1
|
Lee AH, Rodriguez Jimenez DM, Meisel M. Limosilactobacillus reuteri - a probiotic gut commensal with contextual impact on immunity. Gut Microbes 2025; 17:2451088. [PMID: 39825615 DOI: 10.1080/19490976.2025.2451088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
The gut microbiome plays a key role in human health, influencing various biological processes and disease outcomes. The historical roots of probiotics are traced back to Nobel Laureate Élie Metchnikoff, who linked the longevity of Bulgarian villagers to their consumption of sour milk fermented by Lactobacilli. His pioneering work led to the global recognition of probiotics as beneficial supplements, now a multibillion-dollar industry. Modern probiotics have been extensively studied for their immunomodulatory effects. Limosilactobacillus reuteri (L. reuteri), a widely used probiotic, has garnered significant attention for its systemic immune-regulatory properties, particularly in relation to autoimmunity and cancer. This review delves into the role of L. reuteri in modulating immune responses, with a focus on its impact on systemic diseases.
Collapse
Affiliation(s)
- Amanda H Lee
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Yang B, Rutkowski N, Ruta A, Gray-Gaillard E, Maestas DR, Kelly SH, Krishnan K, Wu X, Wu S, Chen A, Mejías JC, Hooks JST, Vanderzee I, Mensah P, Celik N, Eric M, Abraham P, Tam A, Housseau F, Pardoll DM, Sears CL, Elisseeff JH. Murine gut microbiota dysbiosis via enteric infection modulates the foreign body response to a distal biomaterial implant. Proc Natl Acad Sci U S A 2025; 122:e2422169122. [PMID: 40354538 DOI: 10.1073/pnas.2422169122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response and fibrosis is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via infection with the pathogenic bacterial species enterotoxigenic Bacteroides fragilis (ETBF) and implanted particulate material (mean particle size <600 μm) of the synthetic polymer polycaprolactone (PCL) into a distal muscle injury. ETBF infection in mice led to increased neutrophil and γδ T cell infiltration into the PCL implant site. ETBF infection alone promoted systemic inflammation, increased levels of neutrophils in lymphoid tissues, and altered skeletal muscle gene expression. At the PCL implant site, we found significant changes in the transcriptome of sorted stromal cells between infected and control mice, including differences related to ECM components such as proteoglycans and glycosaminoglycans. However, we did not observe ETBF-induced differences in fibrosis levels. These results demonstrate the ability of the gut microbiota to mediate long-distance effects such as immune and stromal responses to a distal biomaterial implant.
Collapse
Affiliation(s)
- Brenda Yang
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Natalie Rutkowski
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Anna Ruta
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Elise Gray-Gaillard
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - David R Maestas
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Sean H Kelly
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Kavita Krishnan
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Xinqun Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Allen Chen
- Department of Biomedical Engineering, Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218
| | - Joscelyn C Mejías
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Joshua S T Hooks
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Isabel Vanderzee
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Patricia Mensah
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Nazmiye Celik
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Marie Eric
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Peter Abraham
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
| | - Ada Tam
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Franck Housseau
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Drew M Pardoll
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287
| | - Jennifer H Elisseeff
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
3
|
Lawrence DA, O'Sullivan B, Graf J, Hogan A, Herbest KW, Salazar JC. The biological and sociological implications of diversity, equity, and inclusion (DEI): life within microbiomes and on earth. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025:1-9. [PMID: 40298084 DOI: 10.1080/10937404.2025.2497826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
From a biological point of view, Diversity, Equity, and Inclusion (DEI) are important at multiple levels, which include our genetics, microbiomes, diets, and all organ system interactions. Considering only DEI's sociological aspects is equivalent to the error of "throwing out the baby with the bath water." Variances in microbial diversity within our microbiomes might affect our health through systemic interactions affecting metabolites, maintaining immune homeostasis, and wound healing of cellular damage from an infection, physical stress, or psychological trauma. An imbalance of our immune cell subsets, both innate and adaptive, and the microbes in any of our microbiomes might lead to more cellular damage from excessive inflammation and oxidative stress and less immune regulation. The immune dysregulation may occur due to the loss of endometrial barriers enabling the spread of microbes, environmental pollutants, and allergens. Heat waves, sleep deprivation, and increased prevalence of pollutants such as polychlorinated biphenyls, which weaken endothelial barriers, may be responsible for the enhanced prevalence of physical and psychological stresses. Leakage of our useful gut microbiota into the periphery might initiate inflammatory responses, and an altered gut microbiome might affect the gut-brain axis that influences physical and mental health.
Collapse
Affiliation(s)
- David A Lawrence
- Department of Environmental Health, University at Albany, Albany, NY, USA
- Department of Environmental Health, New York State Department of Health, Albany, NY, USA
| | - Brandon O'Sullivan
- Department of Environmental Health, University of Hawaii Manoa, Honolulu, HI, USA
| | - Joerg Graf
- Department of Environmental Health, University of Hawaii Manoa, Honolulu, HI, USA
| | - Alex Hogan
- Pediatrics, Connecticut Children's Medical Center, Hartford, USA
- Pediatrics, UConn Health, Farmington, USA
| | - Katherine W Herbest
- Pediatrics, Connecticut Children's Medical Center, Hartford, USA
- Pediatrics, UConn Health, Farmington, USA
| | - Juan C Salazar
- Pediatrics, Connecticut Children's Medical Center, Hartford, USA
- Pediatrics, UConn Health, Farmington, USA
| |
Collapse
|
4
|
Darvishi S, Donnachie E, Uibel PA, Flaskamp M, Gasperi C, Hapfelmeier A, Hemmer B. Antibiotic drug use in the five years preceding the diagnosis of multiple sclerosis. Mult Scler Relat Disord 2025; 96:106366. [PMID: 40043555 DOI: 10.1016/j.msard.2025.106366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Microbiota may play a role in autoimmune disease pathogenesis, including multiple sclerosis (MS). Antibiotic use disrupts the microbiome and may increase the risk of autoimmune diseases. We evaluated the relationship between MS diagnosis and antibiotic, antimycotic and antiviral drug use in the 5 years preceding diagnosis. METHOD Our population-based case-control study used German ambulatory claims data from 2012 to 2022. We defined cohorts of 13,053 MS patients, 22,898 Crohn's disease patients, and 15,037 matched controls without autoimmune diseases, aged 21-70. Logistic and Poisson regression models explored the relationship between MS diagnosis and antimicrobial usage. Two sub-analyses were performed: a separate analysis of patients with clinically isolated syndrome (CIS) and a sensitivity analysis of newly diagnosed MS patients without preceding neurological symptoms. RESULTS Patients with MS had higher exposure to antibiotic (Odd Ratio (OR) = 1.27, 95 % CI 1.21-1.33), antimycotic (OR = 1.27, 95 % CI 1.12-1.45), and antiviral drugs (OR = 1.28, 95 % CI 1.15-1.43) in the five years before diagnosis compared to patients with no autoimmune diseases. Similar findings were obtained for the CIS cohort and in the sensitivity analysis. Antibiotic use peaked 5 years before MS diagnosis, declining closer to diagnosis, while antiviral and antimycotic drug use showed the opposite. This effect was not observed in the sensitivity analysis and CIS cohorts. Antibiotic use was higher in Crohn's disease than in MS (OR = 0.86, 95 % CI 0.82-0.90), with no consistent differences in antimycotic and antiviral use. CONCLUSIONS The association and kinetic of antibiotic use before MS and CIS diagnosis supports the role of microbiota in MS pathogenesis and suggests antibiotic use to be related to the development of autoimmune diseases, including MS. Additional studies are warranted to clarify whether increased antibiotic use is part of the MS prodrome or a true risk factor for MS.
Collapse
Affiliation(s)
- Sonia Darvishi
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Ewan Donnachie
- Bavarian Association of Statutory Health Insurance Physicians, Munich, Germany
| | - Paula Anne Uibel
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Martina Flaskamp
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christiane Gasperi
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Alexander Hapfelmeier
- Institute of General Practice and Health Services Research, School of Medicine and Health, Technical University of Munich, Munich, Germany; Institute of AI and Informatics in Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Munich Center for Health Economics and Policy (M-CHEP), Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
5
|
Shang C, Ji S, Hao W, Wei X, Yu J, Liu J, Zhang B. Changes in the metabolome, lipidomein, and gut microbiota in Behçet's disease. Front Cell Dev Biol 2025; 13:1530996. [PMID: 40235731 PMCID: PMC11997388 DOI: 10.3389/fcell.2025.1530996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/17/2025] [Indexed: 04/17/2025] Open
Abstract
Backgrounds There is growing evidence that autoimmune illnesses are associated with the metabolome and microbiota. Because Behçet's disease (BD) is not often diagnosed as a systemic disorder, the aim of this research was to investigate changes in gut flora and metabolites in BD patients. Methods We used 16S rRNA gut microbiota gene sequencing and UPLC-QTOF-MS analysis to gather stool and serum samples from 12 age-matched healthy controls and 17 BD patients. The correlation between changes in gut microbiota and metabolites was then further analyzed. Results In contrast to healthy controls, our investigation revealed significant changes in the makeup of gut flora in BD patients. In particular, we observed that in the BD group, there was a large drop in clostridia but a noticeable rise in γ-proteobacteria and betaproteobacteria. The serum metabolomics profiles of BD patients and healthy controls may be reliably differentiated using unsupervised principal component analysis (PCA). Several metabolites, including L-phenylalaine, tricarballylic acid, beta-leucine, ketoleucine, ascorbic acid, l-glutamic acid, l-malic acid, d-glucopyranuronic acid, and methyl acetoacetate, were found to have differential expression between BD patients and healthy controls. All of these metabolites were significantly lower in the BD group. Furthermore, we discovered strong associations between the detected metabolites such as tricarballylic acid, L-malic acid, D-glucopyranuronic acid with certain microbial families, such Prevotellaceae and Alcaligenaceae. Conclusion Patients with BD were found to have significant changes in the makeup of their gut flora and metabolites.
Collapse
Affiliation(s)
- Chen Shang
- Department of Rheumatology and immunology, Xuzhou First People’s Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sujuan Ji
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People’s Hospital, Institute of Eye Disease Prevention and Treatment of Xuzhou, Xuzhou, Jiangsu, China
| | - Wenting Hao
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangyu Wei
- Department of Rheumatology and immunology, Xuzhou First People’s Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiani Yu
- Department of Rheumatology and immunology, Xuzhou First People’s Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiayi Liu
- Department of Rheumatology and immunology, Xuzhou First People’s Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Baoguo Zhang
- Department of Rheumatology and immunology, Xuzhou First People’s Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
6
|
Perrone P, D’Angelo S. Gut Microbiota Modulation Through Mediterranean Diet Foods: Implications for Human Health. Nutrients 2025; 17:948. [PMID: 40289944 PMCID: PMC11944315 DOI: 10.3390/nu17060948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/30/2025] Open
Abstract
The Mediterranean diet (MD) is widely recognized for its health benefits, particularly in modulating gut microbiota composition and reducing the risk of metabolic, cardiovascular, and neurodegenerative diseases. Characterized by a high intake of plant-based foods, monounsaturated fats, and polyphenols, primarily from extra virgin olive oil, the MD fosters the growth of beneficial gut bacteria such as Bifidobacterium, Faecalibacterium prausnitzii, and Roseburia, which produce short-chain fatty acids that enhance gut barrier integrity, reduce inflammation, and improve metabolic homeostasis. Clinical and preclinical studies have proved that the MD is associated with increased microbial diversity, reduced pro-inflammatory bacteria, and improved markers of insulin sensitivity, lipid metabolism, and cognitive function. Additionally, the MD positively influences the gut microbiota in various conditions, including obesity, cardiovascular disease, and neurodegeneration, potentially mitigating systemic inflammation and enhancing neuroprotective mechanisms. Emerging evidence suggests that MD variants, such as the Green-MD, and their integration with probiotics can further optimize gut microbiota composition and metabolic parameters. While the beneficial impact of the MD on the gut microbiota and overall health is well supported, further long-term clinical trials are needed to better understand individual variability and improve dietary interventions tailored to different populations.
