1
|
Escoda T, Jordana S, Chiche L, Penaranda G, Rebaudet S, Halfon P. Analysis of humoral and cellular responses after vaccination against SARS-CoV-2 in patients with immune-mediated diseases. Diagn Microbiol Infect Dis 2025; 112:116825. [PMID: 40215608 DOI: 10.1016/j.diagmicrobio.2025.116825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Patients with autoimmune disease (AID) or immunodepression (ID), particularly those treated with anti-CD20, have an increased risk of COVID-19 infection. OBJECTIVE To characterise the humoral and cellular immune responses against specific antigens of SARS-CoV-2 in immunocompromised patients, as well as their correlation and determinants. METHODS This retrospective study was conducted in outpatients with AID and/or ID for which an assessment of their humoral and cellular response was carried out and analysed in relation to demographic data, comorbidities, treatments, type of vaccine and number of doses. RESULTS Fifty patients were included. The overall serological response rate was 76%. The cellular response was positive in 54% of patients. The main factors influencing the humoral and cellular responses were age, comorbidities and treatment with anti-CD20. CONCLUSION In ID patients, vaccination against COVID-19 can generate an adequate T-cell response, the character of which is an emerging issue in the context of COVID-19 infection. The main limitations of this study and those in the literature are the heterogeneity of the patients included and the absence of a control population. These results highlight the importance of evaluating the antiviral T-cell response and the impact of immunosuppressive treatments.
Collapse
Affiliation(s)
- Thomas Escoda
- Service de Médecine Interne et Maladie Infectieuses, Hôpital Européen, Marseille, France.
| | | | - Laurent Chiche
- Service de Médecine Interne et Maladie Infectieuses, Hôpital Européen, Marseille, France
| | | | - Stanislas Rebaudet
- Service de Médecine Interne et Maladie Infectieuses, Hôpital Européen, Marseille, France; Aix Marseille Université, IRD, INSERM, SESSTIM, ISSPAM, Marseille, France
| | - Philippe Halfon
- Service de Médecine Interne et Maladie Infectieuses, Hôpital Européen, Marseille, France; Laboratoire Alphabio, Biogroup, Marseille, France
| |
Collapse
|
2
|
Drulovic J, Tamas O, Nikolovski N, Momcilovic N, Radisic V, Andabaka M, Jevtic B, Stegnjaic G, Lazarevic M, Veselinovic N, Budimkic M, Mesaros S, Miljkovic D, Pekmezovic T. Vaccine-Induced Humoral and Cellular Response to SARS-CoV-2 in Multiple Sclerosis Patients on Ocrelizumab. Vaccines (Basel) 2025; 13:488. [PMID: 40432100 PMCID: PMC12115558 DOI: 10.3390/vaccines13050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: The aim of our study was to investigate B cell and T cell responses in people with multiple sclerosis (PwMS) treated with ocrelizumab, a humanized anti-CD20 antibody, who were vaccinated with second and/or booster doses of various vaccine brands against COVID-19. Additionally, we detected the outcomes related to COVID-19 in PwMS after vaccination, based on follow-up for at least 12 months. Methods: We enrolled 91 PwMS on ocrelizumab and 42 healthy controls (HCs) in a prospective, single-center study, conducted at the Clinic of Neurology, UCCS, between January 2022 and October 2024. The serological responses were measured using the spike receptor-binding domain (RBD) Architect SARS-CoV-2 IgG Quant kit (Abbot), and cellular responses were measured by quantifying IFN-γ secretion in blood incubated with SARS-CoV-2 antigens. Results: A total of 58.2% (53/91) of PwMS on ocrelizumab and 100% of the HCs (42/42) were seropositive after a second or booster vaccination (p < 0.001), irrespective of the vaccine brand received. Anti-spike antibody levels were significantly lower in PwMS on ocrelizumab compared to the HCs (p < 0.001), again irrespective of the vaccine type. Interferon-γ responses were detected in 95.6% of the PwMS receiving ocrelizumab therapy and 97.6% of HCs after vaccination (p = 0.570). In our cohort, PCR-confirmed SARS-CoV-2 infections after vaccination occurred in a similar proportion of the PwMS (45/91, 49.5%) and HCs (15/32, 46.9%) (p = 0.139). Most of the PwMS (36/45, 79.2%) and HCs (13/15, 87.8%) had COVID-19 of mild severity. Conclusions: PwMS treated with ocrelizumab developed diminished humoral and robust cellular responses following two and three SARS-CoV-2 vaccinations. The obtained immunity after SARS-CoV-2 vaccination may translate into lower incidence and severity of COVID-19.
Collapse
Affiliation(s)
- Jelena Drulovic
- Clinic of Neurology, University Clinical Center of Serbia, 11158 Belgrade, Serbia; (O.T.); (N.M.); (V.R.); (M.A.); (N.V.); (M.B.); (S.M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Olivera Tamas
- Clinic of Neurology, University Clinical Center of Serbia, 11158 Belgrade, Serbia; (O.T.); (N.M.); (V.R.); (M.A.); (N.V.); (M.B.); (S.M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Neda Nikolovski
- Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11000 Belgrade, Serbia; (N.N.); (B.J.); (G.S.); (M.L.); (D.M.)
| | - Nikola Momcilovic
- Clinic of Neurology, University Clinical Center of Serbia, 11158 Belgrade, Serbia; (O.T.); (N.M.); (V.R.); (M.A.); (N.V.); (M.B.); (S.M.)
| | - Vanja Radisic
- Clinic of Neurology, University Clinical Center of Serbia, 11158 Belgrade, Serbia; (O.T.); (N.M.); (V.R.); (M.A.); (N.V.); (M.B.); (S.M.)
| | - Marko Andabaka
- Clinic of Neurology, University Clinical Center of Serbia, 11158 Belgrade, Serbia; (O.T.); (N.M.); (V.R.); (M.A.); (N.V.); (M.B.); (S.M.)
| | - Bojan Jevtic
- Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11000 Belgrade, Serbia; (N.N.); (B.J.); (G.S.); (M.L.); (D.M.)
| | - Goran Stegnjaic
- Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11000 Belgrade, Serbia; (N.N.); (B.J.); (G.S.); (M.L.); (D.M.)
| | - Milica Lazarevic
- Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11000 Belgrade, Serbia; (N.N.); (B.J.); (G.S.); (M.L.); (D.M.)
| | - Nikola Veselinovic
- Clinic of Neurology, University Clinical Center of Serbia, 11158 Belgrade, Serbia; (O.T.); (N.M.); (V.R.); (M.A.); (N.V.); (M.B.); (S.M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Maja Budimkic
- Clinic of Neurology, University Clinical Center of Serbia, 11158 Belgrade, Serbia; (O.T.); (N.M.); (V.R.); (M.A.); (N.V.); (M.B.); (S.M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sarlota Mesaros
- Clinic of Neurology, University Clinical Center of Serbia, 11158 Belgrade, Serbia; (O.T.); (N.M.); (V.R.); (M.A.); (N.V.); (M.B.); (S.M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Djordje Miljkovic
- Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11000 Belgrade, Serbia; (N.N.); (B.J.); (G.S.); (M.L.); (D.M.)
| | - Tatjana Pekmezovic
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
3
|
Bazylewicz M, Zajkowska M, Gudowska-Sawczuk M, Kułakowski R, Mroczko J, Mirowska-Guzel D, Kulikowska-Łoś J, Czarnowska A, Mroczko B, Kochanowicz J, Kułakowska A. Humoral and Cellular Immunity After Vaccination Against SARS-CoV-2 in Relapsing-Remitting Multiple Sclerosis Patients Treated with Interferon Beta and Dimethyl Fumarate. Biomedicines 2025; 13:153. [PMID: 39857737 PMCID: PMC11763107 DOI: 10.3390/biomedicines13010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The impact of vaccines against SARS-CoV-2 on the immunity of patients with multiple sclerosis (PwMS) is still not fully known. Further clarification could help address medical concerns related to the use of immunosuppressive and immunomodulatory medications, known as disease-modifying therapies (DMTs), in PwMS, as well as ensure adequate protection against severe outcomes of COVID-19. Therefore, the aim of our study was to evaluate the humoral and cellular immune response in PwMS treated with DMTs. METHODS The concentrations of IgG Spike (S) anti-SARS-CoV-2 antibodies and IgG Nucleocapsid (N) anti-SARS-CoV-2 antibodies, as well as interferon-gamma (IFN-γ) titers were analyzed in PwMS groups treated with dimethyl fumarate (DMF), interferon beta (IFN), and healthy control group. RESULTS Almost 100% of PwMS experienced seroconversion, which resulted from either vaccination and/or prior infection. Additionally, there were no significant differences between the study and control groups in terms of IgG (S) and (N) anti-SARS-CoV-2 antibody levels. However, interferon-gamma titers were lower in both PwMS groups, which may indicate adequate humoral and decreased cellular response to the examined PwMS. Additionally, after the division of the whole study group into two subgroups according to the time since the last vaccination, IgG (S) anti-SARS-CoV-2 and IFN-γ concentrations were significantly lower in the case of patients who were immunized more than 200 days before sample collection. No differences were observed in the case of subgroups in which sample collection was less than 200 days after vaccination when compared to the control group. CONCLUSIONS This could indicate a time-related decrease in immunity in PwMS treated with DMTs.
Collapse
Affiliation(s)
- Marcin Bazylewicz
- Department of Neurology, Medical University of Bialystok, 15-276 Bialystok, Poland; (J.K.-Ł.); (A.C.); (J.K.); (A.K.)
| | - Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.Z.); (J.M.); (B.M.)
| | - Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Rafał Kułakowski
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (R.K.); (D.M.-G.)
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.Z.); (J.M.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Dagmara Mirowska-Guzel
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (R.K.); (D.M.-G.)
| | - Joanna Kulikowska-Łoś
- Department of Neurology, Medical University of Bialystok, 15-276 Bialystok, Poland; (J.K.-Ł.); (A.C.); (J.K.); (A.K.)
| | - Agata Czarnowska
- Department of Neurology, Medical University of Bialystok, 15-276 Bialystok, Poland; (J.K.-Ł.); (A.C.); (J.K.); (A.K.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.Z.); (J.M.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, 15-276 Bialystok, Poland; (J.K.-Ł.); (A.C.); (J.K.); (A.K.)
