1
|
He LX, He LY, Tang YJ, Qiao LK, Xu MC, Zhou ZY, Bai H, Zhang M, Ying GG. Deciphering spread of quinolone resistance in mariculture ponds: Cross-species and cross-environment transmission of resistome. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137198. [PMID: 39827796 DOI: 10.1016/j.jhazmat.2025.137198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Mariculture is known to harbor antibiotic resistance genes (ARGs), which can be released into marine ecosystems via oceanic farming ponds, posing a public health concern. In this study, metagenomic sequencing was used to decipher the profiles of quinolone-resistant microbiomes and the mechanisms of quinolone resistance in sediment, seawater, and fish gill samples from five mariculture ponds. Residues of both veterinary-specific (enrofloxacin and sarafloxacin) and prohibited quinolones (ofloxacin, ciprofloxacin, pefloxacin, norfloxacin, and lomefloxacin) were detected. We identified a total of 285 subtypes of ARGs across all samples. Pathogens played a crucial role in the prevalence and distribution of these ARGs. Out of the annotated 629 bacterial species, 42 were identified as pathogenic, predominantly belonging to the Proteobacteria phylum. Notably, the Acinetobacter genus was prevalent in the gills and exhibited correlations with various ARGs. The presence of the plasmid-mediated quinolone resistance (PMQR) genes in various bacterial species and the identification of sulfonamide resistance genes across different samples indicated the potential for cross-species and cross-environment transmission of ARGs. Metagenomic binning revealed that Exiguobacterium harbored five ARGs (vanA, vanB, fexA, msr(G), mefF), while Shewanella carried six ARGs (blaOXA-436, adeF, qacl, ANT (2'')-Ia, dfrA1, rsmA). Mutations in gyrA and parC contributed to quinolone resistance in these multidrug-resistant Exiguobacterium and Shewanella. Our findings suggest a potential for ARG transmission across various bacterial species and environments in mariculture. This study emphasized the risk of resistance spread within the mariculture ecosystem.
Collapse
Affiliation(s)
- Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Yan-Jun Tang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lu-Kai Qiao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Meng-Chao Xu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Yin Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Min Zhang
- Guangdong Provincial Engineering Technology Research Center for Life and Health 15 of River&Lake, Pearl River Hydraulic Research Institute, Pearl River Water 16 Resources Commission of the Ministry of Water Resources, Guangzhou 510611-17, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
2
|
Horsman S, Zaugg J, Meler E, Mikkelsen D, Soares Magalhães RJ, Gibson JS. Molecular Epidemiological Characteristics of Staphylococcus pseudintermedius, Staphylococcus coagulans, and Coagulase-Negative Staphylococci Cultured from Clinical Canine Skin and Ear Samples in Queensland. Antibiotics (Basel) 2025; 14:80. [PMID: 39858366 PMCID: PMC11761246 DOI: 10.3390/antibiotics14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Infections in dogs caused by methicillin-resistant staphylococci (MRS) present limited treatment options. This study's objective was to investigate the molecular epidemiology of Staphylococcus spp. cultured exclusively from clinical canine skin and ear samples in Queensland, Australia, using whole-genome sequencing (WGS). Methods: Forty-two Staphylococcus spp. isolated from clinical canine skin and ear samples, from an unknown number of dogs, were sourced from two veterinary diagnostic laboratories between January 2022 and May 2023. These isolates underwent matrix-assisted laser desorption ionisation- time of flight bacterial identification, minimum inhibitory concentration testing using SensititreTM plates and WGS. Phylogenetic trees and core genome multilocus sequence typing (cgMLST) minimum spanning trees (MSTs) were constructed. Results: The isolates included methicillin-resistant and -sensitive S. pseudintermedius (MRSP: 57.1%, 24/42; and MSSP: 19.1%, 8/42), methicillin-resistant and -sensitive S. coagulans (MRSC: 14.3%, 6/42; and MSSC: 2.4%, 1/42) and methicillin-resistant coagulase-negative staphylococci (MR-CoNS: 7.1%, 3/42). Thirty-nine isolates were included after WGS, where all MRS harboured the mecA gene. Eighteen sequence types (STs) were identified, including three novel MRSP and six novel MSSP STs. MRSP ST496-V-VII (23%; 9/39) and MRSP ST749-IV-(IVg) (12.8%; 5/39) were commonly isolated. Phylogenetic analysis of single nucleotide polymorphisms showed that MRSP, MRSC and MSSC were similar to globally isolated staphylococci from canine skin and ear infections. Using cgMLST MSTs, MRSP isolates were not closely related to global strains. Conclusions: Our findings revealed a genotypically diverse geographical distribution and phylogenetic relatedness of staphylococci cultured from clinical canine skin and ear samples across Queensland. This highlights the importance of ongoing surveillance to aid in evidence-based treatment decisions and antimicrobial stewardship.
Collapse
Affiliation(s)
- Sara Horsman
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (E.M.); (J.S.G.)
| | - Julian Zaugg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Erika Meler
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (E.M.); (J.S.G.)
| | - Deirdre Mikkelsen
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD 4072, Australia;
| | | | - Justine S. Gibson
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (E.M.); (J.S.G.)
| |
Collapse
|
3
|
Wu J, Wu S, Liu J, Li C, Zheng M, Li F, Zhang Y, Wu Y, Yu Y. Collateral Sensitivity to β-Lactam Antibiotics in Evolved Apramycin-Resistant MRSA. Int J Mol Sci 2024; 25:12292. [PMID: 39596355 PMCID: PMC11594749 DOI: 10.3390/ijms252212292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Collateral sensitivity is an evolutionary trade-off for bacteria where acquiring resistance to one antibiotic results in an increased sensitivity to another antibiotic. This study was designed to evaluate the collateral sensitivity of methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics induced by the evolution of resistance to apramycin. Collateral sensitivity to ampicillin, cephazolin, ceftriaxone, cefotaxime, cefepime and cefquinome occurred after MRSA were exposed to apramycin and induced to acquire resistance. This sensitivity was associated with reduced β-lactamase activity and decreased expression of the mecA gene. We also found a decrease in the proton motive force and decreased efflux activity. These results provide new insights into collateral sensitivity-based strategies for the treatment of MRSA.
Collapse
Affiliation(s)
- Jingjing Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (J.W.); (S.W.); (J.L.); (C.L.); (M.Z.); (F.L.); (Y.Z.); (Y.W.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Shiqian Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (J.W.); (S.W.); (J.L.); (C.L.); (M.Z.); (F.L.); (Y.Z.); (Y.W.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Juan Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (J.W.); (S.W.); (J.L.); (C.L.); (M.Z.); (F.L.); (Y.Z.); (Y.W.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Wenshi Dahuanong Biotechnology Co., Ltd., Yunfu 527400, China
| | - Changmin Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (J.W.); (S.W.); (J.L.); (C.L.); (M.Z.); (F.L.); (Y.Z.); (Y.W.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Mei Zheng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (J.W.); (S.W.); (J.L.); (C.L.); (M.Z.); (F.L.); (Y.Z.); (Y.W.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Animal Laboratory Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Fuhao Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (J.W.); (S.W.); (J.L.); (C.L.); (M.Z.); (F.L.); (Y.Z.); (Y.W.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Yan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (J.W.); (S.W.); (J.L.); (C.L.); (M.Z.); (F.L.); (Y.Z.); (Y.W.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Yashuang Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (J.W.); (S.W.); (J.L.); (C.L.); (M.Z.); (F.L.); (Y.Z.); (Y.W.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Yang Yu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (J.W.); (S.W.); (J.L.); (C.L.); (M.Z.); (F.L.); (Y.Z.); (Y.W.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Lee JB, Lim JH, Park JH, Lee GY, Park KT, Yang SJ. Genetic characteristics and antimicrobial resistance of Staphylococcus aureus isolates from pig farms in Korea: emergence of cfr-positive CC398 lineage. BMC Vet Res 2024; 20:503. [PMID: 39487420 PMCID: PMC11529005 DOI: 10.1186/s12917-024-04360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Livestock-associated Staphylococcus aureus (LA-SA) has gained global attention because of its ability to colonize farm animals and transmit to the environment and humans, leading to symptomatic infections and the spread of antimicrobial resistance (AMR). In the last decade, numerous studies have reported a high prevalence of S. aureus clonal complex (CC) 398 in pig farms. RESULTS In this study, 163 S. aureus isolates were collected from healthy pigs (n = 110), farm environments (n = 42), and farm workers (n = 11), and their AMR profiles and epidemiological characteristics were analyzed. We identified 51 (31.3%) methicillin-resistant S. aureus (MRSA) and 112 (68.7%) methicillin-susceptible S. aureus (MSSA), with 161 (98.8%) isolates belonging to the CC398 lineage. The highest prevalence of spa type t571 was observed among the CC398 isolates. All 47 sequence type (ST) 398 MRSA isolates carried staphylococcal cassette chromosome mec (SCCmec) V, while four ST541 isolates carried SCCmec IV. High levels of resistance to commonly used antibiotics, including phenicols, quinolones, lincosamides, macrolides, aminoglycosides, and tetracyclines, have been observed on Korean pig farms. Notably, 21 cfr-positive CC398 isolates (four ST541-SCCmec IV MRSA and 17 ST398 MSSA) displaying increased resistance to linezolid were identified in healthy pigs. CONCLUSIONS In summary, these findings suggest that the multidrug-resistant CC398 S. aureus lineage predominantly colonizes healthy pigs and farm environments in Korea. The emergence of cfr-positive S. aureus at human-animal interfaces presents a significant threat to food safety and public health.
