1
|
Klimkaitė L, Drevinskaitė R, Krinickis K, Sužiedėlienė E, Armalyte J. Stenotrophomonas maltophilia of clinical origin display higher temperature tolerance comparing with environmental isolates. Virulence 2025:2498669. [PMID: 40314203 DOI: 10.1080/21505594.2025.2498669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/26/2025] [Accepted: 04/15/2025] [Indexed: 05/03/2025] Open
Abstract
Stenotrophomonas maltophilia is a gram-negative, multidrug-resistant, opportunistic human pathogen responsible for hard-to-treat infections in immunocompromised individuals. Besides being recognized as an important clinical pathogen, S. maltophilia is also widespread in the natural environment, with knowledge of the pathogenic potential of the environmental S. maltophilia pool still lacking. In this study, we aimed to identify the differences in virulence-related traits between clinical and environmental S. maltophilia isolates by assessing their genotypic and phenotypic features. For this purpose, 40 S. maltophilia isolates from natural environment and 34 clinical isolates obtained from patients were analysed. We observed a high degree of genotypic diversity among the isolates irrespective of their origin. Although antibiotic resistance- and virulence-related genes were more prevalent in the clinical isolates, the majority of the analysed genes were also present in the environmental isolates. Most importantly, the phenotypic features, specifically the ability to form biofilms and display twitching motility at human body temperature were predominantly characteristic to the clinical isolates. Our study indicates that adaptation to endure human body temperature is a feature strongly linked to S. maltophilia strains of clinical origin, and is significant when differentiating harmless environmental bacteria from pathogenic S. maltophilia isolates.
Collapse
Affiliation(s)
- Laurita Klimkaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Radvilė Drevinskaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Karolis Krinickis
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Julija Armalyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Yu ZL, Wang RB. Revised taxonomic classification of the Stenotrophomonas genomes, providing new insights into the genus Stenotrophomonas. Front Microbiol 2024; 15:1488674. [PMID: 39726962 PMCID: PMC11669713 DOI: 10.3389/fmicb.2024.1488674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Background Stenotrophomonas strains are important opportunistic pathogens with great potential applications in industry and agriculture. Their significant genetic and phenotypic diversity has led to several changes in their taxonomic localization and was prone to inaccurate species classification based on traditional identification methods. Methods All 2,615 genomes of the genus Stenotrophomonas were obtained from the NCBI genome database. Genomic methods, including average nucleotide identity (ANI), were used to evaluate the 31 defined species. After evaluating the ANI thresholds applicable to Stenotrophomonas, the species classification of all submitted genomes was revised. Results Compared to the reference genomes of each species, 41.17% of the submitted Stenotrophomonas genomes had ANI values below 95, and 8.58% of the genomes were even below 90%. Moreover, 45.3% (705/1555) of the S. maltophilia strains actually belonged to other species within the S. maltophilia complex (Smc), or even to distant relatives outside the Smc. Based on the ANI threshold values of 95 and 90% for species and complexes confirmed to be applicable to Stenotrophomonas, 2,213 submitted Stenotrophomonas genomes were re-divided into 116 ANI genome species. Conclusion The results confirmed that 16S rRNA gene sequencing has low discriminability for the closely related Stenotrophomonas species. The annotated species of a considerable strain were indeed incorrect, especially since many S. maltophilia strains did not belong to this representative pathogenic species of Stenotrophomonas. This makes it necessary to reconsider the evolutionary relationship, pathogenicity, and clinical significance of Stenotrophomonas.
Collapse
Affiliation(s)
| | - Rui-Bai Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Zhao Y, Ding WJ, Xu L, Sun JQ. A comprehensive comparative genomic analysis revealed that plant growth promoting traits are ubiquitous in strains of Stenotrophomonas. Front Microbiol 2024; 15:1395477. [PMID: 38817968 PMCID: PMC11138164 DOI: 10.3389/fmicb.2024.1395477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Stenotrophomonas strains, which are often described as plant growth promoting (PGP) bacteria, are ubiquitous in many environments. A total of 213 genomes of strains of Stenotrophomonas were analyzed using comparative genomics to better understand the ecological roles of these bacteria in the environment. The pan-genome of the 213 strains of Stenotrophomonas consists of 27,186 gene families, including 710 core gene families, 11,039 unique genes and 15,437 accessory genes. Nearly all strains of Stenotrophomonas harbor the genes for GH3-family cellulose degradation and GH2- and GH31-family hemicellulose hydrolase, as well as intact glycolysis and tricarboxylic acid cycle pathways. These abilities suggest that the strains of this genus can easily obtain carbon and energy from the environment. The Stenotrophomonas strains can respond to oxidative stress by synthesizing catalase, superoxide dismutase, methionine sulfoxide reductase, and disulfide isomerase, as well as managing their osmotic balance by accumulating potassium and synthesizing compatible solutes, such as betaine, trehalose, glutamate, and proline. Each Stenotrophomonas strain also contains many genes for resistance to antibiotics and heavy metals. These genes that mediate stress tolerance increase the ability of Stenotrophomonas strains to survive in extreme environments. In addition, many functional genes related to attachment and plant colonization, growth promotion and biocontrol were identified. In detail, the genes associated with flagellar assembly, motility, chemotaxis and biofilm formation enable the strains of Stenotrophomonas to effectively colonize host plants. The presence of genes for phosphate-solubilization and siderophore production and the polyamine, indole-3-acetic acid, and cytokinin biosynthetic pathways confer the ability to promote plant growth. These strains can produce antimicrobial compounds, chitinases, lipases and proteases. Each Stenotrophomonas genome contained 1-9 prophages and 17-60 genomic islands, and the genes related to antibiotic and heavy metal resistance and the biosynthesis of polyamines, indole-3-acetic acid, and cytokinin may be acquired by horizontal gene transfer. This study demonstrates that strains of Stenotrophomonas are highly adaptable for different environments and have strong potential for use as plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Yang Zhao
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Wen-Jing Ding
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lian Xu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ji-Quan Sun
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
4
|
Chuang SC, Dobhal S, Alvarez AM, Arif M. Three new species, Xanthomonas hawaiiensis sp. nov., Stenotrophomonas aracearum sp. nov., and Stenotrophomonas oahuensis sp. nov., isolated from the Araceae family. Front Microbiol 2024; 15:1356025. [PMID: 38655077 PMCID: PMC11035887 DOI: 10.3389/fmicb.2024.1356025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Xanthomonas and Stenotrophomonas are closely related genera in the family Lysobacteraceae. In our previous study of aroid-associated bacterial strains, most strains isolated from anthurium and other aroids were reclassified as X. phaseoli and other Xanthomonas species. However, two strains isolated from Spathiphyllum and Colocasia were phylogenetically distant from other strains in the Xanthomonas clade and two strains isolated from Anthurium clustered within the Stenotrophomonas clade. Phylogenetic trees based on 16S rRNA and nine housekeeping genes placed the former strains with the type strain of X. sacchari from sugarcane and the latter strains with the type strain of S. bentonitica from bentonite. In pairwise comparisons with type strains, the overall genomic relatedness indices required delineation of new species; digital DNA-DNA hybridization and average nucleotide identity values were lower than 70 and 95%, respectively. Hence, three new species are proposed: S. aracearum sp. nov. and S. oahuensis sp. nov. for two strains from anthurium and X. hawaiiensis sp. nov. for the strains from spathiphyllum and colocasia, respectively. The genome size of X. hawaiiensis sp. nov. is ~4.88 Mbp and higher than S. aracearum sp. nov. (4.33 Mbp) and S. oahuensis sp. nov. (4.68 Mbp). Gene content analysis revealed 425 and 576 core genes present in 40 xanthomonads and 25 stenotrophomonads, respectively. The average number of unique genes in Stenotrophomonas spp. was higher than in Xanthomonas spp., implying higher genetic diversity in Stenotrophomonas.
Collapse
Affiliation(s)
| | | | | | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| |
Collapse
|
5
|
Morozova VV, Yakubovskij VI, Baykov IK, Kozlova YN, Tikunov AY, Babkin IV, Bardasheva AV, Zhirakovskaya EV, Tikunova NV. StenM_174: A Novel Podophage That Infects a Wide Range of Stenotrophomonas spp. and Suggests a New Subfamily in the Family Autographiviridae. Viruses 2023; 16:18. [PMID: 38275953 PMCID: PMC10820202 DOI: 10.3390/v16010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Stenotrophomonas maltophilia was discovered as a soil bacterium associated with the rhizosphere. Later, S. maltophilia was found to be a multidrug-resistant hospital-associated pathogen. Lytic bacteriophages are prospective antimicrobials; therefore, there is a need for the isolation and characterization of new Stenotrophomonas phages. The phage StenM_174 was isolated from litter at a poultry farm using a clinical strain of S. maltophilia as the host. StenM_174 reproduced in a wide range of clinical and environmental strains of Stenotrophomonas, mainly S. maltophilia, and it had a podovirus morphotype. The length of the genomic sequence of StenM_174 was 42,956 bp, and it contained 52 putative genes. All genes were unidirectional, and 31 of them encoded proteins with predicted functions, while the remaining 21 were identified as hypothetical ones. Two tail spike proteins of StenM_174 were predicted using AlphaFold2 structural modeling. A comparative analysis of the genome shows that the Stenotrophomonas phage StenM_174, along with the phages Ponderosa, Pepon, Ptah, and TS-10, can be members of the new putative genus Ponderosavirus in the Autographiviridae family. In addition, the analyzed data suggest a new subfamily within this family.
Collapse
Affiliation(s)
- Vera V. Morozova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
| | - Vyacheslav I. Yakubovskij
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ivan K. Baykov
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
- Shared Research Facility “Siberian Circular Photon Source” (SRF “SKIF”) of Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090, Russia
| | - Yuliya N. Kozlova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
| | - Artem Yu. Tikunov
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
| | - Igor V. Babkin
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
| | - Alevtina V. Bardasheva
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
| | - Elena V. Zhirakovskaya
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
| | - Nina V. Tikunova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
| |
Collapse
|
6
|
Montoya-Ciriaco N, Hereira-Pacheco S, Estrada-Torres A, Dendooven L, Méndez de la Cruz FR, Gómez-Acata ES, Díaz de la Vega-Pérez AH, Navarro-Noya YE. Maternal transmission of bacterial microbiota during embryonic development in a viviparous lizard. Microbiol Spectr 2023; 11:e0178023. [PMID: 37847033 PMCID: PMC10714757 DOI: 10.1128/spectrum.01780-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE We investigated the presence and diversity of bacteria in the embryos of the viviparous lizard Sceloporus grammicus and their amniotic environment. We compared this diversity to that found in the maternal intestine, mouth, and cloaca. We detected bacterial DNA in the embryos, albeit with a lower bacterial species diversity than found in maternal tissues. Most of the bacterial species detected in the embryos were also found in the mother, although not all of them. Interestingly, we detected a high similarity in the composition of bacterial species among embryos from different mothers. These findings suggest that there may be a mechanism controlling the transmission of bacteria from the mother to the embryo. Our results highlight the possibility that the interaction between maternal bacteria and the embryo may affect the development of the lizards.
