, Liu L, Liu J, Yang Z, Wang M, Xie Y, Cai Y, Xue P, Chen Y, Zhan P, Jia H. Design, synthesis and anti-HBV activity study of novel HBV capsid assembly modulators. Bioorg Med Chem Lett 2024; 112:129913. [PMID: 39111727 DOI: 10.1016/j.bmcl.2024.129913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/18/2024]
Abstract
Capsid assembly modulators (CAMs) have the potential to cure chronic hepatitis B, as demonstrated in clinical trials. Lead compounds NVR3-778 and 5a were found to exist in normal and flipped conformations through induced fit docking. Therefore, we designed and synthesized series I and II compounds by interchanging the amide and sulfonamide bonds of 5a to modify both the tolerance region and solvent-opening region. Among them, compound 4a (EC50 = 0.24 ± 0.10 μM, CC50 > 100 μM) exhibited potent anti-HBV activity with low toxicity, surpassing the lead compounds NVR3-778 (EC50 = 0.29 ± 0.03 μM, CC50 = 20.78 ± 2.29 μM) and 5a (EC50 = 0.50 ± 0.07 μM, CC50 = 48.16 ± 9.15 μM) in HepAD38 cells. Additionally, compared with the lead compound, 4a displayed a stronger inhibitory effect on HBV capsid protein assembly. Molecular dynamics (MD) simulations confirmed that the normal conformation of 4a had relatively stable conformation at different frames of binding modes. Furthermore, 4a showed better metabolic stability in human plasma than positive control drugs. Therefore, compound 4a could be further structurally modified as a potent lead compound.
Collapse
Affiliation(s)
- Minghui Liang
- School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Linyue Liu
- School of Pharmacy, Shandong Second Medical University, Weifang, China; Binzhou Hospital of Traditional Chinese Medicine, Binzhou, China
| | - Jun Liu
- School of Nursing, Shandong Second Medical University, Weifang, China
| | - Zechun Yang
- School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Mei Wang
- School of Pharmacy, Shandong Second Medical University, Weifang, China; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, China
| | - Yong Xie
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd, Dongguan 523871, China
| | - Yuqing Cai
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Peng Xue
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Yunfu Chen
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd, Dongguan 523871, China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, China.
| | - Haiyong Jia
- School of Pharmacy, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
31
|
Zheng S, Qi W, Xue T, Zao X, Xie J, Zhang P, Li X, Ye Y, Liu A. Chinese medicine in the treatment of chronic hepatitis B: The mechanisms of signal pathway regulation. Heliyon 2024; 10:e39176. [PMID: 39640799 PMCID: PMC11620126 DOI: 10.1016/j.heliyon.2024.e39176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic hepatitis B (CHB) is a chronic inflammatory disease of the liver caused by infection with the hepatitis B virus (HBV), which in later stages can lead to the development of end-stage liver diseases such as cirrhosis and hepatocellular carcinoma in severe cases, jeopardizing long-term quality of life, with a poor prognosis, and placing a serious financial burden on many families around the world. The pathogenesis of the disease is complex and closely related to the immune function of the body, which has not yet been fully elucidated. The development of chronic hepatitis B is closely related to the involvement of various signaling pathways, such as JAK/STAT, PI3K/Akt, Toll-like receptor, NF-κB and MAPK signaling pathways. A large number of studies have shown that Chinese medicine has obvious advantages in anti-hepatitis B virus, and it can effectively treat the disease by modulating relevant signaling pathways, strengthening immune resistance and defense, and inhibiting inflammatory responses, and certain research progress has been made, but there is still a lack of a comprehensive review on the modulation of relevant signaling pathways in Chinese medicine for the treatment of CHB. Therefore, this article systematically combed and elaborated the relevant literature on the modulation of relevant signaling pathways by traditional Chinese medicine in recent years, with a view to providing new ideas for the treatment of CHB and further drug development.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Tianyu Xue
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, 050000, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
| | - Jinchi Xie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Aimin Liu
- Shangzhuang Township Community Health Service Center, Beijing, 100094, China
| |
Collapse
|
32
|
Wang TT, Ji YM, Zhang Q, Liang B, Fan TT, Ye X. METTL14 Induced N 6-Methyladenosine Modification of FOXP4 mRNA in HBV-HCC. J Cancer 2024; 15:6232-6238. [PMID: 39513116 PMCID: PMC11540497 DOI: 10.7150/jca.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/28/2024] [Indexed: 11/15/2024] Open
Abstract
Chronic hepatitis B virus infections are a significant cause of liver cirrhosis and cancer. Our research reveals that HBV infection leads to a marked increase in m6A modification of Foxp4 mRNA, resulting in enhanced stability of the mRNA and a subsequent increase in Foxp4 mRNA levels. Analysis of biopsy samples from chronic HBV patients demonstrated consistent upregulation of m6A-modified Foxp4 mRNA levels alongside increased Foxp4 mRNA levels. Functionally, Foxp4 was found to promote proliferation, migration, and invasion of hepatocellular carcinoma (HCC) cells in laboratory settings. Additionally, HBV gene expression was shown to activate the PI3K/AKT pathway by modulating Foxp4 mRNA stability in HCC cells. This study provides valuable insights into the underlying mechanisms of HBV infection and its potential implications for cancer development.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Endoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Yi-Mei Ji
- Department of Endoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Qian Zhang
- Department of Endoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Bo Liang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University School of Medicine, Nanchang, Jiangxi Province, China
| | - Ting-ting Fan
- Department of Endoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Xin Ye
- Department of Endoscopy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| |
Collapse
|
33
|