Collapse
Affiliation(s)
- Jun Bong Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Ji Hyun Lim
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Ji Heon Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Gi Yong Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kun Taek Park
- Department of Biotechnology, Inje University, Gimhae, 50834, Korea
| | - Soo-Jin Yang
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
5
|
Cuny C, Layer-Nicolaou F, Werner G, Witte W. A look at staphylococci from the one health perspective. Int J Med Microbiol 2024; 314:151604. [PMID: 38367509 DOI: 10.1016/j.ijmm.2024.151604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024] Open
Abstract
Staphylococcus aureus and other staphylococcal species are resident and transient multihost colonizers as well as conditional pathogens. Especially S. aureus represents an excellent model bacterium for the "One Health" concept because of its dynamics at the human-animal interface and versatility with respect to host adaptation. The development of antimicrobial resistance plays another integral part. This overview will focus on studies at the human-animal interface with respect to livestock farming and to companion animals, as well as on staphylococci in wildlife. In this context transmissions of staphylococci and of antimicrobial resistance genes between animals and humans are of particular significance.
Collapse
Affiliation(s)
- Christiane Cuny
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany.
| | - Franziska Layer-Nicolaou
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | | |
Collapse
|
6
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Agyirifo DS, Mensah TA, Senya ASY, Hounkpe A, Dornyoh CD, Otwe EP. Dynamics of antimicrobial resistance and virulence of staphylococcal species isolated from foods traded in the Cape Coast metropolitan and Elmina municipality of Ghana. Heliyon 2023; 9:e21584. [PMID: 38027608 PMCID: PMC10663863 DOI: 10.1016/j.heliyon.2023.e21584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The impact of staphylococci on food poisoning and infections could be higher than previously reported. In this study, we characterised the occurrence and coexistence of antimicrobial resistance and virulence genes of staphylococci isolates in foods. Staphylococci were isolated from 236 samples of selected street-vended foods and identified. The pattern of antimicrobial resistance and virulence genes in the staphylococci were assessed using disc diffusion, PCR and analysis of next-generation sequencing data. The food samples (70.76 %) showed a high prevalence of staphylococci and differed among the food categories. Forty-five Staphylococcus species were identified and comprised coagulase-negative and positive species. Staphylococcus sciuri (now Mammaliicoccus sciuri), S. aureus, S. kloosii, S. xylosus, S. saprophyticus, S. haemolyticus and S. succinus were the most abundant species. The staphylococcal isolates exhibited resistance to tetracycline, levofloxacin, ciprofloxacin, norfloxacin, gentamicin and amikacin and susceptibility to nitrofurantoin. Antimicrobial susceptibilities were also reported for cefoperazone, ceftriaxone, cefotaxime, nalidixic acid and piperacillin-tazobactam. The antimicrobial resistance and virulence genes commonly detected consisted of tet, arl, macB, van, gyr, nor, optrA, bcrA, blaZ, taeA and S. aureus lmrS. The isolates frequently exhibited multiple resistance (30.42 %) of up to eight antimicrobial drug classes. The isolates predominantly harboured genes that express efflux pump proteins (50.53 %) for antibiotic resistance compared with inactivation (10.05 %), target alteration (26.72 %), protection (7.67 %) and replacement (3.17 %). The virulence determinants comprised genes of pyrogenic toxin superantigens (eta, etb, tst), adhesions (clf, fnbA, fnbB, cna, map, ebp, spA, vWbp, coa) and genes that express exoproteins (nuclease, metalloprotease, γ-hemolysin, hyaluronate lyase). There was a statistically significant difference in the prevalence of staphylococci isolates and their antimicrobial resistance and virulence profile as revealed by the phenotypic, PCR and next-generation sequencing techniques. The findings suggest a higher health risk for consumers. We recommend a critical need for awareness and antimicrobial susceptibility and anti-virulence strategies to ensure food safety and counteract the spread of this clinically relevant genus.
Collapse
Affiliation(s)
- Daniel Sakyi Agyirifo
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Theophilus Abonyi Mensah
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Andrews Senyenam Yao Senya
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Alphonse Hounkpe
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Cindy Deladem Dornyoh
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Plas Otwe
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
8
|
Kasela M, Ossowski M, Dzikoń E, Ignatiuk K, Wlazło Ł, Malm A. The Epidemiology of Animal-Associated Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2023; 12:1079. [PMID: 37370398 DOI: 10.3390/antibiotics12061079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains an important etiological factor of human and animal infectious diseases, causing significant economic losses not only in human healthcare but also in the large-scale farming sector. The constantly changing epidemiology of MRSA observed globally affects animal welfare and raises concerns for public health. High MRSA colonization rates in livestock raise questions about the meaning of reservoirs and possible transmission pathways, while the prevalence of MRSA colonization and infection rates among companion animals vary and might affect human health in multiple ways. We present the main findings concerning the circulation of animal-associated MRSA (AA-MRSA) in the environment and factors influencing the direction, mechanisms, and routes of its transmission. Studies have shown it that S. aureus is a multi-host bacterial pathogen; however, its adaptation mechanisms enabling it to colonize and infect both animal and human hosts are still rarely discussed. Finally, we elaborate on the most successful strategies and programs applied limiting the circulation of AA-MRSA among animals and humans. Although MRSA strains colonizing animals rarely infect humans, they undergo host-adaptive evolution enabling them to spread and persist in human populations.
Collapse
Affiliation(s)
- Martyna Kasela
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland
| | - Mateusz Ossowski
- Department of Animal Hygiene and Environmental Hazards, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Ewelina Dzikoń
- Student's Scientific Circle, Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland
| | - Katarzyna Ignatiuk
- Student's Scientific Circle, Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland
| | - Łukasz Wlazło
- Department of Animal Hygiene and Environmental Hazards, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland
| |
Collapse
|
9
|
Garvin KL, Kildow BJ, Hewlett AL, Hartman CW, Fey PD. The Challenge of Emerging Resistant Gram-Positive Pathogens in Hip and Knee Periprosthetic Joint Infections. J Bone Joint Surg Am 2023; 105:878-890. [PMID: 37053296 DOI: 10.2106/jbjs.22.00792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
➤ An increase in resistant bacterial pathogens has occurred over the last 4 decades.➤ Careful patient selection and improving or correcting risk factors for periprosthetic joint infection (PJI) before elective surgical treatment are strongly recommended. ➤ Appropriate microbiological methods, including those used to detect and grow Cutibacterium acnes, are recommended. ➤ Antimicrobial agents used in the prevention or management of infection should be selected appropriately and the duration of therapy should be carefully considered in order to mitigate the risk of developing bacterial resistance.➤ Molecular methods including rapid polymerase chain reaction (PCR) diagnostics, 16S sequencing, and/or shotgun and/or targeted whole-genome sequencing are recommended in culture-negative cases of PJI.➤ Expert consultation with an infectious diseases specialist (if available) is recommended to assist with the appropriate antimicrobial management and monitoring of patients with PJI.