Collapse
Affiliation(s)
- Nina Montoya-Ciriaco
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Stephanie Hereira-Pacheco
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Arturo Estrada-Torres
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Luc Dendooven
- Laboratory of Soil Ecology, CINVESTAV, Mexico City, Mexico
| | - Fausto R. Méndez de la Cruz
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Selene Gómez-Acata
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Aníbal H. Díaz de la Vega-Pérez
- Consejo Nacional de Ciencia, Humanidades y Tecnología-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala., Tlaxcala, Mexico
| | - Yendi E. Navarro-Noya
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
7
|
Dalazen G, Sellera FP, Fuentes-Castillo D, Sano E, Fontana H, Cardoso B, Esposito F, Silveira LF, Matushima ER, Lincopan N. Stenotrophomonas maltophilia Belonging to Novel Sequence Types ST473 and ST474 in Wild Birds Inhabiting the Brazilian Amazonia. Curr Microbiol 2023; 81:20. [PMID: 38008776 DOI: 10.1007/s00284-023-03532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/19/2023] [Indexed: 11/28/2023]
Abstract
Stenotrophomonas maltophilia is an opportunistic human pathogen associated with nosocomial and community-acquired infections. We have conducted a microbiological and genomic surveillance study of broad-spectrum cephalosporin- and carbapenem-resistant Gram-negative bacteria colonizing wild birds inhabiting the Brazilian Amazonia. Strikingly, two S. maltophilia strains (SM79 and SM115) were identified in Plain-throated antwren (Isleria hauxwelli) passerines affected by Amazonian fragmentation and degradation. Noteworthy, SM79 and SM115 strains belonged to new sequence types (STs) ST474 and ST473, respectively, displaying resistance to broad-spectrum β-lactams, aminoglycosides and/or fluoroquinolones. In this regard, resistome analysis confirmed efflux pumps (smeABC, smeDEF, emrAB-tolC and macB), blaL1 and blaL2, aph(3')-IIc and aac(6')-Iak, and Smqnr resistance genes. Comparative phylogenomic analysis with publicly available S. maltophilia genomes clustered ST473 and ST474 with human strains, whereas the ST474 was also grouped with S. maltophilia strains isolated from water and poultry samples. In summary, we report two novel sequence types of S. maltophilia colonizing wild Amazonian birds. The presence of opportunistic multidrug-resistant pathogens in wild birds, from remotes areas, could represent an ecological problem since these animals could easily promote long-distance dispersal of medically important antimicrobial-resistant bacteria. Therefore, while our results could provide a baseline for future epidemiological genomic studies, considering the limited information regarding S. maltophilia circulating among wild animals, additional studies are necessary to evaluate the clinical impact and degree of pathogenicity of this human opportunistic pathogen in wild birds.
Collapse
Affiliation(s)
- Gislaine Dalazen
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| | - Fábio Parra Sellera
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Luis Fábio Silveira
- Zoology Museum of the University of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Eliana Reiko Matushima
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil.
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
Liu J, Xiang Y, Zhang Y. Stenotrophomonas maltophilia: An Urgent Threat with Increasing Antibiotic Resistance. Curr Microbiol 2023; 81:6. [PMID: 37955756 DOI: 10.1007/s00284-023-03524-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/14/2023] [Indexed: 11/14/2023]
Abstract
Stenotrophomonas maltophilia is a Gram-negative opportunistic pathogen that can cause many infections, such as chronic pulmonary infections in patients with cystic fibrosis and infections in immunocompromised patients with hematology-oncology diseases. Because of its remarkable and increasing antimicrobial resistance, the treatment of S. maltophilia infections is quite challenging. Meanwhile, the prevalence of S. maltophilia infections is increasing in recent decades. S. maltophilia is usually considered to be of low virulence but has numerous virulence factors involved in the pathogenesis of infections caused by S. maltophilia. By revealing its pathogenesis associated with virulence factors and molecular mechanisms of antimicrobial resistance, many existing or potential therapeutic strategies have been developed. However, because of the limited treatment options, new strategies are urgently needed. Here, we review the recent progresses in research on S. maltophilia which may help to develop more effective treatments against this increasing threat.
Collapse
Affiliation(s)
- Jiaying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China.
| |
Collapse
|
9
|
Raio A, Brilli F, Neri L, Baraldi R, Orlando F, Pugliesi C, Chen X, Baccelli I. Stenotrophomonas rhizophila Ep2.2 inhibits growth of Botrytis cinerea through the emission of volatile organic compounds, restricts leaf infection and primes defense genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1235669. [PMID: 37849842 PMCID: PMC10577304 DOI: 10.3389/fpls.2023.1235669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
The bacterium Stenotrophomonas rhizophila is known to be beneficial for plants and has been frequently isolated from the rhizosphere of crops. In the present work, we isolated from the phyllosphere of an ornamental plant an epiphytic strain of S. rhizophila that we named Ep2.2 and investigated its possible application in crop protection. Compared to S. maltophilia LMG 958, a well-known plant beneficial species which behaves as opportunistic human pathogen, S. rhizophila Ep2.2 showed distinctive features, such as different motility, a generally reduced capacity to use carbon sources, a greater sensitivity to fusidic acid and potassium tellurite, and the inability to grow at the human body temperature. S. rhizophila Ep2.2 was able to inhibit in vitro growth of the plant pathogenic fungi Alternaria alternata and Botrytis cinerea through the emission of volatile compounds. Simultaneous PTR-MS and GC-MS analyses revealed the emission, by S. rhizophila Ep2.2, of volatile organic compounds (VOCs) with well-documented antifungal activity, such as furans, sulphur-containing compounds and terpenes. When sprayed on tomato leaves and plants, S. rhizophila Ep2.2 was able to restrict B. cinerea infection and to prime the expression of Pti5, GluA and PR1 plant defense genes.
Collapse
Affiliation(s)
- Aida Raio
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Florence, Italy
| | - Federico Brilli
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Florence, Italy
| | - Luisa Neri
- Institute for BioEconomy (IBE), National Research Council of Italy (CNR), Bologna, Italy
| | - Rita Baraldi
- Institute for BioEconomy (IBE), National Research Council of Italy (CNR), Bologna, Italy
| | - Francesca Orlando
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Florence, Italy
| |
Collapse
|
10
|
Nair VV, Smyth HDC. Inhalable Excipient-Free Dry Powder of Tigecycline for the Treatment of Pulmonary Infections. Mol Pharm 2023; 20:4640-4653. [PMID: 37606919 DOI: 10.1021/acs.molpharmaceut.3c00395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Tigecycline (TIG) is a broad-spectrum antibiotic that has been approved for the treatment of a number of complicated infections, including community-acquired bacterial pneumonia. Currently it is available only as an intravenous injection that undergoes rapid chemical degradation and limits the use to in-patient scenarios. The use of TIG as an inhaled dry powder inhaler may offer a promising treatment option for patients with multidrug-resistant respiratory tract infections, such as Stenotrophomonas maltophilia (S. maltophilia). This study explores the feasibility of engineering an inhaled powder formulation of TIG that could administer relevant doses at a wide range of inhalation flow rates while maintaining stability of this labile drug. Using air-jet milling, micronized TIG had excellent aerosolization efficiency, with over 80% of the device emitted dose being within the respirable range. TIG was also readily dispersed using different inhaler devices even when tested at different pressure drops and flow rates. Additionally, micronized TIG was stable for 6 months at 25 °C/60% RH and 40 °C/75% RH. Micronized TIG maintained a low minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of 0.8 μM and >0.5 μM, respectively in S. maltophilia cultures in vitro. These results strongly suggest that the micronization of TIG results in a stable and respirable formulation that can be delivered via the pulmonary route for the treatment of lung infections.
Collapse
Affiliation(s)
- Varsha V Nair
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, Texas 78712, United States
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Kumar A, Rithesh L, Kumar V, Raghuvanshi N, Chaudhary K, Abhineet, Pandey AK. Stenotrophomonas in diversified cropping systems: friend or foe? Front Microbiol 2023; 14:1214680. [PMID: 37601357 PMCID: PMC10437078 DOI: 10.3389/fmicb.2023.1214680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
In the current scenario, the use of synthetic fertilizers is at its peak, which is an expensive affair, possesses harmful effects to the environment, negatively affecting soil fertility and beneficial soil microfauna as well as human health. Because of this, the demand for natural, chemical-free, and organic foods is increasing day by day. Therefore, in the present circumstances use of biofertilizers for plant growth-promotion and microbe-based biopesticides against biotic stresses are alternative options to reduce the risk of both synthetic fertilizers and pesticides. The plant growth promoting rhizobacteria (PGPR) and microbial biocontrol agents are ecologically safe and effective. Owning their beneficial properties on plant systems without harming the ecosystem, they are catching the widespread interest of researchers, agriculturists, and industrialists. In this context, the genus Stenotrophomonas is an emerging potential source of both biofertilizer and biopesticide. This genus is particularly known for producing osmoprotective substances which play a key role in cellular functions, i.e., DNA replication, DNA-protein interactions, and cellular metabolism to regulate the osmotic balance, and also acts as effective stabilizers of enzymes. Moreover, few species of this genus are disease causing agents in humans that is why; it has become an emerging field of research in the present scenario. In the past, many studies were conducted on exploring the different applications of Stenotrophomonas in various fields, however, further researches are required to explore the various functions of Stenotrophomonas in plant growth promotion and management of pests and diseases under diverse growth conditions and to demonstrate its interaction with plant and soil systems. The present review discusses various plant growth and biocontrol attributes of the genus Stenotrophomonas in various food crops along with knowledge gaps. Additionally, the potential risks and challenges associated with the use of Stenotrophomonas in agriculture systems have also been discussed along with a call for further research in this area.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Plant Pathology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
- Department of Agriculture, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Lellapalli Rithesh
- Department of Plant Pathology, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - Vikash Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Nikhil Raghuvanshi
- Department of Agronomy, Institute of Agriculture and Natural Science, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Kautilya Chaudhary
- Department of Agronomy, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Abhineet
- Department of Agriculture, Integral Institute of Agricultural Sciences & Technology, Integral University, Lucknow, Uttar Pradesh, India
| | - Abhay K. Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R&D Center, Nagrakata, West Bengal, India
| |
Collapse
|
12
|
Pacholak A, Żur-Pińska J, Piński A, Nguyen QA, Ligaj M, Luczak M, Nghiem LD, Kaczorek E. Potential negative effect of long-term exposure to nitrofurans on bacteria isolated from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162199. [PMID: 36791847 DOI: 10.1016/j.scitotenv.2023.162199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Nitrofurans are broad-spectrum bactericidal agents used in a large quantity for veterinary and human therapy. This study reports the long-term impact of two nitrofuran representatives, nitrofurantoin (NFT) and furaltadone (FTD) on the bacterial strains Sphingobacterium siyangense FTD2, Achromobacter pulmonis NFZ2, and Stenotrophomonas maltophilia FZD2, isolated from a full-scale wastewater treatment plant. Bacterial whole genome sequencing was used for preliminary strains characterization. The metabolomic, electrochemical, and culture methods were applied to understand changes in the bacterial strains after 12-month exposure to nitrofurans. The most significantly altered metabolic pathways were observed in amino acid and sugar metabolism, and aminoacyl-tRNA biosynthesis. Disrupted protein biosynthesis was measured in all strains treated with antibiotics. Prolonged exposure to NFT and FTD also triggered mutagenic effects, affected metabolic activity, and facilitated oxidative stress within the cells. Nitrofuran-induced oxidative stress was evidenced from an elevated activity of catalase and glutathione S-transferases. NFT and FTD elicited similar but not identical responses in all analyzed strains. The results obtained in this study provide new insights into the potential risks of the prolonged presence of antimicrobial compounds in the environment and contribute to a better understanding of the possible impacts of nitrofuran antibiotics on the bacterial cells.
Collapse
Affiliation(s)
- Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poland.
| | - Joanna Żur-Pińska
- Biotechnology Centre, The Silesian University of Technology, Gliwice, Poland; Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Quynh Anh Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, New South Wales, Australia
| | - Marta Ligaj
- Department of Non-Food Products Quality and Packaging Development, Institute of Quality Science, Poznan University of Economics and Business, Poland
| | - Magdalena Luczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, New South Wales, Australia
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poland
| |
Collapse
|
13
|
Klimkaitė L, Ragaišis I, Krasauskas R, Ružauskas M, Sužiedėlienė E, Armalytė J. Novel Antibiotic Resistance Genes Identified by Functional Gene Library Screening in Stenotrophomonas maltophilia and Chryseobacterium spp. Bacteria of Soil Origin. Int J Mol Sci 2023; 24:ijms24076037. [PMID: 37047008 PMCID: PMC10094639 DOI: 10.3390/ijms24076037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
As one of the most diverse habitats of microorganisms, soil has been recognised as a reservoir of both antibiotics and the antibiotic resistance genes (ARGs). Bacteria naturally inhabiting soil or water often possess innate ARGs to counteract the chemical compounds produced by competitors living in the same environment. When such bacteria are able to cause infections in immunocompromised patients, their strong innate antibiotic resistance mechanisms make treatment difficult. We generated functional gene libraries using antibiotic-resistant Stenotrophomonas maltophilia and Chryseobacterium spp. bacteria isolated from agricultural soils in Lithuania to select for the genetic determinants responsible for their resistance. We were able to find novel variants of aminoglycoside and β-lactam resistance genes, with β-lactamases isolated from the Chryseobacterium spp. functional gene library, one of which is a variant of IND-like metallo-β-lactamase (MBL) IND-17 and the other of which is a previously uncharacterised MBL we named CHM (Chryseobacterium metallo β-lactamase). Our results indicate that soil microorganisms possess a diversity of ARG variants, which could potentially be transferred to the clinical setting.
