1
|
Hu X, Lai S, Liao A. Immune checkpoint for pregnancy. Semin Immunopathol 2025; 47:26. [PMID: 40314833 DOI: 10.1007/s00281-025-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/10/2025] [Indexed: 05/03/2025]
Abstract
A successful pregnancy relies on the precise regulation of the maternal immune system to recognize and tolerate the allogeneic fetus, while simultaneously preventing infection. Immune checkpoint molecules (ICMs), such as programmed death receptor 1 (PD-1), cytotoxic T-lymphocyte antigen 4 (CTLA-4), T cell immunoglobulin, and mucin-domain containing-3 (Tim-3), play critical roles in regulating the immune response during pregnancy. Emerging research highlights the therapeutic potential of targeting these molecules to restore the immune balance in complicated pregnancies. Understanding the dynamic regulation of ICMs during pregnancy may provide new insights into the pathogenesis of these conditions and offer novel approaches for clinical interventions. Here, we review the expression patterns and functions of key ICMs at the maternal-fetal interface, and their involvement in maintaining immune tolerance throughout gestation. Additionally, we describe the current understanding of immune checkpoint pathways in the pathogenesis of complicated pregnancies and discuss the potential for therapeutic targeting of these pathways in this setting.
Collapse
Affiliation(s)
- Xiaohui Hu
- Institute of Reproductive Health and Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siying Lai
- Institute of Reproductive Health and Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aihua Liao
- Institute of Reproductive Health and Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Moadab A, Khorramdelazad H, Javar MTA, Nejad MSM, Mirzaie S, Hatami S, Mahdavi N, Ghaffari S, Yazdian FA. Unmasking a Paradox: Roles of the PD-1/PD-L1 Axis in Alzheimer's Disease-Associated Neuroinflammation. J Neuroimmune Pharmacol 2025; 20:46. [PMID: 40285967 DOI: 10.1007/s11481-025-10206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Alzheimer's disease (AD) represents the most prevalent form of dementia, characterized by progressive cognitive impairment and chronic neuroinflammation. Immune checkpoint inhibitors (ICIs), including anti-programmed cell death (PD)-1 and anti-PD-L1, signify a revolutionary advancement in cancer treatment by preventing T-cell exhaustion; however, their therapeutic application in AD presents a conundrum. Hypothesis: Recent preclinical studies indicate that PD-1 inhibition in AD mouse models induces an interferon-gamma (IFN-γ)-mediated response, leading to increased recruitment of monocyte-derived macrophages into the brain, enhanced clearance of amyloid-beta (Aβ) plaques, and improved cognitive performance. Nonetheless, this therapeutic effect is counterbalanced by the potential for exacerbated neuroinflammation, as PD-1/PD-L1 blockade may potentiate pro-inflammatory T helper (Th)1 and Th17 responses. In this review, we critically discuss the pertinent pro-inflammatory and neuroprotective facets of T cell biology in the pathogenesis of AD, emphasizing the potential for modulation of the PD-1/PD-L1 axis to influence both Aβ clearance and the dynamics of neuroinflammatory processes. In summary, we determine that ICIs are promising tools for reducing AD pathology and improving cognition. However, it is essential to refine treatment protocols and carefully select patients to optimize neuroprotective effects while adequately considering inflammatory risks.
Collapse
Affiliation(s)
- Ali Moadab
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Taha Akbari Javar
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Saber Mohammadian Nejad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Shahrzad Mirzaie
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sina Hatami
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nima Mahdavi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Saeed Ghaffari
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Askari Yazdian
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
3
|
Benyahia R, Colombat M, Gueye S, Mazières J, Belliere J. Pembrolizumab-Mediated Complete Remission of a PLA2R-Positive Paraneoplastic Membranous Nephropathy: A Case Report. Kidney Med 2025; 7:100967. [PMID: 40123702 PMCID: PMC11928943 DOI: 10.1016/j.xkme.2025.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
Management of paraneoplastic membranous nephropathy (MN) is directed toward the underlying malignancy, and prescriptions of immune checkpoint inhibitors (ICIs) are skyrocketing in the field of oncology. However, this drug category is usually discouraged for patients with autoimmune disorders (AIDs) because it might trigger immune-related adverse events (irAEs) in the form of flare-ups or even genesis of AID. Yet, nothing is known about the efficacy and safety of ICIs for cancers associated with paraneoplastic MN. Here, we report a rare case of PLA2R-positive MN related to a PDL1-positive locally advanced lung adenocarcinoma. Antineoplastic treatment with the anti-PD1 pembrolizumab as a first-line, single-drug therapy allowed for both cancer and nephropathy remissions. To date, to our knowledge, this is the first description of a (PLA2R-positive) paraneoplastic MN that was put into remission via an ICI monotherapy successfully targeting the associated neoplasia only, without additional immunosuppressive agents.
Collapse
Affiliation(s)
- Rayane Benyahia
- Department of Nephrology and Organ Transplantation, Referral Centre for Rare Kidney Diseases, University Hospital of Toulouse, Toulouse, France
| | - Magali Colombat
- Department of Pathology, University Hospital of Toulouse, University Cancer Institute of Toulouse, Toulouse, France
- University Paul Sabatier-Toulouse 3, Toulouse, France
| | - Serigne Gueye
- Department of Nephrology and Dialysis, Hospital Centre of Cahors, Cahors, France
| | - Julien Mazières
- University Paul Sabatier-Toulouse 3, Toulouse, France
- Department of Pneumology, Larrey Hospital, University Hospital of Toulouse, Toulouse, France
| | - Julie Belliere
- Department of Nephrology and Organ Transplantation, Referral Centre for Rare Kidney Diseases, University Hospital of Toulouse, Toulouse, France
- University Paul Sabatier-Toulouse 3, Toulouse, France
| |
Collapse
|
4
|
Rendell M. Pharmacotherapy of type 1 diabetes - part 3: tomorrow. Expert Opin Pharmacother 2025; 26:535-550. [PMID: 40056035 DOI: 10.1080/14656566.2025.2468906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/02/2025] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION The last 100 years have seen type 1 diabetes, a previously fatal disease, transformed by the administration of exogenous insulin. AREAS COVERED A standard literature search using the Google and Microsoft search engines and PubMed was performed. The development of synthetic insulins with varying onsets and duration of action improved glucose control, essential to mitigate the microvascular and macrovascular consequences of diabetes. Today insulin pumps guided by continuous glucose monitors are approaching the objective of normalized glucose levels. The area of greatest development is now in attempting to suppress the immune process which results in progressive destruction of the beta cell. It is possible to identify family members of patients with type 1 diabetes who may eventually develop the disease by measuring several beta cell antibodies. Very recently teplizumab, a CD3 inhibitor, has been approved to delay the onset of hyperglycemia in these individuals. EXPERT OPINION The future will see progress in immunosuppression, possibly using specific CAR-Treg cells directed at the beta cell antigens which trigger the immune process. In parallel, stem cell-derived beta cells may eventually make it possible to replace lost beta cells, resulting in a true cure for type 1 diabetes.
Collapse
Affiliation(s)
- Marc Rendell
- The Association of Diabetes Investigators, Omaha, NE, USA
- The Rose Salter Medical Research Foundation, Newport Coast, CA, USA
| |
Collapse
|
5
|
Vonica RC, Butuca A, Morgovan C, Pumnea M, Cipaian RC, Frum A, Dobrea CM, Vonica-Tincu AL, Pacnejer AM, Ghibu S, Batar F, Gligor FG. Bevacizumab-Insights from EudraVigilance Database on the Assessments of the Safety Profile of Monoclonal Antibodies Used as Targeted Cancer Treatment. Pharmaceuticals (Basel) 2025; 18:501. [PMID: 40283938 PMCID: PMC12030381 DOI: 10.3390/ph18040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Worldwide, colon cancer is a major cause of cancer-related mortality, with an increasing incidence influenced by genetic, environmental, and lifestyle factors. Despite advances in diagnosis and personalized treatments, challenges remain in improving patient prognosis, particularly in metastatic colorectal cancer (mCRC). Bevacizumab (BEV), a monoclonal antibody, is widely used in colorectal cancer treatment. This study aimed to analyze adverse events associated with BEV compared with other therapies based on data from the EudraVigilance (EV) database. Methods: A descriptive and disproportionality analysis was conducted on signals reported in the EV database related to BEV. The study included comparisons with other antineoplastic treatments, such as chemotherapy, targeted therapy, and immunotherapy. Patient demographics, severity of adverse drug reactions (ADRs), and distribution patterns were analyzed to assess the safety profile of BEV in colorectal cancer treatment. Results: The majority of the signals for BEV were from patients aged 18-64 years (39.42%) and 65-85 years (34.08%). Hypertension, thromboembolism, proteinuria, and gastrointestinal disorders have been the most frequently reported. Serious ADRs, including gastrointestinal perforations, hemorrhage, and arterial thromboembolism, were observed in 93.74% of Individual Case Safety Reports. BEV was associated with a higher likelihood of vascular and endocrine disorders compared with chemotherapy and other targeted therapies. Immunotherapy was linked to increased immunological ADRs, while BEV demonstrated fewer immune-related toxicities. Conclusions: Continuous monitoring is necessary to optimize patient management, particularly in elderly patients or those with cardiovascular comorbidities. Understanding BEV's safety profile allows for better personalization of treatment strategies, minimizing risks while enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Razvan Constantin Vonica
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Manuela Pumnea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Remus Calin Cipaian
- Clinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
- County Clinical Emergency Hospital of Sibiu, 2–4 Corneliu Coposu Str., 550245 Sibiu, Romania
| | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Andreea Loredana Vonica-Tincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Aliteia-Maria Pacnejer
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Florina Batar
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| |
Collapse
|
6
|
Vemulapalli V, Shirwaikar Thomas A. The Role of Vitamin D in Gastrointestinal Homeostasis and Gut Inflammation. Int J Mol Sci 2025; 26:3020. [PMID: 40243631 PMCID: PMC11988781 DOI: 10.3390/ijms26073020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Gastrointestinal homeostasis describes a delicate state of equilibrium in which various systems cooperate to maintain digestive health, support microbial activity, and regulate immune responses. There is growing evidence that Vitamin D is one of the many factors that influences gastrointestinal homeostasis through its effects on gut barrier integrity, regulating microbial diversity and modulating immune responses. Given these effects of Vitamin D, there may be potential for it as both a preventative and a therapeutic intervention for a variety of conditions, but especially for inflammatory conditions of the gastrointestinal tract. This article will summarize the role of Vitamin D in a state of equilibrium, as well as its role in a pro-inflammatory state in the gastrointestinal tract.