Chen SL, Shen YJ, Chen GZ. RNA Sequencing Analysis of Patients with Chronic Hepatitis B Treated Using PEGylated Interferon. Int J Gen Med 2024; 17:4465-4474. [PMID: 39372134 PMCID: PMC11453141 DOI: 10.2147/ijgm.s474284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Worldwide, chronic hepatitis B virus (CHB) infection is a public health concern, ultimately leading to liver cirrhosis and hepatocellular carcinoma. Currently, patients with CHB can be treated using polyethylene glycol (PEG)ylated interferon (PEG-IFN) antiviral therapy, which has both immune modulatory and antiviral properties. This study aimed to reveal the mechanism underlying the effect of PEG-IFN therapy, to rationally optimize this therapeutic option. Patients and Methods Ten patients with CHB who were positive for the hepatitis B virus e antigen (HBeAg) and were receiving PEG-IFN treatment were enrolled. Clinical and virological parameters were monitored during 48 weeks of treatment. In addition, peripheral blood mononuclear cells (PBMCs) were collected from the 10 patients at 0, 24, and 36 weeks. RNA sequencing technology was used to analyze the RNA expression profile in the PBMC samples. Results Following PEG-IFN treatment, we identified 217 differentially expressed genes (DEGs), most of which were upregulated. Gene ontology enrichment analysis of the DEGs revealed that they were enriched in 29 clusters, mainly associated with "antiviral defense", "innate immunity", "immunity", "defense response to virus", "response to virus", "type I interferon signaling pathway", "negative regulation of viral genome replication", "innate immune response", and "RNA-binding". Conclusion After PEG-IFN treatment, a certain mRNA expression profile was observed in patients with CHB, providing further mechanistic insights into the antiviral effect of this therapy.
Collapse
Affiliation(s)
- Shao-Long Chen
- Department of Infectious Disease Control and Prevention, Yueqing Center for Disease Control and Prevention, Wenzhou, 325600, People’s Republic of China
| | - Yao-Jie Shen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, People’s Republic of China
| | - Guo-Zhi Chen
- Department of Infectious Disease Control and Prevention, Yueqing Center for Disease Control and Prevention, Wenzhou, 325600, People’s Republic of China
| |
Collapse
|
34
|
Ye J, Li F, Hua T, Ma K, Wang J, Zhao Z, Yang Z, Luo C, Jia R, Li Y, Hao M, Wu J, Lu M, Yuan Z, Zhang J, Chen J. Liver mechanosignaling as a natural anti-hepatitis B virus mechanism. Nat Commun 2024; 15:8375. [PMID: 39333106 PMCID: PMC11437074 DOI: 10.1038/s41467-024-52718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
The mechanisms underlying the natural control of hepatitis B virus (HBV) infection have long been an intriguing question. Given the wide physiological range of liver stiffness and the growing attention to the role of mechanical microenvironment in homeostasis and diseases, we investigated how physical matrix cues impact HBV replication. High matrix stiffness significantly inhibited HBV replication and activated YAP in primary hepatocyte culture system, a key molecule in mechanosignaling. YAP activation notably suppressed HBV transcription and antigen expression. Several YAP-induced genes exhibited strong anti-HBV effects. Single-cell analysis of liver tissue from male individuals with active HBV replication revealed a strong significant negative correlation between YAP signature activation and HBV transcript levels. Intraperitoneal administration of YAP small molecule agonist potently controls HBV in male mouse models. These findings unveil a mechanism that involves the mechanical environment of hepatocytes and YAP to clear hepatotropic viral infection in the liver, providing new perspectives for HBV cure studies and antiviral development.
Collapse
Affiliation(s)
- Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Huashan Hospital, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Diseases and Biosecurity, Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Fudan University, Shanghai, China
| | - Fahong Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Huashan Hospital, Shanghai Medical College Fudan University, Shanghai, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ting Hua
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Huashan Hospital, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Diseases and Biosecurity, Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Fudan University, Shanghai, China
| | - Kewei Ma
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Huashan Hospital, Shanghai Medical College Fudan University, Shanghai, China
| | - Jinyu Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Huashan Hospital, Shanghai Medical College Fudan University, Shanghai, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zixin Zhao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Huashan Hospital, Shanghai Medical College Fudan University, Shanghai, China
| | - Zhongning Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Huashan Hospital, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Diseases and Biosecurity, Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Fudan University, Shanghai, China
| | - Chen Luo
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Huashan Hospital, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Diseases and Biosecurity, Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Fudan University, Shanghai, China
| | - Ruohan Jia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Huashan Hospital, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Diseases and Biosecurity, Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Fudan University, Shanghai, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Huashan Hospital, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Diseases and Biosecurity, Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Fudan University, Shanghai, China
| | - Menghan Hao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Huashan Hospital, Shanghai Medical College Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Diseases and Biosecurity, Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Fudan University, Shanghai, China
| | - Jian Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Huashan Hospital, Shanghai Medical College Fudan University, Shanghai, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Huashan Hospital, Shanghai Medical College Fudan University, Shanghai, China.
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Diseases and Biosecurity, Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Fudan University, Shanghai, China.
| | - Jiming Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Huashan Hospital, Shanghai Medical College Fudan University, Shanghai, China.
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Huashan Hospital, Shanghai Medical College Fudan University, Shanghai, China.