Collapse
Affiliation(s)
- Laurita Klimkaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Ignas Ragaišis
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Modestas Ružauskas
- Microbiology and Virology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| |
Collapse
|
14
|
Remmal I, Bel Mokhtar N, Maurady A, Reda Britel M, El Fakhouri K, Asimakis E, Tsiamis G, Stathopoulou P. Characterization of the Bacterial Microbiome in Natural Populations of Barley Stem Gall Midge, Mayetiola hordei, in Morocco. Microorganisms 2023; 11:microorganisms11030797. [PMID: 36985370 PMCID: PMC10051481 DOI: 10.3390/microorganisms11030797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Mayetiola hordei (Kieffer), known as barley stem gall midge, is one of the most destructive barley pests in many areas around the world, inflicting significant qualitative and quantitative damage to crop production. In this study, we investigate the presence of reproductive symbionts, the effect of geographical origin on the bacterial microbiome's structure, and the diversity associated with natural populations of M. hordei located in four barley-producing areas in Morocco. Wolbachia infection was discovered in 9% of the natural populations using a precise 16S rDNA PCR assay. High-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene indicated that the native environments of samples had a substantial environmental impact on the microbiota taxonomic assortment. Briefly, 5 phyla, 7 classes, and 42 genera were identified across all the samples. To our knowledge, this is the first report on the bacterial composition of M. hordei natural populations. The presence of Wolbachia infection may assist in the diagnosis of ideal natural populations, providing a new insight into the employment of Wolbachia in the control of barley midge populations, in the context of the sterile insect technique or other biological control methods.
Collapse
Affiliation(s)
- Imane Remmal
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan 93000, Morocco
| | - Naima Bel Mokhtar
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan 93000, Morocco
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| |
Collapse
|
15
|
Stenotrophomonas maltophilia and Its Ability to Form Biofilms. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the last ten years, Stenotrophomonas maltophilia has gained increasing interest as an important agent of infection, which is why it has come to be recognized as a serious cause of nosocomial infections related to bloodstream infections, pneumonia, and cancer, mainly in patients with intensive care, and is associated with high mortality rates in immunocompromised patients, with prolonged hospital stays and extensive use of antimicrobials. The importance of this microorganism lies in its low pathogenicity, high multiresistance to various antibiotics, and frequent and persistent isolation in predisposed patients. In addition, few studies have evaluated its epidemiology and clinical relevance. The pathogenesis of biofilms lies mainly in the fact that they can generate persistent chronic infections that are difficult to eradicate. To this extent, it is important to make the characteristics of the biofilm formation behavior of Stenotrophomonas maltophilia known and generate more knowledge about its colonization or infection in humans through this review, which discusses more recent information.
Collapse
|
16
|
Niza-Costa M, Rodríguez-dos Santos AS, Rebelo-Romão I, Ferrer MV, Sequero López C, Vílchez JI. Geographically Disperse, Culturable Seed-Associated Microbiota in Forage Plants of Alfalfa ( Medicago sativa L.) and Pitch Clover ( Bituminaria bituminosa L.): Characterization of Beneficial Inherited Strains as Plant Stress-Tolerance Enhancers. BIOLOGY 2022; 11:biology11121838. [PMID: 36552347 PMCID: PMC9775229 DOI: 10.3390/biology11121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Agricultural production is being affected by increasingly harsh conditions caused by climate change. The vast majority of crops suffer growth and yield declines due to a lack of water or intense heat. Hence, commercial legume crops suffer intense losses of production (20-80%). This situation is even more noticeable in plants used as fodder for animals, such as alfalfa and pitch trefoil, since their productivity is linked not only to the number of seeds produced, but also to the vegetative growth of the plant itself. Thus, we decided to study the microbiota associated with their seeds in different locations on the Iberian Peninsula, with the aim of identifying culturable bacteria strains that have adapted to harsh environments and that can be used as biotreatments to improve plant growth and resistance to stress. As potentially inherited microbiota, they may also represent a treatment with medium- and long-term adaptative effects. Hence, isolated strains showed no clear relationship with their geographical sampling location, but had about 50% internal similarity with their model plants. Moreover, out of the 51 strains isolated, about 80% were capable of producing biofilms; around 50% produced mid/high concentrations of auxins and grew notably in ACC medium; only 15% were characterized as xerotolerant, while more than 75% were able to sporulate; and finally, 65% produced siderophores and more than 40% produced compounds to solubilize phosphates. Thus, Paenibacillus amylolyticus BB B2-A, Paenibacillus xylanexedens MS M1-C, Paenibacillus pabuli BB Oeiras A, Stenotrophomonas maltophilia MS M1-B and Enterobacter hormaechei BB B2-C strains were tested as plant bioinoculants in lentil plants (Lens culinaris Medik.), showing promising results as future treatments to improve plant growth under stressful conditions.
Collapse
Affiliation(s)
- Marla Niza-Costa
- iPlantMicro Lab, Instituto de Tecnologia Química e Biológica (ITQB)-NOVA, Oeiras, 2784-501 Lisboa, Portugal
| | | | - Inês Rebelo-Romão
- iPlantMicro Lab, Instituto de Tecnologia Química e Biológica (ITQB)-NOVA, Oeiras, 2784-501 Lisboa, Portugal
| | - María Victoria Ferrer
- iPlantMicro Lab, Instituto de Tecnologia Química e Biológica (ITQB)-NOVA, Oeiras, 2784-501 Lisboa, Portugal
| | - Cristina Sequero López
- GeoBioTec, Department of Earth Sciences, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa (Campus de Caparica), 1070-312 Caparica, Portugal
| | - Juan Ignacio Vílchez
- iPlantMicro Lab, Instituto de Tecnologia Química e Biológica (ITQB)-NOVA, Oeiras, 2784-501 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
17
|
Deng Y, Han XF, Jiang ZM, Yu LY, Li Y, Zhang YQ. Characterization of three Stenotrophomonas strains isolated from different ecosystems and proposal of Stenotrophomonas mori sp. nov. and Stenotrophomonas lacuserhaii sp. nov. Front Microbiol 2022; 13:1056762. [PMID: 36590414 PMCID: PMC9797726 DOI: 10.3389/fmicb.2022.1056762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Stenotrophomonas spp. have primarily been reported as non-pathogenic, plant-probiotic bacteria, despite the presence of some opportunistic human pathogens in the genus. Here, three Gram-stain negative, rod-shaped, non-spore-forming bacteria, designated as strains CPCC 101365T, CPCC 101269T, and CPCC 101426 were isolated from surface-sterilized medicinal plant roots of a mulberry plant in Chuxiong of the Yunnan Province, freshwater from Erhai Lake in the Yunnan Province, and sandy soils in the Badain Jaran desert in Inner Mongolia Autonomous Region, China, respectively. The 16S rRNA gene sequences analysis of these isolates in comparison with sequences from the GenBank database indicated that they belong to the genus Stenotrophomonas, with nucleotide similarities of 96.52-99.92% to identified Stenotrophomonas members. Phylogenetic analysis based on 16S rRNA gene and genome sequences confirmed that the isolates are members of the genus Stenotrophomonas. Values for genomic average nucleotide identity (ANI; <95%) and digital DNA-DNA hybridization (dDDH; < 70%) indicated that strains CPCC 101365T and CPCC 101269T were well-differentiated from validly described Stenotrophomonas species, while strain CPCC 101426 shared high ANI (97.7%) and dDDH (78.3%) identity with its closest phylogenetic neighbor, Stenotrophomonas koreensis JCM 13256T. The three genomes were approximately 3.1-4.0 Mbp in size and their G + C content ranged in 66.2-70.2%, with values slightly differing between CPCC 101365T (3.4 Mbp; 70.2%), CPCC 101269T (4.0 Mbp; 66.4%), and CPCC 101426 (3.1 Mbp; 66.2%). Genes encoding enzymes involved in the biosynthesis of indole-3-acetic acid (IAA) and siderophores were identified in the genomes of the three isolates, suggesting that these strains might serve roles as plant-growth promoting microorganisms. The polar lipid fractions of the three isolates primarily comprised diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE). The predominant cellular fatty acid was iso-C15: 0, with moderate amounts of antesio-C15: 0, iso-C11: 0, iso C17: 1 ɷ9c/C16: 0 10-methyl, iso-C14: 0, and C16: 1 ɷ7c/C16: 1 ɷ6c. These results indicated that polyphasic characteristics of strains CPCC 101365T and CPCC 101269T differed from other identified Stenotrophomonas species and that strain CPCC 101426 was affiliated with the species Stenotrophomonas koreensis. Accordingly, two novel species of the genus Stenotrophomonas were consequently proposed, corresponding to Stenotrophomonas mori sp. nov. (type strain CPCC 101365T = DY006T = KCTC 82900T) and Stenotrophomonas lacuserhaii sp. nov. (type strain CPCC 101269T = K32T = KCTC 82901T). Highlights Members of the genus Stenotrophomonas, and particularly Stenotrophomonas maltophilia, are opportunistic human pathogens, but not enough research has evaluated the identification of environmental Stenotrophomonas spp. However, most Stenotrophomonas spp. serves as plant-probiotic bacteria.In this study, we obtained and characterized three Stenotrophomonas strains from different ecosystems. Based on phenotypic differences, chemotaxonomic properties, ANI and dDDH identity values, and phylogenetic analyses, two novel Stenotrophomonas species are proposed for the strains identified here. The encoding genes related to plant-growth promotion in the genomes of the newly recovered Stenotrophomonas spp. were retrieved. Follow-on experiments confirmed that these strains produced the important plant hormone IAA. Thus, these Stenotrophomonas spp. could considerably contribute to shaping and maintaining ecological stability in plant-associated environments, particularly while acting as plant-probiotic microorganisms.
Collapse
Affiliation(s)
- Yang Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,State Key Laboratory of Dao-di Herb, Beijing, China
| | - Xue-Fei Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,State Key Laboratory of Dao-di Herb, Beijing, China
| | - Zhu-Ming Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,State Key Laboratory of Dao-di Herb, Beijing, China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,State Key Laboratory of Dao-di Herb, Beijing, China,*Correspondence: Yu-Qin Zhang,
| |
Collapse
|
18
|
Becker R, Ulrich K, Behrendt U, Schneck V, Ulrich A. Genomic Characterization of Aureimonas altamirensis C2P003-A Specific Member of the Microbiome of Fraxinus excelsior Trees Tolerant to Ash Dieback. PLANTS (BASEL, SWITZERLAND) 2022; 11:3487. [PMID: 36559599 PMCID: PMC9781493 DOI: 10.3390/plants11243487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Some European ash trees show tolerance towards dieback caused by the invasive pathogen Hymenoscyphus fraxineus. The microbiome of these trees harbours a range of specific bacterial groups. One of these groups belonging to the species Aureimonas altamirensis was studied in detail by genome analysis and a plant inoculation trial. The strain group was shown to be phylogenetically distinct from clinical isolates by 16S rRNA analysis and phylogenomics. Genome analysis of a representative strain C2P003 resulted in a large number of unique gene sequences in comparison to other well-studied strains of the species. A functional analysis of the genome revealed features associated with the synthesis of exopolysaccharides, protein secretion and biofilm production as well as genes for stress adaptation, suggesting the ability of C2P003 to effectively colonize ash leaves. The inoculation of ash seedlings with C2P003 showed a significant positive effect on the plant health of the seedlings that were exposed to H. fraxineus infection. This effect was maintained over a period of three years and was accompanied by a significant shift in the bacterial microbiome composition one year after inoculation. Overall, the results indicate that C2P003 may suppress H. fraxineus in or on ash leaves via colonization resistance or indirectly by affecting the microbiome.