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, 15-276 Bialystok, Poland; (J.K.-Ł.); (A.C.); (J.K.); (A.K.)
| |
Collapse
|
4
|
Silva BA, Miglietta E, Casabona JC, Wenker S, Eizaguirre MB, Alonso R, Casas M, Lázaro LG, Man F, Portuondo G, Lopez Bisso A, Zavala N, Casales F, Imhoff G, Steinberg DJ, López PA, Carnero Contentti E, Deri N, Sinay V, Hryb J, Chiganer E, Leguizamon F, Tkachuk V, Bauer J, Ferrandina F, Giachello S, Henestroza P, Garcea O, Pascuale CA, Heitrich M, Podhajcer OL, Vinzón S, D’Alotto-Moreno T, Benatar A, Rabinovich GA, Pitossi FJ, Ferrari CC. Do immunosuppressive treatments influence immune responses against adenovirus-based COVID-19 vaccines in patients with multiple sclerosis? An Argentine multicenter study. Front Immunol 2024; 15:1431403. [PMID: 39224589 PMCID: PMC11366620 DOI: 10.3389/fimmu.2024.1431403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction There are no reports in LATAM related to longitudinal humoral and cellular response to adenovirus based COVID-19 vaccines in people with Multiple Sclerosis (pwMS) under different disease modifying therapies (DMTs) and neutralization of the Omicron and Wuhan variants of SARS-COV-2. Methods IgG anti- SARS-COV-2 spike titer were measured in a cohort of 101 pwMS under fingolimod, dimethyl fumarate, cladribine and antiCD20, as well as 28 healthy controls (HC) were measured 6 weeks after vaccination with 2nd dose (Sputnik V or AZD1222) and 3nd dose (homologous or heterologous schedule). Neutralizing capacity was against Omicron (BA.1) and Wuhan (D614G) variants and pseudotyped particles and Cellular response were analyzed. Results Multivariate regression analysis showed anti-cd20 (β= -,349, 95% CI: -3655.6 - -369.01, p=0.017) and fingolimod (β=-,399, 95% CI: -3363.8 - -250.9, p=0.023) treatments as an independent factor associated with low antibody response (r2 adjusted=0.157). After the 2nd dose we found a correlation between total and neutralizing titers against D614G (rho=0.6; p<0.001; slope 0.8, 95%CI:0.4-1.3), with no differences between DMTs. Neutralization capacity was lower for BA.1 (slope 0.3, 95%CI:0.1-0.4). After the 3rd dose, neutralization of BA.1 improved (slope: 0.9 95%CI:0.6-1.2), without differences between DMTs. A fraction of pwMS generated anti-Spike CD4+ and CD8+ T cell response. In contrast, pwMS under antiCD20 generated CD8+TNF+IL2+ response without differences with HC, even in the absence of humoral response. The 3rd dose significantly increased the neutralization against the Omicron, as observed in the immunocompetent population. Discussion Findings regarding humoral and cellular response are consistent with previous reports.
Collapse
Affiliation(s)
- Berenice Anabel Silva
- Multiple Sclerosis Unit, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Esteban Miglietta
- Carrera del Personal de Apoyo (CPA), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Juan Cruz Casabona
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Shirley Wenker
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Ricardo Alonso
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Magdalena Casas
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | | | - Federico Man
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Gustavo Portuondo
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Abril Lopez Bisso
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Noelia Zavala
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Federico Casales
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Gastón Imhoff
- Neurology Deparment, Sanatorio de los Arcos, Buenos Aires, Argentina
| | - Dra Judith Steinberg
- Neurology Deparment, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | | | | | - Norma Deri
- Multiple Sclerosis Unit, Instituto de Asistencia Integral en Diabetes y patologías crónicas (DIABAID), Buenos Aires, Argentina
| | - Vladimiro Sinay
- Multiple Sclerosis Deparment, Fundación Favaloro, Hospital Universitario, Buenos Aires, Argentina
| | - Javier Hryb
- Neurology Deparment, Hospital General de Agudos Carlos G. Durand, Buenos Aires, Argentina
| | - Edson Chiganer
- Neurology Deparment, Hospital General de Agudos Carlos G. Durand, Buenos Aires, Argentina
| | - Felisa Leguizamon
- Neurology Deparment, Hospital General de Agudos Dr. Teodoro Álvarez, Buenos Aires, Argentina
| | - Verónica Tkachuk
- Neurology Deparment, Hospital de Clínicas José de San Martín, Buenos Aires, Argentina
| | - Johana Bauer
- Asociación Esclerosis Múltiple Argentina, Buenos Aires, Argentina
| | | | - Susana Giachello
- Asociación Lucha Contra la Esclerosis Múltiple, Buenos Aires, Argentina
| | - Paula Henestroza
- Asociación Lucha Contra la Esclerosis Múltiple, Buenos Aires, Argentina
| | - Orlando Garcea
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Carla Antonela Pascuale
- Carrera del Personal de Apoyo (CPA), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Mauro Heitrich
- Laboratorio de Terapias Moleculares y Celulares, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Osvaldo L. Podhajcer
- Laboratorio de Terapias Moleculares y Celulares, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sabrina Vinzón
- Laboratorio de Terapias Moleculares y Celulares, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Tomas D’Alotto-Moreno
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Alejandro Benatar
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Gabriel Adrián Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Fernando J. Pitossi
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carina C. Ferrari
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Orrù V, Serra V, Marongiu M, Lai S, Lodde V, Zoledziewska M, Steri M, Loizedda A, Lobina M, Piras MG, Virdis F, Delogu G, Marini MG, Mingoia M, Floris M, Masala M, Castelli MP, Mostallino R, Frau J, Lorefice L, Farina G, Fronza M, Carmagnini D, Carta E, Pilotto S, Chessa P, Devoto M, Castiglia P, Solla P, Zarbo RI, Idda ML, Pitzalis M, Cocco E, Fiorillo E, Cucca F. Implications of disease-modifying therapies for multiple sclerosis on immune cells and response to COVID-19 vaccination. Front Immunol 2024; 15:1416464. [PMID: 39076966 PMCID: PMC11284103 DOI: 10.3389/fimmu.2024.1416464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Disease-modifying therapies (DMTs) have been shown to improve disease outcomes in multiple sclerosis (MS) patients. They may also impair the immune response to vaccines, including the SARS-CoV-2 vaccine. However, available data on both the intrinsic immune effects of DMTs and their influence on cellular response to the SARS-CoV-2 vaccine are still incomplete. Methods Here, we evaluated the immune cell effects of 3 DMTs on the response to mRNA SARS-CoV-2 vaccination by comparing MS patients treated with one specific therapy (fingolimod, dimethyl fumarate, or natalizumab) with both healthy controls and untreated patients. We profiled 23 B-cell traits, 57 T-cell traits, and 10 cytokines, both at basal level and after stimulation with a pool of SARS-CoV-2 spike peptides, in 79 MS patients, treated with DMTs or untreated, and 32 healthy controls. Measurements were made before vaccination and at three time points after immunization. Results and Discussion MS patients treated with fingolimod showed the strongest immune cell dysregulation characterized by a reduction in all measured lymphocyte cell classes; the patients also had increased immune cell activation at baseline, accompanied by reduced specific immune cell response to the SARS-CoV-2 vaccine. Also, anti-spike specific B cells progressively increased over the three time points after vaccination, even when antibodies measured from the same samples instead showed a decline. Our findings demonstrate that repeated booster vaccinations in MS patients are crucial to overcoming the immune cell impairment caused by DMTs and achieving an immune response to the SARS-CoV-2 vaccine comparable to that of healthy controls.
Collapse
Affiliation(s)
- Valeria Orrù
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Valentina Serra
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Michele Marongiu
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Sandra Lai
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Magdalena Zoledziewska
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Maristella Steri
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Annalisa Loizedda
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Monia Lobina
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Maria Grazia Piras
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Francesca Virdis
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Giuseppe Delogu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Maura Mingoia
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marco Masala
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - M. Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Jessica Frau
- Regional Multiple Sclerosis Center, Azienda Sanitaria Locale (ASL) Cagliari, Cagliari, Italy
| | - Lorena Lorefice
- Regional Multiple Sclerosis Center, Azienda Sanitaria Locale (ASL) Cagliari, Cagliari, Italy
| | - Gabriele Farina
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
| | - Marzia Fronza
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniele Carmagnini
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Elisa Carta
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Silvy Pilotto
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Paola Chessa
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Marcella Devoto
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Paolo Castiglia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Paolo Solla
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Roberto Ignazio Zarbo
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Maria Laura Idda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maristella Pitzalis
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Italy
| | - Eleonora Cocco
- Regional Multiple Sclerosis Center, Azienda Sanitaria Locale (ASL) Cagliari, Cagliari, Italy
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Edoardo Fiorillo
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
| | - Francesco Cucca
- Institute for Genetic and Biomedical Research, National Research Council, Lanusei, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
6
|
Coyle PK, Freedman MS, Cohen BA, Cree BAC, Markowitz CE. Sphingosine 1-phosphate receptor modulators in multiple sclerosis treatment: A practical review. Ann Clin Transl Neurol 2024; 11:842-855. [PMID: 38366285 PMCID: PMC11021614 DOI: 10.1002/acn3.52017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/18/2024] Open
Abstract
Four sphingosine 1-phosphate (S1P) receptor modulators (fingolimod, ozanimod, ponesimod, and siponimod) are approved by the US Food and Drug Administration for the treatment of multiple sclerosis. This review summarizes efficacy and safety data on these S1P receptor modulators, with an emphasis on similarities and differences. Efficacy data from the pivotal clinical trials are generally similar for the four agents. However, because no head-to-head clinical studies were conducted, direct efficacy comparisons cannot be made. Based on the adverse event profile of S1P receptor modulators, continued and regular monitoring of patients during treatment will be instructive. Notably, the authors recommend paying attention to the cardiac monitoring guidelines for these drugs, and when indicated screening for macular edema and cutaneous malignancies before starting treatment. To obtain the best outcome, clinicians should choose the drug based on disease type, history, and concomitant medications for each patient. Real-world data should help to determine whether there are meaningful differences in efficacy or side effects between these agents.
