1
|
Liu Q, Liu Z, Zhang X, Zeng A, Song L. Revisiting of Cancer Immunotherapy: Insight from the Dialogue between Glycolysis and PD-1/PD-L1 Axis in the Tumor Microenvironment. Int J Biol Sci 2025; 21:1202-1221. [PMID: 39897050 PMCID: PMC11781164 DOI: 10.7150/ijbs.104079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
The interplay between metabolic pathways and immune escape has emerged as a captivating research area in oncobiology. Among these, the Warburg effect stands out as a hallmark metabolic reprogramming in cancer, characterized by elevated glucose utilization and excessive lactic acid production through anaerobic glycolysis. Key glycolytic enzymes not only fulfill the bioenergetic demands of cancer cells but also exhibit moonlighting roles, including regulation of epigenetic modifications, protein kinase activity, and immune escape mechanisms, thereby reshaping the tumor microenvironment. Tumor-specific vascular architecture facilitates lactate accumulation, which drives tumor progression by impairing immune cell function and acting as a signaling molecule to recruit immunosuppressive cells and modulate immune checkpoint pathways. The PD-1/PD-L1 co-stimulatory pathway plays a crucial role in negatively modulating the activation, proliferation, and cytokine secretion by T-lymphocytes. This review primarily focuses on elucidating the regulation and mechanisms underlying PD-1/PD-L1 signaling axis during glycolysis in tumor cells as well as surrounding cells. In the era of precision medicine, there is a particular interest in leveraging 18F-FDG PET/CT imaging as a valuable tool to assess PD-L1 expression status for more targeted therapeutic interventions. Additionally, the development of natural compounds capable of modulating metabolism opens new avenues for metabolism-based immunotherapy, though further studies are required to validate their in vivo efficacy.
Collapse
Affiliation(s)
- Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihan Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Sosa Cuevas E, Mouret S, Vayssière G, Kerboua S, Girard P, Molens JP, Manceau M, Charles J, Saas P, Aspord C. Circulating immune landscape in melanoma patients undergoing anti-PD1 therapy reveals key immune features according to clinical response to treatment. Front Immunol 2024; 15:1507938. [PMID: 39687620 PMCID: PMC11646980 DOI: 10.3389/fimmu.2024.1507938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Immune checkpoint blockers (ICB) bring unprecedented clinical success, yet many patients endure immune mediated adverse effects and/or fail to respond. Predictive signatures of response to ICB and mechanisms of clinical efficacy or failure remain understudied. DC subsets, in network with conventional αβ T (Tconv), NK, γδ T and iNKT cells, harbor pivotal roles in tumor control, yet their involvement in response to ICB remained underexplored. Methods We performed an extensive longitudinal monitoring of circulating immune cells from melanoma patients treated with first-line anti-PD1, before (T0) and during treatment. We assessed the phenotypic and functional features of DC and effector cells' subsets by multi-parametric flow cytometry and ProcartaPlex® dosages. Results We revealed differences according to response to treatment and modulations of patterns during treatment, highlighting a strong link between the immune landscape and the outcome of anti-PD1 therapy. Responders exhibited higher frequencies of circulating cDC1s, CD8+ T cells, and γδ2+ T cells in central memory (CM) stage. Notably, we observed a distinct remodeling of ICP expression profile, activation status and natural cytotoxicity receptor patterns of immune subsets during treatment. Anti-PD1 modulated DCs' functionality and triggered deep changes in the functional orientation of Tconv and γδT cells. Discussion Overall, our work provides new insights into the immunological landscape sustaining favorable clinical responses or resistance to first-line anti-PD1 therapy in melanoma patients. Such exploration participates in uncovering the mechanism of action of anti-PD1, discovering innovative predictive signatures of response, and paves the way to design pertinent combination strategies to improve patient clinical benefits in the future.
Collapse
Affiliation(s)
- Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Stéphane Mouret
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Univ. Grenoble Alpes, Grenoble, France
| | - Guillaume Vayssière
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Siham Kerboua
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Pauline Girard
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Jean-Paul Molens
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Marc Manceau
- Department of Medicine, Clinical Investigation Center, CHU Grenoble Alpes, Univ. Grenoble Alpes, Grenoble, France
| | - Julie Charles
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Univ. Grenoble Alpes, Grenoble, France
| | - Philippe Saas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| |
Collapse
|
3
|
Brand CL, Hunger RE, Seyed Jafari SM. Eosinophilic granulocytes as a potential prognostic marker for cancer progression and therapeutic response in malignant melanoma. Front Oncol 2024; 14:1366081. [PMID: 38756652 PMCID: PMC11096470 DOI: 10.3389/fonc.2024.1366081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
The importance of eosinophilic granulocytes in cancer has been widely discussed in recent years. The current study reviews the evidence on the role of eosinophilic granulocytes in melanoma as a prognostic marker for cancer progression and the efficacy of treatment with modern immune checkpoint inhibitors. A total of 33 human clinical studies were included in the review, with heterogeneous data due to differences in patients populations, study design and inclusion of small study groups. However, 28 of the 33 studies suggested that eosinophilic granulocytes could be used as a prognostic biomarker for outcome and/or potential response to systemic treatment and/or occurrence of adverse events in melanoma patients. Nevertheless, the exact role of eosinophils remains to be elucidated. Further prospective, larger and better controlled studies are warranted to clarify the significance of eosinophilic granulocytes in patients with melanoma, in more details.
Collapse
Affiliation(s)
| | | | - Seyed Morteza Seyed Jafari
- Department of Dermatology and Venerology, University Hospital of Bern, University Bern, Bern, Switzerland
| |
Collapse
|
4
|
Tao Z, Chen Z, Gao Y, Quan M. Influence of cachexia on immunotherapy efficacy and prognosis for malignant tumors of the digestive system. Cancer Rep (Hoboken) 2024; 7:e2100. [PMID: 38775250 PMCID: PMC11110103 DOI: 10.1002/cnr2.2100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The presence of cancer cachexia is a significant adverse prognostic indicator in patients with malignant tumors. Cancer cachexia is a multifactorial syndrome characterized by a constant loss of skeletal muscles with or without a loss of weight, leading to immune dysfunction. We performed a retrospective study to investigate the influence of cachexia on the immunotherapy efficacy and prognosis for malignant tumors of the digestive system. METHODS The present study adopts a cross-sectional design. The prognosis data of patients with advanced cancer of the digestive system who received immunotherapy from September 2021 to December 2022 were analyzed. Cachexia was calculated using the change of the area of the psoas major muscle (PMMA) or the weight. We measured the change at the beginning of immunotherapy and at least 2 cycles afterward. The participants were categorized into the cachexia group and control group based on the evaluation criteria. Kaplan-Meier and Log-rank methods were used for survival analysis. Cox proportional hazard model as a method to assess the contribution of different clinical factors to overall survival (OS) and progression-free survival (PFS). RESULTS A total number of 98 patients, including esophageal carcinoma (4, 4%), gastric (36, 37%), colorectal (51, 52%), and other cancer types (7, 7%), were enrolled. Fifty-four patients were diagnosed with non-cancer cachexia, and the cancer cachexia group included 44 patients. The median PFS in the cachexia group was shorter than that in the control group (130 days vs. 212 days). Their difference was not significant (p = .321). The survival rate of the patients without cachexia was longer than of those with cachexia (p = .027). The level of albumin and the number of metastatic organs were related to PFS (p = .020, p = .029). The albumin level was significantly associated with the OS of patients (p = .003). CONCLUSIONS The presence of cachexia was significantly associated with poor OS in patients with malignant tumors of the digestive system who received immunotherapy, not with PFS or the response to immunotherapy.
