1
|
Cagnetta GE, Martínez SR, Ibarra LE, Wendel A, Palacios RE, Chesta CA, Gómez ML. Photoactive broad-spectrum dressings with antimicrobial and antitumoral properties. BIOMATERIALS ADVANCES 2025; 169:214158. [PMID: 39709689 DOI: 10.1016/j.bioadv.2024.214158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
In this work the development of photoactive dressings (PAD) with dual purpose, is presented. These PAD can be used for the topical treatment of persistent infections caused by fungi and bacteria and are also applicable in light antitumor therapy for carcinoma. The synthesized PAD were designed employing conjugated polymer nanoparticles (CPN) doped with platinum porphyrin which serve as polymerization photoinitiators and photosensitizers for the production of reactive oxygen species (ROS). This approach led to the synthesis of N-vinyl-2-pyrrolidone (NVP) hydrogels co-polymerized with [2-(methacryloyloxy)ethyl] trimethylammonium chloride (METAC). NVP and METAC were selected to impart a good biocompatibility with eukaryotic cell lines and antimicrobial properties, respectively. The combination of METAC with an efficient photogeneration of ROS by doped CPN resulted in a material with outstanding antimicrobial features. These dressings are capable of producing an aseptic environment upon irradiation and demonstrates a bacteriostatic profile in dark conditions. Additionally, the dressings fulfill critical requirements for topical applications, providing protection and acting as a barrier, with appropriate mechanical and swelling properties; as well as adequate water vapor transmission rates. The synthesized PAD have been shown to be biocompatible and non-toxic to erythrocytes and HaCaT cell line. PAD demonstrated efficacy in eliminating microbes such as fungi and bacteria. The underlying light-induced killing mechanism involved protein photooxidation, which amplified the effects of METAC mechanism that disrupt cellular membranes. Furthermore, in vitro studies using carcinoma cell lines displayed a complete cell eradication using a relatively low light dose (36 J/cm2 at 395 nm). These promising results reveal also the potential of PAD in the treatment of skin cancer.
Collapse
Affiliation(s)
- Gonzalo E Cagnetta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina.
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Ana Wendel
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - María Lorena Gómez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina.
| |
Collapse
|
2
|
Amaral AL, Aoki A, Andrade SA. Could light be a broad-spectrum antimicrobial? Evid Based Dent 2024; 25:192-193. [PMID: 39107461 DOI: 10.1038/s41432-024-01042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 12/22/2024]
Abstract
DESIGN A review on antimicrobial resistance mechanisms discussing the main light-based antimicrobial approaches including ultraviolet light (UV), antimicrobial photodynamic therapy (aPDT), and antimicrobial blue light (aBL). AIM To describe antimicrobial resistance mechanisms and to present potential light-based alternatives to conventional antimicrobials. METHODS The paper was divided into different topics, starting with an approach to antimicrobial resistance mechanisms. Subsequently, emphasis was placed on innovative light-based antimicrobials approaches, including aBL, UV, and aPDT. RESULTS The review suggests that blue light (400-470 nm) acts on endogenous porphyrins with peak absorption at 405 nm, thus not requiring the administration of photosensitizers, to trigger antimicrobial effects. In this regarding, the direct effect of aBL could be attributed to both the generation of reactive oxygen species (ROS), which induces microbicidal effects, and the inactivation of bacterial defense mechanisms. In turn, blue light combined with curcumin has been used in the treatment of dental infections. Otherwise, green light (495-570 nm) associated with the photosensitizer Rose Bengal has shown promising results both in wound closure due to the induction of additional collagen cross-link formation and in reducing the viability of Pseudomonas aeruginosa. Red light (620-750 nm) is the wavelength most commonly used in aPDT, presenting superior tissue penetration capability compared to blue and green light. Both red and infrared light act directly as photobiomodulation agents, promoting tissue repair with greater penetration depth for the infrared spectrum. Conversely, red light combined with methylene blue is the most commonly used technique in the treatment of localized infections. Meanwhile, infrared light associated with indocyanine green acts as a photothermal and photosensitizing agent, promoting thermal damage and production of ROS. Ultraviolet lights UVA, UVB, and UVC (200-400 nm) have antimicrobial potential related to inducing changes in DNA and generating both ROS and singlet oxygen. Furthermore, light can enhance the efficacy of traditional antimicrobial agents by deactivating microbial resistance, both through increasing the permeability of the cell membrane and by inhibiting the efflux pump and β-lactamases of the bacteria. CONCLUSIONS The antimicrobial potential of light is extensive; however, there is a limitation regarding the depth of penetration of certain wavelengths into infected areas. Furthermore, there is a need for additional studies to determine the safety and efficacy of various approaches using light at its different wavelengths.
Collapse
Affiliation(s)
- Ana Luisa Amaral
- Faculty of Dentistry, University of Itaúna (UIT), Itaúna, MG, Brazil
- Researcher, Research Center on Biological Chemistry (NQBio), Federal University of São João del-Rei (UFSJ), Divinópolis, MG, Brazil
| | - Akira Aoki
- Photoperiodontics, Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Sérgio Araújo Andrade
- Faculty of Dentistry, University of Itaúna (UIT), Itaúna, MG, Brazil.
- Researcher, Research Center on Biological Chemistry (NQBio), Federal University of São João del-Rei (UFSJ), Divinópolis, MG, Brazil.
- Researcher, Optics and Photonics Research Center (CEPOF), Physics Institute of São Carlos of the University of São Paulo (IFSC-USP), São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Pérez González LA, Martínez-Pascual MA, Toledano-Macías E, Jara-Laguna RC, Fernández-Guarino M, Hernández-Bule ML. Effect of Combination of Blue and Red Light with Terbinafine on Cell Viability and Reactive Oxygen Species in Human Keratinocytes: Potential Implications for Cutaneous Mycosis. Int J Mol Sci 2024; 25:12145. [PMID: 39596215 PMCID: PMC11594835 DOI: 10.3390/ijms252212145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Cutaneous mycoses are common infections whose treatment has become more complex due to increasing antifungal resistance and the need for prolonged therapies, hindering patient adherence and increasing the incidence of adverse effects. Consequently, the use of physical therapies, especially photodynamic therapy (PDT), has increased for the treatment of onychomycosis due to its antimicrobial capacity being mediated by the production of reactive oxygen species. This study investigates the in vitro effect of applying blue light (448 nm) or red light (645 nm), alone or together with terbinafine, on the viability of human keratinocytes and the production of reactive oxygen species. The combination of terbinafine and blue light significantly increases ROS production and caspase-3 expression, while red light together with terbinafine increases catalase, superoxide dismutase (SOD) and PPARγ expression, which reduces the amount of ROS in the cultures. The effect of both treatments could be useful in clinical practice to improve the response of cutaneous mycoses to pharmacological treatment, reduce their toxicity and shorten their duration.
Collapse
Affiliation(s)
- Luis Alfonso Pérez González
- Dermatology Service, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), Hospital Ramón y Cajal, Ctra. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain;
| | - María Antonia Martínez-Pascual
- Photobiology and Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), Hospital Ramón y Cajal, Ctra. Colmenar, km. 9.100, 28034 Madrid, Spain; (M.A.M.-P.); (E.T.-M.); (R.C.J.-L.)
| | - Elena Toledano-Macías
- Photobiology and Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), Hospital Ramón y Cajal, Ctra. Colmenar, km. 9.100, 28034 Madrid, Spain; (M.A.M.-P.); (E.T.-M.); (R.C.J.-L.)
| | - Rosa Cristina Jara-Laguna
- Photobiology and Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), Hospital Ramón y Cajal, Ctra. Colmenar, km. 9.100, 28034 Madrid, Spain; (M.A.M.-P.); (E.T.-M.); (R.C.J.-L.)
| | - Montserrat Fernández-Guarino
- Dermatology Service, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), Hospital Ramón y Cajal, Ctra. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain;
| | - María Luisa Hernández-Bule
- Photobiology and Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), Hospital Ramón y Cajal, Ctra. Colmenar, km. 9.100, 28034 Madrid, Spain; (M.A.M.-P.); (E.T.-M.); (R.C.J.-L.)
| |
Collapse
|
4
|
Labadie M, Marchal F, Merbahi N, Girbal-Neuhauser E, Fontagné-Faucher C, Marcato-Romain CE. Cell density and extracellular matrix composition mitigate bacterial biofilm sensitivity to UV-C LED irradiation. Appl Microbiol Biotechnol 2024; 108:286. [PMID: 38578301 PMCID: PMC10997551 DOI: 10.1007/s00253-024-13123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Ultraviolet-C light-emitting diodes (UV-C LEDs) are an emerging technology for decontamination applications in different sectors. In this study, the inactivation of bacterial biofilms was investigated by applying an UV-C LED emitting at 280 nm and by measuring both the influence of the initial cell density (load) and presence of an extracellular matrix (biofilm). Two bacterial strains exposing diverging matrix structures and biochemical compositions were used: Pseudomonas aeruginosa and Leuconostoc citreum. UV-C LED irradiation was applied at three UV doses (171 to 684 mJ/cm2) on both surface-spread cells and on 24-h biofilms and under controlled cell loads, and bacterial survival was determined. All surface-spread bacteria, between 105 and 109 CFU/cm2, and biofilms at 108 CFU/cm2 showed that bacterial response to irradiation was dose-dependent. The treatment efficacy decreased significantly for L. citreum surface-spread cells when the initial cell load was high, while no load effect was observed for P. aeruginosa. Inactivation was also reduced when bacteria were grown under a biofilm form, especially for P. aeruginosa: a protective effect could be attributed to abundant extracellular DNA and proteins in the matrix of P. aeruginosa biofilms, as revealed by Confocal Laser Scanning Microscopy observations. This study showed that initial cell load and exopolymeric substances are major factors influencing UV-C LED antibiofilm treatment efficacy. KEY POINTS: • Bacterial cell load (CFU/cm2) could impact UV-C LED irradiation efficiency • Characteristics of the biofilm matrix have a paramount importance on inactivation • The dose to be applied can be predicted based on biofilm properties.
Collapse
Affiliation(s)
- Maritxu Labadie
- Université de Toulouse, UPS, IUT Paul Sabatier, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire Et Environnementale), 24 Rue d'Embaquès, Auch, F-32000, France
| | - Frédéric Marchal
- Université de Toulouse, UPS, INPT, LAPLACE UMR 5223 (Laboratoire Plasma Et Conversion d'Energie), 118 Route de Narbonne, Toulouse, F-31062, France
| | - Nofel Merbahi
- Université de Toulouse, UPS, INPT, LAPLACE UMR 5223 (Laboratoire Plasma Et Conversion d'Energie), 118 Route de Narbonne, Toulouse, F-31062, France
| | - Elisabeth Girbal-Neuhauser
- Université de Toulouse, UPS, IUT Paul Sabatier, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire Et Environnementale), 24 Rue d'Embaquès, Auch, F-32000, France
| | - Catherine Fontagné-Faucher
- Université de Toulouse, UPS, IUT Paul Sabatier, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire Et Environnementale), 24 Rue d'Embaquès, Auch, F-32000, France
| | - Claire-Emmanuelle Marcato-Romain
- Université de Toulouse, UPS, IUT Paul Sabatier, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire Et Environnementale), 24 Rue d'Embaquès, Auch, F-32000, France.