Collapse
Affiliation(s)
| | - Stefania D’Angelo
- Department of Medical, Movement, and Wellbeing Sciences, Parthenope University of Naples, 80133 Naples, Italy;
| |
Collapse
|
7
|
Pai VV, Sarath AP, Kerkar Z. Gut microbiome in dermatology - A narrative review. Indian J Dermatol Venereol Leprol 2025; 0:1-11. [PMID: 40357977 DOI: 10.25259/ijdvl_1094_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/08/2024] [Indexed: 05/15/2025]
Abstract
The gut microbiome and human body have co-evolved in a synergistic host-microbial relationship. The ideal composition of human gut microbiota is an elusive concept, but every individual has a unique gut microbiota profile with regional differences. Newer diagnostic techniques have helped identify different bacteria and their roles in health and disease. The gut microbiome composition is affected by various factors like age, diet, immune system, environmental factors, exercise, and drugs. The microbiome has varied roles in metabolism, immune response, immune tolerance and antimicrobial protection. Diet plays an important role in maintaining the gut microbial diversity. Loss of homoeostasis in the microbiome results in dysbiosis. Dysbiosis plays a role in many dermatological diseases like atopic dermatitis, psoriasis, acne, rosacea, hidradenitis suppurativa, connective tissue disorders and many other systemic conditions like obesity, diabetes, neurological disease and malignancy. Reconstitution of the gut microbiome ecology in the form of bacteriotherapy with the reintegration of certain strains of microbiota has a beneficial role in many of these disorders.
Collapse
Affiliation(s)
| | | | - Zenia Kerkar
- Department of Dermatology, Goa Medical College, Bambolim, India
| |
Collapse
|
8
|
Kelley K, Dogru D, Huang Q, Yang Y, Palm NW, Altindis E, Ludvigsson J. Children who develop celiac disease are predicted to exhibit distinct metabolic pathways among their gut microbiota years before diagnosis. Microbiol Spectr 2025; 13:e0146824. [PMID: 39902908 PMCID: PMC11878042 DOI: 10.1128/spectrum.01468-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Celiac disease (CD) is an autoimmune disease caused by a loss of gluten tolerance in genetically predisposed individuals. While 30%-40% of people possess the predisposing alleles, only 1%-2% are diagnosed with CD, suggesting that environmental factors are involved in disease pathogenesis. To determine an association between pediatric CD and the gut microbiome, we analyzed fecal samples from a prospective cohort study (ABIS). These samples were collected from children who later developed CD (CD progressors) and age-matched healthy children (at ages 1, 2.5, and 5) with similar HLA genotypes, breastfeeding durations, and gluten exposure times. We previously reported gut microbiome differences at ages 2.5 and 5 in this cohort; here, we present findings from samples collected at age 1 (n = 5). We identified 14 ASVs differing significantly between CD progressors and controls, including taxa linked to CD pathogenesis. CD progressors had increased Firmicutes and higher alpha diversity in IgA- bacteria. Using PICRUSt, we analyzed metabolic pathways enriched in CD progressors compared to controls at ages 1, 2.5, and 5 (n = 5-16), revealing enriched inflammatory and pathogenic pathways potentially contributing to CD-related immune dysregulation. While results are based on the primary EdgeR analysis, we also applied a non-parametric method of statistical analysis, reporting those results with supplementary figures. In conclusion, our findings suggest distinct metabolic pathways enriched in the gut microbiome of CD progressors years before diagnosis, which could inform targeted therapeutics for CD. As discussed in the limitations section, this small pilot study should be replicated with larger sample sizes for broader generalization. IMPORTANCE We analyzed gut microbiome data from children who later developed celiac disease (CD progressors) compared to healthy children in the first 5 years of life. Using fecal samples corresponding to the three phases of gut microbiome development, we uncovered enriched functional microbial pathways in CD progressors at age 1. Some of these pathways, implicated in bacterial pathogenesis, microbiota modulation, and inflammation, have been correlated with CD. We also identified taxa in CD progressors at age 1 including Lachnospiraceae, Alistipes, and Bifidobacterium dentium that were previously associated with CD. These findings suggest a potential role for these taxa and enriched pathways in pediatric CD onset years before diagnosis, highlighting potential for early interventions. While the findings of this exploratory study should be validated with larger sample sizes, our study suggests microbial metabolic pathways related to CD onset, enhancing our understanding of CD pathogenesis and the role of gut microbiome-mediated early alterations.
Collapse
Affiliation(s)
- Kristina Kelley
- Boston College Biology Department, Chestnut Hill, Massachusetts, USA
| | - Dogus Dogru
- Boston College Biology Department, Chestnut Hill, Massachusetts, USA
| | - Qian Huang
- Boston College Biology Department, Chestnut Hill, Massachusetts, USA
| | - Yi Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Noah W. Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, Massachusetts, USA
| | - Johnny Ludvigsson
- Crown Princess Victoria’s Children’s Hospital, Region Östergötland, Linköping, Sweden
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Pardali EC, Gkouvi A, Gkouskou KK, Manolakis AC, Tsigalou C, Goulis DG, Bogdanos DP, Grammatikopoulou MG. Autoimmune protocol diet: A personalized elimination diet for patients with autoimmune diseases. Metabol Open 2025; 25:100342. [PMID: 39850611 PMCID: PMC11755016 DOI: 10.1016/j.metop.2024.100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/25/2025] Open
Abstract
The autoimmune protocol diet (AIP) is a personalized elimination diet that aims to determine and exclude the foods that might trigger immune responses, leading to inflammation and symptomatology associated with autoimmune diseases. Focusing on gut health and the importance of the gut microbiome in immune regulation and overall well-being, the AIP starts by eliminating foods that might create negative effects on the patients and continues by developing a personalized and tailored diet plan for them. This comprehensive approach aims to mitigate symptoms and improve quality of life of individuals with autoimmune conditions. This review presents and critically appraises current knowledge on the AIP protocol, highlight any oversights, and discuss findings from relevant clinical trials.
Collapse
Affiliation(s)
- Eleni C. Pardali
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | - Arriana Gkouvi
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | - Kalliopi K. Gkouskou
- Department of Biology, Medical School, National and Kapodistrian University of Athens, Goudi Campus, Athens, Greece
- GENOSOPHY P.C., Athens, Greece
| | | | - Christina Tsigalou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, University Hospital, Alexandroupolis, Greece
| | - Dimitrios G. Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios P. Bogdanos
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | - Maria G. Grammatikopoulou
- Unit of Immunonutrition and Clinical Nutrition, Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Ioannou A, Berkhout MD, Geerlings SY, Belzer C. Akkermansia muciniphila: biology, microbial ecology, host interactions and therapeutic potential. Nat Rev Microbiol 2025; 23:162-177. [PMID: 39406893 DOI: 10.1038/s41579-024-01106-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 01/03/2025]
Abstract
Akkermansia muciniphila is a gut bacterium that colonizes the gut mucosa, has a role in maintaining gut health and shows promise for potential therapeutic applications. The discovery of A. muciniphila as an important member of our gut microbiome, occupying an extraordinary niche in the human gut, has led to new hypotheses on gut health, beneficial microorganisms and host-microbiota interactions. This microorganism has established a unique position in human microbiome research, similar to its role in the gut ecosystem. Its unique traits in using mucin sugars and mechanisms of action that can modify host health have made A. muciniphila a subject of enormous attention from multiple research fields. A. muciniphila is becoming a model organism studied for its ability to modulate human health and gut microbiome structure, leading to commercial products, a genetic model and possible probiotic formulations. This Review provides an overview of A. muciniphila and Akkermansia genus phylogeny, ecophysiology and diversity. Furthermore, the Review discusses perspectives on ecology, strategies for harnessing beneficial effects of A. muciniphila for human mucosal metabolic and gut health, and its potential as a biomarker for diagnostics and prognostics.
Collapse
Affiliation(s)
- Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sharon Y Geerlings
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Kiouri DP, Batsis GC, Mavromoustakos T, Giuliani A, Chasapis CT. Structure-Based Modeling of the Gut Bacteria-Host Interactome Through Statistical Analysis of Domain-Domain Associations Using Machine Learning. BIOTECH 2025; 14:13. [PMID: 40227324 PMCID: PMC11940256 DOI: 10.3390/biotech14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiome, a complex ecosystem of microorganisms, plays a pivotal role in human health and disease. The gut microbiome's influence extends beyond the digestive system to various organs, and its imbalance is linked to a wide range of diseases, including cancer and neurodevelopmental, inflammatory, metabolic, cardiovascular, autoimmune, and psychiatric diseases. Despite its significance, the interactions between gut bacteria and human proteins remain understudied, with less than 20,000 experimentally validated protein interactions between the host and any bacteria species. This study addresses this knowledge gap by predicting a protein-protein interaction network between gut bacterial and human proteins. Using statistical associations between Pfam domains, a comprehensive dataset of over one million experimentally validated pan-bacterial-human protein interactions, as well as inter- and intra-species protein interactions from various organisms, were used for the development of a machine learning-based prediction method to uncover key regulatory molecules in this dynamic system. This study's findings contribute to the understanding of the intricate gut microbiome-host relationship and pave the way for future experimental validation and therapeutic strategies targeting the gut microbiome interplay.
Collapse
Affiliation(s)
- Despoina P. Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Georgios C. Batsis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| |
Collapse
|
12
|
Parodi E, Novi M, Bottino P, La Porta E, Merlotti G, Castello LM, Gotta F, Rocchetti A, Quaglia M. The Complex Role of Gut Microbiota in Systemic Lupus Erythematosus and Lupus Nephritis: From Pathogenetic Factor to Therapeutic Target. Microorganisms 2025; 13:445. [PMID: 40005809 PMCID: PMC11858628 DOI: 10.3390/microorganisms13020445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The role of gut microbiota (GM) and intestinal dysbiosis in triggering the onset and/or modulating the severity and progression of lupus nephritis (LN) has been the object of intense research over the last few years. Some alterations at the phyla level, such as the abundance of Proteobacteria and reduction in Firmicutes/Bacteroidetes (F/B) ratio and in α-diversity have been consistently reported in systemic lupus erythematosus (SLE), whereas a more specific role has been ascribed to some species (Bacteroides thetaiotaomicron and Ruminococcus gnavus) in LN. Underlying mechanisms include microbial translocation through a "leaky gut" and subsequent molecular mimicry, immune dysregulation (alteration of IFNγ levels and of balance between Treg and Th17 subsets), and epigenetic interactions. Levels of bacterial metabolites, such as butyrate and other short-chain fatty acids (SCFAs), appear to play a key role in modulating LN. Beyond bacterial components of GM, virome and mycobiome are also increasingly recognized as important players in the modulation of an immune response. On the other hand, microbiota-based therapy appears promising and includes diet, prebiotics, probiotics, symbiotics, and fecal microbiota transplantation (FMT). The modulation of microbiota could correct critical alterations, such as F/B ratio and Treg/Th17 imbalance, and blunt production of autoantibodies and renal damage. Despite current limits, GM is emerging as a powerful environmental factor that could be harnessed to interfere with key mechanisms leading to SLE, preventing flares and organ damage, including LN. The aim of this review is to provide a state-of-the-art analysis of the role of GM in triggering and modulating SLE and LN on the one hand, while exploring possible therapeutic manipulation of GM to control the disease on the other hand.