Collapse
Affiliation(s)
- Zhirui Tao
- Department of OncologyShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Zhiqin Chen
- Department of OncologyShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Yong Gao
- Department of OncologyShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Ming Quan
- Department of OncologyShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
5
|
You T, Tang H, Wu W, Gao J, Li X, Li N, Xu X, Xing J, Ge H, Xiao Y, Guo J, Wu B, Li X, Zhou L, Zhao L, Bai C, Han Q, Sun Z, Zhao RC. POSTN Secretion by Extracellular Matrix Cancer-Associated Fibroblasts (eCAFs) Correlates with Poor ICB Response via Macrophage Chemotaxis Activation of Akt Signaling Pathway in Gastric Cancer. Aging Dis 2023; 14:2177-2192. [PMID: 37199594 PMCID: PMC10676785 DOI: 10.14336/ad.2023.0503] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment, but its clinical benefit is limited in advanced gastric cancer (GC). Cancer-associated fibroblasts (CAFs) have been reported to be associated with ICB resistance, but the underlying mechanism has not been fully elucidated. Our previous single-cell RNA-seq analysis of GC revealed that POSTN+FAP+ extracellular matrix CAFs (eCAFs) communicate with macrophages. Here, we evaluated the correlation between eCAFs and ICB response in TCGA-STAD and real-world cohorts. Immune infiltration analysis and correlation analysis were performed to assess the relationship between eCAFs and macrophages. We first confirmed a negative correlation between the abundance of eCAFs and the overall response rate (ORR) to anti-PD-1 treatment in TCGA-STAD and real-world GC cohorts. Overexpression of POSTN in CAFs enhanced macrophage chemotaxis, while POSTN interference showed the opposite effect in vitro and in vivo. Furthermore, the cell density of POSTN+ CAFs was positively correlated with the infiltration level of CD163+ macrophages in GC patient tissues. The results demonstrated that POSTN secreted by CAFs enhances macrophage chemotaxis by activating the Akt signaling pathway in macrophages. Additionally, we found that POSTN+FAP+ eCAFs may exist in multiple solid tumors and are associated with ICB resistance. eCAFs promote macrophage chemotaxis through the secretion of POSTN, thereby leading to ICB resistance. High expression of POSTN is likely to predict a poor response to ICB. POSTN downregulation may be considered as a candidate therapeutic strategy to improve ICB efficacy.
Collapse
Affiliation(s)
- Tingting You
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hui Tang
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wenjing Wu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Jingxi Gao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Xuechun Li
- Department of Stomatology Center, Xiangya Hospital, Central South University, Changsha, China.
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China.
| | - Ningning Li
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiuxiu Xu
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jiazhang Xing
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hui Ge
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yi Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiaoyi Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Liangrui Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Lin Zhao
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Zhao Sun
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
6
|
Li P, Li F, Zhang Y, Yu X, Li J. Metabolic diversity of tumor-infiltrating T cells as target for anti-immune therapeutics. Cancer Immunol Immunother 2023; 72:3453-3460. [PMID: 37733059 PMCID: PMC10992207 DOI: 10.1007/s00262-023-03540-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Tumor-infiltrating T cells are promising drug targets to modulate the tumor microenvironment. However, tumor-infiltrating T lymphocytes, as central targets of cancer immunotherapy, show considerable heterogeneity and dynamics across tumor microenvironments and cancer types that may fundamentally influence cancer growth, metastasis, relapse, and response to clinical drugs. The T cell heterogeneity not only refers to the composition of subpopulations but also divergent metabolic states of T cells. Comparing to the diversity of tumor-infiltrating T cell compositions that have been well recognized, the metabolic diversity of T cells deserves more attention for precision immunotherapy. Single-cell sequencing technology enables panoramic stitching of the tumor bulk, partly by showing the metabolic-related gene expression profiles of tumor-infiltrating T cells at a single-cell resolution. Therefore, we here discuss T cell metabolism reprogramming triggered by tumor microenvironment as well as the potential application of metabolic targeting drugs. The tumor-infiltrating T cells metabolic pathway addictions among different cancer types are also addressed in this brief review.
Collapse
Affiliation(s)
- Peipei Li
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China
- BGI Tech Solutions, Co., Ltd. BGI Shenzhen, Shenzhen, 518000, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China
| | - Fangchao Li
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China
| | - Yanfei Zhang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China
| | - Xiaoyang Yu
- Weibei Prison Hospital, Weifang, Shandong, 261109, China
| | - Jingjing Li
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China.
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China.
| |
Collapse
|
7
|
Shi Y, Mi L, Lai Y, Zhao M, Jia L, Du T, Song Y, Li X. PD-L1 immunohistochemistry assay optimization to provide more comprehensive pathological information in classic Hodgkin lymphoma. J Hematop 2023; 16:7-16. [PMID: 38175373 PMCID: PMC10766715 DOI: 10.1007/s12308-023-00530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Overexpression of PD-L1 can be a predictive marker for anti-PD-1 therapeutic efficacy in classic Hodgkin lymphoma (CHL); however, harmonization of different IHC assays remains to be accomplished, and interpretations of PD-L1 immunostaining results remain controversial in CHL. In this study, we sought to optimize the PD-L1 immunohistochemistry (IHC) assay in CHL. All tests were performed on a tumour tissue microarray established from 54 CHL cases. Three IHC antibodies (405.9A11, SP142, 22C3) for detecting PD-L1 expression were compared semi quantitatively with the RNAscope assay (No. 310035, ACD), and the difference in the expression in background immune cells (ICs) between assays and the associations of expression levels with densities of TILs/TAMs were also analysed. 405.9A11 demonstrated best specificity in HRS cells and best sensitivity in ICs. Positive expression of PD-L1 was more frequent in ICs (85.2%) than in HRS cells (48.1%). Different subgroups of background ICs, including tumour-associated macrophages (TAMs), were assessed and scored for CD4, CD8, FOXP3, and CD163 expression. PD-L1 expression on ICs was the factor most associated with the density of TAMs. 405.9A11 provided the most convincing PD-L1 expression results. Pathologists should report PD-L1 expression in a combined manner, including both the status of HRS cells and the percentage of PD-L1-positive ICs.
Collapse
Affiliation(s)
- Yunfei Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing),department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Lan Mi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing),department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yumei Lai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing),department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing),department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ling Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing),department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tingting Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing),department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing),department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xianghong Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing),department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
8
|
Babl N, Hofbauer J, Matos C, Voll F, Menevse AN, Rechenmacher M, Mair R, Beckhove P, Herr W, Siska PJ, Renner K, Kreutz M, Schnell A. Low-density lipoprotein balances T cell metabolism and enhances response to anti-PD-1 blockade in a HCT116 spheroid model. Front Oncol 2023; 13:1107484. [PMID: 36776340 PMCID: PMC9911890 DOI: 10.3389/fonc.2023.1107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction The discovery of immune checkpoints and the development of their specific inhibitors was acclaimed as a major breakthrough in cancer therapy. However, only a limited patient cohort shows sufficient response to therapy. Hence, there is a need for identifying new checkpoints and predictive biomarkers with the objective of overcoming immune escape and resistance to treatment. Having been associated with both, treatment response and failure, LDL seems to be a double-edged sword in anti-PD1 immunotherapy. Being embedded into complex metabolic conditions, the impact of LDL on distinct immune cells has not been sufficiently addressed. Revealing the effects of LDL on T cell performance in tumor immunity may enable individual treatment adjustments in order to enhance the response to routinely administered immunotherapies in different patient populations. The object of this work was to investigate the effect of LDL on T cell activation and tumor immunity in-vitro. Methods Experiments were performed with different LDL dosages (LDLlow = 50 μg/ml and LDLhigh = 200 μg/ml) referring to medium control. T cell phenotype, cytokines and metabolism were analyzed. The functional relevance of our findings was studied in a HCT116 spheroid model in the context of anti-PD-1 blockade. Results The key points of our findings showed that LDLhigh skewed the CD4+ T cell subset into a central memory-like phenotype, enhanced the expression of the co-stimulatory marker CD154 (CD40L) and significantly reduced secretion of IL-10. The exhaustion markers PD-1 and LAG-3 were downregulated on both T cell subsets and phenotypical changes were associated with a balanced T cell metabolism, in particular with a significant decrease of reactive oxygen species (ROS). T cell transfer into a HCT116 spheroid model resulted in a significant reduction of the spheroid viability in presence of an anti-PD-1 antibody combined with LDLhigh. Discussion Further research needs to be conducted to fully understand the impact of LDL on T cells in tumor immunity and moreover, to also unravel LDL effects on other lymphocytes and myeloid cells for improving anti-PD-1 immunotherapy. The reason for improved response might be a resilient, less exhausted phenotype with balanced ROS levels.
Collapse
Affiliation(s)
- Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Joshua Hofbauer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Carina Matos
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Florian Voll
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Ayse Nur Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Michael Rechenmacher
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ruth Mair
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Beckhove
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Peter J. Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Annette Schnell
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,*Correspondence: Annette Schnell,
| |
Collapse
|
9
|
Ohuchi K, Amagai R, Ikawa T, Muto Y, Roh Y, Endo J, Maekawa T, Kambayashi Y, Asano Y, Fujimura T. Plasminogen activating inhibitor-1 promotes angiogenesis in cutaneous angiosarcomas. Exp Dermatol 2023; 32:50-59. [PMID: 36168721 DOI: 10.1111/exd.14681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
Plasminogen activating inhibitor-1 (PAI-1) is associated with poor clinical outcomes, and elevated levels of PAI-1 in both tissue and serum are correlated with poor response to therapy in various cancers, including skin cancer. Cutaneous angiosarcoma (CAS) is a vascular tumor histologically characterized by detachment of endothelial cell-derived tumor cells. Since CAS expresses multiple angiogenic growth factors and has increased expressions of angiogenic receptor tyrosine kinase transcripts including VEGFR1/2/3, angiogenesis-promoting factors are potential drug targets in CAS. In this study, the expression of PAI-1 was examined in 31 cases of CAS, and the immunomodulatory effects of PAI-1 on a human CAS cell line, ISO-HAS-B, were evaluated. We found that, of the angiogenesis-promoting factors, PAI-1 was expressed in almost all cases of CAS, and PAI-1 increased the mRNA expressions of IL-23p19, VEGF-C, CXCL5 and CCL20 on ISO-HAS-B. Moreover, PAI-1 stimulated ISO-HAS-B culture supernatant promoted favourable tube networks, suggesting that these tumor-derived factors promote the pro-angiogenic effect on tumor development. In addition, IL-23p19 was expressed in 61.3% of cases, whereas VEGF-C was expressed in 41% of cases. The results of the present study suggest that PAI-1 promotes angiogenesis that results in tumor progression in CAS.
