1
|
Wang M, Kamali-Moghaddam M, Löf L, Cortabarría Fernandez M, Díaz Codina R, Sterky FH, Åberg M, Landegren U, Zhao H. Monitoring SARS-CoV-2 IgA, IgM and IgG antibodies in dried blood and saliva samples using antibody proximity extension assays (AbPEA). Sci Rep 2024; 14:21655. [PMID: 39289450 PMCID: PMC11408710 DOI: 10.1038/s41598-024-72453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Using a modified proximity extension assay, total and immunoglobulin (Ig) class-specific anti-SARS-CoV-2 antibodies were sensitively and conveniently detected directly from ø1.2 mm discs cut from dried blood and saliva spots (DBS and DSS) without the need for elution. For total Ig detection, antigen probes were prepared by conjugating recombinant spike protein subunit 1 (S1-RBD) to a pair of oligonucleotides. To detect isotype-specific antibody reactivity, one antigen probe was replaced with oligonucleotide-conjugated antibodies specific for antibody isotypes. Binding of pairs of oligonucleotide-conjugated probes to antibodies in patient samples brings oligonucleotides in proximity. An added DNA polymerase uses a transient hybridization between the oligonucleotides to prime synthesis of a DNA strand, which serves as a DNA amplicon that is quantified by real-time PCR. The S1-RBD-specific IgG, IgM, and IgA antibodies in DBS samples collected over the course of a first and second vaccination exhibited kinetics consistent with previous reports. Both DBS and DSS collected from 42 individuals in the autumn of 2023 showed significant level of total S1-RBD antibodies with a correlation of R = 0.70. However, levels in DSS were generally 10 to 100-fold lower than in DBS. Anti-S1-RBD IgG and IgA in DSS demonstrated a correlation of R = 0.6.
Collapse
Affiliation(s)
- Mengqi Wang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Unit of Affinity Proteomics Uppsala, Science for Life Laboratory, Uppsala, Sweden
| | - Liza Löf
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Unit of Affinity Proteomics Uppsala, Science for Life Laboratory, Uppsala, Sweden
| | - Matilde Cortabarría Fernandez
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Roger Díaz Codina
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik H Sterky
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mikael Åberg
- Unit of Affinity Proteomics Uppsala, Science for Life Laboratory, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Hongxing Zhao
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
- Unit of Affinity Proteomics Uppsala, Science for Life Laboratory, Uppsala, Sweden.
| |
Collapse
|
2
|
Nguyen K, Relja B, Epperson M, Park SH, Thornburg NJ, Costantini VP, Vinjé J. Salivary immune responses after COVID-19 vaccination. PLoS One 2024; 19:e0307936. [PMID: 39226256 PMCID: PMC11371244 DOI: 10.1371/journal.pone.0307936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
mRNA-based COVID-19 vaccines have played a critical role in reducing severe outcomes of COVID-19. Humoral immune responses against SARS-CoV-2 after vaccination have been extensively studied in blood; however, limited information is available on the presence and duration of SARS-CoV-2 specific antibodies in saliva and other mucosal fluids. Saliva offers a non-invasive sampling method that may also provide a better understanding of mucosal immunity at sites where the virus enters the body. Our objective was to evaluate the salivary immune response after vaccination with the COVID-19 Moderna mRNA-1273 vaccine. Two hundred three staff members of the U.S. Centers for Disease Control and Prevention were enrolled prior to receiving their first dose of the mRNA-1273 vaccine. Participants were asked to self-collect 6 saliva specimens at days 0 (prior to first dose), 14, 28 (prior to second dose), 42, and 56 using a SalivaBio saliva collection device. Saliva specimens were tested for anti-spike protein SARS-CoV-2 specific IgA and IgG enzyme immunoassays. Overall, SARS-CoV-2-specific salivary IgA titers peaked 2 weeks after each vaccine dose, followed by a sharp decrease during the following weeks. In contrast to IgA titers, IgG antibody titers increased substantially 2 weeks after the first vaccine dose, peaked 2 weeks after the second dose and persisted at an elevated level until at least 8 weeks after the first vaccine dose. Additionally, no significant differences in IgA/IgG titers were observed based on age, sex, or race/ethnicity. All participants mounted salivary IgA and IgG immune responses against SARS-CoV-2 after receiving the mRNA-1273 COVID-19 vaccine. Because of the limited follow-up time for this study, more data are needed to assess the antibody levels beyond 2 months after the first dose. Our results confirm the potential utility of saliva in assessing immune responses elicited by immunization and possibly by infection.
Collapse
Affiliation(s)
- Kenny Nguyen
- National Foundation for the Centers for Disease Control and Prevention Inc., Atlanta, GA, United States of America
| | - Boris Relja
- National Foundation for the Centers for Disease Control and Prevention Inc., Atlanta, GA, United States of America
- Cherokee Nation Assurance, Arlington, VA, United States of America
| | - Monica Epperson
- Laboratory Branch, Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - So Hee Park
- Eagle Global Scientific, LLC, Atlanta, GA, United States of America
| | - Natalie J. Thornburg
- Laboratory Branch, Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Veronica P. Costantini
- Division of Viral Diseases, Viral Gastroenteritis Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Jan Vinjé
- Division of Viral Diseases, Viral Gastroenteritis Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
3
|
Abela IA, Schwarzmüller M, Ulyte A, Radtke T, Haile SR, Ammann P, Raineri A, Rueegg S, Epp S, Berger C, Böni J, Manrique A, Audigé A, Huber M, Schreiber PW, Scheier T, Fehr J, Weber J, Rusert P, Günthard HF, Kouyos RD, Puhan MA, Kriemler S, Trkola A, Pasin C. Cross-protective HCoV immunity reduces symptom development during SARS-CoV-2 infection. mBio 2024; 15:e0272223. [PMID: 38270455 PMCID: PMC10865973 DOI: 10.1128/mbio.02722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Numerous clinical parameters link to severe coronavirus disease 2019, but factors that prevent symptomatic disease remain unknown. We investigated the impact of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and endemic human coronavirus (HCoV) antibody responses on symptoms in a longitudinal children cohort (n = 2,917) and a cross-sectional cohort including children and adults (n = 882), all first exposed to SARS-CoV-2 (March 2020 to March 2021) in Switzerland. Saliva (n = 4,993) and plasma (n = 7,486) antibody reactivity to the four HCoVs (subunit S1 [S1]) and SARS-CoV-2 (S1, receptor binding domain, subunit S2 [S2], nucleocapsid protein) was determined along with neutralizing activity against SARS-CoV-2 Wuhan, Alpha, Delta, and Omicron (BA.2) in a subset of individuals. Inferred recent SARS-CoV-2 infection was associated with a strong correlation between mucosal and systemic SARS-CoV-2 anti-spike responses. Individuals with pre-existing HCoV-S1 reactivity exhibited significantly higher antibody responses to SARS-CoV-2 in both plasma (IgG regression coefficients = 0.20, 95% CI = [0.09, 0.32], P < 0.001) and saliva (IgG regression coefficient = 0.60, 95% CI = [0.088, 1.11], P = 0.025). Saliva neutralization activity was modest but surprisingly broad, retaining activity against Wuhan (median NT50 = 32.0, 1Q-3Q = [16.4, 50.2]), Alpha (median NT50 = 34.9, 1Q-3Q = [26.0, 46.6]), and Delta (median NT50 = 28.0, 1Q-3Q = [19.9, 41.7]). In line with a rapid mucosal defense triggered by cross-reactive HCoV immunity, asymptomatic individuals presented with higher pre-existing HCoV-S1 activity in plasma (IgG HKU1, odds ratio [OR] = 0.53, 95% CI = [0.29,0.97], P = 0.038) and saliva (total HCoV, OR = 0.55, 95% CI = [0.33, 0.91], P = 0.019) and higher SARS-CoV-2 reactivity in saliva (IgG S2 fold change = 1.26, 95% CI = [1.03, 1.54], P = 0.030). By investigating the systemic and mucosal immune responses to SARS-CoV-2 and HCoVs in a population without prior exposure to SARS-CoV-2 or vaccination, we identified specific antibody reactivities associated with lack of symptom development.IMPORTANCEKnowledge of the interplay between human coronavirus (HCoV) immunity and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is critical to understanding the coexistence of current endemic coronaviruses and to building knowledge potential future zoonotic coronavirus transmissions. This study, which retrospectively analyzed a large cohort of individuals first exposed to SARS-CoV-2 in Switzerland in 2020-2021, revealed several key findings. Pre-existing HCoV immunity, particularly mucosal antibody responses, played a significant role in improving SARS-CoV-2 immune response upon infection and reducing symptoms development. Mucosal neutralizing activity against SARS-CoV-2, although low in magnitude, retained activity against SARS-CoV-2 variants underlining the importance of maintaining local mucosal immunity to SARS-CoV-2. While the cross-protective effect of HCoV immunity was not sufficient to block infection by SARS-CoV-2, the present study revealed a remarkable impact on limiting symptomatic disease. These findings support the feasibility of generating pan-protective coronavirus vaccines by inducing potent mucosal immune responses.