| |
Collapse
|
5
|
Cotter EJ, Cotter LM, Riley CN, Dixon J, VanDerwerker N, Ufot AI, Godfrey J, Gold D, Hetzel SJ, Safdar N, Grogan BF. Antimicrobial effects of blue light therapy against cutibacterium acnes: optimal dosing and impact of serial treatments. JSES Int 2024; 8:328-334. [PMID: 38464448 PMCID: PMC10920142 DOI: 10.1016/j.jseint.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Background Blue light therapy (BLT) is a Food and Drug Administration cleared modality used in dermatology as an effective treatment of acne. The primary purpose of this study is to determine if there are dose-dependent antimicrobial effects of BLT against Cutibacterium acnes (C. acnes). Methods A known strain of C. acnes was grown on chocolate agar in a controlled laboratory environment under anaerobic conditions for 1 week. After 1 week, 2-3 colonies of C. acnes were isolated and transferred to broth medium to incubate for 2 or 7 days. Broth vials (treatment arm) then underwent 1 of 6 different blue light dosing treatment regimens and a duplicate broth vial served as a control left open to the same environment. The BLT regimens were a single treatment of 25 J/cm2, 50 J/cm2, 75 J/cm2, 100 J/cm2, 2 serial treatments of 50 J/cm2 separated by 24 hours, or 2 serial treatments of 75 J/cm2 separated by 24 hours. The Omnilux Blue device (415 nm wavelength) was used for all BLT treatments and delivered, on average, 1.68 ± 0.004 J/min. Following treatment, the control and treatment broth samples were plated on chocolate agar and allowed to grow for 7 days. After 7 days, plates were counted and colony forming units (CFUs) were calculated. Six trials were completed for each BLT dosing regimen based on an a priori power analysis of 6 individual 2-sided t-tests. Comparisons in the primary outcome were made via mixed-effects analysis of variance with replicate as a random effect. Results All BLT treatment regimens resulted in significantly fewer CFUs than their aggregate control plate CFUs (P < .05 for all). Furthermore, in 2-way comparison of CFUs between BLT treatment groups, a single treatment of 75 J/cm2 did lead to significantly less growth than 25 J/cm2 (P = .017) and 50 J/cm2 (P = .017). There were no improved antimicrobial effects with serial treatments when comparing 2 doses of 50 J/cm2 with a single dose of 100J/cm2, nor were 2 doses of 75 J/cm2 more efficacious than 100 J/cm2. Using the Omnilux Blue device, it took 44.8 minutes to deliver a 75 J/cm2 dose. Conclusion BLT is an effective antimicrobial agent against this single virulent strain of C. acnes. Treatment dosing of 75 J/cm2 was identified to be the most effective dose per unit time. Serial treatments did not lead to superior antimicrobial effects over a single, high-dose treatment.
Collapse
Affiliation(s)
- Eric J. Cotter
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lisa M. Cotter
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Colleen N. Riley
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jonah Dixon
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nicholas VanDerwerker
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Aniekanabasi Ime Ufot
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jared Godfrey
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David Gold
- Department of Physics and Optics, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott J. Hetzel
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI, USA
| | - Nasia Safdar
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Brian F. Grogan
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
6
|
Liu Y, Tao YD, Zhang LB, Wang F, Xu J, Zhang JZ, Fu DY. Blue Light Exposure Caused Large-Scale Transcriptional Changes in the Abdomen and Reduced the Reproductive Fitness of the Fall Armyworm Spodoptera frugiperda. INSECTS 2023; 15:10. [PMID: 38249016 PMCID: PMC10816951 DOI: 10.3390/insects15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
In the present study, we found that blue light stress negatively affected the development periods, body weight, survival and reproduction of Spodoptera frugiperda, and it showed a dose-dependent reaction, as longer irradiation caused severer effects. Further transcriptome analysis found blue light stress induced fast and large-scale transcriptional changes in the head, thorax and, particularly, the abdomen of female S. frugiperda adults. A functional enrichment analysis indicated that shorter durations of blue light irradiation induced the upregulation of more stress response- and defense-related genes or pathways, such as abiotic stimuli detection and response, oxidative stress, ion channels and protein-kinase-based signal pathways. In the abdomen, however, different durations of blue-light-exposure treatments all induced the downregulation of a large number genes and pathways related to cellular processes, metabolism, catalysis and reproduction, which may be a trade-off between antistress defense and other processes or a strategy to escape stressful conditions. These results indicate irradiation duration- and tissue-specific blue light stress responses and consequences, as well as suggest that the stress that results in transcriptional alterations is associated with the stress that causes a fitness reduction in S. frugiperda females.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Yi-Dong Tao
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| | - Li-Bao Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| | - Fen Wang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
- Tianbao Customs Comprehensive Technical Center, Wenshan 663603, China
| | - Jin Xu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Jun-Zhong Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| | - Da-Ying Fu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| |
Collapse
|
7
|
Ngo VN, Truong TNT, Tran TT, Nguyen LT, Mach NB, Vu VV, Nguyen TTH, Vu TM. A Combination of Blue Light at 460 nm and H 2O 2 for the Safe and Effective Eradication of Staphylococcus aureus in an Infected Mouse Skin Abrasion Model. Microorganisms 2023; 11:2946. [PMID: 38138090 PMCID: PMC10745725 DOI: 10.3390/microorganisms11122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotic-free approaches are more important than ever to address the rapidly growing problem of the antibiotic resistance crisis. The photolysis of the bacterial virulence factor staphyloxanthin using blue light at 460 nm (BL460 nm) has been found to effectively attenuate Staphylococcus aureus to chemical and physical agents. However, phototherapy using BL640 nm still needs to be investigated in detail for its safety in eradicating Staphylococcus aureus in vitro and in vivo. In this study, we employed a 460 nm continuous-wavelength LED source and a low concentration of hydrogen peroxide to treat S. aureus under a culturing condition and a wound abrasion mouse model. The results demonstrated the safety of the combined therapy when it did not modify the bacterial virulence factors or the susceptibility to widely used antibiotics. In addition, the results of the mouse model also showed that the combined therapy was safe to apply to mouse skin since it did not cause adverse skin irritation. More importantly, the therapy can aid in healing S. aureus-infected wounds with an efficacy comparable to that of the topical antibiotic Fucidin. The aforementioned findings indicate that the concurrent application of BL460 nm and hydrogen peroxide can be used safely as an alternative or adjunct to antibiotics in treating S. aureus-infected wounds.
Collapse
Affiliation(s)
- Vu Nguyen Ngo
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City 70000, Vietnam; (V.N.N.); (L.T.N.); (N.B.M.); (V.V.V.)
| | - Thien Nguyen Thuan Truong
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 70000, Vietnam; (T.N.T.T.); (T.T.H.N.)
| | - Tin Trung Tran
- Ho Chi Minh City University of Technology, Vietnam National University, Ho Chi Minh City 70000, Vietnam;
| | - Loan Thanh Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City 70000, Vietnam; (V.N.N.); (L.T.N.); (N.B.M.); (V.V.V.)
| | - Ngoc Bao Mach
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City 70000, Vietnam; (V.N.N.); (L.T.N.); (N.B.M.); (V.V.V.)
| | - Van Van Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City 70000, Vietnam; (V.N.N.); (L.T.N.); (N.B.M.); (V.V.V.)
| | - Thi Thu Hoai Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 70000, Vietnam; (T.N.T.T.); (T.T.H.N.)
| | - Thiet Minh Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City 70000, Vietnam; (V.N.N.); (L.T.N.); (N.B.M.); (V.V.V.)
| |
Collapse
|
8
|
Kanchanabanca C, Hosaka T, Kojima M. High-intensity green light potentially activates the actinorhodin biosynthetic pathway in Streptomyces coelicolor A3(2). Arch Microbiol 2023; 206:8. [PMID: 38038757 DOI: 10.1007/s00203-023-03730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
The development of practices that enhance the potential of actinomycetes as major antibiotic producers is a challenge in discovering new secondary metabolites. Light, an essential external stimulus for most microorganisms, could be exploited to manipulate their physiological processes. However, the effects of monochromatic green light on the production of secondary metabolites in actinomycetes have not yet been reported. In this paper, we report a novel and simple method that uses high-intensity monochromatic green light to potentially induce the production of cryptic secondary metabolites in the model actinomycete Streptomyces coelicolor A3(2). Using actinorhodin (ACT), a blue-pigmented antibiotic, and undecylprodigiosin (RED), a red-pigmented antibiotic, as indicators, we found that irradiation with high-intensity monochromatic green light-emitting diodes promoted sporulation, significantly decreased RED production, and increased ACT production. Semi-quantitative reverse transcription-polymerase chain reaction and western blot analyses revealed, for the first time, that stimulation with green light accelerated the expression of ActII-ORF4, a pathway-specific regulator of ACT biosynthesis in S. coelicolor A3(2). This approach of stimulating secondary metabolite biosynthesis pathways in actinomycetes by irradiation with high-intensity monochromatic green light is expected to facilitate the discovery of cryptic antibiotics that are not typically produced under conventional dark culture conditions. However, the effective intensity and duration of irradiation with green light that are required to activate these metabolite pathways may vary markedly among actinomycetes.
Collapse
Affiliation(s)
- Chompoonik Kanchanabanca
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Takeshi Hosaka
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Masanobu Kojima
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.
| |
Collapse
|
9
|
Han S, Hyun SW, Son JW, Song MS, Lim DJ, Choi C, Park SH, Ha SD. Innovative nonthermal technologies for inactivation of emerging foodborne viruses. Compr Rev Food Sci Food Saf 2023; 22:3395-3421. [PMID: 37288815 DOI: 10.1111/1541-4337.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
Various foodborne viruses have been associated with human health during the last decade, causing gastroenteritis and a huge economic burden worldwide. Furthermore, the emergence of new variants of infectious viruses is growing continuously. Inactivation of foodborne viruses in the food industry is a formidable task because although viruses cannot grow in foods, they can survive in the food matrix during food processing and storage environments. Conventional inactivation methods pose various drawbacks, necessitating more effective and environmentally friendly techniques for controlling foodborne viruses during food production and processing. Various inactivation approaches for controlling foodborne viruses have been attempted in the food industry. However, some traditionally used techniques, such as disinfectant-based or heat treatment, are not always efficient. Nonthermal techniques are considered a new platform for effective and safe treatment to inactivate foodborne viruses. This review focuses on foodborne viruses commonly associated with human gastroenteritis, including newly emerged viruses, such as sapovirus and Aichi virus. It also investigates the use of chemical and nonthermal physical treatments as effective technologies to inactivate foodborne viruses.
Collapse
Affiliation(s)
- Sangha Han
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Seok-Woo Hyun
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Jeong Won Son
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Min Su Song
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Dong Jae Lim
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| |
Collapse
|
10
|
Soy R, Babu B, Mack J, Nyokong T. The Photodynamic Anticancer and Antibacterial Activity Properties of a Series of meso-Tetraarylchlorin Dyes and Their Sn(IV) Complexes. Molecules 2023; 28:molecules28104030. [PMID: 37241769 DOI: 10.3390/molecules28104030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
A series of tetraarylchlorins with 3-methoxy-, 4-hydroxy- and 3-methoxy-4-hydroxyphenyl meso-aryl rings (1-3-Chl) and their Sn(IV) complexes (1-3-SnChl) were synthesized and characterized so that their potential utility as photosensitizer dyes for use in photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) can be assessed. The photophysicochemical properties of the dyes were assessed prior to in vitro PDT activity studies against MCF-7 breast cancer cells through irradiation with Thorlabs 625 or 660 nm LED for 20 min (240 or 280 mW·cm-2). PACT activity studies were performed against both planktonic bacteria and biofilms of Gram-(+) S. aureus and Gram-(-) E. coli upon irradiation with Thorlabs 625 and 660 nm LEDs for 75 min. The heavy atom effect of the Sn(IV) ion results in relatively high singlet oxygen quantum yield values of 0.69-0.71 for 1-3-SnChl. Relatively low IC50 values between 1.1-4.1 and 3.8-9.4 µM were obtained for the 1-3-SnChl series with the Thorlabs 660 and 625 nm LEDs, respectively, during the PDT activity studies. 1-3-SnChl were also found to exhibit significant PACT activity against planktonic S. aureus and E. coli with Log10 reduction values of 7.65 and >3.0, respectively. The results demonstrate that the Sn(IV) complexes of tetraarylchlorins merit further in depth study as photosensitizers in biomedical applications.