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Diseases and Biosecurity, Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Pondé RADA, Amorim GDSP. Elimination of the hepatitis B virus: A goal, a challenge. Med Res Rev 2024; 44:2015-2034. [PMID: 38528684 DOI: 10.1002/med.22030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
The hepatitis B elimination is a goal proposed by the WHO to be achieved by 2030 through the adoption of synergistic measures for the prevention and chronic HBV infection treatment. Complete cure is characterized by the HBV elimination from the body and is the goal of the chronic hepatitis B treatment, which once achieved, will enable the hepatitis B elimination. This, today, has been a scientific challenge. The difficulty in achieving a complete cure is due to the indefinite maintenance of a covalently closed episomal circular DNA (cccDNA) reservoir and the maintenance and persistence of an insufficient and dysfunctional immune response in chronically infected patients. Among the measures adopted to eliminate hepatitis B, two have the potential to directly interfere with the virus cycle, but with limited effect on HBV control. These are conventional vaccines-blocking transmission and antiviral therapy-inhibiting replication. Vaccines, despite their effectiveness in protecting against horizontal transmission and preventing mother-to-child vertical transmission, have no effect on chronic infection or potential to eliminate the virus. Treatment with antivirals suppresses viral replication, but has no curative effect, as it has no action against cccDNA. Therapeutic vaccines comprise an additional approach in the chronic infection treatment, however, they have only a modest effect on the immune system, enhancing it temporarily. This manuscript aims to address (1) the cccDNA persistence in the hepatocyte nucleus and the immune response dysfunction in chronically infected individuals as two primary factors that have hampered the treatment and HBV elimination from the human body; (2) the limitations of antiviral therapy and therapeutic vaccines, as strategies to control hepatitis B; and (3) the possibly promising therapeutic approaches for the complete cure and elimination of hepatitis B.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Secretaria de Estado da Saúde-SES, Superintendência de Vigilância em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica de Doenças Transmissíveis-GVEDT/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil
- Department of Microbiology, Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
36
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
37
|
Cao QH, Liu H, Yan LJ, Wang HC, Ding ZN, Mao XC, Li RZ, Pan GQ, Zhang X, Tian BW, Han CL, Dong ZR, Tan SY, Wang DX, Yan YC, Li T. Role of hepatitis B core-related antigen in predicting the occurrence and recurrence of hepatocellular carcinoma in patients with chronic hepatitis B: A systemic review and meta-analysis. J Gastroenterol Hepatol 2024; 39:1464-1475. [PMID: 38686439 DOI: 10.1111/jgh.16558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND AIM The purpose of the current study was to investigate the predictive value of hepatitis B core-related antigen (HBcrAg) on the occurrence and recurrence of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). METHODS We searched PubMed, Embase, Scopus, and Web of Science from database inception to April 6, 2023. Pooled hazard ratio (HR) or odds ratio (OR) with 95% confidence interval (CI) was calculated for the occurrence and recurrence of HCC. RESULTS Of the 464 articles considered, 18 articles recruiting 10 320 patients were included. The pooled results showed that high serum HBcrAg level was an independent risk factor for the occurrence of HCC in CHB patients (adjusted HR = 3.12, 95% CI: 2.40-4.06, P < 0.001, I2 = 43.2%, P = 0.043; OR = 5.65, 95% CI: 3.44-5.82, P < 0.001, I2 = 0.00%, P = 0.42). Further subgroup analysis demonstrated that the predictive ability of HBcrAg for the occurrence of HCC is not influenced by the hepatitis B e antigen (HBeAg) status or the use of nucleoside/nucleotide analogs (NAs). In addition, our meta-analysis also suggests that HBcrAg is a predictor of HCC recurrence (adjusted HR = 1.71, 95% CI: 1.26-2.32, P < 0.001, I2 = 7.89%, P = 0.031). CONCLUSIONS For patients with CHB, serum HBcrAg may be a potential predictive factor for the occurrence of HCC, regardless of HBeAg status or NA treatment. It may also serve as a novel prognostic biomarker for the recurrence of HCC. More studies are needed to confirm our conclusions.
Collapse
Affiliation(s)
- Qi-Hang Cao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Han-Chao Wang
- Institute for Financial Studies, Shandong University, Jinan, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xin-Cheng Mao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Rui-Zhe Li
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Guo-Qiang Pan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Bao-Wen Tian
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng-Long Han
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Si-Yu Tan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
38
|
Li Y, Wang F, Zhou J, Li L, Song C, Chen E. Optimal Treatment Based on Interferon No Longer Makes Clinical Cure of Chronic Hepatitis B Far Away: An Evidence-Based Review on Emerging Clinical Data. Clin Pharmacol Ther 2024; 116:295-303. [PMID: 38686952 DOI: 10.1002/cpt.3287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Chronic hepatitis B (CHB) remains a major global public health problem. The functional cure is the ideal therapeutic target recommended by the latest guidelines, and pursuing a functional cure has become the key treatment end point of current therapy and for upcoming clinical trials. In this review, based on the latest published clinical research evidence, we analyzed the concept and connotation of clinical cures and elaborated on the benefits of clinical cures in detail. Secondly, we have summarized various potential treatment methods for achieving clinical cures, especially elaborating on the latest research progress of interferon-based optimized treatment strategies in achieving clinical cures. We also analyzed which populations can achieve clinical cures and conducted a detailed analysis of relevant virological and serological markers in screening clinical cure advantage populations and predicting clinical cure achievement. In addition, we also introduced the difficulties that may be encountered in the current pursuit of achieving a clinical cure.
