1
|
van den Berg W, Gupta BP. Genome-Wide Temporal Gene Expression Reveals a Post-Reproductive Shift in the Nematode Caenorhabditis briggsae. Genome Biol Evol 2025; 17:evaf057. [PMID: 40171711 PMCID: PMC11992569 DOI: 10.1093/gbe/evaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
The nematodes Caenorhabditis briggsae and its well-known cousin Caenorhabditis elegans offer many features for comparative investigations of genetic pathways that affect physiological processes. Reproduction is one such process that directly impacts longevity due to its significant energetic demands. To study gene expression changes during reproductive and post-reproductive phases in both these nematodes, we conducted whole-genome transcriptome profiling at various adult stages. The results revealed that the majority of differentially expressed (DE) genes were downregulated during the reproductive period in both species. Interestingly, in C. briggsae, this trend reversed during post-reproduction, with three-quarters of the DE genes becoming upregulated. Additionally, a smaller set of DE genes showed an opposite expression trend, i.e. upregulation followed by post-reproductive downregulation. Overall, we termed this phenomenon the "post-reproductive shift". In contrast, the post-reproductive shift was much less pronounced in C. elegans. In C. briggsae, DE genes were enriched in processes related to the matrisome, muscle development and function during the reproductive period. Post-reproductive downregulated genes were enriched in DNA damage repair, stress response, and immune response. Additionally, terms related to fatty acid metabolism, catabolism, and transcriptional regulation exhibited complex patterns. Experimental manipulations in C. briggsae to affect their reproductive status predictably altered gene expression, providing in vivo support for the post-reproductive shift. Overall, our study reveals novel gene expression patterns during reproductive and post-reproductive changes in C. briggsae. The data provide a valuable resource for cross-sectional comparative studies in nematodes and other animal models to understand evolution of genetic pathways affecting reproduction and aging.
Collapse
Affiliation(s)
- Wouter van den Berg
- Department of Biology, McMaster University, Hamilton, Ontario L8S-4K1, Canada
| | - Bhagwati P Gupta
- Department of Biology, McMaster University, Hamilton, Ontario L8S-4K1, Canada
| |
Collapse
|
2
|
Page J, Stephens C, Richard M, Lyons E, Baumler E, Verklan MT, Lorenzo E. The relationship between physical activity and telomere length in women: A systematic review. Mech Ageing Dev 2025; 224:112042. [PMID: 39983997 PMCID: PMC11957325 DOI: 10.1016/j.mad.2025.112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Telomere length (TL) is a biomarker of cellular aging with variations observed by sex, age, race, and ethnicity. Prior studies have suggested that physical activity (PA) may positively impact TL by potentially elongating telomeres and slowing cellular aging. However, research examining the optimal type and intensity of PA needed to elicit these changes specific to women remains limited. This systematic review aimed to investigate variations in TL in response to PA among women, exploring how these effects differ by age, race, or ethnicity. Following PRISMA guidelines, searches across five databases identified 17 relevant studies published from 2008 to 2022. A narrative synthesis of study findings indicated PA did not have a significant relationship with TL in women. However, a possible positive relationship was noted between specific types of PA and TL, specific to combined aerobic and strength-training PA and high intensity interval training interventions. The impact of PA on TL appeared to be age-dependent as well, showing significant positive relationships between PA and TL in early and later adulthood but not in middle adulthood. Findings related to race or ethnicity were inconclusive due to limited analyses from the included studies. The studies varied greatly by PA type, intensity, duration, and frequency, which, along with the reliance on self-reported PA measures in the observational studies, impacted the ability to draw firm conclusions. This review underscores the necessity for future research in large cohort studies using objectively measured PA interventions to further clarify the complex associations between PA and TL in women.
Collapse
Affiliation(s)
- Jeni Page
- School of Nursing, University of Texas Medical Branch, 1114 Mechanic St, Galveston, TX 77550, USA.
| | - Catherine Stephens
- School of Nursing, University of Texas Medical Branch, 1114 Mechanic St, Galveston, TX 77550, USA.
| | - Melissa Richard
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| | - Elizabeth Lyons
- School of Health Professions, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA.
| | - Elizabeth Baumler
- McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, USA.
| | - M Terese Verklan
- School of Nursing, University of Texas Medical Branch, 1114 Mechanic St, Galveston, TX 77550, USA.
| | - Elizabeth Lorenzo
- School of Nursing, University of Texas Medical Branch, 1114 Mechanic St, Galveston, TX 77550, USA.
| |
Collapse
|
3
|
Sikder S, Baek S, McNeil T, Dalal Y. Centromere inactivation during aging can be rescued in human cells. Mol Cell 2025; 85:692-707.e7. [PMID: 39809271 PMCID: PMC11852275 DOI: 10.1016/j.molcel.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/01/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Aging involves a range of genetic, epigenetic, and physiological alterations. A key characteristic of aged cells is the loss of global heterochromatin, accompanied by a reduction in canonical histone levels. In this study, we track the fate of centromeres in aged human fibroblasts and tissues and in various cellular senescent models. Our findings reveal that the centromeric histone H3 variant CENP-A is downregulated in aged cells in a p53-dependent manner. We observe repression of centromeric noncoding transcription through an epigenetic mechanism via recruitment of a lysine-specific demethylase 1 (LSD1/KDM1A) to centromeres. This suppression results in defective de novo CENP-A loading at aging centromeres. By dual inhibition of p53 and LSD1/KDM1A in aged cells, we mitigate the reduction in centromeric proteins and centromeric transcripts, leading to the mitotic rejuvenation of these cells. These results offer insights into a unique mechanism for centromeric inactivation during aging and provide potential strategies to reactivate centromeres.
Collapse
Affiliation(s)
- Sweta Sikder
- Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA
| | - Songjoon Baek
- Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA
| | - Truman McNeil
- Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA; Saint Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Yamini Dalal
- Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Kunutsor SK, Jassal DS, Ravandi A, Lehoczki A. Dietary flaxseed: Cardiometabolic benefits and its role in promoting healthy aging. GeroScience 2025:10.1007/s11357-025-01512-0. [PMID: 39821819 DOI: 10.1007/s11357-025-01512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
Flaxseed, a rich source of omega-3 polyunsaturated fatty acid alpha-linolenic acid (ALA), lignans, and soluble fiber, has attracted attention for its potential to improve multiple cardiometabolic risk factors. While its benefits are well-recognized, comprehensive evaluations of its direct impact on clinical outcomes, such as the prevention or progression of cardiometabolic diseases, remain limited. Additionally, its potential to support healthy aging and longevity through fundamental biological mechanisms has not been fully elucidated. This review synthesizes existing research on flaxseed supplementation, highlighting its effects on cardiometabolic risk factors and outcomes, the underlying biological mechanisms, and its broader implications for health promotion and aging. Findings demonstrate that flaxseed supplementation significantly improves several cardiometabolic risk factors, including body weight, body mass index, lipid levels, blood pressure, glycemic measures, markers of inflammation (e.g., C-reactive protein and interleukin-6), oxidative stress, and liver enzymes. Blood pressure reductions range from approximately 2 to 15 mmHg for systolic blood pressure and 1 to 7 mmHg for diastolic blood pressure, with the magnitude influenced by dose, duration, and baseline risk profiles. While direct evidence linking flaxseed to the prevention of hypertension, metabolic syndrome, metabolic dysfunction-associated steatotic liver disease, type 2 diabetes, chronic kidney disease, and cardiovascular disease is limited, its bioactive components-ALA, lignans, and fiber-are strongly associated with reduced risks of these conditions. The benefits of flaxseed are mediated through multiple pathways, including anti-inflammatory and antioxidant effects, improved lipid levels, improved glucose metabolism and insulin sensitivity, modulation of gut microbiota, and enhanced vascular health. Beyond cardiometabolic outcomes, flaxseed may influence key biological processes relevant to aging, underscoring its potential to promote healthy aging and longevity. Optimal cardiometabolic benefits appear to be achieved with ground whole flaxseed at doses of ≥ 30 g/day for at least 12 weeks, particularly among individuals at high cardiometabolic risk. Future research should focus on elucidating flaxseed's mechanisms of action, clarifying its role in disease prevention, and refining dietary recommendations to harness its potential for cardiometabolic health and aging interventions.
Collapse
Affiliation(s)
- Setor K Kunutsor
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, St. Boniface Hospital, 409 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada.
| | - Davinder S Jassal
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, St. Boniface Hospital, 409 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Amir Ravandi
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, St. Boniface Hospital, 409 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Boulestreau J, Maumus M, Bertolino Minani G, Jorgensen C, Noël D. Anti-aging effect of extracellular vesicles from mesenchymal stromal cells on senescence-induced chondrocytes in osteoarthritis. Aging (Albany NY) 2024; 16:13252-13270. [PMID: 39578049 PMCID: PMC11719114 DOI: 10.18632/aging.206158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Age is the most important risk factor for degenerative diseases such as osteoarthritis (OA). It is associated with the accumulation of senescent cells in joint tissues that contribute to the pathogenesis of OA, in particular through the release of senescence-associated secretory phenotype (SASP) factors. Mesenchymal stromal cells (MSCs) and their derived extracellular vesicles (EVs) are promising treatments for OA. However, the senoprotective effects of MSC-derived EVs in OA have been poorly investigated. Here, we used EVs from human adipose tissue-derived MSCs (ASC-EVs) in two models of inflammaging (IL1β)- and DNA damage (etoposide)-induced senescence in OA chondrocytes. We showed that the addition of ASC-EVs was effective in reducing senescence parameters, including the number of SA-β-Gal-positive cells, the accumulation of γH2AX foci in nuclei and the secretion of SASP factors. In addition, ASC-EVs demonstrated therapeutic efficacy when injected into a murine model of OA. Several markers of senescence, inflammation and oxidative stress were decreased shortly after injection likely explaining the therapeutic efficacy. In conclusion, ASC-EVs exert a senoprotective function both in vitro, in two models of induced senescence in OA chondrocytes and, in vivo, in the murine model of collagenase-induced OA.
Collapse
Affiliation(s)
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | | | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, Montpellier, France
- Department of Rheumatology, Clinical Immunology and Osteoarticular Disease Therapeutic Unit, CHU de Montpellier, Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France
- Department of Rheumatology, Clinical Immunology and Osteoarticular Disease Therapeutic Unit, CHU de Montpellier, Montpellier, France
| |
Collapse
|
6
|
Kuchinski K, King N, Driggers J, Lawson K, Vo M, Skrtic S, Slattery C, Lane R, Simone E, Mills SA, Escorcia W, Wetzel H. Catalogue of Somatic Mutations in Cancer Database and Structural Modeling Analysis of CYP2D6 Mutations in Human Cancers. J Pharmacol Exp Ther 2024; 391:441-449. [PMID: 39379142 DOI: 10.1124/jpet.124.002136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) in cytochrome P450 (CYP450) enzymes alter the metabolism of a variety of drugs. Numerous medications, including chemotherapies, are metabolized by CYP450 enzymes, making the expression of this suite of enzymes in tumor cells relevant to prescription regimens for patients with cancer. We analyzed the characteristics of mutations of the cytochrome P450 2D6 (CYP2D6) enzymes in cancer patients obtained from the Catalogue of Somatic Mutations in Cancer (COSMIC), including mutation type, age of the patient, tissue type, and histology. Mutations were analyzed through the Cancer-Related Analysis of Variants Toolkit (CRAVAT) software along with cancer-specific high-throughput annotation of somatic mutations (CHASMplus) and variant effect scoring tool (VEST4) algorithms to determine the likelihood of being a driver and/or pathogenic mutation. For mutations with significant CHASMplus and VEST4 scores, structural analysis of each corresponding mutant protein was performed. The effect of each mutation was evaluated for its impact on the overall protein stability and ligand binding using Foldit Standalone and SwissDock, respectively. Structural analysis revealed that several missense mutations in CYP2D6 resulted in altered stability after energy minimization. Three missense mutations of CYP2D6 significantly altered docking stability, and those located on alpha helices near the docking site had a more significant impact than those not found in secondary protein structures. In conclusion, we have identified a series of mutations to CYP2D6 enzymes with possible relevance to cancer pathologies. SIGNIFICANCE STATEMENT: CYP2D6 is responsible for the metabolism of many anticancer drugs. This study identified and characterized a series of mutations in the CYP2D6 enzyme that occurred in tumors. We found it likely that many of these mutations would alter enzyme function, leading to changes in drug metabolism in the tumor. We provide a basis for predicting the likelihood of a patient carrying these mutations to identify patients who may benefit from a precision medicine approach to drug selection and dosing.