Collapse
Affiliation(s)
- Rodah Soy
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Balaji Babu
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
11
|
Poshvina DV, Dilbaryan DS, Kasyanov SP, Sadykova VS, Lapchinskaya OA, Rogozhin EA, Vasilchenko AS. Staphylococcus aureus is able to generate resistance to novel lipoglycopeptide antibiotic gausemycin A. Front Microbiol 2022; 13:963979. [PMID: 36246291 PMCID: PMC9558223 DOI: 10.3389/fmicb.2022.963979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Gausemycin A is the first member of the novel lipoglycopeptides family produced by Streptomyces roseoflavus INA-Ac-5812. Gausemycin A has a pronounced bactericidal activity against methicillin-resistant Staphylococcus aureus. However, the ability of S. aureus to be resistant to gausemycin A has not been investigated yet. Using serial passaging, we have obtained the resistant variant S. aureus 5812R, which is 80 times more resistant compared to the parent strain. Susceptibility testing of S. aureus 5812R revealed the acquisition of cross-resistance to daptomycin, cefazolin, tetracycline, and gentamicin, while the resistance to vancomycin, nisin, and ramoplanin was absent. Whole genome sequencing revealed single nucleotide polymorphism (SNP) and deletions in S. aureus 5812R, among which are genes encoding efflux pump (sepA), the two-component Kdp system (kdpE), and the component of isoprenoid biosynthesis pathway (hepT). Phenotypically, S. aureus 5812R resembles a small-colony variant, as it is slow-growing, forms small colonies, and is deficient in pigments. Profiling of fatty acids (FA) composition constituting the cytoplasmic membrane of S. aureus 5812R revealed the prevalence of anteiso-branched FA, while straight FA was slightly less present. The evidence also showed that the gausemycin A-resistant strain has increased expression of the cls2 gene of the cardiolipin synthase. The performed checkerboard assay pointed out that the combination of gausemycin A and ciprofloxacin showed a synergistic effect against S. aureus 5812R.
Collapse
Affiliation(s)
- Darya V. Poshvina
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Diana S. Dilbaryan
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Sergey P. Kasyanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Vladivostok, Russia
| | | | | | - Eugene A. Rogozhin
- Gause Institute of New Antibiotics, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - Alexey S. Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
- *Correspondence: Alexey S. Vasilchenko
| |
Collapse
|
12
|
Gricajeva A, Buchovec I, Kalėdienė L, Badokas K, Vitta P. Riboflavin- and chlorophyllin-based antimicrobial photoinactivation of Brevundimonas sp. ESA1 biofilms. Front Cell Infect Microbiol 2022; 12:1006723. [PMID: 36262183 PMCID: PMC9575555 DOI: 10.3389/fcimb.2022.1006723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Some Brevundimonas spp. are globally emerging opportunistic pathogens that can be dangerous to individuals with underlying medical conditions and for those who are immunocompromised. Gram-negative Brevundimonas spp. can form resilient sessile biofilms and are found not only in different confined terrestrial settings (e.g., hospitals) but are also frequently detected in spacecraft which is inhabited by astronauts that can have altered immunity. Therefore, Brevundimonas spp. pose a serious health hazard in different environments, especially in its biofilm form. Conventional antimicrobials applied to disrupt, inactivate, or prevent biofilm formation have limited efficiency and applicability in different closed-loop systems. Therefore, new, effective, and safe biofilm control technologies are in high demand. The present work aimed to investigate antimicrobial photoinactivation (API) of Brevundimonas sp. ESA1 monocultural biofilms mediated by non-toxic, natural photosensitizers such as riboflavin (RF) and chlorophyllin (Chl) with an emphasis of this technology as an example to be safely used in closed-loop systems such as spacecraft. The present study showed that Chl-based API had a bactericidal effect on Brevundimonas sp. ESA1 biofilms at twice the lower irradiation doses than was needed when applying RF-based API. Long-term API based on RF and Chl using 450 nm low irradiance plate has also been studied in this work as a more practically applicable API method. The ability of Brevundimonas sp. ESA1 biofilms to reduce alamarBlue™ and regrowth analysis have revealed that after the applied photoinactivation, bacteria can enter a viable but non-culturable state with no ability to resuscitate in some cases.
Collapse
Affiliation(s)
- Alisa Gricajeva
- Department of Microbiology and Biotechnology, Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Irina Buchovec
- Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| | - Lilija Kalėdienė
- Department of Microbiology and Biotechnology, Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Kazimieras Badokas
- Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| | - Pranciškus Vitta
- Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
13
|
Butement JT, Noel DJ, Bryant CA, Wilks SA, Eason RW. A light-guiding urinary catheter for the inhibition of Proteus mirabilis biofilm formation. Front Microbiol 2022; 13:995200. [PMID: 36204628 PMCID: PMC9530263 DOI: 10.3389/fmicb.2022.995200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Catheter-associated urinary tract infection (CAUTI) is a leading cause of hospital-acquired infections worldwide causing debilitating illness for patients as well as a significant financial and treatment burden on health services. CAUTI is linked with the build-up of biofilms on catheter surfaces which act as a reservoir for infection. Additionally, urease-producing bacteria such as Gram-negative Proteus mirabilis (PM), can form crystalline biofilms which encrust catheter surfaces ultimately leading to blockages which require immediate removal of the catheter. Currently there are limited treatments available to prevent the formation of biofilms by PM as well as other urinary tract infection causing bacteria. A novel concept for a light-guiding urinary catheter is presented where a silicone elastomer waveguide incorporated along the length of the catheter is used to irradiate the catheter surfaces with antimicrobial blue light (405 nm) to prevent biofilm formation in situ. The prototype device is mass producible while also easy to fabricate in a lab setting for research studies. The inhibitory effect of blue light on PM biofilm formation over a range of irradiances is described for the first time showing an LD90 at 192–345 J/cm2 and total inhibition at 1,700 J/cm2In vitro studies show that the light-guiding catheter (LGC) prototypes exhibit a 98% inhibition in PM biofilm formation inside the catheter lumen at an average estimated irradiance of 30–50 mW/cm2 (324–540 J/cm2 fluence) showing that the concept is highly effective, promising to be a powerful and economical antimicrobial approach to prevent catheter associated biofilm development and blockage.
Collapse
Affiliation(s)
- Jonathan T. Butement
- Optoelectronics Research Centre, University of Southampton, Southampton, United Kingdom
- *Correspondence: Jonathan T. Butement,
| | - Daniel J. Noel
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Catherine A. Bryant
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sandra A. Wilks
- School of Health Sciences, University of Southampton, Southampton, United Kingdom
| | - Robert W. Eason
- Optoelectronics Research Centre, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
14
|
Woźniak A, Grinholc M. Combined Antimicrobial Blue Light and Antibiotics as a Tool for Eradication of Multidrug-Resistant Isolates of Pseudomonas aeruginosa and Staphylococcus aureus: In Vitro and In Vivo Studies. Antioxidants (Basel) 2022; 11:antiox11091660. [PMID: 36139734 PMCID: PMC9495928 DOI: 10.3390/antiox11091660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Increased development of resistance to antibiotics among microorganisms promotes the evaluation of alternative approaches. Within this study, we examined the efficacy of antimicrobial blue light (aBL) with routinely used antibiotics against multidrug-resistant isolates of Pseudomonas aeruginosa and Staphylococcus aureus as combined alternative treatment. In vitro results of this study confirm that both S. aureus and P. aeruginosa can be sensitized to antibiotics, such as chloramphenicol, linezolid, fusidic acid or colistin, fosfomycin and ciprofloxacin, respectively. The assessment of increased ROS production upon aBL exposure and the changes in cell envelopes permeability were also goals that were completed within the current study. Moreover, the in vivo experiment revealed that, indeed, the synergy between aBL and antibiotic (chloramphenicol) occurs, and the results in the reduced bioluminescence signal of the S. aureus Xen31 strain used to infect the animal wounds. To conclude, we are the first to present the possible mechanism explaining the observed synergies among photoinactivation with blue light and antibiotics in the term of Gram-positive and Gram-negative representatives.
Collapse
|
15
|
Pierfelice TV, D’Amico E, Petrini M, Pandolfi A, D’Arcangelo C, Di Pietro N, Piattelli A, Iezzi G. The Effects of 5% 5-Aminolevulinic Acid Gel and Red Light (ALAD-PDT) on Human Fibroblasts and Osteoblasts. Gels 2022; 8:gels8080491. [PMID: 36005091 PMCID: PMC9407194 DOI: 10.3390/gels8080491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to evaluate the effects of a new photodynamic protocol (ALAD-PDT), consisting of 5% 5-aminolevulinic acid-gel and 630 nm-LED, already used for antibacterial effects in the treatment of periodontitis, on human gingival fibroblasts (HGF) and primary human osteoblasts (HOB). HGF and HOB were incubated with different ALAD concentrations for 45 min, and subsequently irradiated with 630 nm-LED for 7 min. Firstly, the cytotoxicity at 24 h and proliferation at 48 and 72 h were assessed. Then the intracellular content of the protoporphyrin IX (PpIX) of the ROS and the superoxide dismutase (SOD) activity were investigated at different times. Each result was compared with untreated and unirradiated cells as the control. Viable and metabolic active cells were revealed at any concentrations of ALAD-PDT, but only 100-ALAD-PDT significantly enhanced the proliferation rate. The PpIX fluorescence significantly increased after the addition of 100-ALAD, and decreased after the irradiation. Higher ROS generation was detected at 10 min in HGF, and at 30 min in HOB. The activity of the SOD enzyme augmented at 30 min in both cell types. In conclusion, ALAD-PDT not only showed no cytotoxic effects, but had pro-proliferative effects on HGF and HOB, probably via ROS generation.
Collapse
Affiliation(s)
- Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: ; Tel.: +39-0871-355-4083
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Camillo D’Arcangelo
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
- Dental School, University of Belgrade, 11000 Belgrade, Serbia
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena del Dott. L. Petruzzi, 65013 Città Sant’Angelo, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
16
|
Cui F, Ning Y, Wang D, Li J, Li X, Li T. Carbon dot-based therapeutics for combating drug-resistant bacteria and biofilm infections in food preservation. Crit Rev Food Sci Nutr 2022; 64:203-219. [PMID: 35912471 DOI: 10.1080/10408398.2022.2105801] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Drug-resistant bacteria are caused by antibiotic abuse and/or biofilm formation and have become a threat to the food industry. Carbon dot (CD)-based nanomaterials are a very promising tools for combating pathogenic and spoilage bacteria, and they possess exceptional and adjustable photoelectric and chemical properties. In view of the rapid development of CD-based nanomaterials and their increasing popularity in the food industry, a comprehensive and updated review is needed to summarize their antimicrobial mechanisms and applications in foods. This review discusses the synthesis of CDs, antimicrobial mechanisms, and their applications for extending the shelf life of food. It includes the synthesis of CDs using small molecules, polymers, and biomass. It also discusses the different antimicrobial mechanisms of CDs and their use as antibacterial agents and carriers/ligands. CD-based materials have proven effective against pathogenic and spoilage bacteria in food by inhibiting planktonic bacteria and biofilms. Optimization of the production parameters of CDs can help them achieve a full-spectral response, but degradability still requires further research.
Collapse
Affiliation(s)
- Fangchao Cui
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Yuanyuan Ning
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
- College of Food Science and Technology, Jiangnan University, Wuxi Jiangsu, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian Liaoning, China
| |
Collapse
|
17
|
Lam MI, Vojnits K, Zhao M, MacNaughton P, Pakpour S. The effect of indoor daylight spectrum and intensity on viability of indoor pathogens on different surface materials. INDOOR AIR 2022; 32:e13076. [PMID: 35904390 DOI: 10.1111/ina.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Built environments play a key role in the transmission of infectious diseases. Ventilation rates, air temperature, and humidity affect airborne transmission while cleaning protocols, material properties and light exposure can influence viability of pathogens on surfaces. We investigated how indoor daylight intensity and spectrum through electrochromic (EC) windows can impact the growth rate and viability of indoor pathogens on different surface materials (polyvinyl chloride [PVC] fabric, polystyrene, and glass) compared to traditional blinds. Results showed that tinted EC windows let in higher energy, shorter wavelength daylight than those with clear window and blind. The growth rates of pathogenic bacteria and fungi were significantly lower in spaces with EC windows compared to blinds: nearly 100% growth rate reduction was observed when EC windows were in their clear state followed by 41%-100% reduction in bacterial growth rate and 26%-42% reduction in fungal growth rate when EC windows were in their darkest tint. Moreover, bacterial viabilities were significantly lower on PVC fabric when they were exposed to indoor light at EC-tinted window. These findings are deemed fundamental to the design of healthy modern buildings, especially those that encompass sick and vulnerable individuals.