Collapse
Affiliation(s)
- Yujing Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Fada Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Lanqing Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chengrun Song
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Zhang PX, Tang QQ, Zhu J, Deng WY, Zhang ZH. Predictive models for functional cure in patients with CHB receiving PEG-IFN therapy based on HBsAg quantification through meta-analysis. Hepatol Int 2024; 18:1110-1121. [PMID: 38913149 DOI: 10.1007/s12072-024-10666-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/25/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND AIMS The efficacy of achieving HBsAg clearance through pegylated interferon (PEG-IFNα) therapy in patients with chronic hepatitis B (CHB) remains uncertain, especially regarding the probability of achieving functional cure among patients with varying baseline HBsAg levels. We aimed to investigate the predictive value of HBsAg quantification for HBsAg seroclearance in CHB patients undergoing PEG-IFNα treatment. METHODS A systematic search was conducted in PubMed, Embase, and the Cochrane Library up to January 11, 2022. Subgroup analyses were performed for HBeAg-positive and HBeAg-negative patients, PEG-IFNα monotherapy and PEG-IFNα combination therapy, treatment-naive and treatment-experienced patients, and patients with or without liver cirrhosis. RESULTS This predictive model incorporated 102 studies. The overall HBsAg clearance rates at the end of treatment (EOT) and the end of follow-up (EOF) were 10.6% (95% CI 7.8-13.7%) and 11.1% (95% CI 8.4-14.1%), respectively. Baseline HBsAg quantification was the most significant factor. According to the model, it is projected that when baseline HBsAg levels are 100, 500, 1500, and 10,000 IU/ml, the HBsAg clearance rates at EOF could reach 53.9% (95% CI 40.4-66.8%), 32.1% (95% CI 24.8-38.7%), 14.2% (95% CI 9.8-18.8%), and 7.9% (95% CI 4.2-11.8%), respectively. Additionally, treatment-experienced patients with HBeAg-negative status, and without liver cirrhosis exhibited higher HBsAg clearance rates after PEG-IFNα treatment. CONCLUSION A successful predictive model has been established to predict the achievement of functional cure in CHB patients receiving PEG-IFNα therapy.
Collapse
Affiliation(s)
- Pei-Xin Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Qian-Qian Tang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Jie Zhu
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Wan-Yu Deng
- College of Life Science, Shangrao Normal University, Shangrao, China
| | - Zhen-Hua Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China.
| |
Collapse
|
40
|
Chen D, Lu Y, Lian J, Yu J, Li L, Li L. Plasma metabolome analysis for predicting antiviral treatment efficacy in chronic hepatitis B: diagnostic biomarkers and therapeutic insights. Front Immunol 2024; 15:1414476. [PMID: 39072321 PMCID: PMC11272971 DOI: 10.3389/fimmu.2024.1414476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 07/30/2024] Open
Abstract
The early and accurate identification of predictive biomarkers for antiviral treatment efficacy remains a significant clinical challenge, particularly in the management of chronic hepatitis B (CHB). This study aimed to assess whether the plasma metabolome could reliably predict the success of antiviral therapy in CHB patients. We conducted a retrospective analysis on 56 treatment-naive CHB patients at the First Affiliated Hospital of Zhejiang University from December 2013 to March 2016. Patients who underwent a 48-week treatment regimen of entecavir (ETV) and interferon-alpha (IFN-α) were randomly assigned to either a discovery cohort (n=29) or a validation cohort (n=27). Based on the outcome of the treatment, patients were classified as HBeAg seroconversion group (High responders, Hrp) or the non-remission group (Low responder, Lrp). Our methodology involved an untargeted analysis of the amine/phenol and carboxylic acid submetabolomes in the CHB patients under treatment, utilizing chemical isotope labeling (CIL) techniques with liquid chromatography-mass spectrometry (LC-MS). Several metabolites were identified as having significant diagnostic potential for distinguishing Hrp from Lrp, with areas under the receiver operating characteristic curve (AUC) exceeding those typical clinical indicators. Notably, four metabolites, namely 2-methyl-3-ketovaleric acid, 2-ketohexanoic acid, 6-oxo-1,4,5,6-tetrahydronicotinic acid, and α-ketoisovaleric acid, demonstrated exceptionally high sensitivity and specificity in both cohorts, nearing 100%. In contrast, the clinical indicators, including HBcAb, log(HBsAg), and HBeAb, demonstrated lower and inconsistent sensitivity and specificity between the discovery and validation cohorts. Using HBcAb as a marker, the sensitivity was 87.5% with 76.9% specificity in the discovery cohort; however, the sensitivity dropped to 46.7% with 91.7% specificity in the validation cohort. Using log(HBsAg), the sensitivity was 84.6% with 69.2% specificity in the discovery cohort, compared to 85.7% sensitivity and 83.3% specificity in the validation cohort. For HBeAb, the separation of Hrp and Lrp had a sensitivity of 87.5% with 69.2% specificity in the discovery cohort, while the validation cohort showed 86.7% sensitivity and 91.7% specificity.