Collapse
Affiliation(s)
- Varun Vemulapalli
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anusha Shirwaikar Thomas
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Vogrig A, Dentoni M, Florean I, Cellante G, Domenis R, Iacono D, Pelizzari G, Rossi S, Damato V, Fabris M, Valente M. Prediction, prevention, and precision treatment of immune checkpoint inhibitor neurological toxicity using autoantibodies, cytokines, and microbiota. Front Immunol 2025; 16:1548897. [PMID: 40181971 PMCID: PMC11966491 DOI: 10.3389/fimmu.2025.1548897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized oncology, significantly improving survival across multiple cancer types. ICIs, such as anti-PD-1 (e.g. nivolumab, pembrolizumab), anti-PD-L1 (e.g. atezolizumab, avelumab), and anti-CTLA-4 (e.g. ipilimumab), enhance T cell-mediated anti-tumor responses but can also trigger immune-related adverse events (irAEs). Neurological irAEs (n-irAEs), affecting 1-3% of patients, predominantly involve the peripheral nervous system; less commonly, n-irAEs can present as central nervous system disorders. Although irAEs suggest a possible correlation with treatment efficacy, their mechanisms remain unclear, with hypotheses ranging from antigen mimicry to cytokine dysregulation and microbiome alterations. Identifying patients at risk for n-irAEs and predicting their outcome through biomarkers would be highly desirable. For example, patients with high-risk onconeural antibodies (such as anti-Hu or Ma2), and elevated neurofilament light chain (NfL) levels often respond poorly to irAE treatment. However, interpreting neuronal antibody tests in the diagnosis of n-irAEs requires caution: positive results must align with the clinical context, as some cancer patients (e.g., SCLC) may have asymptomatic low antibody levels, and false positive results are common without tissue-based confirmation. Also, the use of biomarkers (e.g. IL-6) may lead to more targeted treatments of irAEs, minimizing adverse effects without compromising the anti-tumor efficacy of ICIs. This review provides a comprehensive overview of the latest findings on n-irAEs associated with ICIs, with a focus on their prediction, prevention, as well as precision treatment using autoantibodies, cytokines, and microbiota. The most interesting data concern neuronal antibodies, which we explore in their pathogenic roles and as biomarkers of neurotoxicity. Most of the available data on cytokines, both regarding their role as diagnostic and prognostic biomarkers and their role in supporting therapeutic decisions for toxicities, refer to non-neurological toxicities. However, in our review, we mention the potential role of CXCL10 and CXCL13 as biomarkers of n-irAEs and describe the current evidence, as well as the need for further studies, on the use of cytokines in guiding selection of second-line therapies for n-irAEs. Finally, no specific microbiome-related microbial signature has been proven to be linked to n-irAEs specifically, leading to the need of more future research on the topic.
Collapse
Affiliation(s)
- Alberto Vogrig
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Marta Dentoni
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Irene Florean
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Giulia Cellante
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Rossana Domenis
- Institute of Clinical Pathology, Department of Laboratory Medicine, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Donatella Iacono
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Giacomo Pelizzari
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Simone Rossi
- IRCCS - Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Valentina Damato
- Department of Neurosciences, Drugs and Child Health, University of Florence, Firenze, Italy
| | - Martina Fabris
- Institute of Clinical Pathology, Department of Laboratory Medicine, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Mariarosaria Valente
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| |
Collapse
|
8
|
Pandey V, Pandey T. Mechanistic understanding of pH as a driving force in cancer therapeutics. J Mater Chem B 2025; 13:2640-2657. [PMID: 39878033 DOI: 10.1039/d4tb02083a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The development of pH-directed nanoparticles for tumor targeting represents a significant advancement in cancer biology and therapeutic strategies. These innovative materials have the ability to interact with the unique acidic microenvironment of tumors. They enhance drug delivery, increase therapeutic efficacy, and reduce systemic toxicity. The acidic conditions within tumors trigger the release of drugs from pH-responsive nanoparticles, ensuring targeted and controlled delivery directly to cancer cells while minimizing damage to healthy tissues. This review comprehensively explores the design, synthesis, and application of pH-stabilized nanoparticles in cancer therapy. It delves into the mechanisms of pH-responsive behavior, such as the use of pH-sensitive polymers and cleavable linkages that respond to the acidic tumor environment. Current strategies for nanoparticle stabilization, including surface coating, core-shell nanostructures, and hybrid nanoparticles, are discussed in detail, highlighting how these approaches enhance the stability and functionality of the nanoparticles in biological systems. Recent advancements in nanoparticle-based drug delivery systems are examined, showcasing multi-functional nanoparticles that combine therapeutic and diagnostic functions, as well as those designed for combination therapy to overcome drug resistance. This review identifies future directions in the field, such as the need for improved stability and biocompatibility, controlled and predictable drug release, and overcoming regulatory and manufacturing hurdles. Herein, we have highlighted the transformative potential of pH-stabilized nanoparticles in cancer therapy, offering a pathway towards more effective and targeted cancer treatments.
Collapse
Affiliation(s)
- Vivek Pandey
- Department of Chemistry, School for Chemical engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Tejasvi Pandey
- Department of Forensic Science, School for Bio Engineering and Bio Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
9
|
Itoh C, Swart G, St Louis E, Gandhi M, Dubey D. IgLON5 autoimmunity secondary to immune checkpoint inhibitor. J Neuroimmunol 2025; 399:578516. [PMID: 39709726 DOI: 10.1016/j.jneuroim.2024.578516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
IgLON5 autoimmunity is characterized by a diverse range of clinical presentations, including neuropsychiatric symptoms, sleep disturbances, gait instability, and bulbar symptoms, that are usually insidiously progressive. While some individuals with specific HLA haplotypes may be more susceptible to developing anti-IgLON5 disease, this antibody is typically not associated with a paraneoplastic etiology nor known to be induced by immune checkpoint inhibitors (ICI). We present a clinical and serological workup of a patient who developed symptoms of IgLON5 autoimmunity following treatment with pembrolizumab. He was found to have IgLON5 antibodies present in both the serum and cerebrospinal fluid, but he also expressed high-risk HLA haplotypes. This case suggests that immune checkpoint inhibitors (ICI) may promote the development of IgLON5 autoimmunity, particularly in those with high-risk HLA haplotyes.