Collapse
Affiliation(s)
- Man In Lam
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Kinga Vojnits
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael Zhao
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Piers MacNaughton
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sepideh Pakpour
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
18
|
Using ultraviolet (UV) light emitting diodes (LED) to create sterile root canals and to treat endodontic infections. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Laser Light Treatment Improves the Mineral Composition, Essential Oil Production and Antimicrobial Activity of Mycorrhizal Treated Pelargoniumgraveolens. Molecules 2022; 27:molecules27061752. [PMID: 35335116 PMCID: PMC8954123 DOI: 10.3390/molecules27061752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/20/2022] Open
Abstract
Pelargonium graveolens, rose-scented geranium, is commonly used in the perfume industry. P. graveolens is enriched with essential oils, phenolics, flavonoids, which account for its tremendous biological activities. Laser light treatment and arbuscular mycorrhizal fungi (AMF) inoculation can further enhance the phytochemical content in a significant manner. In this study, we aimed to explore the synergistic impact of these two factors on P. graveolens. For this, we used four groups of surface-sterilized seeds: (1) control group1 (non-irradiated; non-colonized group); (2) control group2 (mycorrhizal colonized group); (3) helium-neon (He-Ne) laser-irradiated group; (4) mycorrhizal colonization coupled with He-Ne laser-irradiation group. Treated seeds were growing in artificial soil inculcated with Rhizophagus irregularis MUCL 41833, in a climate-controlled chamber. After 6 weeks, P. graveolens plants were checked for their phytochemical content and antibacterial potential. Laser light application improved the mycorrhizal colonization in P. graveolens plants which subsequently increased biomass accumulation, minerals uptake, and biological value of P. graveolens. The increase in the biological value was evident by the increase in the essential oils production. The concomitant application of laser light and mycorrhizal colonization also boosted the antimicrobial activity of P. graveolens. These results suggest that AMF co-treatment with laser light could be used as a promising approach to enhance the metabolic content and yield of P. graveolens for industrial and pharmaceutical use.
Collapse
|
20
|
Photodynamic Antibiofilm and Antibacterial Activity of a New Gel with 5-Aminolevulinic Acid on Infected Titanium Surfaces. Biomedicines 2022; 10:biomedicines10030572. [PMID: 35327374 PMCID: PMC8945072 DOI: 10.3390/biomedicines10030572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/27/2022] Open
Abstract
The use of a new gel containing aminolevulinic acid and red light (ALAD–PDI) was tested in order to counteract bacterial biofilm growth on different titanium implant surfaces. The varying antibacterial efficacy of ALAD–PDI against biofilm growth on several titanium surfaces was also evaluated. A total of 60 titanium discs (30 machined and 30 double-acid etched, DAE) were pre-incubated with saliva and then incubated for 24 h with Streptococcus oralis to form bacterial biofilm. Four different groups were distinguished: two exposed groups (MACHINED and DAE discs), covered with S. oralis biofilm and subjected to ALAD + PDI, and two unexposed groups, with the same surfaces and bacteria, but without the ALAD + PDI (positive controls). Negative controls were non-inoculated discs alone and combined with the gel (ALAD) without the broth cultures. After a further 24 h of anaerobic incubation, all groups were evaluated for colony-forming units (CFUs) and biofilm biomass, imaged via scanning electron microscope, and tested for cell viability via LIVE/DEAD analysis. CFUs and biofilm biomass had significantly higher presence on unexposed samples. ALAD–PDI significantly decreased the number of bacterial CFUs on both exposed surfaces, but without any statistically significant differences among them. Live/dead staining showed the presence of 100% red dead cells on both exposed samples, unlike in unexposed groups. Treatment with ALAD + red light is an effective protocol to counteract the S. oralis biofilm deposited on titanium surfaces with different tomography.
Collapse
|
21
|
Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022; 180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
This review presents principles and novelties in the field of tissue optical clearing (TOC) technology, as well as application for optical monitoring of drug delivery and effective antimicrobial phototherapy. TOC is based on altering the optical properties of tissue through the introduction of immersion optical cleaning agents (OCA), which impregnate the tissue of interest. We also analyze various methods and kinetics of delivery of photodynamic agents, nanoantibiotics and their mixtures with OCAs into the tissue depth in the context of antimicrobial and antifungal phototherapy. In vitro and in vivo studies of antimicrobial phototherapies, such as photodynamic, photothermal plasmonic and photocatalytic, are summarized, and the prospects of a new TOC technology for effective killing of pathogens are discussed.
Collapse
|
22
|
Manso AP, Leite ML, Comeau P, Dietrich C, Ghaffari S, Lange D, Branda N. Exploring the use of a Ruthenium complex incorporated into a methacrylate-based dental material for antimicrobial photodynamic therapy. J Appl Biomater Funct Mater 2022; 20:22808000221112989. [PMID: 35856607 DOI: 10.1177/22808000221112989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To evaluate the effects of a blue light photosensitizer (PS), Ruthenium II complex (Ru), on the chemical, physical, mechanical, and antimicrobial properties of experimental dental resin blends. METHODS The experimental resin (BisEMA, TEEGDMA, HPMA, ethanol, and photoinitiator) was loaded with Ru at 0.00%, 0.07%, 0.14%, 0.28%, 0.56%, 1.12%, 1.2%, 1.5%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% w/w. Samples were evaluated for the degree of conversion (DC) after 30 and 60 s curing-time (n = 6). Selected formulations (0.00%, 0.28%, 0.56%, 1.12%) were further tested for shear bond strength (SBS) (n = 15); flexural strength (FS) (n = 12); and antimicrobial properties (CFUs), in dark and light conditions. These latter tests were performed on specimens stored for 24-h or 2-month in 37°C water. Water sorption (WS) and solubility (SL) tests were also performed (n = 12). Data were analyzed either by a one- or two-factor general linear model (α = 0.05). RESULTS Overall, Ru concentration above 1.2% resulted in reduced DC. In SBS results, only the 1.12%Ru resin blend samples had statistically lower values compared to the 0.00%Ru resin blend at 24-h storage (p = 0.004). In addition, no differences in SBS were detected among the experimental groups after 2-month storage in water. Meanwhile, FS increased for all experimental groups under similar aging conditions (p < 0.001). Antimicrobial properties were improved upon inclusion of Ru and application of light (p < 0.001 for both) at 24-h and 2-month storage. Lastly, no detectable changes in WS or SL were observed for the Ru-added resins compared to the 0.00%Ru resin blend. However, the 0.28% Ru blend presented significantly higher WS compared to the 0.56% Ru blend (p = 0.007). CONCLUSIONS Stable SBS, improved FS, and sustained antimicrobial properties after aging gives significant credence to our approach of adding the Ruthenium II complex into dental adhesive resin blends intended for an aPDT approach.
Collapse
Affiliation(s)
- Adriana Pigozzo Manso
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Maria Luísa Leite
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Patricia Comeau
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Claudia Dietrich
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Sahand Ghaffari
- Department of Urological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Dirk Lange
- Department of Urological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Neil Branda
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
23
|
Kumar R, Sood U, Kaur J, Anand S, Gupta V, Patil KS, Lal R. The rising dominance of microbiology: what to expect in the next 15 years? Microb Biotechnol 2022; 15:110-128. [PMID: 34713975 PMCID: PMC8719816 DOI: 10.1111/1751-7915.13953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
What microbiology beholds after a decade and a half in the future requires a vision based on the facts and ongoing trends in research and technological advancements. While the latter, assisted by microbial dark matter, presents a greater potential of creating an upsurge in in-situ and ex-situ rapid microbial detection techniques, this anticipated change will also set forth a revolution in microbial cultivation and diversity analyses. The availability of a microbial genetic toolbox at the expanse will help complement the current understanding of the microbiome and assist in real-time monitoring of the dynamics for detecting the health status of the host with utmost precision. Alongside, in light of the emerging infectious diseases, antimicrobial resistance (AMR) and social demands for safer and better health care alternatives, microbiology laboratories are prospected to drift in terms of the volume and nature of research and outcomes. With today's microbiological lens, one can predict with certainty that in the years to come, microbes will play a significant role in therapeutic treatment and the designing of novel diagnostic techniques. Another area where the scope of microbial application seems to be promising is the use of novel probiotics as a method to offer health benefits whilst promoting metabolic outputs specific for microbiome replenishment. Nonetheless, the evolution of extraterrestrial microbes or the adaptation of earth microbes as extraterrestrial residents are also yet another prominent microbial event one may witness in the upcoming years. But like the two sides of the coin, there is also an urgent need to dampen the bloom of urbanization, overpopulation and global trade and adopting sustainable approaches to control the recurrence of epidemics and pandemics.
Collapse
Affiliation(s)
- Roshan Kumar
- Post‐Graduate Department of ZoologyMagadh UniversityBodh GayaBihar824234India
| | - Utkarsh Sood
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| | - Jasvinder Kaur
- Department of ZoologyGargi CollegeUniversity of DelhiSiri Fort RoadNew Delhi110049India
| | - Shailly Anand
- Department of ZoologyDeen Dayal Upadhyaya CollegeUniversity of DelhiDwarkaNew Delhi110078India
| | - Vipin Gupta
- Indira Paryavaran BhawanMinistry of Environment, Forest and Climate ChangeLodi ColonyNew Delhi110003India
| | - Kishor Sureshbhai Patil
- Department of Biological SciencesP. D. Patel Institute of Applied SciencesCharotar University of Science and Technology (CHARUSAT)ChangaGujarat388421India
| | - Rup Lal
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| |
Collapse
|
24
|
Lagos KJ, Buzzá HH, Bagnato VS, Romero MP. Carbon-Based Materials in Photodynamic and Photothermal Therapies Applied to Tumor Destruction. Int J Mol Sci 2021; 23:22. [PMID: 35008458 PMCID: PMC8744821 DOI: 10.3390/ijms23010022] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/16/2022] Open
Abstract
Within phototherapy, a grand challenge in clinical cancer treatments is to develop a simple, cost-effective, and biocompatible approach to treat this disease using ultra-low doses of light. Carbon-based materials (CBM), such as graphene oxide (GO), reduced GO (r-GO), graphene quantum dots (GQDs), and carbon dots (C-DOTs), are rapidly emerging as a new class of therapeutic materials against cancer. This review summarizes the progress made in recent years regarding the applications of CBM in photodynamic (PDT) and photothermal (PTT) therapies for tumor destruction. The current understanding of the performance of modified CBM, hybrids and composites, is also addressed. This approach seeks to achieve an enhanced antitumor action by improving and modulating the properties of CBM to treat various types of cancer. Metal oxides, organic molecules, biopolymers, therapeutic drugs, among others, have been combined with CBM to treat cancer by PDT, PTT, or synergistic therapies.
Collapse
Affiliation(s)
- Karina J. Lagos
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador;
| | - Hilde H. Buzzá
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13566-590, Brazil;
| | - Vanderlei S. Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13566-590, Brazil;
| | - María Paulina Romero
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador;
| |
Collapse
|
25
|
Gómez-López VM, Jubinville E, Rodríguez-López MI, Trudel-Ferland M, Bouchard S, Jean J. Inactivation of Foodborne Viruses by UV Light: A Review. Foods 2021; 10:foods10123141. [PMID: 34945692 PMCID: PMC8701782 DOI: 10.3390/foods10123141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Viruses on some foods can be inactivated by exposure to ultraviolet (UV) light. This green technology has little impact on product quality and, thus, could be used to increase food safety. While its bactericidal effect has been studied extensively, little is known about the viricidal effect of UV on foods. The mechanism of viral inactivation by UV results mainly from an alteration of the genetic material (DNA or RNA) within the viral capsid and, to a lesser extent, by modifying major and minor viral proteins of the capsid. In this review, we examine the potential of UV treatment as a means of inactivating viruses on food processing surfaces and different foods. The most common foodborne viruses and their laboratory surrogates; further explanation on the inactivation mechanism and its efficacy in water, liquid foods, meat products, fruits, and vegetables; and the prospects for the commercial application of this technology are discussed. Lastly, we describe UV’s limitations and legislation surrounding its use. Based on our review of the literature, viral inactivation in water seems to be particularly effective. While consistent inactivation through turbid liquid food or the entire surface of irregular food matrices is more challenging, some treatments on different food matrices seem promising.
