1
|
Jiang X, Siddique A, Chen L, Zhu L, Zhou H, Na L, Jia C, Li Y, Yue M. Genomic and resistome analysis of Salmonella enterica isolates from retail markets in Yichun city, China. One Health 2025; 20:100967. [PMID: 39906162 PMCID: PMC11791297 DOI: 10.1016/j.onehlt.2025.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 02/06/2025] Open
Abstract
Nontyphoidal Salmonella (NTS) causes global outbreaks of foodborne disease. The main source of Salmonella for humans is animal-borne foods; however, the monitoring of Salmonella in the food chain via genomic platforms was limited in China. This study evaluated the prevalence, resistome, and virulome diversity of Salmonella strains identified from pork, retail environment, aquatic products, and poultry eggs of retail markets in Yichun city, Jiangxi province. The overall incidence of Salmonella was 9.4 %, with a higher contamination rate observed in pork at 13.5 %, followed by the retail environment at 7.69 %. The genomic analysis of the isolates revealed a total of fifteen distinct serovars, with serovar Enteritidis being the most prevalent (64.3 %). The phenotypic resistance analysis conducted by the broth microdilution method, revealed that 81.12 % of the isolates exhibited multidrug resistance (MDR), with high resistance to trimethoprim/sulphonamides (100 %), followed by tetracycline (99.3 %) and streptomycin (99.3 %). Genotypic analysis of antimicrobial resistance identified 80 antimicrobial-resistant genes (ARGs), with mdf(A), aph(3')-Ib, tet(A), dfrA12, floR, bla TEM-1B , qnrS3, and sul2, conferring resistance to different antimicrobial classes, being the predominant ARGs. Additionally, forty ESBL genes, particularly critical genes such as bla CTX-M and bla NDM-1, were also identified in Salmonella isolates. The IncR, IncFIB (K), and IncX1 plasmid replicons were widely prevalent and served as significant reservoirs of horizontally acquired foreign genes. Moreover, key virulence genes such as cdtB, lpf and sef were also detected, in addition to Salmonella pathogenicity islands SPI-1 and SPI-2. This study reveals the prevalence of multidrug-resistant and virulent strains of Salmonella serovars in the markets of Yichuan city, posing a risk of human infections. The gained knowledge provided essential baseline information that may be utilized for regular tracking of MDR Salmonella transmission in the food chain to minimize potential future outbreaks.
Collapse
Affiliation(s)
- Xiaowu Jiang
- College of Medicine, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China
- Jiangxi Provincial Key Laboratory of Active Component of Natural Drugs, Poster-Doctoral Research Center, 576 Xuefu Road, Yichun, Jiangxi 336000, China
| | - Abubakar Siddique
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
| | - Li Chen
- College of Medicine, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China
| | - Lexin Zhu
- College of Medicine, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China
| | - Haiyang Zhou
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
| | - Li Na
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Chenghao Jia
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
| | - Yan Li
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| |
Collapse
|
2
|
Asmus AE, Heimer KM, Davis KW, Ferm PM, Belk KE, Singer RS, Johnson TJ, Noyes NR. Temporality and Genetic Relatedness of Salmonella in a Pork Processing Facility. J Food Prot 2025; 88:100500. [PMID: 40154665 DOI: 10.1016/j.jfp.2025.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
The goal of this study was to investigate the prevalence and genetic relatedness of Salmonella enterica in meat and contact surfaces from two processing lines at a pork processing plant over a commercial production schedule. Across 192 samples, there was no significant difference in Salmonella prevalence between Bootjack Trim (BJ) and Boston Butt Trim (BBT) meat (11.5% vs. 11.5%, P = 1.0), though prevalence was higher in meat than on contact surfaces for both the BJ (11.5% vs. 0%, P = 0.01) and BBT (11.5% vs. 3.1%, P = 0.08) processing lines. Both Salmonella prevalence and identified serotypes clustered within four distinct processing windows that spanned multiple dates and processing lines. Phylogenetic analysis using core single nucleotide polymorphisms (SNPs) identified a highly related Salmonella I4,[5],12:i:- strain (N = 33, 0-2 SNPs difference across all isolates) in both the BJ and BBT lines, persisting over consecutive days within one processing window. Similarly, a highly related Salmonella London strain (N = 18, 0-1 SNPs) was found across both processing lines on three processing dates that spanned 28 days. Additional highly related strains of Salmonella Typhimurium (N = 8, 0-1 SNPs) and Salmonella Agona (N = 7, 0-3 SNPs) were also detected across multiple dates. Strains of S. I4,[5],12:i:- and S. London were genetically distinct (>30 SNPs) from publicly available genomes from isolates obtained from other pork processing plants located in the Upper Midwest. Overall, findings suggested that Salmonella prevalence varies across processing lines and production schedules. However, the high phylogenetic relatedness among the Salmonella serotypes suggests a common source may have been present prior to each primal cut being processed into subprimal cuts.
Collapse
Affiliation(s)
- A E Asmus
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; Hormel Foods Corporation, Austin, MN 55912, USA
| | - K M Heimer
- Hormel Foods Corporation, Austin, MN 55912, USA
| | - K W Davis
- Hormel Foods Corporation, Austin, MN 55912, USA
| | - P M Ferm
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - K E Belk
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA
| | - R S Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - T J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - N R Noyes
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
3
|
Rocha ADL, Lima LA, Sales GFC, Silva NJ, Gomes MLR, Pereira WE, Givisiez PEN, Brown EW, Allard MW, Bell RL, Toro M, Meng J, Oliveira CJBD. Predictors of Salmonella enterica contamination in agricultural and livestock-impacted natural watersheds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125782. [PMID: 39894151 DOI: 10.1016/j.envpol.2025.125782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
Salmonella enterica (S. enterica), a ubiquitous zoonotic foodborne pathogen, remains a worldwide public health hazard and economic burden. In recent years, outbreaks associated with the consumption of plant-based foods probably contaminated by irrigation water highlights the importance of water sources. This study investigated anthropogenic and environmental factors influencing S. enterica occurrence in natural watersheds impacted by agricultural and livestock industries in a 10-month longitudinal study in Paraiba, Brazil. Water samples were obtained from multiple sites within the three major river basins by modified Moore Swabs (MMS) and processed by conventional S. enterica isolation methodologies. Physicochemical parameters, climate, and human activities near the water sources were recorded. A logistic regression model was fitted using Generalized Linear Model (GLM) and further adjusted according to the selected variables using the Least Absolute Shrinkage and Selection Operator (LASSO) method. A non-statistical decision tree model was also fitted using the rpart package in R. Season, rainfall regime, water physicochemical features, and anthropogenic activities were significantly associated with S. enterica contamination. According to the regression tree analysis, rainfall within the sampling month was the strongest predictor of S. enterica recovery, potentially due to leaching from soil or runoff from adjacent human and animal activities. The complexity of multivariate conditions driving S. enterica contamination in surface waters highlights the need for region-specific investigations.
Collapse
Affiliation(s)
- Alan D L Rocha
- Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia-PB, 58397-000, Brazil
| | - Laiorayne A Lima
- Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia-PB, 58397-000, Brazil
| | - Gustavo F C Sales
- Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia-PB, 58397-000, Brazil
| | - Nadyra J Silva
- Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia-PB, 58397-000, Brazil
| | - Maria L R Gomes
- Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia-PB, 58397-000, Brazil
| | - Walter E Pereira
- Departamento de Ciências Fundamentais e Sociais, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia-PB, 58397-000, Brazil
| | - Patrícia E N Givisiez
- Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia-PB, 58397-000, Brazil
| | - Eric W Brown
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, 20742, USA
| | - Marc W Allard
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, 20742, USA
| | - Rebecca L Bell
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, 20742, USA
| | - Magaly Toro
- Laboratorio de Microbiologia y Probioticos, Instituto de Nutricion y Tecnologia de los Alimentos, Universidad de Chile, Santiago, Chile; Joint Institute for Food Safety & Applied Nutrition, Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA
| | - Jianghong Meng
- Joint Institute for Food Safety & Applied Nutrition, Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Celso José Bruno de Oliveira
- Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia-PB, 58397-000, Brazil.
| |
Collapse
|
4
|
Sia CM, Pearson JS, Howden BP, Williamson DA, Ingle DJ. Salmonella pathogenicity islands in the genomic era. Trends Microbiol 2025:S0966-842X(25)00038-1. [PMID: 40210546 DOI: 10.1016/j.tim.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/29/2025] [Accepted: 02/17/2025] [Indexed: 04/12/2025]
Abstract
Serovars of Salmonella are significant bacterial pathogens and are leading contributors to the global burden of diarrhoeal disease. Salmonella pathogenicity islands (SPIs) are essential for the survival and success of this genus, enabling colonisation, invasion, and survival in hostile environments. While genomics has transformed efforts to understand the evolution, dissemination, and antimicrobial resistance of members, its use to explore virulence determinants that contribute to the pathogenicity of specific organisms and severity of infection remains varied. Here, we discuss the importance of SPIs to the evolution of Salmonella, the implications in the shift of identification of SPIs from molecular microbiology to genomic-based approaches, and examine current efforts to explore the distribution and prevalence of SPIs in large-scale datasets of Salmonella genomes.
Collapse
Affiliation(s)
- Cheryll M Sia
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia; Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, 3168, Victoria, Australia; Department of Microbiology, Monash University, Clayton, 3168, Victoria, Australia; School of Medicine, University of St Andrews, St Andrews, KY16 9TF, Fife, UK
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia; Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia; Centre for Pathogen Genomics, University of Melbourne, Melbourne, 3000, Victoria, Australia
| | | | - Danielle J Ingle
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia; Centre for Pathogen Genomics, University of Melbourne, Melbourne, 3000, Victoria, Australia.
| |
Collapse
|
5
|
Al Fadhli AH, Jamal WY, Khodakhast FB, Carter GP, Bulach D, Albert MJ. Salmonella enterica serotypes causing infection in Kuwait during 2018-2021, determined by multi-locus sequence typing or whole genome sequencing. Microbiol Spectr 2025; 13:e0224824. [PMID: 40202310 PMCID: PMC12054093 DOI: 10.1128/spectrum.02248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Salmonellosis due to non-typhoidal Salmonellae (NTS) is a zoonotic infection that has epidemiological uniqueness in different settings. The current study aimed to determine the serotypes and the genetic diversity of human Salmonella enterica isolates causing infection in Kuwait. Isolates were obtained from feces of healthy adults and diarrheal patients between 2018 and 2021. Multi-locus sequence typing (MLST) was used to study sequence types (STs) and infer serotypes. Whole genome sequencing (WGS) was used to investigate six selected isolates, which included two isolates from a foodborne outbreak and two isolates whose serotypes could not be determined. Antibiotic susceptibility was studied by E-test and interpreted according to the Clinical and Laboratory Standards Institute guidelines. During the study period, 112/8,019 stool samples, 39/129,130 blood samples, 4/1,835 tissue samples, 3/1,209 pleural fluids, 3/9,388 pus samples, 4/80,799 urine samples, 1/7,053 endotracheal secretions, and 1/18 liver abscess samples were culture positive for Salmonella, yielding a total of 167 isolates with 30 different serotypes. S. Enteritidis (36.5%, n = 61), S. Typhimurium (14.97%, n = 25), S. Kentucky (5.9%, n = 10), and S. Newport (5.9%, n = 10) were the predominant serotypes. A new sequence type, ST 10217 corresponding to S. Schwarzengrund, was found by WGS. Two S. Enteritidis isolates from the foodborne outbreak showed a unique phylogenetic profile. In the phylogenetic analysis of serotypes, the number of clades was equal to the number of STs. No resistance to carbapenems was found among the isolates. This study provided data on the epidemiology of Salmonella serotypes causing infection in Kuwait.IMPORTANCEHuman salmonellosis due to nontyphoid Salmonellae is a major foodborne disease throughout the world. We determined the serotypes of isolates causing salmonellosis in Kuwait during the study period. We inferred the serotypes of isolates based on their sequence types as determined by multi-locus sequence typing, which is more amenable to laboratories than the traditional serotyping. By whole genome sequencing, we determined that the strain causing a foodborne outbreak was unique, and a new sequence type not in the serotyping scheme represented a rare serotype. We learnt the resistance pattern of isolates and lack of resistance to carbapenems that will be useful for treating multi-drug-resistant infection. Our data will contribute to planning strategies for treatment and control of salmonellosis and the epidemiology of salmonellosis in the Middle East.