Collapse
Affiliation(s)
| | - Grace Swart
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Erik St Louis
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Manish Gandhi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Divyanshu Dubey
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Inoue S, Mai Y, Youh J, Shimano M, Hikichi S, Kosumi H, Ujiie I, Izumi K, Usami M, Ujiie H. Exacerbation of dipeptidyl peptidase-IV inhibitor-associated bullous pemphigoid by the immune checkpoint inhibitors durvalumab and tremelimumab. J Dermatol 2025. [PMID: 39953771 DOI: 10.1111/1346-8138.17673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Affiliation(s)
- Shinichiro Inoue
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yosuke Mai
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Joohyung Youh
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mayuna Shimano
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shiori Hikichi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Kosumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Inkin Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Izumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Makoto Usami
- Department of Medical Oncology, Steel Memorial Muroran Hospital, Muroran, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Kwon J, Kawase H, Mattonet K, Guenther S, Hahnefeld L, Shamsara J, Heering J, Kurz M, Kirchhofer S, Krasel C, Ulrich M, Persechino M, Murthy S, Orlandi C, Sadik CD, Geisslinger G, Bünemann M, Kolb P, Offermanns S, Wettschureck N. Orphan G protein-coupled receptor GPRC5B controls macrophage function by facilitating prostaglandin E receptor 2 signaling. Nat Commun 2025; 16:1448. [PMID: 39920161 PMCID: PMC11805951 DOI: 10.1038/s41467-025-56713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Macrophages express numerous G protein-coupled receptors (GPCRs) that regulate adhesion, migration, and activation, but the function of orphan receptor GPRC5B in macrophages is unknown. Both resident peritoneal and bone marrow-derived macrophages from myeloid-specific GPRC5B-deficient mice show increased migration and phagocytosis, resulting in improved bacterial clearance in a peritonitis model. In other models such as myocardial infarction, increased myeloid cell recruitment has adverse effects. Mechanistically, we found that GPRC5B physically interacts with GPCRs of the prostanoid receptor family, resulting in enhanced signaling through the prostaglandin E receptor 2 (EP2). In GPRC5B-deficient macrophages, EP2-mediated anti-inflammatory effects are diminished, resulting in hyperactivity. Using in silico modelling and docking, we identify residues potentially mediating GPRC5B/EP2 dimerization and show that their mutation results in loss of GPRC5B-mediated facilitation of EP2 signaling. Finally, we demonstrate that decoy peptides mimicking the interacting sequence are able to reduce GPRC5B-mediated facilitation of EP2-induced cAMP signaling in macrophages.
Collapse
Affiliation(s)
- Jeonghyeon Kwon
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Haruya Kawase
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Kenny Mattonet
- Imaging Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Guenther
- Deep sequencing platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Lisa Hahnefeld
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Frankfurt am Main, Germany
| | - Jamal Shamsara
- Department of Pharmaceutical Chemistry, University of Marburg, Marburg, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Michael Kurz
- Department of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Sina Kirchhofer
- Department of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Cornelius Krasel
- Department of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Michaela Ulrich
- Department of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | | | - Sripriya Murthy
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Frankfurt am Main, Germany
| | - Moritz Bünemann
- Department of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, University of Marburg, Marburg, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Centre for Molecular Medicine, Medical Faculty, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Centre for Molecular Medicine, Medical Faculty, Goethe-University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Gadiyar V, Davra V, Pulica R, Frederick T, Varsanyi C, Aquib A, Wang Z, Smirnov S, Bapat S, Calianese D, Choudhary A, Kotenko SV, Birge RB. Phosphatidylserine (PS)-targeting chimeric Interferon (IFN) fusion proteins for anti-tumor applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634764. [PMID: 39896467 PMCID: PMC11785247 DOI: 10.1101/2025.01.24.634764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In viable healthy cells, membrane phospholipids are asymmetrically distributed across the lipid bilayer, whereby the anionic phospholipid phosphatidylserine is virtually all distributed on the inner leaflet of the plasma membrane. During apoptosis, phospholipid asymmetry collapses and PS is externalized to the external leaflet where it serves as an "eat-me" signal for efferocytosis, the process whereby dying cells are engulfed and degraded by phagocytes. PS is also externalized on viable activated tumor endothelial cells, stromal cells and cancer cells in the tumor microenvironment reflecting a pathophysiological state of solid cancers that function to suppress host anti-tumor immunity. Several strategies have been envisioned to target dysregulated PS in the tumor microenvironment including PS binding proteins such as Annexin V and PS-targeting monoclonal antibodies (Bavituximab) with promising preclinical results. Here, in an attempt to enhance the efficacy of PS-targeting therapeutics, we have generated a series of recombinant chimeric fusion proteins that fuse type I and type III IFNs (IFN-β-IFN-λ) into a single polypeptide chain separated by a short linker. The IFN-β-IFN-λ fusion proteins retain functions of both type I and type III IFNs but show combined effects to improve biological function as well as enhance anti-tumor activities. To localize IFNs to sites of externalized PS, we next fused the IFN-β-IFN-λ chimeric protein to the PS-targeting gamma-carboxyglutamic acid-rich (Gla) domain of Growth Arrest Specific factor 6 (Gas-6), rendering these IFN biologics as PS targeting modalities. Gas6-IFN-β-IFN-λ proteins selectively bind PS as evident by solid-phase ELISA assays as well as bind PS-positive cells, including apoptotic cells and cells that express CDC50 subunit mutant of the ATP11C flippase. In vivo, Gas6-IFN-β-IFN-λ retain strong anti-tumor activities in a syngeneic model when expressed ectopically in a E0771 breast cancer model and B16-F10 melanoma models. Collectively, we report on the generation and utility of a series of novel in class IFN fusion proteins that target the immune stimulatory features of IFNs to the PS externalization in the tumor microenvironment.
Collapse
Affiliation(s)
- Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
- Present Address Xencor Biologics, 111 West Lemon Ave, Monrovia, CA
| | - Rachael Pulica
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Trevor Frederick
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Christopher Varsanyi
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Ahmed Aquib
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Ziren Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Sergey Smirnov
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Samhita Bapat
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - David Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Alok Choudhary
- International Center for Public Health, Public Health Research Institute
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Cell Signaling Center, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103
| |
Collapse
|
13
|
Nandre RM, Terse PS. An overview of immunotoxicity in drug discovery and development. Toxicol Lett 2025; 403:66-75. [PMID: 39603571 PMCID: PMC11734732 DOI: 10.1016/j.toxlet.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/20/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
The immune system is one of the common targets of drugs' toxicity (Immunotoxicity) and/or efficacy (Immunotherapy). Immunotoxicity leads to adverse effects on human health, which raises serious concerns for the regulatory agencies. Currently, immunotoxicity assessment is conducted using different in vitro and in vivo assays. In silico and in vitro human cell-based immunotoxicity assays should also be explored for screening purposes as these are time and cost effective as well as for ethical reasons. For in vivo studies, tier 1-3 assessments (Tier 1: hematology, serum globulin levels, lymphoid organ's weight and histopathology; Tier 2: immunophenotyping, TDAR and cell mediated immunity; and Tier 3: host resistance) should be used. These non-clinical in vivo assessments are useful to select immunological endpoints for clinical trials as well as for precautionary labeling. As per regulatory guidelines, adverse immunogenicity information of drug should be included in product's labeling to make health care practitioner aware of safety concerns before prescribing medicines and patient management (USFDA, 2022a, 2022b). This review mainly focuses on the importance of immunotoxicity assessment during drug discovery and development.
Collapse
Affiliation(s)
- Rahul M Nandre
- Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, United States.
| | - Pramod S Terse
- Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, United States.
| |
Collapse
|
14
|
Sirini C, De Rossi L, Moresco MA, Casucci M. CAR T cells in solid tumors and metastasis: paving the way forward. Cancer Metastasis Rev 2024; 43:1279-1296. [PMID: 39316265 DOI: 10.1007/s10555-024-10213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
CAR T cell therapy, hailed as a breakthrough in cancer treatment due to its remarkable outcomes in hematological malignancies, encounters significant hurdles when applied to solid tumors. While notable responses to CAR T cells remain sporadic in these patients, challenges persist due to issues such as on-target off-tumor toxicity, difficulties in their trafficking and infiltration into the tumor, and the presence of a hostile and immunosuppressive microenvironment. This review aims to explore recent endeavors aimed at overcoming these obstacles in CAR T cell therapy for solid tumors. Specifically, we will delve into promising strategies for enhancing tumor specificity through antigen targeting, addressing tumor heterogeneity, overcoming physical barriers, and counteracting the immune-suppressive microenvironment.
Collapse
Affiliation(s)
- Camilla Sirini
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Laura De Rossi
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Angiola Moresco
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|
15
|
Jeong YG, Park JH, Khang D. Sonodynamic and Acoustically Responsive Nanodrug Delivery System: Cancer Application. Int J Nanomedicine 2024; 19:11767-11788. [PMID: 39553460 PMCID: PMC11566213 DOI: 10.2147/ijn.s496028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
The advent of acoustically responsive nanodrugs that are specifically optimized for sonodynamic therapy (SDT) is a novel approach for clinical applications. Examining the therapeutic applications of sono-responsive drug delivery systems, understanding their dynamic response to acoustic stimuli, and their crucial role in enhancing targeted drug delivery are intriguing issues for current cancer treatment. Specifically, the suggested review covers SDT, a modality that enhances the cytotoxic activity of specific compounds (sonosensitizers) using ultrasound (US). Notably, SDT offers significant advantages in cancer treatment by utilizing US energy to precisely target and activate sonosensitizers toward deep-seated malignant sites. The potential mechanisms underlying SDT involve the generation of radicals from sonosensitizers, physical disruption of cell membranes, and enhanced drug transport into cells via US-assisted sonoporation. In particular, SDT is emerging as a promising modality for noninvasive, site-directed elimination of solid tumors. Given the complexity and diversity of tumors, many studies have explored the integration of SDT with other treatments to enhance the overall efficacy. This trend has paved the way for SDT-based multimodal synergistic cancer therapies, including sonophototherapy, sonoimmunotherapy, and sonochemotherapy. Representative studies of these multimodal approaches are comprehensively presented, with a detailed discussion of their underlying mechanisms. Additionally, the application of audible sound waves in biological systems is explored, highlighting their potential to influence cellular processes and enhance therapeutic outcomes. Audible sound waves can modulate enzyme activities and affect cell behavior, providing novel avenues for the use of sound-based techniques in medical applications. This review highlights the current challenges and prospects in the development of SDT-based nanomedicines in this rapidly evolving research field. The anticipated growth of this SDT-based therapeutic approach promises to significantly improve the precision of cancer treatment.