Collapse
Affiliation(s)
- Emanuele Parodi
- Nephrology and Dialysis Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
| | - Marialuisa Novi
- Gastroenterology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
| | - Paolo Bottino
- Microbiology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy; (F.G.); (A.R.)
| | - Edoardo La Porta
- Nephrology and Dialysis Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Guido Merlotti
- Department of Primary Care, Azienda Socio Sanitaria Territoriale (ASST) of Pavia, 27100 Pavia, Italy;
| | - Luigi Mario Castello
- Internal Medicine Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Franca Gotta
- Microbiology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy; (F.G.); (A.R.)
| | - Andrea Rocchetti
- Microbiology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy; (F.G.); (A.R.)
| | - Marco Quaglia
- Nephrology and Dialysis Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
13
|
Di Mattia M, Sallese M, Lopetuso LR. Unfolded protein response: An essential element of intestinal homeostasis and a potential therapeutic target for inflammatory bowel disease. Acta Physiol (Oxf) 2025; 241:e14284. [PMID: 39822064 DOI: 10.1111/apha.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Different physiological and pathological situations can produce alterations in the cell's endoplasmic reticulum (ER), leading to a condition known as ER stress, which can trigger an intricate intracellular signal transduction system known as the unfolded protein response (UPR). UPR is primarily tailored to restore proteostasis and ER equilibrium; otherwise, if ER stress persists, it can cause programmed cell death as a cytoprotective mechanism and drive inflammatory processes. Therefore, since intestinal cells strongly rely on UPR for their biological functions and unbalanced UPR has been linked to inflammatory, metabolic, and immune disorders, here we discussed the role of the UPR within the intestinal tract, focusing on the UPR contribution to inflammatory bowel disease development. Importantly, we also highlighted the promising potential of UPR components as therapeutic targets for intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
14
|
Chen J, Pan Q, Lu L, Huang X, Wang S, Liu X, Lun J, Xu X, Su H, Guo F, Yang L, You L, Xiao H, Luo W, Liu HF, Pan Q. Atg5 deficiency in basophils improves metabolism in lupus mice by regulating gut microbiota dysbiosis. Cell Commun Signal 2025; 23:40. [PMID: 39844180 PMCID: PMC11756211 DOI: 10.1186/s12964-025-02041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/12/2025] [Indexed: 01/24/2025] Open
Abstract
Autophagic activation in immune cells, gut microbiota dysbiosis, and metabolic abnormalities have been reported separately as characteristics of systemic lupus erythematosus (SLE). Elucidating the crosstalk among the immune system, commensal microbiota, and metabolites is crucial to understanding the pathogenesis of autoimmune diseases. Emerging evidence shows that basophil activation plays a critical role in the pathogenesis of SLE; however, the underlying mechanisms remain largely unknown. Here, we investigated the effects of autophagic inhibition on the pathogenesis of basophils in SLE using Autophagy-related gene 5 (Atg5) knockout (Atg5-/-) as an autophagic inhibitor. Specifically, we knocked out basophilic Atg5 in vivo to investigate its impact on lupus metabolism. Furthermore, Atg5-/- basophils were transferred to basophil-depleted MRL/MpJ-Faslpr (MRL/lpr) mice to study their effect on disease metabolism. Metagenomic and targeted metabolomic sequencing results indicated considerable reduction in the levels of plasma autoantibodies and inflammatory cytokines in the Atg5-/- basophil transfer group compared with that in the control group. Transplanting Atg5-/- basophils improved the gut microbiota balance in MRL/lpr mice, increasing the abundance of beneficial bacteria, such as Ligilactobacillus murinus and Faecalitalea rodentium, and reducing that of potentially pathogenic bacteria such as Phocaeicola salanitronis. The transplantation of Atg5-deficient basophils improved lupus symptoms by modulating lipid and amino acid metabolism. This improvement was linked to changes in the gut microbiota, particularly an increase in Ligilactobacillus murinus and Faecalitalea rodentium populations. These microbial shifts are believed to promote the production of beneficial metabolites, such as γ-linolenic acid and oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine, while reducing the levels of harmful metabolites such as arginine. These alterations in the metabolic profile contribute to the alleviation of lupus symptoms. Collectively, these findings reveal a novel role of basophil autophagy in SLE, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jiaxuan Chen
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Quanren Pan
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lu Lu
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Huang
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuting Wang
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoxian Liu
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Lun
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaowei Xu
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hongyong Su
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lawei Yang
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liuyong You
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyan Xiao
- Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wenying Luo
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Qingjun Pan
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Terracina S, Caronti B, Lucarelli M, Francati S, Piccioni MG, Tarani L, Ceccanti M, Caserta M, Verdone L, Venditti S, Fiore M, Ferraguti G. Alcohol Consumption and Autoimmune Diseases. Int J Mol Sci 2025; 26:845. [PMID: 39859557 PMCID: PMC11766456 DOI: 10.3390/ijms26020845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Alcohol is the second-most misused substance after tobacco. It has been identified as a causal factor in more than 200 diseases and 5.3% of all deaths and is associated with significant behavioral, social, and economic difficulties. As alcohol consumption may modulate the immune system's regulatory mechanisms to avoid attacking the body's tissues, it has been proven to play a dichotomic role in autoimmune diseases (ADs) based on the quantity of consumption. In this review, we report updated evidence on the role of alcohol in ADs, with a focus on alcohol addiction and the human biological immune system and the relationship between them, with alcohol as a risk or protective factor. Then, in this narrative review, we report the main evidence on the most studied ADs where alcohol represents a key modulator, including autoimmune thyroiditis, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, diabetes, allergic rhinitis, and primary biliary cholangitis. Alcohol at low-moderate dosages seems mostly to have a protective role in these diseases, while at higher dosages, the collateral risks surpass possible benefits. The specific mechanisms by which low-to-moderate alcohol intake relieves AD symptoms are not yet fully understood; however, emerging studies suggest that alcohol may have a systemic immunomodulatory effect, potentially altering the balance of anti-inflammatory innate and adaptive immune cells, as well as cytokines (via the NF-κB or NLRP3 pathways). It might influence the composition of the gut microbiome (increasing amounts of beneficial gut microbes) and the production of their fatty acid metabolites, such as short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs), as well as elevated concentrations of acetate, high-density lipoprotein (HDL), and nitric oxide (NO). Unfortunately, a definite acceptable daily intake (ADI) of ethanol is complicated to establish because of the many mechanisms associated with alcohol consumption such that despite the interesting content of these findings, there is a limit to their applicability and risks should be weighed in cases of alcoholic drinking recommendations. The aim of future studies should be to modulate those beneficial pathways involved in the alcohol-protective role of ADs with various strategies to avoid the risks associated with alcohol intake.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University Hospital of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
| | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.G.P.); (L.T.)
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.G.P.); (L.T.)
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, 00185 Rome, Italy;
| | - Micaela Caserta
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00161 Rome, Italy; (M.C.); (L.V.)
| | - Loredana Verdone
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00161 Rome, Italy; (M.C.); (L.V.)
| | - Sabrina Venditti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), c/o Department of Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
| |
Collapse
|
16
|
Huang Y, Zhou Y, He Z, Yang J, Gu J, Cui B, Li S, Deng H, Zhao W, Yang X, Sun F, He C, Pan W. Cellular Senescence Contributes to Colonic Barrier Integrity Impairment Induced by Toxoplasma gondii Infection. Inflammation 2025:10.1007/s10753-024-02213-0. [PMID: 39827329 DOI: 10.1007/s10753-024-02213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Toxoplasma gondii (T. gondii) induces gut barrier integrity impairment, which is crucial to the establishment of long-term infection in hosts. Cellular senescence is an imperative event that drives disease progression. Several studies have indicated that T. gondii induces oxidative stress and cell cycle blockade in the tissues of hosts, suggesting cellular senescence induced by the parasite. Here, we explored whether cell senescence is involved in T. gondii-mediated colonic barrier integrity damage in mice. C57BL/6J mice were infected with 10 cysts of T. gondii. Senolytic therapy (dasatinib and quercetin, DQ, a combination therapy for reducing senescent cells) was given by oral gavage 4 weeks post-infection. Alcian blue staining, immunofluorescence, western blot, quantitative PCR (qPCR), and enzyme-linked immunosorbent assay (ELISA) were employed to evaluate the thickness of the colonic mucus layer, the expression profiles of genes and proteins related to tight junction function and cellular senescence in the colonic tissues, and the levels of serum lipopolysaccharides (LPS), respectively. T. gondii-infected mice exhibited deteriorated secreted mucus, shortened length, decreased expression of zonula occludens-1 (ZO-1) and occludin in the colon, accompanied by elevated levels of serum LPS. Moreover, the infection upregulated cell senescence-related markers (p16INK4A, p21CIP1) while inhibiting Lamin B1 expression. In addition, the expression levels of senescence-associated secretory phenotypes (SASPs), including IL-1β, TNF-α, IL-6, MMP9 and CXCL10, were upregulated post-infection. Notably, reducing cell senescence with DQ administration, significantly ameliorated the colonic pathological alterations induced by T. gondii infection. This study uncovers for the first time that cellular senescence contributes to the colonic barrier integrity damage induced by chronic T. gondii infection. Importantly, we provide evidence that senolytic therapy exerts a therapeutic effect on the intestinal pathological lesions.
Collapse
Affiliation(s)
- Yingting Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yumeng Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhicheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiayi Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianqi Gu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bingqian Cui
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Siyu Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Heng Deng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wendi Zhao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
17
|
Yang B, Rutkowski N, Ruta A, Gray-Gaillard E, Maestas DR, Kelly SH, Krishnan K, Wu X, Wu S, Chen A, Amelung CD, Mejías JC, Hooks JST, Vanderzee I, Mensah P, Celik N, Eric M, Abraham P, Tam A, Gerecht S, Housseau F, Pardoll DM, Sears CL, Elisseeff JH. Murine gut microbiota dysbiosis via enteric infection modulates the foreign body response to a distal biomaterial implant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632473. [PMID: 39868312 PMCID: PMC11760420 DOI: 10.1101/2025.01.13.632473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response (FBR) and fibrosis around medical implants is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via enterotoxigenic Bacteroides fragilis (ETBF) infection and implanted the synthetic polymer polycaprolactone (PCL) into a distal muscle injury. ETBF infection in mice led to increased neutrophil and γδ T cell infiltration into the PCL implant site. ETBF infection alone promoted systemic inflammation and increased levels of neutrophils in the blood, spleen, and bone marrow. At the PCL implant site, we found significant changes in the transcriptome of sorted fibroblasts but did not observe gross ETBF- induced differences in the fibrosis levels after 6 weeks. These results demonstrate the ability of the gut microbiota to mediate long-distance effects such as immune and stromal responses to a distal biomaterial implant. Significance Statement The foreign body response to implants leads to chronic inflammation and fibrosis that can be highly variable in the general patient population. Here, we demonstrate that gut dysbiosis via enteric infection promoted systemic inflammation and increased immune cell recruitment to an anatomically distant implant site. These results implicate the gut microbiota as a potential source of variability in the clinical biomaterial response and illustrate that the local tissue environment can be influenced by host factors that modulate systemic interactions.
Collapse
|
18
|
Gougeon ML, Seffer V, Hoxha C, Maillart E, Popoff MR. Does Clostridium Perfringens Epsilon Toxin Mimic an Auto-Antigen Involved in Multiple Sclerosis? Toxins (Basel) 2025; 17:27. [PMID: 39852980 PMCID: PMC11768822 DOI: 10.3390/toxins17010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated neurological disorder, characterized by progressive demyelination and neuronal cell loss in the central nervous system. Many possible causes of MS have been proposed, including genetic factors, environmental triggers, and infectious agents. Recently, Clostridium perfringens epsilon toxin (ETX) has been incriminated in MS, based initially on the isolation of the bacteria from a MS patient, combined with an immunoreactivity to ETX. To investigate a putative causative role of ETX in MS, we analyzed the pattern of antibodies reacting to the toxin using a sensitive qualitative assay. This prospective observational study included one hundred patients with relapsing remitting multiple sclerosis (RRMS), all untreated, and ninety matched healthy controls. By assessing the isotypic pattern and serum concentration of ETX-reacting antibodies, our study shows a predominant IgM response over IgG and IgA antibody responses both in MS patients and controls, and significantly higher levels of IgM reacting to ETX in MS patients compared to the control group. A longitudinal follow-up of ETX-specific antibody response in a subgroup of MS patients did not show any correlation with disease evolution. Overall, these unexpected findings are not compatible with a specific recognition of ETX by serum antibodies from MS patients. They rather argue for a cross immunological reactivity with an antigen, possibly an autoantigen, mimicking ETX. Thus, our data argue against the hypothesis of a causal relationship between C. perfringens ETX and MS.