Collapse
Affiliation(s)
- Amani H. Al Fadhli
- Department of Medical Laboratory Sciences, College of Allied Health Sciences, Kuwait University, Jabriya, Hawalli Governate, Kuwait
| | - Wafaa Y. Jamal
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya, Hawalli Governate, Kuwait
| | - Fatema Bibi Khodakhast
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya, Hawalli Governate, Kuwait
| | - Glen P. Carter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Dieter Bulach
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - M. John Albert
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya, Hawalli Governate, Kuwait
| |
Collapse
|
6
|
Kim Y, Cho H, Lee M, Hassan A, Yang SJ, Chae JC, Park KT. Emergence and Clonal Spread of Extended-Spectrum β-Lactamase-Producing Salmonella Infantis Carrying pESI Megaplasmids in Korean Retail Poultry Meat. Antibiotics (Basel) 2025; 14:366. [PMID: 40298492 PMCID: PMC12024396 DOI: 10.3390/antibiotics14040366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives:Salmonella is a major cause of foodborne illnesses, with multidrug-resistant (MDR) strains posing significant threats to public health worldwide. This study investigated the prevalence and antimicrobial resistance (AMR) of Salmonella, focusing on extended-spectrum β-lactamase (ESBL)-producing Salmonella in retail poultry meat in Korea. Methods: A total of 300 poultry meat samples were collected nationwide from retail markets. Multi-locus sequence typing, serotyping, and antimicrobial susceptibility testing were performed. Whole-genome sequencing (WGS) analysis was conducted against 28 representative ESBL-producing S. Infantis isolates to identify the genetic characteristics and phylogenetic relationship. Results: Salmonella was detected in 81.3% of raw poultry meat samples, with S. Infantis ST32 being the dominant serotype in chicken (53.0%) and S. Typhimurium ST19 predominant in duck (39.0%). MDR was identified in 58.2% of samples, with a significantly higher rate in chicken isolates than in duck isolates (p < 0.001). Notably, 75.3% of chicken MDR isolates were ESBL-producing S. Infantis carrying blaCTX-M-65. WGS of 28 geographically and phenotypically representative ESBL-producing S. Infantis revealed five clonal clusters, suggesting the widespread dissemination of ESBL-producing S. Infantis across Korea's poultry supply chain. All 28 ESBL-producing S. Infantis isolates contained a pESI-like megaplasmid, carrying multiple resistance and virulence genes, with sequences highly identical to plasmids reported in the United States, indicating potential international transmission. Conclusions: This study emphasizes the urgent need for continuous surveillance and responsible antibiotic use in livestock under a One Health framework. WGS can provide an effective tool for tracking AMR evolution and clonal spread within and across regions.
Collapse
Affiliation(s)
- Yeona Kim
- Department of Digital Anti-Aging and Healthcare, Inje University, Gimhae 50834, Republic of Korea;
| | - Hyeonwoo Cho
- Department of Biological Sciences, Inje University, Gimhae 50834, Republic of Korea; (H.C.); (M.L.)
| | - Miru Lee
- Department of Biological Sciences, Inje University, Gimhae 50834, Republic of Korea; (H.C.); (M.L.)
| | - Amany Hassan
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA;
- Department of Animal Medicine, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21944, Egypt
| | - Soo-Jin Yang
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea;
| | - Jong-Chan Chae
- Division of Biotechnology, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Kun Taek Park
- Department of Digital Anti-Aging and Healthcare, Inje University, Gimhae 50834, Republic of Korea;
- Department of Biological Sciences, Inje University, Gimhae 50834, Republic of Korea; (H.C.); (M.L.)
| |
Collapse
|
7
|
Chacón RD, Ramírez M, Suárez-Agüero D, Pineda APA, Astolfi-Ferreira CS, Ferreira AJP. Genomic Differences in Antimicrobial Resistance and Virulence Among Key Salmonella Strains of Serogroups B and D1 in Brazilian Poultry. Curr Microbiol 2025; 82:173. [PMID: 40050512 DOI: 10.1007/s00284-025-04147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
Salmonella is a significant threat to Brazilian poultry, causing economic losses and public health risks. This study analyzed 15 Salmonella isolates along with 45 retrieved complete genomes, including serovars Gallinarum, Pullorum, Enteritidis, Typhimurium, and Heidelberg. Biochemical characterization, antimicrobial susceptibility testing, whole-genome sequencing, and comparative genomics were performed. The studied strains exhibited high levels of antimicrobial resistance, particularly to tilmicosin, penicillin/novobiocin, nalidixic acid, and streptomycin. Genomic analysis revealed diverse virulence factors and antibiotic resistance genes (ARGs), with zoonotic strains showing higher virulence compared to avian-adapted strains. Multiple plasmid types carrying ARGs were identified, highlighting the potential for horizontal gene transfer. Pangenomic and phylogenomic analyses differentiated Salmonella strains from serogroup D1 from those from serogroup B. These findings emphasize the need for comprehensive surveillance and control measures to mitigate the impact of Salmonella on both animal and human health in Brazil.
Collapse
Affiliation(s)
- Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, 05508-270, Brazil
| | - Manuel Ramírez
- Faculty of Biological Sciences, National University of San Marcos, Lima, 15081, Peru
| | - Dilan Suárez-Agüero
- Molecular and Clinical Virology Laboratory, National University of San Marcos, Lima, 15081, Peru
| | - Ana P Arellano Pineda
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Claudete S Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, 05508-270, Brazil
| | - Antonio J Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP, 05508-270, Brazil.
| |
Collapse
|
8
|
Zavari A, Badouei MA, Hashemi Tabar G. Evaluation of multi-drug resistance, virulence factors, and antimicrobial resistance genes of non-typhoidal Salmonella isolated from ruminants as a potential human health threat in Razavi Khorasan, northeastern Iran. Microb Pathog 2025; 199:107222. [PMID: 39667639 DOI: 10.1016/j.micpath.2024.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Non-typhoidal Salmonella (NTS) is a significant foodborne pathogen that poses a threat to human health by causing infections and potentially acquiring antibiotic resistance. We evaluated thirty-five Salmonella serovars previously isolated from cattle, sheep, goats, and their retail meat in Razavi Khorasan Province, Iran. The isolates were confirmed with Salmonella polyvalent antiserum. Furthermore, PCR was used to identify the Salmonella Enteritidis, Salmonella Typhimurium, and the host-adapted serovars Salmonella Dublin and Salmonella Abortusovis. Additionally, the antimicrobial susceptibility of the serovars was evaluated using the disk diffusion method. Subsequently, the occurrence of antimicrobial resistance genes and virulence factors was evaluated using the PCR technique. Molecular typing revealed that 20 % of the isolates were S. Typhimurium, 11.4 % were S. Dublin, 8.6 % were S. Enteritidis, 5.7 % were S. Abortusovis, and 54.3 % (19 isolates) were classified as non-typed serovars. Salmonella isolates showed high susceptibility to ciprofloxacin (91.4 %), colistin (88.6 %), gentamicin (88.6 %), and cefotaxime (85.7 %) while exhibiting high resistance to others such as ampicillin (88.6 %), streptomycin (74.3 %), and tetracycline (51.4 %). The most prevalent resistance genes in non-typhoidal Salmonella (NTS) are blaTEM (91.4 %), sul1 (65.7 %), and aadA (54.3 %). Additionally, twenty-five isolates (71.4 %) showed multi-drug resistance profiles. The most frequent virulence genes are stn (100 %), iroN (100 %), and pefA (42.9 %). The current study has revealed that Salmonella serovars isolated from sheep and goats, like those from cattle, exhibit multi-drug resistance and harbor antimicrobial resistance genes. Additionally, they possess diverse virulence factors that can threaten human health by spreading diseases and developing drug resistance, leading to antibiotic treatment failure.
Collapse
Affiliation(s)
- Ali Zavari
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahdi Askari Badouei
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Gholamreza Hashemi Tabar
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
9
|
Cheruvu SAR, Betiku E, Calson M, Barashkov N, Owens C, Obe T. Research note: Reduction of Salmonella enterica in simulated wastewater using electrochemical and photochemical processes. Poult Sci 2025; 104:104674. [PMID: 39705836 PMCID: PMC11731494 DOI: 10.1016/j.psj.2024.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024] Open
Abstract
Salmonella is a poultry-borne pathogen causing numerous human outbreaks in the U.S. Consequently, Salmonella, along with other pathogens, can be found in wastewater generated from poultry processing. It is essential to treat this wastewater before discharge, recycle, or reuse. Hence, this study investigated the utility of Advanced Oxidation Processes (AOPs) like electrochemical (EC) and photochemical processes (PC) to disinfect Salmonella in simulated wastewater (contaminated water). Three Salmonella serotypes: Kentucky (SK), Infantis (SI), and Typhimurium (ST) were chosen based on their ability to persist in poultry processing environments and cause infection. These serotypes, prepared in water at 6 to 7 Log10 CFU/mL were exposed to alternating current in EC with a voltage demand of 30 V, 40 V, and 50 V where ammonium sulfate was added as an electrolyte and ferrous sulfate to facilitate AOP production; and PC with curcumin, a photosensitizer at 0.40 % (1X) and 0.80 % (2X) to produce singlet oxygen and hydrogen peroxide that are lethal to pathogens. During the disinfection process, samples were collected every 20 min for 180 min and plated on XLD agar to assess Salmonella reduction. The data were analyzed using ANOVA in SAS. Bacterial reduction differed (P < 0.0001) between serotypes at 30 V and SK had the greatest reduction (3.13 Log10 CFU/mL), whereas there was no difference in reduction between the serotypes at 40 V (P = 0.98) where all the serotypes had more reduction than at 30 V. Complete attenuation of the serotypes was seen at 50 V (P < 0.0001), where SI reduced the most (5.96 Log10 CFU/mL) followed by ST (5.15 Log10 CFU/mL) after 140 min. SK was also attenuated (3.34 Log10 CFU/mL) after 60 min due to a lower starting concentration. This preliminary result suggests that Salmonella in poultry processing wastewater can be effectively attenuated through AOPs, offering a potential solution for enhancing poultry wastewater treatment.
Collapse
Affiliation(s)
| | - Eniola Betiku
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Mark Calson
- Micro-Tracers, Inc., San Francisco, CA 94124, United States
| | | | - Casey Owens
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Tomi Obe
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
10
|
Batsaikhan B, Lin PC, Shigemura K, Wu YW, Onishi R, Chang PR, Cheng HY, Fang SB. Comparison of global transcriptomes for nontyphoidal Salmonella clinical isolates from pediatric patients with and without bacteremia after their interaction with human intestinal epithelial cells in vitro. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:38-47. [PMID: 39322508 DOI: 10.1016/j.jmii.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Nontyphoidal Salmonella (NTS) outbreaks of invasive diseases are increasing. Whether the genetic diversity of invasive NTS correlates with the clinical characteristics and bacteremia development in NTS infections remains unclear. In this study, we compared the global transcriptomes between bacteremic and nonbacteremic NTS strains after their interaction with human intestinal epithelial cells in vitro. METHODS We selected clinical isolates obtained from stool and blood samples of patients with or without bacteremia and patients with high and low C-reactive protein (CRP) levels. The bacterial RNA samples were isolated after coculturing with Caco-2 cells for RNA sequencing and subsequent analyses. RESULTS CRP is an unreliable predictive maker for NTS bacteremia with a median CRP level of 1.6 mg/dL. Certain Salmonella Pathogenicity Island (SPI)-1 genes (sipC, sipA, sicA, sipD, and sipB), SPI-2 genes (ssaP, ssrA, and ssaS), and six SPI-4 genes (siiA, siiB, siiC, siiD, siiE, and siiF) remained upregulated in the bacteremic blood-derived strains but significantly downregulated in the nonbacteremic strains after their interaction with Caco-2 cells. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis identified that arginine biosynthesis, ascorbate and aldarate metabolism, and phosphotransferase system pathways were activated in bacteremic NTS strains after Caco-2 cell priming. CONCLUSION CRP levels were not correlated with bacteremia development. Significant regulation of certain SPI genes in bacteremic NTS strains after Caco-2 cell priming; bacteremia development might be influenced by the host immune response and the extent to which specific metabolism pathways in NTS strains can be prevented from invading the bloodstream.
Collapse
Affiliation(s)
- Buyandelger Batsaikhan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Pei-Chun Lin
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Emergency Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Katsumi Shigemura
- Department of Public Health, Division of Infectious Diseases, Kobe University Graduate School of Health Sciences, Kobe, Japan; Department of Urology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan
| | - Reo Onishi
- Department of Public Health, Division of Infectious Diseases, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Pei-Ru Chang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Hung-Yen Cheng
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shiuh-Bin Fang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei City, Taiwan; Research Center for Digestive Medicine, Taipei Medical University, Taipei City, Taiwan.
| |
Collapse
|
11
|
Luo Y, Mahillon J, Sun L, You Z, Hu X. Isolation, characterization and liposome-loaded encapsulation of a novel virulent Salmonella phage vB-SeS-01. Front Microbiol 2025; 16:1494647. [PMID: 39927265 PMCID: PMC11803447 DOI: 10.3389/fmicb.2025.1494647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction Salmonella is a common foodborne pathogenic bacterium, displaying facultative intracellular parasitic behavior, which can help the escape against antibiotics treatment. Bacteriophages have the potential to control both intracellular and facultative intracellular bacteria and can be developed as antibiotic alternatives. Methods This study isolated and characterized vB-SeS-01, a novel Guernseyvirinae phage preying on Salmonella enterica, whose genome is closely related to those of phages SHWT1 and vB-SenS-EnJE1. Furthermore, nine phage-carrying liposome formulations were developed by film hydration method and via liposome extruder. Results and Discussion Phage vB-SeS-01 displays strong lysis ability against 9 out of 24 tested S. enterica strains (including the pathogenic "Sendai" and "Enteritidis" serovars), high replicability with a burst size of 111 ± 15 PFU/ cell and a titre up to 2.1 × 1011 PFU/mL, and broad pH (4.0 ~ 13.0) and temperature (4 ~ 80°C) stabilities. Among the nine vB-SeS-01 liposome-carrying formulations, the one encapsulated with PC:Chol:T80:SA = 9:1:2:0.5 without sonication displayed the optimal features. This formulation carried up to 1011 PFU/mL, with an encapsulation rate of 80%, an average size of 172.8 nm, and a polydispersity index (PDI) of 0.087. It remained stable at 4°C and 23°C for at least 21 days and at 37°C for 7 days. Both vB-SeS-01 and vB-SeS-01-loaded liposomes displayed intracellular antimicrobial effects and could reduce the transcription level of some tested intracellular inflammatory factors caused by the infected S. enterica sv. Sendai 16,226 and Enteritidis 50041CMCC.