Collapse
Affiliation(s)
- Vicente M. Gómez-López
- Catedra Alimentos para la Salud, Universidad Católica San Antonio de Murcia, Campus de los Jerónimos, E-30107 Murcia, Spain;
| | - Eric Jubinville
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
| | - María Isabel Rodríguez-López
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica San Antonio de Murcia, Campus de los Jerónimos, E-30107 Murcia, Spain;
| | - Mathilde Trudel-Ferland
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
| | - Simon Bouchard
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
| | - Julie Jean
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 413849)
| |
Collapse
|
26
|
The role of UV and blue light in photo-eradication of microorganisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
27
|
Aroso RT, Schaberle FA, Arnaut LG, Pereira MM. Photodynamic disinfection and its role in controlling infectious diseases. Photochem Photobiol Sci 2021; 20:1497-1545. [PMID: 34705261 PMCID: PMC8548867 DOI: 10.1007/s43630-021-00102-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy is witnessing a revival of its origins as a response to the rise of multi-drug resistant infections and the shortage of new classes of antibiotics. Photodynamic disinfection (PDDI) of microorganisms is making progresses in preclinical models and in clinical cases, and the perception of its role in the clinical armamentarium for the management of infectious diseases is changing. We review the positioning of PDDI from the perspective of its ability to respond to clinical needs. Emphasis is placed on the pipeline of photosensitizers that proved effective to inactivate biofilms, showed efficacy in animal models of infectious diseases or reached clinical trials. Novel opportunities resulting from the COVID-19 pandemic are briefly discussed. The molecular features of promising photosensitizers are emphasized and contrasted with those of photosensitizers used in the treatment of solid tumors. The development of photosensitizers has been accompanied by the fabrication of a variety of affordable and customizable light sources. We critically discuss the combination between photosensitizer and light source properties that may leverage PDDI and expand its applications to wider markets. The success of PDDI in the management of infectious diseases will ultimately depend on the efficacy of photosensitizers, affordability of the light sources, simplicity of the procedures, and availability of fast and efficient treatments.
Collapse
Affiliation(s)
- Rafael T Aroso
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Fábio A Schaberle
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Luís G Arnaut
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Mariette M Pereira
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
28
|
Genetic Factors Affect the Survival and Behaviors of Selected Bacteria during Antimicrobial Blue Light Treatment. Int J Mol Sci 2021; 22:ijms221910452. [PMID: 34638788 PMCID: PMC8508746 DOI: 10.3390/ijms221910452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance is a global, mounting and dynamic issue that poses an immediate threat to human, animal, and environmental health. Among the alternative antimicrobial treatments proposed to reduce the external use of antibiotics is electromagnetic radiation, such as blue light. The prevailing mechanistic model is that blue light can be absorbed by endogenous porphyrins within the bacterial cell, inducing the production of reactive oxygen species, which subsequently inflict oxidative damages upon different cellular components. Nevertheless, it is unclear whether other mechanisms are involved, particularly those that can affect the efficacy of antimicrobial blue light treatments. In this review, we summarize evidence of inherent factors that may confer protection to a selected group of bacteria against blue light-induced oxidative damages or modulate the physiological characteristics of the treated bacteria, such as virulence and motility. These include descriptions of three major photoreceptors in bacteria, chemoreceptors, SOS-dependent DNA repair and non-SOS protective mechanisms. Future directions are also provided to assist with research efforts to increase the efficacy of antimicrobial blue light and to minimize the development of blue light-tolerant phenotypes.
Collapse
|
29
|
Bapat PS, Nobile CJ. Photodynamic Therapy Is Effective Against Candida auris Biofilms. Front Cell Infect Microbiol 2021; 11:713092. [PMID: 34540717 PMCID: PMC8446617 DOI: 10.3389/fcimb.2021.713092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/13/2021] [Indexed: 12/23/2022] Open
Abstract
Fungal infections are increasing in prevalence worldwide. The paucity of available antifungal drug classes, combined with the increased occurrence of multidrug resistance in fungi, has led to new clinical challenges in the treatment of fungal infections. Candida auris is a recently emerged multidrug resistant human fungal pathogen that has become a worldwide public health threat. C. auris clinical isolates are often resistant to one or more antifungal drug classes, and thus, there is a high unmet medical need for the development of new therapeutic strategies effective against C. auris. Additionally, C. auris possesses several virulence traits, including the ability to form biofilms, further contributing to its drug resistance, and complicating the treatment of C. auris infections. Here we assessed red, green, and blue visible lights alone and in combination with photosensitizing compounds for their efficacies against C. auris biofilms. We found that (1) blue light inhibited and disrupted C. auris biofilms on its own and that the addition of photosensitizing compounds improved its antibiofilm potential; (2) red light inhibited and disrupted C. auris biofilms, but only in combination with photosensitizing compounds; and (3) green light inhibited C. auris biofilms in combination with photosensitizing compounds, but had no effects on disrupting C. auris biofilms. Taken together, our findings suggest that photodynamic therapy could be an effective non-drug therapeutic strategy against multidrug resistant C. auris biofilm infections.
Collapse
Affiliation(s)
- Priyanka S Bapat
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, United States.,Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, United States
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, United States.,Health Sciences Research Institute, University of California Merced, Merced, CA, United States
| |
Collapse
|
30
|
Marasini S, Leanse LG, Dai T. Can microorganisms develop resistance against light based anti-infective agents? Adv Drug Deliv Rev 2021; 175:113822. [PMID: 34089778 DOI: 10.1016/j.addr.2021.05.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
Recently, there have been increasing numbers of publications illustrating the potential of light-based antimicrobial therapies to combat antimicrobial resistance. Several modalities, in particular, which have proven antimicrobial efficacy against a wide range of pathogenic microbes include: photodynamic therapy (PDT), ultraviolet light (UVA, UVB and UVC), and antimicrobial blue light (aBL). Using these techniques, microbial cells can be inactivated rapidly, either by inducing reactive oxygen species that are deleterious to the microbial cells (PDT, aBL and UVA) or by causing irreversible DNA damage via direct absorption (UVB and UVC). Given the multi-targeted nature of light-based antimicrobial modalities, it has been hypothesised that resistance development to these approaches is highly unlikely. Furthermore, with the exception of a small number of studies, it has been found that resistance to light based anti-infective agents appears unlikely, irrespective of the modality in question. The concurrent literature however stipulates, that further studies should incorporate standardised microbial tolerance assessments for light-based therapies to better assess the reproducibility of these observations.
Collapse
Affiliation(s)
- Sanjay Marasini
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, New Zealand.
| | - Leon G Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Comments on New Integrative Photomedicine Equipment for Photobiomodulation and COVID-19. PHOTONICS 2021. [DOI: 10.3390/photonics8080303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Up to now it has not yet been scientifically proven whether the technical methods of photonics in the field of photobiomodulation (PBM), photodynamic therapy (PDT), and laser acupuncture in connection with COVID-19 have achieved effective medical success. As part of this short technical note, an overview of the current scientific status is given and new equipment from our own research area is briefly presented. Although there are still many unanswered questions, it seems to be emerging that PBM and PDT in connection with the corresponding photosensitizers may make it appear worthwhile to perform experimental and clinical studies, primarily as so-called home therapy studies. In any case, the technical requirements for this are already in progress.
Collapse
|
32
|
Chiappa F, Frascella B, Vigezzi GP, Moro M, Diamanti L, Gentile L, Lago P, Clementi N, Signorelli C, Mancini N, Odone A. The efficacy of ultraviolet light-emitting technology against coronaviruses: a systematic review. J Hosp Infect 2021; 114:63-78. [PMID: 34029626 PMCID: PMC8139389 DOI: 10.1016/j.jhin.2021.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
The ongoing pandemic of COVID-19 has underlined the importance of adopting effective infection prevention and control (IPC) measures in hospital and community settings. Ultraviolet (UV)-based technologies represent promising IPC tools: their effective application for sanitation has been extensively evaluated in the past but scant, heterogeneous and inconclusive evidence is available on their effect on SARS-CoV-2 transmission. With the aim of pooling the available evidence on the efficacy of UV technologies against coronaviruses, we conducted a systematic review following PRISMA guidelines, searching Medline, Embase and the Cochrane Library, and the main clinical trials' registries (WHO ICTRP, ClinicalTrials.gov, Cochrane and EU Clinical Trial Register). Quantitative data on studies' interventions were summarized in tables, pooled by different coronavirus species and strain, UV source, characteristics of UV light exposure and outcomes. Eighteen papers met our inclusion criteria, published between 1972 and 2020. Six focused on SARS-CoV-2, four on SARS-CoV-1, one on MERS-CoV, three on seasonal coronaviruses, and four on animal coronaviruses. All were experimental studies. Overall, despite wide heterogenicity within included studies, complete inactivation of coronaviruses on surfaces or aerosolized, including SARS-CoV-2, was reported to take a maximum exposure time of 15 min and to need a maximum distance from the UV emitter of up to 1 m. Advances in UV-based technologies in the field of sanitation and their proved high virucidal potential against SARS-CoV-2 support their use for IPC in hospital and community settings and their contribution towards ending the COVID-19 pandemic. National and international guidelines are to be updated and parameters and conditions of use need to be identified to ensure both efficacy and safety of UV technology application for effective infection prevention and control in both healthcare and non-healthcare settings.
Collapse
Affiliation(s)
- F Chiappa
- School of Public Health, University Vita-Salute San Raffaele, Milan, Italy
| | - B Frascella
- School of Public Health, University Vita-Salute San Raffaele, Milan, Italy
| | - G P Vigezzi
- School of Public Health, University Vita-Salute San Raffaele, Milan, Italy
| | - M Moro
- Infection Control Committee, IRCCS San Raffaele Hospital, Milan, Italy
| | - L Diamanti
- Clinical Engineering Unit, IRCCS San Raffaele Hospital, Milan, Italy; HTA Committee, IRCCS San Raffaele Hospital, Milan, Italy
| | - L Gentile
- Clinical Engineering Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - P Lago
- Clinical Engineering Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - N Clementi
- Laboratory of Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy
| | - C Signorelli
- School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - N Mancini
- Laboratory of Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy
| | - A Odone
- HTA Committee, IRCCS San Raffaele Hospital, Milan, Italy; Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
33
|
Bapat P, Singh G, Nobile CJ. Visible Lights Combined with Photosensitizing Compounds Are Effective against Candida albicans Biofilms. Microorganisms 2021; 9:microorganisms9030500. [PMID: 33652865 PMCID: PMC7996876 DOI: 10.3390/microorganisms9030500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Fungal infections are increasing in prevalence worldwide, especially in immunocompromised individuals. Given the emergence of drug-resistant fungi and the fact that there are only three major classes of antifungal drugs available to treat invasive fungal infections, there is a need to develop alternative therapeutic strategies effective against fungal infections. Candida albicans is a commensal of the human microbiota that is also one of the most common fungal pathogens isolated from clinical settings. C. albicans possesses several virulence traits that contribute to its pathogenicity, including the ability to form drug-resistant biofilms, which can make C. albicans infections particularly challenging to treat. Here, we explored red, green, and blue visible lights alone and in combination with common photosensitizing compounds for their efficacies at inhibiting and disrupting C. albicans biofilms. We found that blue light inhibited biofilm formation and disrupted mature biofilms on its own and that the addition of photosensitizing compounds improved its antibiofilm potential. Red and green lights, however, inhibited biofilm formation only in combination with photosensitizing compounds but had no effects on disrupting mature biofilms. Taken together, these results suggest that photodynamic therapy may be an effective non-drug treatment for fungal biofilm infections that is worthy of further exploration.