Collapse
Affiliation(s)
- Marie-Lise Gougeon
- Unité Immunité Innée et Virus, Institut Pasteur, 25-28 rue du Dr. Roux, 75724 Paris, Cedex 15, France;
| | - Valérie Seffer
- Unité Immunité Innée et Virus, Institut Pasteur, 25-28 rue du Dr. Roux, 75724 Paris, Cedex 15, France;
| | - Cezarela Hoxha
- Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, 75015 Paris, France; (C.H.); (M.R.P.)
| | - Elisabeth Maillart
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière, Multiple Sclerosis Center, 75015 Paris, France;
| | - Michel R. Popoff
- Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, 75015 Paris, France; (C.H.); (M.R.P.)
| |
Collapse
|
19
|
Comi L, Giglione C, Klinaku FT, Pialorsi F, Tollemeto V, Zurlo M, Seneci A, Magni P. Valorizing Agro‐Food Waste for Nutraceutical Development: Sustainable Approaches for Managing Metabolic Dysfunction‐Associated Steatotic Liver Disease and Related Co‐Morbidities. FOOD FRONTIERS 2024. [DOI: 10.1002/fft2.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
ABSTRACTThis comprehensive investigation delves into the interconnectedness of different features of cardiometabolic syndrome, such as metabolic dysfunction‐associated steatotic liver disease (MASLD), atherosclerotic cardiovascular disease (ASCVD), and gut dysbiosis, highlighting the crucial role of nutraceuticals in their management and prevention. Given the significant overlap in the pathophysiology of these conditions, the treatment with nutraceuticals, especially those derived from agro‐food waste, offers a promising, sustainable, and innovative approach to healthcare. The 2030 Agenda for Sustainable Development and the One Health concept are key frameworks for selecting the most interesting supply chain for the production of nutraceuticals from agro‐food waste, ensuring environmental sustainability, and innovative agricultural practices. In this review, the therapeutic potential of kiwifruit and apples has been explored, detailing how their bioactive compounds, like polyphenols, fiber, pectin, kaempferol, phloretin, and phlorizin, may contribute to the management of MASLD, ASCVD, and gut dysbiosis. Various extraction methods for active ingredients, including chemical, water, and enzyme extractions, are analyzed for their respective benefits and drawbacks. By integrating scientific research, sustainable agricultural practices, and innovative extraction methods, we can develop effective strategies to combat these pervasive health issues. This holistic approach not only enhances individual health outcomes but also supports broader environmental and societal goals, promoting a healthier future for all.
Collapse
Affiliation(s)
- Laura Comi
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Claudia Giglione
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Fationa Tolaj Klinaku
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | | | | | | | | | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
- IRCCS MultiMedica, Sesto San Giovanni Milan Italy
| |
Collapse
|
20
|
Jeyaraman N, Jeyaraman M, Dhanpal P, Ramasubramanian S, Ragavanandam L, Muthu S, Santos GS, da Fonseca LF, Lana JF. Gut microbiome and orthopaedic health: Bridging the divide between digestion and bone integrity. World J Orthop 2024; 15:1135-1145. [PMID: 39744736 PMCID: PMC11686522 DOI: 10.5312/wjo.v15.i12.1135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/12/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
The gut microbiome, a complex ecosystem of microorganisms in the digestive tract, has emerged as a critical factor in human health, influencing metabolic, immune, and neurological functions. This review explores the connection between the gut microbiome and orthopedic health, examining how gut microbes impact bone density, joint integrity, and skeletal health. It highlights mechanisms linking gut dysbiosis to inflammation in conditions such as rheumatoid arthritis and osteoarthritis, suggesting microbiome modulation as a potential therapeutic strategy. Key findings include the microbiome's role in bone metabolism through hormone regulation and production of short-chain fatty acids, crucial for mineral absorption. The review also considers the effects of diet, probiotics, and fecal microbiota transplantation on gut microbiome composition and their implications for orthopedic health. While promising, challenges in translating microbiome research into clinical practice persist, necessitating further exploration and ethical consideration of microbiome-based therapies. This interdisciplinary research aims to link digestive health with musculoskeletal integrity, offering new insights into the prevention and management of bone and joint diseases.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Priya Dhanpal
- Department of General Medicine, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of General Medicine, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Lavanya Ragavanandam
- Department of Pharmacology, Faculty of Medicine - Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College and Hospital, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
21
|
Dong X, Zhang J, Li W, Li Y, Jia L, Liu Z, Fu W, Zhang A. Yi-Shen-Hua-Shi regulates intestinal microbiota dysbiosis and protects against proteinuria in patients with chronic kidney disease: a randomized controlled study. PHARMACEUTICAL BIOLOGY 2024; 62:356-366. [PMID: 38720666 PMCID: PMC11085992 DOI: 10.1080/13880209.2024.2345080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
CONTEXT Yi-Shen-Hua-Shi (YSHS) is a traditional Chinese medicine that treats chronic kidney disease (CKD). However, its efficacy in reducing proteinuria and underlying mechanisms is unknown. OBJECTIVE This single-center randomized controlled trial explored whether YSHS could improve proteinuria and modulate the gut microbiota. MATERIALS AND METHODS 120 CKD patients were enrolled and randomized to receive the renin-angiotensin-aldosterone system (RAAS) inhibitor plus YSHS (n = 56) or RAAS inhibitor (n = 47) alone for 4 months, and 103 patients completed the study. We collected baseline and follow-up fecal samples and clinical outcomes from participants. Total bacterial DNA was extracted, and the fecal microbiome was analyzed using bioinformatics. RESULTS Patients in the intervention group had a significantly higher decrease in 24-h proteinuria. After 4 months of the YSHS intervention, the relative abundance of bacteria that have beneficial effects on the body, such as Faecalibacterium, Lachnospiraceae, Lachnoclostridium, and Sutterella increased significantly, while pathogenic bacteria such as the Eggerthella and Clostridium innocuum group decreased. However, we could not find these changes in the control group. Redundancy analysis showed that the decline in 24-h proteinuria during follow-up was significantly correlated with various taxa of gut bacteria, such as Lachnospiraceae and the Lachnoclostridium genus in the YSHS group. KEGG analysis also showed the potential role of YSHS in regulating glycan, lipid, and vitamin metabolism. DISCUSSION AND CONCLUSION The YSHS granule reduced proteinuria associated with mitigating intestinal microbiota dysbiosis in CKD patients. The definite mechanisms of YSHS to improve proteinuria need to be further explored. TRIAL REGISTRATION ChiCTR2300076136, retrospectively registered.
Collapse
Affiliation(s)
- Xingtong Dong
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jialing Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wen Li
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yinping Li
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Linpei Jia
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Liu
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjing Fu
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Kuo CL, Hsin-Hsien Yeh S, Chang TM, I-Chin Wei A, Chen WJ, Chu HF, Tseng AL, Lin PY, Lin ZC, Peng KT, Liu JF. Bacillus coagulans BACO-17 ameliorates in vitro and in vivo progression of Rheumatoid arthritis. Int Immunopharmacol 2024; 141:112863. [PMID: 39146779 DOI: 10.1016/j.intimp.2024.112863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes persistent inflammation involving the joints, cartilage, and synovium. In individuals with RA, alterations in the composition of intestinal bacteria suggest the vital role of gut microbiota in immune dysfunction. Multiple therapies commonly used to treat RA can also alter the diversity of gut microbiota, further suggesting the modulation of gut microbiota as a prevention or treatment for RA. Therefore, a better understanding of the changes in the gut microbiota that accompany RA should facilitate the development of novel therapeutic approaches. In this study, B. coagulans BACO-17 not only significantly reduced paw swelling, arthritis scores, and hind paw and forepaw thicknesses but also protected articular cartilage and the synovium against RA degeneration, with a corresponding downregulation of TNF-α expression. The inhibition or even reversing of RA progression highlights B. coagulans BACO-17 as a novel therapeutic for RA worth investigating.
Collapse
Affiliation(s)
- Chun-Lin Kuo
- Department of Surgery, Tri-Service General Hospital Keelung Branch, Keelung, Taiwan; Department of Orthopedic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Skye Hsin-Hsien Yeh
- School of Medicine, National Defense Medical Center, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Tsung-Ming Chang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Augusta I-Chin Wei
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jen Chen
- Research and Development Department, Syngen Biotech Co., Ltd., Tainan, Taiwan; Graduate Institute of Management, Minghsin University of Science and Technology, Hsinchu, Taiwan
| | - Hui-Fang Chu
- Research and Development Department, Syngen Biotech Co., Ltd., Tainan, Taiwan
| | - Ai-Lun Tseng
- Research and Development Department, Syngen Biotech Co., Ltd., Tainan, Taiwan
| | - Pai-Yin Lin
- Research and Development Department, Syngen Biotech Co., Ltd., Tainan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan.
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
23
|
Mederle AL, Dima M, Stoicescu ER, Căpăstraru BF, Levai CM, Hațegan OA, Maghiari AL. Impact of Gut Microbiome Interventions on Glucose and Lipid Metabolism in Metabolic Diseases: A Systematic Review and Meta-Analysis. Life (Basel) 2024; 14:1485. [PMID: 39598283 PMCID: PMC11595434 DOI: 10.3390/life14111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The gut microbiome is increasingly recognized as a key player in metabolic health, influencing glucose and lipid metabolism through various mechanisms. However, the efficacy of gut microbiota-targeted interventions, such as probiotics, prebiotics, fecal microbiota transplantation (FMT), and diet-based treatments, remains unclear for specific metabolic outcomes. In this study, the aim was to evaluate the impact of these interventions on the glucose and lipid parameters in individuals with metabolic diseases such as diabetes mellitus (DM), obesity, and metabolic syndrome. METHODS This systematic review and meta-analysis included 41 randomized controlled trials that investigated the effects of gut microbiota-targeted treatments on metabolic parameters such as fasting glucose, glycated hemoglobin (HbA1c), homeostatic model assessment for insulin resistance (HOMA-IR), total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides. A comprehensive search was conducted using databases like PubMed, Google Scholar, and Scopus, focusing on interventions targeting the gut microbiota. A meta-analysis was performed using random-effects models, with effect sizes calculated for each outcome. Risk of bias was assessed using the Cochrane Risk of Bias tool. RESULTS Gut microbiota-targeted interventions significantly reduced fasting glucose, HbA1c, HOMA-IR, total cholesterol, LDL-C, and triglycerides, with moderate heterogeneity observed across studies. The interventions also led to modest increases in HDL-C levels. Probiotic and synbiotic interventions showed the most consistent benefits in improving both glucose and lipid profiles, while FMT yielded mixed results. Short-term interventions showed rapid microbial shifts but less pronounced metabolic improvements, whereas longer-term interventions had more substantial metabolic benefits. CONCLUSIONS In this study, it is demonstrated that gut microbiota-targeted interventions can improve key metabolic outcomes, offering a potential therapeutic strategy for managing metabolic diseases. However, the effectiveness of these interventions varies depending on the type, duration, and population characteristics, highlighting the need for further long-term studies to assess the sustained effects of microbiota modulation on metabolic health.
Collapse
Affiliation(s)
- Alexandra Laura Mederle
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.L.M.); (B.F.C.)
| | - Mirabela Dima
- Department of Neonatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Emil Robert Stoicescu
- Radiology and Medical Imaging University Clinic, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Research Center for Medical Communication, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, “Politehnica” University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania
| | - Bogdan Florin Căpăstraru
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.L.M.); (B.F.C.)