Collapse
Affiliation(s)
- Kentaro Ohuchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Amagai
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Ikawa
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Muto
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuna Roh
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Endo
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Maekawa
- Department of Dermatology, Jichi Medical University, Shimotsuke, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Microbiome and Metabolomics in Liver Cancer: Scientific Technology. Int J Mol Sci 2022; 24:ijms24010537. [PMID: 36613980 PMCID: PMC9820585 DOI: 10.3390/ijms24010537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
Primary liver cancer is a heterogeneous disease. Liver cancer metabolism includes both the reprogramming of intracellular metabolism to enable cancer cells to proliferate inappropriately and adapt to the tumor microenvironment and fluctuations in regular tissue metabolism. Currently, metabolomics and metabolite profiling in liver cirrhosis, liver cancer, and hepatocellular carcinoma (HCC) have been in the spotlight in terms of cancer diagnosis, monitoring, and therapy. Metabolomics is the global analysis of small molecules, chemicals, and metabolites. Metabolomics technologies can provide critical information about the liver cancer state. Here, we review how liver cirrhosis, liver cancer, and HCC therapies interact with metabolism at the cellular and systemic levels. An overview of liver metabolomics is provided, with a focus on currently available technologies and how they have been used in clinical and translational research. We also list scalable methods, including chemometrics, followed by pathway processing in liver cancer. We conclude that important drivers of metabolomics science and scientific technologies are novel therapeutic tools and liver cancer biomarker analysis.
Collapse
|
11
|
Ohuchi K, Amagai R, Kambayashi Y, Asano Y, Fujimura T. Serum CCL22 Increased in Advanced Melanoma Patients with Liver Metastases: Report of 5 Cases. Case Rep Oncol 2022; 15:1114-1120. [PMID: 36605221 PMCID: PMC9808253 DOI: 10.1159/000528328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/11/2022] [Indexed: 12/28/2022] Open
Abstract
Advanced melanoma patients with liver metastases show a limited response to immunotherapy by the induction of regulatory T cells and depletion of effector cells, which leads to a poor prognosis. Tumor-associated macrophages (TAMs) induce apoptosis of activated antigen-specific CD8+ T cells in melanomas, leading to induction of tolerance to immune checkpoint inhibitors. In addition, TAMs produce various chemokines, and several serum pro-inflammatory chemokines measured at baseline are useful for the prediction of the efficacy of immunomodulatory drugs. In this study, serum levels of CCL22, CXCL5, and CXCL10 were evaluated by ELISA at baseline in 10 melanoma patients, 5 with liver metastases and 5 with lung metastases, treated with anti-PD1 Abs. Serum levels of CCL22, but not CXCL5 and CXCL10, were increased in patients with liver metastases compared to those with lung metastases or historical controls. The present data suggest that elevated serum CCL22 levels might be a biomarker for liver metastases in melanoma patients.
Collapse
Affiliation(s)
- Kentaro Ohuchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Amagai
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Immunotherapy for Melanoma: The Significance of Immune Checkpoint Inhibitors for the Treatment of Advanced Melanoma. Int J Mol Sci 2022; 23:ijms232415720. [PMID: 36555362 PMCID: PMC9779655 DOI: 10.3390/ijms232415720] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Therapeutic options for treating advanced melanoma have progressed rapidly in recent decades. Until 6 years ago, the regimen for treating advanced melanoma consisted mainly of cytotoxic agents such as dacarbazine and type I interferons. Since 2014, anti-programmed cell death 1 (PD1) antibodies have been recognized as anchor drugs for treating advanced melanoma, with or without additional combination drugs such as ipilimumab, but the efficacies of these immunotherapies are not fully satisfactory. In this review, we describe the development of the currently available anti-PD1 Abs-based immunotherapies for advanced melanoma, focusing on their efficacy and immune-related adverse events (AEs), as well as clinical trials still ongoing for the future treatment of advanced melanoma.
Collapse
|
13
|
Muto Y, Kambayashi Y, Kato H, Fukushima S, Ito T, Maekawa T, Fujisawa Y, Yoshino K, Uchi H, Matsushita S, Yamamoto Y, Amagai R, Ohuchi K, Hashimoto A, Fujimura T. Adjuvant Anti-PD-1 Antibody Therapy for Advanced Melanoma: A Multicentre Study of 78 Japanese Cases. Acta Derm Venereol 2022; 102:adv00756. [PMID: 35670329 PMCID: PMC9631249 DOI: 10.2340/actadv.v102.678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Anti-PD-1 antibodies (Abs) are among the optimal adjuvant therapies for melanoma at high risk of recurrence, especially BRAF wild-type melanoma, but the anti-tumour effects of anti-PD-1 Abs in the adjuvant setting for acral melanoma have not been evaluated previously. The aim of this study was to analyse the efficacy and safety profiles of anti-PD-1 Ab monotherapy in the adjuvant setting in an Asian population including a high ratio of acral melanoma. The efficacy and safety profiles of anti-PD-1 Ab monotherapy in the adjuvant setting were retrospectively analysed in 78 Japanese patients with advanced melanoma, including 31 cases (40%) of acral melanoma. Overall relapse-free survival was 60.3% (47 of 78 cases, 95% confidence interval (CI) 49.2-70.4%), and 39.7% of patients (31 of 78 patients, 95% CI 29.6-50.8%) relapsed during the adjuvant PD-1 Ab treatment. Six cases (7.9%) discontinued the protocol due to serious adverse events. One case (1.3%) discontinued the protocol due to trauma. The relapse-free survival of acral melanoma was 25.8%, whereas that of high cumulative sun damage was 60.0%, and that of low cumulative sun damage was 57.1%. The acral type had a significantly lower 12-month relapse-free survival than other cutaneous types (p = 0.029). The acral type appeared to be an independent prognostic factor on multivariate analysis (p = 0.015). Adverse events due to anti-PD-1 antibody were observed in 37.1% overall. The results of this study suggest that anti-PD-1 Ab therapy in the adjuvant setting is less effective for acral melanoma than for other cutaneous types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan.
| |
Collapse
|
14
|
Zelin E, Maronese CA, Dri A, Toffoli L, Di Meo N, Nazzaro G, Zalaudek I. Identifying Candidates for Immunotherapy among Patients with Non-Melanoma Skin Cancer: A Review of the Potential Predictors of Response. J Clin Med 2022; 11:3364. [PMID: 35743435 PMCID: PMC9225110 DOI: 10.3390/jcm11123364] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Non-melanoma skin cancer (NMSC) stands as an umbrella term for common cutaneous malignancies, including basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), together with rarer cutaneous cancers, such as Merkel cell carcinoma (MCC) and other forms of adnexal cancers. The majority of NMSCs can be successfully treated with surgery or radiotherapy, but advanced and metastatic stages may require systemic approaches such as immunotherapy with immune checkpoint inhibitors (ICIs). SUMMARY Since immunotherapy is not effective in all patients and can potentially lead to severe adverse effects, an important clinical question is how to properly identify those who could be suitable candidates for this therapeutic choice. In this paper, we review the potential features and biomarkers used to predict the outcome of ICIs therapy for NMSCs. Moreover, we analyze the role of immunotherapy in special populations, such as the elderly, immunocompromised patients, organ transplant recipients, and subjects suffering from autoimmune conditions. KEY MESSAGES Many clinical, serum, histopathological, and genetic features have been investigated as potential predictors of response in NMSCs treated with ICIs. Although this field of research is very promising, definitive, cost-effective, and reproducible biomarkers are still lacking and further efforts are needed to validate the suggested predictors in larger cohorts.