Collapse
Affiliation(s)
- Kevin L Garvin
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska
| | - Beau J Kildow
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska
| | - Angela L Hewlett
- Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Curtis W Hartman
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
10
|
Xiao Z, Qu Z, Liu N, Wang J, Zhao J, Liu J, Wang L, Huang X, Zhang Q, Gao Y, Wang J, Yu Z, Guan J, Liu H. Molecular epidemiological characteristics and genetic evolutionary relationships of methicillin-resistant Staphylococcus aureus of different avian origins in Qingdao, China, using whole-genome sequencing. J Vet Res 2023; 67:169-177. [PMID: 38143828 PMCID: PMC10740325 DOI: 10.2478/jvetres-2023-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/12/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction To understand the prevalence of avian methicillin-resistant Staphylococcus aureus (MRSA) and the current status of drug resistance in Qingdao, a comprehensive molecular epidemiological investigation and analysis of evolutionary relationships of MRSA isolates from broiler and layer chickens and waterfowl was conducted. Material and Methods One hundred and two avian MRSA strains were identified by multi-locus sequence typing, staphylococcal protein A (spa) and staphylococcal cassette chromosome mec (SCCmec) typing, and whole-genome sequencing. Results The sequence type (ST) 9-t899-SCCmec IVb type represented the highest proportion of avian-derived MRSA strains (71.57%), with ST398 type strains occasionally observed in broilers and waterfowl. The poultry-derived MRSA strains were all resistant to eight or more antimicrobials. Avian-derived MRSA strains carried 20 resistance genes, 109 virulence genes and 10 plasmids. Strains carrying the cfr oxazolidinone resistance gene were occasionally seen in broiler- and layer-derived MRSA. Single nucleotide polymorphism (SNP) core genome evolution and locus difference analysis showed that the closest strains were all of ST9-t899 type (to which also affiliated the highest number of strains) and this type occurred on all three kinds of poultry farm, but the SNP difference loci between strains of the same type ranged from 0 to 1472. Conclusion The dominant type of MRSA from different poultry sources in Qingdao is ST9-t899-SCCmec IVb, which is commonly resistant to a variety of antimicrobial drugs and carries a variety of resistance genes and a large number of virulence genes. Sequence type 9-t899 type is widely spread among the three kinds of poultry investigated, but there are differences in affiliations.
Collapse
Affiliation(s)
- Zhen Xiao
- College of Veterinary Medicine, Qingdao Agricultural University, 266109Qingdao, China
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Zhina Qu
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Na Liu
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Juan Wang
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Jianmei Zhao
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Junhui Liu
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Lin Wang
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Xiumei Huang
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Qingqing Zhang
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Yubin Gao
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Junwei Wang
- China Animal Health and Epidemiology Center, 266032Qingdao, China
| | - Zhiyong Yu
- College of Veterinary Medicine, Qingdao Agricultural University, 266109Qingdao, China
| | - Jiajia Guan
- College of Veterinary Medicine, Qingdao Agricultural University, 266109Qingdao, China
| | - Huanqi Liu
- College of Veterinary Medicine, Qingdao Agricultural University, 266109Qingdao, China
| |
Collapse
|
11
|
Han N, Li J, Wan P, Pan Y, Xu T, Xiong W, Zeng Z. Co-Existence of Oxazolidinone Resistance Genes cfr(D) and optrA on Two Streptococcus parasuis Isolates from Swine. Antibiotics (Basel) 2023; 12:antibiotics12050825. [PMID: 37237728 DOI: 10.3390/antibiotics12050825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
This study was performed to investigate the presence and characteristics of the oxazolidinone resistance genes optrA and cfr(D) in Streptococcus parasuis. In total, 36 Streptococcus isolates (30 Streptococcus suis isolates, 6 Streptococcus parasuis isolates) were collected from pig farms in China in 2020-2021, using PCR to determine the presence of optrA and cfr. Then, 2 of the 36 Streptococcus isolates were further processed as follows. Whole-genome sequencing and de novo assembly were employed to analyze the genetic environment of the optrA and cfr(D) genes. Conjugation and inverse PCR were employed to verify the transferability of optrA and cfr(D). The optrA and cfr(D) genes were identified in two S. parasuis strains named SS17 and SS20, respectively. The optrA of the two isolates was located on chromosomes invariably associated with the araC gene and Tn554, which carry the resistance genes erm(A) and ant(9). The two plasmids that carry cfr(D), pSS17 (7550 bp) and pSS20-1 (7550 bp) have 100% nucleotide sequence identity. The cfr(D) was flanked by GMP synthase and IS1202. The findings of this study extend the current knowledge of the genetic background of optrA and cfr(D) and indicate that Tn554 and IS1202 may play an important role in the transmission of optrA and cfr(D), respectively.
Collapse
Affiliation(s)
- Ning Han
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Peng Wan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yu Pan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Iurescia M, Diaconu EL, Alba P, Feltrin F, Buccella C, Onorati R, Giacomi A, Caprioli A, Franco A, Battisti A, Carfora V. Genomics Insight into cfr-Mediated Linezolid-Resistant LA-MRSA in Italian Pig Holdings. Antibiotics (Basel) 2023; 12:antibiotics12030530. [PMID: 36978397 PMCID: PMC10044604 DOI: 10.3390/antibiotics12030530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
The cfr genes encode for a 23S rRNA methyltransferase, conferring a multiresistance phenotype to phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A antibiotics. These genes have been described in staphylococci, including methicillin-resistant Staphylococcus aureus (MRSA). In this study, we retrospectively performed an in-depth genomic characterisation of three cfr-positive, multidrug-resistant (MDR) livestock-associated (LA) MRSA clonal complexes (CCs) 1 and 398 detected in different Italian pig holdings (2008–2011) during population studies on Italian livestock (2008–2014). We used a combined Illumina and Oxford Nanopore Technologies (ONT) whole genome sequencing (WGS) approach on two isolates (the 2008 CC1 and the 2010 CC398 isolates, but not the 2011 CC1 isolate). Interestingly, the three isolates presented different cfr variants, with only one displaying a linezolid-resistant phenotype. In isolate 2008 CC1, the cfr gene was identified within a Tn558 composite transposon-like structure flanked by IS elements located on a novel 44,826 bp plasmid. This represents the first report of CC1 LA-MRSA harbouring the cfr gene in its functional variant. Differently, cfr was chromosomally located in isolate 2010 CC398. Our findings have significant public health implications, confirm the need for the continuous genomic surveillance of cfr-positive zoonotic LA-MRSA, and backdate cfr presence in LA-MRSA from Italian pigs to at least 2008.
Collapse
|
13
|
Occurrence of cfr-Positive Linezolid-Susceptible Staphylococcus aureus and Non- aureus Staphylococcal Isolates from Pig Farms. Antibiotics (Basel) 2023; 12:antibiotics12020359. [PMID: 36830270 PMCID: PMC9952267 DOI: 10.3390/antibiotics12020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
The emergence and spread of cfr-mediated resistance to linezolid in staphylococci have become a serious global concern. The acquisition of cfr confers multidrug resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A (PhLOPSA phenotype). However, occurrence of cfr-positive and linezolid-susceptible staphylococci has been identified. To investigate the mechanism underlying linezolid susceptibility in cfr-positive Staphylococcus aureus and non-aureus staphylococci (NAS) isolates from pig farms in Korea. Eleven cfr-positive and linezolid-susceptible staphylococci were analyzed for mutations in domain V of 23S rRNA, ribosomal proteins (L3, L4, and L22), cfr open reading frames (ORFs), and cfr promoter regions. The effect of the cfr mutation (Q148K) on the PhLOPSA phenotype was determined using plasmid constructs expressing either the mutated (cfrQ148K) or nonmutated cfr genes. All 11 (six S. aureus and five NAS) cfr-positive and linezolid-susceptible isolates had a point mutation at position 442 in cfr ORFs (C to A) that resulted in the Q148K mutation. No mutations were detected in 23S rRNA, L3, L4, or L22. The Q148K mutation in Cfr is responsible for phenotypes susceptible to PhLOPSA antimicrobial agents. To our knowledge, this is the first study to report the causal role of a single nucleotide mutation (Q148K) in cfr of S. aureus and NAS isolates in PhLOPSA resistance. Continued nationwide surveillance is necessary to monitor the occurrence and dissemination of mutations in cfr that affect resistance phenotypes in staphylococci of human and animal origin.