Collapse
Affiliation(s)
- Yong-Gyu Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Joo-Hwan Park
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
16
|
Singh KP, Singh A, Wolkenhauer O, Gupta SK. Regulatory Role of IL6 in Immune-Related Adverse Events during Checkpoint Inhibitor Treatment in Melanoma. Int J Mol Sci 2024; 25:10600. [PMID: 39408929 PMCID: PMC11476582 DOI: 10.3390/ijms251910600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The landscape of clinical management for metastatic melanoma (MM) and other solid tumors has been modernized by the advent of immune checkpoint inhibitors (ICI), including programmed cell death-1 (PD-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors. While these agents demonstrate efficacy in suppressing tumor growth, they also lead to immune-related adverse events (irAEs), resulting in the exacerbation of autoimmune diseases such as rheumatoid arthritis (RA), ulcerative colitis (UC), and Crohn's disease (CD). The immune checkpoint inhibitors offer promising advancements in the treatment of melanoma and other cancers, but they also present significant challenges related to irAEs and autoimmune diseases. Ongoing research is crucial to better understand these challenges and develop strategies for mitigating adverse effects while maximizing therapeutic benefits. In this manuscript, we addressed this challenge using network-based approaches by constructing and analyzing the molecular and signaling networks associated with tumor-immune crosstalk. Our analysis revealed that IL6 is the key regulator responsible for irAEs during ICI therapies. Furthermore, we conducted an integrative network and molecular-level analysis, including virtual screening, of drug libraries, such as the Collection of Open Natural Products (COCONUT) and the Zinc15 FDA-approved library, to identify potential IL6 inhibitors. Subsequently, the compound amprenavir was identified as the best molecule that may disrupt essential interactions between IL6 and IL6R, which are responsible for initiating the signaling cascades underlying irAEs in ICI therapies.
Collapse
Affiliation(s)
- Krishna P. Singh
- Department of Systems Biology & Bioinformatics, University of Rostock, 18051 Rostock, Germany; (K.P.S.); (O.W.)
| | - Anuj Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India;
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, University of Rostock, 18051 Rostock, Germany; (K.P.S.); (O.W.)
- Department of Biomedical Engineering & Bioinformatics, Chhattisgarh Swami Vivekananda Technical University, Bhilai 491107, India
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Shailendra Kumar Gupta
- Department of Systems Biology & Bioinformatics, University of Rostock, 18051 Rostock, Germany; (K.P.S.); (O.W.)
- Department of Biomedical Engineering & Bioinformatics, Chhattisgarh Swami Vivekananda Technical University, Bhilai 491107, India
| |
Collapse
|
17
|
Ren X, Li L, Chen Y, Cui X, Wan R, Wang Y. Adverse reactions of immune checkpoint inhibitors combined with Proton pump inhibitors: a pharmacovigilance analysis of drug-drug interactions. BMC Cancer 2024; 24:1193. [PMID: 39334098 PMCID: PMC11438026 DOI: 10.1186/s12885-024-12947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Combining immune checkpoint and proton pump inhibitors is widely used in cancer treatment. However, the drug-drug interactions of these substances are currently unknown. This study aimed to explore drug-drug interactions associated with concomitant immune checkpoint and proton pump inhibitors. METHODS Data were obtained from the US Food and Drug Administration Adverse Event Reporting System from 2014 to 2023. Disproportionality analysis was used for data mining by calculating the reporting odds ratios (RORs) with 95% confidence intervals (95%Cls). The adjusted RORs (RORadj) were then analysed using logistic regression analysis, considering age, sex, and reporting year. Drug-drug interactions occur when a combination treatment enhances the frequency of an event. Further confirmation of the robustness of the findings was achieved using additive and multiplicative models, which are the two statistical methodologies for signal detection of DDIs using spontaneous reporting system. RESULTS The total number of reports on immune checkpoint combined with proton pump inhibitors was 4,276. Median patient age was 66 years (interquartile range [IQR]: 60-74 years). Significant interaction signals were observed for congenital, familial and genetic disorders (RORadj = 2.66, 95%CI, 1.38-5.14, additive models = 0.7322, multiplicative models = 3.5142), hepatobiliary disorders (RORcrude = 6.64, 95%CI, 5.82-7.58, RORadj = 7.10, 95%CI, 6.16-8.18, additive models = 2.0525, multiplicative models = 1.1622), metabolism and nutrition disorders (RORcrude = 3.27, 95%CI, 2.90-3.69, RORadj = 2.66, 95%CI, 2.30-3.08, additive models = 0.6194), and skin and subcutaneous tissue disorders (RORcrude = 1.41, 95%CI, 1.26-1.58, RORadj = 1.53, 95%CI, 1.34-1.75, additive models = 0.6927, multiplicative models = 5.3599). Subset data analysis showed that programmed death-1 combined with proton pump inhibitors was associated with congenital, familial, and genetic disorders; hepatobiliary disorders; and skin and subcutaneous tissue disorders. Programmed death ligand-1 combined with proton pump inhibitors was associated with adverse reactions of metabolism and nutrition disorders. Cytotoxic T-lymphocyte antigen-4 combined with proton pump inhibitors was associated with congenital, familial, and genetic disorders, and skin and subcutaneous tissue disorders. CONCLUSIONS Based on real-world data, four Standardized MedDRA Query System Organ Class toxicities were identified as drug-drug interactions associated with combining immune checkpoint and proton pump inhibitors. Clinicians should be cautious when administering these drugs concomitantly. Preclinical trials and robust clinical studies are required to explore the mechanisms and relationships underlying interactions, thus improving understanding of drug-drug interactions associated with this combination therapy.
Collapse
Affiliation(s)
- Xiayang Ren
- Department of Pharmacy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Li
- Department of Pharmacy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiran Chen
- Department of Gynecologic Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangli Cui
- Department of pharmacy, Beijing Friendship hospital, Capital Medical University, Bejing, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Yanfeng Wang
- Department of Comprehensive Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
18
|
Armstrong A, Tang Y, Mukherjee N, Zhang N, Huang G. Into the storm: the imbalance in the yin-yang immune response as the commonality of cytokine storm syndromes. Front Immunol 2024; 15:1448201. [PMID: 39318634 PMCID: PMC11420043 DOI: 10.3389/fimmu.2024.1448201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
There is a continuous cycle of activation and contraction in the immune response against pathogens and other threats to human health in life. This intrinsic yin-yang of the immune response ensures that inflammatory processes can be appropriately controlled once that threat has been resolved, preventing unnecessary tissue and organ damage. Various factors may contribute to a state of perpetual immune activation, leading to a failure to undergo immune contraction and development of cytokine storm syndromes. A literature review was performed to consider how the trajectory of the immune response in certain individuals leads to cytokine storm, hyperinflammation, and multiorgan damage seen in cytokine storm syndromes. The goal of this review is to evaluate how underlying factors contribute to cytokine storm syndromes, as well as the symptomatology, pathology, and long-term implications of these conditions. Although the recognition of cytokine storm syndromes allows for universal treatment with steroids, this therapy shows limitations for symptom resolution and survival. By identifying cytokine storm syndromes as a continuum of disease, this will allow for a thorough evaluation of disease pathogenesis, consideration of targeted therapies, and eventual restoration of the balance in the yin-yang immune response.