Collapse
Affiliation(s)
- Enrico Zelin
- Dermatology Clinic, Maggiore Hospital, University of Trieste, 34125 Trieste, Italy; (E.Z.); (L.T.); (N.D.M.); (I.Z.)
| | - Carlo Alberto Maronese
- Dermatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Arianna Dri
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
- Department of Medical Oncology, Azienda Sanitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
| | - Ludovica Toffoli
- Dermatology Clinic, Maggiore Hospital, University of Trieste, 34125 Trieste, Italy; (E.Z.); (L.T.); (N.D.M.); (I.Z.)
| | - Nicola Di Meo
- Dermatology Clinic, Maggiore Hospital, University of Trieste, 34125 Trieste, Italy; (E.Z.); (L.T.); (N.D.M.); (I.Z.)
| | - Gianluca Nazzaro
- Dermatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Iris Zalaudek
- Dermatology Clinic, Maggiore Hospital, University of Trieste, 34125 Trieste, Italy; (E.Z.); (L.T.); (N.D.M.); (I.Z.)
| |
Collapse
|
15
|
Meng J, Chen Y, Lu X, Ge Q, Yang F, Bai S, Liang C, Du J. Macrophages and monocytes mediated activation of oxidative phosphorylation implicated the prognosis and clinical therapeutic strategy of Wilms tumour. Comput Struct Biotechnol J 2022; 20:3399-3408. [PMID: 35832632 PMCID: PMC9271979 DOI: 10.1016/j.csbj.2022.06.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/03/2022] Open
Abstract
Wilms tumour is the fourth leading cause of paediatric malignancy, but the detailed relationship between the tumour microenvironment and prognosis remains largely unclear. In this research, gene expression profile and clinical information from TARGET and the First Affiliated Hospital of Anhui Medical University were collected. After comparing the prognostic value of the associated immune cells, we established a nomogram to predict the prognosis of Wilms tumour based on monocyte infiltration, macrophage infiltration, stage, and sex. Further results showed that the most significant relationship between matrix metallopeptidase 9 and prognosis or macrophage infiltration. Meanwhile, by gene set enrichment or variation analyses and immunohistochemistry staining, we demonstrated that the most highly enriched hub genes were closely related to the activated oxidative phosphorylation pathway. Finally, through tumour immune dysfunction and an exclusion algorithm, the satisfactory discriminative performance of our nomogram was revealed for predicting the response to clinical therapy. Anti-PD1 therapy is more suitable for Wilms tumour patients with high nomogram points, and chemotherapies are more effective for patients with low nomogram score.
Collapse
|
16
|
Immunometabolic Markers in a Small Patient Cohort Undergoing Immunotherapy. Biomolecules 2022; 12:biom12050716. [PMID: 35625643 PMCID: PMC9139165 DOI: 10.3390/biom12050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Although the discovery of immune checkpoints was hailed as a major breakthrough in cancer therapy, generating a sufficient response to immunotherapy is still limited. Thus, the objective of this exploratory, hypothesis-generating study was to identify potentially novel peripheral biomarkers and discuss the possible predictive relevance of combining scarcely investigated metabolic and hormonal markers with immune subsets. Sixteen markers that differed significantly between responders and non-responders were identified. In a further step, the correlation with progression-free survival (PFS) and false discovery correction (Benjamini and Hochberg) revealed potential predictive roles for the immune subset absolute lymphocyte count (rs = 0.51; p = 0.0224 *), absolute basophil count (rs = 0.43; p = 0.04 *), PD-1+ monocytes (rs = −0.49; p = 0.04 *), hemoglobin (rs = 0.44; p = 0.04 *), metabolic markers LDL (rs = 0.53; p = 0.0224 *), free androgen index (rs = 0.57; p = 0.0224 *) and CRP (rs = −0.46; p = 0.0352 *). The absolute lymphocyte count, LDL and free androgen index were the most significant individual markers, and combining the immune subsets with the metabolic markers into a biomarker ratio enhanced correlation with PFS (rs = −0.74; p ≤ 0.0001 ****). In summary, in addition to well-established markers, we identified PD-1+ monocytes and the free androgen index as potentially novel peripheral markers in the context of immunotherapy. Furthermore, the combination of immune subsets with metabolic and hormonal markers may have the potential to enhance the power of future predictive scores and should, therefore, be investigated further in larger trials.
Collapse
|
17
|
Fujimura T. Stromal Factors as a Target for Immunotherapy in Melanoma and Non-Melanoma Skin Cancers. Int J Mol Sci 2022; 23:ijms23074044. [PMID: 35409404 PMCID: PMC8999844 DOI: 10.3390/ijms23074044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as anti-programmed cell death 1 (PD1) antibodies (Abs) and anti-cytotoxic T-lymphocyte associated protein 4 (CTLA4) Abs, have been widely administered for not only advanced melanoma, but also various non-melanoma skin cancers. Since profiles of tumor-infiltrating leukocytes (TILs) play important roles in immunotherapy using ICIs, it is important to evaluate cancer stromal cells such as tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), as well as stromal extracellular matrix protein, to predict the efficacy of ICIs. This review article focuses particularly on TAMs and related factors. Among TILs, TAMs and their related factors could be the optimal biomarkers for immunotherapy such as anti-PD1 Ab therapy. According to the studies presented, TAM-targeting therapies for advanced melanoma and non-melanoma skin cancer will develop in the future.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
18
|
Kuske M, Haist M, Jung T, Grabbe S, Bros M. Immunomodulatory Properties of Immune Checkpoint Inhibitors-More than Boosting T-Cell Responses? Cancers (Basel) 2022; 14:1710. [PMID: 35406483 PMCID: PMC8996886 DOI: 10.3390/cancers14071710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
The approval of immune checkpoint inhibitors (ICI) that serve to enhance effector T-cell anti-tumor responses has strongly improved success rates in the treatment of metastatic melanoma and other tumor types. The currently approved ICI constitute monoclonal antibodies blocking cytotoxic T-lymphocyte-associated protein (CTLA)-4 and anti-programmed cell death (PD)-1. By this, the T-cell-inhibitory CTLA-4/CD80/86 and PD-1/PD-1L/2L signaling axes are inhibited. This leads to sustained effector T-cell activity and circumvents the immune evasion of tumor cells, which frequently upregulate PD-L1 expression and modulate immune checkpoint molecule expression on leukocytes. As a result, profound clinical responses are observed in 40-60% of metastatic melanoma patients. Despite the pivotal role of T effector cells for triggering anti-tumor immunity, mounting evidence indicates that ICI efficacy may also be attributable to other cell types than T effector cells. In particular, emerging research has shown that ICI also impacts innate immune cells, such as myeloid cells, natural killer cells and innate lymphoid cells, which may amplify tumoricidal functions beyond triggering T effector cells, and thus improves clinical efficacy. Effects of ICI on non-T cells may additionally explain, in part, the character and extent of adverse effects associated with treatment. Deeper knowledge of these effects is required to further develop ICI treatment in terms of responsiveness of patients to treatment, to overcome resistance to ICI and to alleviate adverse effects. In this review we give an overview into the currently known immunomodulatory effects of ICI treatment in immune cell types other than the T cell compartment.
Collapse
Affiliation(s)
| | | | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.K.); (M.H.); (T.J.); (S.G.)
| |
Collapse
|
19
|
Darmon-Novello M, Adam J, Lamant L, Battistella M, Ortonne N, Balme B, de la Fouchardière A, Chaltiel L, Gerard E, Franchet C, Vergier B. Harmonization of PD-L1 immunohistochemistry and mRNA expression scoring in metastatic melanoma: a multicenter analysis. Histopathology 2022; 80:1091-1101. [PMID: 35322452 DOI: 10.1111/his.14651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
AIMS This multicenter study sought to harmonize programmed death ligand 1 (PD-L1) immunohistochemistry (IHC) data and melanoma scoring. To provide a reference for PD-L1 expression independent of the IHC protocol, PD-L1 mRNA expression was determined then compared to IHC. METHODS Standardized PD-L1 assays (22C3, 28-8, SP142, and SP263) and laboratory-developed tests (QR1 and 22C3) were evaluated on three IHC platforms using a training set of 7 cases. mRNA expression was determined via RNAscope (CD274/PD-L1 probe) and analyzed by image analysis. PD-L1 IHC findings were scored by seven blinded pathologists using the tumor proportion score (TPS), combined positive score (CPS), and MELscore. This method was validated by three blinded pathologists on 40 metastatic melanomas. RESULTS Concordances among various antibody/platforms were high across antibodies (ICC > 0.80 for CPS), except for SP142. Two levels of immunostaining intensities were observed: high (QR1 and SP263) and low (28-8, 22C3, and SP142). Reproducibilities across pathologists were higher for QR1 and SP263 (ICC ≥ 0.87 and ≥ 0.85 for TPS and CPS, respectively). QR1, SP263, and 28-8 showed the highest concordance with mRNA expression (ICC ≥ 0.81 for CPS). We developed a standardized method for PD-L1 immunodetection and scoring, tested on 40 metastatic melanomas. Concordances among antibodies were excellent for all criteria, and concordances among pathologists were better for the MELscore than for other scores. CONCLUSION Harmonization of PD-L1 staining and scoring in melanomas with good concordance is achievable using the PD-L1 IHC protocols applied to other cancers; this reproducible approach can simplify daily practice.