Collapse
Affiliation(s)
- Regina Becker
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Kristina Ulrich
- Institute of Forest Genetics, Johann Heinrich von Thünen Institute, 15377 Waldsieversdorf, Germany
| | - Undine Behrendt
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Volker Schneck
- Institute of Forest Genetics, Johann Heinrich von Thünen Institute, 15377 Waldsieversdorf, Germany
| | - Andreas Ulrich
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
19
|
Chao A, Chao AS, Lin CY, Weng C, Wu RC, Yeh YM, Huang SS, Lee YS, Lai CH, Huang HJ, Tang YH, Lin YS, Wang CJ, Wu KY. Analysis of endometrial lavage microbiota reveals an increased relative abundance of the plastic-degrading bacteria Bacillus pseudofirmus and Stenotrophomonas rhizophila in women with endometrial cancer/endometrial hyperplasia. Front Cell Infect Microbiol 2022; 12:1031967. [PMID: 36439209 PMCID: PMC9682088 DOI: 10.3389/fcimb.2022.1031967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
The pathogenic influences of uterine bacteria on endometrial carcinogenesis remain unclear. The aim of this pilot study was to compare the microbiota composition of endometrial lavage samples obtained from women with either endometrial hyperplasia (EH) or endometrial cancer (EC) versus those with benign uterine conditions. We hypothesized that specific microbiota signatures would distinguish between the two groups, possibly leading to the identification of bacterial species associated with endometrial tumorigenesis. A total of 35 endometrial lavage specimens (EH, n = 18; EC, n = 7; metastatic EC, n = 2; benign endometrial lesions, n = 8) were collected from 32 women who had undergone office hysteroscopy. Microbiota composition was determined by sequencing the V3−V4 region of 16S rRNA genes and results were validated by real-time qPCR in 46 patients with EC/EH and 13 control women. Surprisingly, we found that Bacillus pseudofirmus and Stenotrophomonas rhizophila – two plastic-degrading bacterial species – were over-represented in endometrial lavage specimens collected from patients with EC/EH. Using computational analysis, we found that the functional profile of endometrial microbiota in EC/EH was associated with fatty acid and amino acid metabolism. In summary, our hypothesis-generating data indicate that the plastic-degrading bacteria Bacillus pseudofirmus and Stenotrophomonas rhizophila are over-represented within the endometrial lavage microbiota of women with EC/EH living in Taiwan. Whether this may be related to plastic pollution deserves further investigation.
Collapse
Affiliation(s)
- Angel Chao
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - An-Shine Chao
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, New Taipei Municipal Tu Cheng Hospital, New Taipei City, Taiwan
| | - Chiao-Yun Lin
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cindy Hsuan Weng
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ren-Chin Wu
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, New Taipei Municipal Tu Cheng Hospital, New Taipei City, Taiwan
| | - Yuan-Ming Yeh
- Department of Pathology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shih-Sin Huang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Shien Lee
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Huei-Jean Huang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Hsin Tang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Shan Lin
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, New Taipei Municipal Tu Cheng Hospital, New Taipei City, Taiwan
| | - Chin-Jung Wang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kai-Yun Wu
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- *Correspondence: Kai-Yun Wu,
| |
Collapse
|
20
|
Cardenas Alegria O, Pires Quaresma M, Dias Dantas CW, Silva Guedes Lobato EM, de Oliveira Aragão A, Patroca da Silva S, Costa Barros da Silva A, Ribeiro Cruz AC, Ramos RTJ, Carneiro AR. Impacts of soybean agriculture on the resistome of the Amazonian soil. Front Microbiol 2022; 13:948188. [PMID: 36160259 PMCID: PMC9500545 DOI: 10.3389/fmicb.2022.948188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
The soils of the Amazon are complex environments with different organisms cohabiting in continuous adaptation processes; this changes significantly when these environments are modified for the development of agricultural activities that alter the chemical, macro, and microbiological compositions. The metagenomic variations and the levels of the environmental impact of four different soil samples from the Amazon region were evaluated, emphasizing the resistome. Soil samples from the organic phase from the different forest, pasture, and transgenic soybean monocultures of 2–14 years old were collected in triplicate at each site. The samples were divided into two groups, and one group was pre-treated to obtain genetic material to perform sequencing for metagenomic analysis; another group carried out the chemical characterization of the soil, determining the pH, the content of cations, and heavy metals; these were carried out in addition to identifying with different databases the components of the microbiological communities, functional genes, antibiotic and biocide resistance genes. A greater diversity of antibiotic resistance genes was observed in the forest soil. In contrast, in monoculture soils, a large number of biocide resistance genes were evidenced, highlighting the diversity and abundance of crop soils, which showed better resistance to heavy metals than other compounds, with a possible dominance of resistance to iron due to the presence of the acn gene. For up to 600 different genes for resistance to antibiotics and 256 genes for biocides were identified, most of which were for heavy metals. The most prevalent was resistance to tetracycline, cephalosporin, penam, fluoroquinolone, chloramphenicol, carbapenem, macrolide, and aminoglycoside, providing evidence for the co-selection of these resistance genes in different soils. Furthermore, the influence of vegetation cover on the forest floor was notable as a protective factor against the impact of human contamination. Regarding chemical characterization, the presence of heavy metals, different stress response mechanisms in monoculture soils, and the abundance of mobile genetic elements in crop and pasture soils stand out. The elimination of the forest increases the diversity of genes for resistance to biocides, favoring the selection of genes for resistance to antibiotics in soils.
Collapse
Affiliation(s)
- Oscar Cardenas Alegria
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- *Correspondence: Oscar Cardenas Alegria
| | - Marielle Pires Quaresma
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | - Andressa de Oliveira Aragão
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Sandro Patroca da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute-IEC/SVS/MS, Ananindeua, Brazil
| | - Amanda Costa Barros da Silva
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Ana Cecília Ribeiro Cruz
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute-IEC/SVS/MS, Ananindeua, Brazil
| | - Rommel Thiago Jucá Ramos
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Adriana Ribeiro Carneiro
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
21
|
McCutcheon JG, Lin A, Dennis JJ. Characterization of Stenotrophomonas maltophilia phage AXL1 as a member of the genus Pamexvirus encoding resistance to trimethoprim-sulfamethoxazole. Sci Rep 2022; 12:10299. [PMID: 35717537 PMCID: PMC9206674 DOI: 10.1038/s41598-022-14025-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Stenotrophomonas maltophilia is a ubiquitous environmental bacterium capable of causing disease in humans. Antibiotics are largely ineffective against this pathogen due to numerous chromosomally encoded antibiotic resistance mechanisms. An alternative treatment option is phage therapy, the use of bacteriophages to selectively kill target bacteria that are causing infection. To this aim, we isolated the Siphoviridae bacteriophage AXL1 (vB_SmaS-AXL_1) from soil and herein describe its characterization. Host range analysis on a panel of 30 clinical S. maltophilia strains reveals a moderate tropism that includes cross-species infection of Xanthomonas, with AXL1 using the type IV pilus as its host surface receptor for infection. Complete genome sequencing and analysis revealed a 63,962 bp genome encoding 83 putative proteins. Comparative genomics place AXL1 in the genus Pamexvirus, along with seven other phages that infect one of Stenotrophomonas, Pseudomonas or Xanthomonas species. Functional genomic analyses identified an AXL1-encoded dihydrofolate reductase enzyme that provides additional resistance to the antibiotic combination trimethoprim-sulfamethoxazole, the current recommended treatment option for S. maltophilia infections. This research characterizes the sixth type IV pilus-binding phage of S. maltophilia and is an example of phage-encoded antibiotic resistance.
Collapse
Affiliation(s)
- Jaclyn G McCutcheon
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Andrea Lin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Jonathan J Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
22
|
Richard D, Roumagnac P, Pruvost O, Lefeuvre P. A network approach to decipher the dynamics of Lysobacteraceae plasmid gene sharing. Mol Ecol 2022; 32:2660-2673. [PMID: 35593155 DOI: 10.1111/mec.16536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
Plasmids provide an efficient vehicle for gene sharing among bacterial populations, playing a key role in bacterial evolution. Network approaches are particularly suitable to represent multipartite relationships and are useful tools to characterize plasmid-mediated gene sharing events. The Lysobacteraceae bacterial family gathers plant commensal, plant pathogenic and opportunistic human pathogens for which plasmid mediated adaptation was reported. We searched for homologues of plasmid gene sequences from this family in all the diversity of available bacterial genome sequences and built a network of plasmid gene sharing from the results. While plasmid genes are openly shared between the bacteria of the Lysobacteraceae family, taxonomy strongly defined the boundaries of these exchanges, that only barely reached other families. Most inferred plasmid gene sharing events involved a few genes only, and evidence of full plasmid transfers were restricted to taxonomically close taxon. We detected multiple plasmid-chromosome gene transfers, among which the otherwise known sharing of a heavy metal resistance transposon. In the network, bacterial lifestyles shaped sub-structures of isolates colonizing specific ecological niches and harboring specific types of resistance genes. Genes associated to pathogenicity or antibiotic and metal resistance were among those that most importantly structured the network, highlighting the imprints of human-mediated selective pressure on pathogenic populations. A massive sequencing effort on environmental Lysobacteraceae is therefore required to refine our understanding on how this reservoir fuels the emergence and the spread of genes amongst this family and its potential impact on plant, animal and human health.
Collapse
Affiliation(s)
- D Richard
- Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France.,ANSES, Plant Health Laboratory, F-97410 St Pierre, Réunion, France.,Université de La Réunion, La Réunion, France
| | - P Roumagnac
- Montpellier, France.,PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - O Pruvost
- Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France
| | - P Lefeuvre
- Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France
| |
Collapse
|
23
|
Performance of halotolerant bacteria associated with Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L. ameliorate tomato plant growth and tolerance to saline stress: from selective isolation to genomic analysis of potential determinants. World J Microbiol Biotechnol 2021; 38:16. [PMID: 34897563 DOI: 10.1007/s11274-021-03203-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022]
Abstract
The use of halotolerant beneficial plant-growth-promoting (PGP) bacteria is considered as a promising eco-friendly approach to improve the salt tolerance of cash crops. One strategy to enhance the possibility of obtaining stress-alleviating bacteria is to screen salt impacted soils. In this study, amongst the 40 endophytic bacteria isolated from the roots of Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L., 8 showed interesting NaCl tolerance in vitro. Their evaluation, through different tomato plant trials, permitted the isolate IS26 to be distinguished as the most effective seed inoculum for both plant growth promotion and mitigation of salt stress. On the basis of 16S rRNA gene sequence, the isolate was closely related to Stenotrophomonas rhizophila. It was then screened in vitro for multiple PGP traits and the strain-complete genome was sequenced and analysed to further decipher the genomic basis of the putative mechanisms underlying its osmoprotective and plant growth abilities. A remarkable number of genes putatively involved in mechanisms responsible for rhizosphere colonization, plant association, strong competition for nutrients, and the production of important plant growth regulator compounds, such as AIA and spermidine, were highlighted, as were substances protecting against stress, including different osmolytes like trehalose, glucosylglycerol, proline, and glycine betaine. By having genes related to complementary mechanisms of osmosensing, osmoregulation and osmoprotection, the strain confirmed its great capacity to adapt to highly saline environments. Moreover, the presence of various genes potentially related to multiple enzymatic antioxidant processes, able to reduce salt-induced overproduction of ROS, was also detected.