Collapse
Affiliation(s)
- Priyanka Bapat
- Department of Molecular and Cell Biology, School of Natural Science, University of California, Merced, CA 95343, USA; (P.B.); (G.S.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Gurbinder Singh
- Department of Molecular and Cell Biology, School of Natural Science, University of California, Merced, CA 95343, USA; (P.B.); (G.S.)
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Science, University of California, Merced, CA 95343, USA; (P.B.); (G.S.)
- Health Sciences Research Institute, University of California, Merced, CA 95343, USA
- Correspondence: ; Tel.: +1-209-228-2427
| |
Collapse
|
34
|
Structural membrane changes induced by pulsed blue light on methicillin-resistant Staphylococcus aureus (MRSA). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112150. [PMID: 33578335 DOI: 10.1016/j.jphotobiol.2021.112150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/16/2020] [Accepted: 01/29/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND In a recent study we showed that blue light inactivates methicillin-resistant Staphylococcus aureus (MRSA) by perturbing, depolarizing, and disrupting its cell membrane. PURPOSE The current study presents visual evidence that the observed biochemical changes also result in cell metabolic changes and structural alteration of the cell membrane. METHODS Cultures of MRSA were treated with 450 nm pulsed blue light (PBL) at 3 mW/cm2 irradiance, using a sub lethal dose of 2.7 J/cm2 radiant exposure three times at 30-min intervals. Following 24 h incubation at 37 °C, irradiated colonies and control non-irradiated colonies were processed for light and transmission electron microscopy. RESULTS The images obtained revealed three major effects of PBL; (1) disruption of MRSA cell membrane, (2) alteration of membrane structure, and (3) disruption of cell replication. CONCLUSION These signs of bacterial inactivation at a dose deliberately selected to be sub-lethal supports our previous finding that rapid depolarization of bacterial cell membrane and disruption of cellular function comprise another mechanism underlying photo-inactivation of bacteria. Further, it affirms the potency of PBL.
Collapse
|
35
|
Potential for direct application of blue light for photo-disinfection of dentine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 215:112123. [PMID: 33454542 DOI: 10.1016/j.jphotobiol.2021.112123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/31/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022]
Abstract
The direct application of light for photo-disinfection potentially provides a safe and novel modality to inhibit or eliminate cariogenic bacteria residing upon and within dentine. This study aimed to both; characterize the pattern of transmission of 405 nm light through molar dentine at different tooth locations, as well as, determine the irradiation parameters that are antibacterial for Streptococcus mutans under various growth conditions, including lawns, planktonic cultures, and biofilms. To determine the amount of light (405 nm) transmitted at different anatomical tooth locations; irradiance values were recorded after blue light (470-4054 mW/cm2) had traversed through occlusal, oblique, and buccal dentine sections; and three thicknesses - 1, 2 and 3 mm were investigated. To determine tubular density; scanning electron micrographs from 2 mm outer (dentine-enamel junction) and inner (pulp) dentine sections were analysed. For photo-disinfection studies; S. mutans was irradiated using the same 405 nm wavelength light at a range of doses (110-1254 J/cm2) in both biofilm and planktonic cultures. The inhibitory effect of the irradiation on bacterial lawns was compared by measuring zones of inhibition; and for planktonic cultures both spectrophotometric and colony forming unit (CFU) assays were performed. A live/dead staining assay was utilised to determine the effect of irradiation on bacterial viability in mature biofilms. Data indicated that increasing dentine thickness decreased light transmission significantly irrespective of its orientation. Occlusal and oblique samples exhibited higher transmission compared with buccal dentine. Oblique dentine 405 nm light transmission was comparable with that of occlusal dentine independent of section thickness. An increased tubule density directly positively correlated with light transmission. Irradiation at 405 nm inhibited S. mutans growth in both biofilm and planktonic cultures and a dose response relationship was observed. Irradiation at doses of 340 and 831 J/cm2 led to significant reductions in bacterial growth and viability; as determined by CFU counting and live/dead staining. Data suggests that phototherapy approaches utilising a 405 nm wavelength have therapeutic potential to limit cariogenic bacterial infections both at the surface and within dentine.
Collapse
|
36
|
Hadi J, Wu S, Brightwell G. Antimicrobial Blue Light versus Pathogenic Bacteria: Mechanism, Application in the Food Industry, Hurdle Technologies and Potential Resistance. Foods 2020; 9:E1895. [PMID: 33353056 PMCID: PMC7767196 DOI: 10.3390/foods9121895] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Blue light primarily exhibits antimicrobial activity through the activation of endogenous photosensitizers, which leads to the formation of reactive oxygen species that attack components of bacterial cells. Current data show that blue light is innocuous on the skin, but may inflict photo-damage to the eyes. Laboratory measurements indicate that antimicrobial blue light has minimal effects on the sensorial and nutritional properties of foods, although future research using human panels is required to ascertain these findings. Food properties also affect the efficacy of antimicrobial blue light, with attenuation or enhancement of the bactericidal activity observed in the presence of absorptive materials (for example, proteins on meats) or photosensitizers (for example, riboflavin in milk), respectively. Blue light can also be coupled with other treatments, such as polyphenols, essential oils and organic acids. While complete resistance to blue light has not been reported, isolated evidence suggests that bacterial tolerance to blue light may occur over time, especially through gene mutations, although at a slower rate than antibiotic resistance. Future studies can aim at characterizing the amount and type of intracellular photosensitizers across bacterial species and at assessing the oxygen-independent mechanism of blue light-for example, the inactivation of spoilage bacteria in vacuum-packed meats.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
- New Zealand Food Safety Science and Research Centre, Tennent Drive, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
37
|
Hadi J, Dunowska M, Wu S, Brightwell G. Control Measures for SARS-CoV-2: A Review on Light-Based Inactivation of Single-Stranded RNA Viruses. Pathogens 2020; 9:E737. [PMID: 32911671 PMCID: PMC7558314 DOI: 10.3390/pathogens9090737] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 is a single-stranded RNA virus classified in the family Coronaviridae. In this review, we summarize the literature on light-based (UV, blue, and red lights) sanitization methods for the inactivation of ssRNA viruses in different matrixes (air, liquid, and solid). The rate of inactivation of ssRNA viruses in liquid was higher than in air, whereas inactivation on solid surfaces varied with the type of surface. The efficacy of light-based inactivation was reduced by the presence of absorptive materials. Several technologies can be used to deliver light, including mercury lamp (conventional UV), excimer lamp (UV), pulsed-light, and light-emitting diode (LED). Pulsed-light technologies could inactivate viruses more quickly than conventional UV-C lamps. Large-scale use of germicidal LED is dependent on future improvements in their energy efficiency. Blue light possesses virucidal potential in the presence of exogenous photosensitizers, although femtosecond laser (ultrashort pulses) can be used to circumvent the need for photosensitizers. Red light can be combined with methylene blue for application in medical settings, especially for sanitization of blood products. Future modelling studies are required to establish clearer parameters for assessing susceptibility of viruses to light-based inactivation. There is considerable scope for improvement in the current germicidal light-based technologies and practices.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Magdalena Dunowska
- School of Veterinary Science, Massey University Manawatu (Turitea) Tennent Drive, Palmerston North 4474, New Zealand;
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
- New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea) Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
38
|
Mohamed MS, Elshaghabee FM, Alharbi SA, El-Hussein A. The Prospective Beneficial Effects of Red Laser Exposure on Lactocaseibacillus casei Fermentation of Skim Milk. BIOLOGY 2020; 9:biology9090256. [PMID: 32878056 PMCID: PMC7565532 DOI: 10.3390/biology9090256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Probiotic lactic acid bacteria are crucial producers of fermented dairy products that are popular functional foods in many countries. The health benefits of probiotic bacteria are mainly attributed to their effective bioactive metabolites. The quality of fermented milk is mainly dependent on the bacterial strain used in the fermentation process. In this study, an innovative technique is used in order to enhance the activities of the probiotic bacteria, quality of fermented milk, and consequently the whole fermentation process. Red laser dosages, at the wavelength of 632.7 nm, were applied to the type strain Lacticaseibacillus casei NRRL-B-1922 before the fermentation of skim milk. The results revealed that the scavenging of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical and total antioxidant capacity were significantly increased from 21% in untreated control to 56% after bacterial laser irradiation of 12 J/cm2 dosage for 40 min. The antioxidant activity was found to be increased as the red laser dosage increased in a dose-response relationship. Additionally, the lactose fermentation in skim milk medium of 43.22 mg/mL initial concentration into organic acids was enhanced after L. casei irradiation and recorded 23.15 mg/mL compared to control group 28.35 mg/mL without bacterial pre-treatment. These results are correlated with increase of the β-Galactosidase activity, where the L. casei that has been exposed to 40 min of red laser exhibited the higher activity of a 0.37 unit/mL relative to the control 0.25 unit/mL. The assessment of this fermented milk after L. casei laser exposure for 10, 20, and 40 min indicates multiple biological effects, including assimilation of cholesterol as well as proteolytic and antibacterial activity. Our data on the exposure of L. casei to laser beam suggest promising application of red laser in the fermentation process of skim milk.
Collapse
Affiliation(s)
- Mahmoud S.M. Mohamed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence: (M.S.M.M.); (A.E.-H.)
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia;
| | - Ahmed El-Hussein
- The National Institute of Laser Enhanced Science, Cairo University, Giza 12613, Egypt
- Correspondence: (M.S.M.M.); (A.E.-H.)
| |
Collapse
|
39
|
Bumah VV, Morrow BN, Cortez PM, Bowman CR, Rojas P, Masson-Meyers DS, Suprapto J, Tong WG, Enwemeka CS. The importance of porphyrins in blue light suppression of Streptococcus agalactiae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:111996. [PMID: 32863128 DOI: 10.1016/j.jphotobiol.2020.111996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023]
Abstract
It is well documented that blue light absorption by bacterial chromophores triggers downstream production of reactive oxygen species (ROS), which in turn results in bacterial cell death. To elucidate the importance of chromophores in the bactericidal effect of blue light, and to determine whether blue light absorption per se or the presence of porphyrins known to engender ROS is crucial in blue light treatment, we studied the effect of 450 nm pulsed light on Streptococcus agalactiae, also known as Group B Streptococcus (GBS) strain COH1. GBS does not synthesize porphyrins but has a blue light-absorbing chromophore, granadaene. We irradiated planktonic cultures of GBS with or without exogenous chromophore supplementation using either protoporphyrin IX (PPIX), coproporphyrin III (CPIII), Nicotinamide adenine dinucleotide (NAD), reduced nicotinamide adenine dinucleotide (NADH), Flavin adenine dinucleotide (FAD), or Flavin mononucleotide (FMN). Quantification of surviving bacterial colonies, presented as percent survival and CFU/mL (log10), showed that (1) 450 nm blue light does not suppress the growth of GBS, even though its endogenous chromophore, granadaene, absorbs light in the 450 nm spectrum. (2) The addition of either of the two exogenous porphyrins, PPIX or CPIII, significantly suppressed GBS, indicating the importance of porphyrins in the antimicrobial action of blue light. (3) Adding exogenous FMN or FAD, two known absorbers of 450 nm light, minimally potentiated the bactericidal effect of blue light, again confirming that mere absorption of blue light by chromophores does not necessarily result in bacterial suppression. (4) Irradiation of GBS with or without NAD+ or NADH supplementation-two weak absorbers of 450 nm light-minimally suppressed GBS, indicating that a blue light-absorbing chromophore is essential for the bactericidal action of blue light. (5) Collectively, these findings show that in addition to the presence of a blue light-absorbing chromophore in bacteria, a chromophore with the right metabolic machinery and biochemical structure, capable of producing ROS, is necessary for 450 nm blue light to suppress GBS.