Collapse
Affiliation(s)
- Patricia K. Coyle
- Department of Neurology, Stony Brook Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Mark S. Freedman
- University of OttawaDepartment of Medicine and the Ottawa Hospital Research InstituteOttawaOntarioCanada
| | - Bruce A. Cohen
- Department of NeurologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Bruce A. C. Cree
- Weill Institute for Neurosciences, Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Clyde E. Markowitz
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
7
|
Stastna D, Elberling F, Pontieri L, Framke E, Horakova D, Drahota J, Nytrova P, Magyari M. COVID-19 vaccination and relapse activity: A nationwide cohort study of patients with multiple sclerosis in Denmark. Eur J Neurol 2024; 31:e16163. [PMID: 38015454 PMCID: PMC11235886 DOI: 10.1111/ene.16163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/03/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND PURPOSE We evaluated whether there was a difference in the occurrence of relapses pre- and post-COVID-19 vaccination in a nationwide cohort of Danish patients with relapsing multiple sclerosis. METHODS We conducted a population-based, nationwide cohort study with a cutoff date of 1 October 2022. We used McNemar tests to assess changes in the proportion of patients with recorded relapses within 90 days and 180 days before and after first vaccine dose, and a negative binomial regression model to compare the 90 and 180 days postvaccination annualized relapse rate (ARR) to the 360 days prevaccination ARR. Multivariate Cox regression was used to estimate relapse risk factors. RESULTS We identified 8169 vaccinated (87.3% Comirnaty) patients without a recorded history of a positive COVID-19 test. We did not find statistically significant changes in the proportion of patients with relapses in the 90 days (1.3% vs. 1.4% of patients, p = 0.627) and 180 days (2.7% vs. 2.6% of patients, p = 0.918) pre- and postvaccination. Also, a comparison of the ARR 360 days before (0.064, 95% confidence interval [CI] = 0.058-0.070) with the ARR 90 (0.057, 95% CI = 0.047-0.069, p = 0.285) and 180 (0.055, 95% CI = 0.048-0.063, p = 0.060) days after vaccination did not show statistically significant differences. Lower age, higher Expanded Disability Status Scale score, and relapse within 360 days before vaccination were associated with a higher risk of relapse. CONCLUSIONS We did not find evidence of increased relapse activity following the administration of the first dose of the COVID-19 vaccine.
Collapse
Affiliation(s)
- Dominika Stastna
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzechia
- Danish Multiple Sclerosis Registry, Department of NeurologyCopenhagen University Hospital–RigshospitaletGlostrupDenmark
| | - Frederik Elberling
- Danish Multiple Sclerosis Registry, Department of NeurologyCopenhagen University Hospital–RigshospitaletGlostrupDenmark
| | - Luigi Pontieri
- Danish Multiple Sclerosis Registry, Department of NeurologyCopenhagen University Hospital–RigshospitaletGlostrupDenmark
| | - Elisabeth Framke
- Danish Multiple Sclerosis Registry, Department of NeurologyCopenhagen University Hospital–RigshospitaletGlostrupDenmark
| | - Dana Horakova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzechia
| | - Jiri Drahota
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzechia
- Endowment Fund IMPULSPragueCzechia
| | - Petra Nytrova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzechia
| | - Melinda Magyari
- Danish Multiple Sclerosis Registry, Department of NeurologyCopenhagen University Hospital–RigshospitaletGlostrupDenmark
- Danish Multiple Sclerosis Centre, Department of NeurologyCopenhagen University Hospital–RigshospitaletGlostrupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
8
|
Mimpen M, Kreiter D, Kempkens T, Knippenberg S, Hupperts R, Gerlach O. Humoral immune response after SARS-CoV-2 vaccination in cladribine-treated multiple sclerosis patients. Vaccine X 2024; 16:100445. [PMID: 38304878 PMCID: PMC10832451 DOI: 10.1016/j.jvacx.2024.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Multiple sclerosis immunomodulatory treatments such as cladribine, which affects both B- and T-lymphocytes, can potentially alter the humoral response to SARS-CoV-2 vaccination. This monocenter retrospective study reports on anti-SARS-CoV-2 IgG antibody response in cladribine treated MS patients and we compare the response in patients vaccinated before and after an 18-week interval after last cladribine dose. Of the 34 patients (5 patients ≤ 18 weeks and 29 patients > 18 weeks after last cladribine dose) that were included, 32 reached seropositivity (94 %). All patients vaccinated < 18 weeks after last cladribine dose reached seropositivity. This study confirms findings of earlier reports that cladribine-treated MS patients show an adequate humoral response after SARS-CoV-2 vaccination, even when vaccinated early (≤18 weeks) after last cladribine dose.
Collapse
Affiliation(s)
- M. Mimpen
- Academic MS Center Zuyderland, Zuyderland Medical Center Sittard-Geleen, the Netherlands
- School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - D. Kreiter
- Academic MS Center Zuyderland, Zuyderland Medical Center Sittard-Geleen, the Netherlands
- School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - T. Kempkens
- Academic MS Center Zuyderland, Zuyderland Medical Center Sittard-Geleen, the Netherlands
| | - S. Knippenberg
- Academic MS Center Zuyderland, Zuyderland Medical Center Sittard-Geleen, the Netherlands
| | - R. Hupperts
- Academic MS Center Zuyderland, Zuyderland Medical Center Sittard-Geleen, the Netherlands
- School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - O. Gerlach
- Academic MS Center Zuyderland, Zuyderland Medical Center Sittard-Geleen, the Netherlands
- School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
9
|
Proschmann U, Mueller-Enz M, Woopen C, Katoul Al Rahbani G, Haase R, Dillenseger A, Dunsche M, Atta Y, Ziemssen T, Akgün K. Differential effects of selective versus unselective sphingosine 1-phosphate receptor modulators on T- and B-cell response to SARS-CoV-2 vaccination. Mult Scler 2023; 29:1849-1859. [PMID: 37776101 PMCID: PMC10687795 DOI: 10.1177/13524585231200719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/07/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Sphingosine 1-phosphat receptor modulators (S1PRMs) have been linked to attenuated immune response to SARS-CoV-2 vaccines. OBJECTIVE To characterize differences in the immune response to SARS-CoV-2 vaccines in patients on selective versus unselective S1PRMs. METHODS Monocentric, longitudinal study on people with multiple sclerosis (pwMS) on fingolimod (FTY), siponimod (SIP), ozanimod (OZA), or without disease-modifying therapy (DMT) following primary and booster SARS-CoV-2 vaccination. Anti-SARS-CoV-2 antibodies and T-cell response was measured with electro-chemiluminescent immunoassay and interferon-γ release assay. RESULTS Primary vaccination induced a significant antibody response in pwMS without DMT while S1PRM patients exhibited reduced antibody titers. The lowest antibodies were found in patients on FTY, whereas patients on OZA and SIP presented significantly higher levels. Booster vaccinations induced increased antibody levels in untreated patients and comparable titers in patients on OZA and SIP, but no increase in FTY-treated patients. While untreated pwMS developed a T-cell response, patients on S1PRMs presented a diminished/absent response. Patients undergoing SARS-CoV-2 vaccination before onset of S1PRMs presented a preserved, although attenuated humoral response, while T-cellular response was blunted. CONCLUSION Our data confirm differential effects of selective versus unselective S1PRMs on T- and B-cell response to SARS-CoV-2 vaccination and suggest association with S1PRM selectivity rather than lymphocyte redistribution.
Collapse
Affiliation(s)
- Undine Proschmann
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Magdalena Mueller-Enz
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Christina Woopen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Georges Katoul Al Rahbani
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Rocco Haase
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Anja Dillenseger
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Marie Dunsche
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Yassin Atta
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
10
|
Wang M, Dehlinger A, Zapata CF, Golan M, Gallaccio G, Sander LE, Schlickeiser S, Kunkel D, Schmitz-Hübsch T, Sawitzki B, Karni A, Braun J, Loyal L, Thiel A, Bellmann-Strobl J, Paul F, Meyer-Arndt L, Böttcher C. Associations of myeloid cells with cellular and humoral responses following vaccinations in patients with neuroimmunological diseases. Nat Commun 2023; 14:7728. [PMID: 38007484 PMCID: PMC10676398 DOI: 10.1038/s41467-023-43553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023] Open
Abstract
Disease-modifying therapies (DMTs) are widely used in neuroimmunological diseases such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Although these treatments are known to predispose patients to infections and affect their responses to vaccination, little is known about the impact of DMTs on the myeloid cell compartment. In this study, we use mass cytometry to examine DMT-associated changes in the innate immune system in untreated and treated patients with MS (n = 39) or NMOSD (n = 23). We also investigated the association between changes in myeloid cell phenotypes and longitudinal responsiveness to homologous primary, secondary, and tertiary SARS-CoV-2 mRNA vaccinations. Multiple DMT-associated myeloid cell clusters, in particular CD64+HLADRlow granulocytes, showed significant correlations with B and T cell responses induced by vaccination. Our findings suggest the potential role of myeloid cells in cellular and humoral responses following vaccination in DMT-treated patients with neuroimmunological diseases.
Collapse
Affiliation(s)
- Meng Wang
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Adeline Dehlinger
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Camila Fernández Zapata
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Maya Golan
- Neuroimmunology and Multiple Sclerosis Unit and Laboratory, Sourasky Medical Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Gerardina Gallaccio
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stephan Schlickeiser
- Institute of Medical Immunology, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health Berlin, Berlin, Germany
| | - Desiree Kunkel
- Flow&MassCytometry Core Facility, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Birgit Sawitzki
- Translational Immunology, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arnon Karni
- Neuroimmunology and Multiple Sclerosis Unit and Laboratory, Sourasky Medical Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Sagol School of Neuroscience Tel Aviv University, Tel Aviv, Israel
| | - Julian Braun
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics-Regenerative Immunology and Aging, Berlin, Germany
| | - Lucie Loyal
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics-Regenerative Immunology and Aging, Berlin, Germany
| | - Andreas Thiel
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics-Regenerative Immunology and Aging, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lil Meyer-Arndt
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
11
|
Alvarez E, Longbrake EE, Rammohan KW, Stankiewicz J, Hersh CM. Secondary hypogammaglobulinemia in patients with multiple sclerosis on anti-CD20 therapy: Pathogenesis, risk of infection, and disease management. Mult Scler Relat Disord 2023; 79:105009. [PMID: 37783194 DOI: 10.1016/j.msard.2023.105009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Hypogammaglobulinemia is characterized by reduced serum immunoglobulin levels. Secondary hypogammaglobulinemia is of considerable interest to the practicing physician because it is a potential complication of some medications and may predispose patients to serious infections. Patients with multiple sclerosis (MS) treated with B-cell-depleting anti-CD20 therapies are particularly at risk of developing hypogammaglobulinemia. Among these patients, hypogammaglobulinemia has been associated with an increased risk of infections. The mechanism by which hypogammaglobulinemia arises with anti-CD20 therapies (ocrelizumab, ofatumumab, ublituximab, rituximab) remains unclear and does not appear to be simply due to the reduction in circulating B-cell levels. Further, despite the association between anti-CD20 therapies, hypogammaglobulinemia, and infections, there is currently no generally accepted monitoring and treatment approach among clinicians treating patients with MS. Here, we review the literature and discuss possible mechanisms of secondary hypogammaglobulinemia in patients with MS, hypogammaglobulinemia results in MS anti-CD20 therapy clinical trials, the risk of infection for patients with hypogammaglobulinemia, and possible strategies for disease management. We also include a suggested best-practice approach to specifically address secondary hypogammaglobulinemia in patients with MS treated with anti-CD20 therapies.