Collapse
Affiliation(s)
- Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiangshan Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Li
- The Metabolomics Innovation Centre and Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Aguilar JC, Akbar SMF, Al-Mahtab M, Khan MSI, Guzman CA, Fernandez G, Aguiar JA, Michel ML, Bourgine M, Marrero MA, Trittel S, Ebensen T, Riese P, Le Grand R, Herate C, Mauras A, Yoshida O, Hiasa Y, Penton E, Guillen GE. HeberNasvac: Development and Application in the Context of Chronic Hepatitis B. Euroasian J Hepatogastroenterol 2024; 14:221-237. [PMID: 39802853 PMCID: PMC11714097 DOI: 10.5005/jp-journals-10018-1457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
The immune system plays a central role in controlling acute hepatitis B infection and in patients resolving chronic hepatitis B (CHB). Given that 221 million (75%) of CHB patients reside in low- and middle-income countries, the development of a vaccine with therapeutic properties represents a rational and cost-effective approach more than a romantic endeavor. This review systematically analyzes the key variables related to the safety, efficacy, and effectiveness of CHB treatments. HeberNasvac experience is revisited for addressing the challenges and potentialities of therapeutic vaccines, as well as the current roadblocks in research and development, registration, and large-scale implementation. How to cite this article Aguilar JC, Akbar SMF, Al-Mahtab M, et al. HeberNasvac: Development and Application in the Context of Chronic Hepatitis B. Euroasian J Hepato-Gastroenterol 2024;14(2):221-237.
Collapse
Affiliation(s)
- Julio C Aguilar
- Department of Vaccines, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Sheikh MF Akbar
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon City, Japan
| | - Mamun Al-Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md Sakirul I Khan
- Department of Research Center for Global and Local Infectious Diseases, Oita University, Oita, Japan
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Guillermo Fernandez
- Department of Gastroenterology, Abel Santamaría Hospital, Pinar del Rio, Cuba
| | - Jorge A Aguiar
- Department of Vaccines, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Marie-Louise Michel
- Laboratory of Hepatitis B Virus Pathogenesis, Institut Pasteur, Paris, France
| | - Maryline Bourgine
- Department of Institut Pasteur-TheraVectys Joint Lab, Institut Pasteur Paris, France
| | - Maria A Marrero
- Department of Clinical Trials, National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Stephanie Trittel
- Department of Vaccinology and Applied Microbiology, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Roger Le Grand
- Department of Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Paris, France
| | - Cecile Herate
- Department of Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Paris, France
| | - Aurelie Mauras
- Department of Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Paris, France
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon City, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon City, Japan
| | - Eduardo Penton
- Department of Vaccines, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Gerardo E Guillen
- Department of Vaccines, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| |
Collapse
|
42
|
Zeng Q, Ren Y, Wang Y, Yang J, Qin Y, Yang L, Zheng X, Huang A, Fan H. The nuclear matrix protein HNRNPU restricts hepatitis B virus transcription by promoting OAS3-based activation of host innate immunity. J Med Virol 2024; 96:e29805. [PMID: 39011773 DOI: 10.1002/jmv.29805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Heterogeneous nuclear protein U (HNRNPU) plays a pivotal role in innate immunity by facilitating chromatin opening to activate immune genes during host defense against viral infection. However, the mechanism by which HNRNPU is involved in Hepatitis B virus (HBV) transcription regulation through mediating antiviral immunity remains unknown. Our study revealed a significant decrease in HNRNPU levels during HBV transcription, which depends on HBx-DDB1-mediated degradation. Overexpression of HNRNPU suppressed HBV transcription, while its knockdown effectively promoted viral transcription, indicating HNRNPU as a novel host restriction factor for HBV transcription. Mechanistically, HNRNPU inhibits HBV transcription by activating innate immunity through primarily the positive regulation of the interferon-stimulating factor 2'-5'-oligoadenylate synthetase 3, which mediates an ribonuclease L-dependent mechanism to enhance innate immune responses. This study offers new insights into the host immune regulation of HBV transcription and proposes potential targets for therapeutic intervention against HBV infection.
Collapse
Affiliation(s)
- Qiqi Zeng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yi Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yanyan Wang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jiaxin Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yi Qin
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lijuan Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xinrui Zheng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hui Fan
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
43
|
Figueroa GB, D'souza S, Pereira HS, Vasudeva G, Figueroa SB, Robinson ZE, Badmalia MD, Meier-Stephenson V, Corcoran JA, van Marle G, Ni Y, Urban S, Coffin CS, Patel TR. Development of a single-domain antibody to target a G-quadruplex located on the hepatitis B virus covalently closed circular DNA genome. J Med Virol 2024; 96:e29692. [PMID: 38804172 DOI: 10.1002/jmv.29692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
To achieve a virological cure for hepatitis B virus (HBV), innovative strategies are required to target the covalently closed circular DNA (cccDNA) genome. Guanine-quadruplexes (G4s) are a secondary structure that can be adopted by DNA and play a significant role in regulating viral replication, transcription, and translation. Antibody-based probes and small molecules have been developed to study the role of G4s in the context of the human genome, but none have been specifically made to target G4s in viral infection. Herein, we describe the development of a humanized single-domain antibody (S10) that can target a G4 located in the PreCore (PreC) promoter of the HBV cccDNA genome. MicroScale Thermophoresis demonstrated that S10 has a strong nanomolar affinity to the PreC G4 in its quadruplex form and a structural electron density envelope of the complex was determined using Small-Angle X-ray Scattering. Lentiviral transduction of S10 into HepG2-NTCP cells shows nuclear localization, and chromatin immunoprecipitation coupled with next-generation sequencing demonstrated that S10 can bind to the HBV PreC G4 present on the cccDNA. This research validates the existence of a G4 in HBV cccDNA and demonstrates that this DNA secondary structure can be targeted with high structural and sequence specificity using S10.