Collapse
|
14
|
Ong'era E, Kagira J, Maina N, Kiboi D, Waititu K, Michira L, Ngotho M. Prevalence and Potential Risk Factors for the Acquisition of Antibiotic-Resistant Staphylococcus spp. Bacteria Among Pastoralist Farmers in Kajiado Central Subcounty, Kenya. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3573056. [PMID: 37082192 PMCID: PMC10113052 DOI: 10.1155/2023/3573056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 04/22/2023]
Abstract
Antimicrobial resistance (AMR) is a growing health problem globally. To address this challenge, there is a need to generate baseline data on the prevalence and AMR profile of the main disease-causing bacteria. Here, we interrogated the prevalence of bacteria in the nasal cavity of healthy pastoralists in Kajiado Central Subcounty, Kenya, and the occurrence of AMR in Staphylococcus isolates among the study subjects. Nasal swabs from 176 pastoralists were cultured, and the bacteria isolates identified using standard phenotypic and biochemical bacteriological methods. Among the obtained 195 isolates, the most prevalent isolates were coagulase-negative Staphylococcus (CoNS) (44.9%), followed by Enterococci spp. (43.2%) while Staphylococcus aureus prevalence was 8%. Antimicrobial sensitivity of the Staphylococcus spp. isolates to 14 antibiotics representing six antibiotic groups was undertaken using the Kirby-Bauer disk diffusion method. Among the CoNS, the highest resistance was reported in amoxicillin (78.7%) and ceftazidime (76%), while the most resistance for S. aureus was reported in ceftazidime (100%), amoxicillin (71.4%), and streptomycin (71.4%). From an administered questionnaire looking at gender, animal contact frequency, history of hospital visitation and antibiotic usage, and habitual intake of raw milk, the study showed that male participants had a higher risk of carrying multiple drug resistant (MDR) bacteria than females (p = 0.02, OR = 1.3). Likewise, habitual intake of raw milk was significantly associated MDR acquisition (p = 0.02, OR = 1.82). This study reveals a high prevalence of AMR Staphylococcus isolates in the study area laying a foundation for further analysis of molecular characterization of the observed resistance as well as the development of interventions that can reduce the occurrence of AMR in the study area.
Collapse
Affiliation(s)
- Edidah Ong'era
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya P.O. Box 62000-00200
| | - John Kagira
- Department of Animal Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya P.O. Box 62000-00200
| | - Naomi Maina
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya P.O. Box 62000-00200
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya P.O. Box 62000-00200
| | - Kenneth Waititu
- Department of Animal Science, Institute of Primate Research, P.O. Box 24481 Karen 00502 Nairobi, Kenya
| | - Lynda Michira
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya P.O. Box 62000-00200
| | - Maina Ngotho
- Department of Clinical Studies, University of Nairobi, Nairobi, Kenya P.O. Box 30197-GPO
| |
Collapse
|
15
|
Determination of Virulence Factors and Resistance Profile of Methicillin-Resistant Staphylococcus aureus Strains among Different Types of spa, agr, and SCCmec. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5863310. [PMID: 36281464 PMCID: PMC9587906 DOI: 10.1155/2022/5863310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
Abstract
In order to restrict the spread of methicillin-resistant S. aureus (MRSA) in hospitals, it is necessary to characterize isolates rapidly and precisely. The objective of this study was to determine virulence factors and resistance profiles of MRSA strains among spa, agr, and SCCmec types. In total, 55 MRSA isolates were collected from clinical specimens. The MRSA isolates were characterized by antimicrobial susceptibility testing, virulence genes, agr typing, spa typing, and SCCmec typing. According to our findings, all MRSA strains were resistant to cefoxitin; 88% and 86.7% of which were resistant to erythromycin and clindamycin, respectively. Type II agr was predominant with 54.54% frequency. Among 27 different spa types, type t030 was most frequently (25.45%). Most MRSA isolates (63.3%) were SCCmec type III. The pvl and tst genes were found in 25.3% and 32.7% of MRSA isolates, respectively. Among the MRSA strains, ermA, ermB, and ermC were present in 50%, 33.3%, and 57.3% of cases, respectively. In addition, 43 of the 55 MRSA strains (78%) harbored aminoglycoside resistance genes. The results of our study revealed that the MRSA rate in our region is dramatically high. Better infection control guidelines in hospitals, as well as ongoing epidemiological surveillance studies, could be strongly suggested for effective prevention of the spread of MRSA to inpatients.
Collapse
|
16
|
Colon VA, Lugsomya K, Lam HK, Wahl LC, Parkes RSV, Cormack CA, Horlbog JA, Stevens M, Stephan R, Magouras I. Serotype Diversity and Antimicrobial Resistance Profile of Salmonella enterica Isolates From Freshwater Turtles Sold for Human Consumption in Wet Markets in Hong Kong. Front Vet Sci 2022; 9:912693. [PMID: 35937281 PMCID: PMC9353134 DOI: 10.3389/fvets.2022.912693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Chelonians are recognized as a source of human salmonellosis through direct contact or consumption of their meat. Freshwater turtles sold for food are widely available in wet markets in Asia. In this pilot study, 50 turtles belonging to three species were randomly sampled from wet markets throughout Hong Kong. The turtles were humanely euthanised and their feces or the colon were sampled for Salmonella culture. The Salmonella isolates obtained were serotyped and examined for phenotypic antimicrobial resistance and the presence of antimicrobial resistance genes. The study reports a high prevalence (42%, 95% CI: 29.4–55.8) and considerable serotype diversity of Salmonella among turtles sold in wet markets. The most common among the 11 serotypes isolated were S. Oranienburg and S. Thompson, which have been reported in turtles previously. The serotype S. Manhattan is reported in chelonians for the first time. Resistance to streptomycin and chloramphenicol was common, despite the latter being banned from aquaculture in mainland China since 2002. Resistance against fluoroquinolones and third-generation cephalosporins which represent first-line treatment options for salmonellosis was also observed. The multidrug-resistance gene cfr is identified for the first time in Salmonella. This is a worrying finding as it indicates an expansion of the cfr reservoir and potential horizontal spread to other bacteria. The results of this study emphasize the need for close surveillance of Salmonella from turtles sold as food and better regulation of turtle farming to safeguard public health and improve animal welfare.
Collapse
Affiliation(s)
- Violaine Albane Colon
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kittitat Lugsomya
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Hoi Kiu Lam
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Lloyd Christian Wahl
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Rebecca Sarah Victoria Parkes
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Catherine Anne Cormack
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jule Anna Horlbog
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Vetsuisse Faculty, National Reference Center for Enteropathogenic Bacteria and Listeria (NENT), Institute for Food Safety and Hygiene, University of Zurich, Zürich, Switzerland
| | - Marc Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Ioannis Magouras
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- *Correspondence: Ioannis Magouras
| |
Collapse
|
17
|
Effect of New 2-Thioxoimidazolidin-4-one Compounds against Staphylococcus aureus Clinical Strains and Immunological Markers’ Combinations. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:6720241. [PMID: 35873361 PMCID: PMC9300335 DOI: 10.1155/2022/6720241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 12/03/2022]
Abstract
Although the structure-activity relationship indicates that the 4-thioxoimidazolidin ring is essential for antibacterial activities and pharmaceutical applications, there were no enough studies on the derivatives of this compound. Evaluating the new hydantoin compounds C5 (3-((2-bromobenzylidene) amino)-2- thioxoimidazolidin-4-one) and C6 (3-((4- methoxybenzylidene) amino)-2-thioxoimidazolidin-4-one) that were prepared against clinical Staphylococcus aureus isolates for antibacterial, antibiofilm, and antihemagglutination activities is the aim of this study. Therefore, the potential clinical resistance of the strains was evaluated by their ability to form biofilms, antibiotic resistance, and agglutinate erythrocytes macroscopically and microscopically; besides, the bacterial biofilm was screened for any association with the patient's serum immunoglobulin levels and complements. Despite the effective concentration for C5 and C6 compounds, which is ≤ 31.25 μg/ml, the reduction rate is not concentration-dependent; it depends on the molecular docking of the hydantoin compounds. Hence, the effect of the minimal inhibitory concentrations (MICs) is variable. In this study, the results for the compounds (with the concentration of 31.25–62.5 μg/mL for C5 and 62.5–125 μg/mL for C6) significantly manifest the antibacteria, antibiofilm, and antihemagglutination effects against the virulent strains of S. aureus due to the high percentage of biofilm inhibition that was caused by the new hydantoin compounds. Besides, time-kill kinetics studies showed that these compounds pose bactericidal action. Overall, this study revealed that the new hydantoin derivatives have an interesting potential as new antibacterial drugs through the inhibition of bacterial adhesion. The infections of these isolates activate the complement system through the lectin pathway. Nevertheless, these compounds can be improved in order to be used at even lower concentrations.