Collapse
Affiliation(s)
- Irene A. Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Agne Ulyte
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Thomas Radtke
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sarah R. Haile
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Priska Ammann
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alessia Raineri
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sonja Rueegg
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Amapola Manrique
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter W. Schreiber
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan Fehr
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Milo A. Puhan
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Collegium Helveticum, Zurich, Switzerland
| |
Collapse
|
4
|
Bachtiar EW, Soeroso Y, Haerani N, Ismah N, Adiati EC, Bachtiar BM. Immunoglobulin A response to SARS-CoV-2-N-protein potentially persists in oral fluids of patients with periodontitis six months after mRNA vaccine administration. J Dent Sci 2024; 19:652-655. [PMID: 38303837 PMCID: PMC10829667 DOI: 10.1016/j.jds.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Indexed: 02/03/2024] Open
Abstract
Few studies have investigated the mucosal immune response after BNT162b2-booster vaccination in individuals with periodontitis. In this study, we evaluated the persistence of IgA anti-SARS-CoV-2-N-protein in saliva and gingival crevicular fluid (GCF) of patients with periodontitis for at least six months post BNT162b2 vaccine booster. We included patients with moderate (n = 7) and severe (n = 7) periodontitis and participants without periodontitis (n = 7) as controls. The Bradford method measured the protein concentrations in the samples, and an enzyme-linked immunosorbent assay of the SARS-CoV-2 N protein was performed to analyze the targeted IgA level. For the tested SARS-CoV-2 antigen (N-protein), IgA levels in saliva and GCF showed a strong and significant correlation. Therefore, in patients with moderate or severe periodontitis, saliva and GCF can provide information regarding the IgA response against SARS-CoV-2-N-protein. The neutralizing activity of IgA against SARS-CoV-2 was not investigated in this study, necessitating further research.
Collapse
Affiliation(s)
- Endang W. Bachtiar
- Department of Oral Biology and Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Natalina Haerani
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Nada Ismah
- Department of Orthodontic, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Esti Chahyani Adiati
- Resident Department of Periodontic, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Boy M. Bachtiar
- Department of Oral Biology and Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
5
|
Mouzinga FH, Heinzel C, Lissom A, Kreidenweiss A, Batchi‐Bouyou AL, Mbama Ntabi JD, Djontu JC, Ngumbi E, Kremsner PG, Fendel R, Ntoumi F. Mucosal response of inactivated and recombinant COVID-19 vaccines in Congolese individuals. Immun Inflamm Dis 2023; 11:e1116. [PMID: 38156395 PMCID: PMC10751728 DOI: 10.1002/iid3.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND The efficacy of immunization against an airborne pathogen depends in part on its ability to induce antibodies at the major entry site of the virus, the mucosa. Recent studies have revealed that mucosal immunity is poorly activated after vaccination with messenger RNA vaccines, thus failing in blocking virus acquisition upon its site of initial exposure. Little information is available about the induction of mucosal immunity by inactivated and recombinant coronavirus disease 2019 (COVID-19) vaccines. This study aims to investigate this topic. METHODS Saliva and plasma samples from 440 healthy Congolese were collected including (1) fully vaccinated 2 month postvaccination with either an inactivated or a recombinant COVID-19 vaccine and (2) nonvaccinated control group. Total anti-severe acute respiratory syndrome coronavirus 2 receptor-binding domain IgG and IgA antibodies were assessed using in-house enzyme-linked immunosorbent assays for both specimens. FINDINGS Altogether, the positivity of IgG was significantly higher in plasma than in saliva samples both in vaccinated and nonvaccinated control groups. Inversely, IgA positivity was slightly higher in saliva than in plasma of vaccinated group. The overall IgG and IgA levels were respectively over 103 and 14 times lower in saliva than in plasma samples. We found a strong positive correlation between IgG in saliva and plasma also between IgA in both specimens (r = .70 for IgG and r = .52 for IgA). Interestingly, contrary to IgG, the level of salivary IgA was not different between seropositive control group and seropositive vaccinated group. No significant difference was observed between recombinant and inactivated COVID-19 vaccines in total IgG and IgA antibody concentration release 2 months postvaccination both in plasma and saliva. CONCLUSION Inactivated and recombinant COVID-19 vaccines in use in the Republic of Congo poorly activated mucosal IgA-mediated antibody response 2 months postvaccination.