Collapse
Affiliation(s)
- Amy Armstrong
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yuting Tang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Neelam Mukherjee
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Urology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nu Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Gang Huang
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Pathology & Laboratory Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
19
|
Wang YY, Song JJ. A case report of the diagnosis and treatment of immune checkpoint inhibitor-related encephalitis induced by camrelizumab. AME Case Rep 2024; 8:101. [PMID: 39380870 PMCID: PMC11459425 DOI: 10.21037/acr-24-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/26/2024] [Indexed: 10/10/2024]
Abstract
Background Camrelizumab has been widely used in the treatment of various cancers, it is important to determine the side-effect of this drug and the corresponding treatment strategy. Case Description The current case report describes the clinic, diagnosis, treatment and prognosis of camrelizumab-related encephalitis. Camrelizumab was administrated to a 67-year-old man with squamous cell carcinoma (SCC), a form of non-small cell lung cancer (NSCLC). One month after the treatment, the patient showed typical encephalitis symptoms including systemic fatigue, numbness of extremities and walking instability. Furthermore, the total protein in cerebrospinal fluid (CSF) was significantly elevated (1,399 vs. normal range 120-600 mg/L). Importantly, magnetic resonance imaging showed there was no brain metastasis. The patient did not get better after two days of intravenous injection of thioctic acid (1.2 g) and cobamamide (1.5 mg) once daily. Therefore, this patient was diagnosed as camrelizumab-related encephalitis. Then, we put him on one-month regimen: oral taper corticoids (methylprednisolone, MP) at 500 mg (days 1-4), 120 mg (days 5-10) and 60 mg (days 11-15); MP was replaced with oral prednisone acetate at 30 mg (days 16-30). After the treatment, the total protein in CSF was decreased to 873 mg/L, and all of encephalitis-related symptom was completely lost. About one year after the onset of encephalitis, the patient showed no recurrence of neurological symptoms. Conclusions The present case proves the efficacy and safety of corticoids in the treatment of camrelizumab-related adverse effects.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Department of Pharmacy, The First People’s Hospital of Jiashan, Jiaxing, China
| | - Jian-Jiang Song
- Department of Cardiovascular Medicine, The First People’s Hospital of Jiashan, Jiaxing, China
| |
Collapse
|
20
|
Houen G. Auto-immuno-deficiency syndromes. Autoimmun Rev 2024; 23:103610. [PMID: 39209011 DOI: 10.1016/j.autrev.2024.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Autoimmune diseases constitute a broad, heterogenous group with many diverse and often overlapping symptoms. Even so, they are traditionally classified as either systemic, rheumatic diseases or organ-directed diseases. Several theories exist about autoimmune diseases, including defective self-recognition, altered self, molecular mimicry, bystander activation and epitope spreading. While there is no consensus about these theories, it is generally accepted that genetic, pre-disposing factors in combination with environmental factors can result in autoimmune disease. The relative contribution of genetic and environmental factors varies between diseases, as does the significance of individual contributing factors within related diseases. Among the genetic factors, molecules involved in antigen (Ag) recognition, processing, and presentation stand out (e.g., MHC I and II) together with molecules involved in immune signaling and regulation of cellular interactions (i.e., immuno-phenotypes). Also, various immuno-deficiencies have been linked to development of autoimmune diseases. Among the environmental factors, infections (e.g., viruses) have attracted most attention, but factors modulating the immune system have also been the subject of much research (e.g., sunlight and vitamin D). Multiple sclerosis currently stands out due to a very strong and proven association with Epstein-Barr virus infection, notably in cases of late infection and in cases of EBV-associated mononucleosis. Thus, a common picture is emerging that both systemic and organ-directed autoimmune diseases may appropriately be described as auto-immuno-deficiency syndromes (AIdeSs), a concept that emphasizes and integrates existing knowledge on the role of immuno-deficiencies and chronic infections with development of overlapping disease syndromes with variable frequencies of autoantibodies and/or autoreactive T cells. This review integrates and exemplifies current knowledge on the interplay of genetically determined immuno-phenotypes and chronic infections in the development of AIdeSs.
Collapse
Affiliation(s)
- Gunnar Houen
- Department of Neurology and Translational Research Center (TRACE), Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
| |
Collapse
|
21
|
Wallwork RS, Kotzin JJ, Cappelli LC, Mecoli C, Bingham CO, Wigley FM, Wilson PC, DiRenzo DD, Shah AA. Immune checkpoint inhibitor therapy in patients with cancer and pre-existing systemic sclerosis. Semin Arthritis Rheum 2024; 67:152460. [PMID: 38733668 PMCID: PMC11211049 DOI: 10.1016/j.semarthrit.2024.152460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVE Immune checkpoint inhibitor (ICI) therapies have dramatically improved outcomes in multiple cancers. ICI's mechanism of action involves immune system activation to augment anti-tumor immunity. Patients with pre-existing autoimmune diseases, such as systemic sclerosis (SSc), were excluded from initial ICI clinical trials due to concern that such immune system activation could precipitate an autoimmune disease flare or new, severe immune related adverse events (irAE). In the present study, we report our experience with ICIs in patients with pre-existing SSc. METHODS Patients with SSc who received ICI therapy for cancer were identified from the Johns Hopkins Scleroderma Center Research Registry. Through chart review and prespecified definitions, we identified whether patients experienced worsening SSc activity or new irAEs. SSc disease activity worsening was pre-defined as an increase in modified Rodnan skin score (mRSS), new scleroderma renal crisis, progression of interstitial lung disease (ILD) on CT scan, increased Raynaud's phenomenon frequency or severity, new pulmonary hypertension, or myositis flare. IrAEs also included active inflammatory arthritis and dermatitis. RESULTS Eight patients with SSc who received ICI therapy for cancer were included. Overall, SSc symptoms remained stable during and after ICI therapy. None of the patients with long-standing sine or limited cutaneous SSc (lcSSc) had progressive skin thickening after ICI therapy. One patient, who was early in his diffuse cutaneous SSc (dcSSc) disease course, experienced worsening skin thickening and renal crisis. Three patients (38 %) experienced a total of five irAEs (grade 2: diarrhea, mucositis and dermatitis; grade 3: pneumonitis, and grade 4: nephritis). The patient with grade 4 nephritis developed scleroderma renal crisis and immune checkpoint related nephritis simultaneously. There were no deaths due to irAEs. CONCLUSION In this study, ICI therapy was well tolerated in patients with longstanding, sine or lcSSc. IrAE were common but generally manageable. Patients with early, active SSc may be at greater risk from ICI therapy, but more research is needed.
Collapse
Affiliation(s)
- Rachel S Wallwork
- Department of Medicine, Division of Rheumatology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Jonathan J Kotzin
- Department of Medicine, Division of Rheumatology, University of Pennsylvania, Philadelphia, PA, United States
| | - Laura C Cappelli
- Department of Medicine, Division of Rheumatology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Christopher Mecoli
- Department of Medicine, Division of Rheumatology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Clifton O Bingham
- Department of Medicine, Division of Rheumatology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Fredrick M Wigley
- Department of Medicine, Division of Rheumatology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Parker C Wilson
- Department of Medicine, Division of Rheumatology, University of Pennsylvania, Philadelphia, PA, United States
| | - Dana D DiRenzo
- Department of Medicine, Division of Rheumatology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ami A Shah
- Department of Medicine, Division of Rheumatology, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
22
|
Zavaleta-Monestel E, García-Montero J, Anchía-Alfaro A, Rojas-Chinchilla C, Quesada-Villaseñor R, Arguedas-Chacón S, Barrantes-López M, Molina-Sojo P, Zovi A, Zúñiga-Orlich C. Myocarditis Induced by Immune Checkpoint Inhibitors: An Exploratory Review. Cureus 2024; 16:e67314. [PMID: 39301338 PMCID: PMC11412606 DOI: 10.7759/cureus.67314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Checkpoints are essential proteins in the immune system that regulate the intensity and duration of immune responses, preventing damage to healthy tissues during the fight against pathogens and abnormal cells. While these mechanisms are crucial in cancer defense, this disease can alter the functionality of these proteins. This is why checkpoint inhibitors have emerged as an important class of drugs to potentiate the antitumor immune response. However, it has been observed that these drugs can trigger adverse effects, among which myocarditis is one of the most prevalent. This article explores the signaling pathways associated with checkpoint inhibitors, their adverse effects, and their impact on the development of myocarditis, as well as potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrea Zovi
- Hygiene, Food Safety, and Nutrition, Ministry of Health, Rome, ITA
| | | |
Collapse
|
23
|
Chota A, Abrahamse H, George BP. Green synthesis and characterization of AgNPs, liposomal loaded AgNPs and ZnPcS 4 photosensitizer for enhanced photodynamic therapy effects in MCF-7 breast cancer cells. Photodiagnosis Photodyn Ther 2024; 48:104252. [PMID: 38901719 DOI: 10.1016/j.pdpdt.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Breast cancer remains a formidable challenge in oncology despite significant advancements in treatment modalities. Conventional therapies such as surgery, chemotherapy, radiation therapy, and hormonal therapy have been the mainstay in managing breast cancer for decades. However, a subset of patient's experiences treatment failure, leading to disease recurrence and progression. Therefore, this study investigates the therapeutic potential of green-synthesized silver nanoparticles (AgNPs) using an African medicinal plant (Dicoma anomala methanol root extract) as a reducing agent for combating breast cancer. AgNPs were synthesized using the bottom-up approach and later modified with liposomes (Lip) loaded with photosensitizer (PS) zinc phthalocyanine tetrasulfonate (Lip@ZnPcS4) using thin film hydration method. The successful formation and Lip modification of AgNPs, alongside ZnPcS4, were confirmed through various analytical techniques including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Following a 24 h treatment period, MCF-7 cells were assessed for viability using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT viability assay), cell death analysis using mitochondrial membrane potential (MMP) (ΔΨm), Annexin V-fluorescein isothiocyanate (FITC)-propidium iodide (PI) kit, and caspase- 3, 8 and 9 activities. The experiments were repeated four times (n = 4), and the results were analyzed using SPSS statistical software version 27, with a confidence interval set at 0.95. The synthesized nanoparticles and nanocomplex, including AgNPs, AgNPs-Lip, Lip@ZnPcS4, and AgNPs-Lip@ZnPcS4, exhibited notable cytotoxicity and therapeutic efficacy against MCF-7 breast cancer cells. Notably, the induction of apoptosis, governed by the upregulation of apoptotic proteins i.e., caspase 8 and 9 activities. In addition, caspase 3 was not expressed by MCF-7 cells in both control and experimental groups. Given the challenging prognosis associated with breast cancer, the findings underscore the promise of liposomal nanoformulations in cancer photodynamic therapy (PDT), thus warranting further exploration in clinical settings.