Collapse
Affiliation(s)
- Enrique Alvarez
- The Rocky Mountain MS Center at the University of Colorado Anschutz Medical Campus, Academic Office 1 Building, Room 5512, 12631 East 17th Avenue, B185, Aurora, CO 80045, United States
| | - Erin E Longbrake
- Department of Neurology, Yale School of Medicine, 6 Devine Street, Suite 2B, New Haven, CT 06473, United States
| | - Kottil W Rammohan
- Multiple Sclerosis Division, University of Miami Miller School of Medicine, 1120 NW 14th street, Suite 1322, Miami, FL 33136, United States
| | - James Stankiewicz
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | - Carrie M Hersh
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W Bonneville Road, Las Vegas, NV 89106, United States.
| |
Collapse
|
12
|
Carlini F, Lusi V, Rizzi C, Assogna F, Laroni A. Cladribine Tablets Mode of Action, Learning from the Pandemic: A Narrative Review. Neurol Ther 2023; 12:1477-1490. [PMID: 37421556 PMCID: PMC10444742 DOI: 10.1007/s40120-023-00520-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system, characterized by chronic, inflammatory, demyelinating, and neurodegenerative processes. MS management relies on disease-modifying drugs that suppress/modulate the immune system. Cladribine tablets (CladT) have been approved by different health authorities for patients with various forms of relapsing MS. The drug has been demonstrated to deplete CD4+ and CD8+ T-cells, with a higher effect described in the former, and to decrease total CD19+, CD20+, and naive B-cell counts. COVID-19 is expected to become endemic, suggesting its potential infection risk for immuno-compromised patients, including MS patients treated with disease-modifying drugs. We report here the available data on disease-modifying drug-treated-MS patients and COVID-19 infection and vaccination, with a focus on CladT. MS patients treated with CladT are not at higher risk of developing severe COVID-19. While anti-SARS-CoV-2 vaccination is recommended in all MS patients with guidelines addressing vaccination timing according to the different disease-modifying drugs, no vaccination timing restrictions seem to be necessary for cladribine, based on its mechanism of action and available evidence. Published data suggest that CladT treatment does not impact the production of anti-SARS-CoV-2 antibodies after COVID-19 vaccination, possibly due to its relative sparing effect on naïve B-cells and the rapid B-cell reconstitution following treatment. Slightly lower specific T-cell responses are likely not impacting the risk of breakthrough COVID-19. It could be stated that cladribine's transient effect on innate immune cells likely contributes to maintaining an adequate first line of defense against the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Federico Carlini
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa, Italy
| | - Valeria Lusi
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa, Italy
| | - Caterina Rizzi
- Merck Serono S.P.A., Italy an Affiliate of Merck KGaA, Piazza del Pigneto 9, Rome, Italy
| | - Francesco Assogna
- Merck Serono S.P.A., Italy an Affiliate of Merck KGaA, Piazza del Pigneto 9, Rome, Italy
| | - Alice Laroni
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa, Italy.
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, Genoa, Italy.
| |
Collapse
|
13
|
Spierer R, Lavi I, Bloch S, Mazar M, Golan D. Risk of breakthrough COVID-19 after vaccination among people with multiple sclerosis on disease-modifying therapies. J Neurol 2023; 270:4632-4639. [PMID: 37589743 DOI: 10.1007/s00415-023-11935-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Disease-modifying therapies (DMTs) for people with multiple sclerosis (pwMS) may decrease vaccine effectiveness. We aimed to explore the association between various DMTs and the risk for breakthrough COVID-19. METHODS Population-based data from Clalit Health Services, Israel's largest healthcare organization, were used. PwMS treated with DMTs without prior COVID-19 were followed from the commencement of the mass vaccination campaign in December 2020. The end of follow-up was at the time of COVID-19 infection, the receipt of a third vaccine dose or until the end of August 2021. Time-dependent multivariate Cox proportional hazard models were used to estimate hazard ratios for COVID-19 according to vaccination, DMT, age, gender, disability and comorbidities. RESULTS 2511 PwMS treated with DMTs were included (Age: 46.2 ± 14.6, 70% Female, EDSS: 3.0 ± 2.1). Of whom, 2123 (84.5%) received 2 vaccine doses. On multivariate models that included all pwMS, vaccination was protective (HR = 0.41, P < 0.001). On multivariate models that included only fully vaccinated pwMS cladribine, ocrelizumab, S1P receptor modulators and natalizumab were associated with breakthrough COVID-19 (HR = 6.1, 4.7, 3.7 and 3.3; P = 0.004, 0.008, 0.02 and 0.05, respectively). On multivariate models that included unvaccinated and fully vaccinated pwMS on each DMT separately, a protective trend was noted for vaccination on all DMTs (0.09 < HR < 0.65), except for cladribine (HR = 1.1). This protective trend was not statistically significant on ocrelizumab, S1P receptor modulators and natalizumab. COVID-19 among pwMS was generally mild. Only 2 vaccinated pwMS had a severe infection with eventual recovery. CONCLUSIONS Vaccination effectively protects pwMS from COVID-19. An increased risk of breakthrough infection was noted on high-efficacy DMTs, however COVID-19 after vaccination was usually mild.
Collapse
Affiliation(s)
- Ronen Spierer
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neurology, Lady Davis Carmel Medical Center, 7 Mikhal St, 3436212, Haifa, Israel
| | - Idit Lavi
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Sivan Bloch
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neurology, Lady Davis Carmel Medical Center, 7 Mikhal St, 3436212, Haifa, Israel
| | | | - Daniel Golan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Department of Neurology, Lady Davis Carmel Medical Center, 7 Mikhal St, 3436212, Haifa, Israel.
- Multiple Sclerosis and Neuroimmunology Center, Clalit Health Services, Nazareth, Israel.
| |
Collapse
|
14
|
Cree BAC, Maddux R, Bar‐Or A, Hartung H, Kaur A, Brown E, Li Y, Hu Y, Sheffield JK, Silva D, Harris S. SARS-CoV-2 vaccination and infection in ozanimod-treated participants with relapsing multiple sclerosis. Ann Clin Transl Neurol 2023; 10:1725-1737. [PMID: 37550942 PMCID: PMC10578897 DOI: 10.1002/acn3.51862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023] Open
Abstract
OBJECTIVE To investigate the serologic response, predictors of response, and clinical outcomes associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and infection in ozanimod-treated participants with relapsing multiple sclerosis (RMS) from DAYBREAK. METHODS DAYBREAK (ClinicalTrials.gov-NCT02576717), an open-label extension study of oral ozanimod 0.92 mg, enrolled participants aged 18-55 years with RMS who completed phase 1-3 ozanimod trials. Participants who were fully vaccinated against SARS-CoV-2 with mRNA or non-mRNA vaccines, were unvaccinated, and/or had COVID-19-related adverse events (AEs, with or without vaccination) and postvaccination serum samples were included (n = 288). Spike receptor binding domain (RBD) antibody levels (seroconversion: ≥0.8 U/mL) and serologic evidence of SARS-CoV-2 infection (nucleocapsid IgG: ≥1 U/mL) were assessed (Roche Elecsys/Cobas e411 platform). RESULTS In fully vaccinated participants (n = 148), spike RBD antibody seroconversion occurred in 90% (n = 98/109) of those without serologic evidence of prior SARS-CoV-2 exposure (100% [n = 80/80] seroconversion after mRNA vaccination) and in 100% (n = 39/39) of participants with serologic evidence of viral exposure. mRNA vaccination predicted higher spike RBD antibody levels, whereas absolute lymphocyte count (ALC), age, body mass index, and sex did not. COVID-19-related AEs were reported in 10% (n = 15/148) of fully vaccinated participants-all were nonserious and not severe; all participants recovered. INTERPRETATION Most ozanimod-treated participants with RMS mounted a serologic response to SARS-CoV-2 vaccination and infection, regardless of participant characteristics or ALC levels. In this analysis, all COVID-19-related AEs post-full vaccination in participants taking ozanimod were nonserious and not severe.