Collapse
Affiliation(s)
- Kennedy Kuchinski
- Biology Department (K.K., K.L., M.V., S.S., E.S., W.E., H.W.) and Chemistry Department (N.K., J.D., C.S., R.L., S.A.M.), Xavier University, Cincinnati, Ohio; Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania (M.V.); and Department of Biology, California State University, Northridge (W.E.)
| | - Nathaniel King
- Biology Department (K.K., K.L., M.V., S.S., E.S., W.E., H.W.) and Chemistry Department (N.K., J.D., C.S., R.L., S.A.M.), Xavier University, Cincinnati, Ohio; Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania (M.V.); and Department of Biology, California State University, Northridge (W.E.)
| | - Julia Driggers
- Biology Department (K.K., K.L., M.V., S.S., E.S., W.E., H.W.) and Chemistry Department (N.K., J.D., C.S., R.L., S.A.M.), Xavier University, Cincinnati, Ohio; Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania (M.V.); and Department of Biology, California State University, Northridge (W.E.)
| | - Kylie Lawson
- Biology Department (K.K., K.L., M.V., S.S., E.S., W.E., H.W.) and Chemistry Department (N.K., J.D., C.S., R.L., S.A.M.), Xavier University, Cincinnati, Ohio; Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania (M.V.); and Department of Biology, California State University, Northridge (W.E.)
| | - Martin Vo
- Biology Department (K.K., K.L., M.V., S.S., E.S., W.E., H.W.) and Chemistry Department (N.K., J.D., C.S., R.L., S.A.M.), Xavier University, Cincinnati, Ohio; Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania (M.V.); and Department of Biology, California State University, Northridge (W.E.)
| | - Shayne Skrtic
- Biology Department (K.K., K.L., M.V., S.S., E.S., W.E., H.W.) and Chemistry Department (N.K., J.D., C.S., R.L., S.A.M.), Xavier University, Cincinnati, Ohio; Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania (M.V.); and Department of Biology, California State University, Northridge (W.E.)
| | - Connor Slattery
- Biology Department (K.K., K.L., M.V., S.S., E.S., W.E., H.W.) and Chemistry Department (N.K., J.D., C.S., R.L., S.A.M.), Xavier University, Cincinnati, Ohio; Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania (M.V.); and Department of Biology, California State University, Northridge (W.E.)
| | - Rebecca Lane
- Biology Department (K.K., K.L., M.V., S.S., E.S., W.E., H.W.) and Chemistry Department (N.K., J.D., C.S., R.L., S.A.M.), Xavier University, Cincinnati, Ohio; Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania (M.V.); and Department of Biology, California State University, Northridge (W.E.)
| | - Emma Simone
- Biology Department (K.K., K.L., M.V., S.S., E.S., W.E., H.W.) and Chemistry Department (N.K., J.D., C.S., R.L., S.A.M.), Xavier University, Cincinnati, Ohio; Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania (M.V.); and Department of Biology, California State University, Northridge (W.E.)
| | - Stephen A Mills
- Biology Department (K.K., K.L., M.V., S.S., E.S., W.E., H.W.) and Chemistry Department (N.K., J.D., C.S., R.L., S.A.M.), Xavier University, Cincinnati, Ohio; Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania (M.V.); and Department of Biology, California State University, Northridge (W.E.)
| | - Wilber Escorcia
- Biology Department (K.K., K.L., M.V., S.S., E.S., W.E., H.W.) and Chemistry Department (N.K., J.D., C.S., R.L., S.A.M.), Xavier University, Cincinnati, Ohio; Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania (M.V.); and Department of Biology, California State University, Northridge (W.E.)
| | - Hanna Wetzel
- Biology Department (K.K., K.L., M.V., S.S., E.S., W.E., H.W.) and Chemistry Department (N.K., J.D., C.S., R.L., S.A.M.), Xavier University, Cincinnati, Ohio; Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania (M.V.); and Department of Biology, California State University, Northridge (W.E.)
| |
Collapse
|
7
|
Rezaeian AH, Wei W. Molecular signaling and clinical implications in the human aging-cancer cycle. Semin Cancer Biol 2024; 106-107:28-42. [PMID: 39197809 PMCID: PMC11625621 DOI: 10.1016/j.semcancer.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
8
|
O'Sell J, Cirulli V, Pardike S, Aare-Bentsen M, Sdek P, Anderson J, Hailey DW, Regier MC, Gharib SA, Crisa L. Disruption of perinatal myeloid niches impacts the aging clock of pancreatic β cells. iScience 2024; 27:110644. [PMID: 39262794 PMCID: PMC11388196 DOI: 10.1016/j.isci.2024.110644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/25/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024] Open
Abstract
Perinatal expansion of pancreatic β cells is critical to metabolic adaptation. Yet, mechanisms surveying the fidelity by which proliferative events generate functional β cell pools remain unknown. We have previously identified a CCR2+ myeloid niche required for peri-natal β cell replication, with β cells dynamically responding to loss and repopulation of these myeloid cells with growth arrest and rebound expansion, respectively. Here, using a timed single-cell RNA-sequencing approach, we show that transient disruption of perinatal CCR2+ macrophages change islet β cell repertoires in young mice to resemble those of aged mice. Gene expression profiling and functional assays disclose prominent mitochondrial defects in β cells coupled to impaired redox states, NAD depletion, and DNA damage, leading to accelerated islets' dysfunction with age. These findings reveal an unexpected vulnerability of mitochondrial β cells' bioenergetics to the disruption of perinatal CCR2+ macrophages, implicating these cells in surveying early in life both the size and energy homeostasis of β cells populations.
Collapse
Affiliation(s)
- Jessica O'Sell
- Department of Medicine, Diabetes Institute, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Vincenzo Cirulli
- Department of Medicine, Diabetes Institute, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Stephanie Pardike
- Department of Medicine, Diabetes Institute, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Marie Aare-Bentsen
- Department of Medicine, Diabetes Institute, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Patima Sdek
- Department of Medicine, Diabetes Institute, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Jasmine Anderson
- Department of Medicine, Diabetes Institute, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Dale W Hailey
- Department of Laboratory Medicine and Pathology, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Mary C Regier
- Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Sina A Gharib
- Computational Medicine Core at Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA 98109, USA
| | - Laura Crisa
- Department of Medicine, Diabetes Institute, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| |
Collapse
|
9
|
Sikder S, Baek S, McNeil T, Dalal Y. Centromere inactivation during aging can be rescued in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573721. [PMID: 38313258 PMCID: PMC10836067 DOI: 10.1101/2023.12.30.573721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Aging involves a range of genetic, epigenetic, and physiological alterations. A key characteristic of aged cells is the loss of global heterochromatin, accompanied by a reduction in canonical histone levels. In this study, we track the fate of centromeres during aging in human cells. Our findings reveal that the centromeric histone H3 variant CENP-A is downregulated in aged cells, in a p53-dependent manner. We observe repression of centromeric noncoding transcription through an epigenetic mechanism via recruitment of a lysine-specific demethylase 1 (LSD1/KDM1A) to centromeres. This suppression results in defective de novo CENP-A loading at aging centromeres. By dual inhibition of p53 and LSD1/KDM1A in aged cells, we mitigate the reduction in centromeric proteins and centromeric transcripts, leading to mitotic rejuvenation of these cells. These results offer insights into a novel mechanism for centromeric inactivation during aging and provide potential strategies to reactivate centromeres.
Collapse
|
10
|
Hieronymus TL, Waugh DA, Ball HC, Vinyard CJ, Galazyuk A, Cooper LN. Comparing age- and bone-related differences in collagen fiber orientation: A case study of bats and laboratory mice using quantitative polarized light microscopy. Anat Rec (Hoboken) 2024; 307:2084-2102. [PMID: 38095113 DOI: 10.1002/ar.25368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 05/08/2024]
Abstract
As bones age in most mammals, they typically become more fragile. This state of bone fragility is often associated with more homogenous collagen fiber orientations (CFO). Unlike most mammals, bats maintain mechanically competent bone throughout their lifespans, but little is known of positional and age-related changes in CFO within wing bones. This study tests the hypothesis that age-related changes in CFO in big brown bats (Eptesicus fuscus) differ from those of the standard mammalian model for skeletal aging, the C57BL/6 laboratory mouse. We used data from quantitative polarized light microscopy (qPLM) to compare CFO across the lifespan of long-lived big brown bats and age matched C57BL/6 mice. Eptesicus and C57BL/6 mice displayed idiosyncratic patterns of CFO. Consistent age-related changes were only apparent in the outer cortical bone of Eptesicus, where bone tissue is more longitudinally arranged and more anisotropic in older individuals. Both taxa displayed a ring of more transversely oriented bone tissue surrounding the medullary cavity. In Eptesicus, this tissue represents a greater proportion of the overall cross-section, and is more clearly helically aligned (arranged at 45° to the bone long axis) than similar bone tissue in mice. Bat wing bones displayed a proximodistal gradient in CFO anisotropy and longitudinal orientation in both outer and inner cortical bone compartments. This study lays a methodological foundation for the quantitative evaluation of bone tissue architecture in volant and non-volant mammals that may be expanded in the future.
Collapse
Affiliation(s)
- Tobin Lee Hieronymus
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Musculoskeletal Research Focus Area, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - David A Waugh
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Musculoskeletal Research Focus Area, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Hope C Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Musculoskeletal Research Focus Area, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | | | - Alex Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Lisa Noelle Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Musculoskeletal Research Focus Area, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
11
|
Ruprecht NA, Singhal S, Sens D, Singhal SK. Translating genetic findings to epigenetics: identifying the mechanisms associated with aging after high-radiation exposure on earth and in space. Front Public Health 2024; 12:1333222. [PMID: 38584916 PMCID: PMC10995328 DOI: 10.3389/fpubh.2024.1333222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Exposure to radiation is a health concern within and beyond the Earth's atmosphere for aircrew and astronauts in their respective austere environments. The biological effects of radiation exposure from a multiomics standpoint are relatively unexplored and stand to shed light on tailored monitoring and treatment for those in these career fields. To establish a reference variable for genetic damage, biological age seems to be closely associated with the effect of radiation. Following a genetic-based study, this study explores the epigenetic landscape of radiation exposure along with its associative effects on aging processes. Methods We imported the results of the genetics-based study that was a secondary analysis of five publicly available datasets (noted as Data1). The overlap of these genes with new data involving methylation data from two datasets (noted as Data2) following similar secondary analysis procedures is the basis of this study. We performed the standard statistical analysis on these datasets along with supervised and unsupervised learning to create preranked gene lists used for functional analysis in Ingenuity Pathway Analysis (IPA). Results There were 664 genes of interest from Data1 and 577 genes from Data2. There were 40 statistically significant methylation probes within 500 base pairs of the gene's transcription start site and 10 probes within 100 base pairs, which are discussed in depth. IPA yielded 21 significant pathways involving metabolism, cellular development, cell death, and diseases. Compared to gold standards for gestational age, we observed relatively low error and standard deviation using newly identified biomarkers. Conclusion We have identified 17 methylated genes that exhibited particular interest and potential in future studies. This study suggests that there are common trends in oxidative stress, cell development, and metabolism that indicate an association between aging processes and the effects of ionizing radiation exposure.