Collapse
Affiliation(s)
- Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
24
|
Jaing TH, Wang YL, Chiu CC. Immune Checkpoint Inhibitors for Pediatric Cancers: Is It Still a Stalemate? Pharmaceuticals (Basel) 2024; 17:991. [PMID: 39204096 PMCID: PMC11357301 DOI: 10.3390/ph17080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
The knowledge surrounding the application of immune checkpoint inhibitors (ICIs) in the treatment of pediatric cancers is continuously expanding and evolving. These therapies work by enhancing the body's natural immune response against tumors, which may have been suppressed by certain pathways. The effectiveness of ICIs in treating adult cancers has been widely acknowledged. However, the results of early phase I/II clinical trials that exclusively targeted the use of ICIs for treating different pediatric cancers have been underwhelming. The response rates to ICIs have generally been modest, except for cases of pediatric classic Hodgkin lymphoma. There seems to be a notable disparity in the immunogenicity of childhood cancers compared to adult cancers, potentially accounting for this phenomenon. On average, childhood cancers tend to have significantly fewer neoantigens. In recent times, there has been a renewed sense of optimism regarding the potential benefits of ICI therapies for specific groups of children with cancer. In initial research, individuals diagnosed with pediatric hypermutated and SMARCB1-deficient cancers have shown remarkable positive outcomes when treated with ICI therapies. This is likely due to the underlying biological factors that promote the expression of neoantigens and inflammation within the tumor. Ongoing trials are diligently assessing the effectiveness of ICIs for pediatric cancer patients in these specific subsets. This review aimed to analyze the safety and effectiveness of ICIs in pediatric patients with different types of highly advanced malignancies.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Chia-Chi Chiu
- Division of Nursing, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| |
Collapse
|
25
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Hypocortisolemic ASIA: a vaccine- and chronic infection-induced syndrome behind the origin of long COVID and myalgic encephalomyelitis. Front Immunol 2024; 15:1422940. [PMID: 39044822 PMCID: PMC11263040 DOI: 10.3389/fimmu.2024.1422940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), long COVID (LC) and post-COVID-19 vaccine syndrome show similarities in their pathophysiology and clinical manifestations. These disorders are related to viral or adjuvant persistence, immunological alterations, autoimmune diseases and hormonal imbalances. A developmental model is postulated that involves the interaction between immune hyperactivation, autoimmune hypophysitis or pituitary hypophysitis, and immune depletion. This process might begin with a deficient CD4 T-cell response to viral infections in genetically predisposed individuals (HLA-DRB1), followed by an uncontrolled immune response with CD8 T-cell hyperactivation and elevated antibody production, some of which may be directed against autoantigens, which can trigger autoimmune hypophysitis or direct damage to the pituitary, resulting in decreased production of pituitary hormones, such as ACTH. As the disease progresses, prolonged exposure to viral antigens can lead to exhaustion of the immune system, exacerbating symptoms and pathology. It is suggested that these disorders could be included in the autoimmune/adjuvant-induced inflammatory syndrome (ASIA) because of their similar clinical manifestations and possible relationship to genetic factors, such as polymorphisms in the HLA-DRB1 gene. In addition, it is proposed that treatment with antivirals, corticosteroids/ginseng, antioxidants, and metabolic precursors could improve symptoms by modulating the immune response, pituitary function, inflammation and oxidative stress. Therefore, the purpose of this review is to suggest a possible autoimmune origin against the adenohypophysis and a possible improvement of symptoms after treatment with corticosteroid replacement therapy.
Collapse
Affiliation(s)
- Manuel Ruiz-Pablos
- Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Bruno Paiva
- Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| | - Aintzane Zabaleta
- Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
26
|
Zouali M. Engineered immune cells as therapeutics for autoimmune diseases. Trends Biotechnol 2024; 42:842-858. [PMID: 38368169 DOI: 10.1016/j.tibtech.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
Current treatment options for autoimmune disease (AID) are essentially immunosuppressive, inhibiting the inflammatory cascade, without curing the disease. Therapeutic monoclonal antibodies (mAbs) that target B cells showed efficacy, emphasizing the importance of B lymphocytes in autoimmune pathogenesis. Treatments that eliminate more potently B cells would open a new therapeutic era for AID. Immune cells can now be bioengineered to express constructs that enable them to specifically eradicate pathogenic B lymphocytes. Engineered immune cells (EICs) have shown therapeutic promise in both experimental models and in clinical trials in AID. Next-generation platforms are under development to optimize their specificity and improve safety. The profound and durable B cell depletion achieved reinforces the view that this biotherapeutic option holds promise for treating AID.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
27
|
Souri Z, Pakdel F. Immune Checkpoints and Graves' Disease, Thyroid Eye Disease, and Orbital Myopathy: A Comprehensive Review. J Ophthalmic Vis Res 2024; 19:368-380. [PMID: 39359534 PMCID: PMC11443990 DOI: 10.18502/jovr.v19i3.15047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/30/2024] [Indexed: 10/04/2024] Open
Abstract
Immune checkpoints (ICPs) are essential regulators of the immune system, ensuring a delicate balance between self-tolerance and autoimmune responses. ICP therapy is a rapidly growing cancer treatment strategy that inhibits the interaction between ICPs and their ligands. This biological interaction increases the ability of the immune system in combating cancer. However, in some cases, the use of these agents may lead to immune hyperactivity and, subsequently, autoimmune diseases. Graves' disease (GD), thyroid eye disease (TED), and orbital myopathy are complex autoimmune disorders characterized by the production of autoantibodies. The emergence of these treatment-related adverse events underscore the critical need for a deeper understanding of the immune-checkpoint axis in autoimmune diseases. In this review article, we provide a comprehensive survey of the biological mechanisms of ICPs that are most frequently targeted in cancer therapy, including CTLA-4, PD-1, PDL-1, and LAG3. Furthermore, we investigate the latest scientific findings on the adverse events associated with the inhibition of these ICPs. This paper will particularly focus on the potential risks these complications pose to ocular and orbital tissues, which are a concern in the context of cancer treatment.
Collapse
Affiliation(s)
- Zahra Souri
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Farzad Pakdel
- Department of Oculo-Facial Plastic Surgery, Farabi Eye Hospital, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
29
|
Pachane BC, Selistre-de-Araujo HS. The Role of αvβ3 Integrin in Cancer Therapy Resistance. Biomedicines 2024; 12:1163. [PMID: 38927370 PMCID: PMC11200931 DOI: 10.3390/biomedicines12061163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
A relevant challenge for the treatment of patients with neoplasia is the development of resistance to chemo-, immune-, and radiotherapies. Although the causes of therapy resistance are poorly understood, evidence suggests it relies on compensatory mechanisms that cells develop to replace specific intracellular signaling that should be inactive after pharmacological inhibition. One such mechanism involves integrins, membrane receptors that connect cells to the extracellular matrix and have a crucial role in cell migration. The blockage of one specific type of integrin is frequently compensated by the overexpression of another integrin dimer, generally supporting cell adhesion and migration. In particular, integrin αvβ3 is a key receptor involved in tumor resistance to treatments with tyrosine kinase inhibitors, immune checkpoint inhibitors, and radiotherapy; however, the specific inhibition of the αvβ3 integrin is not enough to avoid tumor relapse. Here, we review the role of integrin αvβ3 in tumor resistance to therapy and the mechanisms that have been proposed thus far. Despite our focus on the αvβ3 integrin, it is important to note that other integrins have also been implicated in drug resistance and that the collaborative action between these receptors should not be neglected.