Collapse
Affiliation(s)
- Gerardo B Figueroa
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Simmone D'souza
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Higor S Pereira
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gunjan Vasudeva
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Sara B Figueroa
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Zachary E Robinson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Maulik D Badmalia
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vanessa Meier-Stephenson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer A Corcoran
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Guido van Marle
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Carla S Coffin
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
44
|
Rossari F, Foti S, Camera S, Persano M, Casadei-Gardini A, Rimini M. Treatment options for advanced hepatocellular carcinoma: the potential of biologics. Expert Opin Biol Ther 2024; 24:455-470. [PMID: 38913107 DOI: 10.1080/14712598.2024.2363234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Advanced hepatocellular carcinoma (HCC) represents a significant global health burden, whose treatment has been recently revolutionized by the advent of biologic treatments. Despite that, innovative therapeutic regimens and approaches, especially immune-based, remain to be explored aiming at extending the therapeutic benefits to a wider population of patients. AREAS COVERED This review comprehensively discusses the evolving landscape of biological treatment modalities for advanced HCC, including immune checkpoint inhibitors, antiangiogenic monoclonal antibodies, tumor-targeting monoclonal antibodies either naked or drug-conjugated, therapeutic vaccines, oncolytic viruses, adoptive cell therapies, and cytokine-based therapies. Key clinical trials and preclinical studies are examined, highlighting the actual or potential impact of these interventions in reshaping treatment paradigms for HCC. EXPERT OPINION Tailored and rational combination strategies, leveraging the synergistic effects of different modalities, represent a promising approach to maximize treatment efficacy in advanced HCC, which should aim at conversion endpoints to increase the fraction of patients eligible for curative approaches. The identification of predictive biomarkers holds the key to optimizing patient selection and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Foti
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Camera
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
45
|
Monk PD, Brookes JL, Tear VJ, Batten TN, Newall C, Mankowski M, Crooks MG, Singh D, Chaudhuri R, Leaker B, Lunn K, Reynolds S, Dudley S, Gabbay FJ, Holgate ST, Djukanovic R, Wilkinson TM. Nebulised interferon beta-1a (SNG001) in the treatment of viral exacerbations of COPD. Respir Res 2024; 25:228. [PMID: 38811970 PMCID: PMC11138078 DOI: 10.1186/s12931-024-02854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Respiratory viral infections are major drivers of chronic obstructive pulmonary disease (COPD) exacerbations. Interferon-β is naturally produced in response to viral infection, limiting replication. This exploratory study aimed to demonstrate proof-of-mechanism, and evaluate the efficacy and safety of inhaled recombinant interferon-β1a (SNG001) in COPD. Part 1 assessed the effects of SNG001 on induced sputum antiviral interferon-stimulated gene expression, sputum differential cell count, and respiratory function. Part 2 compared SNG001 and placebo on clinical efficacy, sputum and serum biomarkers, and viral clearance. METHODS In Part 1, patients (N = 13) with stable COPD were randomised 4:1 to SNG001 or placebo once-daily for three days. In Part 2, patients (N = 109) with worsening symptoms and a positive respiratory viral test were randomised 1:1 to SNG001 or placebo once-daily for 14 days in two Groups: A (no moderate exacerbation); B (moderate COPD exacerbation [i.e., acute worsening of respiratory symptoms treated with antibiotics and/or oral corticosteroids]). RESULTS In Part 1, SNG001 upregulated sputum interferon gene expression. In Part 2, there were minimal SNG001-placebo differences in the efficacy endpoints; however, whereas gene expression was initially upregulated by viral infection, then declined on placebo, levels were maintained with SNG001. Furthermore, the proportion of patients with detectable rhinovirus (the most common virus) on Day 7 was lower with SNG001. In Group B, serum C-reactive protein and the proportion of patients with purulent sputum increased with placebo (suggesting bacterial infection), but not with SNG001. The overall adverse event incidence was similar with both treatments. CONCLUSIONS Overall, SNG001 was well-tolerated in patients with COPD, and upregulated lung antiviral defences to accelerate viral clearance. These findings warrant further investigation in a larger study. TRIAL REGISTRATION EU clinical trials register (2017-003679-75), 6 October 2017.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Mankowski
- Synairgen Research Ltd, Southampton, UK
- tranScrip Ltd, Wokingham, UK
| | - Michael G Crooks
- Respiratory Research Group, Hull York Medical School, University of Hull, Kingston Upon Hull, Hull, UK
| | - Dave Singh
- Medicines Evaluation Unit, The University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rekha Chaudhuri
- Gartnavel General Hospital, Glasgow, UK
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Brian Leaker
- Respiratory Clinical Trials Ltd, Fitzrovia Hospital, London, UK
| | | | | | | | | | - Stephen T Holgate
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Ratko Djukanovic
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Thomas Ma Wilkinson
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
46
|
Viox EG, Bosinger SE, Douek DC, Schreiber G, Paiardini M. Harnessing the power of IFN for therapeutic approaches to COVID-19. J Virol 2024; 98:e0120423. [PMID: 38651899 PMCID: PMC11092331 DOI: 10.1128/jvi.01204-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Interferons (IFNs) are essential for defense against viral infections but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, we explore the complexity of the IFN response in COVID-19, examine the effects of manipulating IFN on SARS-CoV-2 viral replication and pathogenesis, and highlight pre-clinical and clinical studies evaluating the therapeutic efficacy of IFN in limiting COVID-19 severity.