Collapse
Affiliation(s)
- M Darmon-Novello
- Department of Pathology, Bordeaux University Hospital and INSERM U1053, Bordeaux, France
| | - J Adam
- Department of Pathology, Gustave Roussy Institute, Paris, France
| | - L Lamant
- Department of Pathology, Oncopole University Hospital Toulouse, France
| | - M Battistella
- Department of Pathology, Hôpital Saint-Louis, AP-HP, Université de Paris, INSERM U976 HIPI, Paris, France
| | - N Ortonne
- Department of Pathology, University Hospital Henri Mondor, Creteil-, Paris, France
| | - B Balme
- Department of Pathology, University Hospital Lyon, France
| | | | - L Chaltiel
- Department of Biostatistics, Institut Claudius Regaud IUCT-O, Toulouse, France
| | - E Gerard
- Department of Dermatology, Bordeaux University Hospital, Bordeaux, France
| | - C Franchet
- Department of Pathology, Oncopole University Hospital Toulouse, France
| | - B Vergier
- Department of Pathology, Bordeaux University Hospital and INSERM U1053, Bordeaux, France
| |
Collapse
|
20
|
Dunlap T, Cao Y. Physiological Considerations for Modeling in vivo Antibody-Target Interactions. Front Pharmacol 2022; 13:856961. [PMID: 35281913 PMCID: PMC8912916 DOI: 10.3389/fphar.2022.856961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
The number of therapeutic antibodies in development pipelines is increasing rapidly. Despite superior success rates relative to small molecules, therapeutic antibodies still face many unique development challenges. There is often a translational gap from their high target affinity and specificity to the therapeutic effects. Tissue microenvironment and physiology critically influence antibody-target interactions contributing to apparent affinity alterations and dynamic target engagement. The full potential of therapeutic antibodies will be further realized by contextualizing antibody-target interactions under physiological conditions. Here we review how local physiology such as physical stress, biological fluid, and membrane characteristics could influence antibody-target association, dissociation, and apparent affinity. These physiological factors in the early development of therapeutic antibodies are valuable toward rational antibody engineering, preclinical candidate selection, and lead optimization.
Collapse
Affiliation(s)
- Tyler Dunlap
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
21
|
Terranova N, French J, Dai H, Wiens M, Khandelwal A, Ruiz‐Garcia A, Manitz J, Heydebreck A, Ruisi M, Chin K, Girard P, Venkatakrishnan K. Pharmacometric modeling and machine learning analyses of prognostic and predictive factors in the JAVELIN Gastric 100 phase III trial of avelumab. CPT Pharmacometrics Syst Pharmacol 2022; 11:333-347. [PMID: 34971492 PMCID: PMC8923733 DOI: 10.1002/psp4.12754] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/23/2022] Open
Abstract
Avelumab (anti–PD‐L1) is an approved anticancer treatment for several indications. The JAVELIN Gastric 100 phase III trial did not meet its primary objective of demonstrating superior overall survival (OS) with avelumab maintenance versus continued chemotherapy in patients with advanced gastric cancer/gastroesophageal junction cancer; however, the OS rate was numerically higher with avelumab at timepoints after 12 months. Machine learning (random forests, SIDEScreen, and variable‐importance assessments) was used to build models to identify prognostic/predictive factors associated with long‐term OS and tumor growth dynamics (TGDs). Baseline, re‐baseline, and longitudinal variables were evaluated as covariates in a parametric time‐to‐event model for OS and Gompertzian population model for TGD. The final OS model incorporated a treatment effect on the log‐logistic shape parameter but did not identify a treatment effect on OS or TGD. Variables identified as prognostic for longer OS included older age; higher gamma‐glutamyl transferase (GGT) or albumin; absence of peritoneal carcinomatosis; lower neutrophil‐lymphocyte ratio, lactate dehydrogenase, or C‐reactive protein (CRP); response to induction chemotherapy; and Eastern Cooperative Oncology Group performance status of 0. Among baseline and time‐varying covariates, the largest effects were found for GGT and CRP, respectively. Liver metastasis at re‐baseline predicted higher tumor growth. Tumor size after induction chemotherapy was associated with number of metastatic sites and stable disease (vs. response). Asian region did not impact OS or TGD. Overall, an innovative workflow supporting pharmacometric modeling of OS and TGD was established. Consistent with the primary trial analysis, no treatment effect was identified. However, potential prognostic factors were identified.
Collapse
Affiliation(s)
- Nadia Terranova
- Merck Institute of Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany) Lausanne Switzerland
| | | | | | | | | | | | | | | | | | | | - Pascal Girard
- Merck Institute of Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany) Lausanne Switzerland
| | | |
Collapse
|
22
|
Yu JH, Ma S. Organoids as research models for hepatocellular carcinoma. Exp Cell Res 2021; 411:112987. [PMID: 34942189 DOI: 10.1016/j.yexcr.2021.112987] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/12/2021] [Accepted: 12/19/2021] [Indexed: 11/04/2022]
Abstract
Organoid culture is an emerging research tool that has proved tremendously useful in a multitude of aspects, one of which is cancer research. They largely overcome the limitations of previous cancer models by their faithful recapitulation of the in vivo biology, while still remaining amenable to perturbations. Using a cocktail of biologicals that mimic the stem cell niche signaling, hepatocellular carcinoma (HCC) organoids could be generated from tissue samples of both human and murine origin. Existing reports show that HCC organoids retain key characteristics of their parental tumor tissue, including the histological architecture, genomic landscape, expression profile and intra-tumor heterogeneity. There is ongoing effort to establish living biobanks of patient-derived cancer organoids, annotated with multi-omics data and clinical data, and they can be particularly valuable in stratification of HCC subtypes, pre-clinical drug discovery and personalized medicine. In the future, efforts in the standardization of procedures and nomenclature, refinement of protocols, as well as engineering of the culture systems will enable scientists to unleash the full potential of organoid technology.
Collapse
Affiliation(s)
- Justin Hy Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
23
|
Increased serum CCL26 level is a potential biomarker for the effectiveness of anti-PD1 antibodies in patients with advanced melanoma. Melanoma Res 2021; 30:613-618. [PMID: 32658051 DOI: 10.1097/cmr.0000000000000685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nivolumab plus ipilimumab combined therapy is among the most effective therapies for advanced melanoma. However, this therapy is also associated with a high frequency of immune-related adverse events (irAEs). To avoid such severe irAEs caused by additional administration of anti-CTLA4 antibodies, biomarkers to distinguish responders from non-responders among patients treated with anti-PD1 antibodies are important. The purpose of this study is to evaluate the increased serum levels of CCL11, CCL24, and CCL26 as a predictive biomarker for the efficacy of anti-PD1 antibodies in advanced cutaneous melanoma patients. This study analyzed increased serum levels of CCL11, CCL24, and CCL26 in 46 cases of advanced cutaneous melanoma treated with anti-PD1 antibodies. Serum levels on day 42 were compared to baseline (day 0) and analyzed statistically. Receiver operating characteristic curves were established to evaluate the correlation between serum levels of CCL11, CCL24, and CCL26 and efficacy of anti-PD1 antibodies. Increased serum levels of CCL26 correlated significantly with the efficacy of anti-PD1 antibodies. In contrast, no significant correlations were seen between increased serum levels of CCL11 and CCL24 and efficacy of anti-PD1 antibodies. Increased serum levels of CCL26 may be a useful biomarker for identifying those patients with advanced cutaneous melanoma most likely to benefit from anti-melanoma immunotherapy.