Collapse
Affiliation(s)
- Bianca Cruz Pachane
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Heloisa S. Selistre-de-Araujo
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| |
Collapse
|
30
|
Casagrande S, Sopetto GB, Bertalot G, Bortolotti R, Racanelli V, Caffo O, Giometto B, Berti A, Veccia A. Immune-Related Adverse Events Due to Cancer Immunotherapy: Immune Mechanisms and Clinical Manifestations. Cancers (Basel) 2024; 16:1440. [PMID: 38611115 PMCID: PMC11011060 DOI: 10.3390/cancers16071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The landscape of cancer treatment has undergone a significant transformation with the introduction of Immune Checkpoint Inhibitors (ICIs). Patients undergoing these treatments often report prolonged clinical and radiological responses, albeit with a potential risk of developing immune-related adverse events (irAEs). Here, we reviewed and discussed the mechanisms of action of ICIs and their pivotal role in regulating the immune system to enhance the anti-tumor immune response. We scrutinized the intricate pathogenic mechanisms responsible for irAEs, arising from the evasion of self-tolerance checkpoints due to drug-induced immune modulation. We also summarized the main clinical manifestations due to irAEs categorized by organ types, detailing their incidence and associated risk factors. The occurrence of irAEs is more frequent when ICIs are combined; with neurological, cardiovascular, hematological, and rheumatic irAEs more commonly linked to PD1/PD-L1 inhibitors and cutaneous and gastrointestinal irAEs more prevalent with CTLA4 inhibitors. Due to the often-nonspecific signs and symptoms, the diagnosis of irAEs (especially for those rare ones) can be challenging. The differential with primary autoimmune disorders becomes sometimes intricate, given the clinical and pathophysiological similarities. In conclusion, considering the escalating use of ICIs, this area of research necessitates additional clinical studies and practical insights, especially the development of biomarkers for predicting immune toxicities. In addition, there is a need for heightened education for both clinicians and patients to enhance understanding and awareness.
Collapse
Affiliation(s)
- Silvia Casagrande
- Unit of Neurology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari-APSS, 38122 Trento, Italy; (S.C.); (B.G.)
| | - Giulia Boscato Sopetto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
| | - Giovanni Bertalot
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Multizonal Unit of Pathology, APSS, 38122 Trento, Italy
| | - Roberto Bortolotti
- Unit of Rheumatology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy;
| | - Vito Racanelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Unit of Internal Medicine, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy
| | - Orazio Caffo
- Unit of Oncology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy; (O.C.); (A.V.)
| | - Bruno Giometto
- Unit of Neurology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari-APSS, 38122 Trento, Italy; (S.C.); (B.G.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Department of Psychology and Cognitive Sciences (DIPSCO), University of Trento, 38122 Trento, Italy
| | - Alvise Berti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Unit of Rheumatology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy;
| | - Antonello Veccia
- Unit of Oncology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy; (O.C.); (A.V.)
| |
Collapse
|
31
|
Maisonial-Besset A, Kryza D, Kopka K, Levesque S, Moreau E, Wenzel B, Chezal JM. Improved automated one-pot two-step radiosynthesis of (S)-[ 18F]FETrp, a radiotracer for PET imaging of indoleamine 2,3-dioxygenase 1 (IDO1). EJNMMI Radiopharm Chem 2024; 9:28. [PMID: 38564046 PMCID: PMC10987429 DOI: 10.1186/s41181-024-00256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND (S)-[18F]FETrp is a promising PET radiotracer for imaging IDO1 activity, one of the main enzymes involved in the tryptophan metabolism that plays a key role in several diseases including cancers. To date, the radiosynthesis of this tryptophan analogue remains highly challenging due to partial racemization occurring during the nucleophilic radiofluorination step. This work aims to develop a short, epimerization-free and efficient automated procedure of (S)-[18F]FETrp from a corresponding enantiopure tosylate precursor. RESULTS Enantiomerically pure (S)- and (R)-FETrp references as well as tosylate precursors (S)- and (R)-3 were obtained from corresponding Na-Boc-(L and D)-tryptophan in 2 and 4 steps, respectively. Manual optimisation of the radiolabelling conditions resulted in > 90% radiochemical conversion with more than 99% enantiomeric purity. Based on these results, the (S)-[18F]FETrp radiosynthesis was fully automated on a SynChrom R&D EVOI module to produce the radiotracer in 55.2 ± 7.5% radiochemical yield, 99.9% radiochemical purity, 99.1 ± 0.5% enantiomeric excess, and molar activity of 53.2 ± 9.3 GBq/µmol (n = 3). CONCLUSIONS To avoid racemisation and complicated purification processes, currently encountered for the radiosynthesis of (S)-[18F]FETrp, we report herein significant improvements, including a versatile synthesis of enantiomerically pure tosylate precursor and reference compound and a convenient one-pot two-step automated procedure for the radiosynthesis of (S)-[18F]FETrp. This optimised and robust production method could facilitate further investigations of this relevant PET radiotracer for imaging IDO1 activity.
Collapse
Affiliation(s)
- Aurélie Maisonial-Besset
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Clermont-Ferrand, F-63000, France
| | - David Kryza
- Imthernat, LAGEPP, CNRS UMR 5007, Université de Lyon, Hospices Civils de Lyon, Lyon, F-69622, France
- Lumen Nuclear Medicine group, Hospices Civils de Lyon et Centre Léon Bérard, Lyon, F-69008, France
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, 04318, Leipzig, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Sophie Levesque
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Clermont-Ferrand, F-63000, France
- Department of Nuclear Medicine, Jean Perrin Comprehensive Cancer Centre, Clermont-Ferrand, F-63011, France
| | - Emmanuel Moreau
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Clermont-Ferrand, F-63000, France
| | - Barbara Wenzel
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, 04318, Leipzig, Germany
| | - Jean-Michel Chezal
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Clermont-Ferrand, F-63000, France.
| |
Collapse
|
32
|
Preite NW, Borges BM, Kaminski VDL, Ayupe MC, Gonçalves LM, dos Santos BV, Fonseca DLM, Filgueiras IS, Salgado CL, Muxel SM, Cabral-Marques O, da Fonseca DM, Loures FV, Calich VLG. Blocking the CTLA-4 and PD-1 pathways during pulmonary paracoccidioidomycosis improves immunity, reduces disease severity, and increases the survival of infected mice. Front Immunol 2024; 15:1347318. [PMID: 38500881 PMCID: PMC10945025 DOI: 10.3389/fimmu.2024.1347318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
Immune checkpoint pathways, i.e., coinhibitory pathways expressed as feedback following immune activation, are crucial for controlling an excessive immune response. Cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1) are the central classical checkpoint inhibitory (CPI) molecules used for the control of neoplasms and some infectious diseases, including some fungal infections. As the immunosuppression of severe paracoccidioidomycosis (PCM), a chronic granulomatous fungal disease, was shown to be associated with the expression of coinhibitory molecules, we hypothesized that the inhibition of CTLA-4 and PD-1 could have a beneficial effect on pulmonary PCM. To this end, C57BL/6 mice were infected with Paracoccidioides brasiliensis yeasts and treated with monoclonal antibodies (mAbs) α-CTLA-4, α-PD-1, control IgG, or PBS. We verified that blockade of CTLA-4 and PD-1 reduced the fungal load in the lungs and fungal dissemination to the liver and spleen and decreased the size of pulmonary lesions, resulting in increased survival of mice. Compared with PBS-treated infected mice, significantly increased levels of many pro- and anti-inflammatory cytokines were observed in the lungs of α-CTLA-4-treated mice, but a drastic reduction in the liver was observed following PD-1 blockade. In the lungs of α-CPI and IgG-treated mice, there were no changes in the frequency of inflammatory leukocytes, but a significant reduction in the total number of these cells was observed. Compared with PBS-treated controls, α-CPI- and IgG-treated mice exhibited reduced pulmonary infiltration of several myeloid cell subpopulations and decreased expression of costimulatory molecules. In addition, a decreased number of CD4+ and CD8+ T cells but sustained numbers of Th1, Th2, and Th17 T cells were detected. An expressive reduction in several Treg subpopulations and their maturation and suppressive molecules, in addition to reduced numbers of Treg, TCD4+, and TCD8+ cells expressing costimulatory and coinhibitory molecules of immunity, were also detected. The novel cellular and humoral profiles established in the lungs of α-CTLA-4 and α-PD-1-treated mice but not in control IgG-treated mice were more efficient at controlling fungal growth and dissemination without causing increased tissue pathology due to excessive inflammation. This is the first study demonstrating the efficacy of CPI blockade in the treatment of pulmonary PCM, and further studies combining the use of immunotherapy with antifungal drugs are encouraged.