Collapse
Affiliation(s)
- Nathan A. Ruprecht
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Sonalika Singhal
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| | - Donald Sens
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| | - Sandeep K. Singhal
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
12
|
Havlickova K, Snopkova S, Pohanka M, Svacinka R, Vydrar D, Husa P, Zavrelova J, Zlamal F, Fabianova L, Penka M, Husa P. Oxidative stress, microparticles, and E-selectin do not depend on HIV suppression. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024. [PMID: 38390755 DOI: 10.5507/bp.2024.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Oxidative stress and inflammation are considered predictors of diseases associated with aging. Markers of oxidative stress, inflammation, and endothelial activation were investigated in people with HIV on antiretroviral treatment to determine whether they had an immunosenescent phenotype that might predispose to the development of premature age-related diseases. PATIENTS AND METHODS This study was conducted on 213 subjects with HIV. The control groups consisted of healthy HIV-negative adults. The level of oxidative stress was measured by assessing the production of malondialdehyde levels, which were detected by thiobarbituric acid reactive substance (TBARS) assay. The level of microparticles indicated the presence of inflammation and endothelial activation was measured by E-selectin levels. Significant differences were determined by appropriate statistical tests, depending on the distribution of variables. Relationships between continuous variables were quantified using Spearman's rank correlation coefficient. RESULTS TBARS, and microparticle and E-selectin levels were significantly higher in untreated and treated subjects with HIV compared with HIV-negative controls (P<0.001). The levels of the investigated markers were not significantly different between untreated and treated patients and no significant correlation of these markers was found with CD4+ count, CD4+/CD8+ ratio, and the number of HIV-1 RNA copies. CONCLUSIONS Elevated markers of oxidative stress, inflammatory and endothelial activation were independent of the virologic and immunologic status of people with HIV. These results support the hypothesis that residual viremia in cellular reservoirs of various tissues is a key factor related to the premature aging of the immune system and predisposition to the premature development of diseases associated with aging.
Collapse
|
13
|
Tenchov R, Sasso JM, Wang X, Zhou QA. Aging Hallmarks and Progression and Age-Related Diseases: A Landscape View of Research Advancement. ACS Chem Neurosci 2024; 15:1-30. [PMID: 38095562 PMCID: PMC10767750 DOI: 10.1021/acschemneuro.3c00531] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/04/2024] Open
Abstract
Aging is a dynamic, time-dependent process that is characterized by a gradual accumulation of cell damage. Continual functional decline in the intrinsic ability of living organisms to accurately regulate homeostasis leads to increased susceptibility and vulnerability to diseases. Many efforts have been put forth to understand and prevent the effects of aging. Thus, the major cellular and molecular hallmarks of aging have been identified, and their relationships to age-related diseases and malfunctions have been explored. Here, we use data from the CAS Content Collection to analyze the publication landscape of recent aging-related research. We review the advances in knowledge and delineate trends in research advancements on aging factors and attributes across time and geography. We also review the current concepts related to the major aging hallmarks on the molecular, cellular, and organismic level, age-associated diseases, with attention to brain aging and brain health, as well as the major biochemical processes associated with aging. Major age-related diseases have been outlined, and their correlations with the major aging features and attributes are explored. We hope this review will be helpful for apprehending the current knowledge in the field of aging mechanisms and progression, in an effort to further solve the remaining challenges and fulfill its potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
14
|
Martins C, Magalhães S, Almeida I, Neto V, Rebelo S, Nunes A. Metabolomics to Study Human Aging: A Review. Curr Mol Med 2024; 24:457-477. [PMID: 37026499 DOI: 10.2174/1566524023666230407123727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 04/08/2023]
Abstract
In the last years, with the increase in the average life expectancy, the world's population is progressively aging, which entails social, health and economic problems. In this sense, the need to better understand the physiology of the aging process becomes an urgent need. Since the study of aging in humans is challenging, cellular and animal models are widely used as alternatives. Omics, namely metabolomics, have emerged in the study of aging, with the aim of biomarker discovering, which may help to uncomplicate this complex process. This paper aims to summarize different models used for aging studies with their advantages and limitations. Also, this review gathers the published articles referring to biomarkers of aging already discovered using metabolomics approaches, comparing the results obtained in the different studies. Finally, the most frequently used senescence biomarkers are described, along with their importance in understanding aging.
Collapse
Affiliation(s)
- Claudia Martins
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| | - Sandra Magalhães
- Department of Surgery and Physiology, Faculty of Medicine, UnIC@RISE, Cardiovascular Research & Development Centre, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Idália Almeida
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
- CICECO: Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Vanessa Neto
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| | - Alexandra Nunes
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| |
Collapse
|
15
|
Lucas V, Cavadas C, Aveleira CA. Cellular Senescence: From Mechanisms to Current Biomarkers and Senotherapies. Pharmacol Rev 2023; 75:675-713. [PMID: 36732079 DOI: 10.1124/pharmrev.122.000622] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
An increase in life expectancy in developed countries has led to a surge of chronic aging-related diseases. In the last few decades, several studies have provided evidence of the prominent role of cellular senescence in many of these pathologies. Key traits of senescent cells include cell cycle arrest, apoptosis resistance, and secretome shift to senescence-associated secretory phenotype resulting in increased secretion of various intermediate bioactive factors important for senescence pathophysiology. However, cellular senescence is a highly phenotypically heterogeneous process, hindering the discovery of totally specific and accurate biomarkers. Also, strategies to prevent the pathologic effect of senescent cell accumulation during aging by impairing senescence onset or promoting senescent cell clearance have shown great potential during in vivo studies, and some are already in early stages of clinical translation. The adaptability of these senotherapeutic approaches to human application has been questioned due to the lack of proper senescence targeting and senescence involvement in important physiologic functions. In this review, we explore the heterogeneous phenotype of senescent cells and its influence on the expression of biomarkers currently used for senescence detection. We also discuss the current evidence regarding the efficacy, reliability, development stage, and potential for human applicability of the main existing senotherapeutic strategies. SIGNIFICANCE STATEMENT: This paper is an extensive review of what is currently known about the complex process of cellular senescence and explores its most defining features. The main body of the discussion focuses on how the multifeature fluctuation of the senescence phenotype and the physiological role of cellular senescence have both caused a limitation in the search for truly reliable senescence biomarkers and the progression in the development of senotherapies.
Collapse
Affiliation(s)
- Vasco Lucas
- Centre for Neuroscience and Cell Biology (CNC) (V.L., C.C., C.A.A.), Centre for Innovation in Biomedicine and Biotechnology (CIBB) (V.L., C.C., C.A.A.), Faculty of Pharmacy (C.C.), and Multidisciplinary Institute of Ageing (MIA-Portugal) (C.A.A.), University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- Centre for Neuroscience and Cell Biology (CNC) (V.L., C.C., C.A.A.), Centre for Innovation in Biomedicine and Biotechnology (CIBB) (V.L., C.C., C.A.A.), Faculty of Pharmacy (C.C.), and Multidisciplinary Institute of Ageing (MIA-Portugal) (C.A.A.), University of Coimbra, Coimbra, Portugal
| | - Célia Alexandra Aveleira
- Centre for Neuroscience and Cell Biology (CNC) (V.L., C.C., C.A.A.), Centre for Innovation in Biomedicine and Biotechnology (CIBB) (V.L., C.C., C.A.A.), Faculty of Pharmacy (C.C.), and Multidisciplinary Institute of Ageing (MIA-Portugal) (C.A.A.), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
16
|
López-Seijas J, Miranda-Balbuena D, Iglesias-Fente A, Sacristán-Santos M, Carballo-Pedrares N, Arufe MC, Rey-Rico A, Fafián-Labora J. Development of new non-viral systems for genetic modification of senescent cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:302-317. [PMID: 37096164 PMCID: PMC10122050 DOI: 10.1016/j.omtn.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
Senescence is a process characterized by a prolonged irreversible cell-cycle arrest. The accumulation of senescent cells in tissues is related to aging and to the development of age-related diseases. Recently, gene therapy has emerged as a powerful tool for treating age-associated diseases by the transference of specific genes into the target cell population. However, the high sensitivity of senescent cells significantly precludes their genetic modification via classical viral and non-viral systems. Niosomes are self-assembled non-viral nanocarriers that exhibit important advantages due to their elevated cytocompatibility, versatility, and cost-efficiency, arising as a new alternative for genetic modification of senescent cells. In this work, we explore for the first time the use of niosomes for genetic modification of senescent umbilical cord-derived mesenchymal stem cells. We report that niosome composition greatly affected transfection efficiency; those formulations prepared in medium with sucrose and containing cholesterol as helper lipid being the most suitable to transfect senescent cells. Moreover, resulting niosome formulations exhibited a superior transfection efficiency with a markedly less cytotoxicity than the commercial reagent Lipofectamine. These findings highlight the potentiality of niosomes as effective vectors for genetic modification of senescent cells, providing new tools for the prevention and/or treatment of age-related diseases.
Collapse
Affiliation(s)
- Junquera López-Seijas
- Gene and Cell Therapy Research Group (G-CEL), Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| | - Diego Miranda-Balbuena
- Gene and Cell Therapy Research Group (G-CEL), Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| | - Alba Iglesias-Fente
- Gene and Cell Therapy Research Group (G-CEL), Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| | - Marta Sacristán-Santos
- Gene and Cell Therapy Research Group (G-CEL), Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| | - Natalia Carballo-Pedrares
- Gene and Cell Therapy Research Group (G-CEL), Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| | - María C. Arufe
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain. Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ana Rey-Rico
- Gene and Cell Therapy Research Group (G-CEL), Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| | - Juan Fafián-Labora
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain. Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
17
|
Hsueh YJ, Meir YJJ, Hsiao HY, Cheng CM, Ma HKD, Wu WC, Chen HC. Transcription Factor ATF3 Participates in DeltaNp63-Mediated Proliferation of Corneal Epithelial Cells. J Pers Med 2023; 13:jpm13040700. [PMID: 37109086 PMCID: PMC10142479 DOI: 10.3390/jpm13040700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding the regulatory mechanisms underlying corneal epithelial cell (CEC) proliferation in vitro may provide the means to boost CEC production in cell therapy for ocular disorders. The transcription factor ΔNp63 plays a crucial role in the proliferation of CECs, but the underlying mechanisms is yet to be elucidated. TP63 and ΔNp63 are encoded by the TP63 gene via alternative promoters. We previously reported that both ΔNp63 and activating transcription factor (ATF3) are substantially expressed in cultured CECs, but the regulatory relationship between ΔNp63 and ATF3 is unknown. In the present study, we found that ΔNp63 increased ATF3 expression and ATF3 promoter activity in cultured CECs. The deletion of the p63 binding core site reduced ATF3 promoter activity. CECs overexpressing ATF3 exhibited significantly greater proliferation than control CECs. ATF3 knockdown suppressed the ΔNp63-induced increase in cell proliferation. Overexpression of ATF3 in CECs significantly elevated protein and mRNA levels of cyclin D. The protein levels of keratin 3/14, integrin β1, and involucrin did not differ between ATF3-overexpressing CECs, ATF3-downregulated CECs, and control cells. In conclusion, our results suggest that ΔNp63 increases CEC proliferation via the ΔNp63/ATF3/CDK pathway.