Collapse
Affiliation(s)
- Yuhang Luo
- College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Lin Sun
- College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Ziqiong You
- College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Xiaomin Hu
- College of Life Sciences, South-Central Minzu University, Wuhan, China
| |
Collapse
|
12
|
Harhay DM, Brader KD, Katz TS, Harhay GP, Bono JL, Bosilevac JM, Wheeler TL. A novel approach for detecting Salmonella enterica strains frequently attributed to human illness-development and validation of the highly pathogenic Salmonella (HPS) multiplex PCR assay. Front Microbiol 2025; 15:1504621. [PMID: 39845055 PMCID: PMC11752890 DOI: 10.3389/fmicb.2024.1504621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Non-typhoidal Salmonella enterica (NTS) are leading bacterial agents of foodborne illnesses and a global concern for human health. While there are over 2,600 different serovars of NTS, epidemiological data suggests that certain serovars are better at causing disease than others, resulting in the majority of reported human illnesses in the United States. To improve food safety, there is a need to rapidly detect these more pathogenic serovars to facilitate their removal from the food supply. Methods Addressing this need, we conducted a comparative analysis of 23 closed Salmonella genomic sequences of five serotypes. The analysis pinpointed eight genes (sseK2, sseK3, gtgA/gogA, avrA, lpfB, SspH2, spvD, and invA) that in combination, identify 7 of the 10 leading Salmonella serovars attributed to human illnesses in the US each year (i.e., Serovars of Concern or SoC). A multiplex PCR assay was developed to detect the presence of these genes, with strains amplifying five or more targets designated Highly Pathogenic Salmonella, or HPS. The utility of the resulting HPS assay for identifying SoC was examined in silico, using BLAST to determine the distribution of gene targets among closed Salmonella genome sequences in GenBank (n = 2,192 representing 148 serotypes) and by assaying 1,303 Salmonella (69 serotypes), isolated from FSIS regulatory samples. Results and discussion Comparison of serotypes identified by the assay as HPS, with those identified as SoC, produced an Area Under the Curve (AUC) of 92.2% with a specificity of 96% and a positive predictive value of 97.4%, indicating the HPS assay has strong ability to identify SoC. The data presented lay the groundwork for development of rapid commercial assays for the detection of SoC.
Collapse
Affiliation(s)
- Dayna M. Harhay
- Roman L. Hruska, US Meat Animal Research Center, Meat Safety and Quality Research Unit, USDA ARS, Clay Center, NE, United States
| | | | | | | | | | | | | |
Collapse
|
13
|
Fernandez M, Calle A. Differences in Salmonella Serovars Response to Lactic Acid and Peracetic Acid Treatment Applied to Pork. J Food Prot 2025; 88:100403. [PMID: 39542107 DOI: 10.1016/j.jfp.2024.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Pathogen control in the meat industry relies on the effectiveness of postharvest interventions in reducing microbial populations. This study investigated differences in the survival of Salmonella serovars when exposed to organic acids used as antimicrobials on raw pork meat. Seven serovars were included in this study (S. Newport, S. Kentucky, S. Typhimurium, S. Dublin, S. Heidelberg, S. Infantis, and S. Enteritidis). Multistrain serovar cocktails were prepared and tested against lactic acid (LA) and peracetic acid PAA at two concentrations, LA 2 and 4% and PAA 200 and 400 ppm. Pork samples were assigned to each serovar, inoculated with 6.0 Log CFU/cm2Salmonella (one serovar at a time), and treated with the corresponding antimicrobials. A two-way analysis of variance was conducted to examine the effects of serovar and antimicrobial concentrations on Salmonella survival. A significant main effect of serovar was identified, indicating that Salmonella concentration and reduction rate were significantly affected by serovar. Similarly, a significant main effect of antimicrobials was observed, suggesting that the treatment types impacted Salmonella concentration and reduction rate. However, the interaction effect between serovar and antimicrobial was not significant. Posthoc comparisons indicate that PAA 400 ppm is more effective at reducing Salmonella concentrations and that S. Dublin may be more susceptible than S. Newport to antimicrobial sprays. Additionally, under PAA exposure, only S. Dublin, S. Kentucky, and S. Heidelberg showed statistically significant differences (P < 0.05) compared with the control, indicating that these three serovars are more susceptible to PAA treatments than the rest. The behavior of different Salmonella serovars under stress conditions can give us an insight into how these pathogens survive processing.
Collapse
Affiliation(s)
- Mariana Fernandez
- Texas Tech University School of Veterinary Medicine, 7671 Evans Dr., Amarillo, TX, USA
| | - Alexandra Calle
- Texas Tech University School of Veterinary Medicine, 7671 Evans Dr., Amarillo, TX, USA.
| |
Collapse
|
14
|
Chan BKW, Li R, Chan EWC, Wong KY, Chen S. Novel virulence-related genes that contribute to clinical infections of Salmonella enteritidis. Genes Dis 2025; 12:101236. [PMID: 39430053 PMCID: PMC11489143 DOI: 10.1016/j.gendis.2024.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 10/22/2024] Open
Affiliation(s)
- Bill Kwan-wai Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 99907, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225012, China
| | - Edward Wai-chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Kwok-yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 99907, China
| |
Collapse
|
15
|
Li L, McWhorter A, Chousalkar K. Ensuring egg safety: Salmonella survival, control, and virulence in the supply chain. Compr Rev Food Sci Food Saf 2025; 24:e70075. [PMID: 39667949 DOI: 10.1111/1541-4337.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Salmonella contamination of eggs is a global food safety concern, producers, regulatory authorities, and affecting public health. To mitigate Salmonella risks on-farm and along the supply chain, egg producers have adopted various quality assurance, animal husbandry, and biosecurity practices recommended by organizations such as Australian eggs, the European Commission, and the US Department of Agriculture (USDA). However, egg storage requirements vary significantly worldwide. In Australia, most states follow the Food Standards Australia New Zealand, but discrepancies exist. In the United States, the USDA mandates refrigeration of eggs below 7.2°C to prevent Salmonella growth, whereas the European Union requires that eggs must not be refrigerated to avoid condensation, which may promote bacterial growth. Refrigeration of eggs is associated with reduced Salmonella growth and decreased infection risk. Yet, conflicting data regarding the impact of storage temperatures on Salmonella survival may contribute to the disparity between international recommendations for egg storage. Studies indicated better Salmonella survival in egg contents at 5°C due to higher expression levels of survival and stress response-related genes compared to 25°C, yet this may not lead to an increased risk or higher severity of Salmonella infection. Evidence suggests that storing eggs at less than 7°C will influence the virulence of bacteria. Warmer storage temperatures may lead to increased potential of Salmonella multiplication in the nutrient-rich yolk and may cause the expression of certain virulence genes. Eggs can be exposed to various temperatures in the supply chain. Further studies are essential to understand the relationship between the storage temperature on the farm, in the supply chain, and bacterial virulence.
Collapse
Affiliation(s)
- Lingyun Li
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kapil Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Buyrukoğlu G, Moreira J, Topalcengiz Z. Causal Mediation Analysis of Foodborne Salmonella Outbreaks in the United States: Serotypes and Food Vehicles. Pathogens 2024; 13:1134. [PMID: 39770393 PMCID: PMC11676911 DOI: 10.3390/pathogens13121134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Various Salmonella serotypes have caused numerous foodborne outbreaks associated with food vehicles in different categories. This study provides evidence on the occurrence and inter-relations between Salmonella serotypes and the number of deaths mediated by the number of illnesses and hospitalizations. Confirmed foodborne outbreaks of Salmonella serotypes (n = 2868) that occurred between 1998 and 2021 were obtained from the Centers for Disease Control and Prevention National Outbreak Reporting System. Causal mediation analysis was performed based on 500 bootstrap samples. The serotypes and the Interagency Food Safety Analytics Collaboration (IFSAC) food categories as confounding effects were considered as categorical variables. A total of 106 single Salmonella serotypes were associated with foodborne outbreaks. Foodborne outbreaks caused by Salmonella serotypes resulted in 81,996 illnesses, 11,018 hospitalizations, and 115 deaths between 1998 and 2021 in the United States. The serotypes Enteritidis (815 outbreaks, 28.42%), Typhimurium (359 outbreaks, 12.52%), and Newport (220 outbreaks, 7.67%) accounted for almost half of Salmonella-linked outbreaks. Poultry products, "chickens", "eggs", and "turkey", were the leading IFSAC food categories, accounting for 14.02% of total outbreaks and 10.44% of total deaths. Certain serotypes had a significant effect on illness, hospitalization, and death counts. Two serotypes, Heidelberg and Saintpaul, and "fruits" as the food vehicle in IFSAC categories had a significant direct effect on the number of illnesses, hospitalizations, and deaths as outcomes of Salmonella outbreaks (p ≤ 0.05). There was strong evidence that illness and hospitalization counts played a key role in the pathway from serotype to death counts on foodborne outbreaks caused by Salmonella based on causal mediation analysis. The findings of this study can help outbreak investigations and lead to prevention and control measures by providing insightful information about the frequencies of Salmonella serotypes and the associated food vehicles causing foodborne diseases.
Collapse
Affiliation(s)
- Gonca Buyrukoğlu
- Department of Statistics, Faculty of Science, Çankırı Karatekin University, 18100 Çankırı, Türkiye;
| | - Juan Moreira
- Department of Food Science and Human Nutrition, College of Health and Human Sciences, Colorado State University, Fort Collins, CO 80526, USA;
| | - Zeynal Topalcengiz
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
- Department of Food Engineering, Faculty of Engineering and Architecture, Muş Alparslan University, 49250 Muş, Türkiye
| |
Collapse
|
17
|
Kan NP, Yin Z, Qiu YF, Zheng E, Chen J, Huang J, Du Y. A pan-genome perspective on the evolutionary dynamics of polyphyly, virulence, and antibiotic resistance in Salmonella enterica serovar Mbandaka highlights emerging threats to public health and food safety posed by cloud gene families. Curr Res Food Sci 2024; 10:100957. [PMID: 39802648 PMCID: PMC11719860 DOI: 10.1016/j.crfs.2024.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Salmonella enterica serovar Mbandaka, a prevalent foodborne pathogen, poses a threat to public health but remains poorly understood. We have determined the phylogenomic tree, genetic diversity, virulence, and antimicrobial resistance (AMR) profiles on a large genomic scale to elucidate the evolutionary dynamics within the Mbandaka pan-genome. The polyphyletic nature of this serovar is characterized by two distinct phylogenetic groups and inter-serovar recombination boundaries, that potentially arising from recombination events at the H2-antigen loci. The open pan-genome exhibited a flexible gene repertoire, with numerous cloud gene families involved in virulence and AMR. Extensive gene gain and loss observed at the terminal nodes of the phylogenetic tree indicate that Mbandaka individuals have undergone frequent gene turnover. The resulting changes in virulence and AMR genes potentially pose emerging threats to public health. We explored serovar conversion due to recombination of H-antigen loci, inter-serovar divergences in gene gain and loss, prophage-mediated acquisition of virulence factors, and the role of incompatibility group plasmids in acquiring resistance determinants as key molecular mechanisms driving the pathogenicity and antibiotic resistance of Mbandaka. Our work contributes to a comprehensive understanding of the complex mechanisms of pathogenesis and the ongoing evolutionary arms race with current therapeutic approaches in serovar Mbandaka.
Collapse
Affiliation(s)
- Nai-peng Kan
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, PR China
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, 350012, PR China
| | - Zhiqiu Yin
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, PR China
| | - Yu-feng Qiu
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, 350012, PR China
| | - Enhui Zheng
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, 350012, PR China
| | - Jianhui Chen
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, 350012, PR China
| | - Jianzhong Huang
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, PR China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
18
|
Jin Y, Li Y, Huang S, Hong C, Feng X, Cai H, Xia Y, Li S, Zhang L, Lou Y, Guan W. Whole-Genome Sequencing Analysis of Antimicrobial Resistance, Virulence Factors, and Genetic Diversity of Salmonella from Wenzhou, China. Microorganisms 2024; 12:2166. [PMID: 39597556 PMCID: PMC11596050 DOI: 10.3390/microorganisms12112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Salmonella species are important foodborne pathogens worldwide. Salmonella pathogenicity is associated with multiple virulence factors and enhanced antimicrobial resistance. To determine the molecular characteristics and genetic correlations of Salmonella, 24 strains of Salmonella isolated from different sources (raw poultry, human stool, and food) in the Wenzhou area were investigated to determine the distribution of antimicrobial resistance and virulence determinants using whole-genome sequencing (WGS). Aminoglycoside resistance genes were detected in all samples. Over half of the samples found antimicrobial resistance genes (ARGs) and point mutations for several clinically frequently used antibiotic, beta-lactams, tetracyclines, and quinolones. Of these strains, 62.5% were predicted to be multidrug-resistant (MDR). The quinolone-modifying enzyme gene aac(6')-Ib-cr, detected in five samples (S1-S4 and S10), was located on integrons. The analysis of Salmonella pathogenicity island (SPI) profiles suggests that serotypes with close genetic relationships share the same distribution of virulence factors, revealing a link between genotype and SPI profiles. cgMLST analysis indicated that five isolates S14-S18 were closely related to strains originating from the United Kingdom, suggesting that they may share a common origin. Data from this study may enrich the molecular traceability database for Salmonella and provide a basis for effective public health policies.
Collapse
Affiliation(s)
- Yafang Jin
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory, Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Y.J.); (S.H.); (X.F.); (H.C.); (Y.X.); (S.L.)
- Institute of Marine Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Yi Li
- Wenzhou Center for Disease Control and Prevention, Wenzhou 325035, China; (Y.L.); (C.H.); (L.Z.)
| | - Shaojie Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory, Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Y.J.); (S.H.); (X.F.); (H.C.); (Y.X.); (S.L.)