Collapse
Affiliation(s)
| | | | | | - Marina Caçador Ayupe
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Leonardo Mandu Gonçalves
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | | | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Caio Loureiro Salgado
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Sandra Marcia Muxel
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine (USP), São Paulo, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology, Federal University of São Paulo, São Paulo, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
33
|
Sarkar A, Nagappa M, Dey S, Mondal S, Babu GS, Choudhury SP, Akhil P, Debnath M. Synergistic effects of immune checkpoints and checkpoint inhibitors in inflammatory neuropathies: Implications and mechanisms. J Peripher Nerv Syst 2024; 29:6-16. [PMID: 37988274 DOI: 10.1111/jns.12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Immune checkpoint molecules play pivotal roles in the regulation of immune homeostasis. Disruption of the immune checkpoints causes autoimmune/inflammatory as well as malignant disorders. Over the past few years, the immune checkpoint molecules with inhibitory function emerged as potential therapeutic targets in oncological conditions. The inhibition of the function of these molecules by using immune checkpoint inhibitors (ICIs) has brought paradigmatic changes in cancer therapy due to their remarkable clinical benefits, not only in improving the quality of life but also in prolonging the survival time of cancer patients. Unfortunately, the ICIs soon turned out to be a "double-edged sword" as the use of ICIs caused multiple immune-related adverse effects (irAEs). The development of inflammatory neuropathies such as Guillain-Barré syndrome (GBS) and Chronic Inflammatory Demyelinating Polyradiculoneuropathy (CIDP) as the secondary effects of immunotherapy appeared very challenging as these conditions result in significant and often permanent disability. The underlying mechanism(s) through which ICIs trigger inflammatory neuropathies are currently not known. Compelling evidence suggests autoimmune reaction and/or inflammation as the independent risk mechanism of inflammatory neuropathies. There is a lack of understanding as to whether prior exposure to the risk factors of inflammatory neuropathies, the presence of germline genetic variants in immune function-related genes, genetic variations within immune checkpoint molecules, the existence of autoantibodies, and activated/memory T cells act as determining factors for ICI-induced inflammatory neuropathies. Herein, we highlight the available pieces of evidence, discuss the mechanistic basis, and propose a few testable hypotheses on inflammatory neuropathies as irAEs of immunotherapy.
Collapse
Affiliation(s)
- Aritrani Sarkar
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Saikat Dey
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sandipan Mondal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Gopika Suresh Babu
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Saptamita Pal Choudhury
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Pokala Akhil
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
34
|
Khan GJ, Imtiaz A, Wang W, Duan H, Cao H, Zhai K, He N. Thymus as Incontrovertible Target of Future Immune Modulatory Therapeutics. Endocr Metab Immune Disord Drug Targets 2024; 24:1587-1610. [PMID: 38347798 DOI: 10.2174/0118715303283164240126104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 10/22/2024]
Abstract
Thymus plays a crucial role in cellular immunity by acting as a warehouse for proliferating and differentiating lymphocytes. Thymic stromal cells educate T-cells to differentiate self from non-self antigens while nurse cells and thymoproteasome play a major role in the maturation and differentiation of T-cells. The thymic conditions dictate T-cells to cope with the risk of cancer development. A study was designed to demonstrate potential mechanisms behind the failure to eliminate tumors and impaired immune surveillance as well as the impact of delay in thymus regression on cancer and autoimmune disorders. Scientific literature from Pubmed; Scopus; WOS; JSTOR; National Library of Medicine Bethesda, Maryland; The New York Academy of Medicine; Library of Speech Rehabilitation, NY; St. Thomas' Hospital Library; The Wills Library of Guys Hospital; Repository of Kings College London; and Oxford Academic repository was explored for pathological, physiological, immunological and toxicological studies of thymus. Studies have shown that systemic chemotherapy may lead to micro inflammatory environment within thymus where conventionally and dynamically metastasized dormant cells seek refuge. The malfunctioning of the thymus and defective T and Treg cells, bypassing negative selection, contributes to autoimmune disorders, while AIRE and Fezf2 play significant roles in thymic epithelial cell solidity. Different vitamins, TCM, and live cell therapy are effective therapeutics. Vitamin A, C, D, and E, selenium and zinc, cinobufagin and dietary polysaccharides, and glandular extracts and live cell injections have strong potential to restore immune system function and thymus health. Moreover, the relationship between different ages/ stages of thymus and their corresponding T-cell mediated anti-tumor immune response needs further exploration.
Collapse
Affiliation(s)
- Ghulam Jilany Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
- Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Abeeha Imtiaz
- Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High-value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
| |
Collapse
|
35
|
Altan M, Li QZ, Wang Q, Vokes NI, Sheshadri A, Gao J, Zhu C, Tran HT, Gandhi S, Antonoff MB, Swisher S, Wang J, Byers LA, Abdel-Wahab N, Franco-Vega MC, Wang Y, Lee JJ, Zhang J, Heymach JV. Distinct patterns of auto-reactive antibodies associated with organ-specific immune-related adverse events. Front Immunol 2023; 14:1322818. [PMID: 38152395 PMCID: PMC10751952 DOI: 10.3389/fimmu.2023.1322818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
The roles of preexisting auto-reactive antibodies in immune-related adverse events (irAEs) associated with immune checkpoint inhibitor therapy are not well defined. Here, we analyzed plasma samples longitudinally collected at predefined time points and at the time of irAEs from 58 patients with immunotherapy naïve metastatic non-small cell lung cancer treated on clinical protocol with ipilimumab and nivolumab. We used a proteomic microarray system capable of assaying antibody reactivity for IgG and IgM fractions against 120 antigens for systemically evaluating the correlations between auto-reactive antibodies and certain organ-specific irAEs. We found that distinct patterns of auto-reactive antibodies at baseline were associated with the subsequent development of organ-specific irAEs. Notably, ACHRG IgM was associated with pneumonitis, anti-cytokeratin 19 IgM with dermatitis, and anti-thyroglobulin IgG with hepatitis. These antibodies merit further investigation as potential biomarkers for identifying high-risk populations for irAEs and/or monitoring irAEs during immunotherapy treatment. Trial registration ClinicalTrials.gov identifier: NCT03391869.
Collapse
Affiliation(s)
- Mehmet Altan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Quan-Zhen Li
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Qi Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalie I. Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chengsong Zhu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Hai T. Tran
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Saumil Gandhi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mara B. Antonoff
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephen Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lauren A. Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Noha Abdel-Wahab
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria C. Franco-Vega
- Department of Hospital Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yinghong Wang
- Department of Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
36
|
Riminton DS. Is immunology doing well? A look at 100 immune-mediated inflammatory diseases for 100 years of the Journal. Immunol Cell Biol 2023; 101:896-901. [PMID: 37795562 DOI: 10.1111/imcb.12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
It is now 60 years since Ian Mackay and Macfarlane Burnet published their seminal text "The Autoimmune Diseases" in which they examined the full scope of human inflammatory pathology as a manifestation of the underlying structure and function of the immune system. Here I revisit this approach to ask to what extent has the promise of Mackay and Burnet's work been exploited in clinical medicine as currently practiced. In other words, is immunology doing well? Despite spectacular headline contributions of immunology in clinical medicine, I present evidence suggesting a performance ceiling in our capacity to answer the relatively straightforward questions that patients frequently ask about their own diseases and find that this ceiling exists across almost all of the 100 immune-mediated inflammatory diseases examined. I propose that these questions are difficult, not so much because the immune system is overwhelmingly complex but rather that we have more to learn about the relatively simple agents and rules that may underpin self-organizing complex interacting systems as revealed in studies from other disciplines. The way that the immune system has evolved to exploit the ancient machinery determining three independent cell fate timers as described in this Journal would be a great place to start to decode the self-organizing principles that underpin the emergent pathology that we observe in the clinic.
Collapse
Affiliation(s)
- D Sean Riminton
- Department of Immunology, Concord Hospital, Sydney, NSW, Australia
| |
Collapse
|
37
|
Mertowska P, Mertowski S, Smolak K, Pasiarski M, Smok-Kalwat J, Góźdź S, Grywalska E. Exploring the Significance of Immune Checkpoints and EBV Reactivation in Antibody Deficiencies with Near-Normal Immunoglobulin Levels or Hyperimmunoglobulinemia. Cancers (Basel) 2023; 15:5059. [PMID: 37894426 PMCID: PMC10605741 DOI: 10.3390/cancers15205059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
This study delves into the intricate landscape of primary immunodeficiencies, with a particular focus on antibody deficiencies characterized by near-normal immunoglobulin levels or hyperimmunoglobulinemia. Contrary to the conventional focus on genetic dysregulation, these studies investigate the key roles of immune checkpoints, such as PD-1/PD-L1, CTLA-4/CD86, and CD200R/CD200, on selected subpopulations of T and B lymphocytes and their serum concentrations of soluble forms in patients recruited for the studies in healthy volunteers. In addition, the studies also show the role of Epstein-Barr virus (EBV) reactivation and interactions with tested pathways of immune checkpoints involved in the immunopathogenesis of this disease. By examining the context of antibody deficiencies, this study sheds light on the nuanced interplay of factors beyond genetics, particularly the immune dysregulations that occur in the course of this type of disease and the potential role of EBV reactivation, which affects the clinical presentation of patients and may contribute to the development of cancer in the future, especially related to hematological malignancies.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Marcin Pasiarski
- Department of Immunology, Faculty of Health Sciences, Jan Kochanowski University, 25-317 Kielce, Poland;
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
| | - Jolanta Smok-Kalwat
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
| | - Stanisław Góźdź
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (E.G.)
| |
Collapse
|