Collapse
Affiliation(s)
- Freisnel H. Mouzinga
- Fondation Congolaise pour la Recherche MédicaleBrazzavilleRepublic of Congo
- Faculté des Sciences et TechniquesUniversité Marien NgouabiBrazzavilleRepublic of Congo
| | | | - Abel Lissom
- Fondation Congolaise pour la Recherche MédicaleBrazzavilleRepublic of Congo
- Department of Zoology, Faculty of ScienceUniversity of BamendaBamendaCameroon
| | - Andrea Kreidenweiss
- Institute of Tropical MedicineUniversity of TübingenTübingenGermany
- Centre de Recherches Médicales de Lambaréné (CERMEL)LambareneGabon
- German Center for Infectious Diseases (DZIF)Partner Site TübingenTübingenGermany
| | - Armel L. Batchi‐Bouyou
- Fondation Congolaise pour la Recherche MédicaleBrazzavilleRepublic of Congo
- Faculté des Sciences et TechniquesUniversité Marien NgouabiBrazzavilleRepublic of Congo
- Global Clinical Scholars Research Training ProgramHarvard Medical SchoolBostonMassachusettsUSA
| | - Jacques D. Mbama Ntabi
- Fondation Congolaise pour la Recherche MédicaleBrazzavilleRepublic of Congo
- Faculté des Sciences et TechniquesUniversité Marien NgouabiBrazzavilleRepublic of Congo
| | - Jean C. Djontu
- Fondation Congolaise pour la Recherche MédicaleBrazzavilleRepublic of Congo
| | - Etienne Ngumbi
- Faculté des Sciences et TechniquesUniversité Marien NgouabiBrazzavilleRepublic of Congo
| | - Peter G. Kremsner
- Institute of Tropical MedicineUniversity of TübingenTübingenGermany
- Centre de Recherches Médicales de Lambaréné (CERMEL)LambareneGabon
- German Center for Infectious Diseases (DZIF)Partner Site TübingenTübingenGermany
| | - Rolf Fendel
- Institute of Tropical MedicineUniversity of TübingenTübingenGermany
- Centre de Recherches Médicales de Lambaréné (CERMEL)LambareneGabon
- German Center for Infectious Diseases (DZIF)Partner Site TübingenTübingenGermany
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche MédicaleBrazzavilleRepublic of Congo
- Institute of Tropical MedicineUniversity of TübingenTübingenGermany
| |
Collapse
|
6
|
Colombini A, Divieto C, Tomaiuolo R, Mortati L, Petiti J, Di Resta C, Banfi G. The total testing process harmonization: the case study of SARS-CoV-2 serological tests. Clin Chem Lab Med 2023; 61:2084-2093. [PMID: 37540644 DOI: 10.1515/cclm-2023-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023]
Abstract
The total testing process harmonization is central to laboratory medicine, leading to the laboratory test's effectiveness. In this opinion paper the five phases of the TTP are analyzed, describing, and summarizing the critical issues that emerged in each phase of the TTP with the SARS-CoV-2 serological tests that have affected their effectiveness. Testing and screening the population was essential for defining seropositivity and, thus, driving public health policies in the management of the COVID-19 pandemic. However, the many differences in terminology, the unit of measurement, reference ranges and parameters for interpreting results make analytical results difficult to compare, leading to the general confusion that affects or completely precludes the comparability of data. Starting from these considerations related to SARS-CoV-2 serological tests, through interdisciplinary work, the authors have highlighted the most critical points and formulated proposals to make total testing process harmonization effective, positively impacting the diagnostic effectiveness of laboratory tests.
Collapse
Affiliation(s)
| | - Carla Divieto
- Istituto Nazionale di Ricerca Metrologica INRIM, Turin, Italy
| | - Rossella Tomaiuolo
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Jessica Petiti
- Istituto Nazionale di Ricerca Metrologica INRIM, Turin, Italy
| | | | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
7
|
Castro VT, Chardin H, Amorim dos Santos J, Barra GB, Castilho GR, Souza PM, Magalhães PDO, Acevedo AC, Guerra ENS. Detection of anti-SARS-CoV-2 salivary antibodies in vaccinated adults. Front Immunol 2023; 14:1296603. [PMID: 38022522 PMCID: PMC10661372 DOI: 10.3389/fimmu.2023.1296603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Since the introduction of efficient anti-SARS-CoV-2 vaccines, the detection of antibodies becomes useful for immunological monitoring and COVID-19 control. Therefore, this longitudinal study aimed to evaluate the detection of SARS-CoV-2 antibodies in the serum and saliva of COVID-19-vaccinated adults. The study included 13 not vaccinated and 35 vaccinated participants with two doses of CoronaVac (Sinovac/Butantan) vaccine who subsequently received BNT162b2 (Pfizer-BioNTech) vaccine as a booster dose. Vaccinated participants donated saliva and serum in three different time points. Enzyme-linked immunosorbent assay was used for antibody detection. In our results, the serum neutralizing antibodies (NAb) were detected in 34/35 samples after second dose and in 35/35 samples one and five months after the booster dose. In saliva, NAb were detected in 30/35 samples after second dose and in 35/35 of samples one and five months after the booster dose. IgA was detected in 19/34 saliva samples after second dose, in 18/35 one month after the booster and in 30/35 five months after. IgG in saliva was detected in 1/34 samples after second dose, 33/35 samples one month after the booster dose and in 20/35 five months after. A strong correlation was found between IgG and neutralizing activity in saliva, and salivary IgA would be a sign of recent exposure to the virus. In conclusion, saliva can be suitable for monitoring antibodies anti-SARS-CoV-2 after vaccination. Heterologous vaccination contributed to increase anti-SARS-CoV-2 antibodies in the Brazilian health context. Complementary studies with large groups are mandatory to conclude the interest in following mucosal immunity.
Collapse
Affiliation(s)
- Vitória Tavares Castro
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Hélène Chardin
- Department of Analytical, Bioanalytical Sciences and Miniaturization, École Supérieure de Physique et de Chimie Industrielles (ESPCI) de la Ville de Paris, Paris, France
- Unité de Formation et de Recherche d’Odontologie, Université Paris Cité, Paris, France
| | - Juliana Amorim dos Santos
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | | | | | - Paula Monteiro Souza
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | | | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| |
Collapse
|
8
|
Faustini SE, Cook A, Hill H, Al-Taei S, Heaney J, Efstathiou E, Tanner C, Townsend N, Ahmed Z, Dinally M, Hoque M, Goodall M, Stamataki Z, Plant T, Chapple I, Cunningham AF, Drayson MT, Shields AM, Richter AG. Saliva antiviral antibody levels are detectable but correlate poorly with serum antibody levels following SARS-CoV-2 infection and/or vaccination. J Infect 2023; 87:328-335. [PMID: 37543310 DOI: 10.1016/j.jinf.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
The importance of salivary SARS-CoV-2 antibodies, following infection and vaccination, has not been fully established. 875 healthcare workers were sampled during the first wave in 2020 and 66 longitudinally in response to Pfizer BioNTech 162b2 vaccination. We measured SARS-CoV-2 total IgGAM and individual IgG, IgA and IgM antibodies. IgGAM seroprevalence was 39.9%; however, only 34.1% of seropositive individuals also had salivary antibodies. Infection generated serum IgG antibodies in 51.4% and IgA antibodies in 34.1% of individuals. In contrast, the salivary antibody responses were dominated by IgA (30.9% and 12% generating IgA and IgG antibodies, respectively). Post 2nd vaccination dose, in serum, 100% of infection naïve individuals had IgG and 82.8% had IgA responses; in saliva, 65.5% exhibited IgG and 55.2% IgA antibodies. Prior infection enhanced the vaccine antibody response in serum but no such difference was observed in saliva. Strong neutralisation responses were seen for serum 6 months post 2nd-vaccination dose (median 87.1%) compared to low neutralisation responses in saliva (median 1%). Intramuscular vaccination induces significant serum antibodies and to a lesser extent, salivary antibodies; however, salivary antibodies are typically non-neutralising. This study provides further evidence for the need of mucosal vaccines to elicit nasopharyngeal/oral protection. Although saliva is an attractive non-invasive sero-surveillance tool, due to distinct differences between systemic and oral antibody responses, it cannot be used as a proxy for serum antibody measurement.