- Institute of Marine Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Chengji Hong
- Wenzhou Center for Disease Control and Prevention, Wenzhou 325035, China; (Y.L.); (C.H.); (L.Z.)
| | - Xucong Feng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory, Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Y.J.); (S.H.); (X.F.); (H.C.); (Y.X.); (S.L.)
- Institute of Marine Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Huidi Cai
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory, Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Y.J.); (S.H.); (X.F.); (H.C.); (Y.X.); (S.L.)
- Institute of Marine Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanmei Xia
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory, Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Y.J.); (S.H.); (X.F.); (H.C.); (Y.X.); (S.L.)
- Institute of Marine Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Shengkai Li
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory, Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Y.J.); (S.H.); (X.F.); (H.C.); (Y.X.); (S.L.)
| | - Leyi Zhang
- Wenzhou Center for Disease Control and Prevention, Wenzhou 325035, China; (Y.L.); (C.H.); (L.Z.)
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory, Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Y.J.); (S.H.); (X.F.); (H.C.); (Y.X.); (S.L.)
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory, Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Y.J.); (S.H.); (X.F.); (H.C.); (Y.X.); (S.L.)
- Institute of Marine Science, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
19
|
Yu L, Fan J, Lu S, Zhou J, Hu H, Mao C, Hua X, Jiang Y, Fu Y, Yu Y, Han X. Prevalence, antimicrobial resistance, and genomic characterization of Salmonella strains isolated in Hangzhou, China: a two-year study. Ann Clin Microbiol Antimicrob 2024; 23:86. [PMID: 39342293 PMCID: PMC11439225 DOI: 10.1186/s12941-024-00748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
This study explored the molecular epidemiology and resistance mechanisms of 271 non-duplicate Salmonella enterica (S. enterica) strains, isolated mainly from adults (209/271) in a tertiary hospital in Hangzhou between 2020 and 2021. Through whole-genome sequencing and bioinformatics, the bacterial strains were classified into 46 serotypes and 54 sequence types (ST), with S. Enteritidis, S. 1,4,[5],12:i:-, and S. Typhimurium being the most prevalent serotypes and ST11, ST34, and ST19 the most common STs. The strains isolated from adults were primarily S. Enteritidis (59/209), while from children were mainly S. 1,4,[5],12:i:- (20/62). Worryingly, 12.55% strains were multi-drug resistant (MDR), with resistance rates to cefepime (FEP), ceftazidime (CAZ), ceftriaxone (CRO) and cefotaxime (CTX) of 7.38%, 9.23%, 15.87% and 16.24%, respectively, and resistance rates to levofloxacin (LEV) and ciprofloxacin (CIP) of 8.49% and 19.19%, respectively. It is worth noting that the resistance rates of CRO and CTX in children reached 30.65%. A total of 34 strains carried extended-spectrum β-lactamase (ESBL) genes, dominated by blaCTX-M-65 (13/34) and blaCTX-M-55 (12/34); it is notable that one strain of S. Saintpaul carried both blaCTX-M-27 and blaCTX-M-55. The resistance mechanism to cephalosporins was mainly due to ESBL genes (20/43), and other genes included AmpC and β-lactamase genes. The strains resistant to quinolones mainly carried qnrS1 (27/53), and others included qnrB6, aac(6')-Ib-cr, and mutations in gyrA and parC. One strain did not carry common quinolone resistance genes but had a parC (p.T57S) mutation to cause CIP resistance. This research provides vital insights into the molecular epidemiology and resistance mechanisms of clinical S. enterica, implicating possible infection control strategies.
Collapse
Affiliation(s)
- Lifei Yu
- Department of Infectious Diseases, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jianzhong Fan
- Department of Clinical Laboratory, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Shanshan Lu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Junxin Zhou
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Huangdu Hu
- Centre for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Caiping Mao
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiaoting Hua
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yan Jiang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ying Fu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China
| | - Yunsong Yu
- Centre for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Xinhong Han
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
20
|
Krishnakant Kushwaha S, Wu Y, Leonardo Avila H, Anand A, Sicheritz-Pontén T, Millard A, Amol Marathe S, Nobrega FL. Comprehensive blueprint of Salmonella genomic plasticity identifies hotspots for pathogenicity genes. PLoS Biol 2024; 22:e3002746. [PMID: 39110680 PMCID: PMC11305592 DOI: 10.1371/journal.pbio.3002746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Understanding the dynamic evolution of Salmonella is vital for effective bacterial infection management. This study explores the role of the flexible genome, organised in regions of genomic plasticity (RGP), in shaping the pathogenicity of Salmonella lineages. Through comprehensive genomic analysis of 12,244 Salmonella spp. genomes covering 2 species, 6 subspecies, and 46 serovars, we uncover distinct integration patterns of pathogenicity-related gene clusters into RGP, challenging traditional views of gene distribution. These RGP exhibit distinct preferences for specific genomic spots, and the presence or absence of such spots across Salmonella lineages profoundly shapes strain pathogenicity. RGP preferences are guided by conserved flanking genes surrounding integration spots, implicating their involvement in regulatory networks and functional synergies with integrated gene clusters. Additionally, we emphasise the multifaceted contributions of plasmids and prophages to the pathogenicity of diverse Salmonella lineages. Overall, this study provides a comprehensive blueprint of the pathogenicity potential of Salmonella. This unique insight identifies genomic spots in nonpathogenic lineages that hold the potential for harbouring pathogenicity genes, providing a foundation for predicting future adaptations and developing targeted strategies against emerging human pathogenic strains.
Collapse
Affiliation(s)
- Simran Krishnakant Kushwaha
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Yi Wu
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Hugo Leonardo Avila
- Laboratory for Applied Science and Technology in Health, Instituto Carlos Chagas, FIOCRUZ Paraná, Brazil
| | - Abhirath Anand
- Department of Computer Sciences and Information Systems, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India
| | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong, Kedah, Malaysia
| | - Andrew Millard
- Centre for Phage Research, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sandhya Amol Marathe
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India
| | - Franklin L. Nobrega
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
21
|
Chen Z, Moreno-Switt AI, Reyes-Jara A, Delgado Suarez E, Adell AD, Oliveira CJB, Bonelli RR, Huang X, Brown E, Allard M, Grim C, Bell R, Meng J, Toro M. A multicenter genomic epidemiological investigation in Brazil, Chile, and Mexico reveals the diversity and persistence of Salmonella populations in surface waters. mBio 2024; 15:e0077724. [PMID: 38920393 PMCID: PMC11253603 DOI: 10.1128/mbio.00777-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
This study examined the diversity and persistence of Salmonella in the surface waters of agricultural regions of Brazil, Chile, and Mexico. Research groups (three in 2019-2020 and five in 2021-2022) conducted a long-term survey of surface water across 5-8 months annually (n = 30 monthly). On-site, each team filtered 10-L water samples with modified Moore Swabs to capture Salmonella, which were then isolated and identified using conventional microbiological techniques. Salmonella isolates were sequenced on Illumina platforms. Salmonella was present in 1,493/3,291 water samples (45.8%), with varying isolation rates across countries and years. Newport, Infantis, and Typhimurium were the most frequent among the 128 different serovars. Notably, 22 serovars were found in all three countries, representing almost half of the 1,911 different isolates collected. The resistome comprised 72 antimicrobial resistance (AMR) genes and six point mutations in three genes. At least one AMR determinant was observed in 33.8% (646/1,911) of the isolates, of which 47.4% (306/646) were potentially multidrug resistant. Phylogeny based on core genome multilocus sequence typing (cgMLST) showed that most isolates clustered according to sequence type and country of origin. Only 14 cgMLST multi-country clusters were detected among the 275 clusters. However, further analysis confirmed that close genetic relatedness occurred mostly among isolates from the same country, with three exceptions. Interestingly, isolates closely related phylogenetically were recovered over multiple years within the same country, indicating the persistence of certain Salmonella in those areas. In conclusion, surface waters in these regions are consistently contaminated with diverse Salmonella, including strains that persist over time.IMPORTANCESalmonella is a leading foodborne pathogen responsible for millions of illnesses, hospitalizations, and deaths annually. Although Salmonella-contaminated water has now been recognized as an important contamination source in the agrifood chain, there is a lack of knowledge on the global occurrence and diversity of Salmonella in surface water. Moreover, there has been insufficient research on Salmonella in surface waters from Latin American countries that are major producers and exporters of agricultural products. Incorporating genetic profiling of Salmonella isolates from underrepresented regions, such as Latin America, enhances our understanding of the pathogen's ecology, evolution, antimicrobial resistance, and pathogenicity. Moreover, leveraging genomic data derived from pathogens isolated from diverse geographical areas is critical for assessing the potential public health risk posed by the pathogen and expediting investigations of foodborne outbreaks. Ultimately, global efforts contribute significantly to reducing the incidence of foodborne infections.
Collapse
Affiliation(s)
- Zhao Chen
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland, USA
- Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
| | - Andrea I. Moreno-Switt
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angelica Reyes-Jara
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Enrique Delgado Suarez
- Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City, Mexico
| | - Aiko D. Adell
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | - Raquel Regina Bonelli
- Medical Microbiology Research Laboratory, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Xinyang Huang
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland, USA
- Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
| | - Eric Brown
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| | - Christopher Grim
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| | - Rebecca Bell
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland, USA
- Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Magaly Toro
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland, USA
- Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| |
Collapse
|
22
|
Kim M, Barnett-Neefs C, Chavez RA, Kealey E, Wiedmann M, Stasiewicz MJ. Risk Assessment Predicts Most of the Salmonellosis Risk in Raw Chicken Parts is Concentrated in Those Few Products with High Levels of High-Virulence Serotypes of Salmonella. J Food Prot 2024; 87:100304. [PMID: 38777091 DOI: 10.1016/j.jfp.2024.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Salmonella prevalence declined in U.S. raw poultry products since adopting prevalence-based Salmonella performance standards, but human illnesses did not reduce proportionally. We used Quantitative Microbial Risk Assessment (QMRA) to evaluate public health risks of raw chicken parts contaminated with different levels of all Salmonella and specific high- and low-virulence serotypes. Lognormal Salmonella level distributions were fitted to 2012 USDA-FSIS Baseline parts survey and 2023 USDA-FSIS HACCP verification sampling data. Three different Dose-Response (DR) approaches included (i) a single DR for all serotypes, (ii) DR that reduces Salmonella Kentucky ST152 virulence, and (iii) multiple serotype-specific DR models. All scenarios found risk concentrated in the few products with high Salmonella levels. Using a single DR model with Baseline data (μ = -3.19, σ = 1.29 Log CFU/g), 68% and 37% of illnesses were attributed to the 0.7% and 0.06% of products with >1 and >10 CFU/g Salmonella, respectively. Using distributions from 2023 HACCP data (μ = -5.53, σ = 2.45), 99.8% and 99.0% of illnesses were attributed to the 1.3% and 0.4% of products with >1 and >10 CFU/g Salmonella, respectively. Scenarios with serotype-specific DR models showed more concentrated risk at higher levels. Baseline data showed 92% and 67% and HACCP data showed >99.99% and 99.96% of illnesses attributed to products with >1 and >10 CFU/g Salmonella, respectively. Regarding serotypes using Baseline or HACCP input data, 0.002% and 0.1% of illnesses were attributed to the 0.2% and 0.4% of products with >1 CFU/g of Kentucky ST152, respectively, while 69% and 83% of illnesses were attributed to the 0.3% and 0.6% of products with >1 CFU/g of Enteritidis, Infantis, or Typhimurium, respectively. Therefore, public health risk in chicken parts is concentrated in finished products with high levels and specifically high levels of high-virulence serotypes. Low-virulence serotypes like Kentucky contribute few human cases.
Collapse
Affiliation(s)
- Minho Kim
- Dept. of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 S Goodwin Ave., Urbana, IL 61801, USA
| | - Cecil Barnett-Neefs
- Dept. of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 S Goodwin Ave., Urbana, IL 61801, USA
| | - Ruben A Chavez
- Dept. of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 S Goodwin Ave., Urbana, IL 61801, USA
| | - Erin Kealey
- Dept. of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 S Goodwin Ave., Urbana, IL 61801, USA
| | - Martin Wiedmann
- Dept. of Food Science, Cornell University, 341 Stocking Hall, Ithaca, NY 14853, USA
| | - Matthew J Stasiewicz
- Dept. of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 S Goodwin Ave., Urbana, IL 61801, USA.
| |
Collapse
|
23
|
Yates CR, Nguyen A, Liao J, Cheng RA. What's on a prophage: analysis of Salmonella spp. prophages identifies a diverse range of cargo with multiple virulence- and metabolism-associated functions. mSphere 2024; 9:e0003124. [PMID: 38775467 PMCID: PMC11332146 DOI: 10.1128/msphere.00031-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/22/2024] [Indexed: 06/26/2024] Open
Abstract
The gain of mobile elements, such as prophages, can introduce cargo to the recipient bacterium that could facilitate its persistence in or expansion to a new environment, such as a host. While previous studies have focused on identifying and characterizing the genetic diversity of prophages, analyses characterizing the cargo that prophages carry have not been extensively explored. We characterized prophage regions from 303 Salmonella spp. genomes (representing 254 unique serovars) to assess the distribution of prophages in diverse Salmonella. On average, prophages accounted for 3.7% (0.1%-8.8%) of the total genomic content of each isolate. Prophage regions annotated as Gifsy 1 and Salmon Fels 1 were the most commonly identified intact prophages, suggesting that they are common throughout the Salmonella genus. Among 21,687 total coding sequences (CDSs) from intact prophage regions in subsp. enterica genomes, 7.5% (median; range: 1.1%-47.6%) were categorized as having a function not related to prophage integration or phage structure, some of which could potentially provide a functional attribute to the host Salmonella cell. These predicted functions could be broadly categorized into CDSs involved in: (i) modification of cell surface structures (i.e., glycosyltransferases); (ii) modulation of host responses (e.g., SodC/SodA, SopE, ArtAB, and typhoid toxin); (iii) conferring resistance to heavy metals and antimicrobials; (iv) metabolism of carbohydrates, amino acids, and nucleotides; and (v) DNA replication, repair, and regulation. Overall, our systematic analysis of prophage cargo highlights a broader role for prophage cargo in influencing the metabolic, virulence, and resistance characteristics of Salmonella. IMPORTANCE Lysogenic bacteriophages (phages) can integrate their genome into a bacterial host's genome, potentially introducing genetic elements that can affect the fitness of the host bacterium. The functions of prophage-encoded genes are important to understand as these genes could be mobilized and transferred to a new host. Using a large genomic dataset representing >300 isolates from all known subspecies and species of Salmonella, our study contributes important new findings on the distribution of prophages and the types of cargo that diverse Salmonella prophages carry. We identified a number of coding sequences (CDSs) annotated as having cell surface-modifying attributes, suggesting that prophages may have played an important role in shaping Salmonella's diverse surface antigen repertoire. Furthermore, our characterization of prophages suggests that they play a broader role in facilitating the acquisition and transfer of CDSs associated with metabolism, DNA replication and repair, virulence factors, and to a lesser extent, antimicrobial resistance.