- Research Center for Medical Communication, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Codrina Mihaela Levai
- Research Center for Medical Communication, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Ovidiu Alin Hațegan
- Discipline of Anatomy and Embriology, Medicine Faculty, “Vasile Goldis” Western University of Arad, Revolution Boulevard 94, 310025 Arad, Romania;
| | - Anca Laura Maghiari
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| |
Collapse
|
24
|
Dutta R, Stothers L, Ackerman AL. Manipulating the Gut Microbiome in Urinary Tract Infection-Prone Patients. Urol Clin North Am 2024; 51:525-536. [PMID: 39349020 DOI: 10.1016/j.ucl.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Although antibiotics remain the mainstay of urinary tract infection treatment, many affected women can be caught in a vicious cycle in which antibiotics given to eradicate one infection predispose them to develop another. This effect is primarily mediated by disturbances in the gut microbiome that both directly enrich for uropathogenic overgrowth and induce systemic alterations in inflammation, tissue permeability, and metabolism that also decrease host resistance to infection recurrences. Here, we discuss nonantibiotic approaches to manipulating the gut microbiome to reverse the systemic consequences of antibiotics, including cranberry supplementation and other dietary approaches, probiotic administration, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Rahul Dutta
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA
| | - Lynn Stothers
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA
| | - A Lenore Ackerman
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA.
| |
Collapse
|
25
|
Lamminpää I, Boem F, Amedei A. Health-promoting worms? Prospects and pitfalls of helminth therapy. Bioessays 2024; 46:e2400080. [PMID: 39263744 DOI: 10.1002/bies.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
In this manuscript, we explore the potential therapeutic use of helminths. After analyzing helminths' role in connection with human health from the perspective of their symbiotic and evolutionary relationship, we critically examine some studies on their therapeutic applications. In doing so, we focus on some prominent mechanisms of action and potential benefits, but also on the exaggerations and theoretical and methodological difficulties of such proposals. We conclude that further studies are needed to fully explore the potential benefits of this perspective, and we encourage the scientific community in doing so.
Collapse
Affiliation(s)
- Ingrid Lamminpää
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Federico Boem
- Institut für Philosophie I, Ruhr-Universität Bochum, Bochum, Germany
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
26
|
Iqbal ZS, Halkjær SI, Ghathian KSA, Heintz JE, Petersen AM. The Role of the Gut Microbiome in Urinary Tract Infections: A Narrative Review. Nutrients 2024; 16:3615. [PMID: 39519448 PMCID: PMC11547363 DOI: 10.3390/nu16213615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Urinary tract infections (UTIs) represent a substantial health concern worldwide. Although it is known that the gut can act as a reservoir for UTI-causing pathogens, the exact role of the gut microbiome in developing UTIs remains unclear. This review aims to investigate the link between the gut microbiome and UTIs and whether gut dysbiosis increases the risk of getting a UTI. METHODS To find relevant studies, a search was conducted across three databases, PubMed, EMBASE and Cochrane Library. Only records that directly described the association between the gut microbiome and UTIs were included in this review. RESULTS Of the numerous studies retrieved, eight studies met the pre-set criteria and were selected for the review. The findings suggest several potential ways in which gut dysbiosis might enhance UTI susceptibility. A low gut microbiome diversity, a reduced level of bacteria involved in short-chain fatty acid (SCFA) production and a high abundance of Escherichia coli (E. coli) among UTI patients all offer a reasonable explanation for the existence of a link between an altered gut microbiome and UTIs. However, contradictory study results make it difficult to verify this. CONCLUSIONS Research on the link between the gut microbiome and UTIs is limited, and further studies need to be carried out to substantiate this relationship, as this can bring attention to finding improved and more relevant treatment for UTIs.
Collapse
Affiliation(s)
- Zaryan Safdar Iqbal
- Gastrounit, Medical Section, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (Z.S.I.); (S.I.H.)
| | - Sofie Ingdam Halkjær
- Gastrounit, Medical Section, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (Z.S.I.); (S.I.H.)
| | - Khaled Saoud Ali Ghathian
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (K.S.A.G.); (J.E.H.)
| | - Julie Elm Heintz
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (K.S.A.G.); (J.E.H.)
| | - Andreas Munk Petersen
- Gastrounit, Medical Section, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (Z.S.I.); (S.I.H.)
- Department of Clinical Microbiology, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark; (K.S.A.G.); (J.E.H.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
27
|
Wang X, Liu M, Xia W. Causal Relationship Between Sjögren's Syndrome and Gut Microbiota: A Two-Sample Mendelian Randomization Study. Biomedicines 2024; 12:2378. [PMID: 39457690 PMCID: PMC11505323 DOI: 10.3390/biomedicines12102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Gut microbiota have been previously reported to be related to a variety of immune diseases. However, the causal connection between Sjögren's syndrome (SS) and gut microbiota has yet to be clarified. Methods: We employed a two-sample Mendelian randomization (MR) analysis to evaluate the causal connection between gut microbiota and SS, utilizing summary statistics from genome-wide association studies (GWASs) obtained from the MiBioGen and FinnGen consortia. The inverse variance weighted (IVW) approach represents the primary method of Mendelian randomization (MR) analysis. Sensitivity analysis was used to eliminate instrumental variables heterogeneity and horizontal pleiotropy. In addition, we performed an analysis using independent GWAS summary statistics for SS from the European Bioinformatics Institute (EBI) dataset for further verify our results. Results: IVW results demonstrated that the phylum Lentisphaerae (OR = 0.79, 95% CI: 0.63-0.99, p = 0.037), class Deltaproteobacteria (OR = 0.67, 95% CI: 0.47-0.96, p = 0.030), family Porphyromonadaceae (OR = 0.60, 95% CI: 0.38-0.94, p = 0.026), genus Eubacterium coprostanoligenes group (OR = 0.61, 95% CI: 0.4-0.93, p = 0.021), genus Blautia (OR = 0.62, 95% CI: 0.43-0.90, p = 0.012), genus Butyricicoccus (OR = 0.61, 95% CI: 0.42-0.90, p = 0.012), genus Escherichia.Shigella (OR = 0.7, 95% CI: 0.49-0.99, p = 0.045) and genus Subdoligranulum (OR = 0.61, 95% CI: 0.44-0.86, p = 0.005) exhibited protective effects on SS. Relevant heterogeneity of horizontal pleiotropy or instrumental variables was not detected. Furthermore, repeating our results with an independent cohort provided by the EBI dataset, only the genus Eubacterium coprostanoligenes group remained significantly associated with the protective effect on SS (OR = 0.41, 95% CI: 0.18-0.91, p = 0.029). Two-step MR analysis further revealed that genus Eubacterium coprostanoligenes group exerts its protective effect by reducing CXCL6 levels in SS (OR, 0.87; 95% CI = 0.76-0.99, p = 0.033). Conclusions: Our study using two-sample MR analysis identified a causal association between multiple genera and SS. A two-step MR result calculated that genus Eubacterium coprostanoligenes group mediated its protective effect by reducing CXCL6 levels in SS. However, the datasets available from the MiBioGen and FinnGen consortia do not provide sufficient information or comprehensive demographic data for subgroup analyses. Additional validation using various omics technologies is necessary to comprehend the development of SS in the intricate interplay between genes and the environment over a period of time.
Collapse
Affiliation(s)
- Xinrun Wang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Minghui Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weiping Xia
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
| |
Collapse
|
28
|
Heidari H, Lawrence DA. An integrative exploration of environmental stressors on the microbiome-gut-brain axis and immune mechanisms promoting neurological disorders. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:233-263. [PMID: 38994870 DOI: 10.1080/10937404.2024.2378406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The microbiome-gut-brain axis is altered by environmental stressors such as heat, diet, and pollutants as well as microbes in the air, water, and soil. These stressors might alter the host's microbiome and symbiotic relationship by modifying the microbial composition or location. Compartmentalized mutualistic microbes promote the beneficial interactions in the host leading to circulating metabolites and hormones such as insulin and leptin that affect inter-organ functions. Inflammation and oxidative stress induced by environmental stressors may alter the composition, distribution, and activities of the microbes in the microbiomes such that the resultant metabolite and hormone changes are no longer beneficial. The microbiome-gut-brain axis and immune adverse changes that may accompany environmental stressors are reviewed for effects on innate and adaptive immune cells, which may make host immunity less responsive to pathogens and more reactive to self-antigens. Cardiovascular and fluid exchanges to organs might adversely alter organ functionality. Organs, especially the brain, need a consistent supply of nutrients and clearance of debris; disruption of these exchanges by stressors, and involvement of gut microbiome are discussed regarding neural dysfunctions with Alzheimer's disease, autistic spectrum disorders, viral infections, and autoimmune diseases. The focus of this review includes the manner in which environmental stressors may disrupt gut microbiota leading to adverse immune and hormonal influences on development of neuropathology related to hyperhomocysteinemia, inflammation, and oxidative stress, and how certain therapeutics may be beneficial. Strategies are explored to lessen detrimental effects of environmental stressors on central and peripheral health navigated toward (1) understanding neurological disorders and (2) promoting environmental and public health and well-being.
Collapse
Affiliation(s)
- Hajar Heidari
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
| | - David A Lawrence
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| |
Collapse
|
29
|
Zhu G, Yan L, Fang L, Fan C, Sun H, Zhou X, Zhang Y, Shi Z. Possible immune mechanisms of gut microbiota and its metabolites in the occurrence and development of immune thrombocytopenia. Front Microbiol 2024; 15:1426911. [PMID: 39171254 PMCID: PMC11335631 DOI: 10.3389/fmicb.2024.1426911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by increased platelet destruction and impaired production, leading to an elevated bleeding tendency. Recent studies have demonstrated an important link between the gut microbiota and the onset and progression of several immune diseases in humans, emphasizing that gut microbiota-derived metabolites play a non-negligible role in autoimmune diseases. The gut microbiota and its metabolites, such as short-chain fatty acids, oxidized trimethylamine, tryptophan metabolites, secondary bile acids and lipopolysaccharides, can alter intestinal barrier permeability by modulating immune cell differentiation and cytokine secretion, which in turn affects the systemic immune function of the host. It is therefore reasonable to hypothesize that ecological dysregulation of the gut microbiota may be an entirely new factor in the triggering of ITP. This article reviews the potential immune-related mechanisms of the gut microbiota and representative metabolites in ITP, as well as the important influence of leaky gut on the development of ITP, with a view to enriching the theoretical system of ITP-related gut microecology and providing new ideas for the study of ITP.
Collapse
Affiliation(s)
- Gengda Zhu
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lixiang Yan
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lijun Fang
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Hematology and Blood Diseases Hospital, National Clinical Medical Research Center for Blood Diseases, Tianjin, China
| | - Chenyang Fan
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Sun
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinli Zhou
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yucheng Zhang
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhexin Shi
- National Medical Research Center of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
30
|
Lian FP, Zhang F, Zhao CM, Wang XX, Bu YJ, Cen X, Zhao GF, Zhang SX, Chen JW. Gut microbiota regulation of T lymphocyte subsets during systemic lupus erythematosus. BMC Immunol 2024; 25:41. [PMID: 38972998 PMCID: PMC11229189 DOI: 10.1186/s12865-024-00632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by disturbance of pro-inflammatory and anti-inflammatory lymphocytes. Growing evidence shown that gut microbiota participated in the occurrence and development of SLE by affecting the differentiation and function of intestinal immune cells. The purpose of this study was to investigate the changes of gut microbiota in SLE and judge its associations with peripheral T lymphocytes. METHODS A total of 19 SLE patients and 16 HCs were enrolled in this study. Flow cytometry was used to detect the number of peripheral T lymphocyte subsets, and 16 s rRNA was used to detect the relative abundance of gut microbiota. Analyzed the correlation between gut microbiota with SLEDAI, ESR, ds-DNA and complement. SPSS26.0 software was used to analyze the experimental data. Mann-Whitney U test was applied to compare T lymphocyte subsets. Spearman analysis was used for calculating correlation. RESULTS Compared with HCs, the proportions of Tregs (P = 0.001), Tfh cells (P = 0.018) and Naïve CD4 + T cells (P = 0.004) significantly decreased in SLE patients, and proportions of Th17 cells (P = 0.020) and γδT cells (P = 0.018) increased in SLE. The diversity of SLE patients were significantly decreased. Addition, there were 11 species of flora were discovered to be distinctly different in SLE group (P < 0.05). In the correlation analysis of SLE, Tregs were positively correlated with Ruminococcus2 (P = 0.042), Th17 cells were positively correlated with Megamonas (P = 0.009), γδT cells were positively correlated with Megamonas (P = 0.003) and Streptococcus (P = 0.004), Tfh cells were positively correlated with Bacteroides (P = 0.040), and Th1 cells were negatively correlated with Bifidobacterium (P = 0.005). As for clinical indicators, the level of Tregs was negatively correlated with ESR (P = 0.031), but not with C3 and C4, and the remaining cells were not significantly correlated with ESR, C3 and C4. CONCLUSION Gut microbiota and T lymphocyte subsets of SLE changed and related to each other, which may break the immune balance and affect the occurrence and development of SLE. Therefore, it is necessary to pay attention to the changes of gut microbiota and provide new ideas for the treatment of SLE.