Collapse
|
18
|
Li X, Xie L, Huang H, Li Z, Li G, Liu P, Xiao D, Zhang X, Xiong W, Zeng Z. Prevalence of Livestock-Associated MRSA ST398 in a Swine Slaughterhouse in Guangzhou, China. Front Microbiol 2022; 13:914764. [PMID: 35814703 PMCID: PMC9260045 DOI: 10.3389/fmicb.2022.914764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) is an important zoonotic microorganism that is increasingly causing public health concern worldwide. The objective of this study was to determine the transmission and occurrence of MRSA in a slaughterhouse environment and evaluate its antimicrobial resistance and genetic characterization. In this study, we conducted a comprehensive epidemiological survey of S. aureus by spa typing and whole-genome sequencing (WGS) of samples obtained from the pork production chain, the environment, and community residents. To clarify the evolutionary relationships of MRSA sequence type (ST) 398 in this study and global isolates, 197 published whole-genome sequences data of MRSA ST398 strains were downloaded from the GenBank database and included in the phylogenetic analysis. A total of 585 porcine samples (snout and carcass swabs), 78 human nasal samples, and 136 environmental samples were collected. The MRSA isolates were detected at higher frequencies in samples from swine (15.0%) than carcasses (10.0%), slaughterhouse workers (8.0%), community residents (0%), and environment samples (5.9%). The spa typing results showed that t571 accounted for a higher proportion than other spa types. Closely related isolates from the samples of swine, slaughterhouse workers, carcasses, carrier vehicle, and surrounding fishpond water indicate that MRSA ST398 strains may spread among swine, humans, and the environment. MRSA ST398-t571 isolates were genetically different from global strains, except for two Korean isolates, which showed genetic closeness with it. In addition, a MRSA ST398 isolate recovered from an infected patient in Europe differed by only 31 SNPs from the airborne dust-associated strain isolated in this study, thereby suggesting potential transmission among different countries. Antimicrobial susceptibility testing results demonstrated that 99.0% (96/97) of MRSA and 95.1% (231/243) of methicillin-sensitive S. aureus (MSSA) showed multidrug-resistant (MDR) phenotypes. According to WGS analysis, the poxtA-carrying segment (IS431mec-optrA-IS1216-fexB-IS431mec) was reported in MRSA ST398 isolates for the first time. The coexistence of cfr and optrA in a plasmid was first detected in MRSA ST398. The potential transmission of MRSA among humans, animals, and the environment is a cause for concern. The emergence and transmission of LA-MRSA ST398 with high levels of resistance profiles highlight the urgent need for LA-MRSA surveillance.
Collapse
Affiliation(s)
- Xiaoshen Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Longfei Xie
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Honghao Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhi Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Guihua Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Peng Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Danyu Xiao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xucai Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- *Correspondence: Wenguang Xiong,
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Zhenling Zeng,
| |
Collapse
|
19
|
Kejela T, Dekosa F. High prevalence of MRSA and VRSA among inpatients of Mettu Karl referral hospital, southwest Ethiopia. Trop Med Int Health 2022; 27:735-741. [PMID: 35686989 DOI: 10.1111/tmi.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To assess the prevalence of methicillin and vancomycin-resistant Staphylococcus aureus among patients admitted to Mettu Karl referral hospital. METHODS A cross-sectional study was conducted to study the point prevalence of MRSA and VRSA. A total of 384 patients (male=201 and female=183) admitted to medical (109), pediatric (109), and surgical (166) wards of Mettu Karl referral hospital from November 2019 to April 2020 were included in the study. We studied 384 samples (166 wound swabs and 218 nasal swabs) collected from inpatients. Staphylococcus aureus was isolated, characterized, and identified based on morphological and biochemical features and confirmed by PCR amplification of the nuc gene. The isolates were checked against 12 antibiotics, and MRSA isolates were primarily identified using cefoxitin (30 μg) and confirmed by amplification of mecA gene. Staphylococcus aureus resistance to Vancomycin was tested by the broth microdilution method. RESULTS The rate of isolation of Staphylococcus aureus was 32.8% (126/384). The point prevalence of MRSA and VRSA from clinical specimens was 18.8% (72/384) and 2.6% (10/384) respectively. Of 126 Staphylococcus aureus isolated, 57.1% (72) were MRSA and 7.9% (10) were VRSA. Of the 166 samples collected from patients in the surgical ward, the rates of isolation of MRSA and VRSA were 21.1% (35/166) and 4.8% (8/166), respectively. A high rate of isolation of MRSA and VRSA was recorded among patients admitted to surgical wards compared to medical and pediatric wards. CONCLUSIONS This study showed a high prevalence of MRSA and VRSA in the hospital. Proper implementation of infection control practices and investigation of underlying risk factors are urgently needed to mitigate the further spread of the pathogen.
Collapse
Affiliation(s)
- Tekalign Kejela
- Department of Biology, Mettu University, Mettu, Oromia, Ethiopia
| | - Fili Dekosa
- Department of Biology, Mettu University, Mettu, Oromia, Ethiopia
| |
Collapse
|
20
|
Strategies for Enzymatic Inactivation of the Veterinary Antibiotic Florfenicol. Antibiotics (Basel) 2022; 11:antibiotics11040443. [PMID: 35453195 PMCID: PMC9029715 DOI: 10.3390/antibiotics11040443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Large quantities of the antibiotic florfenicol are used in animal farming and aquaculture, contaminating the ecosystem with antibiotic residues and promoting antimicrobial resistance, ultimately leading to untreatable multidrug-resistant pathogens. Florfenicol-resistant bacteria often activate export mechanisms that result in resistance to various structurally unrelated antibiotics. We devised novel strategies for the enzymatic inactivation of florfenicol in different media, such as saltwater or milk. Using a combinatorial approach and selection, we optimized a hydrolase (EstDL136) for florfenicol cleavage. Reaction kinetics were followed by time-resolved NMR spectroscopy. Importantly, the hydrolase remained active in different media, such as saltwater or cow milk. Various environmentally-friendly application strategies for florfenicol inactivation were developed using the optimized hydrolase. As a potential filter device for cost-effective treatment of waste milk or aquacultural wastewater, the hydrolase was immobilized on Ni-NTA agarose or silica as carrier materials. In two further application examples, the hydrolase was used as cell extract or encapsulated with a semi-permeable membrane. This facilitated, for example, florfenicol inactivation in whole milk, which can help to treat waste milk from medicated cows, to be fed to calves without the risk of inducing antibiotic resistance. Enzymatic inactivation of antibiotics, in general, enables therapeutic intervention without promoting antibiotic resistance.
Collapse
|
21
|
Müller A, Sakurai K, Seinige D, Nishino K, Kehrenberg C. Mutations in the Phenicol Exporter Gene fexA Impact Resistance Levels in Three Bacterial Hosts According to Susceptibility Testing and Protein Modeling. Front Microbiol 2022; 12:794435. [PMID: 35069492 PMCID: PMC8777102 DOI: 10.3389/fmicb.2021.794435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
The prototype fexA gene confers combined resistance to chloramphenicol and florfenicol. However, fexA variants mediating resistance only to chloramphenicol have been identified, such as in the case of a Staphylococcus aureus isolate recovered from poultry meat illegally imported to Germany. The effects of the individual mutations detected in the fexA sequence of this isolate were investigated in this study. A total of 11 fexA variants, including prototype fexA and variants containing the different previously described mutations either alone or in different combinations, were generated by on-chip gene synthesis and site-directed mutagenesis. The constructs were inserted into a shuttle vector and transformed into three recipient strains (Escherichia coli, Staphylococcus aureus, and Salmonella Typhimurium). Subsequently, minimal inhibitory concentrations (MIC) of florfenicol and chloramphenicol were determined. In addition, protein modeling was used to predict the structural effects of the mutations. The lack of florfenicol-resistance mediating properties of the fexA variants could be attributed to the presence of a C110T and/or G98C mutation. Transformants carrying fexA variants containing either of these mutations, or both, showed a reduction of florfenicol MICs compared to those transformants carrying prototype fexA or any of the other variants. The significance of these mutations was supported by the generated protein models, indicating a substitution toward more voluminous amino-acids in the substrate-binding site of FexA. The remaining mutations, A391G and C961A, did not result in lower florfenicol-resistance compared to prototype fexA.