Collapse
|
24
|
Hu M, Li C, Xue Y, Hu A, Chen S, Chen Y, Lu G, Zhou X, Zhou J. Isolation, Characterization, and Genomic Investigation of a Phytopathogenic Strain of Stenotrophomonas maltophilia. PHYTOPATHOLOGY 2021; 111:2088-2099. [PMID: 33759550 DOI: 10.1094/phyto-11-20-0501-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stenotrophomonas maltophilia is ubiquitous in diverse environmental habitats. It merits significant concern because of its increasing incidence of nosocomial and community-acquired infection in immunocompromised patients and multiple drug resistance. It is rarely reported as a phytopathogen except in causing white stripe disease of rice in India and postharvest fruit rot of Lanzhou lily. For this study, Dickeya zeae and S. maltophilia strains were simultaneously isolated from soft rot leaves of Clivia miniata in Guangzhou, China, and were both demonstrated to be pathogenic to the host. Compared with the D. zeae strains, S. maltophilia strains propagated faster for greater growth in lysogeny broth medium and produced no cellulases or polygalacturonases, but did produce more proteases and fewer extracellular polysaccharides. Furthermore, S. maltophilia strains swam and swarmed dramatically less on semisolid media, but formed a great many more biofilms. Both D. zeae and S. maltophilia strains isolated from clivia caused rot symptoms on other monocot hosts, but not on dicots. Similar to previously reported S. maltophilia strains isolated from other sources, the strain JZL8 survived under many antibiotic stresses. The complete genome sequence of S. maltophilia strain JZL8 consists of a chromosome of 4,635,432 bp without a plasmid. Pan-genome analysis of JZL8 and 180 other S. maltophilia strains identified 50 genes that are unique to JZL8, seven of which implicate JZL8 as the potential pathogen contributor in plants. JZL8 also contains three copies of Type I Secretion System machinery; this is likely responsible for its greater production of proteases. Findings from this study extend our knowledge on the host range of S. maltophilia and provide insight into the phenotypic and genetic features underlying the plant pathogenicity of JZL8.
Collapse
Affiliation(s)
- Ming Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Chuhao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yang Xue
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Anqun Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shanshan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yufan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Guangtao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
25
|
Xie L, Zhou A, Zhao J, Tang Y, Zhao R, Zhou Y, Cao G, Zhong C, Li J. Comparative insights into multiple drug resistance determinants in Stenotrophomonas maltophilia MER1. J Glob Antimicrob Resist 2021; 27:20-25. [PMID: 34365056 DOI: 10.1016/j.jgar.2021.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Multidrug-resistant (MDR) Stenotrophomonas maltophilia strain MER1 was isolated from hospital wastewater in Shandong Province, China. This study aimed to determine the genetic determinants related to its striking MDR phenotype. METHODS Antimicrobial susceptibility testing of strain MER1 was performed by disk diffusion on Mueller-Hinton agar plates, and MICs were interpreted according to Clinical and Laboratory Standards Institute breakpoints. The genome of MER1 was sequenced and assembled using PacBio RS II and BGISEQ-500 platforms. Antimicrobial resistance determinants together with other transferability or adaptability determinants were identified by comparative genomics. Phylogenetic and contextual assays for these elements were conducted to assess the risk of spread of MER1. RESULTS Antimicrobial susceptibility testing revealed that strain MER1 is resistant to nine different antibiotics, including ampicillin, meropenem, amikacin, erythromycin, vancomycin, tetracycline, tigecycline, colistin and ceftazidime. Several genes were identified encoding efflux pumps and drug-inactivating agents, accounting for resistance to the above antibiotics, including meropenem, tigecycline and colistin regarded as last-line therapies for infections caused by MDR Gram-negative bacteria. MER1 co-harbours two non-mobile mcr homologues. A novel genomic region of variability was demonstrated to confer bacterial robustness and adaptability upon strain MER1. CONCLUSION Collective efforts revealed the MDR properties and potential genetic determinants of S. maltophilia MER1 isolated from hospital wastewater. Comparative genomic analysis of S. maltophilia MER1 may provide insights into the prevention and treatment of antimicrobial-resistant infections. Our findings raise concern that the MDR genes in the reservoir of S. maltophilia may further spread into various ecological niches or medically high-risk pathogens.
Collapse
Affiliation(s)
- Linlin Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China; Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Aiping Zhou
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia Zhao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yuhang Tang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Rui Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yingping Zhou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Guangxiang Cao
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China.
| | - Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China; Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
26
|
Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. Int J Mol Sci 2021; 22:8080. [PMID: 34360847 PMCID: PMC8347278 DOI: 10.3390/ijms22158080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.
Collapse
Affiliation(s)
| | | | | | | | - José L. Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (F.S.-G.); (T.G.-G.); (P.L.); (L.E.O.-S.); (S.H.-A.)
| | | |
Collapse
|
27
|
Ulrich K, Kube M, Becker R, Schneck V, Ulrich A. Genomic Analysis of the Endophytic Stenotrophomonas Strain 169 Reveals Features Related to Plant-Growth Promotion and Stress Tolerance. Front Microbiol 2021; 12:687463. [PMID: 34220780 PMCID: PMC8245107 DOI: 10.3389/fmicb.2021.687463] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
Plant-associated Stenotrophomonas isolates have great potential for plant growth promotion, especially under stress conditions, due to their ability to promote tolerance to abiotic stresses such as salinity or drought. The endophytic strain Stenotrophomonas sp. 169, isolated from a field-grown poplar, increased the growth of inoculated in vitro plants, with a particular effect on root development, and was able to stimulate the rooting of poplar cuttings in the greenhouse. The strain produced high amounts of the plant growth-stimulating hormone auxin under in vitro conditions. The comparison of the 16S rRNA gene sequences and the phylogenetic analysis of the core genomes showed a close relationship to Stenotrophomonas chelatiphaga and a clear separation from Stenotrophomonas maltophilia. Whole genome sequence analysis revealed functional genes potentially associated with attachment and plant colonization, growth promotion, and stress protection. In detail, an extensive set of genes for twitching motility, chemotaxis, flagella biosynthesis, and the ability to form biofilms, which are connected with host plant colonization, could be identified in the genome of strain 169. The production of indole-3-acetic acid and the presence of genes for auxin biosynthesis pathways and the spermidine pathway could explain the ability to promote plant growth. Furthermore, the genome contained genes encoding for features related to the production of different osmoprotective molecules and enzymes mediating the regulation of stress tolerance and the ability of bacteria to quickly adapt to changing environments. Overall, the results of physiological tests and genome analysis demonstrated the capability of endophytic strain 169 to promote plant growth. In contrast to related species, strain 169 can be considered non-pathogenic and suitable for biotechnology applications.
Collapse
Affiliation(s)
- Kristina Ulrich
- Johann Heinrich von Thünen Institute, Institute of Forest Genetics, Waldsieversdorf, Germany
| | | | - Regina Becker
- Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Volker Schneck
- Johann Heinrich von Thünen Institute, Institute of Forest Genetics, Waldsieversdorf, Germany
| | - Andreas Ulrich
- Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| |
Collapse
|
28
|
The Potential of Phage Therapy against the Emerging Opportunistic Pathogen Stenotrophomonas maltophilia. Viruses 2021; 13:v13061057. [PMID: 34204897 PMCID: PMC8228603 DOI: 10.3390/v13061057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
The isolation and characterization of bacteriophages for the treatment of infections caused by the multidrug resistant pathogen Stenotrophomonas maltophilia is imperative as nosocomial and community-acquired infections are rapidly increasing in prevalence. This increase is largely due to the numerous virulence factors and antimicrobial resistance genes encoded by this bacterium. Research on S. maltophilia phages to date has focused on the isolation and in vitro characterization of novel phages, often including genomic characterization, from the environment or by induction from bacterial strains. This review summarizes the clinical significance, virulence factors, and antimicrobial resistance mechanisms of S. maltophilia, as well as all phages isolated and characterized to date and strategies for their use. We further address the limited in vivo phage therapy studies conducted against this bacterium and discuss the future research needed to spearhead phages as an alternative treatment option against multidrug resistant S. maltophilia.
Collapse
|
29
|
Li Y, Liu Y, Zhang H, Yang Y, Wei G, Li Z. The Composition of Root-Associated Bacteria and Fungi of Astragalus mongholicus and Their Relationship With the Bioactive Ingredients. Front Microbiol 2021; 12:642730. [PMID: 34046020 PMCID: PMC8147693 DOI: 10.3389/fmicb.2021.642730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Astragalus membranaceus (Fisch.) Bge. var. mongholicus, which is used in traditional Chinese medicine, contains several bioactive ingredients. The root-associated microbial communities play a crucial role in the production of secondary metabolites in plants. However, the correlation of root-associated bacteria and fungi with the bioactive ingredients production in A. mongholicus has not been elucidated. This study aimed to examine the changes in soil properties, root bioactive ingredients, and microbial communities in different cultivation years. The root-associated bacterial and fungal composition was analyzed using high-throughput sequencing. The correlation between root-associated bacteria and fungi, soil properties, and six major bioactive ingredients were examined using multivariate correlation analysis. Results showed that soil properties and bioactive ingredients were distinct across different cultivation years. The composition of the rhizosphere microbiome was different from that of the root endosphere microbiome. The bacterial community structure was affected by the cultivation year and exhibited a time-decay pattern. Soil properties affected the fungal community composition. It was found that 18 root-associated bacterial operational taxonomic units (OTUs) and four fungal OTUs were positively and negatively correlated with bioactive ingredient content, respectively. The abundance of Stenotrophomonas in the rhizosphere was positively correlated with astragaloside content. Phyllobacterium and Inquilinus in the endosphere were positively correlated with the calycosin content. In summary, this study provided a new opportunity and theoretical reference for improving the production and quality of in A. mongholicus, which thus increase the pharmacological value of A. mongholicus.
Collapse
Affiliation(s)
- Yanmei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Yang Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Hui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Yan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| | - Zhefei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Xianyang, China
| |
Collapse
|
30
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
31
|
Teheran-Sierra LG, Funnicelli MIG, de Carvalho LAL, Ferro MIT, Soares MA, Pinheiro DG. Bacterial communities associated with sugarcane under different agricultural management exhibit a diversity of plant growth-promoting traits and evidence of synergistic effect. Microbiol Res 2021; 247:126729. [PMID: 33667983 DOI: 10.1016/j.micres.2021.126729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 01/04/2023]
Abstract
Plant-associated microbiomes have been a target of interest for the prospection of microorganisms, which may be acting as effectors to increase agricultural productivity. For years, the search for beneficial microorganisms has been carried out from the characterization of functional traits of growth-promotion using tests with a few isolates. However, eventually, the expectations with positive results may not be realized when the evaluation is performed in association with plants. In our study, we accessed the cultivable sugarcane microbiome under two conditions of agronomic management: organic and conventional. From the use of a new customized culture medium, we recovered 944 endophytic and epiphytic bacterial communities derived from plant roots, stalks, leaves, and rhizospheric soil. This could be accomplished by using a large-scale approach, initially performing an in planta (Cynodon dactylon) screening process of inoculation to avoid early incompatibility. The inoculation was performed using the bacterial communities, considering that in this way, they could act synergistically. This process resulted in 38 candidate communities, 17 of which had higher Indole-3-acetic acid (IAA) production and phosphate solubilization activity and, were submitted to a new in planta test using Brachiaria ruziziensis and quantification of functional traits for growth-promotion and physiological tests. Enrichment analysis of selected communities has shown that they derived mainly from epiphytic populations of sugarcane stalks under conventional management. The sequencing of the V3-V4 region of the 16S rRNA gene revealed 34 genera and 24 species distributed among the phylum Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. We also observed a network of genera in these communities where the genus Chryseobacterium stands out with a greater degree of interaction, indicating a possible direct or indirect role as a keystone taxon in communities with plant-growth promotion capacities. From the results achieved, we can conclude that the approach is useful in the recovery of a set of sugarcane bacterial communities and that there is, evidence of synergistic action providing benefits to plants, and that they are compatible with plants of the same family (Poaceae). Thus, we are reporting the beneficial bacterial communities identified as suitable candidates with rated potential to be exploited as bioinoculants for crops.