Collapse
Affiliation(s)
- Yi-Jen Hsueh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Yaa-Jyuhn James Meir
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Hui-Yi Hsiao
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hui-Kang David Ma
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Chi Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
18
|
Ageing at Molecular Level: Role of MicroRNAs. Subcell Biochem 2023; 102:195-248. [PMID: 36600135 DOI: 10.1007/978-3-031-21410-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The progression of age triggers a vast number of diseases including cardiovascular, cancer, and neurodegenerative disorders. Regardless of our plentiful knowledge about age-related diseases, little is understood about molecular pathways that associate the ageing process with various diseases. Several cellular events like senescence, telomere dysfunction, alterations in protein processing, and regulation of gene expression are common between ageing and associated diseases. Accumulating information on the role of microRNAs (miRNAs) suggests targeting miRNAs can aid our understanding of the interplay between ageing and associated diseases. In the present chapter, we have attempted to explore the information available on the role of miRNAs in ageing of various tissues/organs and diseases and understand the molecular mechanism of ageing.
Collapse
|
19
|
Yang J, Kim J, Kwak C, Poo H. Poly-γ-glutamic acid/Alum adjuvanted pH1N1 vaccine-immunized aged mice exhibit a significant increase in vaccine efficacy with a decrease in age-associated CD8+ T cell proportion in splenocytes. Immun Ageing 2022; 19:22. [PMID: 35606855 PMCID: PMC9124744 DOI: 10.1186/s12979-022-00282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Background Highly contagious respiratory diseases caused by viral infections are a constantly emerging threat, particularly the elderly with the higher risk of developing serious complications. Vaccines are the best strategy for protection against influenza-related diseases. However, the elderly has lower vaccine efficacy than young population and the age-driven decline of the influenza vaccine efficacy remains unresolved. Objectives This study investigates the effect of an adjuvant, poly-γ-glutamic acid and alum (PGA/Alum) on vaccine efficacy in aged mice (18-months) and its mechanism is investigated using ovalbumin as a model antigen and a commercial pandemic H1N1 (pH1N1) flu vaccine. Antigen trafficking, dendritic cell (DC) activation, and the DC-mediated T cell activation were analyzed via in vivo imaging and flow cytometry. Antigen-specific humoral and cellular immune responses were evaluated in sera and splenocytes from the vaccinated mice. Also, we analyzed gene expression profiles of splenocytes from the vaccinated mice via single-cell transcriptome sequencing and evaluated the protective efficacy against pH1N1 virus challenge. Results Aged mice had lower antigen trafficking and DC activation than younger mice (6-weeks), which was ameliorated by PGA/Alum with increased antigen uptake and DC activation leading to improved antigen-specific IFN-γ+CD8+ T lymphocyte frequencies higher in the vaccinated aged mice, to a similar extent as PGA/Alum adjuvanted vaccine-immunized young mice. The results of single-cell transcriptome sequencing display that PGA/Alum also reduced the proportion of age-associated CD8+ T cell subsets and gene levels of inhibitory regulators in CD8+ T cells, which may play a role in the recovery of CD8+ T cell activation. Finally, PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice were completely protected (100% survival) compared to aged mice immunized with vaccine only (0% survival) after pH1N1 virus challenge, akin to the efficacy of the vaccinated young mice (100% survival). Conclusions PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice showed a significant increase in vaccine efficacy compared to aged mice administered with vaccine only. The enhanced vaccine efficacy by PGA/Alum is associated with significant increases of activation of DCs and effector CD8+ T cells and a decrease in age-associated CD8+ T cell proportion of splenocytes. Collectively, PGA/Alum adjuvanted flu vaccine may be a promising vaccine candidate for the elderly. Supplementary information The online version contains supplementary material available at 10.1186/s12979-022-00282-z.
Collapse
|
20
|
Fraile M, Eiro N, Costa LA, Martín A, Vizoso FJ. Aging and Mesenchymal Stem Cells: Basic Concepts, Challenges and Strategies. BIOLOGY 2022; 11:1678. [PMID: 36421393 PMCID: PMC9687158 DOI: 10.3390/biology11111678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023]
Abstract
Aging and frailty are complex processes implicating multifactorial mechanisms, such as replicative senescence, oxidative stress, mitochondrial dysfunction, or autophagy disorder. All of these mechanisms drive dramatic changes in the tissue environment, such as senescence-associated secretory phenotype factors and inflamm-aging. Thus, there is a demand for new therapeutic strategies against the devastating effects of the aging and associated diseases. Mesenchymal stem cells (MSC) participate in a "galaxy" of tissue signals (proliferative, anti-inflammatory, and antioxidative stress, and proangiogenic, antitumor, antifibrotic, and antimicrobial effects) contributing to tissue homeostasis. However, MSC are also not immune to aging. Three strategies based on MSC have been proposed: remove, rejuvenate, or replace the senescent MSC. These strategies include the use of senolytic drugs, antioxidant agents and genetic engineering, or transplantation of younger MSC. Nevertheless, these strategies may have the drawback of the adverse effects of prolonged use of the different drugs used or, where appropriate, those of cell therapy. In this review, we propose the new strategy of "Exogenous Restitution of Intercellular Signalling of Stem Cells" (ERISSC). This concept is based on the potential use of secretome from MSC, which are composed of molecules such as growth factors, cytokines, and extracellular vesicles and have the same biological effects as their parent cells. To face this cell-free regenerative therapy challenge, we have to clarify key strategy aspects, such as establishing tools that allow us a more precise diagnosis of aging frailty in order to identify the therapeutic requirements adapted to each case, identify the ideal type of MSC in the context of the functional heterogeneity of these cellular populations, to optimize the mass production and standardization of the primary materials (cells) and their secretome-derived products, to establish the appropriate methods to validate the anti-aging effects and to determine the most appropriate route of administration for each case.
Collapse
Affiliation(s)
- Maria Fraile
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Luis A. Costa
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Arancha Martín
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
- Department of Emergency, Hospital Universitario de Cabueñes, Los Prados, 395, 33394 Gijon, Spain
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| |
Collapse
|
21
|
Sikder S, Arunkumar G, Melters DP, Dalal Y. Breaking the aging epigenetic barrier. Front Cell Dev Biol 2022; 10:943519. [PMID: 35966762 PMCID: PMC9366916 DOI: 10.3389/fcell.2022.943519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is an inexorable event occurring universally for all organisms characterized by the progressive loss of cell function. However, less is known about the key events occurring inside the nucleus in the process of aging. The advent of chromosome capture techniques and extensive modern sequencing technologies have illuminated a rather dynamic structure of chromatin inside the nucleus. As cells advance along their life cycle, chromatin condensation states alter which leads to a different epigenetic landscape, correlated with modified gene expression. The exact factors mediating these changes in the chromatin structure and function remain elusive in the context of aging cells. The accumulation of DNA damage, reactive oxygen species and loss of genomic integrity as cells cease to divide can contribute to a tumor stimulating environment. In this review, we focus on genomic and epigenomic changes occurring in an aged cell which can contribute to age-related tumor formation.
Collapse
Affiliation(s)
| | | | | | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States
| |
Collapse
|
22
|
Salazar-Terreros MJ, Vernot JP. In Vitro and In Vivo Modeling of Normal and Leukemic Bone Marrow Niches: Cellular Senescence Contribution to Leukemia Induction and Progression. Int J Mol Sci 2022; 23:7350. [PMID: 35806354 PMCID: PMC9266537 DOI: 10.3390/ijms23137350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is recognized as a dynamic process in which cells evolve and adapt in a context dependent manner; consequently, senescent cells can exert both beneficial and deleterious effects on their surroundings. Specifically, senescent mesenchymal stromal cells (MSC) in the bone marrow (BM) have been linked to the generation of a supporting microenvironment that enhances malignant cell survival. However, the study of MSC's senescence role in leukemia development has been straitened not only by the availability of suitable models that faithfully reflect the structural complexity and biological diversity of the events triggered in the BM, but also by the lack of a universal, standardized method to measure senescence. Despite these constraints, two- and three dimensional in vitro models have been continuously improved in terms of cell culture techniques, support materials and analysis methods; in addition, research on animal models tends to focus on the development of techniques that allow tracking leukemic and senescent cells in the living organism, as well as to modify the available mice strains to generate individuals that mimic human BM characteristics. Here, we present the main advances in leukemic niche modeling, discussing advantages and limitations of the different systems, focusing on the contribution of senescent MSC to leukemia progression.
Collapse
Affiliation(s)
- Myriam Janeth Salazar-Terreros
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
| |
Collapse
|
23
|
Toyama K, Spin JM, Deng AC, Abe Y, Tsao PS, Mogi M. Role of MicroRNAs in acceleration of vascular endothelial senescence. Biochem Biophys Rep 2022; 30:101281. [PMID: 35651952 PMCID: PMC9149016 DOI: 10.1016/j.bbrep.2022.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022] Open
Abstract
Backgrounds Many factors are involved in cellular aging, and senescence induction requires complex regulation of various signaling networks and processes. Specifically, in the area of aging-related vascular cognitive impairment, laboratory-based findings have not yet yielded agents of practical use for clinical settings. One possible reason is that the physiologic elements of aging have been insufficiently considered. We sought to establish techniques to better model cellular aging using modulation of microRNAs, aiming to identify key microRNAs capable of fine-tuning aging-associated genes, and thereby regulating the senescence of vascular endothelial cells. Methods We utilized expression microRNA arrays to evaluate control and senescent vascular endothelial cells in order to identify testable candidates. Bioinformatic analysis was used to select key microRNAs. These candidates were then modulated in vitro using microRNA mimics and inhibitors in endothelial cells, and senescence-associated gene expression patterns were evaluated by qPCR. Results Seventeen microRNAs were found to be significantly increased more than 2-fold in senescent cells. Of those, bioinformatic analysis concluded that miR-181a-5p, miR-30a-5p, miR-30a-3p, miR-100-5p, miR-21-5p, and miR-382-5p were likely associated with regulation of cellular senescence. We evaluated the potential targets of these six microRNAs by comparing them with cell-cycling and apoptosis-related genes from published mRNA transcriptional array data from aged tissues, and found that miR-181a-5p, miR-30a-5p and miR-30a-3p were enriched in overlapping targets compared with the other candidates. Modulation of these microRNAs in vascular endothelial cells revealed that over-expression of miR-30a-5p, and inhibition of both miR-30a-3p and miR-181a-5p, induced senescence. Conclusion: miR-181a-5p, miR-30a-5p and miR-30a-3p likely contribute to aging-associated vascular endothelial cell senescence. We aimed to identify key microRNAs regulating the senescence of vascular ECs. Bioinformatic analysis indicated miR-181a-5p, miR-30a-5p & 30a-3p as candidates. Overexpression of miR-30a-5p & inhibition of miR-30a-3p/181a-5p induce EC senescence.