Collapse
Affiliation(s)
- Anja Müller
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Giessen, Germany
| | - Keisuke Sakurai
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Diana Seinige
- Lower Saxony State Office for Consumer Protection and Food Safety, Wardenburg, Germany
| | - Kunihiko Nishino
- SANKEN, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
22
|
Zhang F, Wu S, Lei T, Wu Q, Zhang J, Huang J, Dai J, Chen M, Ding Y, Wang J, Wei X, Zhang Y. Presence and characterization of methicillin-resistant Staphylococcus aureus co-carrying the multidrug resistance genes cfr and lsa(E) in retail food in China. Int J Food Microbiol 2021; 363:109512. [PMID: 34971878 DOI: 10.1016/j.ijfoodmicro.2021.109512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/10/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
Abstract
Staphylococcus aureus is an important food-related pathogen associated with bacterial poisoning that is difficult to treat due to its multidrug resistance. The cfr and lsa(E) genes both cause multiple drug resistance and have been identified in numerous Staphylococcus species, respectively. In this study, we found that a methicillin-resistant S. aureus (MRSA) strain, 2868B2, which was isolated from a sample of frozen dumplings in Hangzhou in 2015, co-carried these two different multidrug resistance genes. Further analysis showed that this strain was resistant to more than 18 antibiotics and expressed high-level resistance to florfenicol, chloramphenicol, clindamycin, tiamulin, erythromycin, ampicillin, cefepime, ceftazidime, kanamycin, streptomycin, tetracycline, trimethoprim-sulfamethoxazole and linezolid (MIC = 8 μg/mL). Whole genome sequencing was performed to characterize the genetic environment of these resistance genes and other genomic features. The cfr gene was located on the single plasmid p2868B2 (39,159 bp), which demonstrated considerable similarity to many plasmids previously identified in humans and animals. p2868B2 contained the insertion sequence (IS) element IS21-558, which allowed the insertion of cfr into Tn558 and played an important role in the mobility of cfr. Additionally, a novel multidrug resistance region (36.9 kb) harbouring lsa(E) along with nine additional antibiotic resistance genes (ARGs) (aadD, aadE, aacA-aphD, spc, lnu(B), lsa(E), tetL, ermC and blaZ) was identified. The multidrug resistance region harboured four copies of IS257 that were active and can mediate the formation of four circular structures containing ARGs and ISs. In addition, genes encoding various virulence factors and affecting multiple cell adhesion properties were identified in the genome of MRSA 2868B2. This study confirmed that the cfr and lsa(E) genes coexist in one MRSA strain and the presence of plasmid and IS257 in the multi-ARG cluster can promote both ARG transfer and dissemination. Furthermore, the presence of so many ARGs and virulence genes in food-related pathogens may seriously compromise the effectiveness of clinical therapy and threaten public health, its occurrence should pay public attention and the traceability of these genes in food-related samples needs further surveillance.
Collapse
Affiliation(s)
- Feng Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jingsha Dai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science & Technology, Jinan University, Guangzhou 510632, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
23
|
Xu Y, Wang B, Zhao H, Wang X, Rao L, Ai W, Yu J, Guo Y, Wu X, Yu F, Chen S. In Vitro Activity of Vancomycin, Teicoplanin, Linezolid and Daptomycin Against Methicillin-Resistant Staphylococcus aureus Isolates Collected from Chinese Hospitals in 2018-2020. Infect Drug Resist 2021; 14:5449-5456. [PMID: 34949928 PMCID: PMC8689657 DOI: 10.2147/idr.s340623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Vancomycin, teicoplanin, linezolid and daptomycin are four major antibacterials used for methicillin-resistant Staphylococcus aureus (MRSA) infection treatment. However, with the increasing failure of clinical MRSA anti-infective treatment, it is urgent to investigate the status of MRSA sensitivity to these four drugs. Methods In the present study, 407 non-duplicated MRSA isolates from 6 provinces in China were collected from January 2018 to August 2020. The minimum inhibitory concentrations (MICs) of vancomycin, teicoplanin, linezolid and daptomycin were determined by broth microdilution method, and their MIC50, MIC90, and geometric mean MIC were calculated. Results All 407 MRSA strains were sensitive to these four antibacterials. MIC range of vancomycin, teicoplanin, linezolid and daptomycin was 0.25 to 2 mg/L, 0.125 to 4 mg/L, 0.25 to 4 mg/L and 0.06 to 1 mg/L, respectively. Between 2018 and 2020, there was no “MIC creep” in vancomycin, teicoplanin and daptomycin. The geometric mean MIC of linezolid was not increased, but both MIC50 and MIC90 in 2019 and 2020 MRSA isolates were higher than 2018 isolates. Conclusion All MRSA isolates remained sensitivity to vancomycin, teicoplanin, linezolid and daptomycin. The linezolid MIC50 and MIC90 increased have been found in this study.
Collapse
Affiliation(s)
- Yanlei Xu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Huilin Zhao
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xinyi Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lulin Rao
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wenxiu Ai
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jingyi Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yinjuan Guo
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaocui Wu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shuying Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
24
|
Mesbah A, Mashak Z, Abdolmaleki Z. A survey of prevalence and phenotypic and genotypic assessment of antibiotic resistance in Staphylococcus aureus bacteria isolated from ready-to-eat food samples collected from Tehran Province, Iran. Trop Med Health 2021; 49:81. [PMID: 34635183 PMCID: PMC8504009 DOI: 10.1186/s41182-021-00366-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistant Staphylococcus aureus (S. aureus) bacteria are considered among the major causes of foodborne diseases. This survey aims to assess genotypic and phenotypic profiles of antibiotic resistance in S. aureus bacteria isolated from ready-to-eat food samples. METHODS According to the previously reported prevalence of S. aureus in ready-to-eat food samples, a total of 415 ready-to-eat food samples were collected from Tehran province, Iran. S. aureus bacteria were identified using culture and biochemical tests. Besides, the phenotypic antibiotic resistance profile was determined by disk diffusion. In addition, the genotypic pattern of antibiotic resistance was determined using the PCR. RESULTS A total of 64 out of 415 (15.42%) ready-to-eat food samples were contaminated with S. aureus. Grilled mushrooms and salad olivieh harbored the highest contamination rate of (30%), while salami samples harbored the lowest contamination rate of 3.33%. In addition, S. aureus bacteria harbored the highest prevalence of resistance to penicillin (85.93%), tetracycline (85.93%), gentamicin (73.43%), erythromycin (53.12%), trimethoprim-sulfamethoxazole (51.56%), and ciprofloxacin (50%). However, all isolates were resistant to at least four antibiotic agents. Accordingly, the prevalence of tetK (70.31%), blaZ (64.06%), aacA-D (57.81%), gyrA (50%), and ermA (39.06%) was higher than that of other detected antibiotic resistance genes. Besides, AacA-D + blaZ (48.43%), tetK + blaZ (46.87%), aacA-D + tetK (39.06%), aacA-D + gyrA (20.31%), and ermA + blaZ (20.31%) were the most frequently identified combined genotypic patterns of antibiotic resistance. CONCLUSION Ready-to-eat food samples may be sources of resistant S. aureus, which pose a hygienic threat in case of their consumption. However, further investigations are required to identify additional epidemiological features of S. aureus in ready-to-eat foods.
Collapse
Affiliation(s)
- Arash Mesbah
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Zohreh Mashak
- Department of Food Hygiene, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | - Zohreh Abdolmaleki
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
25
|
Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, Zhu Y, Wu C, Shen J, Wang Y. Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clin Microbiol Rev 2021; 34:e0018820. [PMID: 34076490 PMCID: PMC8262807 DOI: 10.1128/cmr.00188-20] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Henrike Krüger
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Shizhen Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
26
|
Chen L, Hu JX, Liu C, Liu J, Ma ZB, Tang ZY, Li YF, Zeng ZL. Identification of the Multiresistance Gene poxtA in Oxazolidinone-Susceptible Staphylococcus haemolyticus and Staphylococcus saprophyticus of Pig and Feed Origins. Pathogens 2021; 10:pathogens10050601. [PMID: 34069037 PMCID: PMC8156375 DOI: 10.3390/pathogens10050601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022] Open
Abstract
Previous studies on the prevalence and transmission mechanism of oxazolidinone resistance gene poxtA in CoNS are lacking, which this study addresses. By screening 763 CoNS isolates from different sources of several livestock farms in Guangdong, China, 2018–2020, we identified that the poxtA was present in seven CoNS isolates of pig and feed origins. Species identification and multilocus sequence typing (MLST) confirmed that seven poxtA-positive CoNS isolates were composed of five ST64-Staphylococcus haemolyticus and two Staphylococcus saprophyticus isolates. All poxtA-positive Staphylococcus haemolyticus isolates shared similar pulsed-field gel electrophoresis (PFGE) patterns. Transformation assays demonstrated all poxtA-positive isolates were able to transfer poxtA gene to Staphylococcus aureus RN4220. S1-PFGE and whole-genome sequencing (WGS) revealed the presence of poxtA-carrying plasmids in size around 54.7 kb. The plasmid pY80 was 55,758 bp in size and harbored the heavy metal resistance gene czcD and antimicrobial resistance genes, poxtA, aadD, fexB and tet(L). The regions (IS1216E-poxtA-IS1216E) in plasmid pY80 were identified in Staphylococcus spp. and Enterococcus spp. with different genetic and source backgrounds. In conclusion, this was the first report about the poxtA gene in Staphylococcus haemolyticus and Staphylococcus saprophyticus, and IS1216 may play an important role in the dissemination of poxtA among different Gram-positive bacteria.