Collapse
Affiliation(s)
- Elise G. Viox
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory NPRC Genomics Core Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
47
|
Giraud G, El Achi K, Zoulim F, Testoni B. Co-Transcriptional Regulation of HBV Replication: RNA Quality Also Matters. Viruses 2024; 16:615. [PMID: 38675956 PMCID: PMC11053573 DOI: 10.3390/v16040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic hepatitis B (CHB) virus infection is a major public health burden and the leading cause of hepatocellular carcinoma. Despite the efficacy of current treatments, hepatitis B virus (HBV) cannot be fully eradicated due to the persistence of its minichromosome, or covalently closed circular DNA (cccDNA). The HBV community is investing large human and financial resources to develop new therapeutic strategies that either silence or ideally degrade cccDNA, to cure HBV completely or functionally. cccDNA transcription is considered to be the key step for HBV replication. Transcription not only influences the levels of viral RNA produced, but also directly impacts their quality, generating multiple variants. Growing evidence advocates for the role of the co-transcriptional regulation of HBV RNAs during CHB and viral replication, paving the way for the development of novel therapies targeting these processes. This review focuses on the mechanisms controlling the different co-transcriptional processes that HBV RNAs undergo, and their contribution to both viral replication and HBV-induced liver pathogenesis.
Collapse
Affiliation(s)
- Guillaume Giraud
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Khadija El Achi
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
- Hospices Civils de Lyon, Hôpital Croix Rousse, Service d’Hépato-Gastroentérologie, 69004 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| |
Collapse
|
48
|
Kato D, Choy RWY, Canales E, Dick RA, Lake AD, Shapiro ND, Chin E, Li J, Zhang JR, Wu Q, Saito RD, Metobo S, Aktoudianakis E, Schroeder SD, Yang ZY, Glatt DM, Balsitis S, Gamelin L, Yu M, Cheng G, Delaney WE, Link JO. Discovery of Hepatitis B Virus Surface Antigen Suppressor GS-8873. ACS Med Chem Lett 2024; 15:546-554. [PMID: 38628802 PMCID: PMC11017420 DOI: 10.1021/acsmedchemlett.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Chronic hepatitis B (CHB) virus infection afflicts hundreds of millions of people and causes nearly one million deaths annually. The high levels of circulating viral surface antigen (HBsAg) that characterize CHB may lead to T-cell exhaustion, resulting in an impaired antiviral immune response in the host. Agents that suppress HBsAg could help invigorate immunity toward infected hepatocytes and facilitate a functional cure. A series of dihydropyridoisoquinolizinone (DHQ) inhibitors of human poly(A) polymerases PAPD5/7 were reported to suppress HBsAg in vitro. An example from this class, RG7834, briefly entered the clinic. We set out to identify a potent, orally bioavailable, and safe PAPD5/7 inhibitor as a potential component of a functional cure regimen. Our efforts led to the identification of a dihydropyridophthalazinone (DPP) core with improved pharmacokinetic properties. A conformational restriction strategy and optimization of core substitution led to GS-8873, which was projected to provide deep HBsAg suppression with once-daily dosing.
Collapse
Affiliation(s)
- Darryl Kato
- Gilead
Sciences, Foster City, California 94404, United States
| | | | - Eda Canales
- Gilead
Sciences, Foster City, California 94404, United States
| | - Ryan A. Dick
- Maze
Therapeutics, South
San Francisco, California 94080, United States
| | - April D. Lake
- Gilead
Sciences, Foster City, California 94404, United States
| | | | - Elbert Chin
- Gilead
Sciences, Foster City, California 94404, United States
| | - Jiayao Li
- Gilead
Sciences, Foster City, California 94404, United States
| | | | - Qiaoyin Wu
- Gilead
Sciences, Foster City, California 94404, United States
| | - Roland D. Saito
- Gilead
Sciences, Foster City, California 94404, United States
| | - Sammy Metobo
- Circle
Pharma, South San Francisco, California 94080, United States
| | | | | | - Zheng-Yu Yang
- Gilead
Sciences, Foster City, California 94404, United States
| | - Dylan M. Glatt
- 23andMe
Therapeutics, South
San Francisco, California 94080, United States
| | - Scott Balsitis
- Gilead
Sciences, Foster City, California 94404, United States
| | - Lindsay Gamelin
- Gilead
Sciences, Foster City, California 94404, United States
| | - Mei Yu
- Gilead
Sciences, Foster City, California 94404, United States
| | - Guofeng Cheng
- AusperBio
Therapeutics Inc., San Mateo, California 94401, United States
| | | | - John O. Link
- Gilead
Sciences, Foster City, California 94404, United States
| |
Collapse
|
49
|
Ge FL, Yang Y, Si LL, Li YH, Cao MZ, Wang J, Bai ZF, Ren ZG, Xiao XH, Liu Y. Inhibition of hepatitis B virus via selective apoptosis modulation by Chinese patent medicine Liuweiwuling Tablet. World J Gastroenterol 2024; 30:1911-1925. [PMID: 38659485 PMCID: PMC11036500 DOI: 10.3748/wjg.v30.i13.1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/07/2024] [Accepted: 02/25/2024] [Indexed: 04/03/2024] Open
Abstract