Collapse
|
24
|
Bailly C, Thuru X, Quesnel B. Soluble Programmed Death Ligand-1 (sPD-L1): A Pool of Circulating Proteins Implicated in Health and Diseases. Cancers (Basel) 2021; 13:3034. [PMID: 34204509 PMCID: PMC8233757 DOI: 10.3390/cancers13123034] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Upon T-cell receptor stimulation, the Programmed cell Death-1 receptor (PD-1) expressed on T-cells can interact with its ligand PD-L1 expressed at the surface of cancer cells or antigen-presenting cells. Monoclonal antibodies targeting PD-1 or PD-L1 are routinely used for the treatment of cancers, but their clinical efficacy varies largely across the variety of tumor types. A part of the variability is linked to the existence of several forms of PD-L1, either expressed on the plasma membrane (mPD-L1), at the surface of secreted cellular exosomes (exoPD-L1), in cell nuclei (nPD-L1), or as a circulating, soluble protein (sPD-L1). Here, we have reviewed the different origins and roles of sPD-L1 in humans to highlight the biochemical and functional heterogeneity of the soluble protein. sPD-L1 isoforms can be generated essentially by two non-exclusive processes: (i) proteolysis of m/exoPD-L1 by metalloproteases, such as metalloproteinases (MMP) and A disintegrin and metalloproteases (ADAM), which are capable of shedding membrane PD-L1 to release an active soluble form, and (ii) the alternative splicing of PD-L1 pre-mRNA, leading in some cases to the release of sPD-L1 protein isoforms lacking the transmembrane domain. The expression and secretion of sPD-L1 have been observed in a large variety of pathologies, well beyond cancer, notably in different pulmonary diseases, chronic inflammatory and autoimmune disorders, and viral diseases. The expression and role of sPD-L1 during pregnancy are also evoked. The structural heterogeneity of sPD-L1 proteins, and associated functional/cellular plurality, should be kept in mind when considering sPD-L1 as a biomarker or as a drug target. The membrane, exosomal and soluble forms of PD-L1 are all integral parts of the highly dynamic PD-1/PD-L1 signaling pathway, essential for immune-tolerance or immune-escape.
Collapse
Affiliation(s)
| | - Xavier Thuru
- Plasticity and Resistance to Therapies, UMR9020-UMR1277-Canther-Cancer Heterogeneity, CHU Lille, Inserm, CNRS, University of Lille, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- Plasticity and Resistance to Therapies, UMR9020-UMR1277-Canther-Cancer Heterogeneity, CHU Lille, Inserm, CNRS, University of Lille, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
25
|
Manabe K, Yamasaki O, Nakagawa Y, Miyake T, Udono H, Morizane S. Multifunctionality of CD8 + T cells and PD-L1 expression as a biomarker of anti-PD-1 antibody efficacy in advanced melanoma. J Dermatol 2021; 48:1186-1192. [PMID: 33890340 DOI: 10.1111/1346-8138.15904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 01/04/2023]
Abstract
Anti-programmed cell death protein-1 (PD-1) antibodies have become a standard treatment for advanced melanoma. However, a predictive biomarker for assessing the efficacy of anti-PD-1 antibodies has not been identified. In cancer, CD8+ T cells specific for tumor antigens undergo repeated T-cell receptor stimulation due to the persistence of cancer cells and gradually lose their ability to secrete interleukin 2 (IL-2), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). We aimed to evaluate multi-cytokine production and immune exhaustion of peripheral CD8+ T cells in melanoma patients treated with anti-PD-1 antibodies. Twenty-four melanoma patients treated with nivolumab were included. Effector cytokine production (IL-2, TNF-α, and IFN-γ) and expression of an exhaustion marker (PD-1) in patients' CD8+ cells were analyzed with flow cytometry. The relationships between parameters such as the neutrophil-to-lymphocyte ratio (NLR) and clinical response to nivolumab were examined. Immunohistochemistry for programmed death-ligand 1 (PD-L1) expression in tumor cells and tumor-infiltrating lymphocytes (TILs) and analysis of their association with clinical response were performed. The clinical response rate to nivolumab was 29%. Regarding TILs, NLR, and several other parameters, no significant difference was found between responders and non-responders. The responder group showed an increase in the percentage of PD-1+ CD8+ /TNF-α+ IFN-γ+ or PD-1+ CD8+ /IFN-γ+ IL-2+ TNF-α+ T cells compared to non-responders. Positivity for PD-L1 expression was significantly higher in the responder group than the non-responder group. In advanced melanoma, the percentage of multifunctional CD8+ PD-1+ T cells and PD-L1 expression in the tumors may be a biomarker for a good response to anti-PD-1 antibody monotherapy.
Collapse
Affiliation(s)
- Keiko Manabe
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Osamu Yamasaki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Nakagawa
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoko Miyake
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
26
|
Scherrer E, Rau R, Lorenzi M, Shui I, Townson S, Larkin J. Systematic literature review for the association of biomarkers with efficacy of anti-PD-1 inhibitors in advanced melanoma. Future Oncol 2021; 17:2683-2692. [PMID: 33783230 DOI: 10.2217/fon-2021-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: Summarize the literature assessing biomarkers in predicting efficacy of anti-PD-1 therapy for patients with high-risk unresectable or metastatic melanoma. Materials & methods: Relevant studies were identified via a systematic literature review. Results: About 334 unique biomarkers or biomarker combinations were identified from 121 citations. Neutrophil-to-lymphocyte ratio was the most frequently studied biomarker, followed by C-reactive protein. Fifty-nine biomarkers were significantly associated with overall survival (OS), 51 with progression-free survival (PFS) and 44 with response. Twenty biomarkers were associated with both OS and PFS; two were associated with OS, PFS and response (MHC-II and tumor mutational burden). Conclusion: Numerous biomarkers could potentially predict the efficacy of anti-PD-1-based therapy for melanoma patients. However, confirmatory studies are needed as well as determination of implications for clinical decision-making.
Collapse
Affiliation(s)
| | - Reina Rau
- PRECISIONheor, Oakland, CA 94612, USA
| | | | - Irene Shui
- Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | | | - James Larkin
- The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| |
Collapse
|
27
|
Topical and Systemic Formulation Options for Cutaneous T Cell Lymphomas. Pharmaceutics 2021; 13:pharmaceutics13020200. [PMID: 33540765 PMCID: PMC7913115 DOI: 10.3390/pharmaceutics13020200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
Although various anti-cutaneous T-cell lymphoma (CTCL) therapies are available for clinical use, appropriate chemotherapy lines for the treatment of CTCLs have yet to be established. Therefore, to date, various clinical trials for the treatment of advanced CTCLs are ongoing. In this review, we evaluate the therapeutic options that are available in clinical practice for treatment of early- and advanced-stage CTCLs (targeted therapies, histone deacetylase (HDAC) inhibitors, retinoids, interferons, cytotoxic drugs, etc.). We also examine clinical trials of novel regimens for the treatment of CTCLs.
Collapse
|
28
|
Shah A, Rauth S, Aithal A, Kaur S, Ganguly K, Orzechowski C, Varshney GC, Jain M, Batra SK. The Current Landscape of Antibody-based Therapies in Solid Malignancies. Am J Cancer Res 2021; 11:1493-1512. [PMID: 33391547 PMCID: PMC7738893 DOI: 10.7150/thno.52614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past three decades, monoclonal antibodies (mAbs) have revolutionized the landscape of cancer therapy. Still, this benefit remains restricted to a small proportion of patients due to moderate response rates and resistance emergence. The field has started to embrace better mAb-based formats with advancements in molecular and protein engineering technologies. The development of a therapeutic mAb with long-lasting clinical impact demands a prodigious understanding of target antigen, effective mechanism of action, gene engineering technologies, complex interplay between tumor and host immune system, and biomarkers for prediction of clinical response. This review discusses the various approaches used by mAbs for tumor targeting and mechanisms of therapeutic resistance that is not only caused by the heterogeneity of tumor antigen, but also the resistance imposed by tumor microenvironment (TME), including inefficient delivery to the tumor, alteration of effector functions in the TME, and Fc-gamma receptor expression diversity and polymorphism. Further, this article provides a perspective on potential strategies to overcome these barriers and how diagnostic and prognostic biomarkers are being used in predicting response to mAb-based therapies. Overall, understanding these interdependent parameters can improve the current mAb-based formulations and develop novel mAb-based therapeutics for achieving durable clinical outcomes in a large subset of patients.
Collapse
|
29
|
Zhuo E, Cai C, Liu W, Li K, Zhao W. Downregulated microRNA-140-5p expression regulates apoptosis, migration and invasion of lung cancer cells by targeting zinc finger protein 800. Oncol Lett 2020; 20:390. [PMID: 33193850 PMCID: PMC7656116 DOI: 10.3892/ol.2020.12253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Despite advances in the diagnosis and treatment in recent years, lung cancer is still one of the primary causes of cancer-associated morbidity and mortality in globally. Abnormally expressed microRNAs (miRNAs/miRs) in tumor tissues serve vital roles in the pathological mechanism of tumors and have become prospective biomarkers for cancer diagnosis. The present study aimed to investigate the effects of the miR-140-5p/zinc finger protein 800 (ZNF800) axis in lung carcinoma, and determine its potential underlying molecular mechanisms. The degree of cell proliferation was assessed via the MTT assay, while the migratory and invasive abilities of lung cancer cells were determined via the Transwell and Matrigel assays. The expression levels of miR-140-5p and ZNF800 were detected via reverse transcription-quantitative PCR and western blot analyses. The results demonstrated that miR-140-5p expression was notably higher in normal human bronchial epithelial cells compared with the respective lung cancer cell lines, H292, PC-9, CL1-5 and H460. Furthermore, miR-140-5p expression increased in the lung cancer cells compared with the control cells following transfection with miR-140-5p mimic. Overexpressing miR-140-5p significantly suppressed the proliferative, invasive and migratory abilities of H460 and PC-9 cells, and stimulated cell apoptosis by upregulating the expression of cleaved-caspase-3. Notably, these effects were reversed following transfection with miR-140-5p inhibitor. miR-140-5p was predicted as a negative regulator of ZNF800, and ZNF800 knockdown significantly suppressed the proliferative and metastatic abilities of lung adenocarcinoma (LUAD) cells, which was comparable to the effects of miR-140-5p mimic. Taken together, these results suggest that miR-140-5p may block the malignant phenotype of LUAD by negatively regulating ZNF800 expression. Thus, the miR-140-5p/ZNF800 axis may be used as an alternative therapeutic target for lung carcinoma in general, and LUAD in particular.