Collapse
Affiliation(s)
- Lin Chen
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Public Monitoring Center of Agro-Product of Guangdong Academy of Sciences, Guangzhou 510640, China
| | - Jian-Xin Hu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chang Liu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiao Liu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Bao Ma
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Yun Tang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Fei Li
- Public Monitoring Center of Agro-Product of Guangdong Academy of Sciences, Guangzhou 510640, China
- Correspondence: (Y.-F.L.); (Z.-L.Z.); Tel./Fax: +86-20-85284896 (Z.-L.Z.)
| | - Zhen-Ling Zeng
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.-F.L.); (Z.-L.Z.); Tel./Fax: +86-20-85284896 (Z.-L.Z.)
| |
Collapse
|
27
|
Liu WT, Chen EZ, Yang L, Peng C, Wang Q, Xu Z, Chen DQ. Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: A comprehensive review. Microb Pathog 2021; 156:104915. [PMID: 33930416 DOI: 10.1016/j.micpath.2021.104915] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus is one of the leading hospital-associated and community-associated pathogens, which has caused a global public health concern. The emergence of methicillin-resistant S. aureus (MRSA) along with the widespread use of different classes of antibiotics has become a significant therapeutic challenge. Antibiotic resistance is a disturbing problem that poses a threat to humans. Treatment options for S. aureus resistant to β-lactam antibiotics include glycopeptide antibiotic, cyclic lipopeptide antibiotic, cephalosporins and oxazolidinone antibiotic. The most representative types of these antibiotics are vancomycin, daptomycin, ceftaroline and linezolid. The frequent use of the first-line drug vancomycin for MRSA treatment has increased the number of resistant strains, namely vancomycin intermediate resistant S. aureus (VISA) and vancomycin resistant S. aureus (VRSA). A systematic literature review of relevant published studies in PubMed before 2020 was conducted. In recent years, there have been some reports on the relevant resistant mechanisms of vancomycin, daptomycin, ceftaroline and linezolid. In this review, we have summarized the antibiotic molecular modes of action and different gene mutants at the whole-genome level, which will aid in further development on new drugs for effective MRSA treatment based on describing different resistance mechanisms of classic antibiotics.
Collapse
Affiliation(s)
- Wan-Ting Liu
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - En-Zhong Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Chen Peng
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Qun Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN38163, USA; Research Institute for Food Nutrition and Human Health, Guangzhou, 510640, China; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand.
| | - Ding-Qiang Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China.
| |
Collapse
|
28
|
Lee GY, Seong HJ, Sul WJ, Yang SJ. Genomic Information on Linezolid-Resistant Sequence-Type 398 Livestock-Associated Methicillin-Resistant Staphylococcus aureus Isolated from a Pig. Foodborne Pathog Dis 2021; 18:378-387. [PMID: 33656917 DOI: 10.1089/fpd.2020.2882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The frequent occurrence of sequence-type 398 (ST398) livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in pigs has become a major public health concern owing to the increased zoonotic potential of the pathogen. Recently, a novel oxazolidinone resistance gene, chloramphenicol-florfenicol resistant (cfr), conferring multiresistance phenotypes to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A (PhLOPSA), has been found among ST398 LA-MRSA strains isolated from pigs. In this study, we report the first in silico genome analysis of a linezolid-resistant ST398 LA-MRSA strain, designated PJFA-521M, recovered from a pig in Korea. Genomic analyses revealed that the presence of the cfr gene was responsible for the observed linezolid resistance in the PJFA-521M strain. Moreover, newer antimicrobial resistance genes, such as the dfrG, aadE, spw, lsa(E), lnu(B), and fexA genes, were found in the PJFA-521M strain. In addition to the genetic elements for antimicrobial resistance, the carriage of various virulence genes for adherence, invasion, and immunomodulation was identified in the genome, especially within several mobile genetic elements (MGEs). The presence of multiple antimicrobial resistance genes and virulence genes on MGEs in the genome of a linezolid-resistant ST398 LA-MRSA should raise awareness regarding the use of other antimicrobial agents in pig farms and may also provide selective pressure for the prevalence of the cfr gene and the associated multidrug-resistant phenotype.
Collapse
Affiliation(s)
- Gi Yong Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Korea
| | - Hoon Je Seong
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Korea
| | - Soo-Jin Yang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Korea
| |
Collapse
|
29
|
Zhang F, Wu S, Huang J, Yang R, Zhang J, Lei T, Dai J, Ding Y, Xue L, Wang J, Chen M, Wu Q. Presence and Characterization of a Novel cfr-Carrying Tn 558 Transposon Derivative in Staphylococcus delphini Isolated From Retail Food. Front Microbiol 2021; 11:598990. [PMID: 33519738 PMCID: PMC7843796 DOI: 10.3389/fmicb.2020.598990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance has become a major public health threat. Food-related Staphylococcus species have received much attention due to their multidrug resistance. The cfr gene associated with multidrug resistance has been consistently detected in food-derived Staphylococcus species. In this retrospective study, we examined the prevalence of cfr-positive Staphylococcus strains isolated from poultry meat in different geographical areas of China from 2011 to 2016. Two cfr-positive Staphylococcus delphini strains were identified from poultry meat in China. Comparative and whole-genome analyses were performed to characterize the genetic features and overall antimicrobial resistance genes in the two S. delphini isolates 245-1 and 2794-1. Whole-genome sequencing showed that they both harbored a novel 20,258-bp cfr-carrying Tn558 transposon derivative on their chromosomes. The Tn558 derivative harbors multiple antimicrobial resistance genes, including the transferable multiresistance gene cfr, chloramphenicol resistance gene fexA, aminoglycoside resistance genes aacA-aphD and aadD, and bleomycin resistance gene ble. Surprisingly, within the Tn558 derivative, an active unconventional circularizable structure containing various resistance genes and a copy of a direct repeat sequence was identified by two-step PCR. Furthermore, core genome phylogenetic analysis revealed that the cfr-positive S. delphini strains were most closely related to S. delphini 14S03313-1 isolated from Japan in 2017 and 14S03319-1 isolated from Switzerland in 2017. This study is the first report of S. delphini harboring a novel cfr-carrying Tn558 derivative isolated from retail food. This finding raises further concerns regarding the potential threat to food safety and public health safety. The occurrence and dissemination of similar cfr-carrying transposons from diverse Staphylococcus species need further surveillance.
Collapse
Affiliation(s)
- Feng Zhang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jingsha Dai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
30
|
iTRAQ®-based quantitative proteomics reveals the proteomic profiling of methicillin-resistant Staphylococcus aureus-derived extracellular vesicles after exposure to imipenem. Folia Microbiol (Praha) 2020; 66:221-230. [PMID: 33165807 DOI: 10.1007/s12223-020-00836-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
This study sought to reveal the proteomic profiling of methicillin-resistant Staphylococcus aureus (MRSA)-derived extracellular vesicles (EVs) after exposure to imipenem. The advanced isobaric tags for relative and absolute quantitation (iTRAQ®) proteomic approach were used to analyze the alterations in MRSA-derived EV protein patterns upon exposure to imipenem. A total of 1260 EV proteins were identified and quantified. Among these, 861 differentially expressed exosome proteins (P < 0.05) were found. Multivariate analysis, Gene Ontology (GO) annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to analyze the identified proteins. Enrichment analysis of GO annotations indicated that imipenem primarily regulated the metabolic processes in MRSA. The metabolism of differentially expressed proteins was found to be the most significant in the combined analysis of the KEGG pathway analysis. Based on the results from the STRING analysis, 50S ribosomal protein L16 (RplP) and 30S ribosomal protein S8 (RpsH) were involved in the imipenem-induced MRSA-derived EVs. These results provide vital information on MRSA-derived EVs, increasing our knowledge of the proteome level changes in EVs upon exposure to imipenem. Moreover, these results pave the way for developing novel MRSA treatments.