Collapse
|
24
|
Mato-Basalo R, Lucio-Gallego S, Alarcón-Veleiro C, Sacristán-Santos M, Quintana MDPM, Morente-López M, de Toro FJ, Silva-Fernández L, González-Rodríguez A, Arufe MC, Labora JAF. Action Mechanisms of Small Extracellular Vesicles in Inflammaging. Life (Basel) 2022; 12:546. [PMID: 35455036 PMCID: PMC9028066 DOI: 10.3390/life12040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
The accumulation process of proinflammatory components in the body due to aging influences intercellular communication and is known as inflammaging. This biological mechanism relates the development of inflammation to the aging process. Recently, it has been reported that small extracellular vesicles (sEVs) are mediators in the transmission of paracrine senescence involved in inflammatory aging. For this reason, their components, as well as mechanisms of action of sEVs, are relevant to develop a new therapy called senodrugs (senolytics and senomorphic) that regulates the intercellular communication of inflammaging. In this review, we include the most recent and relevant studies on the role of sEVs in the inflammatory aging process and in age-related diseases such as cancer and type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - María C. Arufe
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Centro de Invesigaciones Científicas Avanzadas (CICA), Universidade da Coruña, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (R.M.-B.); (S.L.-G.); (C.A.-V.); (M.S.-S.); (M.d.P.M.Q.); (M.M.-L.); (F.J.d.T.); (L.S.-F.); (A.G.-R.)
| | - Juan Antonio Fafián Labora
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Centro de Invesigaciones Científicas Avanzadas (CICA), Universidade da Coruña, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (R.M.-B.); (S.L.-G.); (C.A.-V.); (M.S.-S.); (M.d.P.M.Q.); (M.M.-L.); (F.J.d.T.); (L.S.-F.); (A.G.-R.)
| |
Collapse
|
25
|
Woodward K, Shirokikh NE. Translational control in cell ageing: an update. Biochem Soc Trans 2021; 49:2853-2869. [PMID: 34913471 PMCID: PMC8786278 DOI: 10.1042/bst20210844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022]
Abstract
Cellular ageing is one of the main drivers of organismal ageing and holds keys towards improving the longevity and quality of the extended life. Elucidating mechanisms underlying the emergence of the aged cells as well as their altered responses to the environment will help understanding the evolutionarily defined longevity preferences across species with different strategies of survival. Much is understood about the role of alterations in the DNA, including many epigenetic modifications such as methylation, in relation to the aged cell phenotype. While transcriptomes of the aged cells are beginning to be better-characterised, their translational responses remain under active investigation. Many of the translationally controlled homeostatic pathways are centred around mitigation of DNA damage, cell stress response and regulation of the proliferative potential of the cells, and thus are critical for the aged cell function. Translation profiling-type studies have boosted the opportunities in discovering the function of protein biosynthesis control and are starting to be applied to the aged cells. Here, we provide a summary of the current knowledge about translational mechanisms considered to be commonly altered in the aged cells, including the integrated stress response-, mechanistic target of Rapamycin- and elongation factor 2 kinase-mediated pathways. We enlist and discuss findings of the recent works that use broad profiling-type approaches to investigate the age-related translational pathways. We outline the limitations of the methods and the remaining unknowns in the established ageing-associated translation mechanisms, and flag translational mechanisms with high prospective importance in ageing, for future studies.
Collapse
Affiliation(s)
- Katrina Woodward
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra, ACT 2601, Australia
| | - Nikolay E. Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra, ACT 2601, Australia
| |
Collapse
|
26
|
Wissler Gerdes EO, Misra A, Netto JME, Tchkonia T, Kirkland JL. Strategies for late phase preclinical and early clinical trials of senolytics. Mech Ageing Dev 2021; 200:111591. [PMID: 34699859 PMCID: PMC8627448 DOI: 10.1016/j.mad.2021.111591] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/11/2021] [Accepted: 10/21/2021] [Indexed: 01/17/2023]
Abstract
Cellular senescence and the hallmarks of aging contribute to age-related disease and dysfunction. The Unitary Theory of Fundamental Aging Mechanisms highlights the interdependence among the hallmarks of aging and suggests that by intervening in one fundamental aging process, most or all of the other processes could be impacted. Accumulation of senescent cells is associated with frailty, cardiovascular disease, obesity, diabetes, cognitive decline, and other age- and/or chronic disease-related disorders, suggesting that senescent cells are a target for intervention. Early preclinical data using senolytics, agents that target senescent cells, show promising results in several aging and disease models. The first in-human trials using the senolytic combination of Dasatinib and Quercetin indicated reduced senescent cell burden in adipose tissue of diabetic kidney disease patients and improved physical function in patients with idiopathic pulmonary fibrosis. Clinical trials with other senolytics, including the flavonoid Fisetin and BCL-xL inhibitors, are underway. These results from preclinical and early clinical trials illustrate the potential of senolytics to alleviate age-related dysfunction and diseases. However, multiple clinical trials across different aging and disease models are desperately needed. Parallel trials across institutions through the Translational Geroscience Network are facilitating testing to determine whether senolytics can be translated into clinical application.
Collapse
Affiliation(s)
| | - Avanish Misra
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | | | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States; Division of Geriatrics and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
27
|
Diori Karidio I, Sanlier SH. Reviewing cancer's biology: an eclectic approach. J Egypt Natl Canc Inst 2021; 33:32. [PMID: 34719756 DOI: 10.1186/s43046-021-00088-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer refers to a group of some of the worldwide most diagnosed and deadliest pathophysiological conditions that conquered researchers' attention for decades and yet begs for more questions for a full comprehension of its complex cellular and molecular pathology. MAIN BODY The disease conditions are commonly characterized by unrestricted cell proliferation and dysfunctional replicative senescence pathways. In fact, the cell cycle operates under the rigorous control of complex signaling pathways involving cyclins and cyclin-dependent kinases assumed to be specific to each phase of the cycle. At each of these checkpoints, the cell is checked essentially for its DNA integrity. Genetic defects observed in these molecules (i.e., cyclins, cyclin-dependent kinases) are common features of cancer cells. Nevertheless, each cancer is different concerning its molecular and cellular etiology. These could range from the genetic defects mechanisms and/or the environmental conditions favoring epigenetically harbored homeostasis driving tumorigenesis alongside with the intratumoral heterogeneity with respect to the model that the tumor follows. CONCLUSIONS This review is not meant to be an exhaustive interpretation of carcinogenesis but to summarize some basic features of the molecular etiology of cancer and the intratumoral heterogeneity models that eventually bolster anticancer drug resistance for a more efficient design of drug targeting the pitfalls of the models.
Collapse
Affiliation(s)
- Ibrahim Diori Karidio
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.
| | - Senay Hamarat Sanlier
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.,ARGEFAR, Faculty of Medicine, Ege University, Bornova, 35040, Izmir, Turkey
| |
Collapse
|
28
|
FTIR Spectroscopy as a Tool to Study Age-Related Changes in Cardiac and Skeletal Muscle of Female C57BL/6J Mice. Molecules 2021; 26:molecules26216410. [PMID: 34770818 PMCID: PMC8587752 DOI: 10.3390/molecules26216410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Studying aging is important to further understand the molecular mechanisms underlying this physiological process and, ideally, to identify a panel of aging biomarkers. Animals, in particular mice, are often used in aging studies, since they mimic important features of human aging, age quickly, and are easy to manipulate. The present work describes the use of Fourier Transform Infrared (FTIR) spectroscopy to identify an age-related spectroscopic profile of the cardiac and skeletal muscle tissues of C57BL/6J female mice. We acquired ATR-FTIR spectra of cardiac and skeletal muscle at four different ages: 6; 12; 17 and 24 months (10 samples at each age) and analyzed the data using multivariate statistical tools (PCA and PLS) and peak intensity analyses. The results suggest deep changes in protein secondary structure in 24-month-old mice compared to both tissues in 6-month-old mice. Oligomeric structures decreased with age in both tissues, while intermolecular β-sheet structures increased with aging in cardiac muscle but not in skeletal muscle. Despite FTIR spectroscopy being unable to identify the proteins responsible for these conformational changes, this study gives insights into the potential of FTIR to monitor the aging process and identify an age-specific spectroscopic signature.
Collapse
|
29
|
L- myc Gene Expression in Canine Fetal Fibroblasts Promotes Self-Renewal Capacity but Not Tumor Formation. Cells 2021; 10:cells10081980. [PMID: 34440750 PMCID: PMC8391401 DOI: 10.3390/cells10081980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
Canines are useful in mammalian preclinical studies because they are larger than rodents and share many diseases with humans. Canine fetal fibroblast cells (CFFs) are an easily accessible source of somatic cells. However, they are easily driven to senescence and become unusable with continuous in vitro culture. Therefore, to overcome these deficiencies, we investigated whether tetracycline-inducible L-myc gene expression promotes self-renewal activity and tumorigenicity in the production of induced conditional self-renewing fibroblast cells (iCSFCs). Here, we describe the characterization of a new iCSFC line immortalized by transduction with L-myc that displays in vitro self-renewal ability without tumorigenic capacity. We established conditionally inducible self-renewing fibroblast cells by transducing CFF-3 cells with L-myc under the tetracycline-inducible gene expression system. In the absence of doxycycline, the cells did not express L-myc or undergo self-renewal. The iCSFCs had a fibroblast-like morphology, normal chromosome pattern, and expressed fibroblast-specific genes and markers. However, the iCSFCs did not form tumors in a soft agar colony-forming assay. We observed higher expression of three ES modules (core pluripotency genes, polycomb repressive complex genes (PRC), and MYC-related genes) in the iCSFCs than in the CFF-3 cells; in particular, the core pluripotency genes (OCT4, SOX2, and NANOG) were markedly up-regulated compared with the PRC and MYC module genes. These results demonstrated that, in canine fetal fibroblasts, L-myc tetracycline-inducible promoter-driven gene expression induces self-renewal capacity but not tumor formation. This study suggests that L-myc gene-induced conditional self-renewing fibroblast cells can be used as an in vitro tool in a variety of biomedical studies related to drug screening.
Collapse
|
30
|
Qiu GH, Zheng X, Fu M, Huang C, Yang X. The decreased exclusion of nuclear eccDNA: From molecular and subcellular levels to human aging and age-related diseases. Ageing Res Rev 2021; 67:101306. [PMID: 33610814 DOI: 10.1016/j.arr.2021.101306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Extrachromosomal circular DNA (eccDNA) accumulates within the nucleus of eukaryotic cells during physiological aging and in age-related diseases (ARDs) and the accumulation could be caused by the declined exclusion of nuclear eccDNA in these states. This review focuses on the formation of eccDNA and the roles of some main factors, such as nuclear pore complexes (NPCs), nucleoplasmic reticulum (NR), and nuclear actin, in eccDNA exclusion. eccDNAs are mostly formed from non-coding DNA during DNA damage repair. They move to NPCs along nuclear actin and are excluded out of the nucleus through functional NPCs in young and healthy cells. However, it has been demonstrated that defective NPCs, abnormal NPC components and nuclear actin rods are increased in aged cells, various cancers and certain other ARDs such as cardiovascular diseases, premature aging, neurodegenerative diseases and myopathies. Therefore, mainly resulting from the increase of dysfunctional NPCs, the exclusion of nuclear eccDNAs may be reduced and eccDNAs thus accumulate within the nucleus in aging and the aforementioned ARDs. In addition, the protective function of non-coding DNA in tumorigenesis is further discussed.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, College of Life Sciences, Longyan University, Longyan 364012, People's Republic of China.
| | - Xintian Zheng
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, College of Life Sciences, Longyan University, Longyan 364012, People's Republic of China
| | - Mingjun Fu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, College of Life Sciences, Longyan University, Longyan 364012, People's Republic of China
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, College of Life Sciences, Longyan University, Longyan 364012, People's Republic of China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, College of Life Sciences, Longyan University, Longyan 364012, People's Republic of China
| |
Collapse
|
31
|
A New Perspective on the Origin of DNA Double-Strand Breaks and Its Implications for Ageing. Genes (Basel) 2021; 12:genes12020163. [PMID: 33530310 PMCID: PMC7912064 DOI: 10.3390/genes12020163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
It is estimated that 10-50 DNA double-strand breaks (DSBs) occur in a nucleated human cell per cell cycle. We reviewed the present state of knowledge and hypothesized that the currently accepted mechanisms cannot explain such high frequency of DSBs occurring daily under normal physiological conditions. We propose an alternative model that implicates illegitimate genomic integration into healthy cells of cell-free chromatin (cfCh) particles released from the billions of cells that die in the body every day. Repeated genomic integration of cfCh may have catastrophic consequences for the cell, such as DSBs, their faulty repair by nonhomologous end joining (NHEJ) followed by apoptosis with release of more cfCh which would integrate into genomes of surrounding cells. This can creates a vicious cycle of cfCh integration, DSBs, NHEJ, and more apoptosis, thereby providing a potential explanation as to why so many billions of cells die in the body on a daily basis. We also recount the recent observation that cfCh integration and the resulting DSBs activate inflammatory cytokines. This leads us to propose that concurrent DSBs and induction of inflammation occurring throughout life may be the underlying cause of ageing, degenerative disorders, and cancer. Finally, we discuss the prospect that agents that can inactivate/degrade cfCh may hold the key to making healthy ageing a realizable goal.