Collapse
Affiliation(s)
- Fen-Ping Lian
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Fen Zhang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Chun-Miao Zhao
- Department of Rheumatology, Xi'an International Medical Center Hospital, Xi'an City, Shaanxi Province, China
| | - Xu-Xia Wang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Yu-Jie Bu
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Xing Cen
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Gui-Fang Zhao
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Jun-Wei Chen
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, 030001, China.
| |
Collapse
|
31
|
Cui X, Wu Z, Zhou Y, Deng L, Chen Y, Huang H, Sun X, Li Y, Wang H, Zhang L, He J. A bibliometric study of global trends in T1DM and intestinal flora research. Front Microbiol 2024; 15:1403514. [PMID: 39027096 PMCID: PMC11254799 DOI: 10.3389/fmicb.2024.1403514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease that seriously jeopardizes human physical and mental health and reduces quality of life. Intestinal flora is one of the critical areas of exploration in T1DM research. Objective This study aims to explore the research hotspot and development trend of T1DM and intestinal flora to provide research direction and ideas for researchers. Methods We used the Web of Science (WOS) Core Collection and searched up to 18 November 2023, for articles on studies of the correlation between T1DM and intestinal flora. CiteSpace, VOSviewers and R package "bibliometrix" were used to conduct this bibliometric analysis. Results Eventually, 534 documents met the requirements to be included, and as of 18 November 2023, there was an upward trend in the number of publications in the field, with a significant increase in the number of articles published after 2020. In summary, F Susan Wong (UK) was the author with the most publications (21), the USA was the country with the most publications (198), and the State University System of Florida (the United States) was the institution with the most publications (32). The keywords that appeared more frequently were T cells, fecal transplants, and short-chain fatty acids. The results of keywords with the most robust citation bursts suggest that Faecalibacterium prausnitzii and butyrate may become a focus of future research. Conclusion In the future, intestinal flora will remain a research focus in T1DM. Future research can start from Faecalibacterium prausnitzii and combine T cells, fecal bacteria transplantation, and short-chain fatty acids to explore the mechanism by which intestinal flora affects blood glucose in patients with T1DM, which may provide new ideas for the prevention and treatment of T1DM.
Collapse
Affiliation(s)
- Xinxin Cui
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Zhen Wu
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yangbo Zhou
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Longji Deng
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yu Chen
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hanqiao Huang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiangbin Sun
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yu Li
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Haixia Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Li Zhang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jia He
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
32
|
Liu B, Yang H, Liao Q, Wang M, Huang J, Xu R, Shan Z, Zhong H, Li T, Li C, Fu Y, Rong X. Altered gut microbiota is associated with the formation of occult hepatitis B virus infection. Microbiol Spectr 2024; 12:e0023924. [PMID: 38785430 PMCID: PMC11218497 DOI: 10.1128/spectrum.00239-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Hepatitis B virus (HBV), a common blood transmission pathogen worldwide, can lead to viral hepatitis, cirrhosis, liver cancer, and other liver diseases. In particular, occult hepatitis B virus infection (OBI) may be caused by an immune response leading to suppressed virus replication. Gut microbiota can change the immunity status of the human body and, therefore, affect the replication of HBV. Thus, to identify whether there are differences in gut microbiota between HBV carriers and OBI carriers, we collected fecal samples from 18 HBV carriers, 24 OBI blood donors, and also 20 healthy blood donors as negative control. After 16S sequencing, we found that the abundance of Faecalibacterium was significantly reduced in samples from OBI blood donors compared with those from healthy blood donors. Compared with samples from HBV carriers, the samples from OBI blood donors had a significantly increased abundance of Subdoligranulum, which might stimulate immune activation, thus inhibiting HBV replication and contributing to the formation of occult infection. Our findings revealed the potential role of gut microbiota in the formation of OBI and further provided a novel strategy for the treatment of HBV infection.IMPORTANCEOccult hepatitis B virus infection (OBI) is a special form of hepatitis B virus infection with hepatitis B surface antigen (HBsAg) positive and hepatitis B virus (HBV) DNA negative. Gut microbiota may contribute to the immune response leading to suppressed virus replication and, thus, participates in the development of OBI. The study on gut microbiota of OBI blood donors provides novel data considerably advancing our understanding of the immune mechanism for the determination of occult hepatitis B virus infection, which is helpful for improving the strategy of the treatment of HBV infection.
Collapse
Affiliation(s)
- Bochao Liu
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Hualong Yang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiao Liao
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Min Wang
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Jieting Huang
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Ru Xu
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Zhengang Shan
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Huishan Zhong
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yongshui Fu
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Blood Transfusion, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Xia Rong
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Liu H, Li J, Guan C, Gao W, Li Y, Wang J, Yang Y, Du Y. Endometriosis is a disease of immune dysfunction, which could be linked to microbiota. Front Genet 2024; 15:1386411. [PMID: 38974388 PMCID: PMC11227297 DOI: 10.3389/fgene.2024.1386411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Background: Endometriosis, characterized by extrauterine endometrial tissue, leads to irregular bleeding and pelvic pain. Menstrual retrograde theory suggests fragments traverse fallopian tubes, causing inflammation and scar tissue. Prevalent among infertile women, risk factors include fewer pregnancies, delayed childbirth, irregular cycles, and familial predisposition. Treatments, medication, and surgery entail side effects. Studies link gut microbiota alterations to endometriosis, necessitating research to establish causation. We used Mendelian randomization to investigate the potential link between endometriosis and gut microbiota through genetic variants. Methods: Two-sample Mendelian randomization analyzed gut microbiota's potential causal effects on endometriosis. Instrumental variables, robustly associated with exposures, leveraged GWAS data from MiBioGen for gut microbiota and FinnGen R8 release for endometriosis. SNPs strongly associated with exposures were instrumental variables. Rigorous assessments ensured SNP impact scrutiny on endometriosis. Results: At the genus level, Anaerotruncus, Desulfovibrio, Haemophilus, and Holdemania showed causal association with endometriosis. Specific gut microbiota exhibited causal effects on different endometriosis stages. Holdemania and Ruminococcaceae UCG002 exerted reversible, stage-specific impacts. Conclusion: Mendelian randomization provides evidence for the causal link between specific gut microbiotas and endometriosis, emphasizing the pivotal role of gut microbiota dysbiosis. Modulating gut microbiota emerges as a promising strategy for preventing and treating endometriosis.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junxia Li
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chenchen Guan
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wenjie Gao
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Li
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yang Yang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yongrui Du
- Department of Family Planning, The Second Hospital of Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
34
|
Martínez-Martínez AB, Lamban-Per BM, Lezaun M, Rezusta A, Arbones-Mainar JM. Exploring Functional Products and Early-Life Dynamics of Gut Microbiota. Nutrients 2024; 16:1823. [PMID: 38931178 PMCID: PMC11206896 DOI: 10.3390/nu16121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Research on the microbiome has progressed from identifying specific microbial communities to exploring how these organisms produce and modify metabolites that impact a wide range of health conditions, including gastrointestinal, metabolic, autoimmune, and neurodegenerative diseases. This review provides an overview of the bacteria commonly found in the intestinal tract, focusing on their main functional outputs. We explore biomarkers that not only indicate a well-balanced microbiota but also potential dysbiosis, which could foreshadow susceptibility to future health conditions. Additionally, it discusses the establishment of the microbiota during the early years of life, examining factors such as gestational age at birth, type of delivery, antibiotic intake, and genetic and environmental influences. Through a comprehensive analysis of current research, this article aims to enhance our understanding of the microbiota's foundational development and its long-term implications for health and disease management.
Collapse
Affiliation(s)
- Ana B. Martínez-Martínez
- Facultad de Ciencias de la Salud, Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Instituto de Investigación Sanitaria Aragón, 50009 Zaragoza, Spain;
| | - Belen M. Lamban-Per
- Department of Clinical Microbiology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (B.M.L.-P.); (M.L.)
| | - Maria Lezaun
- Department of Clinical Microbiology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (B.M.L.-P.); (M.L.)
| | - Antonio Rezusta
- Instituto de Investigación Sanitaria Aragón, 50009 Zaragoza, Spain;
- Department of Clinical Microbiology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (B.M.L.-P.); (M.L.)
| | - Jose M. Arbones-Mainar
- Department of Clinical Microbiology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (B.M.L.-P.); (M.L.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
35
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Metabolomic changes in children with autism. World J Clin Pediatr 2024; 13:92737. [PMID: 38947988 PMCID: PMC11212761 DOI: 10.5409/wjcp.v13.i2.92737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication and repetitive behaviors. Metabolomic profiling has emerged as a valuable tool for understanding the underlying metabolic dysregulations associated with ASD. AIM To comprehensively explore metabolomic changes in children with ASD, integrating findings from various research articles, reviews, systematic reviews, meta-analyses, case reports, editorials, and a book chapter. METHODS A systematic search was conducted in electronic databases, including PubMed, PubMed Central, Cochrane Library, Embase, Web of Science, CINAHL, Scopus, LISA, and NLM catalog up until January 2024. Inclusion criteria encompassed research articles (83), review articles (145), meta-analyses (6), systematic reviews (6), case reports (2), editorials (2), and a book chapter (1) related to metabolomic changes in children with ASD. Exclusion criteria were applied to ensure the relevance and quality of included studies. RESULTS The systematic review identified specific metabolites and metabolic pathways showing consistent differences in children with ASD compared to typically developing individuals. These metabolic biomarkers may serve as objective measures to support clinical assessments, improve diagnostic accuracy, and inform personalized treatment approaches. Metabolomic profiling also offers insights into the metabolic alterations associated with comorbid conditions commonly observed in individuals with ASD. CONCLUSION Integration of metabolomic changes in children with ASD holds promise for enhancing diagnostic accuracy, guiding personalized treatment approaches, monitoring treatment response, and improving outcomes. Further research is needed to validate findings, establish standardized protocols, and overcome technical challenges in metabolomic analysis. By advancing our understanding of metabolic dysregulations in ASD, clinicians can improve the lives of affected individuals and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Pediatric, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Bahrain, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Chest Disease, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| |
Collapse
|
36
|
Gorini F, Tonacci A. Vitamin D: An Essential Nutrient in the Dual Relationship between Autoimmune Thyroid Diseases and Celiac Disease-A Comprehensive Review. Nutrients 2024; 16:1762. [PMID: 38892695 PMCID: PMC11174782 DOI: 10.3390/nu16111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Autoimmune thyroid diseases (AITD) are among the most frequent autoimmune disorders, with a multifactorial etiology in which both genetic and environmental determinants are probably involved. Celiac disease (CeD) also represents a public concern, given its increasing prevalence due to the recent improvement of screening programs, leading to the detection of silent subtypes. The two conditions may be closely associated due to common risk factors, including genetic setting, changes in the composition and diversity of the gut microbiota, and deficiency of nutrients like vitamin D. This comprehensive review discussed the current evidence on the pivotal role of vitamin D in modulating both gut microbiota dysbiosis and immune system dysfunction, shedding light on the possible relevance of an adequate intake of this nutrient in the primary prevention of AITD and CeD. While future technology-based strategies for proper vitamin D supplementation could be attractive in the context of personalized medicine, several issues remain to be defined, including standardized assays for vitamin D determination, timely recommendations on vitamin D intake for immune system functioning, and longitudinal studies and randomized controlled trials to definitely establish a causal relationship between serum vitamin D levels and the onset of AITD and CeD.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
37
|
Zhao M, Wen X, Liu R, Xu K. Microbial dysbiosis in systemic lupus erythematosus: a scientometric study. Front Microbiol 2024; 15:1319654. [PMID: 38863759 PMCID: PMC11166128 DOI: 10.3389/fmicb.2024.1319654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/01/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Mounting evidence suggests microbiota dysbiosis augment autoimmune response. This study aims to provide a systematic overview of this research field in SLE through a bibliometric analysis. Methods We conducted a comprehensive search and retrieval of literature related to microbial researches in SLE from the Web of Science Core Collection (WOSCC) database. The retrieved articles were subjected to bibliometric analysis using VOSviewer and Bibliometricx to explore annual publication output, collaborative patterns, research hotspots, current research status, and emerging trends. Results In this study, we conducted a comprehensive analysis of 218 research articles and 118 review articles. The quantity of publications rises annually, notably surging in 2015 and 2018. The United States and China emerged as the leading contributors in microbial research of SLE. Mashhad University of Medical Sciences had the highest publication outputs among the institutions. Frontiers in Immunology published the most papers. Luo XM and Margolles A were the most prolific and highly cited contributors among individual authors. Microbial research in SLE primarily focused on changes in microbial composition, particularly gut microbiota, as well as the mechanisms and practical applications in SLE. Recent trends emphasize "metabolites," "metabolomics," "fatty acids," "T cells," "lactobacillus," and "dietary supplementation," indicating a growing emphasis on microbial metabolism and interventions in SLE. Conclusion This study provides a thorough analysis of the research landscape concerning microbiota in SLE. The microbial research in SLE mainly focused on three aspects: microbial dysbiosis, mechanism studies and translational studies (microbiota-based therapeutics). It identifies current research trends and focal points, offering valuable guidance for scholars in the field.