Collapse
Affiliation(s)
- Luis Guillermo Teheran-Sierra
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884- 900, SP, Brazil; Programa de Pós-Graduação em Microbiologia Agropecuária, Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884-900, SP, Brazil
| | - Michelli Inácio Gonçalves Funnicelli
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884- 900, SP, Brazil; Programa de Pós-Graduação em Microbiologia Agropecuária, Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884-900, SP, Brazil
| | - Lucas Amoroso Lopes de Carvalho
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884- 900, SP, Brazil; Programa de Pós-Graduação em Microbiologia Agropecuária, Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884-900, SP, Brazil
| | - Maria Inês Tiraboschi Ferro
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884- 900, SP, Brazil
| | - Marcos Antônio Soares
- Universidade Federal de Mato Grosso, Instituto de Biociências, Av. Fernando Corrêa, Nº 2367, Cuiabá, MT, Brazil
| | - Daniel Guariz Pinheiro
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884- 900, SP, Brazil.
| |
Collapse
|
32
|
Variation of rhizosphere microbial community in continuous mono-maize seed production. Sci Rep 2021; 11:1544. [PMID: 33452372 PMCID: PMC7810720 DOI: 10.1038/s41598-021-81228-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/24/2020] [Indexed: 11/08/2022] Open
Abstract
Soil microbe is crucial to a healthy soil, therefore its diversities and abundances under different conditions are still need fully understand.The aims of the study were to characterize the community structure and diversity of microbe in the rhizosphere soil after continuous maize seed production, and the relationship between the disease incidence of four diseases and the variation of the rhizosphere microbe. The results showed that different fungal and bacterial species were predominant in different cropping year, and long-term maize seed production had a huge impact on structure and diversity of soil microbial. Ascomycota and Mortierellomycota were the dominant fungal phyla and Mortierella and Ascomycetes represented for a large proportion of genus. A relative increase of Fusarium and Gibberella and a relative decrease of Mortierella, Chrysosporium, Podospora, and Chaetomium were observed with the increase of cropping year. Pathogenic Fusarium, Curvularia, Curvularia-lunata, Cladosporium, Gibberella-baccata, and Plectosphaerellaceae were over-presented and varied at different continuous cropping year, led to different maize disease incidence. Proteobacteria and Actinobacteria ranked in the top two of all bacterial phyla, and genus Pseudarthrobacter, Roseiflexus and RB41 dominated top 3. Haliangium and Streptomyces decreased with the continuous cropping year and mono-cropping of maize seed production increased disease incidence with the increase of cropping year, while the major disease was different. Continuous cropping of maize seed production induced the decrease of protective microbe and biocontrol genera, while pathogenic pathogen increased, and maize are in danger of pathogen invasion. Field management show great effects on soil microbial community.
Collapse
|
33
|
Genomic Investigation into the Virulome, Pathogenicity, Stress Response Factors, Clonal Lineages, and Phylogenetic Relationship of Escherichia coli Strains Isolated from Meat Sources in Ghana. Genes (Basel) 2020; 11:genes11121504. [PMID: 33327465 PMCID: PMC7764966 DOI: 10.3390/genes11121504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Escherichia coli are among the most common foodborne pathogens associated with infections reported from meat sources. This study investigated the virulome, pathogenicity, stress response factors, clonal lineages, and the phylogenomic relationship of E. coli isolated from different meat sources in Ghana using whole-genome sequencing. Isolates were screened from five meat sources (beef, chevon, guinea fowl, local chicken, and mutton) and five areas (Aboabo, Central market, Nyorni, Victory cinema, and Tishegu) based in the Tamale Metropolis, Ghana. Following microbial identification, the E. coli strains were subjected to whole-genome sequencing. Comparative visualisation analyses showed different DNA synteny of the strains. The isolates consisted of diverse sequence types (STs) with the most common being ST155 (n = 3/14). Based Upon Related Sequence Types (eBURST) analyses of the study sequence types identified four similar clones, five single-locus variants, and two satellite clones (more distantly) with global curated E. coli STs. All the isolates possessed at least one restriction-modification (R-M) and CRISPR defence system. Further analysis revealed conserved stress response mechanisms (detoxification, osmotic, oxidative, and periplasmic stress) in the strains. Estimation of pathogenicity predicted a higher average probability score (Pscore ≈ 0.937), supporting their pathogenic potential to humans. Diverse virulence genes that were clonal-specific were identified. Phylogenomic tree analyses coupled with metadata insights depicted the high genetic diversity of the E. coli isolates with no correlation with their meat sources and areas. The findings of this bioinformatic analyses further our understanding of E. coli in meat sources and are broadly relevant to the design of contamination control strategies in meat retail settings in Ghana.
Collapse
|
34
|
McCutcheon JG, Lin A, Dennis JJ. Isolation and Characterization of the Novel Bacteriophage AXL3 against Stenotrophomonas maltophilia. Int J Mol Sci 2020; 21:E6338. [PMID: 32882851 PMCID: PMC7504290 DOI: 10.3390/ijms21176338] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022] Open
Abstract
The rapid increase in the number of worldwide human infections caused by the extremely antibiotic resistant bacterial pathogen Stenotrophomonas maltophilia is cause for concern. An alternative treatment solution in the post-antibiotic era is phage therapy, the use of bacteriophages to selectively kill bacterial pathogens. In this study, the novel bacteriophage AXL3 (vB_SmaS-AXL_3) was isolated from soil and characterized. Host range analysis using a panel of 29 clinical S. maltophilia isolates shows successful infection of five isolates and electron microscopy indicates that AXL3 is a member of the Siphoviridae family. Complete genome sequencing and analysis reveals a 47.5 kb genome predicted to encode 65 proteins. Functionality testing suggests AXL3 is a virulent phage and results show that AXL3 uses the type IV pilus, a virulence factor on the cell surface, as its receptor across its host range. This research identifies a novel virulent phage and characterization suggests that AXL3 is a promising phage therapy candidate, with future research examining modification through genetic engineering to broaden its host range.
Collapse
Affiliation(s)
| | | | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (J.G.M.); (A.L.)
| |
Collapse
|
35
|
Wei J, Zhang Y, Wang X, Chen H, Yuan Y, Yue T. Distribution of cold‐resistant bacteria in quick‐frozen dumpling and its inhibition by different antibacterial agents. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jianping Wei
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling China
| | - Yuxiang Zhang
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling China
| | - Xin Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling China
| | - Hong Chen
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling China
| | - Yahong Yuan
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling China
| | - Tianli Yue
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling China
- College of Food Science and Technology Northwest University Xi'an China
| |
Collapse
|
36
|
Pinski A, Zur J, Hasterok R, Hupert-Kocurek K. Comparative Genomics of Stenotrophomonas maltophilia and Stenotrophomonas rhizophila Revealed Characteristic Features of Both Species. Int J Mol Sci 2020; 21:E4922. [PMID: 32664682 PMCID: PMC7404187 DOI: 10.3390/ijms21144922] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
Although Stenotrophomonas maltophilia strains are efficient biocontrol agents, their field applications have raised concerns due to their possible threat to human health. The non-pathogenic Stenotrophomonas rhizophila species, which is closely related to S. maltophilia, has been proposed as an alternative. However, knowledge regarding the genetics of S. rhizophila is limited. Thus, the aim of the study was to define any genetic differences between the species and to characterise their ability to promote the growth of plant hosts as well as to enhance phytoremediation efficiency. We compared 37 strains that belong to both species using the tools of comparative genomics and identified 96 genetic features that are unique to S. maltophilia (e.g., chitin-binding protein, mechanosensitive channels of small conductance and KGG repeat-containing stress-induced protein) and 59 that are unique to S. rhizophila (e.g., glucosylglycerol-phosphate synthase, cold shock protein with the DUF1294 domain, and pteridine-dependent dioxygenase-like protein). The strains from both species have a high potential for biocontrol, which is mainly related to the production of keratinases (KerSMD and KerSMF), proteinases and chitinases. Plant growth promotion traits are attributed to the biosynthesis of siderophores, spermidine, osmoprotectants such as trehalose and glucosylglycerol, which is unique to S. rhizophila. In eight out of 37 analysed strains, the genes that are required to degrade protocatechuate were present. While our results show genetic differences between the two species, they had a similar growth promotion potential. Considering the information above, S. rhizophila constitutes a promising alternative for S. maltophilia for use in agricultural biotechnology.
Collapse
Affiliation(s)
- Artur Pinski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (J.Z.); (R.H.)
| | | | | | - Katarzyna Hupert-Kocurek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (J.Z.); (R.H.)
| |
Collapse
|
37
|
Berg G, Rybakova D, Fischer D, Cernava T, Vergès MCC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, Kazou M, Kinkel L, Lange L, Lima N, Loy A, Macklin JA, Maguin E, Mauchline T, McClure R, Mitter B, Ryan M, Sarand I, Smidt H, Schelkle B, Roume H, Kiran GS, Selvin J, Souza RSCD, van Overbeek L, Singh BK, Wagner M, Walsh A, Sessitsch A, Schloter M. Microbiome definition re-visited: old concepts and new challenges. MICROBIOME 2020; 8:103. [PMID: 32605663 PMCID: PMC7329523 DOI: 10.1186/s40168-020-00875-0] [Citation(s) in RCA: 902] [Impact Index Per Article: 180.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/22/2020] [Indexed: 05/03/2023]
Abstract
The field of microbiome research has evolved rapidly over the past few decades and has become a topic of great scientific and public interest. As a result of this rapid growth in interest covering different fields, we are lacking a clear commonly agreed definition of the term "microbiome." Moreover, a consensus on best practices in microbiome research is missing. Recently, a panel of international experts discussed the current gaps in the frame of the European-funded MicrobiomeSupport project. The meeting brought together about 40 leaders from diverse microbiome areas, while more than a hundred experts from all over the world took part in an online survey accompanying the workshop. This article excerpts the outcomes of the workshop and the corresponding online survey embedded in a short historical introduction and future outlook. We propose a definition of microbiome based on the compact, clear, and comprehensive description of the term provided by Whipps et al. in 1988, amended with a set of novel recommendations considering the latest technological developments and research findings. We clearly separate the terms microbiome and microbiota and provide a comprehensive discussion considering the composition of microbiota, the heterogeneity and dynamics of microbiomes in time and space, the stability and resilience of microbial networks, the definition of core microbiomes, and functionally relevant keystone species as well as co-evolutionary principles of microbe-host and inter-species interactions within the microbiome. These broad definitions together with the suggested unifying concepts will help to improve standardization of microbiome studies in the future, and could be the starting point for an integrated assessment of data resulting in a more rapid transfer of knowledge from basic science into practice. Furthermore, microbiome standards are important for solving new challenges associated with anthropogenic-driven changes in the field of planetary health, for which the understanding of microbiomes might play a key role. Video Abstract.
Collapse
Affiliation(s)
- Gabriele Berg
- Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Daria Rybakova
- Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Tomislav Cernava
- Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Trevor Charles
- Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Metagenom Bio, 550 Parkside Drive, Unit A9, Waterloo, ON, N2L 5 V4, Canada
| | - Xiaoyulong Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Luca Cocolin
- European Food Information Council, Brussels, Belgium
| | - Kellye Eversole
- International Alliance for Phytobiomes Research, Summit, Lee, MO, 's, USA
| | | | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Linda Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Lene Lange
- BioEconomy, Research, & Advisory, Valby, Denmark
| | - Nelson Lima
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Alexander Loy
- Department of Microbial Ecology and Ecosystem Science, University of Vienna, Vienna, Austria
| | | | - Emmanuelle Maguin
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Tim Mauchline
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, UK
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Birgit Mitter
- Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Inga Sarand
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | | | | | - G Seghal Kiran
- Dept of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - Rafael Soares Correa de Souza
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Leo van Overbeek
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Michael Wagner
- Department of Microbial Ecology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Aaron Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Angela Sessitsch
- Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | | |
Collapse
|
38
|
Peters DL, McCutcheon JG, Dennis JJ. Characterization of Novel Broad-Host-Range Bacteriophage DLP3 Specific to Stenotrophomonas maltophilia as a Potential Therapeutic Agent. Front Microbiol 2020; 11:1358. [PMID: 32670234 PMCID: PMC7326821 DOI: 10.3389/fmicb.2020.01358] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 01/04/2023] Open
Abstract
A novel Siphoviridae phage specific to the bacterial species Stenotrophomonas maltophilia was isolated from a pristine soil sample and characterized as a second member of the newly established Delepquintavirus genus. Phage DLP3 possesses one of the broadest host ranges of any S. maltophilia phage yet characterized, infecting 22 of 29 S. maltophilia strains. DLP3 has a genome size of 96,852 bp and a G+C content of 58.4%, which is significantly lower than S. maltophilia host strain D1571 (G+C content of 66.9%). The DLP3 genome encodes 153 coding domain sequences covering 95% of the genome, including five tRNA genes with different specificities. The DLP3 lysogen exhibits a growth rate increase during the exponential phase of growth as compared to the wild type strain. DLP3 also encodes a functional erythromycin resistance protein, causing lysogenic conversion of the host D1571 strain. Although a temperate phage, DLP3 demonstrates excellent therapeutic potential because it exhibits a broad host range, infects host cells through the S. maltophilia type IV pilus, and exhibits lytic activity in vivo. Undesirable traits, such as its temperate lifecycle, can be eliminated using genetic techniques to produce a modified phage useful in the treatment of S. maltophilia bacterial infections.