Collapse
Affiliation(s)
- Caroline R. Yates
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Anthony Nguyen
- Computational Modeling and Data Analytics Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Rachel A. Cheng
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
24
|
Yan W, Xu D, Chen L, Wu X. Antimicrobial resistance and genome characteristics of Salmonella enteritidis from Huzhou, China. PLoS One 2024; 19:e0304621. [PMID: 38833480 PMCID: PMC11149840 DOI: 10.1371/journal.pone.0304621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Salmonella enteritidis is a main pathogen responsible for sporadic outbreaks of gastroenteritis, and therefore is an important public health problem. This study investigated the drug resistance and genomic characteristics of S. enteritidis isolated from clinical and food sources in Huzhou, Zhejiang Province, China, from February 1, 2021, to December 30, 2023. In total, 43 S. enteritidis strains isolated during the study period were subjected to virulence gene, drug resistance gene, genetic correlation, antibiotic resistance, and multilocus sequence typing analyses. All 43 isolates were identified as ST11, and contained 108 virulence-related genes. Drug sensitivity analysis of the 43 isolates showed resistance rates of 100% to nalidixic acid and 90.70% to ampicillin and ampicillin/sulbactam. Multidrug resistance is a serious issue, with 81.40% of strains resistant to three or more antibacterial drugs. Genome sequencing indicated that S. enteritidis possessed 23 drug resistance genes, of which 14 were common to all 43 isolates. Phylogenetic analysis based on core genome single-nucleotide polymorphisms divided the 43 S. enteritidis strains into three clusters, with the 10 samples from an outbreak forming an independent branch located in cluster 3.
Collapse
Affiliation(s)
- Wei Yan
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Deshun Xu
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| |
Collapse
|
25
|
Yang S, Fan J, Yu L, He J, Zhang L, Yu Y, Hua X. Dissemination of Ceftriaxone-Resistant Salmonella Enteritidis Harboring Plasmids Encoding blaCTX-M-55 or blaCTX-M-14 Gene in China. Antibiotics (Basel) 2024; 13:456. [PMID: 38786182 PMCID: PMC11117602 DOI: 10.3390/antibiotics13050456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Salmonella Enteritidis was the primary foodborne pathogen responsible for acute gastroenteritis. The growing ceftriaxone resistance poses a significant threat to public health. Infection with S. Enteritidis has emerged as a major public health concern, particularly in developing countries. However, research on ceftriaxone-resistant S. Enteritidis (CRO-RSE) remains limited, particularly concerning its resistance mechanism, plasmid structure, and transmission characteristics. This study aims to address these gaps comprehensively. We collected 235 S. Enteritidis isolates from Hangzhou First People's Hospital between 2010 and 2020. Among these, 8.51% (20/235) exhibited resistance to ceftriaxone. Whole-genome analysis revealed that 20 CRO-RSE isolates harbored blaCTX-M-55 or blaCTX-M-14 on the plasmid. Moreover, the dissemination of the blaCTX-M-type gene was associated with IS26 and ISEcp1. Plasmid fusion entailing the integration of the p1 plasmid with antibiotic resistance genes and the p2 (pSEV) virulence plasmid was observed in certain CRO-RSE. Additionally, the structural analysis of the plasmids unveiled two types carrying the blaCTX-M-type gene: type A with multiple replicons and type B with IncI1 (Alpha) replicon. Type B plasmids exhibited superior adaptability and stability compared to type A plasmids within Enterobacteriaceae. Interestingly, although the type B (S808-p1) plasmid displayed the potential to spread to Acinetobacter baumannii, it failed to maintain stability in this species.
Collapse
Affiliation(s)
- Siyuan Yang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (S.Y.); (L.Y.); (J.H.); (L.Z.)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310016, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jianzhong Fan
- Department of Clinical Laboratory, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China;
| | - Lifei Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (S.Y.); (L.Y.); (J.H.); (L.Z.)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310016, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Infectious Diseases, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (S.Y.); (L.Y.); (J.H.); (L.Z.)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310016, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (S.Y.); (L.Y.); (J.H.); (L.Z.)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310016, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (S.Y.); (L.Y.); (J.H.); (L.Z.)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310016, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (S.Y.); (L.Y.); (J.H.); (L.Z.)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310016, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
26
|
Sun Y, Gao R, Liao X, Shen M, Chen X, Feng J, Ding T. Stress response of Salmonella Newport with various sequence types toward plasma-activated water: Viable but nonculturable state formation and outer membrane vesicle production. Curr Res Food Sci 2024; 8:100764. [PMID: 38779345 PMCID: PMC11109322 DOI: 10.1016/j.crfs.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
This study aims to investigate the response of Salmonella Newport to plasma-activated water (PAW), a novel disinfectant that attracts attention due to its broad-spectrum antimicrobial efficacy and eco-friendliness. In this work, we demonstrated that S. Newport of different sequence types (STs) could be induced into the viable but nonculturable (VBNC) state by PAW treatment. Notably, a remarkable 99.96% of S. Newport ST45 strain entered the VBNC state after a 12-min PAW treatment, which was the fastest observed among the five S. Newport STs (ST31, ST45, ST46, ST166, ST2364). Secretion of outer membrane vesicles was observed in ST45, suggesting a potential strategy against PAW treatment. Genes related to oxidative stress (sodA, katE, trxA), outer membrane proteins (ompA, ompC, ompD, ompF) and virulence (pagC, sipC, sopE2) were upregulated in the PAW-treated S. Newport, especially in ST45. A reduction of 38-65% in intracellular ATP level after PAW treatment was observed, indicating a contributor to the formation of the VBNC state. In addition, a rapid method for detecting the proportion of VBNC cells in food products based on pagC was established. This study contributes to understanding the formation mechanism of the VBNC state in S. Newport under PAW stress and offers insights for controlling microbial risks in the food industry.
Collapse
Affiliation(s)
- Yuhao Sun
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Rui Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Liao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Mofei Shen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuqin Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Feng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| |
Collapse
|
27
|
Nambiar RB, Elbediwi M, Ed-Dra A, Wu B, Yue M. Epidemiology and antimicrobial resistance of Salmonella serovars Typhimurium and 4,[5],12:i- recovered from hospitalized patients in China. Microbiol Res 2024; 282:127631. [PMID: 38330818 DOI: 10.1016/j.micres.2024.127631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Global emergence of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium is a continuing challenge for modern healthcare. However, the knowledge, regarding the epidemiology of salmonellosis caused by the monophasic variant S. 4,[5],12:i:- in hospitalized patients, is limited in China. To bridge this gap, we carried out a retrospective study to determine the antimicrobial resistance, trends, and risk factors of S. Typhimurium and S. 4,[5],12:i:- (n = 329) recovered from patients in Zhejiang province between 2011 and 2019. The results showed that 90.57% (298/329) of the isolates were MDR; among them, 48.94% (161/329) and 12.46% (41/329) were phenotypically resistant to cephalosporins and fluoroquinolones, respectively, which are the drugs of choice used to treat salmonellosis in clinics. Additionally, we observed a higher incidence of infections among the young population (<5 years old). Notably, the higher prevalence of ST34 (sequence type 34) isolates, especially after 2014, with MDR (57.05%, 170/298) phenotype, and incidence of ST34 isolates co-harbouring mcr-1 (mobile colistin resistance gene) and blaCTX-M-14 (β-lactamase gene) suggest an association between STs and drug resistance. Together, the increasing prevalence of MDR ST34 calls for enhanced monitoring strategies to mitigate the spread and dissemination of MDR clones of S. Typhimurium and S. 4,[5],12:i-. Our study provides improved knowledge about non-typhoid Salmonella (NTS) infections, which could help in the effective recommendation of antimicrobials in hospitalized patients.
Collapse
Affiliation(s)
- Reshma B Nambiar
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mohammed Elbediwi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, Sultan Moulay Slimane University, BP: 591, Beni Mellal, Morocco
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
28
|
Prayoga W. Concurrent emergencies: overlapping Salmonella and COVID-19 concerns in public health strategies and preparedness. Front Public Health 2024; 12:1331052. [PMID: 38741915 PMCID: PMC11089248 DOI: 10.3389/fpubh.2024.1331052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Windra Prayoga
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| |
Collapse
|
29
|
Karodia AB, Shaik T, Qekwana DN. Occurrence of Salmonella spp. in animal patients and the hospital environment at a veterinary academic hospital in South Africa. Vet World 2024; 17:922-932. [PMID: 38798288 PMCID: PMC11111710 DOI: 10.14202/vetworld.2024.922-932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/21/2024] [Indexed: 05/29/2024] Open
Abstract
Background and Aims Nosocomial infections caused by Salmonella spp. are common in veterinary facilities. The early identification of high-risk patients and sources of infection is important for mitigating the spread of infections to animal patients and humans. This study investigated the occurrence of Salmonella spp. among patients at a veterinary academic hospital in South Africa. In addition, this study describes the environmental factors that contribute to the spread of Salmonella spp. in the veterinary facility. Materials and Methods This study used a dataset of Salmonella-positive animals and environmental samples submitted to the bacteriology laboratory between 2012 and 2019. The occurrence of Salmonella isolates at the veterinary hospital was described based on source, month, season, year, and location. Proportions and 95% confidence intervals were calculated for each variable. Results A total of 715 Salmonella isolates were recorded, of which 67.6% (483/715) came from animals and the remainder (32.4%, 232/715) came from environmental samples. The highest proportion (29.2%) of Salmonella isolates was recorded in 2016 and most isolates were reported in November (17.4%). The winter season had the lowest (14.6%) proportion of isolates reported compared to spring (31.3%), summer (27.8%), and autumn (26.4%). Salmonella Typhimurium (20.0%) was the most frequently reported serotype among the samples tested, followed by Salmonella Anatum (11.2%). Among the positive animal cases, most (86.3%) came from equine clinics. Most reported isolates differed based on animal species with S. Typhimurium being common in equines and S. Anatum in bovines. Conclusion In this study, S. Typhimurium emerged as the predominant strain in animal and environmental samples. Equines were the most affected animals; however, Salmonella serotypes were also detected in the production animals. Environmental contamination was also a major source of Salmonella species in this study. To reduce the risk of transmission, strict infection prevention and control measures (biosecurity) must be implemented.
Collapse
Affiliation(s)
- Ayesha Bibi Karodia
- Department of Paraclinical Sciences, Section Veterinary Public Health, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Tahiyya Shaik
- Department of Paraclinical Sciences, Section Veterinary Public Health, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Daniel Nenene Qekwana
- Department of Paraclinical Sciences, Section Veterinary Public Health, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
30
|
Farias AB, Cortés-Avalos D, Ibarra JA, Perez-Rueda E. The interaction of InvF-RNAP is mediated by the chaperone SicA in Salmonella sp: an in silico prediction. PeerJ 2024; 12:e17069. [PMID: 38549779 PMCID: PMC10977090 DOI: 10.7717/peerj.17069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/18/2024] [Indexed: 04/02/2024] Open
Abstract
In this work we carried out an in silico analysis to understand the interaction between InvF-SicA and RNAP in the bacterium Salmonella Typhimurium strain LT2. Structural analysis of InvF allowed the identification of three possible potential cavities for interaction with SicA. This interaction could occur with the structural motif known as tetratricopeptide repeat (TPR) 1 and 2 in the two cavities located in the interface of the InvF and α-CTD of RNAP. Indeed, molecular dynamics simulations showed that SicA stabilizes the Helix-turn-Helix DNA-binding motifs, i.e., maintaining their proper conformation, mainly in the DNA Binding Domain (DBD). Finally, to evaluate the role of amino acids that contribute to protein-protein affinity, an alanine scanning mutagenesis approach, indicated that R177 and R181, located in the DBD motif, caused the greatest changes in binding affinity with α-CTD, suggesting a central role in the stabilization of the complex. However, it seems that the N-terminal region also plays a key role in the protein-protein interaction, especially the amino acid R40, since we observed conformational flexibility in this region allowing it to interact with interface residues. We consider that this analysis opens the possibility to validate experimentally the amino acids involved in protein-protein interactions and explore other regulatory complexes where chaperones are involved.