Collapse
Affiliation(s)
- Bruce A. C. Cree
- Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Amit Bar‐Or
- Department of Neurology, Center for Neuroinflammation, and Experimental Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Hans‐Peter Hartung
- Department of NeurologyMedical Faculty, Heinrich‐Heine UniversityDüsseldorfGermany
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Department of NeurologyMedical University of ViennaViennaAustria
- Palacký University OlomoucOlomoucCzech Republic
| | | | | | - Yicong Li
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | - Yanhua Hu
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | | | | | | |
Collapse
|
15
|
Woopen C, Dunsche M, Al Rahbani GK, Dillenseger A, Atta Y, Haase R, Raposo C, Pedotti R, Ziemssen T, Akgün K. Long-Term Immune Response Profiles to SARS-CoV-2 Vaccination and Infection in People with Multiple Sclerosis on Anti-CD20 Therapy. Vaccines (Basel) 2023; 11:1464. [PMID: 37766140 PMCID: PMC10537223 DOI: 10.3390/vaccines11091464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Our objective was to analyze longitudinal cellular and humoral immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in people with multiple sclerosis (pwMS) on B-cell depleting treatment (BCDT) compared to pwMS without immunotherapy. We further evaluated the impact of COVID-19 infection and vaccination timing. PwMS (n = 439) on BCDT (ocrelizumab, rituximab, ofatumumab) or without immunotherapy were recruited for this prospective cohort study between June 2021 and June 2022. SARS-CoV-2 spike-specific antibodies and interferon-γ release of CD4 and CD8 T-cells upon stimulation with spike protein peptide pools were analyzed at different timepoints (after primary vaccination, 3 and 6 months after primary vaccination, after booster vaccination, 3 months after booster). Humoral response to SARS-CoV-2 was consistently lower whereas T-cell response was higher in patients with BCDT compared to controls. Cellular and humoral responses decreased over time after primary vaccination and increased again upon booster vaccination, with significantly higher antibody titers after booster than after primary vaccination in both untreated and B-cell-depleted pwMS. COVID-19 infection further led to a significant increase in SARS-CoV-2-specific responses. Despite attenuated B-cell responses, a third vaccination for patients with BCDT seems recommendable, since at least partial protection can be expected from the strong T-cell response. Moreover, our data show that an assessment of T-cell responses may be helpful in B-cell-depleted patients to evaluate the efficacy of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Christina Woopen
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Marie Dunsche
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Georges Katoul Al Rahbani
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Anja Dillenseger
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Yassin Atta
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Rocco Haase
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | | | | | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| |
Collapse
|
16
|
Labani A, Chou S, Kaviani K, Ropero B, Russman K, Becker D. Incidence of multiple sclerosis relapses and pseudo-relapses following COVID-19 vaccination. Mult Scler Relat Disord 2023; 77:104865. [PMID: 37418929 DOI: 10.1016/j.msard.2023.104865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic created an urgency for an effective vaccine. The FDA approved vaccines offered by Pfizer-BioNTech (BNT162b2), ModernaTX (mRNA-1273) and Janssen/Johnson & Johnson (Ad26.COV2.S) have shown minimal side effects (SE) in general population studies. Multiple sclerosis (MS) patients were not specifically represented in the above studies. The MS community is interested in how these vaccines behave in people with MS. In this study, we compare the SE experienced by MS to that of the general population after SARS-CoV-2 vaccination and evaluate their risk of relapses or pseudo-relapses. METHODS A retrospective, single-site, cohort study of 250 MS patients who received the initial cycle of FDA approved SARS-CoV-2 vaccines with 151 of whom also received an additional booster dose. SE resulting immediately after COVID-19 vaccination were collected as part of the standard clinical care during patient visits. RESULTS Out of the studied 250 MS patients, 135 received the first and second doses of BNT162b2 with less than 1% and 4% pseudo-relapses respectively and 79 received the third BNT162b2 dose with a pseudo-relapse rate of 3%. 88 received the mRNA-1273 vaccine with a pseudo-relapse frequency of 2% and 5% after the first and second doses respectively. 70 patients had the mRNA-1273 vaccine booster with a 3% pseudo-relapse rate. 27 received the Ad26.COV2.S first dose, 2 of whom received a second Ad26.COV2.S booster dose, with no reports of MS worsening. No acute relapses were reported in our patient population. All patients experiencing pseudo-relapse symptoms returned to baseline within 96 h. CONCLUSION COVID-19 vaccine is safe in patients with MS. Cases of temporary worsening of MS symptoms following SARS-CoV-2 are rare. Our findings support those reported by other recent studies and the CDC recommendation for MS patients to receive the FDA-approved COVID-19 vaccines, including the boosters.
Collapse
Affiliation(s)
- Amir Labani
- International Neurorehabilitation Institute, Lutherville, MD, United States
| | - Scott Chou
- International Neurorehabilitation Institute, Lutherville, MD, United States
| | - Kasra Kaviani
- International Neurorehabilitation Institute, Lutherville, MD, United States
| | - Brenda Ropero
- International Neurorehabilitation Institute, Lutherville, MD, United States
| | - Katharine Russman
- International Neurorehabilitation Institute, Lutherville, MD, United States
| | - Daniel Becker
- International Neurorehabilitation Institute, Lutherville, MD, United States; John Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, United States.
| |
Collapse
|
17
|
Violán C, Carrasco-Ribelles LA, Collatuzzo G, Ditano G, Abedini M, Janke C, Reinkemeyer C, Giang LTT, Liviero F, Scapellato ML, Mauro M, Rui F, Porru S, Spiteri G, Monaco MGL, Carta A, Otelea M, Rascu A, Fabiánová E, Klöslová Z, Boffetta P, Torán-Monserrat P. Multimorbidity and Serological Response to SARS-CoV-2 Nine Months after 1st Vaccine Dose: European Cohort of Healthcare Workers-Orchestra Project. Vaccines (Basel) 2023; 11:1340. [PMID: 37631908 PMCID: PMC10459685 DOI: 10.3390/vaccines11081340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Understanding antibody persistence concerning multimorbidity is crucial for vaccination policies. Our goal is to assess the link between multimorbidity and serological response to SARS-CoV-2 nine months post-first vaccine. We analyzed Healthcare Workers (HCWs) from three cohorts from Italy, and one each from Germany, Romania, Slovakia, and Spain. Seven groups of chronic diseases were analyzed. We included 2941 HCWs (78.5% female, 73.4% ≥ 40 years old). Multimorbidity was present in 6.9% of HCWs. The prevalence of each chronic condition ranged between 1.9% (cancer) to 10.3% (allergies). Two regression models were fitted, one considering the chronic conditions groups and the other considering whether HCWs had diseases from ≥2 groups. Multimorbidity was present in 6.9% of HCWs, and higher 9-months post-vaccine anti-S levels were significantly associated with having received three doses of the vaccine (RR = 2.45, CI = 1.92-3.13) and with having a prior COVID-19 infection (RR = 2.30, CI = 2.15-2.46). Conversely, lower levels were associated with higher age (RR = 0.94, CI = 0.91-0.96), more time since the last vaccine dose (RR = 0.95, CI = 0.94-0.96), and multimorbidity (RR = 0.89, CI = 0.80-1.00). Hypertension is significantly associated with lower anti-S levels (RR = 0.87, CI = 0.80-0.95). The serological response to vaccines is more inadequate in individuals with multimorbidity.
Collapse
Affiliation(s)
- Concepción Violán
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mare de Déu de Guadalupe, 08303 Mataró, Spain; (L.A.C.-R.); (P.T.-M.)
- Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, 08916 Badalona, Spain
- Grup de REcerca en Impacte de les Malalties Cròniques i les Seves Trajectòries (GRIMTra) (2021 SGR 01537), Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mare de Déu de Guadalupe, 08303 Barcelona, Spain
- Network for Research on Chronicity, Primary Care, and Health Promotion (RICAPPS) (RD21/0016/0029), Insitituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Direcció d’Atenció Primària Metropolitana Nord Institut Català de Salut, Ctra. de Barcelona, 473, Sabadell, 08204 Barcelona, Spain
- Universitat Autónoma de Barcelona, Plaça Cívica, 08193 Bellaterra, Spain
| | - Lucía A. Carrasco-Ribelles
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mare de Déu de Guadalupe, 08303 Mataró, Spain; (L.A.C.-R.); (P.T.-M.)
- Grup de REcerca en Impacte de les Malalties Cròniques i les Seves Trajectòries (GRIMTra) (2021 SGR 01537), Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mare de Déu de Guadalupe, 08303 Barcelona, Spain
- Network for Research on Chronicity, Primary Care, and Health Promotion (RICAPPS) (RD21/0016/0029), Insitituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (G.C.); (G.D.); (M.A.); (P.B.)
| | - Giorgia Ditano
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (G.C.); (G.D.); (M.A.); (P.B.)
| | - Mahsa Abedini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (G.C.); (G.D.); (M.A.); (P.B.)
| | - Christian Janke
- Division of Infectious Diseases and Tropical Medicine, LMU Klinikum, Leopoldstraße 5, 80802 Munich, Germany; (C.J.); (C.R.)
| | - Christina Reinkemeyer
- Division of Infectious Diseases and Tropical Medicine, LMU Klinikum, Leopoldstraße 5, 80802 Munich, Germany; (C.J.); (C.R.)
| | - Le Thi Thu Giang
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Lindwurmstrasse 4, 80337 Munich, Germany;
| | - Filippo Liviero
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy;
| | | | - Marcella Mauro
- Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, 34129 Trieste, Italy; (M.M.); (F.R.)
| | - Francesca Rui
- Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, 34129 Trieste, Italy; (M.M.); (F.R.)
| | - Stefano Porru
- Occupational Medicine Unit, University Hospital of Verona, 37134 Verona, Italy; (S.P.); (G.S.); (M.G.L.M.); (A.C.)
- Section of Occupational Health, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Gianluca Spiteri
- Occupational Medicine Unit, University Hospital of Verona, 37134 Verona, Italy; (S.P.); (G.S.); (M.G.L.M.); (A.C.)
| | - Maria Grazia Lourdes Monaco
- Occupational Medicine Unit, University Hospital of Verona, 37134 Verona, Italy; (S.P.); (G.S.); (M.G.L.M.); (A.C.)
| | - Angela Carta
- Occupational Medicine Unit, University Hospital of Verona, 37134 Verona, Italy; (S.P.); (G.S.); (M.G.L.M.); (A.C.)
- Section of Occupational Health, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Marina Otelea
- University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (M.O.); (A.R.)
| | - Agripina Rascu
- University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (M.O.); (A.R.)
| | - Eleonóra Fabiánová
- Occupational Health Department, Regional Authority of Public Health, 97556 Banská Bystrica, Slovakia; (E.F.); (Z.K.)
- Public Health Department, Faculty of Health, Catholic University, 03401 Ružomberok, Slovakia
| | - Zuzana Klöslová
- Occupational Health Department, Regional Authority of Public Health, 97556 Banská Bystrica, Slovakia; (E.F.); (Z.K.)
- Public Health Department, Faculty of Health, Catholic University, 03401 Ružomberok, Slovakia
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (G.C.); (G.D.); (M.A.); (P.B.)
| | - Pere Torán-Monserrat
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mare de Déu de Guadalupe, 08303 Mataró, Spain; (L.A.C.-R.); (P.T.-M.)
- Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, 08916 Badalona, Spain
- Direcció d’Atenció Primària Metropolitana Nord Institut Català de Salut, Ctra. de Barcelona, 473, Sabadell, 08204 Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat de Girona, 17001 Girona, Spain
- Multidisciplinary Research Group in Health and Society (GREMSAS) (2021 SGR 01484), Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Mare de Déu de Guadalupe, 08303 Barcelona, Spain
| |
Collapse
|
18
|
Alfonso-Dunn R, Lin J, Lei J, Liu J, Roche M, De Oliveira A, Raisingani A, Kumar A, Kirschner V, Feuer G, Malin M, Sadiq SA. Humoral and cellular responses to repeated COVID-19 exposure in multiple sclerosis patients receiving B-cell depleting therapies: a single-center, one-year, prospective study. Front Immunol 2023; 14:1194671. [PMID: 37449202 PMCID: PMC10338057 DOI: 10.3389/fimmu.2023.1194671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Multiple sclerosis patients treated with anti-CD20 therapy (aCD20-MS) are considered especially vulnerable to complications from SARS-CoV-2 infection due to severe B-cell depletion with limited viral antigen-specific immunoglobulin production. Therefore, multiple vaccine doses as part of the primary vaccination series and booster updates have been recommended for this group of immunocompromised individuals. Even though much less studied than antibody-mediated humoral responses, T-cell responses play an important role against CoV-2 infection and are induced efficiently in vaccinated aCD20-MS patients. For individuals with such decoupled adaptive immunity, an understanding of the contribution of T-cell mediated immunity is essential to better assess protection against CoV-2 infection. Here, we present results from a prospective, single-center study for the assessment of humoral and cellular immune responses induced in aCD20-MS patients (203 donors/350 samples) compared to a healthy control group (43/146) after initial exposure to CoV-2 spike antigen and subsequent re-challenges. Low rates of seroconversion and RBD-hACE2 blocking activity were observed in aCD20-MS patients, even after multiple exposures (responders after 1st exposure = 17.5%; 2nd exposure = 29.3%). Regarding cellular immunity, an increase in the number of spike-specific monofunctional IFNγ+-, IL-2+-, and polyfunctional IFNγ+/IL-2+-secreting T-cells after 2nd exposure was found most noticeably in healthy controls. Nevertheless, a persistently higher T-cell response was detected in aCD20-MS patients compared to control individuals before and after re-exposure (mean fold increase in spike-specific IFNγ+-, IL-2+-, and IFNγ+/IL-2+-T cells before re-exposure = 3.9X, 3.6X, 3.5X/P< 0.001; after = 3.2X, 1.4X, 2.2X/P = 0.002, P = 0.05, P = 0.004). Moreover, cellular responses against sublineage BA.2 of the currently circulating omicron variant were maintained, to a similar degree, in both groups (15-30% T-cell response drop compared to ancestral). Overall, these results highlight the potential for a severely impaired humoral response in aCD20-MS patients even after multiple exposures, while still generating a strong T-cell response. Evaluating both humoral and cellular responses in vaccinated or infected MS patients on B-cell depletion therapy is essential to better assess individual correlations of immune protection and has implications for the design of future vaccines and healthcare strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Saud A. Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, United States
| |
Collapse
|
19
|
Maglione A, Francese R, Arduino I, Rosso R, Matta M, Rolla S, Lembo D, Clerico M. Long-lasting neutralizing antibodies and T cell response after the third dose of mRNA anti-SARS-CoV-2 vaccine in multiple sclerosis. Front Immunol 2023; 14:1205879. [PMID: 37409134 PMCID: PMC10318111 DOI: 10.3389/fimmu.2023.1205879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Background and objectives Long lasting immune response to anti-SARS-CoV-2 vaccination in people with Multiple Sclerosis (pwMS) is still largely unexplored. Our study aimed at evaluating the persistence of the elicited amount of neutralizing antibodies (Ab), their activity and T cell response after three doses of anti-SARS-CoV-2 vaccine in pwMS. Methods We performed a prospective observational study in pwMS undergoing SARS-CoV-2 mRNA vaccinations. Anti-Region Binding Domain (anti-RBD) of the spike (S) protein immunoglobulin G (IgG) titers were measured by ELISA. The neutralization efficacy of collected sera was measured by SARS-CoV-2 pseudovirion-based neutralization assay. The frequency of Spike-specific IFNγ-producing CD4+ and CD8+ T cells was measured by stimulating Peripheral Blood Mononuclear Cells (PBMCs) with a pool of peptides covering the complete protein coding sequence of the SARS-CoV-2 S. Results Blood samples from 70 pwMS (11 untreated pwMS, 11 under dimethyl fumarate, 9 under interferon-γ, 6 under alemtuzumab, 8 under cladribine, 12 under fingolimod and 13 under ocrelizumab) and 24 healthy donors were collected before and up to six months after three vaccine doses. Overall, anti-SARS-CoV-2 mRNA vaccine elicited comparable levels of anti-RBD IgGs, neutralizing activity and anti-S T cell response both in untreated, treated pwMS and HD that last six months after vaccination. An exception was represented by ocrelizumab-treated pwMS that showed reduced levels of IgGs (p<0.0001) and a neutralizing activity under the limit of detection (p<0.001) compared to untreated pwMS. Considering the occurrence of a SARS-CoV-2 infection after vaccination, the Ab neutralizing efficacy (p=0.04), as well as CD4+ (p=0.016) and CD8+ (p=0.04) S-specific T cells, increased in treated COVID+ pwMS compared to uninfected treated pwMS at 6 months after vaccination. Discussion Our follow-up provides a detailed evaluation of Ab, especially in terms of neutralizing activity, and T cell responses after anti-SARS-CoV-2 vaccination in MS context, over time, considering a wide number of therapies, and eventually breakthrough infection. Altogether, our observations highlight the vaccine response data to current protocols in pwMS and underline the necessity to carefully follow-up anti-CD20- treated patients for higher risk of breakthrough infections. Our study may provide useful information to refine future vaccination strategies in pwMS.
Collapse
Affiliation(s)
- Alessandro Maglione
- Laboratory of Neuroimmunology, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Francese
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Irene Arduino
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Rosso
- Laboratory of Neuroimmunology, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Manuela Matta
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Simona Rolla
- Laboratory of Neuroimmunology, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Marinella Clerico
- Laboratory of Neuroimmunology, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| |
Collapse
|
20
|
Nytrova P, Stastna D, Tesar A, Menkyova I, Posova H, Koprivova H, Mikulova V, Hrdy J, Smela G, Horakova D, Rysankova I, Doleckova K, Tyblova M. Immunity following SARS-CoV-2 vaccination in autoimmune neurological disorders treated with rituximab or ocrelizumab. Front Immunol 2023; 14:1149629. [PMID: 37398654 PMCID: PMC10312310 DOI: 10.3389/fimmu.2023.1149629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Background Rituximab (RTX) and ocrelizumab (OCR), B cell-depleting therapy targeting CD20 molecules, affect the humoral immune response after vaccination. How these therapies influence T-cell-mediated immune response against SARS-CoV-2 after immunization remains unclear. We aimed to evaluate the humoral and cellular immune response to the COVID-19 vaccine in a cohort of patients with multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and myasthenia gravis (MG). Methods Patients with MS (83), NMOSD (19), or MG (7) undergoing RTX (n=47) or OCR (n=62) treatment were vaccinated twice with the mRNA BNT162b2 vaccine. Antibodies were quantified using the SARS-CoV-2 IgG chemiluminescence immunoassay, targeting the spike protein. SARS-CoV-2-specific T cell responses were quantified by interferon γ release assays (IGRA). The responses were evaluated at two different time points (4-8 weeks and 16-20 weeks following the 2nd dose of the vaccine). Immunocompetent vaccinated individuals (n=41) were included as controls. Results Almost all immunocompetent controls developed antibodies against the SARS-CoV-2 trimeric spike protein, but only 34.09% of the patients, without a COVID-19 history and undergoing anti-CD20 treatment (via RTX or OCR), seroconverted. This antibody response was higher in patients with intervals of longer than 3 weeks between vaccinations. The duration of therapy was significantly shorter in seroconverted patients (median 24 months), than in the non-seroconverted group. There was no correlation between circulating B cells and the levels of antibodies. Even patients with a low proportion of circulating CD19+ B cells (<1%, 71 patients) had detectable SARS-CoV-2 specific antibody responses. SARS-CoV-2 specific T cell response measured by released interferon γ was detected in 94.39% of the patients, independently of a humoral immune response. Conclusion The majority of MS, MG, and NMOSD patients developed a SARS-CoV-2-specific T cell response. The data suggest that vaccination can induce SARS-CoV-2-specific antibodies in a portion of anti-CD20 treated patients. The seroconversion rate was higher in OCR-treated patients compared to those on RTX. The response represented by levels of antibodies was better in individuals, with intervals of longer than 3 weeks between vaccinations.
Collapse
Affiliation(s)
- Petra Nytrova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Dominika Stastna
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Adam Tesar
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
- Institute of Biophysics and Informatics of the First Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Ingrid Menkyova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
- 2nd Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Helena Posova
- Laboratory of Clinical Immunology and Allergology, Institute of Clinical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Helena Koprivova
- Laboratory of Clinical Immunology and Allergology, Institute of Clinical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Veronika Mikulova
- Laboratory of Clinical Immunology and Allergology, Institute of Clinical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jiri Hrdy
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Gabriela Smela
- Laboratory of Clinical Immunology and Allergology, Institute of Clinical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Dana Horakova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Irena Rysankova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Kristyna Doleckova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Michaela Tyblova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| |
Collapse
|
21
|
Bazylewicz M, Gudowska-Sawczuk M, Mroczko B, Kochanowicz J, Kułakowska A. COVID-19: The Course, Vaccination and Immune Response in People with Multiple Sclerosis: Systematic Review. Int J Mol Sci 2023; 24:9231. [PMID: 37298185 PMCID: PMC10253145 DOI: 10.3390/ijms24119231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
When the Coronavirus Disease 2019 (COVID-19) appeared, it was unknown what impact it would have on the condition of patients with autoimmunological disorders. Attention was focused on the course of infection in patients suffering from multiple sclerosis (MS), specially treated with disease-modifying therapies (DMTs) or glucocorticoids. The impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection on the occurrence of MS relapses or pseudo-relapses was important. This review focuses on the risk, symptoms, course, and mortality of COVID-19 as well as immune response to vaccinations against COVID-19 in patients with MS (PwMS). We searched the PubMed database according to specific criteria. PwMS have the risk of infection, hospitalization, symptoms, and mortality due to COVID-19, mostly similar to the general population. The presence of comorbidities, male sex, a higher degree of disability, and older age increase the frequency and severity of the COVID-19 course in PwMS. For example, it was reported that anti-CD20 therapy is probably associated with an increased risk of severe COVID-19 outcomes. After SARS-CoV-2 infection or vaccination, MS patients acquire humoral and cellular immunity, but the degree of immune response depends on applied DMTs. Additional studies are necessary to corroborate these findings. However, indisputably, some PwMS need special attention within the context of COVID-19.