Collapse
Affiliation(s)
- Danielle L Peters
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Jaclyn G McCutcheon
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Jonathan J Dennis
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
39
|
Abdelrazek S, Simon P, Colley M, Mengiste T, Hoagland L. Crop management system and carrot genotype affect endophyte composition and Alternaria dauci suppression. PLoS One 2020; 15:e0233783. [PMID: 32497087 PMCID: PMC7272071 DOI: 10.1371/journal.pone.0233783] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/12/2020] [Indexed: 11/23/2022] Open
Abstract
Managing pests in carrot production is challenging. Endophytic microbes have been demonstrated to improve the health and productivity of many crops, but factors affecting endophyte dynamics in carrot is still not well understood. The goal of this study was to determine how crop management system and carrot genotype interact to affect the composition and potential of endophytes to mitigate disease caused by Alternaria dauci, an important carrot pathogen. Twenty-eight unique isolates were collected from the taproots of nine diverse genotypes of carrot grown in a long-term trial comparing organic and conventional management. Antagonistic activity was quantified using an in vitro assay, and potential for individual isolates to mitigate disease was evaluated in greenhouse trials using two carrot cultivars. Results confirm that carrot taproots are colonized by an abundant and diverse assortment of bacteria and fungi representing at least distinct 13 genera. Soils in the organic system had greater total organic matter, microbial biomass and activity than the conventional system and endophyte composition in taproots grown in this system were more abundant and diverse, and had greater antagonistic activity. Carrot genotype also affected endophyte abundance as well as potential for individual isolates to affect seed germination, seedling growth and tolerance to A. dauci. The benefits of endophytes on carrot growth were greatest when plants were subject to A. dauci stress, highlighting the importance of environmental conditions in the functional role of endophytes. Results of this study provide evidence that endophytes can play an important role in improving carrot performance and mediating resistance to A. dauci, and it may someday be possible to select for these beneficial plant-microbial relationships in carrot breeding programs. Implementing soil-building practices commonly used in organic farming systems has potential to promote these beneficial relationships and improve the health and productivity of carrot crops.
Collapse
Affiliation(s)
- Sahar Abdelrazek
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United State of America
| | - Philipp Simon
- USDA-ARS Agriculture Research Service, Madison, Wisconsin, United States of America
| | - Micaela Colley
- Organic Seed Alliance, Port Townsend, Washington, United States of America
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Lori Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United State of America
- * E-mail:
| |
Collapse
|
40
|
Yero D, Huedo P, Conchillo-Solé O, Martínez-Servat S, Mamat U, Coves X, Llanas F, Roca I, Vila J, Schaible UE, Daura X, Gibert I. Genetic Variants of the DSF Quorum Sensing System in Stenotrophomonas maltophilia Influence Virulence and Resistance Phenotypes Among Genotypically Diverse Clinical Isolates. Front Microbiol 2020; 11:1160. [PMID: 32582100 PMCID: PMC7283896 DOI: 10.3389/fmicb.2020.01160] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
The pathogenicity of Stenotrophomonas maltophilia is regulated in part by its quorum sensing (QS) system. The main QS signaling molecule in S. maltophilia is known as diffusible signal factor (DSF), and the rpf gene cluster is responsible for its synthesis and perception. Two cluster variants have been previously described, rpf-1 and rpf-2, which differ basically in the conditions under which DSF is produced. Here, correlations between the rpf variant and antibiotic susceptibility, LPS electrophoretic profiles and virulence-related phenotypes were evaluated for a collection of 78 geographically and genetically diverse clinical strains of S. maltophilia. In general there were associations between previously established genogroups and the genetic variant of the rpf cluster. However, only few genotype-phenotype correlations could be observed. Resistance to the β-lactam antibiotics ceftazidime and ticarcillin was associated with strains carrying the rpf-1 variant, whereas strains of variant rpf-2, particularly those of genogroup C, showed higher resistance levels to colistin. Strains of variant rpf-2 were also significantly more virulent to Galleria mellonella larvae than those of rpf-1, most likely due to an increased ability of rpf-2 strains to form biofilms. A comparative genomic analysis revealed the presence of proteins unique to individual genogroups. In particular, the strains of genogroup C share an operon that encodes for a new virulence determinant in S. maltophilia related to the synthesis of an alternative Flp/Tad pilus. Overall, this study establishes a link between the DSF-based QS system and the virulence and resistance phenotypes in this species, and identifies potential high-risk clones circulating in European hospitals.
Collapse
Affiliation(s)
- Daniel Yero
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Pol Huedo
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Oscar Conchillo-Solé
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Sònia Martínez-Servat
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Xavier Coves
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ferran Llanas
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ignasi Roca
- Department of Clinical Microbiology-ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vila
- Department of Clinical Microbiology-ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ulrich E Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
41
|
Newberry E, Bhandari R, Kemble J, Sikora E, Potnis N. Genome-resolved metagenomics to study co-occurrence patterns and intraspecific heterogeneity among plant pathogen metapopulations. Environ Microbiol 2020; 22:2693-2708. [PMID: 32207218 DOI: 10.1111/1462-2920.14989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 01/12/2023]
Abstract
Assessment of pathogen diversity in agricultural fields is essential for informing management decisions and the development of resistant plant varieties. However, many population genomic studies have relied on culture-based approaches that do not provide quantitative assessment of pathogen populations at the field-level or the associated host microbiome. Here, we applied whole-genome shotgun sequencing of microbial DNA extracted directly from the washings of pooled leaf samples, collected from individual tomato and pepper fields in Alabama that displayed the classical symptoms of bacterial spot disease caused by Xanthomonas spp. Our results revealed that while the occurrence of both X. perforans and X. euvesicatoria within fields was limited, evidence of co-occurrence of up to three distinct X. perforans genotypes was obtained in 7 of 10 tomato fields sampled. These population dynamics were accompanied by the corresponding type 3 secreted effector repertoires associated with the co-occurring X. perforans genotypes, indicating that metapopulation structure within fields should be considered when assessing the adaptive potential of X. perforans. Finally, analysis of microbial community composition revealed that co-occurrence of the bacterial spot pathogens Pseudomonas cichorii and Xanthomonas spp. is common in Alabama fields and provided evidence for the non-random association of several other human and plant opportunists.
Collapse
Affiliation(s)
- Eric Newberry
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Rishi Bhandari
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Joseph Kemble
- Department of Horticulture, Auburn University, Auburn, AL, USA
| | - Edward Sikora
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA.,Alabama Cooperative Extension System, Auburn, AL, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
42
|
The Effect of Biochars and Endophytic Bacteria on Growth and Root Rot Disease Incidence of Fusarium Infested Narrow-Leafed Lupin ( Lupinus angustifolius L.). Microorganisms 2020; 8:microorganisms8040496. [PMID: 32244470 PMCID: PMC7232306 DOI: 10.3390/microorganisms8040496] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 11/17/2022] Open
Abstract
The effects of biochar on plant growth vary depending on the applied biochar type, study site environmental conditions, microbial species, and plant-microbial interactions. The objectives of the present study were therefore to assess 1) the response of growth parameters of lupin and root disease incidence to the application of three biochar types in a loamy sandy soil, and 2) the role of endophytic bacteria in biological control of root rot disease incidence in lupin after the amendment of soil with different biochar types. As biochar types we tested (i) hydrochar (HTC) from maize silage, (ii) pyrolysis char from maize (MBC), and (iii) pyrolysis char from wood (WBC) at three different concentrations (1%, 2%, and 3% of char as soil amendments). There were no significant effects in lupin shoot and root growth in soils amended with WBC at any of the concentrations. MBC did not affect plant growth except for root dry weight at 2% MBC. HTC char at 2% concentration, significantly increased the root dry weight of lupin by 54-75%, and shoot dry weight by 21-25%. Lupin plants grown in soil amended with 2% and 3% WBC and MBC chars showed 40-50% and 10-20% disease symptoms, respectively. Plants grown in soil without biochar and with HTC char were healthy, and no disease incidence occurred. Pseudomonas putida L2 and Stenotrophomonas pavanii L8 isolates demonstrated a disease reduction compared to un-inoculated plants under MBC and WBC amended soil that was infested with Fusarium solani.
Collapse
|
43
|
Cooperativity between Stenotrophomonas maltophilia and Pseudomonas aeruginosa during Polymicrobial Airway Infections. Infect Immun 2020; 88:IAI.00855-19. [PMID: 31932329 DOI: 10.1128/iai.00855-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/23/2019] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative bacterium found ubiquitously in the environment that has historically been regarded as nonpathogenic. S. maltophilia is increasingly observed in patient sputa in cystic fibrosis (CF), and while existing epidemiology indicates that patients with S. maltophilia have poorer diagnoses, its clinical significance remains unclear. Moreover, as multidrug resistance is common among S. maltophilia isolates, treatment options for these infections may be limited. Here, we investigated the pathogenicity of S. maltophilia alone and during polymicrobial infection with Pseudomonas aeruginosa Colonization, persistence, and virulence of S. maltophilia were assessed in experimental respiratory infections of mice. The results of this study indicate that S. maltophilia transiently colonizes the lung accompanied by significant weight loss and immune cell infiltration and the expression of early inflammatory markers, including interleukin 6 (IL-6), IL-1α, and tumor necrosis factor alpha (TNF-α). Importantly, polymicrobial infection with P. aeruginosa elicited significantly higher S. maltophilia counts in bronchoalveolar lavages and lung tissue homogenates. This increase in bacterial load was directly correlated with the density of the P. aeruginosa population and required viable P. aeruginosa bacteria. Microscopic analysis of biofilms formed in vitro revealed that S. maltophilia formed well-integrated biofilms with P. aeruginosa, and these organisms colocalize in the lung during dual-species infection. Based on these results, we conclude that active cellular processes by P. aeruginosa afford a significant benefit to S. maltophilia during polymicrobial infections. Furthermore, these results indicate that S. maltophilia may have clinical significance in respiratory infections.
Collapse
|
44
|
Li D, Wong CH, Seet MF, Kuan N. Isolation, Characterization, and Inactivation of Stenotrophomonas maltophilia From Leafy Green Vegetables and Urban Agriculture Systems. Front Microbiol 2019; 10:2718. [PMID: 31849874 PMCID: PMC6895016 DOI: 10.3389/fmicb.2019.02718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/08/2019] [Indexed: 12/04/2022] Open
Abstract
Stenotrophomonas maltophilia is an emerging opportunistic pathogen that, on the one hand, causes severe nosocomial infection in immunocompromised populations with a high mortality rate and, on the other hand, is present ubiquitously in the environment. This study, for the first time to the best of our knowledge, isolated and characterized S. maltophilia from leafy green vegetables produced by hydroponic farms and from a hydroponic farming facility in Singapore. Eleven S. maltophilia isolates were obtained from three types of leafy green vegetables (sweet basil, kale, and parsley) and from the nutrient solution used by a hydroponic farm. The antimicrobial resistance (AMR), biofilm-forming ability, and resistance to UV and quaternary ammonium compound (QAC) treatments were investigated, as was the fate of S. maltophilia in a simulated leafy green vegetable environment during a storage period of 6 days at different temperatures. The results showed that high population levels of S. maltophilia could be reached on leafy green vegetables, especially after being stored at abused temperatures (>8-log CFU/ml in basil juice after 6 days storage at 20°C) and on hydroponic farming facilities, probably due to biofilm formation (8 to 9-log CFU/well in biofilms). At 4°C, S. maltophilia was able to survive, but no growth was observed during storage in either bacteria culture media or basil juice for a period of 6 days. UV treatment, which induced substantial reductions in S. maltophilia in both single-species and dual-species biofilms mixed with Salmonella enterica serovar Typhimurium reference strain (ATCC 14028) or self-isolated Pseudomonas fluorescens (>4-log reductions by 250 mJ/cm2 UV), is recommended for employment by hydroponic farms to treat their nutrient solutions and farming facilities so as to enhance microbial safety.