Collapse
|
31
|
de Alcântara Rodrigues I, Ferrari RG, Panzenhagen PHN, Mano SB, Conte-Junior CA. Antimicrobial resistance genes in bacteria from animal-based foods. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:143-183. [PMID: 32762867 DOI: 10.1016/bs.aambs.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antimicrobial resistance is a worldwide public health threat. Farm animals are important sources of bacteria containing antimicrobial resistance genes (ARGs). Although the use of antimicrobials in aquaculture and livestock has been reduced in several countries, these compounds are still routinely applied in animal production, and contribute to ARGs emergence and spread among bacteria. ARGs are transmitted to humans mainly through the consumption of products of animal origin (PAO). Bacteria can present intrinsic resistance, and once antimicrobials are administered, this resistance may be selected and multiply. The exchange of genetic material is another mechanism used by bacteria to acquire resistance. Some of the main ARGs found in bacteria present in PAO are the bla, mcr-1, cfr and tet genes, which are directly associated to antibiotic resistance in the human clinic.
Collapse
Affiliation(s)
- Isadora de Alcântara Rodrigues
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Rafaela Gomes Ferrari
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Sergio Borges Mano
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Carlos Adam Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Nguyen LTT, Nguyen KNT, Le PNTA, Cafini F, Pascoe B, Sheppard SK, Nguyen TB, Nguyen TPH, Nguyen TV, Pham TTK, Morikawa K, Nguyen DQ, Duong HX. The emergence of plasmid-borne cfr-mediated linezolid resistant-staphylococci in Vietnam. J Glob Antimicrob Resist 2020; 22:462-465. [PMID: 32348904 DOI: 10.1016/j.jgar.2020.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Linezolid is one of the last resort antibiotics effectively used in the treatment of infections caused by multidrug-resistant Gram-positive bacteria. Recent outbreaks of Linezolid resistance have been the great concern worldwide, while many countries have not experienced it. In this work, we aimed to evaluate the existence of linezolid resistance and further clarify potential resistance mechanism(s) in staphylococcal isolates obtained from the hospital in Vietnam, a country in which linezolid resistance had not been previously detected. METHODS Seventy staphylococcal clinical isolates including MRSA (n=63) and methicillin-resistant coagulase-negative staphylococci (MRCNS, n=7) were collected and analyzed for linezolid resistance. Linezolid-resistant isolates were submitted for whole genome sequencing to search for the resistance determinants. RESULTS We identified two coagulase-negative staphylococcal isolates that were resistant to linezolid. Whole genome sequencing revealed several alterations in the 23S rRNA and L3, L17, L22, L24, L30 ribosomal proteins. Importantly, both isolates harbour the chloramphenicol/florfenicol resistance (cfr) gene on a plasmid. The plasmid was closely identical to the pLRSA417 plasmid that was originally reported in China. CONCLUSIONS To the best of our knowledge, this is the first report of cfr-mediated linezolid resistance in clinically isolated staphylococci in Vietnam. We suggest that adequate surveillance is necessary to monitor the dissemination of linezolid resistance among staphylococcal species and other important pathogens.
Collapse
Affiliation(s)
| | | | | | - Fabio Cafini
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Madrid, Spain
| | - Ben Pascoe
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Samuel K Sheppard
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | | | - Thien Phuc Hoang Nguyen
- Department of Genetics, Faculty of Biology and Biotechnology, University of Science, VNU-HCM, Viet Nam
| | - Thuy Vy Nguyen
- Department of Genetics, Faculty of Biology and Biotechnology, University of Science, VNU-HCM, Viet Nam
| | | | - Kazuya Morikawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Japan.
| | | | - Hoa Xo Duong
- Biotechnology Center of Ho Chi Minh City, Viet Nam
| |
Collapse
|
33
|
Wu D, Wang H, Zhu F, Jiang S, Sun L, Zhao F, Yu Y, Chen Y. Characterization of an ST5-SCCmec II-t311 methicillin-resistant Staphylococcus aureus strain with a widespread cfr-positive plasmid. J Infect Chemother 2020; 26:699-705. [PMID: 32245640 DOI: 10.1016/j.jiac.2020.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To determine the genetic characteristics of the Chinese epidemic ST5-SCCmec II-t311 methicillin-resistant Staphylococcus aureus (MRSA) clone and to investigate the transmission characteristics of the cfr-positive plasmid. METHODS The complete genome of SR153 was sequenced. Genomic comparison with MRSA strains of other lineages was performed. The cfr-positive plasmid was investigated and compared with other cfr-positive plasmids from different origins and different areas. RESULTS The cfr-positive MRSA strain SR153 was a Chinese epidemic ST5-SCCmec II-t311 strain. It clustered much closer to the Japanese ST5-SCCmec II clone than to the European and American ST5-SCCmec II clones. The genome of SR153 contains one circular chromosome and three plasmids. It harbors the genomic islands νSaα, νSaβ, νSaγ, ΦSa1 and ΦSa3, the pathogenicity island νSa4, and genes encoding virulence factors such as tst and many enterotoxins. The SR153 genome also contains several resistance genes and mutations, such as ermA, aadD, spc, aacA-aphD, lnuA, tetK, blaZ and mutations in grlA and gyrA. SR153 harbors a cfr-positive plasmid, pSR01, which is highly similar to pSX01 from a Staphylococcus xylosus of pig origin from Henan Province. pSR01 was also highly similar to pXWZ from a Staphylococcus capitis and pLRSA417 from S. aureus. Both were obtained from geographically separated hospitals in Zhejiang Province. CONCLUSIONS SR153, which clustered closely to the Japanese ST5-SCCmec II clone, is more resistant than N315. A pSR01-like cfr-positive plasmid was widespread among different Staphylococcus species of both human and animal origin in different hospitals and areas.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Haiping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Feiteng Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Shengnan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Feng Zhao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, 310016, China; Department of Hospital Epidemiology and Infection Control, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
34
|
Zhou YF, Li L, Tao MT, Sun J, Liao XP, Liu YH, Xiong YQ. Linezolid and Rifampicin Combination to Combat cfr-Positive Multidrug-Resistant MRSA in Murine Models of Bacteremia and Skin and Skin Structure Infection. Front Microbiol 2020; 10:3080. [PMID: 31993042 PMCID: PMC6971047 DOI: 10.3389/fmicb.2019.03080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/19/2019] [Indexed: 01/16/2023] Open
Abstract
Linezolid resistance mediated by the cfr gene in MRSA represents a global concern. We investigated relevant phenotype differences between cfr-positive and -negative MRSA that contribute to pathogenesis, and the efficacy of linezolid-based combination therapies in murine models of bacteremia and skin and skin structure infection (SSSI). As a group, cfr-positive MRSA exhibited significantly reduced susceptibilities to the host defense peptides tPMPs, human neutrophil peptide-1 (hNP-1), and cathelicidin LL-37 (P < 0.01). In addition, increased binding to fibronectin (FN) and endothelial cells paralleled robust biofilm formation in cfr-positive vs. -negative MRSA. In vitro phenotypes of cfr-positive MRSA translated into poor outcomes of linezolid monotherapy in vivo in murine bacteremia and SSSI models. Importantly, rifampicin showed synergistic activity as a combinatorial partner with linezolid, and the EC50 of linezolid decreased 6-fold in the presence of rifampicin. Furthermore, this combination therapy displayed efficacy against cfr-positive MRSA at clinically relevant doses. Altogether, these data suggest that the use of linezolid in combination with rifampicin poses a viable therapeutic alternative for bacteremia and SSSI caused by cfr-positive multidrug resistant MRSA.
Collapse
Affiliation(s)
- Yu-Feng Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Liang Li
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Meng-Ting Tao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yan Q Xiong
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
35
|
Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrob Agents Chemother 2019:AAC.01216-19. [PMID: 31527033 DOI: 10.1128/aac.01216-19] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) result in significant morbidity and mortality for patients in both community and health care settings. This is primarily due to the difficulty in treating MRSA, which is often resistant to multiple classes of antibiotics. Understanding the mechanisms of antimicrobial resistance (AMR) in MRSA provides insight into the optimal use of antimicrobial agents in clinical practice and also underpins critical aspects of antimicrobial stewardship programs. In this review we delineate the mechanisms, prevalence, and clinical importance of resistance to antibiotics licensed in the past 20 years that target MRSA, as well as new drugs in the pipeline which are likely to be licensed soon. Current gaps in scientific knowledge about MRSA resistance mechanisms are discussed, and topics in the epidemiology of AMR in S. aureus that require further investigation are highlighted.
Collapse
|