Collapse
|
32
|
McQuail JA, Dunn AR, Stern Y, Barnes CA, Kempermann G, Rapp PR, Kaczorowski CC, Foster TC. Cognitive Reserve in Model Systems for Mechanistic Discovery: The Importance of Longitudinal Studies. Front Aging Neurosci 2021; 12:607685. [PMID: 33551788 PMCID: PMC7859530 DOI: 10.3389/fnagi.2020.607685] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
The goal of this review article is to provide a resource for longitudinal studies, using animal models, directed at understanding and modifying the relationship between cognition and brain structure and function throughout life. We propose that forthcoming longitudinal studies will build upon a wealth of knowledge gleaned from prior cross-sectional designs to identify early predictors of variability in cognitive function during aging, and characterize fundamental neurobiological mechanisms that underlie the vulnerability to, and the trajectory of, cognitive decline. Finally, we present examples of biological measures that may differentiate mechanisms of the cognitive reserve at the molecular, cellular, and network level.
Collapse
Affiliation(s)
- Joseph A. McQuail
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Amy R. Dunn
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Carol A. Barnes
- Departments of Psychology and Neuroscience, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Gerd Kempermann
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers (HZ), Dresden, Germany
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, Baltimore, MD, United States
| | | | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
33
|
Lee JW, Ong EBB. Genomic Instability and Cellular Senescence: Lessons From the Budding Yeast. Front Cell Dev Biol 2021; 8:619126. [PMID: 33511130 PMCID: PMC7835410 DOI: 10.3389/fcell.2020.619126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023] Open
Abstract
Aging is a complex biological process that occurs in all living organisms. Aging is initiated by the gradual accumulation of biomolecular damage in cells leading to the loss of cellular function and ultimately death. Cellular senescence is one such pathway that leads to aging. The accumulation of nucleic acid damage and genetic alterations that activate permanent cell-cycle arrest triggers the process of senescence. Cellular senescence can result from telomere erosion and ribosomal DNA instability. In this review, we summarize the molecular mechanisms of telomere length homeostasis and ribosomal DNA stability, and describe how these mechanisms are linked to cellular senescence and longevity through lessons learned from budding yeast.
Collapse
Affiliation(s)
- Jee Whu Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
34
|
van der Rijt S, Molenaars M, McIntyre RL, Janssens GE, Houtkooper RH. Integrating the Hallmarks of Aging Throughout the Tree of Life: A Focus on Mitochondrial Dysfunction. Front Cell Dev Biol 2020; 8:594416. [PMID: 33324647 PMCID: PMC7726203 DOI: 10.3389/fcell.2020.594416] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Since the identification and definition of the hallmarks of aging, these aspects of molecular and cellular decline have been most often described as isolated or distinct mechanisms. However, there is significant evidence demonstrating interplay between most of these hallmarks and that they have the capacity to influence and regulate one another. These interactions are demonstrable across the tree of life, yet not all aspects are conserved. Here, we describe an integrative view on the hallmarks of aging by using the hallmark "mitochondrial dysfunction" as a focus point, and illustrate its capacity to both influence and be influenced by the other hallmarks of aging. We discuss the effects of mitochondrial pathways involved in aging, such as oxidative phosphorylation, mitochondrial dynamics, mitochondrial protein synthesis, mitophagy, reactive oxygen species and mitochondrial DNA damage in relation to each of the primary, antagonistic and integrative hallmarks. We discuss the similarities and differences in these interactions throughout the tree of life, and speculate how speciation may play a role in the variation in these mechanisms. We propose that the hallmarks are critically intertwined, and that mapping the full extent of these interactions would be of significant benefit to the aging research community.
Collapse
Affiliation(s)
- Sanne van der Rijt
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
35
|
Ammar AI, Afifi AF, Essa A, Galal-Khallaf A, Mokhtar MM, Shehab-Eldeen S, Rady AA. Cucurbita pepo Seed Oil Induces Microsatellite Instability and Tegumental Damage to Schistosoma mansoni Immature and Adult Worms In vitro. Infect Drug Resist 2020; 13:3469-3484. [PMID: 33116667 PMCID: PMC7549022 DOI: 10.2147/idr.s265699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background Schistosomiasis is a tropical parasitic disease treated exclusively with praziquantel (PZQ). However, PZQ has low efficacy against schistosomula and juveniles. In addition, the emergence of PZQ resistance has prompted the search for new drugs. Methods This study investigated the effects of pumpkin (Cucurbita pepo)-seed oil (PSO) on Schistosoma mansoni adults, juveniles, and newly formed schistosomula in vitro by exposing the parasites to increasing concentrations of PSO (20, 40, 60, 80, and 100 µl/mL) with variable incubation periods (24, 48, and 72 hours). Dose-response effects of PSO on mortality rate, worm activity, and tegumental changes were studied. Also, effect on DNA were assessed with microsatellite analysis. Results All tested stages of S. mansoni were susceptible to PSO, which was more effective than PZQ on juvenile worms and schistosomula. Juveniles and schistosomula S. mansoni were more sensitive to the antischistosomal activity of PSO than adult worms. PSO showed evident changes in the integuments of adults, juveniles, and schistosomula. These changes were more evident with increased concentrations. At the genomic level, PSO induced clear qualitative and quantitative changes in the microsatellite loci R95529 and SMD57 of S. mansoni adults and schistosomula. This microsatellite instability is being reported through the current study for S. mansoni in response to PSO for the first time. Conclusion This study suggested that PSO possesses effective antischistosomal activity against various stages of S. mansoni. Further investigations are needed to figure out the mechanism of action of PSO on this parasite.
Collapse
Affiliation(s)
- Amany Ibrahim Ammar
- Department of Medical Parasitology, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Amira Fathy Afifi
- Department of Medical Parasitology, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Abdallah Essa
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt.,Internal Medicine Department, College of Medicine, King Faisal University, Al-Ahsaa, Saudi Arabia
| | - Asmaa Galal-Khallaf
- Molecular Biology and Biotechnology Laboratory, Department of Zoology, Faculty of Science, Menoufia University, Shebin El- Kom, Menoufia, Egypt
| | - Mostafa Mohamed Mokhtar
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Somaia Shehab-Eldeen
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt.,Internal Medicine Department, College of Medicine, King Faisal University, Al-Ahsaa, Saudi Arabia
| | - Amany Ahmed Rady
- Department of Medical Parasitology, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| |
Collapse
|
36
|
Arabadjiev B, Pankov R, Vassileva I, Petrov LS, Buchvarov I. Photobiomodulation with 590 nm Wavelength Delays the Telomere Shortening and Replicative Senescence of Human Dermal Fibroblasts In Vitro. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:656-660. [PMID: 33090930 DOI: 10.1089/photob.2020.4822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Cellular senescence is one of the major factors contributing to the aging process. Photobiomodulation (PBM) is known to trigger an array of cellular responses, but there are no data on how it affects the process of cellular senescence. In this study, we analyze the effect of PBM on the cellular senescence and telomere dynamics. Methods: Human dermal fibroblasts were irradiated by a panel of light-emitting diodes with 590 nm and dose 30 J/cm2 accumulated over 1200 sec repeated in 4-day cycle within 40 days. After the last cycle of PBM treatment, the difference in number of senescent cells between PBM treated groups end nontreated control groups was measured by senescent sensitive β-galactosidase assay, and the difference in average telomere length between the experimental end control groups was analyzed using relative human telomere length quantitative Polymerase Chain Reaction (qPCR) assay. Results: After 10 cycles of irradiation, the percentage of senescent cells in PBM-treated cultures was 19.7% ± 4.5%, p < 0.05 smaller than the percentage of senescent cells in the control group, and their relative telomere length was 1.19 ± 0.09-fold, p < 0.05 greater than nontreated controls. Conclusions: Our study demonstrates for the first time that PBM with appropriate parameters can delay the attrition of the telomeres and the entry of cells into senescence, suggesting a potential involvement of telomerase reactivation. A hypothetical mechanism for this light-induced antiaging effect is discussed.
Collapse
Affiliation(s)
- Borislav Arabadjiev
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University "St. Kliment Ohridsky," Sofia, Bulgaria.,Physics Department, Sofia University "St. Kliment Ohridsky," Sofia, Bulgaria
| | - Roumen Pankov
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University "St. Kliment Ohridsky," Sofia, Bulgaria
| | - Ivelina Vassileva
- Institute of Molecular Biology "Acad.Roumen Tsanev," Sofia, Bulgaria
| | | | - Ivan Buchvarov
- Physics Department, Sofia University "St. Kliment Ohridsky," Sofia, Bulgaria
| |
Collapse
|
37
|
Giller A, Andrawus M, Gutman D, Atzmon G. Pregnancy as a model for aging. Ageing Res Rev 2020; 62:101093. [PMID: 32502628 DOI: 10.1016/j.arr.2020.101093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 04/21/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
The process of aging can be defined as the sum accumulation of damages and changes in metabolism during the life of an organism, due to both genetic predisposition and stochastic damage. During the gestational period and following parturition, similar damage can be seen due to the strenuous effect on the maternal body, exhibited on both the physiological and cellular level. In this review, we will focus on the similar physiological and cellular characteristics exhibited during pregnancy and aging, including induction of and response to oxidative stress, inflammation, and degradation of telomeres. We will evaluate any similar processes between aging and pregnancy by comparing common biomarkers, pathologies, and genetic and epigenetic effects, to establish the pregnant body as a model for aging. This review will approach the connection both in respect to current theories on aging as a byproduct of natural selection, and regarding unrelated biochemical similarities between the two, drawing on existing studies and models in humans and other species where relevant alike. Furthermore, we will show the response of the pregnant body to these changes, and through that illuminate unique areas of potential study to advance our knowledge of the maladies relating to aging and pregnancy, and an avenue for solutions.