Collapse
Affiliation(s)
- André B. Farias
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Académica del Estado de Yucatán, Universidad Nacional Autónoma de México, Mérida, Yucatán, Mexico
- Laboratório Nacional de Computação Científica—LNCC, Petrópolis, Rio de Janeiro, Brazil
| | - Daniel Cortés-Avalos
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México, México
| | - J. Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México, México
| | - Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Académica del Estado de Yucatán, Universidad Nacional Autónoma de México, Mérida, Yucatán, Mexico
| |
Collapse
|
31
|
Katz TS, Harhay DM, Schmidt JW, Wheeler TL. Identifying a list of Salmonella serotypes of concern to target for reducing risk of salmonellosis. Front Microbiol 2024; 15:1307563. [PMID: 38410382 PMCID: PMC10894960 DOI: 10.3389/fmicb.2024.1307563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
There is an increasing awareness in the field of Salmonella epidemiology that focusing control efforts on those serotypes which cause severe human health outcomes, as opposed to broadly targeting all Salmonella, will likely lead to the greatest advances in decreasing the incidence of salmonellosis. Yet, little guidance exists to support validated, scientific selection of target serotypes. The goal of this perspective is to develop an approach to identifying serotypes of greater concern and present a case study using meat- and poultry-attributed outbreaks to examine challenges in developing a standardized framework for defining target serotypes.
Collapse
Affiliation(s)
- Tatum S Katz
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Dayna M Harhay
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - John W Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, United States
| |
Collapse
|
32
|
Gómez-Baltazar A, Godínez-Oviedo A, Segura-García LE, Hernández-Pérez CF, Hernández-Iturriaga M, Cabrera-Díaz E. Genomic diversity of Salmonella enterica isolated from raw chicken at retail establishments in Mexico. Int J Food Microbiol 2024; 411:110526. [PMID: 38154253 DOI: 10.1016/j.ijfoodmicro.2023.110526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
The genomic diversity of circulating non-typhoidal Salmonella in raw chicken was investigated in three states of central Mexico. A total of 192 S. enterica strains from chicken meat samples collected at supermarkets, fresh markets, and butcher shops were analyzed by whole-genome sequencing. The serovar distribution, occurrence of genes encoding for antimicrobial resistance, metal resistance, biocide resistance, plasmids and virulence factors, and clonal relatedness based on single nucleotide polymorphism (SNP) analysis were investigated. Serovars Infantis, Schwarzengrund and Enteritidis predominated among twenty identified. The distribution of serovars and proportion of AMR genes was different according to the state, year, season, and retail establishment (p < 0.001). Genes encoding metals resistance were identified in all the strains. A total of 145 virulence genes were identified and strains were classified into 32 virulotypes; serovars Infantis, Typhimurium, and Enteritidis showed the highest number of virulence genes. The strains matched 34 SNP clusters in the NCBI Pathogen Detection server and 59 %, which corresponded to Infantis, Schwarzengrund, Saintpaul, and Enteritidis, were associated with five major clusters and matched with chicken, environmental and clinical isolates from at least three countries. These results provide useful information to understand the epidemiology of Salmonella, conduct microbial risk assessment, and design risk-based control measures.
Collapse
Affiliation(s)
- Adrián Gómez-Baltazar
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Colonia Las Campanas, Querétaro 76010, Qro., Mexico
| | - Angélica Godínez-Oviedo
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Colonia Las Campanas, Querétaro 76010, Qro., Mexico
| | - Luis Eduardo Segura-García
- Departamento de Salud Pública, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan 45200, Jalisco, Mexico
| | - Cindy Fabiola Hernández-Pérez
- Centro Nacional de Referencia en Inocuidad y Bioseguridad Agroalimentaria del SENASICA, Carretera México Pachuca Km 35.5, Tecámac. CP. 55740, Estado de México, Mexico
| | - Montserrat Hernández-Iturriaga
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Colonia Las Campanas, Querétaro 76010, Qro., Mexico.
| | - Elisa Cabrera-Díaz
- Departamento de Salud Pública, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan 45200, Jalisco, Mexico.
| |
Collapse
|
33
|
Response to Questions Posed by the Food Safety and Inspection Service: Enhancing Salmonella Control in Poultry Products. J Food Prot 2024; 87:100168. [PMID: 37939849 DOI: 10.1016/j.jfp.2023.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/10/2023]
|
34
|
Chen LH, Lin MY, Lin HC, Yang FW, Liao HW, Shiau CW, Chiu HC, Su JC. Discovery of new dibenzodiazepine derivatives as antibacterials against intracellular bacteria. RSC Med Chem 2024; 15:283-292. [PMID: 38283231 PMCID: PMC10809566 DOI: 10.1039/d3md00418j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/15/2023] [Indexed: 01/30/2024] Open
Abstract
The emergence and spread of multidrug-resistant bacteria underscore the critical need for novel antibacterial interventions. In our screening of 12 synthesized thienobenzodiazepines, pyridobenzodiazepines, and dibenzodiazepines, we successfully identified a small molecule compound SW33. Notably, SW33 demonstrated potent inhibitory activity against intracellular multidrug-resistant and fluoroquinolone-resistant strains of S. typhimurium in both macrophages and epithelial cells. Furthermore, SW33 was also effective against intramacrophagic Salmonella typhi, Yersinia enterocolitica, and Listeria monocytogenes. These significant findings suggest that SW33 possesses broad-spectrum activity against intracellular bacteria.
Collapse
Affiliation(s)
- Ling-Han Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University Taipei 10048 Taiwan (+886) 22371-1574 (+886) 22312-3456 ext 66902
| | - Man-Yi Lin
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University Taipei 11221 Taiwan
| | - Hsueh-Chun Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University Taipei 10048 Taiwan (+886) 22371-1574 (+886) 22312-3456 ext 66902
| | - Fan-Wei Yang
- Department of Pharmacy, National Yang Ming Chiao Tung University Taipei 11221 Taiwan (+886) 22826-7000 ext 66401
| | - Hsiao-Wei Liao
- Department of Pharmacy, National Yang Ming Chiao Tung University Taipei 11221 Taiwan (+886) 22826-7000 ext 66401
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University Taipei 11221 Taiwan
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University Taipei 10048 Taiwan (+886) 22371-1574 (+886) 22312-3456 ext 66902
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University Taipei 10021 Taiwan
| | - Jung-Chen Su
- Department of Pharmacy, National Yang Ming Chiao Tung University Taipei 11221 Taiwan (+886) 22826-7000 ext 66401
| |
Collapse
|
35
|
Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H, Morgan M, Helmy YA. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel) 2024; 13:76. [PMID: 38247636 PMCID: PMC10812683 DOI: 10.3390/antibiotics13010076] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Collapse
Affiliation(s)
- Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Asmaa M. M. Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - William G. Kelley
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Patrick J. Harrington
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Cayenne W. Lovestad
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Amezcua
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed M. Sarhan
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 8744304, Egypt
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Melissa Morgan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
36
|
Velasquez-Munoz A, Castro-Vargas R, Cullens-Nobis FM, Mani R, Abuelo A. Review: Salmonella Dublin in dairy cattle. Front Vet Sci 2024; 10:1331767. [PMID: 38264470 PMCID: PMC10803612 DOI: 10.3389/fvets.2023.1331767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Salmonella enterica serovar Dublin (S. Dublin) is a bacterium host-adapted to cattle with increasing prevalence in dairy facilities. It can severely affect cattle health, producing high morbidity and mortality in young calves and reducing the performance of mature animals. Salmonella Dublin is difficult to control and eradicate from herds, as it can be shed from clinically normal animals. In addition, S. Dublin is a zoonotic bacterium that can be lethal for humans and pose a risk for human and animal health due to its multi-drug resistant characteristics. This review provides an overview of S. Dublin as a pathogen in dairy facilities, the risk factors associated with infection, and current strategies for preventing and controlling this disease. Furthermore, current gaps in knowledge are also discussed.
Collapse
Affiliation(s)
- Ana Velasquez-Munoz
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Departamento de Ciencias Veterinarias y Salud Pública, Universidad Católica de Temuco, Temuco, Chile
| | - Rafael Castro-Vargas
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Faith M. Cullens-Nobis
- Agriculture and Agribusiness Institute, Michigan State University Extension, Michigan State University, East Lansing, MI, United States
| | - Rinosh Mani
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Angel Abuelo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Agriculture and Agribusiness Institute, Michigan State University Extension, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
37
|
Hamilton AN, Mirmahdi RS, Ubeyitogullari A, Romana CK, Baum JI, Gibson KE. From bytes to bites: Advancing the food industry with three-dimensional food printing. Compr Rev Food Sci Food Saf 2024; 23:e13293. [PMID: 38284594 DOI: 10.1111/1541-4337.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
The rapid advancement of three-dimensional (3D) printing (i.e., a type of additive manufacturing) technology has brought about significant advances in various industries, including the food industry. Among its many potential benefits, 3D food printing offers a promising solution to deliver products meeting the unique nutritional needs of diverse populations while also promoting sustainability within the food system. However, this is an emerging field, and there are several aspects to consider when planning for use of 3D food printing for large-scale food production. This comprehensive review explores the importance of food safety when using 3D printing to produce food products, including pathogens of concern, machine hygiene, and cleanability, as well as the role of macronutrients and storage conditions in microbial risks. Furthermore, postprocessing factors such as packaging, transportation, and dispensing of 3D-printed foods are discussed. Finally, this review delves into barriers of implementation of 3D food printers and presents both the limitations and opportunities of 3D food printing technology.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Razieh S Mirmahdi
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Department of Biological and Agricultural Engineering, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Chetanjot K Romana
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Human Nutrition, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Jamie I Baum
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Human Nutrition, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Kristen E Gibson
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| |
Collapse
|
38
|
Xu B, Hou Z, Liu L, Wei J. Genomic and proteomic analysis of Salmonella Enteritidis isolated from a patient with foodborne diarrhea. World J Microbiol Biotechnol 2023; 40:48. [PMID: 38114804 DOI: 10.1007/s11274-023-03857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Salmonella is a major cause of foodborne diseases and clinical infections worldwide. This study aimed to investigate the drug resistance, genomic characteristics, and protein expression of foodborne Salmonella in Shanxi Province. We isolated a strain of Salmonella Enteritidis from patient feces and designated it 31A. The drug resistance of 31A against 14 antibiotics was determined using an antimicrobial susceptibility test. Whole-genome sequencing and quantitative proteomic analysis were performed on the 31A strain. Functional annotation of drug resistance genes/proteins and virulence genes/proteins was conducted using various databases, such as VFDB, ARDB, CAZY, COG, KOG, CARD, GO, and KEGG. The focus of this study was understanding the mechanisms related to food poisoning, and the genetic evolution of 31A was analyzed through comparative genomics. The 31A strain belonged to ST11 Salmonella Enteritidis and showed resistance to β-lactam and quinolone antibiotics. The genome of 31A had 70 drug resistance genes, 321 virulence genes, 12 SPIs, and 3 plasmid replicons. Functional annotation of these drug resistance and virulence genes revealed that drug resistance genes were mainly involved in defense mechanisms to confer resistance to antibiotics, while virulence genes were mainly associated with cellular motility. There were extensive interactions among the virulence genes, which included SPI-1, SPI-2, flagella, fimbriae, capsules and so on. The 31A strain had a close relationship with ASM2413794v1 and ASM130523v1, which were also ST11 Salmonella Enteritidis strains from Asia and originated from clinical patients, animals, and food. These results suggested minimal genomic differences among strains from different sources and the potential for interhost transmission. Differential analysis of the virulence and drug resistance-related proteins revealed their involvement in pathways related to human diseases, indicating that these proteins mediated bacterial invasion and infection. The integration of genomic and proteomic information led to the discovery that Salmonella can survive in a strong acid environment through various acid resistance mechanisms after entering the intestine with food and then invade intestinal epithelial cells to exert its effects. In this study, we comprehensively analyzed the drug resistance and virulence characteristics of Salmonella Enteritidis 31A using a combination of genomic and proteomic approaches, focusing on the pathogenic mechanism of Salmonella Enteritidis in food poisoning. We found significant fluctuations in various virulence factors during the survival, invasion, and infection of Salmonella Enteritidis, which collectively contributed to its pathogenicity. These results provide important information for the source tracing, prevention, and treatment of clinical infections caused by Salmonella Enteritidis.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China.
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China.
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China.
| | - Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China.
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China.
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
| |
Collapse
|
39
|
Bernal JF, Díaz PL, Perez-Sepulveda BM, Valencia-Guerrero MF, Clavijo V, Weisner M, Montaño LA, Arevalo SA, León IM, Castellanos LR, Underwood A, Duarte C, Argimón S, Moreno J, Aanensen D, Donado-Godoy P. A One Health approach based on genomics for enhancing the Salmonella enterica surveillance in Colombia. IJID REGIONS 2023; 9:80-87. [PMID: 38020187 PMCID: PMC10630622 DOI: 10.1016/j.ijregi.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 12/01/2023]
Abstract
Objectives This study aimed to provide evidence of the domestic benefits of introducing an integrative genomic analysis from the One Health approach in the national surveillance of Salmonella enterica between 1997-2017 in Colombia. Methods Data on Salmonella from clinical laboratory-based surveillance between 1997-2017 and from a national cross-sectional study at chicken retail stores in Colombia were compared using a phenotypic, molecular, and genomic approaches. Additional analysis by serovar using single nucleotide polymorphism was developed to increase the resolution of the relatedness between the interfaces. Results Locally, the diversity and pathogenic factors of the prevalent S. enterica serovars associated with foodborne disease in Colombia were described using laboratory, pulse field gel electrophoresis, and whole genome sequencing data. For example, the resolution of pulse field gel electrophoresis allowed the description of two main foodborne clusters of Salmonella Enteritidis isolates, which were expanded to eight foodborne clades using whole genome sequencing. Likewise, virulence factors and antimicrobial resistance determinants, and mobile genetic elements that converged in the foodborne clades should be considered a public health concern in Colombia. All results by serovar were compiled in an interactive easy to share report. Conclusion Whole genome sequencing is a technology that provides a precise assessment of emerging foodborne risks such as the Salmonella foodborne clades, but it requires an integrative and continued collaboration between the stakeholders across the One Health sectors to promote appropriated actions and policies in public health.