Collapse
Affiliation(s)
- Marcin Bazylewicz
- Department of Neurology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Bialystok, Poland
| | - Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Bialystok, Poland
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Bialystok, Poland
| |
Collapse
|
22
|
Ruggieri S, Aiello A, Tortorella C, Navarra A, Vanini V, Meschi S, Lapa D, Haggiag S, Prosperini L, Cuzzi G, Salmi A, Quartuccio ME, Altera AMG, Garbuglia AR, Ascoli Bartoli T, Galgani S, Notari S, Agrati C, Puro V, Nicastri E, Gasperini C, Goletti D. Dynamic Evolution of Humoral and T-Cell Specific Immune Response to COVID-19 mRNA Vaccine in Patients with Multiple Sclerosis Followed until the Booster Dose. Int J Mol Sci 2023; 24:ijms24108525. [PMID: 37239872 DOI: 10.3390/ijms24108525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
This study characterizes antibody and T-cell immune responses over time until the booster dose of COronaVIrus Disease 2019 (COVID-19) vaccines in patients with multiple sclerosis (PwMS) undergoing different disease-modifying treatments (DMTs). We prospectively enrolled 134 PwMS and 99 health care workers (HCWs) having completed the two-dose schedule of a COVID-19 mRNA vaccine within the last 2-4 weeks (T0) and followed them 24 weeks after the first dose (T1) and 4-6 weeks after the booster (T2). PwMS presented a significant reduction in the seroconversion rate and anti-receptor-binding domain (RBD)-Immunoglobulin (IgG) titers from T0 to T1 (p < 0.0001) and a significant increase from T1 to T2 (p < 0.0001). The booster dose in PwMS showed a good improvement in the serologic response, even greater than HCWs, as it promoted a significant five-fold increase of anti-RBD-IgG titers compared with T0 (p < 0.0001). Similarly, the T-cell response showed a significant 1.5- and 3.8-fold increase in PwMS at T2 compared with T0 (p = 0.013) and T1 (p < 0.0001), respectively, without significant modulation in the number of responders. Regardless of the time elapsed since vaccination, most ocrelizumab- (77.3%) and fingolimod-treated patients (93.3%) showed only a T-cell-specific or humoral-specific response, respectively. The booster dose reinforces humoral- and cell-mediated-specific immune responses and highlights specific DMT-induced immune frailties, suggesting the need for specifically tailored strategies for immune-compromised patients to provide primary prophylaxis, early SARS-CoV-2 detection and the timely management of COVID-19 antiviral treatments.
Collapse
Affiliation(s)
- Serena Ruggieri
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Carla Tortorella
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Assunta Navarra
- Clinical Epidemiology Unit, National Institute for Infectious Disease Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
- UOS Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Shalom Haggiag
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Luca Prosperini
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | | | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Tommaso Ascoli Bartoli
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Simonetta Galgani
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Stefania Notari
- Cellular Immunology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Chiara Agrati
- Cellular Immunology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Vincenzo Puro
- UOC Emerging Infections and Centro di Riferimento AIDS (CRAIDS), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| |
Collapse
|
23
|
Holroyd KB, Conway SE. Central Nervous System Neuroimmunologic Complications of COVID-19. Semin Neurol 2023. [PMID: 37080234 DOI: 10.1055/s-0043-1767713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Autoimmune disorders of the central nervous system following COVID-19 infection include multiple sclerosis (MS), neuromyelitis optica spectrum disorder, myelin oligodendrocyte glycoprotein antibody-associated disease, autoimmune encephalitis, acute disseminated encephalomyelitis, and other less common neuroimmunologic disorders. In general, these disorders are rare and likely represent postinfectious phenomena rather than direct consequences of the SARS-CoV-2 virus itself. The impact of COVID-19 infection on patients with preexisting neuroinflammatory disorders depends on both the disorder and disease-modifying therapy use. Patients with MS do not have an increased risk for severe COVID-19, though patients on anti-CD20 therapies may have worse clinical outcomes and attenuated humoral response to vaccination. Data are limited for other neuroinflammatory disorders, but known risk factors such as older age and medical comorbidities likely play a role. Prophylaxis and treatment for COVID-19 should be considered in patients with preexisting neuroinflammatory disorders at high risk for developing severe COVID-19.
Collapse
Affiliation(s)
- Kathryn B Holroyd
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sarah E Conway
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
24
|
In-depth characterization of long-term humoral and cellular immune responses to COVID-19m-RNA vaccination in multiple sclerosis patients treated with teriflunomide or alemtuzumab. Mult Scler Relat Disord 2023; 72:104616. [PMID: 36933299 PMCID: PMC10008178 DOI: 10.1016/j.msard.2023.104616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND The impact of disease-modifying therapies on the efficacy to mount appropriate immune responses to COVID-19 vaccination in patients with multiple sclerosis (MS) is currently under investigation. OBJECTIVE To characterize long-term humoral and cellular immunity in mRNA-COVID-19 MS vaccinees treated with teriflunomide or alemtuzumab. METHODS We prospectively measured SARS-COV-2 IgG, memory B-cells specific for SARS-CoV-2 RBD, and memory T-cells secreting IFN-γ and/or IL-2, in MS patients vaccinated with BNT162b2-COVID-19 vaccine before, 1, 3 and 6 months after the second vaccine dose, and 3-6 months following vaccine booster. RESULTS Patients were either untreated (N = 31, 21 females), under treatment with teriflunomide (N = 30, 23 females, median treatment duration 3.7 years, range 1.5-7.0 years), or under treatment with alemtuzumab (N = 12, 9 females, median time from last dosing 15.9 months, range 1.8-28.7 months). None of the patients had clinical SARS-CoV-2 or immune evidence for prior infection. Spike IgG titers were similar between untreated, teriflunomide and alemtuzumab treated MS patients both at 1 month (median 1320.7, 25-75 IQR 850.9-3152.8 vs. median 901.7, 25-75 IQR 618.5-1495.8, vs. median 1291.9, 25-75 IQR 590.8-2950.9, BAU/ml, respectively), at 3 months (median 1388.8, 25-75 1064.6-2347.6 vs. median 1164.3 25-75 IQR 726.4-1399.6, vs. median 837.2, 25-75 IQR 739.4-1868.5 BAU/ml, respectively), and at 6 months (median 437.0, 25-75 206.1-1161.3 vs. median 494.3, 25-75 IQR 214.6-716.5, vs. median 176.3, 25-75 IQR 72.3-328.8 BAU/ml, respectively) after the second vaccine dose. Specific SARS-CoV-2 memory B cells were detected in 41.9%, 40.0% and 41.7% of subjects at 1 month, in 32.3%, 43.3% and 25% at 3 months, and in 32.3%, 40.0%, 33.3% at 6 months following vaccination in untreated, teriflunomide treated and alemtuzumab treated MS patients, respectively. Specific SARS-CoV-2 memory T cells were found in 48.4%, 46.7% and 41.7 at 1 month, in 41.9%, 56.7% and 41.7% at 3 months, and in 38.7%, 50.0%, and 41.7% at 6 months, of untreated, teriflunomide-treated and alemtuzumab -treated MS patients, respectively. Administration of a third vaccine booster significantly increased both humoral and cellular responses in all patients. CONCLUSIONS MS patients treated with teriflunomide or alemtuzumab achieved effective humoral and cellular immune responses up to 6 months following second COVID-19 vaccination. Immune responses were reinforced following the third vaccine booster.
Collapse
|
25
|
Stoll S, Desai S, Levit E. A retrospective evaluation of seroconversion after COVID-19 during the early Omicron wave in fully vaccinated multiple sclerosis patients receiving anti-CD20 therapies. Mult Scler Relat Disord 2023; 71:104574. [PMID: 36827874 PMCID: PMC9928678 DOI: 10.1016/j.msard.2023.104574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Patients with multiple sclerosis (MS) are commonly treated with anti-CD20 therapies. Reduced seroconversion following COVID-19 vaccination in patients receiving certain anti-CD20 therapies has been reported; however, the immune response following natural infection is poorly characterised. This study aimed to retrospectively evaluate COVID-19 antibody responses after vaccination and natural infection in patients treated with anti-CD20 therapies. METHODS We performed a retrospective review evaluating COVID-19 seroconversion and anti-spike glycoprotein antibody titres in double-vaccinated patients with MS, or related neuroinflammatory conditions, treated with anti-CD20 therapies (N = 30) with a confirmed history of natural severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (n = 14) or without infection (control; n = 16). This single-centre study was performed at the Yale Multiple Sclerosis Center, where patients treated with anti-CD20 therapies (ocrelizumab, n = 21; rituximab, n = 5; ofatumumab, n = 4) were systematically checked for SARS-CoV-2 anti-spike antibody levels throughout the pandemic. Data were collected from March 2020 to March 2022. All patients had received at least two doses of a Food and Drug Administration (FDA)-approved COVID-19 vaccine. Qualitative anti-spike antibody seropositivity was determined based on test-specific laboratory reference ranges. For a subset of patients (n = 18), quantitative anti-spike antibody levels were assessed via DiaSorin LIAISON® chemiluminescence immunoassay (positive titre was defined as ≥ 13). Vaccination and infection dates were also recorded, and patients were monitored for adverse COVID-19-related health effects. RESULTS Overall, 15/30 (50.0%) patients seroconverted following double vaccination. After infection, 13/14 (92.9%) seroconverted, while 6/16 (37.5%) uninfected patients seroconverted after vaccination. For the 18 patients with quantitative anti-spike antibody titres, mean titre post-vaccination was 37.4. Mean antibody titres were significantly higher after infection: 540.3 versus 20.1 in the control group (p < 0.05). Of the 14 infected patients, 13 had mild COVID-19 symptoms and one was asymptomatic. No hospitalisations or deaths were reported. CONCLUSIONS This study reports that SARS-CoV-2 anti-spike antibody titres in double-vaccinated MS patients treated with anti-CD20 therapies were significantly increased post-infection compared with the control group. Patients treated with anti-CD20 therapy who had confirmed infections displayed mild or asymptomatic infection. These results provide reassurance that anti-CD20 therapies in double-vaccinated patients do not preclude an appropriate SARS-CoV-2 antibody response post-infection.