Collapse
Affiliation(s)
- Siân E Faustini
- University of Birmingham, Clinical Immunology Service, United Kingdom.
| | - Alex Cook
- University of Birmingham, Institute of Immunology and Immunotherapy, United Kingdom; The Binding Site Ltd, United Kingdom
| | - Harriet Hill
- University of Birmingham, Institute of Immunology and Immunotherapy, United Kingdom
| | - Saly Al-Taei
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Jennifer Heaney
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Elena Efstathiou
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Chloe Tanner
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Neal Townsend
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Zahra Ahmed
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Mohammad Dinally
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Madeeha Hoque
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Margaret Goodall
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Zania Stamataki
- University of Birmingham, Institute of Immunology and Immunotherapy, United Kingdom
| | - Timothy Plant
- University of Birmingham, Clinical Immunology Service, United Kingdom
| | - Iain Chapple
- Periodontal Research Group, Institute of Clinical Sciences, University of Birmingham, United Kingdom; University of Birmingham, School of Dentistry, United Kingdom; Birmingham Biomedical Research Centre, United Kingdom
| | - Adam F Cunningham
- University of Birmingham, Institute of Immunology and Immunotherapy, United Kingdom
| | - Mark T Drayson
- University of Birmingham, Clinical Immunology Service/QE UHB Hospital Trust, United Kingdom
| | - Adrian M Shields
- University of Birmingham, Clinical Immunology Service/QE UHB Hospital Trust, United Kingdom
| | - Alex G Richter
- University of Birmingham, Clinical Immunology Service/QE UHB Hospital Trust, United Kingdom.
| |
Collapse
|
9
|
Kritika S, Mahalaxmi S, Srinivasan N, Krithikadatta J. Deciphering the role of Saliva in COVID 19: A global cross-sectional study on the knowledge, awareness and perception among dentists. BMC Oral Health 2023; 23:424. [PMID: 37365550 DOI: 10.1186/s12903-023-03152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVES The global pandemic outbreak of the coronavirus has instilled the quest amongst researchers on the expedited need for the early detection of viral load. Saliva is a complex oral biological fluid which not only causes the disease transmission but can be an effective alternative sample for detection of SARS-CoV2. This provides an ideal opportunity for dentists to be the frontline healthcare professionals who can collect the salivary samples; however the awareness of this amongst dentists is uncertain. Hence the aim of this survey was to evaluate the knowledge, perception and awareness of the role of saliva in detecting the SARS-CoV2 among dentists worldwide. METHODS The online questionnaire comprising of 19 questions was shared to 1100 dentists worldwide and a total of 720 responses was collected. The data was tabulated, statistically analysed using the non- parametric Kruskal-Wallis test (p < 0.05). Based on the principal component analysis, 4 components (knowledge about virus transmission, perception about SARS-CoV2 virus, awareness on the sample collection and knowledge about prevention of the virus) were obtained which was compared with the 3 independent variables (years of clinical experience, occupation and region). RESULTS A statistically significant difference was observed in the awareness quotient amongst the dentists with 0-5 years and greater than 20 years of clinical experience. In terms of the occupation, a significant difference was noted when comparing the postgraduate students to practitioners knowledge about the virus transmission. A highly significant difference was seen on comparing academicians and postgraduate students and also between academicians and practitioners. No significant difference was evidenced amongst the different regions, however the mean score was in the range of 3-3.44. CONCLUSION This survey highlights the deficiency in the knowledge, perception and awareness among dentists worldwide.
Collapse
Affiliation(s)
- Selvakumar Kritika
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science & Technology, Ramapuram Campus, Bharathi Salai, Ramapuram, Chennai, Tamil Nadu, 600089, India.
| | - Sekar Mahalaxmi
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science & Technology, Ramapuram Campus, Bharathi Salai, Ramapuram, Chennai, Tamil Nadu, 600089, India
| | - N Srinivasan
- Specialist Endodontist, Hamad Dental Center, Hamad Medical Corporation, Doha, Qatar
| | - Jogikalmat Krithikadatta
- Department of Cariology and Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, 600077, India
| |
Collapse
|
10
|
Heinzel C, Pinilla YT, Binder A, Kremsner PG, Held J, Fendel R, Kreidenweiss A. Saliva and Plasma Antibody Levels in Children and Adolescents After Primary Infection With Omicron Variants of SARS-CoV-2 Infection in Germany. JAMA Pediatr 2023:2804012. [PMID: 37067824 PMCID: PMC10111229 DOI: 10.1001/jamapediatrics.2023.0631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
This cross-sectional study evaluates IgG antibody levels in children and adolescents in Germany following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Constanze Heinzel
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Yudi T Pinilla
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Ayla Binder
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research, Tübingen, Germany
| | - Jana Held
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research, Tübingen, Germany
| | - Rolf Fendel
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research, Tübingen, Germany
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research, Tübingen, Germany
| |
Collapse
|
11
|
Pisanic N, Antar AAR, Kruczynski KL, Gregory Rivera M, Dhakal S, Spicer K, Randad PR, Pekosz A, Klein SL, Betenbaugh MJ, Detrick B, Clarke W, Thomas DL, Manabe YC, Heaney CD. Methodological approaches to optimize multiplex oral fluid SARS-CoV-2 IgG assay performance and correlation with serologic and neutralizing antibody responses. J Immunol Methods 2023; 514:113440. [PMID: 36773929 PMCID: PMC9911157 DOI: 10.1016/j.jim.2023.113440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Oral fluid (hereafter, saliva) is a non-invasive and attractive alternative to blood for SARS-CoV-2 IgG testing; however, the heterogeneity of saliva as a matrix poses challenges for immunoassay performance. OBJECTIVES To optimize performance of a magnetic microparticle-based multiplex immunoassay (MIA) for SARS-CoV-2 IgG measurement in saliva, with consideration of: i) threshold setting and validation across different MIA bead batches; ii) sample qualification based on salivary total IgG concentration; iii) calibration to U.S. SARS-CoV-2 serological standard binding antibody units (BAU); and iv) correlations with blood-based SARS-CoV-2 serological and neutralizing antibody (nAb) assays. METHODS The salivary SARS-CoV-2 IgG MIA included 2 nucleocapsid (N), 3 receptor-binding domain (RBD), and 2 spike protein (S) antigens. Gingival crevicular fluid (GCF) swab saliva samples were collected before December 2019 (n = 555) and after molecular test-confirmed SARS-CoV-2 infection from 113 individuals (providing up to 5 repeated-measures; n = 398) and used to optimize and validate MIA performance (total n = 953). Combinations of IgG responses to N, RBD and S and total salivary IgG concentration (μg/mL) as a qualifier of nonreactive samples were optimized and validated, calibrated to the U.S. SARS-CoV-2 serological standard, and correlated with blood-based SARS-CoV-2 IgG ELISA and nAb assays. RESULTS The sum of signal to cutoff (S/Co) to all seven MIA SARS-CoV-2 antigens and disqualification of nonreactive saliva samples with ≤15 μg/mL total IgG led to correct classification of 62/62 positives (sensitivity [Se] = 100.0%; 95% confidence interval [CI] = 94.8%, 100.0%) and 108/109 negatives (specificity [Sp] = 99.1%; 95% CI = 97.3%, 100.0%) at 8-million beads coupling scale and 80/81 positives (Se = 98.8%; 95% CI = 93.3%, 100.0%] and 127/127 negatives (Sp = 100%; 95% CI = 97.1%, 100.0%) at 20-million beads coupling scale. Salivary SARS-CoV-2 IgG crossed the MIA cutoff of 0.1 BAU/mL on average 9 days post-COVID-19 symptom onset and peaked around day 30. Among n = 30 matched saliva and plasma samples, salivary SARS-CoV-2 MIA IgG levels correlated with corresponding-antigen plasma ELISA IgG (N: ρ = 0.76, RBD: ρ = 0.83, S: ρ = 0.82; all p < 0.001). Correlations of plasma SARS-CoV-2 nAb assay area under the curve (AUC) with salivary MIA IgG (N: ρ = 0.68, RBD: ρ = 0.78, S: ρ = 0.79; all p < 0.001) and with plasma ELISA IgG (N: ρ = 0.76, RBD: ρ = 0.79, S: ρ = 0.76; p < 0.001) were similar. CONCLUSIONS A salivary SARS-CoV-2 IgG MIA produced consistently high Se (> 98.8%) and Sp (> 99.1%) across two bead coupling scales and correlations with nAb responses that were similar to blood-based SARS-CoV-2 IgG ELISA data. This non-invasive salivary SARS-CoV-2 IgG MIA could increase engagement of vulnerable populations and improve broad understanding of humoral immunity (kinetics and gaps) within the evolving context of booster vaccination, viral variants and waning immunity.