Collapse
Affiliation(s)
- Miaomiao Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaoting Wen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruiling Liu
- Department of Microbiology and Immunology, Basic Medical College, Shanxi Medical University, Jinzhong, China
| | - Ke Xu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
38
|
Gavriilaki E, Christoforidi M, Ouranos K, Minti F, Mallouri D, Varelas C, Lazaridou A, Baldoumi E, Panteliadou A, Bousiou Z, Batsis I, Sakellari I, Gioula G. Alteration of Gut Microbiota Composition and Diversity in Acute and/or Chronic Graft-versus-Host Disease Following Hematopoietic Stem Cell Transplantation: A Prospective Cohort Study. Int J Mol Sci 2024; 25:5789. [PMID: 38891979 PMCID: PMC11171546 DOI: 10.3390/ijms25115789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Changes in gut microbiome composition have been implicated in the pathogenesis of graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Our objective was to explore the microbial abundance in patients with GvHD after allo-HSCT. We conducted a single-center, prospective study in patients who underwent allo-HSCT and developed grade II or higher acute GvHD and/or moderate or severe chronic GvHD, to explore the microbial abundance of taxa at the phylum, family, genus, and species level, and we utilized alpha and beta diversity indices to further describe our findings. We collected fecal specimens at -2 to +2 (T1), +11 to +17 (T2), +25 to +30 (T3), +90 (T4), and +180 (T5) days to assess changes in gut microbiota, with day 0 being the day of allo-HSCT. We included 20 allo-HSCT recipients in the study. Compared with timepoint T1, at timepoint T4 we found a significant decrease in the abundance of Proteobacteria phylum (14.22% at T1 vs. 4.07% at T4, p = 0.01) and Enterobacteriaceae family (13.3% at T1 vs. <0.05% at T4, p < 0.05), as well as a significant increase in Enterococcus species (0.1% at T1 vs. 12.8% at T4, p < 0.05) in patients who developed acute GvHD. Regarding patients who developed chronic GvHD after allo-HSCT, there was a significant reduction in the abundance of Eurobactereaceae family (1.32% at T1 vs. 0.53% at T4, p < 0.05) and Roseruria genus (3.97% at T1 vs. 0.09% at T4, p < 0.05) at T4 compared with T1. Alpha and beta diversity analyses did not reveal a difference in the abundance of bacteria at the genus level in GvHD patients at T4 compared with T1. Our study reinforces results from previous studies regarding changes in gut microbiota in patients with acute GvHD and provides new data regarding the gut microbiome changes in chronic GvHD. Future studies will need to incorporate clinical parameters in their analyses to establish their association with specific changes in gut microbiota in patients with GvHD after allo-HSCT.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Maria Christoforidi
- Microbiology Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.C.); (F.M.); (G.G.)
| | - Konstantinos Ouranos
- Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Fani Minti
- Microbiology Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.C.); (F.M.); (G.G.)
| | - Despina Mallouri
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Christos Varelas
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Andriana Lazaridou
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Eirini Baldoumi
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Alkistis Panteliadou
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Zoi Bousiou
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Ioannis Batsis
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Ioanna Sakellari
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Georgia Gioula
- Microbiology Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.C.); (F.M.); (G.G.)
| |
Collapse
|
39
|
Luo ZQ, Huang YJ, Chen ZH, Lu CY, Zhou B, Gong XH, Shen Z, Wang T. A decade of insight: bibliometric analysis of gut microbiota's role in osteoporosis (2014-2024). Front Med (Lausanne) 2024; 11:1409534. [PMID: 38841589 PMCID: PMC11150527 DOI: 10.3389/fmed.2024.1409534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Purpose Osteoporosis represents a profound challenge to public health, underscoring the critical need to dissect its complex etiology and identify viable targets for intervention. Within this context, the gut microbiota has emerged as a focal point of research due to its profound influence on bone metabolism. Despite this growing interest, the literature has yet to see a bibliometric study addressing the gut microbiota's contribution to both the development and management of osteoporosis. This study aims to fill this gap through an exhaustive bibliometric analysis. Our objective is to uncover current research hotspots, delineate key themes, and identify future research trends. In doing so, we hope to provide direction for future studies and the development of innovative treatment methods. Methods Relevant publications in this field were retrieved from the Web of Science Core Collection database. We used VOSviewer, CiteSpace, an online analysis platform and the R package "Bibliometrix" for bibliometric analysis. Results A total of 529 publications (including 351 articles and 178 reviews) from 61 countries, 881 institutions, were included in this study. China leads in publication volume and boast the highest cumulative citation. Shanghai Jiao Tong University and Southern Medical University are the leading research institutions in this field. Nutrients contributed the largest number of articles, and J Bone Miner Res is the most co-cited journal. Of the 3,166 scholars who participated in the study, Ohlsson C had the largest number of articles. Li YJ is the most co-cited author. "Probiotics" and "inflammation" are the keywords in the research. Conclusion This is the first bibliometric analysis of gut microbiota in osteoporosis. We explored current research status in recent years and identified frontiers and hot spots in this research field. We investigate the impact of gut microbiome dysregulation and its associated inflammation on OP progression, a topic that has garnered international research interest in recent years. Additionally, our study delves into the potential of fecal microbiota transplantation or specific dietary interventions as promising avenues for future research, which can provide reference for the researchers who focus on this research filed.
Collapse
Affiliation(s)
- Zhi Qiang Luo
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya Jing Huang
- Department of Rheumatology, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Ze Hua Chen
- Department of Orthopedics, The Orthopedics Hospital of Traditional Chinese Medicine, Zhuzhou, Hunan, China
| | - Chen Yin Lu
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Biao Zhou
- Department of Orthopedics, The First People’s Hospital of Xiangtan City, Xiangtan, Hunan, China
| | - Xiang Hao Gong
- Department of Oncology, Hengyang Central Hospital, Hengyang, Hunan, China
| | - Zhen Shen
- Department of Rehabilitation, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Tao Wang
- Department of Orthopedics, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
40
|
Chen X, He L, Zhang C, Zheng G, Lin S, Zou Y, Lu Y, Feng Y, Zheng D. Exploring new avenues of health protection: plant-derived nanovesicles reshape microbial communities. J Nanobiotechnology 2024; 22:269. [PMID: 38764018 PMCID: PMC11103870 DOI: 10.1186/s12951-024-02500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024] Open
Abstract
Symbiotic microbial communities are crucial for human health, and dysbiosis is associated with various diseases. Plant-derived nanovesicles (PDNVs) have a lipid bilayer structure and contain lipids, metabolites, proteins, and RNA. They offer unique advantages in regulating microbial community homeostasis and treating diseases related to dysbiosis compared to traditional drugs. On the one hand, lipids on PDNVs serve as the primary substances that mediate specific recognition and uptake by bacteria. On the other hand, due to the multifactorial nature of PDNVs, they have the potential to enhance growth and survival of beneficial bacterial while simultaneously reducing the pathogenicity of harmful bacteria. In addition, PDNVs have the capacity to modulate bacterial metabolism, thus facilitating the establishment of a harmonious microbial equilibrium and promoting stability within the microbiota. These remarkable attributes make PDNVs a promising therapeutic approach for various conditions, including periodontitis, inflammatory bowel disease, and skin infection diseases. However, challenges such as consistency, isolation methods, and storage need to be addressed before clinical application. This review aims to explore the value of PDNVs in regulating microbial community homeostasis and provide recommendations for their use as novel therapeutic agents for health protection.
Collapse
Affiliation(s)
- Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lianghang He
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chaochao Zhang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Genggeng Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuoqi Lin
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yuchun Zou
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yan Feng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
41
|
Mousavi Khaneghah A, Mostashari P. Decoding food reactions: a detailed exploration of food allergies vs. intolerances and sensitivities. Crit Rev Food Sci Nutr 2024; 65:2669-2713. [PMID: 38747015 DOI: 10.1080/10408398.2024.2349740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The food matrix is a complex system encompassing all constituent elements in food production. It influences the digestibility of these elements through direct interactions and affects the digestive environment. Furthermore, the gastrointestinal system possesses precise mechanisms that efficiently process dietary components into essential nutrients, effectively preventing the onset of abnormal immune responses or dysfunctional host reactions in most instances. However, the incidence of adverse food reactions is constantly increasing, and evidence indicates that this process is environmental. Adverse reactions can be categorized as toxic or nontoxic. Toxic reactions are dose-dependent and can result from natural compounds, processing-induced substances, or contaminants. Nontoxic reactions like food intolerance and hypersensitivity depend on individual susceptibility and evoke specific pathological and physiological responses. This review aims to elucidate the mechanisms underlying the occurrence of immune- (food allergies and sensitivities) and non-immune-mediated (food intolerance) reactions, emphasizing the fundamental distinctions between these two categories. Enhanced comprehension and distinction of these mechanisms will significantly contribute to advancing preventive and therapeutic approaches and establishing guidelines for food labeling concerning immune-mediated reactions.
Collapse
Affiliation(s)
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
42
|
Londoño-Osorio S, Leon-Carreño L, Cala MP, Sierra-Zapata L. The gut metabolome in a cohort of pregnant and lactating women from Antioquia-Colombia. Front Mol Biosci 2024; 11:1250413. [PMID: 38803424 PMCID: PMC11128665 DOI: 10.3389/fmolb.2024.1250413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
Nutrition during the perinatal period is an essential component of health and one that can severely impact the correct development of a human being and its overall condition, in all the subsequent stages of life. The availability of several compounds, mainly macronutrients and micronutrients, plays a key role in the balanced nutrition of both mother and baby and is a process with direct relation to the gut microbiome. Thus, we hereby refer to the set of small molecules derived from gut microbiome metabolism as the gut metabolome. These continuous processes occurring in the gut of a gestating or lactating mother related to microbial communities and nutrients, can be revealed by metabolomics. In this study, we explore for the first time the gut metabolome of pregnant and lactating women, from our region of Antioquia-Colombia, applying untargeted metabolomics by LC-QTOF-MS, and molecular networking. Regarding the gut metabolome composition of the cohort, we found, key metabolites that can be used as biomarkers of microbiome function, overall metabolic health, dietary intake, pharmacology, and lifestyle. In our cohort, pregnant women evidenced a significantly higher abundance of prostaglandins, alkaloids, corticosteroids, organosilicons, and natural toxins, while in lactating women, lipids stand out. Our results suggest that unveiling the metabolic phenotype of the gut microbiome of an individual, by untargeted metabolomics, allows a broad visualization of the chemical space present in this important niche and enables the recognition of influential indicators of the host's health status and habits, especially of women during this significant perinatal period. This study constitutes the first evidence of the use of untargeted LC-QTOF-MS coupled with molecular networking analysis, of the gut microbiome in a Colombian cohort and establishes a methodology for finding relative abundances of key metabolites, with potential use in nutritional and physiological state assessments, for future personalized health and nutrition practices.