Collapse
Affiliation(s)
- Sharon Stoll
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Shree Desai
- Yale University and Yale New Haven Hospital, New Haven, CT, USA
| | - Elle Levit
- Yale University and Yale New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
26
|
Räuber S, Willison A, Korsen M, Kölsche T, Golombeck KS, Plaack B, Schüller J, Huntemann N, Rolfes L, Schroeter CB, Nelke C, Regner-Nelke L, Förster M, Ringelstein M, Barnett MH, Hartung HP, Aktas O, Albrecht P, Ruck T, Melzer N, Meuth SG, Kremer D. Vaccine-based clinical protection against SARS-CoV-2 infection and the humoral immune response: A 1-year follow-up study of patients with multiple sclerosis receiving ocrelizumab. Front Immunol 2022; 13:1037214. [PMID: 36618356 PMCID: PMC9822773 DOI: 10.3389/fimmu.2022.1037214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
Introduction Given the varying severity of coronavirus disease 2019 (COVID-19) and the rapid spread of Severe-Acute-Respiratory-Syndrome-Corona-Virus-2 (SARS-CoV-2), vaccine-mediated protection of particularly vulnerable individuals has gained increasing attention during the course of the pandemic. Methods We performed a 1-year follow-up study of 51 ocrelizumab-treated patients with multiple sclerosis (OCR-pwMS) who received COVID-19 vaccination in 2021. We retrospectively identified 37 additional OCR-pwMS, 42 pwMS receiving natalizumab, 27 pwMS receiving sphingosine 1-phosphate receptor modulators, 59 pwMS without a disease-modifying therapy, and 61 controls without MS (HC). In OCR-pwMS, anti-SARS-CoV-2(S)-antibody titers were measured prior to the first and after the second, third, and fourth vaccine doses (pv2/3/4). The SARS-CoV-2-specific T cell response was analyzed pv2. SARS-CoV-2 infection status, COVID-19 disease severity, and vaccination-related adverse events were assessed in all pwMS and HC. Results We found a pronounced and increasing anti-SARS-CoV-2(S)-antibody response after COVID-19 booster vaccinations in OCR-pwMS (pv2: 30.4%, pv3: 56.5%, and pv4 90.0% were antibody positive). More than one third of OCR-pwMS without detectable antibodies pv2 developed positive antibodies pv3. 23.5% of OCR-pwMS had a confirmed SARS-CoV-2 infection, of which 84.2% were symptomatic. Infection rates were comparable between OCR-pwMS and control groups. None of the pwMS had severe COVID-19. An attenuated humoral immune response was not associated with a higher risk of SARS-CoV-2 infection. Discussion Additional COVID-19 vaccinations can boost the humoral immune response in OCR-pwMS and improve clinical protection against COVID-19. Vaccines effectively protect even OCR-pwMS without a detectable COVID-19 specific humoral immune response, indicating compensatory, e.g., T cell-mediated immunological mechanisms.
Collapse
Affiliation(s)
- Saskia Räuber
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alice Willison
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Melanie Korsen
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tristan Kölsche
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kristin S. Golombeck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Benedikt Plaack
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Schüller
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Leoni Rolfes
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christina B. Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Liesa Regner-Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Moritz Förster
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Brain and Mind Center, University of Sydney, Sydney, NSW, Australia,Department of Neurology, Medical University of Vienna, Vienna, Austria,Department of Neurology, Palacky University, Olomouc, Czechia
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nico Melzer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,*Correspondence: David Kremer,
| |
Collapse
|
27
|
Dominelli F, Zingaropoli MA, Tartaglia M, Tortellini E, Guardiani M, Perri V, Pasculli P, Ciccone F, Malimpensa L, Baione V, Napoli A, Gaeta A, Lichtner M, Conte A, Mastroianni CM, Ciardi MR. Multiple sclerosis-disease modifying therapies affect humoral and T-cell response to mRNA COVID-19 vaccine. Front Immunol 2022; 13:1050183. [PMID: 36532061 PMCID: PMC9753571 DOI: 10.3389/fimmu.2022.1050183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
Background The mRNA vaccines help protect from COVID-19 severity, however multiple sclerosis (MS) disease modifying therapies (DMTs) might affect the development of humoral and T-cell specific response to vaccination. Methods The aim of the study was to evaluate humoral and specific T-cell response, as well as B-cell activation and survival factors, in people with MS (pwMS) under DMTs before (T0) and after two months (T1) from the third dose of vaccine, comparing the obtained findings to healthy donors (HD). All possible combinations of intracellular IFNγ, IL2 and TNFα T-cell production were evaluated, and T-cells were labelled "responding T-cells", those cells that produced at least one of the three cytokines of interest, and "triple positive T-cells", those cells that produced simultaneously all the three cytokines. Results The cross-sectional evaluation showed no significant differences in anti-S antibody titers between pwMS and HD at both time-points. In pwMS, lower percentages of responding T-cells at T0 (CD4: p=0.0165; CD8: p=0.0022) and triple positive T-cells at both time-points compared to HD were observed (at T0, CD4: p=0.0007 and CD8: p=0.0703; at T1, CD4: p=0.0422 and CD8: p=0.0535). At T0, pwMS showed higher plasma levels of APRIL, BAFF and CD40L compared to HD (p<0.0001, p<0.0001 and p<0.0001, respectively) and at T1, plasma levels of BAFF were still higher in pwMS compared to HD (p=0.0022).According to DMTs, at both T0 and T1, lower anti-S antibody titers in the depleting/sequestering-out compared to the enriching-in pwMS subgroup were found (p=0.0410 and p=0.0047, respectively) as well as lower percentages of responding CD4+ T-cells (CD4: p=0.0394 and p=0.0004, respectively). Moreover, the depleting/sequestering-out subgroup showed higher percentages of IFNγ-IL2-TNFα+ T-cells at both time-points, compared to the enriching-in subgroup in which a more heterogeneous cytokine profile was observed (at T0 CD4: p=0.0187; at T0 and T1 CD8: p =0.0007 and p =0.0077, respectively). Conclusion In pwMS, humoral and T-cell response to vaccination seems to be influenced by the different DMTs. pwMS under depleting/sequestering-out treatment can mount cellular responses even in the presence of a low positive humoral response, although the cellular response seems qualitatively inferior compared to HD. An understanding of T-cell quality dynamic is needed to determine the best vaccination strategy and in general the capability of immune response in pwMS under different DMT.
Collapse
Affiliation(s)
- Federica Dominelli
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Maria Antonella Zingaropoli
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy,*Correspondence: Maria Antonella Zingaropoli,
| | - Matteo Tartaglia
- Department of Human Neurosciences, Multiple Sclerosis Centre, Sapienza, University of Rome, Rome, Italy
| | - Eeva Tortellini
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Mariasilvia Guardiani
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Valentina Perri
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Patrizia Pasculli
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Federica Ciccone
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Leonardo Malimpensa
- Department of Human Neurosciences, Multiple Sclerosis Centre, Sapienza, University of Rome, Rome, Italy
| | - Viola Baione
- Department of Human Neurosciences, Multiple Sclerosis Centre, Sapienza, University of Rome, Rome, Italy
| | - Anna Napoli
- Department of Molecular medicine, Sapienza, University of Rome, Rome, Italy
| | - Aurelia Gaeta
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza, University of Rome, Latina, Italy,Department of Neurosciences Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Multiple Sclerosis Centre, Sapienza, University of Rome, Rome, Italy,Scientific Hospitalization and Treatment Institute, Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
| | | | - Maria Rosa Ciardi
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
28
|
Idda ML, Pitzalis M, Lodde V, Loizedda A, Frau J, Lobina M, Zoledziewska M, Virdis F, Delogu G, Marini MG, Mingoia M, Masala M, Lorefice L, Fronza M, Carmagnini D, Carta E, Pilotto S, Castiglia P, Chessa P, Uzzau S, Farina G, Solla P, Steri M, Devoto M, Fiorillo E, Floris M, Zarbo RI, Cocco E, Cucca F. Cross-sectional analysis of the humoral response after SARS-CoV-2 vaccination in Sardinian multiple sclerosis patients, a follow-up study. Front Immunol 2022; 13:946356. [PMID: 36059537 PMCID: PMC9433902 DOI: 10.3389/fimmu.2022.946356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Monitoring immune responses to SARS-CoV-2 vaccination and its clinical efficacy over time in Multiple Sclerosis (MS) patients treated with disease-modifying therapies (DMTs) help to establish the optimal strategies to ensure adequate COVID-19 protection without compromising disease control offered by DMTs. Following our previous observations on the humoral response one month after two doses of BNT162b2 vaccine (T1) in MS patients differently treated, here we present a cross-sectional and longitudinal follow-up analysis six months following vaccination (T2, n=662) and one month following the first booster (T3, n=185). Consistent with results at T1, humoral responses were decreased in MS patients treated with fingolimod and anti-CD20 therapies compared with untreated patients also at the time points considered here (T2 and T3). Interestingly, a strong upregulation one month after the booster was observed in patients under every DMTs analyzed, including those treated with fingolimod and anti-CD20 therapies. Although patients taking these latter therapies had a higher rate of COVID-19 infection five months after the first booster, only mild symptoms that did not require hospitalization were reported for all the DMTs analyzed here. Based on these findings we anticipate that additional vaccine booster shots will likely further improve immune responses and COVID-19 protection in MS patients treated with any DMT.
Collapse
Affiliation(s)
- Maria Laura Idda
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
- *Correspondence: Maristella Pitzalis, ; Maria Laura Idda,
| | - Maristella Pitzalis
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
- *Correspondence: Maristella Pitzalis, ; Maria Laura Idda,
| | - Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Annalisa Loizedda
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Jessica Frau
- Regional Multiple Sclerosis Center, Azienda Sanitaria Locale (ASL) Cagliari, Cagliari, Italy
| | - Monia Lobina
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Magdalena Zoledziewska
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Francesca Virdis
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Giuseppe Delogu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Maura Mingoia
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Marco Masala
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Lorena Lorefice
- Regional Multiple Sclerosis Center, Azienda Sanitaria Locale (ASL) Cagliari, Cagliari, Italy
| | - Marzia Fronza
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniele Carmagnini
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Elisa Carta
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Silvy Pilotto
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Paolo Castiglia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Paola Chessa
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Clinical Microbiology, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
| | - Gabriele Farina
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
| | - Paolo Solla
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
| | - Maristella Steri
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Marcella Devoto
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
- Dipartimento di Medicina Traslazionale e di Precisione, Università la Sapienza, Rome, Italy
| | - Edoardo Fiorillo
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Roberto Ignazio Zarbo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
| | - Eleonora Cocco
- Regional Multiple Sclerosis Center, Azienda Sanitaria Locale (ASL) Cagliari, Cagliari, Italy
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesco Cucca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|