Collapse
Affiliation(s)
- Nora Pisanic
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Annukka A R Antar
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kate L Kruczynski
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Magdielis Gregory Rivera
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Santosh Dhakal
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kristoffer Spicer
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Pranay R Randad
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Pekosz
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara Detrick
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - William Clarke
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David L Thomas
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher D Heaney
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Fiorelli D, Francavilla B, Magrini A, Di Girolamo S, Bernardini S, Nuccetelli M. Evaluation of the accuracy in the mucosal detection of anti-SARS-CoV-2 antibodies in nasal secretions and saliva. Int Immunopharmacol 2023; 115:109615. [PMID: 36563531 PMCID: PMC9763213 DOI: 10.1016/j.intimp.2022.109615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
COVID-19 vaccination with mRNA vaccines induces immune responses capable of neutralizing SARS-CoV-2. Commercially available serological anti-SARS-CoV-2 quantitative and neutralizing assays are essential for the determination of immune responses to vaccines. Nevertheless, at present there is a lack of validated tests to assess the mucosal response to COVID-19 vaccination and standardized analytic and pre-analytic methods have not yet been defined. The aim of our study was to evaluate the accuracy of two diagnostic immunoassays for COVID-19 (ELISA for IgA-S1 and chemiluminescent assay for IgG-RBD) on serum, saliva, and nasal secretions, by the enrollment of three study populations (healthy controls, vaccinated subjects, and subjects recovered from COVID-19 infection). In order to obtain an appropriate cut-off value for the biological matrices studied, ROC curve analyses were performed. Data demonstrate that the analytical and pre-analytical method we have developed can provide accurate and reliable results for the detection of anti-SARS-CoV-2 mucosal specific antibodies (IgA-S1 and IgG-RBD) on saliva and, as a novelty, on nasal secretions, either after COVID-19 infection or in vaccinated subjects.
Collapse
Affiliation(s)
- Denise Fiorelli
- Department of Experimental Medicine, University of Tor Vergata, Rome, Italy
| | - Beatrice Francavilla
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome, Italy.
| | - Andrea Magrini
- Department of Occupational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Stefano Di Girolamo
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Tor Vergata, Rome, Italy
| | - Marzia Nuccetelli
- Department of Experimental Medicine, University of Tor Vergata, Rome, Italy
| |
Collapse
|
13
|
Alexopoulos H, Trougakos IP, Dimopoulos MA, Terpos E. Clinical usefulness of testing for severe acute respiratory syndrome coronavirus 2 antibodies. Eur J Intern Med 2023; 107:7-16. [PMID: 36379820 PMCID: PMC9647045 DOI: 10.1016/j.ejim.2022.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
In the COVID-19 pandemic era, antibody testing against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has proven an invaluable tool and herein we highlight some of the most useful clinical and/or epidemiological applications of humoral immune responses recording. Anti-spike circulating IgGs and SARS-CoV-2 neutralizing antibodies can serve as predictors of disease progression or disease prevention, whereas anti-nucleocapsid antibodies can help distinguishing infection from vaccination. Also, in the era of immunotherapies we address the validity of anti-SARS-CoV-2 antibody monitoring post-infection and/or vaccination following therapies with the popular anti-CD20 monoclonals, as well as in the context of various cancers or autoimmune conditions such as rheumatoid arthritis and multiple sclerosis. Additional crucial applications include population immunosurveillance, either at the general population or at specific communities such as health workers. Finally, we discuss how testing of antibodies in cerebrospinal fluid can inform us on the neurological complications that often accompany COVID-19.
Collapse
Affiliation(s)
- Harry Alexopoulos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, 11528, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, 11528, Greece.
| |
Collapse
|
14
|
Pisanic N, Antar AAR, Kruczynski K, Rivera MG, Dhakal S, Spicer K, Randad PR, Pekosz A, Klein SL, Betenbaugh MJ, Detrick B, Clarke W, Thomas DL, Manabe YC, Heaney CD. Methodological approaches to optimize multiplex oral fluid SARS-CoV-2 IgG assay performance and correlation with serologic and neutralizing antibody responses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.12.22.22283858. [PMID: 36597525 PMCID: PMC9810233 DOI: 10.1101/2022.12.22.22283858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Oral fluid (hereafter, saliva) is a non-invasive and attractive alternative to blood for SARS-CoV-2 IgG testing; however, the heterogeneity of saliva as a matrix poses challenges for immunoassay performance. Objectives To optimize performance of a magnetic microparticle-based multiplex immunoassay (MIA) for SARS-CoV-2 IgG measurement in saliva, with consideration of: i) threshold setting and validation across different MIA bead batches; ii) sample qualification based on salivary total IgG concentration; iii) calibration to U.S. SARS-CoV-2 serological standard binding antibody units (BAU); and iv) correlations with blood-based SARS-CoV-2 serological and neutralizing antibody (nAb) assays. Methods The salivary SARS-CoV-2 IgG MIA included 2 nucleocapsid (N), 3 receptor-binding domain (RBD), and 2 spike protein (S) antigens. Gingival crevicular fluid (GCF) swab saliva samples were collected before December, 2019 (n=555) and after molecular test-confirmed SARS-CoV-2 infection from 113 individuals (providing up to 5 repeated-measures; n=398) and used to optimize and validate MIA performance (total n=953). Combinations of IgG responses to N, RBD and S and total salivary IgG concentration (μg/mL) as a qualifier of nonreactive samples were optimized and validated, calibrated to the U.S. SARS-CoV-2 serological standard, and correlated with blood-based SARS-CoV-2 IgG ELISA and nAb assays. Results The sum of signal to cutoff (S/Co) to all seven MIA SARS-CoV-2 antigens and disqualification of nonreactive saliva samples with ≤15 μg/mL total IgG led to correct classification of 62/62 positives (sensitivity [Se]=100.0%; 95% confidence interval [CI]=94.8%, 100.0%) and 108/109 negatives (specificity [Sp]=99.1%; 95% CI=97.3%, 100.0%) at 8-million beads coupling scale and 80/81 positives (Se=98.8%; 95% CI=93.3%, 100.0%] and 127/127 negatives (Sp=100%; 95% CI=97.1%, 100.0%) at 20-million beads coupling scale. Salivary SARS-CoV-2 IgG crossed the MIA cutoff of 0.1 BAU/mL on average 9 days post-COVID-19 symptom onset and peaked around day 30. Among n=30 matched saliva and plasma samples, salivary SARS-CoV-2 MIA IgG levels correlated with corresponding-antigen plasma ELISA IgG (N: ρ=0.67, RBD: ρ=0.76, S: ρ=0.82; all p <0.0001). Correlations of plasma SARS-CoV-2 nAb assay area under the curve (AUC) with salivary MIA IgG (N: ρ=0.68, RBD: ρ=0.78, S: ρ=0.79; all p <0.0001) and with plasma ELISA IgG (N: ρ=0.76, RBD: ρ=0.79, S: ρ=0.76; p <0.0001) were similar. Conclusions A salivary SARS-CoV-2 IgG MIA produced consistently high Se (>98.8%) and Sp (>99.1%) across two bead coupling scales and correlations with nAb responses that were similar to blood-based SARS-CoV-2 IgG ELISA data. This non-invasive salivary SARS-CoV-2 IgG MIA could increase engagement of vulnerable populations and improve broad understanding of humoral immunity (kinetics and gaps) within the evolving context of booster vaccination, viral variants and waning immunity.