Collapse
Affiliation(s)
- Violet Vakunseh Bumah
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA; College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | | | | | | | - Paulina Rojas
- Department of Biology, 5500 Campanile Dr, San Diego, CA 92182. USA
| | - Daniela Santos Masson-Meyers
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA; Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, USA
| | - James Suprapto
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - William G Tong
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - Chukuka Samuel Enwemeka
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| |
Collapse
|
40
|
Bhargava S, Listopadzki T, Diletti S, Crane JK, Duquin TR, Boyle KK. Effect of Blue Light and Photosensitizers on Cutibacterium acnes on Shoulder Periprosthetic Joint Infection Isolates. J Bone Jt Infect 2020; 5:187-197. [PMID: 32670773 PMCID: PMC7358969 DOI: 10.7150/jbji.46199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/01/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction:Cutibacterium acnes is gaining recognition as a leading pathogen after orthopaedic shoulder procedures. Photodynamic therapy, a combination of light and a photosensitizer, has demonstrated antimicrobial activity against C. acnes in the treatment of acne vulgaris. We sought to evaluate the effect of photodynamic therapy using blue light and photosensitizers on C. acnes isolates from shoulder prosthetic joint infections. Methods:C. acnes strains isolated from 19 patients with shoulder PJI were exposed to blue light alone (415 nm) or in combination with photosensitizers (fluorescein, riboflavin and demeclocycline). C. acnes strains were divided into 4 categories: Highly Sensitive (HS), Sensitive (S), Weakly Sensitive (WS), Resistant to blue light. Results: 13 of 19 C. acnes strains (68%) were S or HS to blue light alone. Of these 19 strains tested, 11 were tested with blue light and fluorescein or blue light plus riboflavin. Fluorescein (1 µg/mL) enhanced the effect of blue light in 6 of 11 strains (55%). Blue light plus riboflavin (10 µg/mL) resulted enhanced killing in 3 of 11 strains (27%), but produced a paradoxical photoprotective effect in 4 of 11 strains (36%), resulting in a net decrease compared to blue light alone. Demeclocycline, however, enhanced the effect of blue light in 16 of 17 strains (94 %). Conclusions: Blue light with the addition of photosensitizers killed C. acnes from periprosthetic shoulder infections in vitro, with demeclocycline having the most pronounced effect.
Collapse
Affiliation(s)
- Swati Bhargava
- Department Medicine, Division of Infectious Disease, University at Buffalo, Buffalo, NY
| | - Thomas Listopadzki
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Sara Diletti
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - John K Crane
- Department Medicine, Division of Infectious Disease, University at Buffalo, Buffalo, NY
| | - Thomas R Duquin
- Department of Orthopaedics, State University of New York at Buffalo, Buffalo, NY
| | - K Keely Boyle
- Department of Orthopaedics, State University of New York at Buffalo, Buffalo, NY
| |
Collapse
|
41
|
Cell salvage in burn excisional surgery. Burns 2020; 47:127-132. [PMID: 33082023 DOI: 10.1016/j.burns.2020.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Hemostasis during burn surgery is difficult to achieve, and high blood loss commonly occurs. Bleeding control measures are limited, and many patients require allogeneic blood transfusions. Cell salvage is a well-known method used to reduce transfusions. However, its evidence in burns is limited. Therefore, this study aimed to examine the feasibility of cell salvage during burn surgery. STUDY DESIGN AND METHODS A prospective, observational study was conducted with 16 patients (20 measurements) scheduled for major burn surgery. Blood was recovered by washing saturated gauze pads with heparinized saline, which was then processed using the Cell Saver. Erythrocyte concentrate quality was analyzed by measuring hemoglobin, hematocrit, potassium, and free hemoglobin concentration. Microbial contamination was assessed based on cultures at every step of the process. Differences in blood samples were tested using the Student's t-test. RESULTS The red blood cell mass recovered was 29 ± 11% of the mass lost. Patients' preoperative hemoglobin and hematocrit levels were 10.5 ± 1.8 g/dL and 0.33 ± 0.05 L/L, respectively. The erythrocyte concentrate showed hemoglobin and hematocrit levels of 13.2 ± 3.9 g/dL and 0.40 ± 0.11 L/L thus showing a concentration effect. The potassium level was lower in the erythrocyte concentrate (2.5 ± 1.5 vs. 4.1 ± 0.4 mmol/L, p < 0.05). The free hemoglobin level was low (0.16 ± 0.21 μmol/L). All cultures of the erythrocyte concentrate showed bacterial growth compared to 21% of wound cultures. CONCLUSION Recovering erythrocytes during burn excisional surgery using cell salvage is possible. Despite strict sterile handling, erythrocyte concentrates of all patients showed bacterial contamination. The consequence of this contamination remains unclear and should be investigated in future studies.
Collapse
|
42
|
Sharma D, Singh SS, Baindara P, Sharma S, Khatri N, Grover V, Patil PB, Korpole S. Surfactin Like Broad Spectrum Antimicrobial Lipopeptide Co-produced With Sublancin From Bacillus subtilis Strain A52: Dual Reservoir of Bioactives. Front Microbiol 2020; 11:1167. [PMID: 32595619 PMCID: PMC7300217 DOI: 10.3389/fmicb.2020.01167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/07/2020] [Indexed: 01/31/2023] Open
Abstract
An antimicrobial substance producing strain designated as A52 was isolated from a marine sediment sample and identified as Bacillus sp., based on 16S rRNA gene sequence analysis. The ANI and dDDH analysis of the genome sequence displayed high identity with two strains of B. subtilis sub sp. subtilis. Strain A52 yielded two antimicrobial peptides (AMPs) that differed in activity spectrum. MALDI mass spectrometry analysis of HPLC purified fractions revealed mass of peptides as 3881.6 and 1061.9 Da. The antiSMASH analysis of genome sequence unraveled presence of identical biosynthetic cluster involved in production of sublancin from B. subtilis sub sp. subtilis strain 168, which yielded peptide with identical mass. The low molecular weight peptide is found to be a cyclic lipopeptide containing C16 β-hydroxy fatty acid that resembled surfactin-like group of biosurfactants. However, it differed in fatty acid composition and antimicrobial spectrum in comparison to other surfactins produced by strains of B. subtilis. It exhibited broad spectrum antibacterial activity, inhibited growth of pathogenic strains of Candida and filamentous fungi. Further, it exhibited hemolytic activity, but did not show phytotoxic effect in seed germination experiment. The emulgel formulation of surfactin-like lipopeptide showed antimicrobial activity in vitro and did not show any irritation effects in animal studies using BALB/c mice. Moreover, surfactin-like lipopeptide displayed synergistic activity with fluconazole against Candida, indicating its potential for external therapeutic applications.
Collapse
Affiliation(s)
- Deepika Sharma
- Council of Scientific and Industrial Research (CSIR) - Institute of Microbial Technology, Chandigarh, India
| | - Shelley Sardul Singh
- Council of Scientific and Industrial Research (CSIR) - Institute of Microbial Technology, Chandigarh, India
| | - Piyush Baindara
- Council of Scientific and Industrial Research (CSIR) - Institute of Microbial Technology, Chandigarh, India
| | - Shikha Sharma
- Council of Scientific and Industrial Research (CSIR) - Institute of Microbial Technology, Chandigarh, India
| | - Neeraj Khatri
- Council of Scientific and Industrial Research (CSIR) - Institute of Microbial Technology, Chandigarh, India
| | - Vishakha Grover
- Dr. Harvansh Singh Judge Institute of Dental Sciences & Hospital, Panjab University, Chandigarh, India
| | - Prabhu B Patil
- Council of Scientific and Industrial Research (CSIR) - Institute of Microbial Technology, Chandigarh, India
| | - Suresh Korpole
- Council of Scientific and Industrial Research (CSIR) - Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
43
|
Margarucci LM, Romano Spica V, Gianfranceschi G, Valeriani F. Untouchability of natural spa waters: Perspectives for treatments within a personalized water safety plan. ENVIRONMENT INTERNATIONAL 2019; 133:105095. [PMID: 31518929 DOI: 10.1016/j.envint.2019.105095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
Natural SPA waters and their environments were known since ancient times and used for health or recreational purposes in different societies, worldwide. The composition and uses of these spring waters may not allow standard disinfection in pools, representing a challenge for hygiene management. Several safety and quality procedures were proposed, but a systematic approach is still needed. Here, we focus on alternative strategies to provide hints for developing a sustainable Water Safety Plan, based on intrinsic water properties and photocatalytic materials. The antimicrobial activity of four different SPA waters with high mineral content and one drinkable spring water with a low mineral content, was assessed and then tested for the additional bactericidal activity of Titanium Dioxide (TiO2) nanomaterials and/or light exposure at different wavelengths (200-635 nm). A native antibacterial activity was observed in all high mineral content waters, with a CFU reduction of 75-80%. The bactericidal action of TiO2 showed an additional incremental effect, with a reduction of over 99% within 2-5 h. Interestingly, the antibacterial photocatalytic effect was detected also in the visible light range, with a possible pick around 450-455 nm, blue-light. Based on observed results, we propose a model for developing a water safety plan, considering water properties and bather exposure. This candidate approach is personalized on water composition and pool use, trying to avoid chemical disinfectants. Photocatalytic nanotechnologies represent one of the promising alternative treatments and can provide novel perspectives for a sustainable managing of natural SPA water hygiene.
Collapse
Affiliation(s)
- Lory Marika Margarucci
- University of Rome "Foro Italico", Department of Movement, Human, and Health Sciences, Rome, Italy
| | - Vincenzo Romano Spica
- University of Rome "Foro Italico", Department of Movement, Human, and Health Sciences, Rome, Italy
| | - Gianluca Gianfranceschi
- University of Rome "Foro Italico", Department of Movement, Human, and Health Sciences, Rome, Italy
| | - Federica Valeriani
- University of Rome "Foro Italico", Department of Movement, Human, and Health Sciences, Rome, Italy.
| |
Collapse
|
44
|
Violet-Blue Light Arrays at 405 Nanometers Exert Enhanced Antimicrobial Activity for Photodisinfection of Monomicrobial Nosocomial Biofilms. Appl Environ Microbiol 2019; 85:AEM.01346-19. [PMID: 31444205 PMCID: PMC6803304 DOI: 10.1128/aem.01346-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
This study reports the efficacy of VBL and blue light (BL) and their antimicrobial activity against mature biofilms of a range of important nosocomial pathogens. While this study investigated the antibacterial activity of a range of wavelengths of between 375 and 450 nm and identified a specific wavelength region (∼405 nm) with increased antibacterial activity, decontamination was dependent on the bacterial species, strain, irradiation parameters, and experimental conditions. Further research with controlled experiments that ameliorate the heating effects and improve the optical properties are required to optimize the dosing parameters to advance the successful clinical translation of this technology. Light-emitting diodes (LEDs) demonstrate therapeutic effects for a range of biomedical applications, including photodisinfection. Bands of specific wavelengths (centered at 405 nm) are reported to be the most antimicrobial; however, there remains no consensus on the most effective irradiation parameters for optimal photodisinfection. The aim of this study was to assess decontamination efficiency by direct photodisinfection of monomicrobial biofilms using a violet-blue light (VBL) single-wavelength array (SWA) and multiwavelength array (MWA). Mature biofilms of nosocomial bacteria (Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus) were grown on 96-well polypropylene PCR plates. The biofilms were then exposed to VBL for 2,700 s (SWA) and 1,170 s (MWA) to deliver 0 to 670 J/cm2, and the antibacterial activity of VBL was assessed by comparing the seeding of the irradiated and the nonirradiated biofilms. Nonirradiated groups were used as controls. The VBL arrays were characterized optically (spectral irradiance and beam profile) and thermally. The SWA delivered 401-nm VBL and the MWA delivered between 379-nm and 452-nm VBL, albeit at different irradiances and with different beam profiles. In both arrays, the irradiated groups were exposed to increased temperatures compared to the nonirradiated controls. All bacterial isolates were susceptible to VBL and demonstrated reductions in the seeding of exposed biofilms compared with the nonirradiated controls. VBL at 405 nm exerted the most antimicrobial activity, exhibiting reductions in seeding of up to 94%. Decontamination efficiency is dependent on the irradiation parameters, bacterial species and strain, and experimental conditions. Controlled experiments that ameliorate the heating effects and improve the optical properties are required to optimize the dosing parameters to advance the successful clinical translation of this technology. IMPORTANCE This study reports the efficacy of VBL and blue light (BL) and their antimicrobial activity against mature biofilms of a range of important nosocomial pathogens. While this study investigated the antibacterial activity of a range of wavelengths of between 375 and 450 nm and identified a specific wavelength region (∼405 nm) with increased antibacterial activity, decontamination was dependent on the bacterial species, strain, irradiation parameters, and experimental conditions. Further research with controlled experiments that ameliorate the heating effects and improve the optical properties are required to optimize the dosing parameters to advance the successful clinical translation of this technology.