Collapse
Affiliation(s)
- Abram Giller
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 349888, Israel
| | - Mariana Andrawus
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 349888, Israel
| | - Danielle Gutman
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 349888, Israel
| | - Gil Atzmon
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 349888, Israel; Departments of Genetics and Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York, 10461, USA.
| |
Collapse
|
38
|
Semeraro MD, Smith C, Kaiser M, Levinger I, Duque G, Gruber HJ, Herrmann M. Physical activity, a modulator of aging through effects on telomere biology. Aging (Albany NY) 2020; 12:13803-13823. [PMID: 32575077 PMCID: PMC7377891 DOI: 10.18632/aging.103504] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
Aging is a complex process that is not well understood but involves finite changes at the genetic and epigenetic level. Physical activity is a well-documented modulator of the physiological process of aging. It has been suggested that the beneficial health effects of regular exercise are at least partly mediated through its effects on telomeres and associated regulatory pathways. Telomeres, the region of repetitive nucleotide sequences functioning as a "cap" at the chromosomal ends, play an important role to protect genomic DNA from degradation. Telomeres of dividing cells progressively shorten with age. Leucocyte telomere length (TL) has been associated with age-related diseases. Epidemiologic evidence indicates a strong relationship between physical activity and TL. In addition, TL has also been shown to predict all-cause and cardiovascular mortality. Experimental studies support a functional link between aerobic exercise and telomere preservation through activation of telomerase, an enzyme that adds nucleotides to the telomeric ends. However, unresolved questions regarding exercise modalities, pathomechanistic aspects and analytical issues limit the interpretability of available data. This review provides an overview about the current knowledge in the area of telomere biology, aging and physical activity. Finally, the capabilities and limitations of available analytical methods are addressed.
Collapse
Affiliation(s)
- Maria Donatella Semeraro
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Cassandra Smith
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Melanie Kaiser
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Hans-Juergen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
39
|
Mir SM, Samavarchi Tehrani S, Goodarzi G, Jamalpoor Z, Asadi J, Khelghati N, Qujeq D, Maniati M. Shelterin Complex at Telomeres: Implications in Ageing. Clin Interv Aging 2020; 15:827-839. [PMID: 32581523 PMCID: PMC7276337 DOI: 10.2147/cia.s256425] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Different factors influence the development and control of ageing. It is well known that progressive telomere shorting is one of the molecular mechanisms underlying ageing. The shelterin complex consists of six telomere-specific proteins which are involved in the protection of chromosome ends. More particularly, this vital complex protects the telomeres from degradation, prevents from activation of unwanted repair systems, regulates the activity of telomerase, and has a crucial role in cellular senescent and ageing-related pathologies. This review explores the organization and function of telomeric DNA along with the mechanism of telomeres during ageing, followed by a discussion of the critical role of shelterin components and their changes during ageing.
Collapse
Affiliation(s)
- Seyed Mostafa Mir
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nafiseh Khelghati
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Durdi Qujeq
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Maniati
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
40
|
Pulakat L, Chen HH. Pro-Senescence and Anti-Senescence Mechanisms of Cardiovascular Aging: Cardiac MicroRNA Regulation of Longevity Drug-Induced Autophagy. Front Pharmacol 2020; 11:774. [PMID: 32528294 PMCID: PMC7264109 DOI: 10.3389/fphar.2020.00774] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Chronological aging as well as biological aging accelerated by various pathologies such as diabetes and obesity contribute to cardiovascular aging, and structural and functional tissue damage of the heart and vasculature. Cardiovascular aging in humans is characterized by structural pathologic remodeling including cardiac and vascular fibrosis, hypertrophy, stiffness, micro- and macro-circulatory impairment, left ventricular diastolic dysfunction precipitating heart failure with either reduced or preserved ejection fraction, and cardiovascular cell death. Cellular senescence, an important hallmark of aging, is a critical factor that impairs repair and regeneration of damaged cells in cardiovascular tissues whereas autophagy, an intracellular catabolic process is an essential inherent mechanism that removes senescent cells throughout life time in all tissues. Several recent reviews have highlighted the fact that all longevity treatment paradigms to mitigate progression of aging-related pathologies converge in induction of autophagy, activation of AMP kinase (AMPK) and Sirtuin pathway, and inhibition of mechanistic target of rapamycin (mTOR). These longevity treatments include health style changes such as caloric restriction, and drug treatments using rapamycin, the first FDA-approved longevity drug, as well as other experimental longevity drugs such as metformin, rapamycin, aspirin, and resveratrol. However, in the heart tissue, autophagy induction has to be tightly regulated since evidence show excessive autophagy results in cardiomyopathy and heart failure. Here we discuss emerging evidence for microRNA-mediated tight regulation of autophagy in the heart in response to treatment with rapamycin, and novel approaches to monitor autophagy progression in a temporal manner to diagnose and regulate autophagy induction by longevity treatments.
Collapse
Affiliation(s)
- Lakshmi Pulakat
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| | - Howard H Chen
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
41
|
Senescence and Longevity of Sea Urchins. Genes (Basel) 2020; 11:genes11050573. [PMID: 32443861 PMCID: PMC7288282 DOI: 10.3390/genes11050573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022] Open
Abstract
Sea urchins are a minor class of marine invertebrates that share genetic similarities with humans. For example, the sea urchin species Strongylocentrotus purpuratus is estimated to have 23,300 genes in which the majority of vertebrate gene families are enveloped. Some of the sea urchin species can demonstrate extreme longevity, such as Mesocentrotus franciscanus, living for well over 100 years. Comparing human to sea urchin aging suggests that the latter do not fit within the classic understanding of biological aging, as both long- and short-lived sea urchin species demonstrate negligible senescence. Sea urchins are highly regenerative organisms. Adults can regenerate external appendages and can maintain their regenerative abilities throughout life. They grow indeterminately and reproduce throughout their entire adult life. Both long- and short-lived species do not exhibit age-associated telomere shortening and display telomerase activity in somatic tissues regardless of age. Aging S. purpuratus urchins show changes in expression patterns of protein coding genes that are involved in several fundamental cellular functions such as the ubiquitin-proteasome system, signaling pathways, translational regulation, and electron transport chain. Sea urchin longevity and senescence research is a new and promising field that holds promise for the understanding of aging in vertebrates and can increase our understanding of human longevity and of healthy aging.
Collapse
|
42
|
Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules 2020; 10:biom10030420. [PMID: 32182711 PMCID: PMC7175209 DOI: 10.3390/biom10030420] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The p53 transcription factor plays a critical role in cellular responses to stress. Its activation in response to DNA damage leads to cell growth arrest, allowing for DNA repair, or directs cellular senescence or apoptosis, thereby maintaining genome integrity. Senescence is a permanent cell-cycle arrest that has a crucial role in aging, and it also represents a robust physiological antitumor response, which counteracts oncogenic insults. In addition, senescent cells can also negatively impact the surrounding tissue microenvironment and the neighboring cells by secreting pro-inflammatory cytokines, ultimately triggering tissue dysfunction and/or unfavorable outcomes. This review focuses on the characteristics of senescence and on the recent advances in the contribution of p53 to cellular senescence. Moreover, we also discuss the p53-mediated regulation of several pathophysiological microenvironments that could be associated with senescence and its development.
Collapse
Affiliation(s)
- Mahmut Mijit
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 67100 Siena, Italy
| | - Valentina Caracciolo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Antonio Melillo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Fernanda Amicarelli
- Department of Medical Biotechnologies, University of Siena, 67100 Siena, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 53100 L’Aquila, Italy
- Correspondence:
| |
Collapse
|
43
|
Boulestreau J, Maumus M, Rozier P, Jorgensen C, Noël D. Mesenchymal Stem Cell Derived Extracellular Vesicles in Aging. Front Cell Dev Biol 2020; 8:107. [PMID: 32154253 PMCID: PMC7047768 DOI: 10.3389/fcell.2020.00107] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Aging is associated with high prevalence of chronic degenerative diseases that take a large part of the increasing burden of morbidities in a growing demographic of elderly people. Aging is a complex process that involves cell autonomous and cell non-autonomous mechanisms where senescence plays an important role. Senescence is characterized by the loss of proliferative potential, resistance to cell death by apoptosis and expression of a senescence-associated secretory phenotype (SASP). SASP includes pro-inflammatory cytokines and chemokines, tissue-damaging proteases, growth factors; all contributing to tissue microenvironment alteration and loss of tissue homeostasis. Emerging evidence suggests that the changes in the number and composition of extracellular vesicles (EVs) released by senescent cells contribute to the adverse effects of senescence in aging. In addition, age-related alterations in mesenchymal stem/stromal cells (MSCs) have been associated to dysregulated functions. The loss of functional stem cells necessary to maintain tissue homeostasis likely directly contributes to aging. In this review, we will focus on the characteristics and role of EVs isolated from senescent MSCs, the potential effect of MSC-derived EVs in aging and discuss their therapeutic potential to improve age-related diseases.
Collapse
Affiliation(s)
- Jérémy Boulestreau
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France
| | - Marie Maumus
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France
| | - Pauline Rozier
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| | - Danièle Noël
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| |
Collapse
|
44
|
Fendrik AJ, Romanelli L, Rotondo E. Stochastic cell renewal process and lengthening of cell cycle. Phys Biol 2019; 17:016004. [PMID: 31722323 DOI: 10.1088/1478-3975/ab576c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolution of the stem cell population responsible for homeostatic cell renewal processes is analyzed. We assume that this regime is the product of a delicate balance between symmetric divisions that, after each cell cycle, originates a new stem cell or its disappearance (through cell differentiation). This dynamics leads to a monoclonal population, that is for an initial homogeneous set of stem cells, fixation of each clone is equiprobable. In this work we show that if there is an altered stem cell with a longer cell cycle than the rest, the fixation of this altered clone is more likely. We also study the consequeces of the appearance of successive alterations with these characteristics and their fixations. This effect is purely due to inherent characteristics of the cell renewal dynamics and as time goes by it leads to a quiescence state for stem cells owing to the recurrent fixation of such altered cells. Therefore it would contribute to the aging process.
Collapse
Affiliation(s)
- A J Fendrik
- Instituto de Ciencias, Universidad Nacional de General Sarmiento-J.M.Gutierrez 1150, (1613) Los Polvorines, Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas- Buenos Aires, Argentina
| | | | | |
Collapse
|
45
|
Cencioni C, Heid J, Krepelova A, Rasa SMM, Kuenne C, Guenther S, Baumgart M, Cellerino A, Neri F, Spallotta F, Gaetano C. Aging Triggers H3K27 Trimethylation Hoarding in the Chromatin of Nothobranchius furzeri Skeletal Muscle. Cells 2019; 8:cells8101169. [PMID: 31569376 PMCID: PMC6829443 DOI: 10.3390/cells8101169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/15/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
Aging associates with progressive loss of skeletal muscle function, sometimes leading to sarcopenia, a process characterized by impaired mobility and weakening of muscle strength. Since aging associates with profound epigenetic changes, epigenetic landscape alteration analysis in the skeletal muscle promises to highlight molecular mechanisms of age-associated alteration in skeletal muscle. This study was conducted exploiting the short-lived turquoise killifish Nothobranchius furzeri (Nfu), a relatively new model for aging studies. The epigenetic analysis suggested a less accessible and more condensed chromatin in old Nfu skeletal muscle. Specifically, an accumulation of heterochromatin regions was observed as a consequence of increased levels of H3K27me3, HP1α, polycomb complex subunits, and senescence-associated heterochromatic foci (SAHFs). Consistently, euchromatin histone marks, including H3K9ac, were significantly reduced. In this context, integrated bioinformatics analysis of RNASeq and ChIPSeq, related to skeletal muscle of Nfu at different ages, revealed a down-modulation of genes involved in cell cycle, differentiation, and DNA repair and an up-regulation of inflammation and senescence genes. Undoubtedly, more studies are needed to disclose the detailed mechanisms; however, our approach enlightened unprecedented features of Nfu skeletal muscle aging, potentially associated with swimming impairment and reduced mobility typical of old Nfu.