Collapse
Affiliation(s)
- Nora Pisanic
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Annukka A. R. Antar
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kate Kruczynski
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Magdielis Gregory Rivera
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Santosh Dhakal
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kristoffer Spicer
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pranay R. Randad
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sabra L. Klein
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Barbara Detrick
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - William Clarke
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David L. Thomas
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yukari C. Manabe
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christopher D. Heaney
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Guerra ENS, de Castro VT, Amorim dos Santos J, Acevedo AC, Chardin H. Saliva is suitable for SARS-CoV-2 antibodies detection after vaccination: A rapid systematic review. Front Immunol 2022; 13:1006040. [PMID: 36203571 PMCID: PMC9530471 DOI: 10.3389/fimmu.2022.1006040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Since the introduction of efficient vaccines anti-SARS-CoV-2, antibody quantification becomes increasingly useful for immunological monitoring and COVID-19 control. In several situations, saliva samples may be an alternative to the serological test. Thus, this rapid systematic review aimed to evaluate if saliva is suitable for SARS-CoV-2 detection after vaccination. For this purpose, search strategies were applied at EMBASE, PubMed, and Web of Science. Studies were selected by two reviewers in a two-phase process. After selection, 15 studies were eligible and included in data synthesis. In total, salivary samples of approximately 1,080 vaccinated and/or convalescent individuals were analyzed. The applied vaccines were mostly mRNA-based (BioNTech 162b2 mRNA/Pfizer and Spikevax mRNA-1273/Moderna), but recombinant viral-vectored vaccines (Ad26. COV2. S Janssen - Johnson & Johnson and Vaxzevria/Oxford AstraZeneca) were also included. Different techniques were applied for saliva evaluation, such as ELISA assay, Multiplex immunoassay, flow cytometry, neutralizing and electrochemical assays. Although antibody titers are lower in saliva than in serum, the results showed that saliva is suitable for antibody detection. The mean of reported correlations for titers in saliva and serum/plasma were moderate for IgG (0.55, 95% CI 0.38-9.73), and weak for IgA (0.28, 95% CI 0.12-0.44). Additionally, six out of nine studies reported numerical titers for immunoglobulins detection, from which the level in saliva reached their reference value in four (66%). IgG but not IgA are frequently presented in saliva from vaccinated anti-COVID-19. Four studies reported lower IgA salivary titers in vaccinated compared to previously infected individuals, otherwise, two reported higher titers of IgA in vaccinated. Concerning IgG, two studies reported high antibody titers in the saliva of vaccinated individuals compared to those previously infected and one presented similar results for vaccinated and infected. The detection of antibodies anti-SARS-CoV-2 in the saliva is available, which suggests this type of sample is a suitable alternative for monitoring the population. Thus, the results also pointed out the possible lack of mucosal immunity induction after anti-SARS-CoV-2 vaccination. It highlights the importance of new vaccination strategies also focused on mucosal alternatives directly on primary routes of SARS-CoV-2 entrance. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022336968, identifier CRD42022336968.
Collapse
Affiliation(s)
- Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Vitória Tavares de Castro
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Juliana Amorim dos Santos
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Hélène Chardin
- Department of Analytical, Bioanalytical Sciences and Miniaturization, École Supérieure de Physique et de Chimie Industrielles (ESPCI) de la Ville de Paris, Paris, France
- Faculté de Chirurgie Dentaire, Université Paris Descartes Sorbonne 12 Rue de l’École de Médecine, Paris, France
| |
Collapse
|
16
|
Keuning MW, Grobben M, Bijlsma MW, Anker B, Berman-de Jong EP, Cohen S, Felderhof M, de Groen AE, de Groof F, Rijpert M, van Eijk HWM, Tejjani K, van Rijswijk J, Steenhuis M, Rispens T, Plötz FB, van Gils MJ, Pajkrt D. Differences in systemic and mucosal SARS-CoV-2 antibody prevalence in a prospective cohort of Dutch children. Front Immunol 2022; 13:976382. [PMID: 36159841 PMCID: PMC9500453 DOI: 10.3389/fimmu.2022.976382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background As SARS-CoV-2 will likely continue to circulate, low-impact methods become more relevant to monitor antibody-mediated immunity. Saliva sampling could provide a non-invasive method with reduced impact on children. Studies reporting on the differences between systemic and mucosal humoral immunity to SARS-CoV-2 are inconsistent in adults and scarce in children. These differences may be further unraveled by exploring associations to demographic and clinical variables. Methods To evaluate the use of saliva antibody assays, we performed a cross-sectional cohort study by collecting serum and saliva of 223 children attending medical services in the Netherlands (irrespective of SARS-CoV-2 exposure, symptoms or vaccination) from May to October 2021. With a Luminex and a Wantai assay, we measured prevalence of SARS-CoV-2 spike (S), receptor binding domain (RBD) and nucleocapsid-specific IgG and IgA in serum and saliva and explored associations with demographic variables. Findings The S-specific IgG prevalence was higher in serum 39% (95% CI 32 - 45%) than in saliva 30% (95% CI 24 - 36%) (P ≤ 0.003). Twenty-seven percent (55/205) of children were S-specific IgG positive in serum and saliva, 12% (25/205) were only positive in serum and 3% (6/205) only in saliva. Vaccinated children showed a higher concordance between serum and saliva than infected children. Odds for saliva S-specific IgG positivity were higher in girls compared to boys (aOR 2.63, P = 0.012). Moreover, immunocompromised children showed lower odds for S- and RBD-specific IgG in both serum and saliva compared to healthy children (aOR 0.23 - 0.25, P ≤ 0.050). Conclusions We showed that saliva-based antibody assays can be useful for identifying SARS-CoV-2 humoral immunity in a non-invasive manner, and that IgG prevalence may be affected by sex and immunocompromisation. Differences between infection and vaccination, between sexes and between immunocompromised and healthy children should be further investigated and considered when choosing systemic or mucosal antibody measurement.