Collapse
|
45
|
Ferrer-Espada R, Wang Y, Goh XS, Dai T. Antimicrobial Blue Light Inactivation of Microbial Isolates in Biofilms. Lasers Surg Med 2019; 52:472-478. [PMID: 31536154 DOI: 10.1002/lsm.23159] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVES Biofilms cause more than 80% of infections in humans, including more than 90% of all chronic wound infections and are extremely resistant to antimicrobials and the immune system. The situation is exacerbated by the fast spreading of antimicrobial resistance, which has become one of the biggest threats to current public health. There is consequently a critical need for the development of alternative therapeutics. Antimicrobial blue light (aBL) is a light-based approach that exhibits intrinsic antimicrobial effect without the involvement of exogenous photosensitizers. In this study, we investigated the antimicrobial effect of this non-antibiotic approach against biofilms formed by microbial isolates of multidrug-resistant bacteria. STUDY DESIGN/MATERIALS AND METHODS Microbial isolates of Acinetobacter baumannii, Candida albicans, Escherichia coli, Enterococcus faecalis, MRSA, Neisseria gonorrhoeae, Pseudomonas aeruginosa, and Proteus mirabilis were studied. Biofilms were grown in microtiter plates for 24 or 48 hours or in the CDC biofilm reactor for 48 hours and exposed to aBL at 405 nm (60 mW/cm2 , 60 or 30 minutes). The anti-biofilm activity of aBL was measured by viable counts. RESULTS The biofilms of A. baumannii, N. gonorrhoeae, and P. aeruginosa were the most susceptible to aBL with between 4 and 8 log10 inactivation after 108 J/cm2 (60 mW/cm2 , 30 minutes) or 216 J/cm2 (60 mW/cm2 , 60 minutes) aBL were delivered in the microplates. On the contrary, the biofilms of C. albicans, E. coli, E. faecalis, and P. mirabilis were the least susceptible to aBL inactivation (-0.30, -0.24, -0.84, and -0.68 log10 inactivation, respectively). The same aBL treatment in biofilms developed in the CDC biofilm reactor, caused -1.68 log10 inactivation in A. baumannii and -1.74 and -1.65 log10 inactivation in two different strains of P. aeruginosa. CONCLUSIONS aBL exhibits potential against pathogenic microorganisms and could help with the significant need for new antimicrobials in clinical practice to manage multidrug-resistant infections. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Raquel Ferrer-Espada
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, Boston, Massachusetts, 02129
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Department of Laser Medicine, Chinese PLA General Hospital, Beijing, 100039, China
| | - Xueping Sharon Goh
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, Boston, Massachusetts, 02129
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, Boston, Massachusetts, 02129
| |
Collapse
|
46
|
Thurman CE, Muthuswamy A, Klinger MM, Roble GS. Safety Evaluation of a 405-nm LED Device for Direct Antimicrobial Treatment of the Murine Brain. Comp Med 2019; 69:283-290. [PMID: 31387666 PMCID: PMC6733165 DOI: 10.30802/aalas-cm-18-000126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/23/2018] [Accepted: 04/04/2019] [Indexed: 11/05/2022]
Abstract
Antimicrobial resistance is a growing problem in human medicine that extends to biomedical research. Compared with chemical-based therapies, light-based therapies present an alternative to traditional pharmaceuticals and are less vulnerable to acquired bacterial resistance. Due to immunologic privilege and relative tissue sensitivity to topical antibiotics, the brain poses a unique set of difficulties with regard to antimicrobial therapy. This study focused on 405-nm 'true violet' light-which has been shown to kill multiple clinically relevant bacterial species in vitro yet leave mammalian cells unscathed-and its effect on the murine brain. We built a 405-nm LED array, validated its power and efficacy against a clinical bacterial isolate in vitro, and then, at the time of craniotomy, treated mice with various doses of 405-nm light (36, 45, and 54 J/cm²). The selected doses caused no behavioral derangements postoperatively or any observable brain pathology as determined postmortem by histologic evaluation and immunofluorescence staining for caspase 3 and glial fibrillary acidic protein, markers of apoptosis and necrosis. True-violet light devices may present an inexpensive refinement to current practices for maintaining open craniotomy sites or reducing bacterial loads in contaminated surgical sites.
Collapse
Affiliation(s)
- Colleen E Thurman
- NYU–Regeneron Postdoctoral Training Program in Laboratory Animal Medicine, New York, New York
- Office of Veterinary Resources, New York University, New York, New York
- Regeneron Pharmaceuticals, Tarrytown, New York; and
| | - Anantharaman Muthuswamy
- NYU–Regeneron Postdoctoral Training Program in Laboratory Animal Medicine, New York, New York
- Regeneron Pharmaceuticals, Tarrytown, New York; and
| | - Mark M Klinger
- NYU–Regeneron Postdoctoral Training Program in Laboratory Animal Medicine, New York, New York
- Office of Veterinary Resources, New York University, New York, New York
| | - Gordon S Roble
- NYU–Regeneron Postdoctoral Training Program in Laboratory Animal Medicine, New York, New York
- Office of Veterinary Resources, New York University, New York, New York
- Department of Comparative Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
47
|
Ferrer-Espada R, Liu X, Goh XS, Dai T. Antimicrobial Blue Light Inactivation of Polymicrobial Biofilms. Front Microbiol 2019; 10:721. [PMID: 31024499 PMCID: PMC6467927 DOI: 10.3389/fmicb.2019.00721] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/21/2019] [Indexed: 11/13/2022] Open
Abstract
Polymicrobial biofilms, in which mixed microbial species are present, play a significant role in persistent infections. Furthermore, polymicrobial biofilms promote antibiotic resistance by allowing interspecies transfer of antibiotic resistance genes. In the present study, we investigated the effectiveness of antimicrobial blue light (aBL; 405 nm), an innovative non-antibiotic approach, for the inactivation of polymicrobial biofilms. Dual-species biofilms with Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA) as well as with P. aeruginosa and Candida albicans were reproducibly grown in 96-well microtiter plates or in the CDC biofilm reactor for 24 or 48 h. The effectiveness of aBL inactivation of polymicrobial biofilms was determined through colony forming assay and compared with that of monomicrobial biofilms of each species. aBL-induced morphological changes of biofilms were analyzed with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). For 24-h old monomicrobial biofilms formed in 96-well microtiter plates, 6.30-log10 CFU inactivation of P. aeruginosa, 2.33-log10 CFU inactivation of C. albicans and 3.48-log10 CFU inactivation of MRSA were observed after an aBL exposure of 500 J/cm2. Under the same aBL exposure, 6.34-log10 CFU inactivation of P. aeruginosa and 3.11-log10 CFU inactivation of C. albicans were observed, respectively, in dual-species biofilms. In addition, 2.37- and 3.40-log10 CFU inactivation were obtained in MRSA and P. aeruginosa, dual-species biofilms. The same aBL treatment of the biofilms developed in the CDC-biofilm reactor for 48 h significantly decreased the viability of P. aeruginosa monomicrobial and polymicrobial biofilm when cocultured with MRSA (3.70- and 3.56-log10 CFU inactivation, respectively). 2.58-log10 CFU inactivation and 0.86-log10 CFU inactivation was detected in MRSA monomicrobial and polymicrobial biofilm when cocultured with P. aeruginosa. These findings were further supported by the CLSM and SEM experiments. Phototoxicity studies revealed a no statistically significant loss of viability in human keratinocytes after an exposure to 216 J/cm2 and a statistically significant loss of viability after 500 J/cm2. aBL is potentially an alternative treatment against polymicrobial biofilm-related infections. Future studies will aim to improve the efficacy of aBL and to investigate aBL treatment of polymicrobial biofilm-related infections in vivo.
Collapse
Affiliation(s)
- Raquel Ferrer-Espada
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Vaccine & Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaojing Liu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Vaccine & Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xueping Sharon Goh
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Vaccine & Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Vaccine & Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
48
|
Morio K, Thayer EL, Bates AM, Brogden KA. 255-nm Light-emitting Diode Kills Enterococcus faecalis and Induces the Production of Cellular Biomarkers in Human Embryonic Palatal Mesenchyme Cells and Gingival Fibroblasts. J Endod 2019; 45:774-783.e6. [PMID: 30930014 DOI: 10.1016/j.joen.2019.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The successful treatment of infected or inflamed endodontic tissues requires chemomechanical debridement of the canal spaces and proper sealing of the coronal and apical canal openings. Only a few methods are available to further disinfect areas or initiate regeneration of local tissues. In this study, we assessed the ability of 255-nm and 405-nm light-emitting diode (LED) treatment to kill planktonic cultures of Enterococcus faecalis and induce the production of cellular biomarkers related to endodontic tissue regeneration. METHODS We determined the antimicrobial effects of 255-nm and 405-nm LED treatment on E. faecalis and the effects of 255-nm and 405-nm LED treatment on the production of osteoinductive, angiogenic, proliferative, and proinflammatory biomarkers from human embryonic palatal mesenchyme (HEPM) cells and gingival fibroblasts. RESULTS We showed that 255-nm LED but not 405-nm LED treatment killed E. faecalis; the 255-nm LED and sodium hypochlorite more efficiently killed E. faecalis; neither 255-nm nor 405-nm LED treatment affected the viability of HEPM cells and gingival fibroblasts; and 255-nm LED treatment, alone or in combination with 405-nm LED treatment, of HEPM cells and gingival fibroblasts induced the production of biomarkers related to endodontic tissue regeneration. CONCLUSIONS The results of this study suggest a new treatment modality using short periods of 255-nm LED treatment as an adjunct to chemomechanical debridement for the disinfection of inflamed sites and the production of biomarkers related to endodontic tissue regeneration.
Collapse
Affiliation(s)
- Kimberly Morio
- Department of Endodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa
| | - Emma L Thayer
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa
| | - Amber M Bates
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kim A Brogden
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa; Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa.
| |
Collapse
|
49
|
Grangeteau C, Lepinois F, Winckler P, Perrier-Cornet JM, Dupont S, Beney L. Cell Death Mechanisms Induced by Photo-Oxidation Studied at the Cell Scale in the Yeast Saccharomyces cerevisiae. Front Microbiol 2018; 9:2640. [PMID: 30455675 PMCID: PMC6230929 DOI: 10.3389/fmicb.2018.02640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022] Open
Abstract
Blue light (400–430 nm) is known to induce lethal effects in some species of fungi by photo-oxidation caused by the excitation of porphyrins but the mechanisms involved remain poorly understood. In this work, we exposed the yeast Saccharomyces cerevisiae to a high density light flux with two-photon excitation (830 nm equivalent to a one-photon excitation around 415 nm) and used quasi real-time visualization with confocal microscopy to study the initiation and dynamics of photo-oxidation in subcellular structures. Our results show that the oxidation generated by light treatments led to the permeabilization of the plasma membrane accompanied by the sudden expulsion of the cellular content, corresponding to cell death by necrosis. Moreover, excitation in the plasma membrane led to very fast oxidation and membrane permeabilization (<60 s) while excitation at the center of the cell did not induce permeabilization even after a period exceeding 600 s. Finally, our study shows that the relationship between the laser power used for two-photon excitation and the time required to permeabilize the plasma membrane was not linear. Thus, the higher the power used, the lower the energy required to permeabilize the plasma membrane. We conclude that fungal destruction can be generated very quickly using a high density light flux. Better knowledge of the intracellular processes and the conditions necessary to induce necrosis should make it possible in the future to improve the efficiency of antimicrobial strategies photo-oxidation-based.
Collapse
Affiliation(s)
- Cédric Grangeteau
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Florine Lepinois
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Pascale Winckler
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | | | - Sebastien Dupont
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Laurent Beney
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| |
Collapse
|