Collapse
Affiliation(s)
- Enqing Zhuo
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Changqing Cai
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Wenzhe Liu
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Kunsong Li
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Wenzhen Zhao
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
30
|
Kang K, Xie F, Mao J, Bai Y, Wang X. Significance of Tumor Mutation Burden in Immune Infiltration and Prognosis in Cutaneous Melanoma. Front Oncol 2020; 10:573141. [PMID: 33072607 PMCID: PMC7531222 DOI: 10.3389/fonc.2020.573141] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Melanoma is highly immunogenic and therefore suitable for immunotherapy, but the efficacy is limited by response rate. In several types of tumor, tumor mutation burden (TMB) and immune infiltration have been reported to predict the response to immunotherapy, although each has its limitations. In the current study, we aimed to explore the association of TMB with immune infiltration and prognosis in cutaneous melanoma. Methods: The data of cutaneous melanoma used for analyses was downloaded from The Cancer Genome Atlas (TCGA) database. The mutation data was sorted using "maftools" R package. TMB was estimated and then patients were divided into two groups based on TMB. The association of TMB with prognosis and clinical characteristics was explored. Differential analysis between two TMB groups was performed using "DESeq2" R package to identify differentially expressed genes (DEGs). The function enrichment analyses of DEGs were conducted to screen critical pathways. Besides, DEGs were further filtered to identify two hub genes, based on which a risk score model and nomogram for predicting prognosis were conducted, and the validation was performed using three datasets from Gene Expression Omnibus (GEO) database. Finally, CIBERSORT algorithm and TIMER database were used to assess the effect of TMB and hub genes on immune infiltration. Results: The most common mutation was C > T, and the top three frequently mutated genes were TTN, MUC16, and BRAF. Higher TMB indicated better survival outcomes and lower pathological stages. 735 DEGs were identified and mainly involved in immune-related and adhesion-related pathways. The risk score model and nomogram were validated using receiver operating characteristic (ROC) curves and calibration curves, and exhibited relatively high predictive capability. Decision curve analysis (DCA) was used to assess clinical benefit. As for immune infiltration, the proportion was higher for macrophages M1 and M2 in the high-TMB group, while lower for memory B cells and regulatory T cells. Conclusions: In cutaneous melanoma, TMB was positively correlated with prognosis. The risk score model and nomogram can be conveniently used to predict prognosis. The association of TMB with immune infiltration can help improve the predicting methods for the response to immunotherapy.
Collapse
Affiliation(s)
- Kai Kang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fucun Xie
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinzhu Mao
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Department of Hepatobiliary Surgery, First Central Hospital, Tianjin, China
| | - Xiang Wang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Treatment of Advanced Melanoma: Past, Present and Future. Life (Basel) 2020; 10:life10090208. [PMID: 32948031 PMCID: PMC7556013 DOI: 10.3390/life10090208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022] Open
Abstract
Therapeutic options for treating advanced melanoma are progressing rapidly. Until six years ago, the regimen for treating advanced melanoma mainly comprised cytotoxic agents such as dacarbazine, and type I interferons. Since 2014, anti-programmed cell death 1 (PD1) antibodies have become recognized as anchor drugs for treating advanced melanoma with or without additional combination drugs such as ipilimumab. In addition, v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase inhibitors in combination with mitogen-activated protein kinase kinase (MEK) inhibitors are among the most promising chemotherapeutic regimens for treating advanced BRAF-mutant melanoma, especially in patients with low tumor burden. Since anti-PD1 antibodies are widely applicable for the treatment of both BRAF wild-type and mutated advanced melanomas, several clinical trials for drugs in combination with anti-PD1 antibodies are ongoing. This review focuses on the development of the anti-melanoma therapies available today, and discusses the clinical trials of novel regimens for the treatment of advanced melanoma.
Collapse
|
32
|
Miyake M, Oda Y, Nishimura N, Morizawa Y, Ohnishi S, Hatakeyama K, Fujii T, Hori S, Gotoh D, Nakai Y, Anai S, Torimoto K, Tsukamoto S, Fujii H, Kido A, Honoki K, Matsumura Y, Okajima E, Tanaka N, Fujimoto K. Integrative assessment of clinicopathological parameters and the expression of PD-L1, PD-L2 and PD-1 in tumor cells of retroperitoneal sarcoma. Oncol Lett 2020; 20:190. [PMID: 32952659 PMCID: PMC7479533 DOI: 10.3892/ol.2020.12052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Evidence is limited regarding the immunologic profile and immune microenvironment of soft tissue sarcoma subtypes. The aim of the present study was to describe the clinical significance and prognostic implications of PD-L1, PD-L2, and PD-1 in patients with retroperitoneal sarcoma (RSar). In this retrospective, multicenter, collaborative study, medical charts were reviewed and the immunohistochemical staining results of resected tissue specimens from 51 patients with RSar were examined. Immunohistochemical staining was performed with primary antibodies against PD-L1, PD-L2, PD-1, and Ki-67. The correlations between the baseline clinical parameters and expression levels of the four molecules in sarcoma cells were evaluated, and their prognostic values after tumor resection were assessed. Dedifferentiated liposarcoma (41%), leiomyosarcoma (20%), and undifferentiated pleomorphic sarcoma (16%) were the three major types identified. Dedifferentiated liposarcoma and leiomyosarcoma showed higher levels of PD-L1 expression than did other sarcomas. The Spearman correlation analysis revealed that baseline serum lactate dehydrogenase levels were moderately and positively correlated with PD-L1 (P=0.02, r=0.41) and PD-L2 (P=0.006, r=0.47) expression. The median recurrence-free and disease-specific survival was 58 and 16 months, respectively, during the 29-month median follow-up after surgery. On univariate analysis, a higher expression level of PD-1 was associated with a higher risk of recurrence, whereas multivariate analyses revealed that independent predictors of recurrence-free and disease-specific survival indicated a high expression of Ki-67 (P=0.03; hazard ratio, 2.29 vs. low expression) and prognostic stage IIIB (P=0.04; hazard ratio, 5.11 vs. stage I-II), respectively. Findings of the current study provide novel insights about the prognostic value of PD-L1, PD-L2, and PD-1 expression in RSar. Serum lactate dehydrogenase levels constitute a potential predictor of PD-L1 and PD-L2 expression levels in RSar. Further investigations are needed to determine the immunologic landscape of RSar and provide a foundation for therapeutic intervention using immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Makito Miyake
- Department of Urology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yuki Oda
- Department of Urology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Nobutaka Nishimura
- Department of Urology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Sayuri Ohnishi
- Department of Urology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kinta Hatakeyama
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Tomomi Fujii
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Daisuke Gotoh
- Department of Urology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Satoshi Anai
- Department of Urology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kazumasa Torimoto
- Department of Urology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shinji Tsukamoto
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Akira Kido
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yoshiaki Matsumura
- Department of Urology, Nara Prefecture General Medical Center, Nara 630-8581, Japan
| | - Eijiro Okajima
- Department of Urology, Nara City Hospital, Nara 630-8305, Japan
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, Kashihara, Nara 634-8522, Japan.,Department of Prostate Brachytherapy, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
33
|
Fujimura T, Aiba S. Significance of Immunosuppressive Cells as a Target for Immunotherapies in Melanoma and Non-Melanoma Skin Cancers. Biomolecules 2020; 10:E1087. [PMID: 32707850 PMCID: PMC7464513 DOI: 10.3390/biom10081087] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages (TAMs) have been detected in most skin cancers. TAMs produce various chemokines and angiogenic factors that promote tumor development, along with other immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) and tumor-associated neutrophils. TAMs generated from monocytes develop into functional, fully activated macrophages, and TAMs obtain various immunosuppressive functions to maintain the tumor microenvironment. Since TAMs express PD1 to maintain the immunosuppressive M2 phenotype by PD1/PD-L1 signaling from tumor cells, and the blockade of PD1/PD-L1 signaling by anti-PD1 antibodies (Abs) activate and re-polarize TAMs into immunoreactive M1 phenotypes, TAMs represent a potential target for anti-PD1 Abs. The main population of TAMs comprises CD163+ M2 macrophages, and CD163+ TAMs release soluble (s)CD163 and several proinflammatory chemokines (CXCL5, CXCL10, CCL19, etc.) as a result of TAM activation to induce an immunosuppressive tumor microenvironment together with other immunosuppressive cells. Since direct blockade of PD1/PD-L1 signaling between tumor cells and tumor-infiltrating T cells (both effector T cells and Tregs) is mandatory for inducing an anti-immune response by anti-PD1 Abs, anti-PD1 Abs need to reach the tumor microenvironment to induce anti-immune responses in the tumor-bearing host. Taken together, TAM-related factors could offer a biomarker for anti-PD1 Ab-based immunotherapy. Understanding the crosstalk between TAMs and immunosuppressive cells is important for optimizing PD1 Ab-based immunotherapy.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan;