Collapse
Affiliation(s)
- Maya W. Keuning
- Department of Pediatric Infectious Diseases, Rheumatology & Immunology, Amsterdam University Medical Centers (UMC), location University of Amsterdam, Amsterdam, Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam University Medical Centers (UMC) location University of Amsterdam, Amsterdam, Netherlands
- Infectious diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Merijn W. Bijlsma
- Department of Pediatrics, Emma Children’s Hospital Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Beau Anker
- Department of Pediatrics, Emma Children’s Hospital Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Eveline P. Berman-de Jong
- Department of Pediatrics, Emma Children’s Hospital Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Sophie Cohen
- Department of Pediatrics, Emma Children’s Hospital Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | | | - Anne-Elise de Groen
- Department of Pediatric Infectious Diseases, Rheumatology & Immunology, Amsterdam University Medical Centers (UMC), location University of Amsterdam, Amsterdam, Netherlands
| | - Femke de Groof
- Department of Pediatrics, Noordwest Ziekenhuisgroep, Alkmaar, Netherlands
| | - Maarten Rijpert
- Department of Pediatrics, Zaans Medical Center, Zaandam, Netherlands
| | - Hetty W. M. van Eijk
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam University Medical Centers (UMC) location University of Amsterdam, Amsterdam, Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam University Medical Centers (UMC) location University of Amsterdam, Amsterdam, Netherlands
- Infectious diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Jacqueline van Rijswijk
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam University Medical Centers (UMC) location University of Amsterdam, Amsterdam, Netherlands
- Infectious diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Frans B. Plötz
- Department of Pediatrics, Emma Children’s Hospital Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatrics, Tergooi Medical Center, Blaricum, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam University Medical Centers (UMC) location University of Amsterdam, Amsterdam, Netherlands
- Infectious diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Rheumatology & Immunology, Amsterdam University Medical Centers (UMC), location University of Amsterdam, Amsterdam, Netherlands
- Infectious diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
17
|
Longet S, Hargreaves A, Healy S, Brown R, Hornsby HR, Meardon N, Tipton T, Barnes E, Dunachie S, Duncan CJA, Klenerman P, Richter A, Turtle L, de Silva TI, Carroll MW. mRNA vaccination drives differential mucosal neutralizing antibody profiles in naïve and SARS-CoV-2 previously-infected individuals. Front Immunol 2022; 13:953949. [PMID: 36159846 PMCID: PMC9499336 DOI: 10.3389/fimmu.2022.953949] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Two doses of BNT162b2 mRNA vaccine induces a strong systemic SARS-CoV-2 specific humoral response. However, SARS-CoV-2 airborne transmission makes mucosal immune response a crucial first line of defense. Therefore, we characterized SARS-CoV-2-specific IgG responses induced by BNT162b2 vaccine, as well as IgG responses to other pathogenic and seasonal human coronaviruses in oral fluid and plasma from 200 UK healthcare workers who were naïve (N=62) or previously infected with SARS-CoV-2 (N=138) using a pan-coronavirus multiplex binding immunoassay (Meso Scale Discovery®). Additionally, we investigated the impact of historical SARS-CoV-2 infection on vaccine-induced IgG, IgA and neutralizing responses in selected oral fluid samples before vaccination, after a first and second dose of BNT162b2, as well as following a third dose of mRNA vaccine or breakthrough infections using the same immunoassay and an ACE2 inhibition assay. Prior to vaccination, we found that spike-specific IgG levels in oral fluid positively correlated with IgG levels in plasma from previously-infected individuals (Spearman r=0.6858, p<0.0001) demonstrating that oral fluid could be used as a proxy for the presence of plasma SARS-CoV-2 IgG. However, the sensitivity was lower in oral fluid (0.85, 95% CI 0.77-0.91) than in plasma (0.94, 95% CI 0.88-0.97). Similar kinetics of mucosal and systemic spike-specific IgG levels were observed following vaccination in naïve and previously-infected individuals, respectively. In addition, a significant enhancement of OC43 and HKU1 spike-specific IgG levels was observed in previously-infected individuals following one vaccine dose in oral fluid (OC43 S: p<0.0001; HKU1 S: p=0.0423) suggesting cross-reactive IgG responses to seasonal beta coronaviruses. Mucosal spike-specific IgA responses were induced by mRNA vaccination particularly in previously-infected individuals (71%) but less frequently in naïve participants (23%). Neutralizing responses to SARS-CoV-2 ancestral and variants of concerns were detected following vaccination in naïve and previously-infected participants, with likely contribution from both IgG and IgA in previously-infected individuals (correlations between neutralizing responses and IgG: Spearman r=0.5642, p<0.0001; IgA: Spearman r=0.4545, p=0.0001). We also observed that breakthrough infections or a third vaccine dose enhanced mucosal antibody levels and neutralizing responses. These data contribute to show that a previous SARS-CoV-2 infection tailors the mucosal antibody profile induced by vaccination.
Collapse
Affiliation(s)
- Stephanie Longet
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Alexander Hargreaves
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Saoirse Healy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Rebecca Brown
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Hailey R. Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Naomi Meardon
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Tom Tipton
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Eleanor Barnes
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Susanna Dunachie
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Department of Clinical Medicine, Oxford Centre For Global Health Research, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Christopher J. A. Duncan
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Alex Richter
- Institute of Cancer and Genomic Science, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Thushan I. de Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Miles W. Carroll
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Grikscheit K, Rabenau HF, Ghodratian Z, Widera M, Wilhelm A, Toptan Grabmair T, Hoehl S, Layer E, Helfritz F, Ciesek S. Characterization of the Antibody and Interferon-Gamma Release Response after a Second COVID-19 Booster Vaccination. Vaccines (Basel) 2022; 10:vaccines10071163. [PMID: 35891326 PMCID: PMC9323888 DOI: 10.3390/vaccines10071163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
The emergence of SARS-CoV-2 Omicron subvariants prompted countries to call for accelerated booster vaccinations to limit disease and transmission. Here, we characterized correlates of protection over time after the second booster or after Omicron BA.1 infection comparing variants of concern (VOCs). Sera from subjects before and two and seven weeks after the second booster or after Omicron infection were examined for the level of Spike receptor-binding-domain (RBD)-specific antibodies. Furthermore, neutralizing antibodies (nABs) were characterized in in vitro neutralization assays comparing the variants of concern Alpha, Beta, Delta, and Omicron BA.1 and BA.2 against the ancestral strain B.1. Here, the second booster resulted in an increase in anti-RBD-IgG-antibodies, remaining nearly constant over time, accompanied by an increase in nABs against B.1 and the VOCs Alpha, Beta, Delta, and Omicron BA.1 and BA.2. However, compared to B.1, the neutralizing capacity against the Omicron subvariants remained low and was limited after the second booster vaccination. This indicates that antibody-mediated protection against infection with this VOC is unlikely, as evidenced by the fact that three individuals of our study cohort became infected with Omicron BA.1 after the second booster. T cell activation was measured by interferon-gamma release assays in a subgroup of subjects and was increased in all subjects tested after the second booster vaccination, correlating with the amount of Spike-specific antibodies. In subjects with Omicron BA.1 breakthrough infection, a significant increase in nABs to all VOCs studied was observed independently of booster vaccinations. Taken together, our data indicate that a second booster or Omicron BA.1 infection mediate a substantial increase in anti-Spike IgG antibodies; however, infection with Omicron BA.1 induced a stronger increase in neutralizing antibodies against the different VOCs
Collapse
Affiliation(s)
- Katharina Grikscheit
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
| | - Holger F. Rabenau
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
| | - Zahra Ghodratian
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
| | - Alexander Wilhelm
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
| | - Tuna Toptan Grabmair
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
| | - Sebastian Hoehl
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
| | - Emily Layer
- Health Protection Authority of the City of Frankfurt am Main, 60313 Frankfurt am Main, Germany;
| | - Fabian Helfritz
- Bürgerhospital Frankfurt, Nibelungenallee 37-41, 60318 Frankfurt am Main, Germany;
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt, Germany; (K.G.); (H.F.R.); (Z.G.); (M.W.); (A.W.); (T.T.G.); (S.H.)