Collapse
Affiliation(s)
- Johan F. Bernal
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) - C.I Tibaitata, Global Health Research Unit on antimicrobial resistance (GHRU)-AMR and Colombian Integrated Program of Antimicrobial Resistance Surveillance (COIPARS), Mosquera, Colombia
| | - Paula L. Díaz
- Instituto Nacional de Salud (INS), Grupo de Microbiología, Bogotá DC, Colombia
| | - Blanca M. Perez-Sepulveda
- University of Liverpool, Institute of Infection, Veterinary & Ecological Sciences (IVES), Liverpool, United Kingdom
| | - María Fernanda Valencia-Guerrero
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) - C.I Tibaitata, Global Health Research Unit on antimicrobial resistance (GHRU)-AMR and Colombian Integrated Program of Antimicrobial Resistance Surveillance (COIPARS), Mosquera, Colombia
| | - Viviana Clavijo
- University of the Andes, Department of Biological Sciences, Bogotá DC, Colombia
| | - Magdalena Weisner
- Instituto Nacional de Salud (INS), Grupo de Microbiología, Bogotá DC, Colombia
| | | | - Stefany A. Arevalo
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) - C.I Tibaitata, Global Health Research Unit on antimicrobial resistance (GHRU)-AMR and Colombian Integrated Program of Antimicrobial Resistance Surveillance (COIPARS), Mosquera, Colombia
| | - Ingrid Maribel León
- Texas A&M University, Department of Veterinary Integrative Biosciences, College Station, USA
| | | | - Anthony Underwood
- University of Oxford, Global Health Research Unit (GHRU)-AMR, Big Data Institute, Oxford, United Kingdom
| | - Carolina Duarte
- Instituto Nacional de Salud (INS), Grupo de Microbiología, Bogotá DC, Colombia
| | - Silvia Argimón
- University of Oxford, Global Health Research Unit (GHRU)-AMR, Big Data Institute, Oxford, United Kingdom
| | - Jaime Moreno
- Instituto Nacional de Salud (INS), Grupo de Microbiología, Bogotá DC, Colombia
| | - David Aanensen
- University of Oxford, Global Health Research Unit (GHRU)-AMR, Big Data Institute, Oxford, United Kingdom
| | - Pilar Donado-Godoy
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) - C.I Tibaitata, Global Health Research Unit on antimicrobial resistance (GHRU)-AMR and Colombian Integrated Program of Antimicrobial Resistance Surveillance (COIPARS), Mosquera, Colombia
| |
Collapse
|
40
|
Obe T, Boltz T, Kogut M, Ricke SC, Brooks LA, Macklin K, Peterson A. Controlling Salmonella: strategies for feed, the farm, and the processing plant. Poult Sci 2023; 102:103086. [PMID: 37839165 PMCID: PMC10587538 DOI: 10.1016/j.psj.2023.103086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023] Open
Abstract
Controlling Salmonella in poultry is an ongoing food safety measure and while significant progress has been made, there is a need to continue to evaluate different strategies that include understanding Salmonella-poultry interaction, Salmonella-microbiota interactions, Salmonella genetics and response to adverse conditions, and preharvest and postharvest parameters that enable persistence. The purpose of this symposium is to discuss different strategies to consider from feed milling to the farm to the processing environment. This Poultry Science Association symposium paper is divided into 5 different sections that covers 1) immunological aspects of Salmonella control, 2) application of Salmonella genetics for targeted control strategies in poultry production, 3) improving poultry feed hygienics: utilizing feed manufacture techniques and equipment to improve feed hygienics, 4) practical on farm interventions for controlling Salmonella-what works and what may not work, and 5) monitoring and mitigating Salmonella in poultry. These topics elucidate the critical need to establish control strategies that will improve poultry gut health and limit conditions that exposes Salmonella to stress causing alterations to virulence and pathogenicity both at preharvest and postharvest poultry production. This information is relevant to the poultry industry's continued efforts to ensure food safety poultry production.
Collapse
Affiliation(s)
- Tomi Obe
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.
| | - Timothy Boltz
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | - Mike Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | | | - Ken Macklin
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | | |
Collapse
|
41
|
Ju Z, Cui L, Lei C, Song M, Chen X, Liao Z, Zhang T, Wang H. Whole-Genome Sequencing Analysis of Non-Typhoidal Salmonella Isolated from Breeder Poultry Farm Sources in China, 2020-2021. Antibiotics (Basel) 2023; 12:1642. [PMID: 37998844 PMCID: PMC10669045 DOI: 10.3390/antibiotics12111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Non-typhoidal salmonellosis is a dangerous foodborne disease that causes enormous economic loss and threatens public health worldwide. The consumption of food, especially poultry or poultry products, contaminated with non-typhoidal Salmonella (NTS) is the main cause of human salmonellosis. To date, no research has identified the molecular epidemiological characteristics of NTS strains isolated from breeder chicken farms in different provinces of China. In our study, we investigated the antimicrobial resistance, phylogenetic relationships, presence of antimicrobial resistance and virulence genes, and plasmids of NTS isolates recovered from breeder chicken farms in five provinces of China between 2020 and 2021 by using a whole-genome sequencing (WGS) approach and phenotypic methods. All sequenced isolates belonged to six serovars with seven sequence types. Nearly half of the isolates (44.87%) showed phenotypic resistance to at least three classes of antimicrobials. Salmonella enterica serotype Kentucky harbored more antimicrobial resistance genes than the others, which was highly consistent with phenotypic resistance. Furthermore, the carried rate of 104 out of 135 detected virulence genes was 100%. Overall, our WGS results highlight the need for the continuous monitoring of, and additional studies on, the antimicrobial resistance of NTS.
Collapse
Affiliation(s)
- Zijing Ju
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Lulu Cui
- Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (M.S.)
| | - Changwei Lei
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Mengze Song
- Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (M.S.)
| | - Xuan Chen
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Ziwei Liao
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Tiejun Zhang
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Hongning Wang
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| |
Collapse
|
42
|
Smith JC, Varriano S, Roach K, Snipes Z, Dawson JL, Shealy J, Dunn LL, Snyder WE, Shariat NW. Prevalence and molecular characterization of Salmonella isolated from wild birds in fresh produce environments. Front Microbiol 2023; 14:1272916. [PMID: 38029194 PMCID: PMC10662084 DOI: 10.3389/fmicb.2023.1272916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Wild birds pose a difficult food safety risk to manage because they can avoid traditional wildlife mitigation strategies, such as fences. Birds often use agricultural fields and structures as foraging and nesting areas, which can lead to defecation on crops and subsequent transfer of foodborne pathogens. To assess the food safety risk associated with these events, wild bird feces were collected from produce fields across the southeastern United States during the 2021 and 2022 growing seasons. In total 773 fecal samples were collected from 45 farms across Florida, Georgia, South Carolina, and Tennessee, and 2.1% (n = 16) of samples were Salmonella-positive. Importantly, 75% of Salmonella were isolated from moist feces, showing reduced Salmonella viability when feces dry out. 16S microbiome analysis showed that presence of culturable Salmonella in moist feces correlated to a higher proportion of the Enterobacteriaceae family. From the Salmonella-positive samples, 62.5% (10/16) contained multi-serovar Salmonella populations. Overall, 13 serovars were detected, including six most commonly attributed to human illness (Enteriditis, Newport, Typhimurium, Infantis, Saintpaul, and Muenchen). PCR screening identified an additional 59 Salmonella-positive fecal samples, which were distributed across moist (n = 44) and dried feces (n = 15). On-farm point counts and molecular identification from fecal samples identified 57 bird species, including for 10 Salmonella-positive fecal samples. Overall, there was a low prevalence of Salmonella in fecal samples, especially in dried feces, and we found no evidence of Salmonella transmission to proximal foliage or produce. Fecal samples collected in farms close together shared highly related isolates by whole genome sequencing and also had highly similar Salmonella populations with comparable relative frequencies of the same serovars, suggesting the birds acquired Salmonella from a common source.
Collapse
Affiliation(s)
- Jared C. Smith
- Departments of Population Health and Microbiology, University of Georgia, Athens, GA, United States
| | - Sofia Varriano
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Kerrie Roach
- Department of Plant Industry, Clemson University Extension, Charleston, SC, United States
| | - Zach Snipes
- Department of Plant Industry, Clemson University Extension, Charleston, SC, United States
| | - Joshua L. Dawson
- Fort Valley State University Extension, Fort Valley, GA, United States
| | - Justin Shealy
- College of Agricultural and Environmental Sciences, University of Georgia Extension, Athens, GA, United States
| | - Laurel L. Dunn
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
- Center for Food Safety, University of Georgia, Griffin, GA, United States
| | - William E. Snyder
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Nikki W. Shariat
- Departments of Population Health and Microbiology, University of Georgia, Athens, GA, United States
- Center for Food Safety, University of Georgia, Griffin, GA, United States
| |
Collapse
|
43
|
Burciaga S, Trachsel JM, Sockett D, Aulik N, Monson MS, Anderson CL, Bearson SMD. Genomic and phenotypic comparison of two variants of multidrug-resistant Salmonella enterica serovar Heidelberg isolated during the 2015-2017 multi-state outbreak in cattle. Front Microbiol 2023; 14:1282832. [PMID: 37928690 PMCID: PMC10623430 DOI: 10.3389/fmicb.2023.1282832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Salmonella enterica subspecies enterica serovar Heidelberg (Salmonella Heidelberg) has caused several multistate foodborne outbreaks in the United States, largely associated with the consumption of poultry. However, a 2015-2017 multidrug-resistant (MDR) Salmonella Heidelberg outbreak was linked to contact with dairy beef calves. Traceback investigations revealed calves infected with outbreak strains of Salmonella Heidelberg exhibited symptoms of disease frequently followed by death from septicemia. To investigate virulence characteristics of Salmonella Heidelberg as a pathogen in bovine, two variants with distinct pulse-field gel electrophoresis (PFGE) patterns that differed in morbidity and mortality during the multistate outbreak were genotypically and phenotypically characterized and compared. Strain SX 245 with PFGE pattern JF6X01.0523 was identified as a dominant and highly pathogenic variant causing high morbidity and mortality in affected calves, whereas strain SX 244 with PFGE pattern JF6X01.0590 was classified as a low pathogenic variant causing less morbidity and mortality. Comparison of whole-genome sequences determined that SX 245 lacked ~200 genes present in SX 244, including genes associated with the IncI1 plasmid and phages; SX 244 lacked eight genes present in SX 245 including a second YdiV Anti-FlhC(2)FlhD(4) factor, a lysin motif domain containing protein, and a pentapeptide repeat protein. RNA-sequencing revealed fimbriae-related, flagella-related, and chemotaxis genes had increased expression in SX 245 compared to SX 244. Furthermore, SX 245 displayed higher invasion of human and bovine epithelial cells than SX 244. These data suggest that the presence and up-regulation of genes involved in type 1 fimbriae production, flagellar regulation and biogenesis, and chemotaxis may play a role in the increased pathogenicity and host range expansion of the Salmonella Heidelberg isolates involved in the bovine-related outbreak.
Collapse
Affiliation(s)
- Selma Burciaga
- United States Department of Agriculture, Agriculture Research Services, National Animal Disease Center, Ames, IA, United States
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, United States
| | - Julian M. Trachsel
- United States Department of Agriculture, Agriculture Research Services, National Animal Disease Center, Ames, IA, United States
| | - Donald Sockett
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin, Madison, WI, United States
| | - Nicole Aulik
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin, Madison, WI, United States
| | - Melissa S. Monson
- United States Department of Agriculture, Agriculture Research Services, National Animal Disease Center, Ames, IA, United States
| | - Christopher L. Anderson
- United States Department of Agriculture, Agriculture Research Services, National Animal Disease Center, Ames, IA, United States
| | - Shawn M. D. Bearson
- United States Department of Agriculture, Agriculture Research Services, National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
44
|
Muthumbi EM, Mwanzu A, Mbae C, Bigogo G, Karani A, Mwarumba S, Verani JR, Kariuki S, Scott JAG. The epidemiology of fecal carriage of nontyphoidal Salmonella among healthy children and adults in three sites in Kenya. PLoS Negl Trop Dis 2023; 17:e0011716. [PMID: 37883602 PMCID: PMC10629669 DOI: 10.1371/journal.pntd.0011716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Despite the importance of non-Typhoidal Salmonella (NTS) disease in Africa, epidemiologic data on carriage and transmission are few. These data are important to understand the transmission of NTS in Africa and to design control strategies. METHOD To estimate the prevalence of stool carriage of NTS in Kenya, we conducted a cross-sectional study in Kilifi, Nairobi, and Siaya, sites with a low, moderate and high incidence of invasive NTS disease, respectively. At each site, we randomly selected 100 participants in each age-group of 0-11 months, 12-59 months, 5-14 years, 15-54 years and ≥55 years. We collected stool, venous blood (for hemoglobin and malaria rapid tests), anthropometric measurements, and administered a questionnaire on Water Access Sanitation and Hygiene (WASH) practices. Stool samples were cultured on selective agar for Salmonella; suspect isolates underwent serotyping and antimicrobial susceptibility testing. RESULT Overall, 53 (3.5%) isolates of NTS were cultured from 1497 samples. Age-adjusted prevalence was 13.1% (95%CI 8.8-17.4) in Kilifi, 0.4% (95%CI 0-1.3) in Nairobi, and 0.9% (95%CI 0-2.0) in Siaya. Prevalence was highest among those aged 15-54 years (6.2%). Of 53 isolates; 5 were S. Enteritidis, 1 was S. Typhimurium. No S. Typhi was isolated. None of the risk factors were associated with carriage of NTS. All isolates were susceptible to all antibiotics tested, including ampicillin, chloramphenicol, ciprofloxacin and co-trimoxazole. CONCLUSION Prevalence of fecal carriage was high in Kilifi, an area of low incidence of invasive NTS disease and was low in areas of higher incidence in Nairobi and Siaya. The age-prevalence, risk factors, geographical and serotype distribution of NTS in carriage differs from invasive disease.