Collapse
Affiliation(s)
- Chiara Cencioni
- National Research Council, Institute for Systems Analysis and Computer Science, 00185 Rome, Italy.
| | - Johanna Heid
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Anna Krepelova
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany.
| | | | - Carsten Kuenne
- ECCPS Bioinformatics and deep sequencing platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.
| | - Stefan Guenther
- ECCPS Bioinformatics and deep sequencing platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.
| | - Mario Baumgart
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany.
| | - Alessandro Cellerino
- Laboratory of Biology (Bio@SNS), Scuola Normale Superiore, c/o Istituto di Biofisica del CNR, 56124 Pisa, Italy.
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany.
| | - Francesco Spallotta
- Department of Oncology, University of Turin, 10060 Candiolo (TO), Italy.
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy.
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy.
| |
Collapse
|
46
|
Flex E, Martinelli S, Van Dijck A, Ciolfi A, Cecchetti S, Coluzzi E, Pannone L, Andreoli C, Radio FC, Pizzi S, Carpentieri G, Bruselles A, Catanzaro G, Pedace L, Miele E, Carcarino E, Ge X, Chijiwa C, Lewis MES, Meuwissen M, Kenis S, Van der Aa N, Larson A, Brown K, Wasserstein MP, Skotko BG, Begtrup A, Person R, Karayiorgou M, Roos JL, Van Gassen KL, Koopmans M, Bijlsma EK, Santen GWE, Barge-Schaapveld DQCM, Ruivenkamp CAL, Hoffer MJV, Lalani SR, Streff H, Craigen WJ, Graham BH, van den Elzen APM, Kamphuis DJ, Õunap K, Reinson K, Pajusalu S, Wojcik MH, Viberti C, Di Gaetano C, Bertini E, Petrucci S, De Luca A, Rota R, Ferretti E, Matullo G, Dallapiccola B, Sgura A, Walkiewicz M, Kooy RF, Tartaglia M. Aberrant Function of the C-Terminal Tail of HIST1H1E Accelerates Cellular Senescence and Causes Premature Aging. Am J Hum Genet 2019; 105:493-508. [PMID: 31447100 DOI: 10.1016/j.ajhg.2019.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/10/2019] [Indexed: 02/03/2023] Open
Abstract
Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging.
Collapse
Affiliation(s)
- Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy; Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Edegem, 2650 Belgium; Department of Neurology, Antwerp University Hospital, Edegem, 2650 Belgium
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Serena Cecchetti
- Microscopy Area, Core Facilities, Istituto Superiore di Sanità, Rome, 00161 Italy
| | - Elisa Coluzzi
- Department of Science, University Roma Tre, Rome, 00146 Italy
| | - Luca Pannone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy; Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Cristina Andreoli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, 00161 Italy
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Giovanna Carpentieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy; Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy
| | | | - Lucia Pedace
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146 Italy
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146 Italy
| | - Elena Carcarino
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146 Italy; Current affiliation: Cordeliers Research Centre, Inserm 1138, Sorbonne Université, Paris, 75006 France
| | - Xiaoyan Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Current affiliation: Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chieko Chijiwa
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - M E Suzanne Lewis
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Marije Meuwissen
- Department of Medical Genetics, University of Antwerp, Edegem, 2650 Belgium
| | - Sandra Kenis
- Department of Neurology, Antwerp University Hospital, Edegem, 2650 Belgium
| | | | - Austin Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kathleen Brown
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Melissa P Wasserstein
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Brian G Skotko
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02114, USA
| | | | | | - Maria Karayiorgou
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - J Louw Roos
- Department of Psychiatry, University of Pretoria, Weskoppies Hospital, Pretoria, 0001 South Africa
| | - Koen L Van Gassen
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 AB the Netherlands
| | - Marije Koopmans
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 AB the Netherlands
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300 RC the Netherlands
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300 RC the Netherlands
| | | | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300 RC the Netherlands
| | - Mariette J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300 RC the Netherlands
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Daan J Kamphuis
- Departement of Neurology, Reinier de Graaf Ziekenhuis, Delft, 2600 GA the Netherlands
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, 50406 Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, 50406 Estonia
| | - Karit Reinson
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, 50406 Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, 50406 Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, 50406 Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, 50406 Estonia; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Monica H Wojcik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clara Viberti
- Department of Medical Sciences, University of Turin, Turin, 10126 Italy; Italian Institute for Genomic Medicine, Turin, 10126 Italy
| | - Cornelia Di Gaetano
- Department of Medical Sciences, University of Turin, Turin, 10126 Italy; Italian Institute for Genomic Medicine, Turin, 10126 Italy
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Simona Petrucci
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, 00189 Italy; Division of Medical Genetics, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, 71013 Italy
| | - Alessandro De Luca
- Division of Medical Genetics, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, 71013 Italy
| | - Rossella Rota
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146 Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University, Rome, 00161 Italy; Istituto Neuromed, IRCCS, Pozzilli, 86077 Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, 10126 Italy; Italian Institute for Genomic Medicine, Turin, 10126 Italy
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Antonella Sgura
- Department of Science, University Roma Tre, Rome, 00146 Italy
| | - Magdalena Walkiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Current affiliation: National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Edegem, 2650 Belgium.
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy.
| |
Collapse
|
47
|
The protective function of non-coding DNA in DNA damage accumulation with age and its roles in age-related diseases. Biogerontology 2019; 20:741-761. [PMID: 31473864 DOI: 10.1007/s10522-019-09832-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
Aging is a progressive decline of physiological function in tissue and organ accompanying both accumulation of DNA damage and reduction of non-coding DNA. Peripheral non-coding DNA/heterochromatin has been proposed to protect the genome and centrally-located protein-coding sequences in soma and male germ cells against radiation and the invasion of exogenous nucleic acids. Therefore, this review summarizes the reduction of non-coding DNA/heterochromatin (including telomeric DNA and rDNA) and DNA damage accumulation during normal physiological aging and in various aging-related diseases. Based on analysis of data, it is found that DNA damage accumulation is roughly negatively correlated with the reduction of non-coding DNA and therefore speculated that DNA damage accumulation is likely due to the reduction of non-coding DNA protection in genome defense during aging. Therefore, it is proposed here that means to increase the total amount of non-coding DNA and/or heterochromatin prior to the onset of these diseases could potentially better protect the genome and protein-coding DNA, reduce the incidence of aging-related diseases, and thus lead to better health during aging.
Collapse
|
48
|
Maffeo C, Chou HY, Aksimentiev A. Molecular Mechanisms of DNA Replication and Repair Machinery: Insights from Microscopic Simulations. ADVANCED THEORY AND SIMULATIONS 2019; 2:1800191. [PMID: 31728433 PMCID: PMC6855400 DOI: 10.1002/adts.201800191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Reproduction, the hallmark of biological activity, requires making an accurate copy of the genetic material to allow the progeny to inherit parental traits. In all living cells, the process of DNA replication is carried out by a concerted action of multiple protein species forming a loose protein-nucleic acid complex, the replisome. Proofreading and error correction generally accompany replication but also occur independently, safeguarding genetic information through all phases of the cell cycle. Advances in biochemical characterization of intracellular processes, proteomics and the advent of single-molecule biophysics have brought about a treasure trove of information awaiting to be assembled into an accurate mechanistic model of the DNA replication process. In this review, we describe recent efforts to model elements of DNA replication and repair processes using computer simulations, an approach that has gained immense popularity in many areas of molecular biophysics but has yet to become mainstream in the DNA metabolism community. We highlight the use of diverse computational methods to address specific problems of the fields and discuss unexplored possibilities that lie ahead for the computational approaches in these areas.
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Han-Yi Chou
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| |
Collapse
|
49
|
Forni C, Facchiano F, Bartoli M, Pieretti S, Facchiano A, D'Arcangelo D, Norelli S, Valle G, Nisini R, Beninati S, Tabolacci C, Jadeja RN. Beneficial Role of Phytochemicals on Oxidative Stress and Age-Related Diseases. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8748253. [PMID: 31080832 PMCID: PMC6475554 DOI: 10.1155/2019/8748253] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/11/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022]
Abstract
Aging is related to a number of functional and morphological changes leading to progressive decline of the biological functions of an organism. Reactive Oxygen Species (ROS), released by several endogenous and exogenous processes, may cause important oxidative damage to DNA, proteins, and lipids, leading to important cellular dysfunctions. The imbalance between ROS production and antioxidant defenses brings to oxidative stress conditions and, related to accumulation of ROS, aging-associated diseases. The purpose of this review is to provide an overview of the most relevant data reported in literature on the natural compounds, mainly phytochemicals, with antioxidant activity and their potential protective effects on age-related diseases such as metabolic syndrome, diabetes, cardiovascular disease, cancer, neurodegenerative disease, and chronic inflammation, and possibly lower side effects, when compared to other drugs.
Collapse
Affiliation(s)
- Cinzia Forni
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Stefano Pieretti
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Daniela D'Arcangelo
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Sandro Norelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgia Valle
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Nisini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Ravirajsinh N. Jadeja
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
50
|
Cacabelos R, Carril JC, Cacabelos N, Kazantsev AG, Vostrov AV, Corzo L, Cacabelos P, Goldgaber D. Sirtuins in Alzheimer's Disease: SIRT2-Related GenoPhenotypes and Implications for PharmacoEpiGenetics. Int J Mol Sci 2019; 20:ijms20051249. [PMID: 30871086 PMCID: PMC6429449 DOI: 10.3390/ijms20051249] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/11/2022] Open
Abstract
Sirtuins (SIRT1-7) are NAD+-dependent protein deacetylases/ADP ribosyltransferases with important roles in chromatin silencing, cell cycle regulation, cellular differentiation, cellular stress response, metabolism and aging. Sirtuins are components of the epigenetic machinery, which is disturbed in Alzheimer’s disease (AD), contributing to AD pathogenesis. There is an association between the SIRT2-C/T genotype (rs10410544) (50.92%) and AD susceptibility in the APOEε4-negative population (SIRT2-C/C, 34.72%; SIRT2-T/T 14.36%). The integration of SIRT2 and APOE variants in bigenic clusters yields 18 haplotypes. The 5 most frequent bigenic genotypes in AD are 33CT (27.81%), 33CC (21.36%), 34CT (15.29%), 34CC (9.76%) and 33TT (7.18%). There is an accumulation of APOE-3/4 and APOE-4/4 carriers in SIRT2-T/T > SIRT2-C/T > SIRT2-C/C carriers, and also of SIRT2-T/T and SIRT2-C/T carriers in patients who harbor the APOE-4/4 genotype. SIRT2 variants influence biochemical, hematological, metabolic and cardiovascular phenotypes, and modestly affect the pharmacoepigenetic outcome in AD. SIRT2-C/T carriers are the best responders, SIRT2-T/T carriers show an intermediate pattern, and SIRT2-C/C carriers are the worst responders to a multifactorial treatment. In APOE-SIRT2 bigenic clusters, 33CC carriers respond better than 33TT and 34CT carriers, whereas 24CC and 44CC carriers behave as the worst responders. CYP2D6 extensive metabolizers (EM) are the best responders, poor metabolizers (PM) are the worst responders, and ultra-rapid metabolizers (UM) tend to be better responders that intermediate metabolizers (IM). In association with CYP2D6 genophenotypes, SIRT2-C/T-EMs are the best responders. Some Sirtuin modulators might be potential candidates for AD treatment.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Juan C Carril
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Natalia Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Aleksey G Kazantsev
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Alex V Vostrov
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Lola Corzo
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Pablo Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Dmitry Goldgaber
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|