| | | |
Collapse
|
34
|
Fujimura T, Kambayashi Y, Tono H, Lyu C, Ohuchi K, Hashimoto A, Aiba S. Successful treatment of unresectable recurrent cutaneous squamous cell carcinoma of the scalp with meningeal invasion with nivolumab monotherapy. Dermatol Ther 2020; 33:e13672. [DOI: 10.1111/dth.13672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Taku Fujimura
- Department of Dermatology Tohoku University Graduate School of Medicine Sendai Japan
| | - Yumi Kambayashi
- Department of Dermatology Tohoku University Graduate School of Medicine Sendai Japan
| | - Hisayuki Tono
- Department of Dermatology Tohoku University Graduate School of Medicine Sendai Japan
| | - Chinbing Lyu
- Department of Dermatology Tohoku University Graduate School of Medicine Sendai Japan
| | - Kentaro Ohuchi
- Department of Dermatology Tohoku University Graduate School of Medicine Sendai Japan
| | - Akira Hashimoto
- Department of Dermatology Tohoku University Graduate School of Medicine Sendai Japan
| | - Setsuya Aiba
- Department of Dermatology Tohoku University Graduate School of Medicine Sendai Japan
| |
Collapse
|
35
|
Modern Aspects of Immunotherapy with Checkpoint Inhibitors in Melanoma. Int J Mol Sci 2020; 21:ijms21072367. [PMID: 32235439 PMCID: PMC7178114 DOI: 10.3390/ijms21072367] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Although melanoma is one of the most immunogenic tumors, it has an ability to evade anti-tumor immune responses by exploiting tolerance mechanisms, including negative immune checkpoint molecules. The most extensively studied checkpoints represent cytotoxic T lymphocyte-associated protein-4 (CTLA-4) and programmed cell death protein 1 (PD-1). Immune checkpoint inhibitors (ICI), which were broadly applied for melanoma treatment in the past decade, can unleash anti-tumor immune responses and result in melanoma regression. Patients responding to the ICI treatment showed long-lasting remission or disease control status. However, a large group of patients failed to respond to this therapy, indicating the development of resistance mechanisms. Among them are intrinsic tumor properties, the dysfunction of effector cells, and the generation of immunosuppressive tumor microenvironment (TME). This review discusses achievements of ICI treatment in melanoma, reasons for its failure, and promising approaches for overcoming the resistance. These methods include combinations of different ICI with each other, strategies for neutralizing the immunosuppressive TME and combining ICI with other anti-cancer therapies such as radiation, oncolytic viral, or targeted therapy. New therapeutic approaches targeting other immune checkpoint molecules are also discussed.
Collapse
|
36
|
Li S, Jiang K, Wang T, Zhang W, Shi M, Chen B, Hua Z. Nanobody against PDL1. Biotechnol Lett 2020; 42:727-736. [PMID: 32006351 DOI: 10.1007/s10529-020-02823-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/26/2020] [Indexed: 01/01/2023]
Abstract
Programmed death ligand 1 (PDL1, CD274, B7-H1) has been identified as the ligand for the immune inhibitory receptor programmed death 1 protein (PD1/PDCD1). PDL1 is a member of B7 family of immune molecules and this protein together with PDL2, are two ligands for PD1 expressed on activated lymphoid cells. By binding to PD1 on activated T cells, PDL1 may inhibit T cell responses by inducing apoptosis. Accordingly, it leads to the immune evasion of cancers and contribute to tumor growth, thus PDL1 is regarded as therapeutic target for malignant cancers. We selected PDL1 specific nanobodies from a high quality dromedary camel immune library by phage display technology, three anti-PDL1-VHHs were developed.
Collapse
Affiliation(s)
- Shufeng Li
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, 210009, China.
| | - Kunpeng Jiang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, 210009, China
| | - Ting Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, 210009, China
| | - Wei Zhang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, 210009, China
| | - Minke Shi
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Baojun Chen
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, Jiangsu, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories,Inc., Changzhou, 213164, Jiangsu, People's Republic of China
| |
Collapse
|
37
|
Kashima S, Tanabe H, Tanino M, Kobayashi Y, Murakami Y, Iwama T, Sasaki T, Kunogi T, Takahashi K, Ando K, Ueno N, Moriichi K, Fukudo M, Tasaki Y, Hosokawa M, Mizukami Y, Fujiya M, Okumura T. Lymph Node Metastasis From Gastroesophageal Cancer Successfully Treated by Nivolumab: A Case Report of a Young Patient. Front Oncol 2019; 9:1375. [PMID: 31921639 PMCID: PMC6927466 DOI: 10.3389/fonc.2019.01375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Immuno-oncology is a novel target of cancer therapy. Nivolumab is a monoclonal anti-programed death-1 antibody recently used to treat patients with chemotherapy-resistant gastric and gastroesophageal cancer. Although the disease control rate is reported to be very high, few cases demonstrate a complete response. Case Presentation: A 25-year-old man diagnosed with gastroesophageal cancer was treated with chemotherapy followed by surgical resection. Pathological diagnosis was poorly differentiated adenocarcinoma with distant lymph node metastasis. Residual lymph node metastasis was treated with nivolumab monotherapy, resulting in complete disappearance. No recurrence has been observed for 2 years since discontinuation of nivolumab. This rare case was additionally subjected to pathological and genetic analysis, suggesting that a high tumor mutation burden (10.7 mutations/Mb) might be associated with sensitivity to nivolumab. Summary: We reported a case of advanced gastroesophageal junction cancer with distal lymph node metastasis that was successfully treated with chemotherapy, surgical resection, and nivolumab therapy. An aggressive search for biomarkers implying benefit effects of nivolumab should be performed.
Collapse
Affiliation(s)
- Shin Kashima
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroki Tanabe
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Mishie Tanino
- Department of Surgical Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yu Kobayashi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yuki Murakami
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Takuya Iwama
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Takahiro Sasaki
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Takehito Kunogi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Keitaro Takahashi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Katsuyoshi Ando
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuhiro Ueno
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kentaro Moriichi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Masahide Fukudo
- Department of Hospital Pharmacy and Pharmacology, Asahikawa Medical University, Asahikawa, Japan
| | - Yoshikazu Tasaki
- Department of Hospital Pharmacy and Pharmacology, Asahikawa Medical University, Asahikawa, Japan
| | - Masao Hosokawa
- Department of Surgery, Keiyukai Sapporo Hospital, Sapporo, Japan
| | - Yusuke Mizukami
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
38
|
Humanized Mice as an Effective Evaluation System for Peptide Vaccines and Immune Checkpoint Inhibitors. Int J Mol Sci 2019; 20:ijms20246337. [PMID: 31888191 PMCID: PMC6940818 DOI: 10.3390/ijms20246337] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Peptide vaccination was developed for the prevention and therapy of acute and chronic infectious diseases and cancer. However, vaccine development is challenging, because the patient immune system requires the appropriate human leukocyte antigen (HLA) recognition with the peptide. Moreover, antigens sometimes induce a low response, even if the peptide is presented by antigen-presenting cells and T cells recognize it. This is because the patient immunity is dampened or restricted by environmental factors. Even if the immune system responds appropriately, newly-developed immune checkpoint inhibitors (ICIs), which are used to increase the immune response against cancer, make the immune environment more complex. The ICIs may activate T cells, although the ratio of responsive patients is not high. However, the vaccine may induce some immune adverse effects in the presence of ICIs. Therefore, a system is needed to predict such risks. Humanized mouse systems possessing human immune cells have been developed to examine human immunity in vivo. One of the systems which uses transplanted human peripheral blood mononuclear cells (PBMCs) may become a new diagnosis strategy. Various humanized mouse systems are being developed and will become good tools for the prediction of antibody response and immune adverse effects.
Collapse
|