Collapse
Affiliation(s)
- Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Chun Hong Wong
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Mei Fang Seet
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Nicole Kuan
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
45
|
Amoako DG, Somboro AM, Abia ALK, Allam M, Ismail A, Bester LA, Essack SY. Genome Mining and Comparative Pathogenomic Analysis of An Endemic Methicillin-Resistant Staphylococcus Aureus (MRSA) Clone, ST612-CC8-t1257-SCCmec_IVd(2B), Isolated in South Africa. Pathogens 2019; 8:E166. [PMID: 31569754 PMCID: PMC6963616 DOI: 10.3390/pathogens8040166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
This study undertook genome mining and comparative genomics to gain genetic insights into the dominance of the methicillin-resistant Staphylococcus aureus (MRSA) endemic clone ST612-CC8-t1257-SCCmec_IVd(2B), obtained from the poultry food chain in South Africa. Functional annotation of the genome revealed a vast array of similar central metabolic, cellular and biochemical networks within the endemic clone crucial for its survival in the microbial community. In-silico analysis of the clone revealed the possession of uniform defense systems, restriction-modification system (type I and IV), accessory gene regulator (type I), arginine catabolic mobile element (type II), and type 1 clustered, regularly interspaced, short palindromic repeat (CRISPR)Cas array (N = 7 ± 1), which offer protection against exogenous attacks. The estimated pathogenic potential predicted a higher probability (average Pscore ≈ 0.927) of the clone being pathogenic to its host. The clone carried a battery of putative virulence determinants whose expression are critical for establishing infection. However, there was a slight difference in their possession of adherence factors (biofilm operon system) and toxins (hemolysins and enterotoxins). Further analysis revealed a conserved environmental tolerance and persistence mechanisms related to stress (oxidative and osmotic), heat shock, sporulation, bacteriocins, and detoxification, which enable it to withstand lethal threats and contribute to its success in diverse ecological niches. Phylogenomic analysis with close sister lineages revealed that the clone was closely related to the MRSA isolate SHV713 from Australia. The results of this bioinformatic analysis provide valuable insights into the biology of this endemic clone.
Collapse
Affiliation(s)
- Daniel Gyamfi Amoako
- Infection Genomics and Applied Bioinformatics Division, Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal; Durban 4000, South Africa.
| | - Anou M Somboro
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal; Durban 4000, South Africa.
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa.
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa.
| | - Linda A Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal; Durban 4000, South Africa.
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| |
Collapse
|
46
|
Bayer-Santos E, Ceseti LDM, Farah CS, Alvarez-Martinez CE. Distribution, Function and Regulation of Type 6 Secretion Systems of Xanthomonadales. Front Microbiol 2019; 10:1635. [PMID: 31379785 PMCID: PMC6653060 DOI: 10.3389/fmicb.2019.01635] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/02/2019] [Indexed: 11/13/2022] Open
Abstract
Members of the Xanthomonadales order include several plant pathogens of significant economic and agricultural impact, such as Xanthomonas spp. Type 6 secretion systems (T6SSs) are contractile nanomachines used by many bacterial species to inject protein effectors into target prokaryotic and eukaryotic cells and provide a competitive advantage for bacteria in different environments. Effectors with antibacterial properties include peptidoglycan hydrolases, lipases and phospholipases that break down structural components of the cell envelope, promoting target-cell lysis; and RNases, DNAses, and NADases that affect target-cell metabolism, arresting growth. Effectors with anti-eukaryotic properties are functionally more diverse. The T6SS of Xanthomonas citri is the only example experimentally characterized so far within the Xanthomonadales order and displays anti-eukaryotic function by providing resistance to predation by amoeba. This T6SS is regulated at the transcriptional level by a signaling cascade involving a Ser/Thr kinase and an extracytoplasmic function (ECF) sigma factor. In this review, we performed in silico analyses of 35 genomes of Xanthomonadales and showed that T6SSs are widely distributed and phylogenetically classified into three major groups. In silico predictions identified a series of proteins with known toxic domains as putative T6SS effectors, suggesting that the T6SSs of Xanthomonadales display both anti-prokaryotic and anti-eukaryotic properties depending on the phylogenetic group and bacterial species.
Collapse
Affiliation(s)
- Ethel Bayer-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas de Moraes Ceseti
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Chuck Shaker Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cristina Elisa Alvarez-Martinez
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
47
|
Peters DL, McCutcheon JG, Stothard P, Dennis JJ. Novel Stenotrophomonas maltophilia temperate phage DLP4 is capable of lysogenic conversion. BMC Genomics 2019; 20:300. [PMID: 30991961 PMCID: PMC6469090 DOI: 10.1186/s12864-019-5674-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Temperate bacteriophages are capable of lysogenic conversion of new bacterial hosts. This phenomenon is often ascribed to "moron" elements that are acquired horizontally and transcribed independently from the rest of the phage genes. Whereas some bacterial species exhibit relatively little prophage-dependent phenotypic changes, other bacterial species such as Stenotrophomonas maltophilia appear to commonly adopt prophage genetic contributions. RESULTS The novel S. maltophilia bacteriophage DLP4 was isolated from soil using the highly antibiotic-resistant S. maltophilia strain D1585. Genome sequence analysis and functionality testing showed that DLP4 is a temperate phage capable of lysogenizing D1585. Two moron genes of interest, folA (BIT20_024) and ybiA (BIT20_065), were identified and investigated for their putative activities using complementation testing and phenotypic and transcriptomic changes between wild-type D1585 and the D1585::DLP4 lysogen. The gp24 / folA gene encodes dihydrofolate reductase (DHFR: FolA), an enzyme responsible for resistance to the antibiotic trimethoprim. I-TASSER analysis of DLP4 FolA predicted structural similarity to Bacillus anthracis DHFR and minimum inhibitory concentration experiments demonstrated that lysogenic conversion of D1585 by DLP4 provided the host cell with an increase in trimethoprim resistance. The gp65 / ybiA gene encodes N-glycosidase YbiA, which in E. coli BW25113 is required for its swarming motility phenotype. Expressing DLP4 ybiA in strain ybiA770(del)::kan restored its swarming motility activity to wildtype levels. Reverse transcription-PCR confirmed the expression of both of these genes during DLP4 lysogeny. CONCLUSIONS S. maltophilia temperate phage DLP4 contributes to the antibiotic resistance exhibited by its lysogenized host strain. Genomic analyses can greatly assist in the identification of phage moron genes potentially involved in lysogenic conversion. Further research is required to fully understand the specific contributions temperate phage moron genes provide with respect to the antibiotic resistance and virulence of S. maltophilia host cells.
Collapse
Affiliation(s)
- Danielle L. Peters
- Department of Biological Sciences, 6-065 Centennial Centre for Interdisciplinery Science, University of Alberta, Edmonton, Alberta T6G 2E9 Canada
| | - Jaclyn G. McCutcheon
- Department of Biological Sciences, 6-065 Centennial Centre for Interdisciplinery Science, University of Alberta, Edmonton, Alberta T6G 2E9 Canada
| | - Paul Stothard
- Department of Biological Sciences, 6-065 Centennial Centre for Interdisciplinery Science, University of Alberta, Edmonton, Alberta T6G 2E9 Canada
| | - Jonathan J. Dennis
- Department of Biological Sciences, 6-065 Centennial Centre for Interdisciplinery Science, University of Alberta, Edmonton, Alberta T6G 2E9 Canada
| |
Collapse
|
48
|
Martínez-Hidalgo P, Maymon M, Pule-Meulenberg F, Hirsch AM. Engineering root microbiomes for healthier crops and soils using beneficial, environmentally safe bacteria. Can J Microbiol 2019; 65:91-104. [DOI: 10.1139/cjm-2018-0315] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Green Revolution developed new crop varieties, which greatly improved food security worldwide. However, the growth of these plants relied heavily on chemical fertilizers and pesticides, which have led to an overuse of synthetic fertilizers, insecticides, and herbicides with serious environmental consequences and negative effects on human health. Environmentally friendly plant-growth-promoting methods to replace our current reliance on synthetic chemicals and to develop more sustainable agricultural practices to offset the damage caused by many agrochemicals are proposed herein. The increased use of bioinoculants, which consist of microorganisms that establish synergies with target crops and influence production and yield by enhancing plant growth, controlling disease, and providing critical mineral nutrients, is a potential solution. The microorganisms found in bioinoculants are often bacteria or fungi that reside within either external or internal plant microbiomes. However, before they can be used routinely in agriculture, these microbes must be confirmed as nonpathogenic strains that promote plant growth and survival. In this article, besides describing approaches for discovering plant-growth-promoting bacteria in various environments, including phytomicrobiomes and soils, we also discuss methods to evaluate their safety for the environment and for human health.
Collapse
Affiliation(s)
- Pilar Martínez-Hidalgo
- Departamento de Microbiología y Genética, Universidad de Salamanca, Spain
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Maskit Maymon
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Flora Pule-Meulenberg
- Department of Crop Science and Production, Botswana University of Agriculture and Natural Resources, Private Bag 0027, A1 Sebele Content Farm, Gaborone, Botswana
| | - Ann M. Hirsch
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
49
|
Biolog Phenotype Microarray Is a Tool for the Identification of Multidrug Resistance Efflux Pump Inducers. Antimicrob Agents Chemother 2018; 62:AAC.01263-18. [PMID: 30126958 DOI: 10.1128/aac.01263-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/10/2018] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistance efflux pumps frequently present low levels of basal expression. However, antibiotic-resistant mutants that overexpress these resistance determinants are selected during infection. In addition, increased expression of efflux pumps can be induced by environmental signals/cues, which can lead to situations of transient antibiotic resistance. In this study, we have applied a novel high-throughput methodology in order to identify inducers able to trigger the expression of the Stenotrophomonas maltophilia SmeVWX and SmeYZ efflux pumps. To that end, bioreporters in which the expression of the yellow fluorescent protein (YFP) is linked to the activity of either smeVWX or smeYZ promoters were developed and used for the screening of potential inducers of the expression of these efflux pumps using Biolog phenotype microarrays. YFP production was also measured by flow cytometry, and the levels of expression of smeV and smeY in the presence of a set of selected compounds were also determined by real-time reverse transcription-PCR (RT-PCR). The expression of smeVWX was induced by iodoacetate, clioquinol, and selenite, while boric acid, erythromycin, chloramphenicol, and lincomycin triggered smeYZ expression. The susceptibility to antibiotics that are known substrates of the efflux pumps decreased in the presence of the inducers. However, the analyzed multidrug efflux systems did not contribute to S. maltophilia resistance to the studied inducers. To sum up, the use of fluorescent bioreporters in combination with Biolog plates is a valuable tool for identifying inducers of the expression of bacterial multidrug resistance efflux pumps, and likely of other bacterial systems whose expression is regulated in response to signals/cues.
Collapse
|
50
|
An SQ, Tang JL. Diffusible signal factor signaling regulates multiple functions in the opportunistic pathogen Stenotrophomonas maltophilia. BMC Res Notes 2018; 11:569. [PMID: 30097057 PMCID: PMC6086056 DOI: 10.1186/s13104-018-3690-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/06/2018] [Indexed: 11/10/2022] Open
Abstract
Objective Stenotrophomonas maltophilia is a Gram-negative bacterium commonly isolated from nosocomial infections. Analysis of the genome of the clinical S. maltophilia isolate K279a indicates that it encodes a diffusible signal factor (DSF)-dependent cell–cell signaling mechanism that is highly similar to the system previously described in phytopathogens from the genera Xanthomonas and Xylella. Our objective was to study the function of DSF signaling in the clinical strain S. maltophilia K279a using genetic and functional genomic analyses. Results We compared the wild-type strain with a mutant deficient in the rpfF (regulation of pathogenicity factors) gene that is essential for the synthesis of DSF. The effects of disruption of DSF signaling were pleiotropic with an impact on virulence, biofilm formation and pathogenesis. The phenotypic effects of rpfF mutation in S. maltophilia could be reversed by addition of exogenous DSF. Taken together, we demonstrate that DSF signaling regulates factors contributing to virulence, biofilm formation and motility of this important opportunistic pathogen.
Collapse
Affiliation(s)
- Shi-Qi An
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Ji-Liang Tang
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|