Collapse
Affiliation(s)
- Esther M. Muthumbi
- Kenya Medical Research Institute–Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alfred Mwanzu
- Kenya Medical Research Institute–Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | - Cecilia Mbae
- Kenya Medical Research Institute–Centre for Microbiology Research, Nairobi, Kenya
| | - Godfrey Bigogo
- Kenya Medical Research Institute–Centre for Global Health Research, Kisumu, Kenya
| | - Angela Karani
- Kenya Medical Research Institute–Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | - Salim Mwarumba
- Kenya Medical Research Institute–Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
| | - Jennifer R. Verani
- U.S. Centers for Disease Control and Prevention, Division of Global Health Protection, Nairobi, Kenya
| | - Samuel Kariuki
- Kenya Medical Research Institute–Centre for Microbiology Research, Nairobi, Kenya
| | - J. Anthony G. Scott
- Kenya Medical Research Institute–Centre for Geographic Medicine Research, Coast, Kilifi, Kenya
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
45
|
Petrin S, Orsini M, Massaro A, Olsen JE, Barco L, Losasso C. Phenotypic and genotypic antimicrobial resistance correlation and plasmid characterization in Salmonella spp. isolates from Italy reveal high heterogeneity among serovars. Front Public Health 2023; 11:1221351. [PMID: 37744490 PMCID: PMC10513437 DOI: 10.3389/fpubh.2023.1221351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction The spread of antimicrobial resistance among zoonotic pathogens such as Salmonella is a serious health threat, and mobile genetic elements (MGEs) carrying antimicrobial resistance genes favor this phenomenon. In this work, phenotypic antimicrobial resistance to commonly used antimicrobials was studied, and the antimicrobial resistance genes (ARGs) and plasmid replicons associated with the resistances were determined. Methods Eighty-eight Italian Salmonella enterica strains (n = 88), from human, animal and food sources, isolated between 2009 and 2019, were selected to represent serovars with different frequency of isolation in human cases of salmonellosis. The presence of plasmid replicons was also investigated. Results and discussion Resistances to sulphonamides (23.9%), ciprofloxacin (27.3%), ampicillin (29.5%), and tetracycline (32.9%) were the most found phenotypes. ARGs identified in the genomes correlated with the phenotypical results, with blaTEM-1B, sul1, sul2, tetA and tetB genes being frequently identified. Point mutations in gyrA and parC genes were also detected, in addition to many different aminoglycoside-modifying genes, which, however, did not cause phenotypic resistance to aminoglycosides. Many genomes presented plasmid replicons, however, only a limited number of ARGs were predicted to be located on the contigs carrying these replicons. As an expectation of this, multiple ARGs were identified on contigs with IncQ1 plasmid replicon in strains belonging to the monophasic variant of Salmonella Typhimurium. In general, high variability in ARGs and plasmid replicons content was observed among isolates, highlighting a high level of heterogeneity in Salmonella enterica. Irrespective of the serovar., many of the ARGs, especially those associated with critically and highly important antimicrobials for human medicine were located together with plasmid replicons, thus favoring their successful dissemination.
Collapse
Affiliation(s)
- Sara Petrin
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Massimiliano Orsini
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
| | - Andrea Massaro
- Applied Chemistry Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lisa Barco
- OIE and National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
| | - Carmen Losasso
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
| |
Collapse
|
46
|
Moyne AL, Lawal OU, Gauthier J, Kukavica-Ibrulj I, Potvin M, Goodridge L, Levesque RC, Harris LJ. Genetic diversity of Salmonella enterica isolated over 13 years from raw California almonds and from an almond orchard. PLoS One 2023; 18:e0291109. [PMID: 37676871 PMCID: PMC10484465 DOI: 10.1371/journal.pone.0291109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
A comparative genomic analysis was conducted for 171 Salmonella isolates recovered from raw inshell almonds and raw almond kernels between 2001 and 2013 and for 30 Salmonella Enteritidis phage type (PT) 30 isolates recovered between 2001 and 2006 from a 2001 salmonellosis outbreak-associated almond orchard. Whole genome sequencing was used to measure the genetic distance among isolates by single nucleotide polymorphism (SNP) analyses and to predict the presence of plasmid DNA and of antimicrobial resistance (AMR) and virulence genes. Isolates were classified by serovars with Parsnp, a fast core-genome multi aligner, before being analyzed with the CFSAN SNP Pipeline (U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition). Genetically similar (≤18 SNPs) Salmonella isolates were identified among several serovars isolated years apart. Almond isolates of Salmonella Montevideo (2001 to 2013) and Salmonella Newport (2003 to 2010) differed by ≤9 SNPs. Salmonella Enteritidis PT 30 isolated between 2001 and 2013 from survey, orchard, outbreak, and clinical samples differed by ≤18 SNPs. One to seven plasmids were found in 106 (62%) of the Salmonella isolates. Of the 27 plasmid families that were identified, IncFII and IncFIB plasmids were the most predominant. AMR genes were identified in 16 (9%) of the survey isolates and were plasmid encoded in 11 of 16 cases; 12 isolates (7%) had putative resistance to at least one antibiotic in three or more drug classes. A total of 303 virulence genes were detected among the assembled genomes; a plasmid that harbored a combination of pef, rck, and spv virulence genes was identified in 23% of the isolates. These data provide evidence of long-term survival (years) of Salmonella in agricultural environments.
Collapse
Affiliation(s)
- Anne-laure Moyne
- Department of Food Science and Technology, University of California, Davis, California, United States of America
- Western Center for Food Safety, University of California, Davis, California, United States of America
| | - Opeyemi U. Lawal
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Jeff Gauthier
- Institut de biologie intégrative et des systèmes (IBIS), Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Irena Kukavica-Ibrulj
- Institut de biologie intégrative et des systèmes (IBIS), Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Marianne Potvin
- Institut de biologie intégrative et des systèmes (IBIS), Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | - Roger C. Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Linda J. Harris
- Department of Food Science and Technology, University of California, Davis, California, United States of America
- Western Center for Food Safety, University of California, Davis, California, United States of America
| |
Collapse
|
47
|
Richards AK, Kue S, Norris CG, Shariat NW. Genomic and phenotypic characterization of Salmonella enterica serovar Kentucky. Microb Genom 2023; 9:001089. [PMID: 37750759 PMCID: PMC10569734 DOI: 10.1099/mgen.0.001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 09/27/2023] Open
Abstract
Non-typhoidal Salmonella are extremely diverse and different serovars can exhibit varied phenotypes, including host adaptation and the ability to cause clinical illness in animals and humans. In the USA, Salmonella enterica serovar Kentucky is infrequently found to cause human illness, despite being the top serovar isolated from broiler chickens. Conversely, in Europe, this serovar falls in the top 10 serovars linked to human salmonellosis. Serovar Kentucky is polyphyletic and has two lineages, Kentucky-I and Kentucky-II; isolates belonging to Kentucky-I are frequently isolated from poultry in the USA, while Kentucky-II isolates tend to be associated with human illness. In this study, we analysed whole-genome sequences and associated metadata deposited in public databases between 2017 and 2021 by federal agencies to determine serovar Kentucky incidence across different animal and human sources. Of 5151 genomes, 90.3 % were from isolates that came from broilers, while 5.9 % were from humans and 3.0 % were from cattle. Kentucky-I isolates were associated with broilers, while isolates belonging to Kentucky-II and a new lineage, Kentucky-III, were more commonly associated with cattle and humans. Very few serovar Kentucky isolates were associated with turkey and swine sources. Phylogenetic analyses showed that Kentucky-III genomes were more closely related to Kentucky-I, and this was confirmed by CRISPR-typing and multilocus sequence typing (MLST). In a macrophage assay, serovar Kentucky-II isolates were able to replicate over eight times better than Kentucky-I isolates. Analysis of virulence factors showed unique patterns across these three groups, and these differences may be linked to their association with different hosts.
Collapse
Affiliation(s)
- Amber K. Richards
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Song Kue
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Connor G. Norris
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Nikki W. Shariat
- Department of Population Health, University of Georgia, Athens, GA, USA
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| |
Collapse
|
48
|
Raut R, Maharjan P, Fouladkhah AC. Practical Preventive Considerations for Reducing the Public Health Burden of Poultry-Related Salmonellosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6654. [PMID: 37681794 PMCID: PMC10487474 DOI: 10.3390/ijerph20176654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
With poultry products as one of the leading reservoirs for the pathogen, in a typical year in the United States, it is estimated that over one million individuals contract non-typhoidal Salmonella infections. Foodborne outbreaks associated with Salmonella infections in poultry, thus, continue to remain a significant risk to public health. Moreover, the further emergence of antimicrobial resistance among various serovars of Salmonella is an additional public health concern. Feeding-based strategies (such as use of prebiotics, probiotics, and/or phytobiotics as well as essential oils), non-feeding-based strategies (such as use of bacteriophages, vaccinations, and in ovo strategies), omics tools and surveillance for identifying antibiotic-resistance genes, post-harvest application of antimicrobials, and biosecurity measures at poultry facilities are practical interventions that could reduce the public health burden of salmonellosis and antibiotic resistance associated with poultry products. With the escalating consumption of poultry products around the globe, the fate, prevalence, and transmission of Salmonella in agricultural settings and various poultry-processing facilities are major public health challenges demanding integrated control measures throughout the food chain. Implementation of practical preventive measures discussed in the current study could appreciably reduce the public health burden of foodborne salmonellosis associated with poultry products.
Collapse
Affiliation(s)
- Rabin Raut
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA;
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA
| | - Pramir Maharjan
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA;
| | - Aliyar Cyrus Fouladkhah
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA
- Public Health Microbiology FoundationSM, Nashville, TN 37209, USA
| |
Collapse
|
49
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. From Eberthella typhi to Salmonella Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Salmonella Typhi. ACS OMEGA 2023; 8:25674-25697. [PMID: 37521659 PMCID: PMC10373206 DOI: 10.1021/acsomega.3c02386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Salmonella Typhi (S. Typhi), the invasive typhoidal serovar of Salmonella enterica that causes typhoid fever in humans, is a severe threat to global health. It is one of the major causes of high morbidity and mortality in developing countries. According to recent WHO estimates, approximately 11-21 million typhoid fever illnesses occur annually worldwide, accounting for 0.12-0.16 million deaths. Salmonella infection can spread to healthy individuals by the consumption of contaminated food and water. Typhoid fever in humans sometimes is accompanied by several other critical extraintestinal complications related to the central nervous system, cardiovascular system, pulmonary system, and hepatobiliary system. Salmonella Pathogenicity Island-1 and Salmonella Pathogenicity Island-2 are the two genomic segments containing genes encoding virulent factors that regulate its invasion and systemic pathogenesis. This Review aims to shed light on a comparative analysis of the virulence and pathogenesis of the typhoidal and nontyphoidal serovars of S. enterica.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Atish Roy Chowdhury
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debapriya Mukherjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dipshikha Chakravortty
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre
for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
50
|
Petrin S, Wijnands L, Benincà E, Mughini-Gras L, Delfgou-van Asch EHM, Villa L, Orsini M, Losasso C, Olsen JE, Barco L. Assessing phenotypic virulence of Salmonella enterica across serovars and sources. Front Microbiol 2023; 14:1184387. [PMID: 37346753 PMCID: PMC10279978 DOI: 10.3389/fmicb.2023.1184387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Whole genome sequencing (WGS) is increasingly used for characterizing foodborne pathogens and it has become a standard typing technique for surveillance and research purposes. WGS data can help assessing microbial risks and defining risk mitigating strategies for foodborne pathogens, including Salmonella enterica. Methods To test the hypothesis that (combinations of) different genes can predict the probability of infection [P(inf)] given exposure to a certain pathogen strain, we determined P(inf) based on invasion potential of 87 S. enterica strains belonging to 15 serovars isolated from animals, foodstuffs and human patients, in an in vitro gastrointestinal tract (GIT) model system. These genomes were sequenced with WGS and screened for genes potentially involved in virulence. A random forest (RF) model was applied to assess whether P(inf) of a strain could be predicted based on the presence/absence of those genes. Moreover, the association between P(inf) and biofilm formation in different experimental conditions was assessed. Results and Discussion P(inf) values ranged from 6.7E-05 to 5.2E-01, showing variability both among and within serovars. P(inf) values also varied between isolation sources, but no unambiguous pattern was observed in the tested serovars. Interestingly, serovars causing the highest number of human infections did not show better ability to invade cells in the GIT model system, with strains belonging to other serovars displaying even higher infectivity. The RF model did not identify any virulence factor as significant P(inf) predictors. Significant associations of P(inf) with biofilm formation were found in all the different conditions for a limited number of serovars, indicating that the two phenotypes are governed by different mechanisms and that the ability to form biofilm does not correlate with the ability to invade epithelial cells. Other omics techniques therefore seem more promising as alternatives to identify genes associated with P(inf), and different hypotheses, such as gene expression rather than presence/absence, could be tested to explain phenotypic virulence [P(inf)].
Collapse
Affiliation(s)
- Sara Petrin
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lucas Wijnands
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Elisa Benincà
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Ellen H. M. Delfgou-van Asch
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Laura Villa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Massimiliano Orsini
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - Carmen Losasso
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lisa Barco
- WHOA and National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| |
Collapse
|