BACKGROUND Liuweiwuling Tablet (LWWL) is a Chinese patent medicine approved for the treatment of chronic inflammation caused by hepatitis B virus (HBV) infection. Previous studies have indicated an anti-HBV effect of LWWL, specifically in terms of antigen inhibition, but the underlying mechanism remains unclear. AIM To investigate the potential mechanism of action of LWWL against HBV. METHODS In vitro experiments utilized three HBV-replicating and three non-HBV-replicating cell lines. The in vivo experiment involved a hydrodynamic injection-mediated mouse model with HBV replication. Transcriptomics and metabolomics were used to investigate the underlying mechanisms of action of LWWL. RESULTS In HepG2.1403F cells, LWWL (0.8 mg/mL) exhibited inhibitory effects on HBV DNA, hepatitis B surface antigen and pregenomic RNA (pgRNA) at rates of 51.36%, 24.74% and 50.74%, respectively. The inhibition rates of LWWL (0.8 mg/mL) on pgRNA/covalently closed circular DNA in HepG2.1403F, HepG2.2.15 and HepG2.A64 cells were 47.78%, 39.51% and 46.74%, respectively. Integration of transcriptomics and metabolomics showed that the anti-HBV effect of LWWL was primarily linked to pathways related to apoptosis (PI3K-AKT, CASP8-CASP3 and P53 pathways). Apoptosis flow analysis revealed that the apoptosis rate in the LWWL-treated group was significantly higher than in the control group (CG) among HBV-replicating cell lines, including HepG2.2.15 (2.92% ± 1.01% vs 6.68% ± 2.04%, P < 0.05), HepG2.A64 (4.89% ± 1.28% vs 8.52% ± 0.50%, P < 0.05) and HepG2.1403F (3.76% ± 1.40% vs 7.57% ± 1.35%, P < 0.05) (CG vs LWWL-treated group). However, there were no significant differences in apoptosis rates between the non-HBV-replicating HepG2 cells (5.04% ± 0.74% vs 5.51% ± 1.57%, P > 0.05), L02 cells (5.49% ± 0.80% vs 5.48% ± 1.01%, P > 0.05) and LX2 cells (6.29% ± 1.54% vs 6.29% ± 0.88%, P > 0.05). TUNEL staining revealed a significantly higher apoptosis rate in the LWWL-treated group than in the CG in the HBV-replicating mouse model, while no noticeable difference in apoptosis rates between the two groups was observed in the non-HBV-replicating mouse model. CONCLUSION Preliminary results suggest that LWWL exerts a potent inhibitory effect on wild-type and drug-resistant HBV, potentially involving selective regulation of apoptosis. These findings offer novel insights into the anti-HBV activities of LWWL and present a novel mechanism for the development of anti-HBV medications.
Collapse
Affiliation(s)
- Fei-Lin Ge
- Department of Chinese Medicine, State Key Laboratory of Antiviral Drugs, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yan Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Lan-Lan Si
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yuan-Hua Li
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Meng-Zhen Cao
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jun Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing 100015, China
| | - Zhao-Fang Bai
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Zhi-Gang Ren
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xiao-He Xiao
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yan Liu
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
50
|
Buechter M, Günther AM, Manka P, Gerken G, Kahraman A. Factors Positively Correlated with Hepatitis B Surface Antigen Seroconversion in Chronic Hepatitis B. J Pers Med 2024; 14:390. [PMID: 38673017 PMCID: PMC11051014 DOI: 10.3390/jpm14040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND AND AIMS Chronic hepatitis B virus (HBV) infection is a global public health challenge since more than 250 million individuals are affected worldwide. Since different treatment modalities are available and not all patients are candidates for antiviral treatment, biomarkers that potentially predict the possibility of HBsAg clearance and seroconversion may be useful in clinical practice. PATIENTS AND METHODS In this retrospective study, we aimed to identify factors positively correlated with HBsAg seroconversion in a large cohort of 371 chronic hepatitis B patients treated at a German tertial center between 2005 and 2020. RESULTS Seroconversion occurred in 25/371 (6.7%) and HBsAg loss in 29/371 patients (7.8%) with chronic HBV infection. Antiviral therapy was associated with a lower chance of seroconversion (seroconversion antiviral therapy 14/260 (5.4%) vs. therapy-naïve patients 11/111 (9.9%), p = 0.027). Seroconversion rates were higher in patients with (very) low titers of HBV DNA (best cut-off value 357 IU/mL) and quantitative HBsAg. The best cut-off value with regard to seroconversion was 357 IU/mL for HBV DNA (AUC 0.693 (95%-CI 0.063-0.422), sensitivity 0.714, specificity 0.729; p < 0.0005) and 33,55 IU/mL for HBsAg (AUC 0.794 (95%-CI 0.651-0.937), sensitivity 0.714, specificity 0.949; p < 0.0005). However, male gender was positively associated with seroconversion (seroconversion: males 7.6% vs. females 2.7%, p = 0.036). CONCLUSIONS Treatment-naïve male chronic HBV patients with low viral load and inflammatory activity have the best chance to achieve seroconversion. In the absence of cirrhosis, antiviral therapy should therefore not be performed in this patient collective.
Collapse
Affiliation(s)
- Matthias Buechter
- Department of Gastroenterology and Hepatology, University Clinic of Essen, University of Duisburg-Essen, 45147 Essen, Germany; (A.M.G.); (G.G.); (A.K.)
- Department of Gastroenterology and Hepatology, Elisabeth Hospital, 58638 Iserlohn, Germany
| | - Arne Maria Günther
- Department of Gastroenterology and Hepatology, University Clinic of Essen, University of Duisburg-Essen, 45147 Essen, Germany; (A.M.G.); (G.G.); (A.K.)
| | - Paul Manka
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Clinic of Essen, University of Duisburg-Essen, 45147 Essen, Germany; (A.M.G.); (G.G.); (A.K.)
- Department of Gastroenterology and Hepatology, Helios Clinic, 42549 Velbert, Germany
| | - Alisan Kahraman
- Department of Gastroenterology and Hepatology, University Clinic of Essen, University of Duisburg-Essen, 45147 Essen, Germany; (A.M.G.); (G.G.); (A.K.)
- Department of Gastroenterology and Hepatology, Max Grundig Clinic, 77815 Bühl, Germany
| |
Collapse
|