- German Centre for Infection Research (DZIF), Partner Site Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch Translational Medicine and Pharmcology, 60596 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
19
|
Francavilla B, Nuccetelli M, Guerrieri M, Fiorelli D, Di Girolamo S. Importance of nasal secretions in the evaluation of mucosal immunity elicited by mRNA BNT162b2 COVID-19 Vaccine. EBioMedicine 2022; 79:104006. [PMID: 35430452 PMCID: PMC9009284 DOI: 10.1016/j.ebiom.2022.104006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Beatrice Francavilla
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome, Italy.
| | - Marzia Nuccetelli
- Department of Experimental Medicine, University of Tor Vergata, Rome, Italy
| | - Mariapia Guerrieri
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome, Italy
| | - Denise Fiorelli
- Department of Experimental Medicine, University of Tor Vergata, Rome, Italy
| | - Stefano Di Girolamo
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
20
|
Garziano M, Utyro O, Poliseno M, Santantonio TA, Saulle I, Strizzi S, Lo Caputo S, Clerici M, Introini A, Biasin M. Natural SARS-CoV-2 Infection Affects Neutralizing Activity in Saliva of Vaccinees. Front Immunol 2022; 13:820250. [PMID: 35359971 PMCID: PMC8962193 DOI: 10.3389/fimmu.2022.820250] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/23/2022] Open
Abstract
Background SARS-CoV-2 transmission mainly occurs through exposure of the upper airway mucosa to infected secretions such as saliva, which are excreted by an infected person. Thus, oral mucosal immunity plays a central role in the prevention of and early defense against SARS-CoV-2 infection. Although virus-specific antibody response has been extensively investigated in blood samples of SARS-CoV-2-infected patients and vaccinees, local humoral immunity in the oral cavity and its relationship to systemic antibody levels needs to be further addressed. Material and Methods We fine-tuned a virus neutralization assay (vNTA) to measure the neutralizing activity (NA) of plasma and saliva samples from 20 SARS-CoV-2-infected (SI), 40 SARS-CoV-2-vaccinated (SV), and 28 SARS-CoV-2-vaccinated subjects with a history of infection (SIV) using the "wild type" SARS-CoV-2 lineage B.1 (EU) and the Delta (B.1.617.2) strains. To validate the vNTA results, the presence of neutralizing antibodies (NAbs) to the spike receptor binding domain (RBD) was evaluated with an ELISA assay. Results NA to SARS-CoV-2 lineage B.1 (EU) was present in plasma samples from all the tested subjects, with higher titers in SIV compared to both SI and SV. Conversely, NA was detected in saliva samples from 10.3% SV, 45% SI, and 92.6% SIV, with significantly lower titers in SV compared to both SI and SIV. The detection of NAbs in saliva reflected its reduced NA in SV. Discussion The difference in NA of plasma vs. saliva was confirmed in a vNTA where the SARS-CoV-2 B.1 and Delta strains were tested head-to-head, which also revealed a reduced NA of both specimens compared to the B.1 variant. Conclusions The administration of SARS-CoV-2 vaccines was associated with limited virus NA in the oral cavity, as measured in saliva and in comparison to plasma. This difference was more evident in vaccinees without a history of SARS-CoV-2 infection, possibly highlighting the importance of local exposure at the site of virus acquisition to effectively prevent the infection and block its spread. Nevertheless, the presence of immune escape mutations as possibly represented by the SARS-CoV-2 Delta variant negatively affects both local and systemic efficacy of NA associated with vaccination.
Collapse
Affiliation(s)
- Micaela Garziano
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
- Laboratory of Immunology, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Olga Utyro
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Mariacristina Poliseno
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Teresa Antonia Santantonio
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Irma Saulle
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
- Laboratory of Immunology, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Sergio Strizzi
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Sergio Lo Caputo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Mario Clerici
- Laboratory of Immunology, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Milan, Italy
| | - Andrea Introini
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
- Center for Molecular Medicine, Department of Medicine Solna, Division of Infectious Diseases, Karolinska University Hospital, Karolinska Institutet, Solna, Sweden
| | - Mara Biasin
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Dobaño C, Alonso S, Vidal M, Jiménez A, Rubio R, Santano R, Barrios D, Pons Tomas G, Melé Casas M, Hernández García M, Girona-Alarcón M, Puyol L, Baro B, Millat-Martínez P, Ajanovic S, Balanza N, Arias S, Rodrigo Melero N, Carolis C, García-Miquel A, Bonet-Carné E, Claverol J, Cubells M, Fortuny C, Fumadó V, Codina A, Bassat Q, Muñoz-Almagro C, Fernández de Sevilla M, Gratacós E, Izquierdo L, García-García JJ, Aguilar R, Jordan I, Moncunill G. Multiplex Antibody Analysis of IgM, IgA and IgG to SARS-CoV-2 in Saliva and Serum From Infected Children and Their Close Contacts. Front Immunol 2022; 13:751705. [PMID: 35154094 PMCID: PMC8828491 DOI: 10.3389/fimmu.2022.751705] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
COVID-19 affects children to a lesser extent than adults but they can still get infected and transmit SARS-CoV-2 to their contacts. Field deployable non-invasive sensitive diagnostic techniques are needed to evaluate the infectivity dynamics of SARS-CoV-2 in pediatric populations and guide public health interventions, particularly if this population is not fully vaccinated. We evaluated the utility of high-throughput Luminex assays to quantify saliva IgM, IgA and IgG antibodies against five SARS-CoV-2 spike (S) and nucleocapsid (N) antigens in a contacts and infectivity longitudinal study in 122 individuals (52 children and 70 adults). We compared saliva versus serum/plasma samples in infected children and adults diagnosed by weekly RT-PCR over 35 days (n=62), and those who consistently tested negative over the same follow up period (n=60), in the Summer of 2020 in Barcelona, Spain. Saliva antibody levels in SARS-CoV-2 RT-PCR positive individuals were significantly higher than in negative individuals and correlated with those measured in sera/plasmas. Asymptomatic infected individuals had higher levels of anti-S IgG than symptomatic individuals, suggesting a protective anti-disease role for antibodies. Higher anti-S IgG and IgM levels in serum/plasma and saliva, respectively, in infected children compared to infected adults could also be related to stronger clinical immunity in them. Among infected children, males had higher levels of saliva IgG to N and RBD than females. Despite overall correlation, individual clustering analysis suggested that responses that may not be detected in blood could be patent in saliva, and vice versa. In conclusion, measurement of SARS-CoV-2-specific saliva antibodies should be considered as a complementary non-invasive assay to serum/plasma to determine COVID-19 prevalence and transmission in pediatric populations before and after vaccination campaigns.
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Madrid, Spain
| | - Selena Alonso
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rocío Rubio
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Rebeca Santano
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Diana Barrios
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Gemma Pons Tomas
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
| | - María Melé Casas
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
| | - María Hernández García
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
| | - Mònica Girona-Alarcón
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Paediatric Intensive Care Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Laura Puyol
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Barbara Baro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Sara Ajanovic
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Núria Balanza
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sara Arias
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Natalia Rodrigo Melero
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlo Carolis
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aleix García-Miquel
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Elisenda Bonet-Carné
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain
| | - Joana Claverol
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Fundació Sant Joan de Déu, Barcelona, Spain
| | - Marta Cubells
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Fundació Sant Joan de Déu, Barcelona, Spain
| | - Claudia Fortuny
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Infectious Diseases Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Victoria Fumadó
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Infectious Diseases Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Codina
- Biobank Hospital Sant Joan de Déu, Barcelona, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carmen Muñoz-Almagro
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain.,Molecular Microbiology Department, Hospital Sant Joan de Déu, Esplugues, Spain
| | - Mariona Fernández de Sevilla
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues, Spain
| | - Eduard Gratacós
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Madrid, Spain
| | - Juan José García-García
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Iolanda Jordan
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Paediatric Intensive Care Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|