Collapse
Affiliation(s)
- Sara Londoño-Osorio
- CIBIOP Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Colombia
| | - Lizeth Leon-Carreño
- MetCore–Metabolomics Core Facility, Vice-Presidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Mónica P. Cala
- MetCore–Metabolomics Core Facility, Vice-Presidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Laura Sierra-Zapata
- CIBIOP Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Colombia
| |
Collapse
|
43
|
Wang X, Yuan W, Yang C, Wang Z, Zhang J, Xu D, Sun X, Sun W. Emerging role of gut microbiota in autoimmune diseases. Front Immunol 2024; 15:1365554. [PMID: 38765017 PMCID: PMC11099291 DOI: 10.3389/fimmu.2024.1365554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Accumulating studies have indicated that the gut microbiota plays a pivotal role in the onset of autoimmune diseases by engaging in complex interactions with the host. This review aims to provide a comprehensive overview of the existing literatures concerning the relationship between the gut microbiota and autoimmune diseases, shedding light on the complex interplay between the gut microbiota, the host and the immune system. Furthermore, we aim to summarize the impacts and potential mechanisms that underlie the interactions between the gut microbiota and the host in autoimmune diseases, primarily focusing on systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, type 1 diabetes mellitus, ulcerative colitis and psoriasis. The present review will emphasize the clinical significance and potential applications of interventions based on the gut microbiota as innovative adjunctive therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Yuan
- Department of Radiation Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chunjuan Yang
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Zhangxue Wang
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Donghua Xu
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xicai Sun
- Department of Hospital Office, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Wenchang Sun
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
44
|
Tian H, Huang D, Wang J, Li H, Gao J, Zhong Y, Xia L, Zhang A, Lin Z, Ke X. The role of the "gut microbiota-mitochondria" crosstalk in the pathogenesis of multiple sclerosis. Front Microbiol 2024; 15:1404995. [PMID: 38741740 PMCID: PMC11089144 DOI: 10.3389/fmicb.2024.1404995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Multiple Sclerosis (MS) is a neurologic autoimmune disease whose exact pathophysiologic mechanisms remain to be elucidated. Recent studies have shown that the onset and progression of MS are associated with dysbiosis of the gut microbiota. Similarly, a large body of evidence suggests that mitochondrial dysfunction may also have a significant impact on the development of MS. Endosymbiotic theory has found that human mitochondria are microbial in origin and share similar biological characteristics with the gut microbiota. Therefore, gut microbiota and mitochondrial function crosstalk are relevant in the development of MS. However, the relationship between gut microbiota and mitochondrial function in the development of MS is not fully understood. Therefore, by synthesizing previous relevant literature, this paper focuses on the changes in gut microbiota and metabolite composition in the development of MS and the possible mechanisms of the crosstalk between gut microbiota and mitochondrial function in the progression of MS, to provide new therapeutic approaches for the prevention or reduction of MS based on this crosstalk.
Collapse
Affiliation(s)
- Huan Tian
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dunbing Huang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huaqiang Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Gao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Zhong
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Libin Xia
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhonghua Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Rehabilitation Medicine Center, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincia Hospital, Fuzhou, China
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
45
|
Zhang J, Wang H, Liu Y, Shi M, Zhang M, Zhang H, Chen J. Advances in fecal microbiota transplantation for the treatment of diabetes mellitus. Front Cell Infect Microbiol 2024; 14:1370999. [PMID: 38660489 PMCID: PMC11039806 DOI: 10.3389/fcimb.2024.1370999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Diabetes mellitus (DM) refers to a group of chronic diseases with global prevalence, characterized by persistent hyperglycemia resulting from various etiologies. DM can harm various organ systems and lead to acute or chronic complications, which severely endanger human well-being. Traditional treatment mainly involves controlling blood sugar levels through replacement therapy with drugs and insulin; however, some patients still find a satisfactory curative effect difficult to achieve. Extensive research has demonstrated a close correlation between enteric dysbacteriosis and the pathogenesis of various types of DM, paving the way for novel therapeutic approaches targeting the gut microbiota to manage DM. Fecal microbiota transplantation (FMT), a method for re-establishing the intestinal microbiome balance, offers new possibilities for treating diabetes. This article provides a comprehensive review of the correlation between DM and the gut microbiota, as well as the current advancements in FMT treatment for DM, using FMT as an illustrative example. This study aims to offer novel perspectives and establish a theoretical foundation for the clinical diagnosis and management of DM.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Honggang Wang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Ying Liu
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Min Shi
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Minna Zhang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Hong Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Juan Chen
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
46
|
Zhang X, Wang J, Zhang T, Li S, Liu J, Li M, Lu J, Zhang M, Chen H. Updated Progress on Polysaccharides with Anti-Diabetic Effects through the Regulation of Gut Microbiota: Sources, Mechanisms, and Structure-Activity Relationships. Pharmaceuticals (Basel) 2024; 17:456. [PMID: 38675416 PMCID: PMC11053653 DOI: 10.3390/ph17040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes mellitus (DM) is a common chronic metabolic disease worldwide. The disturbance of the gut microbiota has a complex influence on the development of DM. Polysaccharides are one type of the most important natural components with anti-diabetic effects. Gut microbiota can participate in the fermentation of polysaccharides, and through this, polysaccharides regulate the gut microbiota and improve DM. This review begins by a summary of the sources, anti-diabetic effects and the gut microbiota regulation functions of natural polysaccharides. Then, the mechanisms of polysaccharides in regulating the gut microbiota to exert anti-diabetic effects and the structure-activity relationship are summarized. It is found that polysaccharides from plants, fungi, and marine organisms show great hypoglycemic activities and the gut microbiota regulation functions. The mechanisms mainly include repairing the gut burrier, reshaping gut microbiota composition, changing the metabolites, regulating anti-inflammatory activity and immune function, and regulating the signal pathways. Structural characteristics of polysaccharides, such as monosaccharide composition, molecular weight, and type of glycosidic linkage, show great influence on the anti-diabetic activity of polysaccharides. This review provides a reference for the exploration and development of the anti-diabetic effects of polysaccharides.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China;
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| |
Collapse
|
47
|
Mo C, Bi J, Li S, Lin Y, Yuan P, Liu Z, Jia B, Xu S. The influence and therapeutic effect of microbiota in systemic lupus erythematosus. Microbiol Res 2024; 281:127613. [PMID: 38232494 DOI: 10.1016/j.micres.2024.127613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Systemic erythematosus lupus (SLE) is an autoimmune disease involving multiple organs that poses a serious risk to the health and life of patients. A growing number of studies have shown that commensals from different parts of the body and exogenous pathogens are involved in SLE progression, causing barrier disruption and immune dysregulation through multiple mechanisms. However, they sometimes alleviate the symptoms of SLE. Many factors, such as genetic susceptibility, metabolism, impaired barriers, food, and sex hormones, are involved in SLE, and the microbiota drives the development of SLE either by depending on or interacting with these factors. Among these, the crosstalk between genetic susceptibility, metabolism, and microbiota is a hot topic of research and is expected to lay the groundwork for the amelioration of the mechanism, diagnosis, and treatment of SLE. Furthermore, the microbiota has great potential for the treatment of SLE. Ideally, personalised therapeutic approaches should be developed in combination with more specific diagnostic methods. Herein, we provide a comprehensive overview of the role and mechanism of microbiota in lupus of the intestine, oral cavity, skin, and kidney, as well as the therapeutic potential of the microbiota.
Collapse
Affiliation(s)
- Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
48
|
Godos J, Romano GL, Gozzo L, Laudani S, Paladino N, Dominguez Azpíroz I, Martínez López NM, Giampieri F, Quiles JL, Battino M, Galvano F, Drago F, Grosso G. Resveratrol and vascular health: evidence from clinical studies and mechanisms of actions related to its metabolites produced by gut microbiota. Front Pharmacol 2024; 15:1368949. [PMID: 38562461 PMCID: PMC10982351 DOI: 10.3389/fphar.2024.1368949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Cardiovascular diseases are among the leading causes of mortality worldwide, with dietary factors being the main risk contributors. Diets rich in bioactive compounds, such as (poly)phenols, have been shown to potentially exert positive effects on vascular health. Among them, resveratrol has gained particular attention due to its potential antioxidant and anti-inflammatory action. Nevertheless, the results in humans are conflicting possibly due to interindividual different responses. The gut microbiota, a complex microbial community that inhabits the gastrointestinal tract, has been called out as potentially responsible for modulating the biological activities of phenolic metabolites in humans. The present review aims to summarize the main findings from clinical trials on the effects of resveratrol interventions on endothelial and vascular outcomes and review potential mechanisms interesting the role of gut microbiota on the metabolism of this molecule and its cardioprotective metabolites. The findings from randomized controlled trials show contrasting results on the effects of resveratrol supplementation and vascular biomarkers without dose-dependent effect. In particular, studies in which resveratrol was integrated using food sources, i.e., red wine, reported significant effects although the resveratrol content was, on average, much lower compared to tablet supplementation, while other studies with often extreme resveratrol supplementation resulted in null findings. The results from experimental studies suggest that resveratrol exerts cardioprotective effects through the modulation of various antioxidant, anti-inflammatory, and anti-hypertensive pathways, and microbiota composition. Recent studies on resveratrol-derived metabolites, such as piceatannol, have demonstrated its effects on biomarkers of vascular health. Moreover, resveratrol itself has been shown to improve the gut microbiota composition toward an anti-inflammatory profile. Considering the contrasting findings from clinical studies, future research exploring the bidirectional link between resveratrol metabolism and gut microbiota as well as the mediating effect of gut microbiota in resveratrol effect on cardiovascular health is warranted.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Lucia Gozzo
- Clinical Pharmacology Unit/Regional Pharmacovigilance Centre, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-S. Marco”, Catania, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nadia Paladino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Irma Dominguez Azpíroz
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidade Internacional do Cuanza, Cuito, Angola
- Universidad de La Romana, La Romana, Dominican Republic
| | - Nohora Milena Martínez López
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, Mexico
- Fundación Universitaria Internacional de Colombia, Bogotá, Colombia
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - José L. Quiles
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Parque Tecnologico de la Salud, Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Granada, Spain
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, Catania, Italy
| |
Collapse
|
49
|
Busch A, Roy S, Helbing DL, Colic L, Opel N, Besteher B, Walter M, Bauer M, Refisch A. Gut microbiome in atypical depression. J Affect Disord 2024; 349:277-285. [PMID: 38211751 DOI: 10.1016/j.jad.2024.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Recent studies showed that immunometabolic dysregulation is related to unipolar major depressive disorder (MDD) and that it more consistently maps to MDD patients endorsing an atypical symptom profile, characterized by energy-related symptoms including increased appetite, weight gain, and hypersomnia. Despite the documented influence of the microbiome on immune regulation and energy homeostasis, studies have not yet investigated microbiome differences among clinical groups in individuals with MDD. METHODS Fifteen MDD patients with atypical features according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5)-5, forty-four MDD patients not fulfilling the DSM-5 criteria for the atypical subtype, and nineteen healthy controls were included in the study. Participants completed detailed clinical assessment and stool samples were collected. Samples were sequenced for the prokaryotic 16S rRNA gene, in the V3-V4 variable regions. Only samples with no antibiotic exposure in the previous 12 months and a minimum of >2000 quality-filtered reads were included in the analyses. RESULTS There were no statistically significant differences in alpha- and beta-diversity between the MDD groups and healthy controls. However, within the atypical MDD group, there was an increase in the Verrucomicrobiota phylum, with Akkermansia as the predominant bacterial genus. LIMITATIONS Cross-sectional data, modest sample size, and significantly increased body mass index in the atypical MDD group. CONCLUSIONS There were no overall differences among the investigated groups. However, differences were found at several taxonomic levels. Studies in larger longitudinal samples with relevant confounders are needed to advance the understanding of the microbial influences on the clinical heterogeneity of depression.
Collapse
Affiliation(s)
- Anne Busch
- Theoretical Microbial Ecology, Friedrich Schiller University Jena, Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| | - Sagnik Roy
- Theoretical Microbial Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Dario Lucas Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany; Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Germany
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| |
Collapse
|
50
|
Song W, Zhou J, Wang X, Wang H. The potential association between salivary gland hypofunction and systemic homeostasis. Med Hypotheses 2024; 184:111279. [DOI: 10.1016/j.mehy.2024.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|